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This paper addresses mathematical problem solving activity within the context of a 
web-based beyond-school competition – SUB14. Using a qualitative approach, we aim 
at finding evidences of the contestants’ mathematical competence and technological 
fluency by analysing four solutions to a particular geometry problem from participants 
who decided to use GeoGebra. Even though they all make use of the same tool, their 
approaches to the problem differ in terms of the mathematical and technological 
fluency they show. We interpret their different ways of dealing with the tool and with 
mathematical knowledge as instances of students-with-media in problem solving. 
INTRODUCTION 
Several authors have been stressing the need for a deeper understanding of the 
mathematical activities in which young people engage, particularly in technologically 
rich environments that can be considered extensions of the school curriculum (Barbeau 
& Taylor, 2009). The University of Algarve has been promoting a web-based 
mathematical problem solving competition, addressed to 7th and 8th graders (12-13 
years-old), named SUB14®. In this beyond-school and web-based competition there is 
a mathematical problem published every two weeks that the participants must solve 
individually or in small teams. Students have to send their solutions electronically, 
using attachments if they wish so, but those must include a complete and detailed 
explanation of their reasoning and solving process. Previous results indicate that the 
SUB14’s participants often show sophisticated technological fluency when solving the 
competition’s problems (Jacinto, Carreira, & Amado, 2011), although we know that 
putting such abilities into practice in the classroom is still rare for most of them.  
This study extends the research on understanding mathematical problem solving in a 
beyond-school technologically rich environment, by characterizing how SUB14’s 
participants reveal their technological fluency and their mathematical competence. 
Moreover, we aim at understanding how the use of a technological tool, like 
GeoGebra, supports and shapes four different approaches to a geometry problem. 
THEORETICAL FRAMEWORK 
Our conceptual framework is grounded on a sociocultural view of mathematics and 
draws on the idea that: (i) mathematical competence comprises the ability to use 
mathematical knowledge, namely, for solving problems; (ii) technology is a powerful 
mediational means of the mathematical activity, and (iii) technological fluency is 
expected to be a leverage to face many of the 21st century societal challenges. 
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Mathematical knowledge and problem solving 
It is widely accepted that a problem is an intellectually challenging situation for an 
individual who is willing to solve it, but does not possess an algorithm or a procedure 
that leads immediately and surely to the answer (Lester, 1983).  
In the past years, the Portuguese mathematics curriculum has placed problem solving 
at the heart of classroom activities, and the current syllabus even puts a renewed and 
stronger emphasis on this “cross-content skill”, and it acknowledges that improving the 
ability to solve problems is crucial for the development of other mathematical skills 
(ME, 2007). Seeing problem solving as the development of a productive way of 
thinking (Lesh & Zawojewski, 2007) entails a conception of mathematical knowledge 
that is not reducible to proficiency on facts, rules, techniques, computational skills, 
theorems, or structures. This conception moves towards broader constructs closer to 
the notion of mathematical competence (Perrenoud, 1999) and regards problem 
solving as a source of mathematical knowledge. Considering that mathematical 
problem solving fosters mathematical thinking (Lesh & Zawojewski, 2007; 
Schoenfeld, 1992), the solver must adopt a mathematical stance, which impels 
mathematization, that is, to model, to symbolize, to abstract, to represent and to use 
mathematical language and tools. 
Mathematical knowledge under the light of technological fluency  
The impact of digital tools in our society has been a focal point of interest for 
researchers over the past decades. Changing, reshaping, and affording are some of the 
keywords that have been recently highlighted to describe and explain such impact. 
Noss (2001) speaks of the representational transformation as a central feature of 
post-industrial societies and discusses how computational representations are 
reshaping the nature of mathematical knowledge. Kaput (1989) had already suggested 
that the production of mathematical meaning is anchored in the ability to use various 
representations and stems essentially from making conversions between different 
representations. Lately, this representational fluency is considered a core competency 
in the development of mathematical thinking (Lesh & Doerr, 2003), and is 
acknowledged as a fundamental tool in beyond-school environments, where it 
mediates decision-making, the interpretation of complex systems, or the use of 
technologies (Dark, 2003; Lesh, Zawojewski, & Carmona, 2003). While observing 
that mathematics plays an increasingly significant role in society, Noss (2001) states 
that some mathematical concepts and processes may be concealed by technological 
tools. Thus, many authors choose the term affordance to define the set of features of a 
particular technological tool that invite the subject to undertake an action upon it 
(Artigue, 2007; Noss, 2001).  
Researchers have theorised on the representational side of technology-based 
mathematical activity by looking at the ways students recognise the affordances of the 
tools to generate mathematical meaning. The semiotic dimension of mathematical 
knowledge has become more intertwined with the awareness of the mediational role of 
technological mathematical representations, as semiotic systems are changed by the 
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introduction of digital technologies. One emergent conclusion is that mathematics and 
technology cannot be seen as disjoint and the role of technology cannot even be 
reduced to conversions between representational systems (Artigue & Bardini, 2010).  
In the same vein, Borba and Villarreal (2005) argue that the processes mediated by 
technologies lead to a reorganization of the human mind itself: knowledge is an 
outcome of a symbiosis of humans and technology – a new entity they named 
humans-with-media. This concept also discloses a sociocultural perspective of the 
human mind, in the sense proposed by Wertsch (1991) when assuming that every 
“action is mediated and (…) cannot be separated from the milieu in which it is carried 
out” (p. 18). The notion of humans-with-media is supported by two main ideas: (i) 
cognition has a social and collective nature that (ii) comprises tools which mediate the 
production of knowledge. The key issue is that media are considered a constitutive part 
of the subject and cannot be seen as auxiliary or supplementary. The media that are 
used to communicate, to produce or represent mathematical ideas, influence the kind of 
mathematics as well as of mathematical thinking that is developed. This means that 
different collectives of humans-with-media originate different thinking: for instance, 
the mathematics produced by humans-with-paper-and-pencil is qualitatively different 
from that produced by humans-with-computers (Borba & Villarreal, 2005).  
RESEARCH METHODS 
The broader research project, into which this study is anchored, follows a naturalistic 
approach, involving qualitative techniques for data collection and analysis (Quivy & 
Campenhoudt, 2008). In this particular study, we are looking for evidences of 
technological fluency and mathematical problem solving fluency of particular, 
distinctive cases that illustrate variety and do not seek generalization. 
Firstly, we gathered all the answers submitted by the 7th graders to a particular 
geometry problem (Figure 1), from the 2011 edition of SUB14. We then selected four 
productions of participants who have used GeoGebra at some point of their solving 
process which include their electronic messages and attachments. 

 
Figure 1 – Problem #6 of the SUB14’s 2011 edition 

We conducted a descriptive and inductive analysis, considering the theoretical 
background, specifically aiming at illustrating the features related to the technological 
fluency and mathematical competence of the participants, namely in terms of the 
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Figure 3 – GeoGebra construction, 
sent by Andreia, Lucas and José 

 

 
 
 
 
 
 

effective use of a digital tool – GeoGebra – to organize, expand, and sustain 
mathematical thinking, meaning and knowledge in their problem solving activity. 
FOUR GEOGEBRA-BASED SOLUTIONS 
In this section we analyse four solutions of a geometry problem, all using GeoGebra, to 
emphasize different mediational aspects that mathematical and technological 
representations enhance, specifically to: 1) obtain the solution, 2) interpret the solution, 
3) confirm the solution, and 4) explore the solution.  
Using GeoGebra to obtain the solution  
Marta and Miguel submitted their solution along with a GeoGebra file (Figure 2). They 
represented the rectangular lawn as well as the three conditions of the statement: a stick 
with length 2 (segment FG) is perpendicular to the 
side AD of the rectangle, and the “rope” (segment 
JI) passes through the end of the stick, intersecting 
it at point G. Next, they determined the areas of 
two triangles, obtained by dividing the triangle FJI 
through the stick (segment FG). By dragging F 
they verified that the total area did not change and 
therefore they concluded that Rose was right. 
This solution reveals Marta and Miguel’s 
technological fluency, particularly when handling 
GeoGebra: they perform constructions that strictly meet the initial conditions and 
determine areas using the measuring tools. As to their mathematical fluency, and 
analysing the construction protocol, they seem to be familiar with geometrical 
concepts such as “perpendicular line” and “parallel line”, “polygon” and “area of a 
polygon”. Nevertheless, they fail to submit a mathematical reason for the invariance of 
the areas, which may result from the “certainty” they seem to get from dragging F. 
Using GeoGebra to interpret the solution 
Andreia, Lucas and José also sent a GeoGebra file and a brief text that seeks to validate 
the conclusion obtained by manipulating their construction (Figure 3). They built a 
rigorous and robust representation of the garden and the flowerbed, and added two 

measures using the tools: the length of the 
segment GH and the area of the triangle EGH. 
It seems that the manipulation of the points G 
and E, the observation of the invariance of the 
area, and the length of the bottom side of the 
triangle convince them that the areas do not 
change, whatever triangle they represent under 
those conditions.  
In written, they try to explain the invariance of 
the area: “triangles with the same base and the 
same height have equal areas”. This 

 
Figure 2 – Marta and Miguel’s 

GeoGebra construction  
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conclusion arises from the manipulation of vertices “E and G under the conditions 
described in the problem”. However, moving E and G, we observe that the segment 
GH isn’t always parallel to the side AB of the rectangle but GeoGebra indicates that the 
length of this segment is always “13”. This may be a consequence of the default 
rounding – in this case, round to the unit – which, most likely, was overlooked by the 
participants. 
The team revealed its technology fluency in their flexible use of GeoGebra, not only to 
represent the situation posed, but to obtain the solution and to attempt an interpretation. 
Although they are somewhat fluent in terms of mathematical knowledge, they seem to 
be convinced that the length of the segment GH is also invariant, which is not. 
Using GeoGebra to confirm the solution 
Sara acknowledged to have felt some difficulty in “explaining with words” how she 
thought about this problem; therefore, she decided to send a screen capture containing 
her construction in GeoGebra (Figure 4). According to her words, Sara “imagined” that 
the rectangle had a length of 12 cm and then built a representation of the rectangular 
garden and the triangular flowerbed, thoroughly following the statement. Therefore 
she determined the area of the triangle (on the left) and recognized that it matched the 
length of the rectangle that she initially chose. By making a second construction (on the 
right) she was already aiming at justifying the earlier result by dividing the flowerbed 
into two triangles, ONM and OMK. However, Sara explained that the 2m stick 
corresponded to the base 
of those smaller triangles, 
and she represented their 
heights using two 
segments, a1 and b1. 
Finally, she noted that 
“adding” two segments, 
i.e., the heights of the 
smaller triangles, it gives 
the length of the 
rectangular garden. 
Sara’s technological 
fluency is quite evident in 
terms of the effective use 
of GeoGebra. It is also quite obvious in the diversity of tasks that she was engaged in 
while solving this problem, as revealed by her desktop’s taskbar: she was also 
“chatting” online, checking the SUB12’s webpage, and already drafting her answer. 
Considering mathematical fluency, we highlight the language she used: aside the email 
limitations regarding symbolic writing, Sara was clearly concerned with making 
herself clear and she correctly presented formulas and calculations.  

 

Figure 4 – Screen capture sent by Sara 
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Figure 5 – Jessica’s 

construction 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The use of GeoGebra to explore the solution 
Jessica used GeoGebra to simulate the construction of the rectangular lawn and the 
triangular flowerbed (Figure 5), but the text that she sent 
allows a clear understanding of her reasoning. She recognized 
that the area of the triangular flowerbed equals the value 
chosen for the length of the rectangle. However, this 
conclusion arose from the manipulation of the variable 
"height" of each of the coloured triangles: 

The yellow triangle is divided by the 2m stick in two triangles. 
The base of each triangle measures 2m – the length of the stick. 
To determine the area of a triangle, we have to calculate: height 
× base/2. In order to measure the area of those two triangles, we 
have: height × 2/2. But it is clear that 2/2=1, so the area of these 
triangles equals their height. 

Although Jessica’s construction satisfies the three conditions, similarly to the previous 
solutions, it reveals distinct features in terms of manipulation. Such differences show 
that Jessica’s thinking process is also distinctive: the absence of measurements or 
calculations stands out, the construction of a slider allows changing the stick’s size; 
and moving the free point on the right side changes the size of the rectangle. 
This file reveals Jessica’s mathematical and technological fluency in that the 
GeoGebra construction is built under the perspective of geometrical properties and 
relations, rather than aiming at measuring or calculating. The quantitative relationship 
that she explains appears embedded in a geometric representation which is very 
powerful since it invites at manipulating and therefore generalizing. Adding a slider 
that controls the length of the stick involves analysing a variable that is not explicit in 
the statement of the problem; hence Jessica’s exploration goes far beyond what was 
requested to solve the problem. 
DISCUSSION AND CONCLUDING REMARKS 
The data presented illustrate the diversity of ways of thinking and modes of action: 
four groups of solvers, who certainly have very different learning experiences, attend 
different schools and live in different places, realize and recognize the potential 
relevance of a single tool, GeoGebra, in solving this problem. These four solutions 
exemplify the kind of symbiosis described by Borba and Villarreal (2005) since the 
problem solving strategies and representations they use are revealing of subjects in 
action with a technological tool; so they can be identified as “students-with-media” or 
perhaps more accurately as “students-with-GeoGebra”. 
Still, it is possible to identify common aspects of their problem solving activity: they 
all represent the rectangular lawn and the triangular flowerbed, they all use “dragging” 
to check or verify, and they all analyse and conclude. But what each one takes out of 
that activity is not entirely the same and seems to be closely related to their ability to 
use, simultaneously, their mathematical competence and their technological fluency. 
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All participants demonstrated the ability to recognize the affordances of the tool, while 
their mathematical and technological activity ranged from an elementary and less 
powerful to an advanced and more sophisticated activity. The data suggest that the 
differences found are strongly related to the dynamic nature of the mathematical 
representations afforded by the tool, in depicting the problem conditions. For example, 
the introduction of additional free elements to the figure led to powerful 
understandings of the problem, and to generalization. In one production, the invariance 
of the area is not only numerically recognised but also geometrically explained; in 
another situation the free elements allow seeing the answer as a particular case of a 
more general statement; yet another case makes the problem even wider by extending 
the several conditions stated and allowing the exploration of a more general problem. 
The “invisibility” of mathematical ideas is noticeable in the second production. The 
competitors naively accepted the result given by GeoGebra, and used it for attempting 
a mathematical justification, without a critical evaluation of such outcome. They lack 
critical sense in their analysis of the digital representations, which influenced their 
ability to transform information into knowledge (Noss, 2001). 
The link between the solving strategy and the type of GeoGebra usage is clear. In 
particular, the understanding of the degree of generalisation of the problem and the 
consciousness of the affordances of the tool to achieve such generalisation are strongly 
interconnected. These are solid evidences of how the spontaneous use of technology 
changes and reshapes mathematical problem solving. The spectrum of the problem 
solutions also highlight the effectiveness of the use of digital tools to structure, support 
and extend mathematical thinking, meaning and knowledge in students’ problem 
solving. Further research will focus on studying the mediational role of digital 
technologies in youngsters’ problem solving activity, in light of what can be called 
techno-mathematical fluency (Hoyles, Noss, Kent, & Bakker, 2010). 
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