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ABSTRACT 

Gut microbiota is the complex and diverse community of bacteria, archaea, fungi, protozoa, and viruses 

present in the gastrointestinal tract of animals. Once established, this ecosystem is relatively stable, but 

responsive to a variety of effects, namely host diet, health, genetics, sex, and reproductive status, and 

also the habitat. Increasing importance has been attributed to host gut-microbe interactions due to 

implications in the immune system and ecological features, such as behavior, however, the microbiota 

of many carnivores remains unknown. In this work, the gut microbiota of Egyptian mongoose, a 

medium-size mammalian carnivore, with opportunistic feeding behavior, ranging in distribution 

throughout the African continent, but also in Mediterranean Middle East, southern Turkey, and the 

Iberian Peninsula, was thoroughly investigated using a wide range culture-based approach. The aims of 

this work were: [1] the characterization of the core gut microbiota of Egyptian mongoose population; 

[2] the investigation of sex- and age class-related differences of gut microbiota; and [3] the analysis of 

the relationship between bio-environmental features and gut microbiota of these specimens. 

Fecal samples from ten males and ten females sampled in mainland Portugal were enriched in Buffered 

Peptone Water, in both aerobic and anaerobic conditions. Part of the enriched samples was pasteurized 

and inoculated into YCFA P solid medium, under both aerobic and anaerobic conditions. The remaining 

part was inoculated into YCFA under anaerobic conditions and into YCFA, MacConkey, PDA 

supplemented with chloramphenicol solid media, ESBL chromogenic medium, with and without 

antibiotic supplement, and Brilliance ESBL solid medium. Selected isolates were grouped into different 

morpho-physiological types (MT) based on Gram character, catalase and oxidase activities, and 

endospore formation. A bacterial isolate belonging to each MT, in each media, for each mammal host, 

was selected for molecular fingerprinting using Random Amplified Polymorphic DNA (RAPD) with 

M13 and PH primers. Strain relationships were analyzed by hierarchical numerical methods with 

Pearson correlation coefficient and Unweighted Pair Group Method with Arithmetic mean (UPGMA) 

clustering. One isolate from each cluster was randomly selected for 16S rDNA gene sequencing. Fungi 

isolates with different morphology were selected for genomic identification through Internal 

Transcribed Spacer (ITS) region sequencing.  

In this study, we generated for the first-time extended baseline information on the microbiome of 

mongoose, enabling the exploitation of microbial community differences between sexes and exploring 

the influence exerted by the biological and environmental context of each host in its microbiota 

signature. Looking at each individual host as a habitat with its own community, the MT-II, MT-VI, MT-

VII, MT-IX and MT-XI types may be considered the core gut microbiota community and the remaining 

morpho-physiological types can be considered part of the intra-specific individual microbiota 

community. Additionally, we perceived that the majority of individuals possess MT-II ESBL-producing 

bacteria. 
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Higher microbial load was present in fecal samples from female hosts in rich medium under anaerobic 

conditions, both for total and sporobiota bacterial community. The bacterial microbiota of both males 

and females was dominated by Gram-positive bacteria, mainly of the phylum Firmicutes, with bacilli 

isolates prevailing, in particular, Enterococcus spp. and Bacillus spp. The growth of putative 

Escherichia coli was only registered in female host samples. The specimens analyzed in this study 

revealed high Proteobacteria/Bacteroidetes ratio, a feature that may be related to a carnivorous or 

scavenger dietary regime and with highly efficient energy harvest. Filamentous fungi were exclusively 

detected in fecal samples from male hosts and their genus identified as Pseudozyma and Naganishia 

(Basidiomycota phylum), Penicillium (Ascomycota phylum) and Mucor (Mucoromycota phylum). 

Although the number of surveyed specimens is limited, considerable similarity between adult and 

juvenile microbiota was found, which contrasted with sub-adult’s, probably due to higher proximity and 

interaction between the first two groups, since this species social behavior includes protection of the 

cubs and juveniles, leading to similar diet and easier host-to-host transmission of microbiota.  

This work sets the ground for more comprehensive studies on the microbiota of Mediterranean wild 

carnivores, including sympatric threatened species. Future studies using culture-independent methods 

will improve our knowledge of this species microbiome and lead to a better understanding of its bio-

ecology. 

 

Key-works: Egyptian mongoose, Gut Microbiota, Microbial Profiling, Carnivores, Host fitness.  
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RESUMO 

O trato gastrointestinal (GI) dos vertebrados é um ecossistema complexo que serve de habitat para uma 

enorme variedade e diversidade de microrganismos, maioritariamente bactérias, mas também árqueas, 

fungos, protozoários e vírus. Carnívoros, têm um sistema gastrointestinal complexo, onde a maior 

concentração bacteriana se encontra no intestino grosso, dominada por aeróbios restritos. Em 

vertebrados, uma vez desenvolvido o microbiota intestinal, a sua composição é relativamente estável, 

sendo possível sofrer variações devido a dieta, sistema imunitário, genética, sexo e estado reprodutivo 

do hospedeiro, bem como devido ao habitat. Independentemente destas variações, a maioria dos 

vertebrados tem um microbiota intestinal composto por membros dos filos Firmicutes, Bacteroidetes e 

Proteobacteria. 

O sacarrabos, Herpestes ichneumon (Linnaeus, 1758), é um mamífero carnívoro da família Herpestidae. 

Este mamífero tem uma alimentação oportunista, mas primordialmente constituída por coelhos. Tem 

como distribuição geográfica o continente africano, tendo-se expandido até ao Mediterrâneo Oriental. 

Na Península Ibérica, é considerado tradicionalmente uma espécie introduzida durante as Invasões 

Muçulmanas, mas um estudo recente baseado em DNA mitocondrial sugere que sofreu uma dispersão 

natural durante as flutuações marítimas do Pleistocénico Tardio. Esta espécie era restrita ao sul do rio 

Tejo, tendo-se vindo a expandir por todo o território nacional, havendo registo da sua presença a norte 

do rio Douro, estando ausente apenas no noroeste do território de Portugal continental. Esta expansão 

foi motivada por mudanças do uso da terra em ecossistemas dominados por vegetação arbustiva, 

limpezas florestais, práticas agrícolas e alterações climáticas. Em indivíduos adultos amostrados em 

Portugal, foram encontradas evidências de dimorfismo sexual, particularmente no que concerne ao 

tamanho corporal, tendo-se também encontrado diferenças no tamanho corporal de indivíduos de 

diferentes regiões. 

O estudo do microbiota de animais selvagens apenas recentemente ganhou importância, tendo sido 

negligenciado devido a falta de financiamento específico e a dificuldades técnicas na obtenção e 

manutenção das amostras. Uma vez que o microbiota tem sido progressivamente reconhecido como 

fundamental na ecologia dos mamíferos, neste trabalho investigou-se o microbiota intestinal de 20 

espécimes de sacarrabos, incluindo 10 machos e 10 fêmeas, amostrados em Portugal continental, 

explorando abordagens de cultura microbiológica, usando-se para o efeito um espetro alargado de 

condições de crescimento. Os objetivos deste trabalho foram: (1) caracterizar o microbial nuclear (core 

microbiota) da população de sacarrabos; (2) investigar as diferenças do microbiota intestinal 

relativamente ao sexo e à classe etária; (3) analisar a relação entre as características bio-ecológicas e o 

microbiota intestinal desta espécie. As amostras foram enriquecidas em água peptonada, divididas e 

incubadas em paralelo em condições de aerobiose e anaerobiose. Parte destes enriquecimentos foi 

pasteurizado e inoculado em meio sólido YCFA P. A parte restante do enriquecimento foi inoculada nos 

meios sólidos YCFA, MacConkey, PDA suplementado com cloranfenicol, e ainda nos meios 

cromógénicos ESBL com (ESBL w/ AS) e sem (ESBL w/o AS) suplemento de antibióticos, e Brilliance 
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ESBL, ambos utilizados para deteção de bactérias produtoras β-lactamases de largo espectro (ESBL). 

O número de unidades formadoras de colónias por mililitro foi determinado para todas as condições. 

Cinco colónias bacterianas de diferentes morfologias obtidas nos diferentes meios foram repicadas e 

caracterizadas através de testes morfo-fisiológicos, nomeadamente, coloração de Gram, coloração de 

endósporos e testes da catalase e oxidase. Leveduras e fungos filamentosos foram observados 

macroscopicamente, ao nível da cor, e microscopicamente, ao nível das hifas e esporos. Os indivíduos 

foram organizados em diferentes tipos morfo-fisiológicos. Um isolado pertencente a cada tipo morfo-

fisiológico (MT), proveniente de cada meio de cultura, e obtido de cada hospedeiro, foi selecionado para 

genotipagem, utilizando os primers M13 e PH. A relação entre os diferentes isolados foi analisada 

utilizando métodos hierárquicos numéricos com o coeficiente de correlação de Pearson e o método de 

aglomeração Unweighted Pair Group Method with Arithmetic mean (UPGMA), estabelecendo-se uma 

percentagem de semelhança de 70 para a formação de clusters. Um isolado de cada cluster foi 

selecionado para sequenciação do gene que codifica para 16S rRNA e um isolado de cada levedura e 

fungo filamentoso com diferentes morfologias foram selecionados para sequenciação da região entre o 

domínio D1/D2 do gene que codifica para 26S rRNA e a região Internal Transcribed Spacer (ITS), 

respetivamente. As sequencias obtidas foram comparadas com sequencias publicamente disponíveis na 

base de dados GenBank através do programa BLASTN no servidor do NCBI. A diversidade das 

amostras foi analisada através do cálculo de índices de diversidade e de estimadores de riqueza 

especifica não-paramétricos. Procurou-se identificar igualmente associações entre o microbiota e dados 

bio-ecológicos do hospedeiro e caraterísticas do seu habitat.  

De modo a se recuperar o maior numero de bactérias cultiváveis, utilizou-se dois meios de cultura não-

seletivos (YCFA e ESBL w/o AS). Em condições de aerobiose, registou-se maior numero de CFU/g de 

peso fresco de fezes e maior diversidade bacteriana em YCFA e ESBL w/o AS, tendo-se detetado, 

respetivamente, uma média de 2,8x109 e 3,3x1012 CFU/g de peso fresco de fezes, de bactérias aeróbias 

em cada um dos meios e sete e treze tipos morfo-fisiológicos. Os resultados registados em YCFA são 

semelhantes aos reportados noutros estudos focados em amostras de humanos, ruminantes (vaca, ovelha 

e cabra), suínos (porco doméstico) e carnívoros (urso pardo). Os resultados obtidos em ESBL w/o AS 

são semelhantes aos reportados em estudos com humanos. As ligeiras diferenças reportadas nos diversos 

estudos devem-se, possivelmente, a diferenças decorrentes das porções do GI selecionadas para estudo 

e de caraterísticas individuais dos espécimes amostrados, mas também a diferenças nos meios de cultura 

utilizados. Em anaerobiose, verificou-se o crescimento médio de 5,5x109 CFU/g de peso fresco de fezes 

em YCFA. Um estudo anterior que fez uso do mesmo meio de cultura (YCFA) para caraterização do 

microbiota de humanos, e nas mesmas condições de incubação, reportou o crescimento de cerca de 72% 

da população bacteriana detetada por métodos independentes de cultura (metagenómica), o que sugere 

que este meio de cultura é adequado para capturar a riqueza e diversidade bacterianas presentes no trato 

gastrointestinal.  
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Para se estudar o esporobiota, foi utilizado o meio YCFA agar suplementado com glucose, maltose, 

cellobiose e taurocholato de sódio (YCFA P), tendo sido detetado, em média, 5,1x105  e 4,2x108 CFU/g 

de peso fresco de fezes, de bactérias formadoras de endósporos, em condições de aerobiose e 

anaerobiose, respetivamente. Tanto quanto se conseguiu apurar, nenhum outro estudo reportou a 

comunidade esporulante do trato GI.  

Relativamente aos meios de cultura seletivos usados, o meio de cultura MacConkey permite o 

crescimento seletivo de bactérias gram-negativas. Detetou-se, em média, 8,0x109 CFU/g de peso fresco 

de fezes, de bactérias da família Enterobacteriaceae neste meio de cultura, sendo estes resultados 

ligeiramente diferentes de estudos anteriores focados noutras espécies de carnívoros, nomeadamente 

urso pardo, para o qual foi reportado cerca de 108 cópias de genes/g de peso fresco de fezes. Em amostras 

do íleo de porcos domésticos e, em humanos, foi detetado 107 CFU/g de peso fresco de fezes. Os 

fabricantes dos dois meios de cultura cromogénicos seletivos utilizados descrevem a possibilidade de 

deteção e isolamento de bactérias gram-negativas produtoras de ESBL. Os resultados obtidos no 

presente estudo sugerem uma redução clara do crescimento bacteriano na presença dos suplementos 

com atividade antimicrobiana fornecidos, cuja atividade é exercida sobre várias espécies bacterianas. 

Não foi assim possível confirmar a presença de E. coli produtoras de ESBL, uma vez que o seu 

crescimento, em condições seletivas por adição do suplemento, foi inibido. Verificou-se também falta 

de seletividade destes meios de cultura para isolamento específico de bactérias gram-negativas, uma vez 

que se registou um crescimento de cerca de 99% de bactérias gram-positivas nestas condições. No meio 

de cultura Brilliance, registou-se a menor taxa de crescimento microbiano, com um crescimento de 

100% de isolados pertencentes ao género Pseudomonas, de acordo com os resultados de sequenciação 

do gene 16S rRNA.. De acordo com estes resultados, não foi detectado nenhum género de 

Enterobacteriaceae que pareça possuir capacidade de produzir ESBL. Estudos anteriores  demonstraram 

a existência de Enterobacteriaceae produtoras de ESBL em animais selvagens de Portugal continental, 

bem como de outros paises, em particular em mamíferos da familia Herpestidae. A existência de 

contaminações cruzadas de bactérias fecais que circulam entre a população humana e animais selvagens 

e a possibilidade de transmissão de bactérias resistentes entre estas duas comunidades são também 

realçadas por vários estudos.  

No que diz respeito à caraterização do micobiota intestinal, utilizou-se PDA suplementado com 

cloranfenicol, tendo sido registado, em média, cerca de 1,08x108 CFU/g de peso fresco de fezes, de 

fungos, dos quais cerca de 5,0x107 CFU/g de peso fresco de fezes correspondem a leveduras e 5,8x107 

CFU/g de peso fresco de fezes a fungos filamentosos.. Do que foi possível aferir da consulta da 

bibliografia disponível, este resultado é o mais alto registado no tracto GI, tendo os outros estudos 

registado um máximo de 106 CFU/g de peso fresco de fezes e 107 cópias de genes/g de peso fresco de 

fezes noutras espécies de mamiferos.  

Relativamente ao efeito do sexo no microbiota, registou-se maior carga microbiana em fêmeas em 

YCFA e em YCFA P, e em anaerobiose. Registou-se também em fêmeas a presença presuntiva de E. 
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coli em meio ESBL sem suplemento de antibiótico, não tendo sido observado o crescimento desta 

espécie em amostras de machos. Seis das oito amostras que registaram crescimento bacteriano em 

Brilliance são provenientes de fêmeas. Em termos de diversidade microbiana, registou-se um maior 

número de isolados do MT-II em meio ESBL com antibiótico e de isolados MT-IX, aquando da soma 

das percentagens de todos os meios, também em amostras de fêmeas. Em contraste, registou-se a 

presença de fungos filamentosos somente em amostras provenientes de machos. Estudos anteriores 

realizados com amostras fecais de chimpazés, macacos e lémures, demostraram diferenças significativas 

entre sexos nas comunidades bacterianas respetivas. Por outro lado, um estudo realizado em humanos 

demonstrou maior riqueza e diversidade de fungos em amostras de fêmeas.  

A sequenciação do gene 16S rDNA de 139 isolados selecionados demonstrou que o microbiota 

bacteriano do sacarrabos é dominado por bactérias gram-positivas (76%), do filo Firmicutes (68%), 

nomeadamente da classe Bacilli (50%), dos géneros Enterococcus (18%) e Bacillus (14%). Os membros 

do filo Firmicutes são normalmente os mais abundantes no trato GI dos vertebrados, sendo responsáveis, 

sobretudo, pela degradação de proteínas. Membros da família Bacillaceae são frequentemente 

associados a amostras de solo e ar, sendo por vezes considerados transientes no trato GI originários de 

plantas e raízes utilizadas como alimento. O trato GI de vertebrados é possivelmente o maior reservatório 

de Enterococcus, sendo considerados patogénicos oportunistas. Estudos recentes identificaram, em 

Portugal, Enterococcus spp. provenientes de diversos ambientes, incluindo o trato GI de animais 

selvagens, estando este género associado a mamíferos com uma alimentação predominantemente 

carnívora. A elevada percentagem de bactérias do filo Proteobacteria e a baixa percentagem de 

Bacteroidetes no nosso estudo, indica um rácio elevado de Proteobacterias/Bacteroidetes, o qual é 

normalmente associado a animais com um regime alimentar carnívoro ou detritívoro, de que são 

exemplos a chita, o diabo da Tasmânia, a hiena e o urso polar. Este rácio está também associado a um 

armazenamento energético altamente eficiente.  

A sequenciação da região entre o domínio D1/D2 do gene que codifica para 26S rRNA e a região ITS 

dos 6 diferentes fungos isolados permitiu identificar os géneros Penicillium, Naganishia, Pseudozyma 

e Mucor.  

Relativamente aos índices de diversidade calculados (índice de Shannon, índice de Simpson e índice de 

equitabilidade das espécies derivado do índice de Shannon), registou-se, ao nível do género bacteriano, 

valores muito semelhantes entre as três comunidades (fêmeas, machos e total da população de 

sacarrabos), sendo todas elas comunidades bem balanceadas e com elevado nível de equitabilidade. 

Adicionalmente, os estimadores não-paramétricos de riqueza especifica demonstram uma taxa de 

complementaridade de 100%, sugerindo que todos os 21 géneros detetados no estudo, correspondem ao 

total de géneros teoricamente existentes na comunidade. Tendo todos estes parâmetros em conta, 

conclui-se que o painel e número de isolados selecionados para sequenciação do 16S rRNA é adequado 

ao propósito deste estudo de caracterizar o microbiota nuclear da população de sacarrabos.  
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A análise de variações individuais no microbiota nuclear (core microbiota) foi possibilitada pela seleção 

prévia ao estudo de individuos com o mesmo regime alimentar (com base na análise do conteúdo 

estomacal presente no momento da morte), localização geográfica, condições edafoclimáticas e habitat 

(avaliado pelo uso da terra). Registaram-se variações do microbiota nuclear entre indivíduos, com 

valores de riqueza e diversidade compreendidos entre 4,6x1011 e 8,8x1012 CFU/g e 3 e 7 MT, 

respetivamente, à semelhança do que já foi previamente reportado noutros animais selvagens e em 

humanos.  Analisando cada hospedeiro como um habitat com a sua própria comunidade, os tipos morfo-

fisiológicos MT-II, MT-VI, MT-VII, MT-IX e MT-XI podem ser considerados o microbiota intestinal 

nuclear e os restantes tipos morfo-fisiológicos podem ser considerados parte da comunidade microbiota 

individual intraespecífica. Também, detetamos que a maioria dos hospedeiros possuía bactérias 

produtoras de ESBL pertencentes ao tipo morfo-fisiológico II. 

Registou-se similaridade do microbiota intestinal de indivíduos adultos e juvenis, em contraste com o 

microbiota de indivíduos sub-adultos, provavelmente devido a fatores de carácter comportamental, uma 

vez que esta espécie possui padrões de proteção e alimentação dos indivíduos mais jovens, zonas de 

marcação de território através da excreção anal de fluidos e defecação comunitária em latrinas. Estes 

fatores podem promover a transmissão fecal-oral intraespecífica de microrganismos entre indivíduos da 

mesma comunidade (adultos e juvenis). 

Este estudo visou, pela primeira vez, a caracterização extensiva da composição microbiana do trato GI 

de sacarrabos, permitindo a análise das diferenças na  comunidade microbiota entre sexos e a análise da 

influencia exercida pelo contexto biológico e ambiental em cada hospedeiro na sua assinatura microbiota 

Apesar da elevada diversidade microbiana capturada por recurso a métodos clássicos de cultura, estudos 

futuros baseados em métodos independentes de cultura (metagenómica) poderão complementar a 

informação aqui reunida, conduzindo a um melhor entendimento da comunidade microbiana presente 

no sacarrabos e da bioecologia da espécie; uma espécie altamente adaptativa, em franca expansão no 

território e cuja presença exerce efeitos em cascata na estrutura e organização das comunidades dos 

ecossistemas mediterrânicos. Acresce que a natureza comparativa deste estudo, relativamente aos 

contributos que o sexo do hospedeiro pode ter sobre o seu microbiota, ajudam a melhorar o entendimento 

sobre os aspetos ecológicos e adaptativos desta espécie, reforçando a importância de se considerar o 

microbioma como um componente fundamental da biologia do hospedeiro e um elemento chave 

necessário para compreender a ecologia dos mamíferos. 

 

Palavras-chave: Sacarrabos, Microbiota Intestinal, Identificação & Diferenciação, Carnívoros, Aptidão 

do Hospedeiro. 
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CHAPTER I – INTRODUCTION 

1.1. Gut microbiota: introduction 

The vertebrate gastrointestinal (GI) tract is a complex ecosystem that is the habitat of an 

enormous density and diversity of microorganisms, containing mostly bacteria, but also archaea, fungi, 

protozoa, and viruses (1, 2). In carnivores, microbial density and diversity differ within gut sections, 

with the main concentration of bacteria being found in the large intestine (approximately 5x1010 CFU/g 

wet weight of feces), dominated by strict anaerobes (3). At birth, vertebrates begin to be colonized with 

microorganisms and, for humans it is known that individual microbiota is acquired during the first year 

of life, stabilizing its composition later on (4), being usually dominated by members of Firmicutes, 

Bacteroidetes and Proteobacteria phyla (5). However, there are a variety of effects that can alter this 

equilibrium  (6).  

1.1.1. Gut microbial community and diet 

 Host diet has such a deep effect on the gut microbiota that resulted in an evolutionary 

divergence between carnivores and herbivores, leading to two distinct gut types, with an increase in 

microbiota diversity from carnivores to herbivores (5, 7). Nevertheless, gut physiology is, as well, a 

predictor of the gut microbiota landscape, influencing distribution along the GI tract, such as the 

dichotomy that is observed between foregut fermenters vs. hindgut fermenters herbivores (5, 7). 

For most mammals, diet can vary drastically, in time and space, across season and habitat, so 

that the composition of the gut microbiota, as well as it functionality, are likely to fluctuate across season 

and habitat in direct response to these dietary changes (8). Gut microbiota that can quickly shift activity, 

by changing its composition in response to changes in host dietary intake can lead to improved 

nutritional flexibility and increased fitness host (9). However, if a poor microbiota response to short-

term changes in the diet occurs, the limited food and nutrient availability can affect host health and 

immune system (8), leading to decreased host fitness. 

Microbial communities from animals are mostly composed of r-selected organisms, that can 

rapidly use the accessible nutrients in the gut and quickly multiply (7), giving a selective advantage to 

the host, increasing host fitness, ultimately leading to the persistence and survival of this microbiota in 

the host, and increasing microbiota fitness. Because of this mutually beneficial interaction, gut 

microbiota and the host coevolved, this is, they reciprocally adapted to each other as interacting species 

(1, 10). Thus, host adaptation to a defined diet gives chance to gut microbes to evolve and to adapt to 

the host gut and environment (11). This coevolution has been shown by the discovery of patterns of 

community similarity that match the mammalian phylogeny, with some lineages co-diversifying with 

their mammal hosts (5). 

Additionally, gut microbiota plays a role in host energy uptake, breaking down fibers, 

carbohydrates, and proteins otherwise not digestible by the host, producing short-chain fatty acids 
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(SCFA) that provide up to 70% of an animal’s daily energy intake (12). In addition, they also reduce the 

pH of the intestinal lumen, facilitating nutrient absorption and preventing accumulation of toxic 

metabolic by-products, producing vitamins, and regulating xenobiotic metabolism (6). Alterations in gut 

microbial community composition thus alter the interactions between microbes, subsequently affecting 

energy production and host nutrition (6), and ultimately affecting the host fitness. 

1.1.2. Gut microbial community and host health 

The existence of an adaptive immune system in vertebrates permits a greater level of complexity 

of their microbiota (13). The gut microbiota has been shown to modulate the host immune system by 

attenuating inflammatory responses and increasing resistance to pathogenic bacteria, in fish, rodents, 

mice, piglets and humans, assisting in the development and maturation of the host intestinal mucosal 

and systemic immune systems, in mice and humans, in the development and function of the brain and 

modulating behavior, in humans (6). 

The symbiosis, developed from coevolution, is based on a molecular exchange linking microbial 

signals that are recognized by host receptors to arbitrate valuable outcomes for both host and microbes 

(14). Furthermore, the adaptive immune system is recognized to shape microbial community 

composition in the gut. This system mediates tolerance to the gut microbiota through IgA production 

(15). Additionally, Toll-like receptors are important in their ability to evaluate the composition of the 

microbiota, and they also mediate the host tolerance to symbiotic microbes and the immune responses 

to pathogens (2). 

1.1.3. Gut microbial community, host habitat, and genetics 

Microbiota attained primarily in life are inherited from the mother or from social contacts, but 

the microbial composition is also influenced by host genetics (16). Host species that live in more 

interconnected social groups, with high frequencies of social contact, are expected to have less inter-

individual variation in gut microbial community structure than those that are geographically isolated 

(17). Populations that become geographically isolated should develop distinct gut microbial 

communities because they are exposed to distinct microbial taxa pools, thus they are colonized by 

distinct gut microbial communities, normally with lower taxonomic and/or functional diversity (6). 

More recently, host genetics has been associated with the taxonomic structure of the gut 

microbiota, since intraspecific differences have been observed (18), however individual phylotypes are 

also promiscuous, as they have been found in multiple host species (5, 7).  

1.1.4. Gut microbial community, host sex, and reproductive status 

Information about the influence of host sex and reproductive status on microbial community 

composition is still lacking, however, in mammals, these two parameters have been linked to variations 
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in gut microbial community composition, for example in chimpanzees (19), black howler monkeys (20), 

rufous mouse lemurs (16), Verreaux’s sifakas (17), and humans (21, 22). 

Regarding microbiota, two essential concepts can be considered: core microbiota and individual 

microbiota. The core microbiota is the number and the identity of bacteria that are shared among 

different individuals of the same species; in contrast, the individual microbiota is the transient gut 

inhabitants that fluctuate, depending on the genetics, habitat, health, diet, among other factors (23). The 

common core bacteria are conserved during the mutual coevolution of the species and its intestinal 

microbes (23). These consortia of microorganisms are important to investigate the mechanisms 

underlying microbe–microbe and microbe-host interactions. 

1.2. Herpestes ichneumon: biology and ecology 

The study of wildlife microbiota has recently gained attention, but few studies are still available 

due to technical difficulties in obtaining appropriate samples and the lack of specific funding (3). To 

study the microbiota and their interaction with host fitness and the environment, we used Egyptian 

mongoose, Herpestes ichneumon (Linnaeus, 1758), as a model (Figure 1.1). This species is a medium-

sized mammalian carnivore from the Herpestidae family, with an opportunistic feeding behavior, 

consuming mostly rabbits, but also reptiles, other small mammals, amphibians, birds, crayfish, eggs or 

carrion (24). Despite being mostly African, ranging extensively throughout the continent, it has 

expanded into the Mediterranean Middle East and southern Turkey (25). In Iberia Peninsula, it was 

conventionally considered as an introduced species during the Muslim Invasions (26, 27). However, a 

recent study based on mitochondrial DNA suggested that the Egyptian mongoose naturally dispersed 

into the Iberian Peninsula during the Late Pleistocene sea-level fluctuations (28). It was restricted to the 

south of the Tagus River (29), nonetheless, in the last three decades, it gradually expanded into central 

and north-eastern regions (30). This expansion was mostly driven by a land-use change in shrub-

dominated ecosystems, forest clearing, agricultural practices, and climate change (31).  

Egyptian mongoose has a home-range of about 

3 km², habiting locals with understory vegetation in 

coastal, lacustrine, and riparian habitats, avoiding 

humid forests and extreme deserts. In Europe, it is 

found in Mediterranean maquis. Listed as Least 

Concern, the species is widespread, common, and 

present in many protected areas. There are no major 

threats to this species across its range, although, on the 

Iberian Peninsula, incidental and deliberate poisoning 

is a localized threat; also, in Portugal, mongoose 

hunting is legal (32). Evidence of both sexual and 

A 

B 

Figure 1.1 – Egyptian mongoose (Herpestes ichneumon) 
adult (A) and cub (B), in Mediterranean maquis.  
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regional dimorphism in body size of Egyptian mongoose adults in Portugal have been found. This 

dimorphism probably results from differences in feeding habits leading to southern male adults being 

larger and heavier (33). H. ichneumon exhibit variability in social organization, ranging from solitary 

individuals to groups, which show cooperative tendencies, particularly in areas with abundant food 

resources. The exclusive home-range use of males in high-density populations suggests the existence of 

a polygynous mating system, with is accomplished due to the spatial distribution of females, in 

combination with the absence of paternal care behavior (24, 29, 34-36). 

1.3. Objectives of the present work 

Several aspects of mongoose’ biology remain ill-defined. In this study, we thoroughly 

investigated the gut microbiota of Egyptian mongoose sampled in South Portugal, since the gut 

microbiota is being progressively acknowledged as a fundamental component of mammals’ ecology.  

The aims of this work were: [1] the characterization of the core gut microbiota of Egyptian mongoose 

population; [2] the investigation of sex- and age class-related differences of gut microbiota; and [3] the 

analysis of the relationship between bio-environmental features and gut microbiota of these specimens. 

To accomplish these objectives, the fecal samples were cultured in selective and non-selective media, 

under aerobiosis and anaerobiosis conditions, in order to capture the most representative diversity of gut 

microbiota. Purification and presumptive identification of microbial isolates followed, using morpho-

biochemical tests and grouping the isolates in morpho-physiological types. The purified bacterial 

isolates were submitted to 16S rRNA- and Internal Transcribed Spacer-based molecular identification 

and molecular fingerprinting based on Random Amplification of Polymorphic DNA (RAPD). At the 

bacterial genus level, a diversity analysis of the samples under study was performed. We compared sex- 

and age class-related differences (genus-based phylotypes) and tested the effect of individual bio-

environmental features on the microbiota of each individual specimen. 

CHAPTER II - MATERIALS AND METHODS 

2.1. Egyptian mongoose specimens 

Twenty Egyptian mongoose carcasses, both male (n=10) and female (n=10), from predator 

control hunted by shotgun, were donated for scientific purposes and were selected based on sex, age 

class (inferred from dentition), stomach content at the time of death, and land-use (Table 2.1). The 

carcasses were subjected to necropsy by a veterinarian; no sign of putrefaction or disease were detected. 

This information was obtained from University of Aveiro, which developed ecological studies with the 

same specimens (33). The selected specimens had an age class distribution of 16 adult, two subadult, 

and two juvenile.  

These animals were originated from south of Tagus River (Baixo Alentejo), wherein similar 

land-use, predominated by agroforestry, mixed forests, shrubs and agriculture, was confirmed. The 

selected animals had the same stomach content at death, namely mammal and egg items. 
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2.2. Bacteriological culture 

After collection at necropsy, samples from the terminal portion of the large intestine of Egyptian 

mongoose specimens were kept frozen at -20°C until utilization, to preserve both aerobic and anaerobic 

species and to avoid potential loss of bacterial viability and composition changes. The samples were 

divided into two equal parts, that were homogenized in buffered peptone water (1 g stool per 10 mL) 

and incubated at 37°C for 24 h with orbital shaking (150 rpm), under aerobic and anaerobic conditions. 

Anaerobic atmosphere was accomplished by completing with 20% of the final volume of mineral oil. 

Next, 1 mL of enriched fecal sample from aerobic and anaerobic conditions were pasteurized at 

80°C for 12 min, serially diluted and plated onto YCFA agar (12.5 g/L agar, 10 g/L casitone, 2.5 g/L 

yeast extract, 4 g/L NaHCO3, 1 g/L cysteine, 0.45 g/L K2HPO4, 0.45 g/L KH2PO4, 0.9 g/L NaCl, 0.09 

g/L MgSO4.7H2O, 0.09 g/L CaCl2, 1 mg/L resazurin, 10 mg/L haemin, 10 µg/L biotin, 10 µg/L 

cobalamin, 30 µg/L p-aminobenzoic acid, 50 µg/L folic acid, 150 µg/L pyridoxamine, 33 mM acetate, 

9 mM propionate, 1 mM isobutyrate, 1 mM isovalerate, 1 mM valerate, 50 µg/L thiamine and 50 µg/L 

riboflavin), supplemented with 2 g/L each of glucose, maltose, and cellobiose and 0.1% of sodium 

taurocholate (YCFA P) (37), and incubated for 72 h at 37°C, under aerobic and anaerobic conditions, 

respectively. The rest of the enriched fecal sample, incubated under anaerobic conditions, was serially 

diluted and 100 µL was plated onto YCFA agar supplemented with 2 g/L each of glucose, maltose, and 

cellobiose (YCFA) (37), and incubated for 72 h, at 37°C, in anaerobic conditions. Anaerobic conditions 

were accomplished using AnaeroGenTM 3.5L anaerobic atmosphere generation systems (Thermo 

Scientific). Additionally, the rest of the enriched fecal sample incubated under aerobic conditions was 

serially diluted and 100 µL was plated onto YCFA and also onto selective media: MacConkey solid 

medium (12 g/L agar, 5 g/l bile salts, 10 g/l lactose, 0.075 g/l neutral red, 20 g/l peptone, 5 g/l sodium 

chloride); Potato Dextrose Agar supplemented with chloramphenicol (PDA+CHLO) (Biokar diagnostic, 

Noack Group); ESBL chromogenic medium (Conda, Pronadisa), with (ESBL w/ AS) and without 

(ESBL w/o AS) ESBL supplement of antibiotics (Conda, Pronadisa); and Brilliance ESBL medium 

(Brilliance) (Oxoid). All media were incubated at 37°C, under aerobic conditions for 24 h, except YCFA 

and PDA solid media that were incubated for 72 h. 

Colony forming units per milliliter (CFU/mL) were determined for all conditions and media. 
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Table 2.1 – List of Egyptian mongoose specimens studied in this work. Sex, age class, stomach content at death, georeferenced location, and land-use data are 

indicated. 

ID Sex Age1 

Stomach content at death2  Georeferenced location  Land-use3 

Mammals Reptiles Invertebrates Eggs  District Latitude Longitude  Urban Agroforestry Shrubs 
Vineyards 

and Orchards 
Coniferous 

Mix 

forests 
Agriculture 

HI383 Male Adult 100 0 0 0  Beja 37,824 -7,377  0 233 0 0 0 125 42 

HI388 Female Subadult 100 0 0 0  Beja 37,824 -7,377  0 233 0 0 0 125 42 

HI396 Female Adult 100 0 0 0  Beja 37,824 -7,377  0 135 93 0 0 172 0 

HI399 Female Adult 100 0 0 0  Beja 37,720 -8,097  0 135 93 0 0 172 0 

HI460 Male Juvenile 2 100 0 0 0  Beja 37,824 -7,377  0 0 250 0 4 0 132 

HI462 Female Adult 96 4 0 0  Beja 37,824 -7,377  0 135 93 0 0 172 0 

HI463 Male Adult 0 0 29 0  Beja 38,107 -7,205  93 17 0 170 0 0 110 

HI466 Male Adult 100 0 0 0  Beja 38,107 -7,205  0 127 116 0 0 0 157 

HI467 Male Adult 77 20 3 0  Beja 37,824 -7,377  0 127 116 0 0 0 157 

HI471 Male Adult 0 0 0 100  Beja 37,824 -7,377  0 127 116 0 0 0 157 

HI501 Female Adult 100 0 0 0  Beja 37,824 -7,377  0 135 93 0 0 172 0 

HI502 Male Juvenile 2 100 0 0 0  Beja 37,824 -7,377  0 0 0 0 0 0 400 

HI504 Female Subadult 95 0 0 0  Beja 37,824 -7,377  0 233 0 0 0 125 42 

HI505 Female Adult 65 35 0 0  Beja 37,824 -7,377  0 127 116 0 0 0 157 

HI508 Female Adult 97 3 0 0  Beja 38,287 -8,224  0 127 116 0 0 0 157 

HI509 Male Adult 89 0 0 0  Beja 38,107 -7,205  76 0 4 0 123 8 189 

HI516 Male Adult 100 0 0 0  Beja 37,824 -7,377  76 0 4 0 123 8 189 

HI519 Female Adult 100 0 0 0  Beja 37,824 -7,377  0 135 93 0 0 172 0 

HI636 Female Adult 88 0 12 0  Beja 37,824 -7,377  0 135 93 0 0 172 0 

HI675 Male Adult 100 0 0 0  Setúbal 38,107 -7,205  0 127 116 0 0 0 157 
1Each specimen was assigned to one of four age classes: adults over one year of age, sub-adults between nine and twelve months, juveniles type II between five-and-a-half and nine 

months. Skulls with completely developed definitive dentition were assigned to the adult class. Skulls with 40 definitive teeth, but with some still growing, were assigned to the sub-adult age class. 

Animals whose skulls presented all 40 teeth, but including at least one milk tooth, were assigned to the juvenile type II class (33). 

2(personal information from Victor Bandeira) 

3Number of hectares of each habitat type (urban, rice fields, agroforestry, shrubs, inland water bodies, vineyards and orchards, coniferous, broadleaved and mix forests and agriculture 

areas) were retrieved from Corine Land Cover (2006) with spatial resolution of 250m. This variable was represented by mean values of the 2×2 km grid cell, considering the home-range of the 

Egyptian mongoose (33). 
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2.3. Purification and presumptive identification of isolates 

For purification of isolates, five isolated colonies from each different morphology were picked 

from different dilutions of all media. The colonies that were picked up were re-streaked twice to confirm 

purity. The purified individual colonies were assessed in terms of shape, pigmentation, and opacity. 

Bacteria were characterized in terms of gram character, endospore formation and the presence of 

catalase and cytochrome c oxidase enzymes.  

ESBL Chromogenic medium can 

differentiate between E. coli that grow as pink 

colonies and bacteria belonging to the Klebsiella, 

Enterobacter, Serratia, and Citrobacter (KESC) 

group that grow as dark blue colonies 

(information available from the manufacturer, 

Figure 2.1.).  Brilliance ESBL medium can 

differentiate between E. coli that grow as blue or 

pink colonies and KESC bacteria group that grow 

as green, green/blue or even brownish-green 

colonies (38). Moreover, Proteus, Morganella, 

and Providencia group grow as tan-colored 

colonies with brown halo (38). Finally, 

Pseudomonas aeruginosa colonies can also be differentiated, once they exhibit pyocyanin-related green-

brown pigmentation (39). Colorless colonies may be Salmonella spp., Acinetobacter spp. or others 

(information provided by the manufacturer). 

The isolated fungi were stained using lactophenol cotton blue and different morphological 

aspects were characterized. For filamentous fungi isolates, hyphal septation and spores color, 

morphology, and septation were assessed. For yeast isolates, we evaluated cell morphology and division. 

Considering the previous characterization, all isolates were grouped into morpho-physiological 

types (MT): MT-I to MT-XI for bacterial isolates (Figure 2.2); MT-XII for yeasts; MT-XIII for 

filamentous fungi. Additionally, MT-Vibrium and MT-Others were created, the first to place a vibrium-

like isolate and the second to place unidentifiable isolates. 

Figure 2.1 – Brilliance ESBL medium differentiating 
pigmentation characteristics (manufacturer available 
information). 
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Figure 2.2 – Flowchart used for differentiation of the purified bacterial isolates into different morpho-physiological types 
using morphological (cell morphology, Gram and endospore staining) and biochemical tests (catalase and oxidase tests). 

 

2.4. Molecular identification and molecular fingerprinting of bacterial isolates 

With the objective to analyze the intraspecific polymorphism present in the bacterial population, 

molecular fingerprinting was based on random amplified polymorphic DNA (RAPDs). A bacterial 

isolate from each MT, from each solid media, from each mongoose host, was selected. Total DNA 

extraction was performed by direct boiling at 95°C for 15 min of 2 to 3 colonies in 250 µL of TE 1 M, 

pH 8.0, centrifuged, the supernatant was collected to a clear microtube and stored at -20°C. 

For single primed PCR fingerprinting, an initial screening to select the most appropriate primer 

was performed using four different primers. Seven isolates (one from each morpho-physiological type) 

were tested, including two isolates of MT-II and one isolate of MT-VII, MT-V, MT-VIII, MT-IX, and 

MT-IV. The tested primers can be classified into three groups: primers directed to regions containing 

mini-satellite from M13 bacteriophage – M13 (5’-GAG GGT GGC GGT TCT-3’) (40); random primers 

– OPC19 (5’-GTT GCC AGC C-3’) (41) and  1281 (5’-AAC GCG CAA C-3’) (42); and universal 

primers for 16S rRNA gene – PH (5’-AAG GAG GTG ATC CAG CCG CA-3’) (43).  

PCR amplifications were performed in a Biometra Uno II Thermal Cycler, using a total volume 

of 15 μl and including 0.2 mM of primer (Invitrogen), 7.5 µL of NZYTaq II 2x Green Master Mix 

(NZYTech), 5 µL of DNA (from different dilutions of the DNA extract). DNA dilutions were decided 

from empirical analyses of DNA extract concentration run in 0.8% (w/v) agarose gel. 

After preliminary analyses, the selected primers for molecular fingerprinting were M13 and PH. 

PCR cycling conditions for M13 consisted of 94°C for 5 min, followed by 40 cycles of 60 s at 94°C, 3 

min at 40°C, 120 s at 72°C, plus an additional step at 72°C for 7 min, for chain elongation. The PCR 

cycling conditions for PH consisted of 95°C for 3 min followed by 35 cycles of 30 s at 94°C, 30 s at 

35°C, 3 min at 72°C, plus an additional step at 72°C for 5 min. 

The PCR products were resolved by 1.5% (w/v) agarose gel (NZYTech) containing 0.03 µL/mL 

of GreenSafe Premium (NZYTech) in 0.5 X TBE buffer (44.5 mM Tris, 44.5 mM boric acid, and 1 mM 



 

9 

 

EDTA) (Invitrogen), at 90 V for 4 h. DNA was visualized under UV light and photographed with 

Alliance 4.7 system (UVITEC Cambridge). 

To obtain a measure of reproducibility, each PCR batch included a randomly selected duplicate, 

with a total number of 18 isolates for M13 and 22 isolates for PH. The similarity between each pair of 

duplicates was based on the dendrogram computed with Pearson correlation coefficient and the 

unweighted pair group method with arithmetic average (UPGMA) as the agglomerative clustering 

algorithm (software package BioNumerics version 4.0 – Applied Maths). The reproducibility value was 

determined as the average value for all pairs of duplicates. Strain relationships, based on the molecular 

characters presented as fingerprints, were analyzed by hierarchical numerical methods with Pearson 

correlation similarity and UPGMA clustering, using 70% similarity as the cutoff value for cluster 

formation. 

Molecular identification was based on 16S rRNA gene sequence analysis. At least, one isolate 

from each dendrogram cluster resulting from RAPD-fingerprints was randomly selected for 16S rRNA 

gene sequencing. A PCR was performed using as forward primer 63f (5′-CAG GCC TAA CAC ATG 

CAA GTC-3′) and as reverse primer 1387r (5′-GGG CGG WGT GTA CAA GGC-3′) (44), in a final 

volume of 25 µL with 0.2 mM from each primer (Invitrogen), 12.5 µL NZYTaq II 2x Green Master Mix 

and 5 µL of DNA (from a 1:100 dilution of DNA extract). This set of primers allow the amplification 

of all hypervariable region (V1-V9). The PCR amplification program consisted of 1 cycle of 5 min, 

95°C, followed by 30 cycles of 45 s, 95°C; 45 s, 55°C; 120 s, 72°C, and a final step of 7 min, 72ºC. PCR 

products with expected size (approximately 1500 bp) were observed in a 1.5% agarose gel, in 1 X TBE 

buffer (89 mM Tris, 89 mM boric acid, and 2 mM EDTA), run at 90 V for 1.5 h, using GreenSafe 

Premium (0.003% (v/v)). DNA was quantified using a Qubit fluorometer (Invitrogen), following 

manufacturer’s instructions. Samples were commercially sequenced by Sanger sequencing technique 

using 63f primer (GATC Biotech AG). Since the Taq DNA polymerase used has a mutation rate of 10- 5, 

the reproducibility of the originated sequences was assessed through the comparison of duplicate 

sequences that were re-sequenced and taking into consideration that, for financial reasons, only one 

strand was sequenced. 

2.5. Molecular identification of fungi 

Fungi isolates with different morphology were selected for genomic identification through 

sequencing. Yeast DNA was extracted using the direct boiling method previously described, and 

filamentous fungi DNA was extracted using NZY Plant/Fungi gDNA Isolation kit (NZYTech), 

following the manufacturer instructions. 

Amplification of the D1/D2 domain region of the 26S rRNA gene in yeast (45) and the Internal 

Transcribed Spacer (ITS) region in filamentous fungi were performed (46). For yeast isolates, a PCR 

was performed using NL-1 (5’-GCA TAT CAA TAA GCG GAG GAA AAG-3’) and NL-4 (5’-GGT 
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CCG TGT TTC AAG ACG G-3’) primers (47), and for filamentous fungi, a PCR was performed using 

ITS5 (5’-GGA AGT AAA AGT CGT AAC AAG G-3’) and ITS4 (5’-TCC TCC GCT TAT TGA TAT 

GC-3’) primers (48). In both cases, a final volume of 25 µL was used containing 0.2 mM of each pair 

of primers (Invitrogen), 12.5 µL NZYTaq II 2x Green Master Mix and 5 µL of DNA (from a 1:100 

dilution of DNA extract). The PCR amplification program consisted of 1 cycle of 3 min at 95°C, 

followed by 35 cycles of 30 s at 94°C, 30 s at 55°C, 30 s at 72°C and a final step of 10 min at 72ºC. 

PCR products with expected size (approximately 650 bp and between 600 and 800 bp, respectively) 

were observed in a 1.2% agarose gel, in 1 X TBE buffer, at 90 V for 1 h, using GreenSafe Premium and 

extracted using QIAquick Gel Extraction Kit, according to manufacturer’s handbook.  

DNA was quantified using a Qubit fluorometer, following manufacturer’s instructions. For 

Sanger sequencing, samples were prepared adding with 20 to 80 ng/µL of PCR product to 5 µM of NL-

4 and ITS4 primers, for yeast and filamentous fungi, respectively, and commercially sequenced.  

 

2.6. Homology searches for genome-based identification of isolates 

Electropherograms were manually analyzed and corrected when necessary; undetermined 

nucleotides were designated as N. The 16S rRNA gene, D1/D2 domain region and ITS gene sequences 

were compared with those available in the GenBank databases using the BLASTN program through the 

National Center for Biotechnology Information (NCBI) server. Comparisons were performed using the 

default parameters. Sequences were annotated with taxonomic information from the top three best 

matches displaying the same nucleotide pairwise identity. The criteria used for bacteria and fungi 

identification are represented in Table 2.2 (49-51). A failure to identify phylotypes was defined as a 16S 

rRNA gene sequence similarity score lower than 75% and an ITS sequence similarity score lower than 

60% with sequences deposited in GenBank at the time of analysis. 

Table 2.2 – Taxonomic threshold similarity values (%) for bacteria and fungi. 

Taxon Species Genus Family Order Class Phylum 

Threshold similarity 

value (%) 

Bacteria (16S rRNA gene)a 98.7 94.5 86.5 82 78.5 75 

Fungi (ITS region)b 90 85 75 70 60 - 

aas in (42, 43). 

bas in (44); same criteria were used for yeast identification using D1/D2 domain region of the 26S rRNA gene. 
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2.7. Diversity analysis of the samples under study  

Diversity analyses were performed through the calculation of diversity indices (Shannon index, 

Simpson index and Species evenness index derived from Shannon index) and the determination of 

nonparametric estimators (Chao 1 and Chao 2) of species richness (Table 2.3) (52). 

Table 2.3 – Diversity measurements: diversity indices and non-parametric estimators of species 

richness. 

Measure Formula 

Shannon index (H’) 𝐻′ = −∑𝑝𝑖 ln 𝑝𝑖 

Simpson’s index (D) 𝐷 =∑𝑝𝑖2 

Shannon evenness (E) 𝐸 =
𝐻′

ln 𝑆
 

Chao 1 (and Chao 2) 𝐶ℎ𝑎𝑜 = 𝑆 +
𝑎2

2𝑏
 

Where pi=ni/N; S is the number of OTUs in the sample; 

N is the total number of isolates from  a given OUT in 

the sample; ni is the number of isolates in an OTU; a is 

the number of OTUs recorded only once; b is the 

number of OTUs recorded only twice. Chao 1 analyses 

species abundance data and Chao 2 analyses species 

incidence data. 

2.8. Data analysis 

Considering culture assays, results from CFU counts are displayed as means of values of at least 

ten independent experiments with respective standard deviation. All variables were tested for normality 

using D’Agostino-Pearson test (α=0.05). When comparing two conditions, a t-student test (Mann-

Whitney test, α=0.05) was performed. When comparing multiple conditions, a non-parametric ANOVA 

(Kruskal-Wallis test, α=0.05) with a Dunn’s Multiple Comparison post-test was performed. When 

comparing multiple host communities, a two-way ordinary ANOVA (α=0.05) with a Tukey's Multiple 

Comparison post-test was performed. All statistical analyses were performed using GraphPad Prism 

software. 

For microbiota and bio-environmental data integration, we performed a Principal Component 

Analysis (PCA) using available information for all 20 Egyptian mongoose specimens. A matrix using 

72 microbiota operational taxonomic units (OTUs), based on presence/absence of every hierarchical 

bacterial level (Supplementary Table 7.1), was normalized using the standard score. The normalized 

matrix was used to perform an initial PCA. Scatter projection diagrams were obtained both for sex and 

age class. A dendrogram was then made based on the normalized Euclidean distance derived from the 

projection matrix using UPGMA. The cophenetic correlation coefficient was calculated and a 2-way 

Mantel test (Mantel, 1967) was performed to measure the faithfulness of the dendrogram compared to 

http://www.graphpad.com/guides/prism/6/statistics/how_the_mann-whitney_test_works.htm
http://www.graphpad.com/guides/prism/6/statistics/how_the_mann-whitney_test_works.htm
https://en.wikipedia.org/wiki/Dendrogram
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the pairwise distances of the original unmodeled matrix. Two others PCAs were made using a matrix 

with 26 biological and 17 environmental variables (Supplementary Table 7.2 and 7.3). These matrices 

were normalized using the standard score and PCAs were performed. Scatter projection diagrams were 

obtained for the clusters originated from the previous microbiota dendrogram. The explanatory variables 

of each Principal Component (PC) were selected if the correlation coefficient between the variable and 

the PC were |0.5|. If a variable had this behavior with more than one PC, this variable was used as an 

explanatory variable for the PC with the higher correlation coefficient. All these analyses were made 

using NTSYSpc software (version 2.20d; Exeter Software, Setauket, NY, USA). 

CHAPTER III – RESULTS 

 

3.1. Comparison of bacterial burden and diversity of morpho-physiological types 

between mongoose host sexes 

Culture-dependent methods were used to investigate gut microbiota diversity in 20 fecal 

samples of Egyptian mongoose specimens. A rich medium for bacterial growth was used, with (YCFA 

P) and without (YCFA) 0.1% de sodium taurocholate supplementation. In both cases, samples were 

incubated under aerobic (w/ O2) and anaerobic (w/o O2) conditions. 

Microbial load in these four media/conditions (Figure 3.1 A) were compared; in male samples, 

an average of 2.6x108 CFU/mL, 1.6x104 CFU/mL, 2.9x108 CFU/mL, and 8.5x105 CFU/mL were found 

in YCFA w/ O2, YCFA P w/ O2, YCFA w/o O2 and YCFA P w/o O2, respectively. In female samples, 

we registered a mean of 3.0x108 CFU/mL, 8.7x104 CFU/mL, 8.0x108 CFU/mL, and 4.1x107 CFU/mL 

in YCFA w/ O2, YCFA P w/ O2, YCFA w/o O2 and YCFA P w/o O2, respectively. 

Comparing the microbial load in the four media/conditions (Figure 3.1 A), a significant higher 

microbial load was registered in YCFA w/ O2  and YCFA w/o O2, when comparing with YCFA P w/ O2 

and YCFA P w/o O2, respectively. Additionally, a significant lower microbial load was registered in 

YCFA P w/ O2 than in YCFA P w/o O2 and in YCFA w/ O2 when comparing with YCFA w/o O2. 

Regarding sex-related differences (Figure 3.1 A), no significant differences were found in the 

microbial load using YCFA w/ O2 and YCFA P w/ O2 as growth conditions, but female hosts had a 

higher microbial load than males in YCFA w/o O2 (p-value=0.0410) and YCFA P w/o O2 (p-

value=0.0288). 

A panel of selective growth media was used to detect specific groups of bacteria. The microbial 

load in MacConkey medium had no significant difference between sexes, both for lactose non-

fermenting (LNF) bacteria, lactose fermenting (LF) bacteria, and the sum of both types (Figure 3.1 B), 

with a mean of 2.1x108, 1.8x108, and 3.9x108 CFU/mL registered for male mongooses, respectively, and 

a mean of 8.1x108, 3.9x108, and 1.2x109 CFU/mL, respectively, in female mongooses. 
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Figure 3.1 – Microbial load (expressed as Log CFU/mL) of mongoose cultivable bacteria grown in selective and non-selective 
media. (A) Comparison between four different media/conditions: YCFA incubated under aerobiosis (YCFA w/O2), YCFA 
supplemented with sodium taurocholate and incubated under aerobiosis (YCFA P w/O2), YCFA incubated under anaerobiosis 
(YCFA w/o O2), and YCFA supplemented with sodium taurocholate and incubated under anaerobiosis (YCFA P w/o O2). (B) 
Comparison between lactose non-fermenting (LNF) bacteria and lactose-fermenting (LF) bacteria in MacConkey medium. 
(C/D) Comparison between Extended-spectrum beta-lactamases (ESBL) Chromogenic medium (C) without (ESBL w/o AS) and 
(D) with (ESBL w/ AS) ESBL antibiotic supplement with the results present by colony color/type. Results from male (M), female 
(F), and in total (T) are presented. Horizontal bars represent the mean and error bars represent the standard deviation from 
10 (male and female) and 20 (total) independent values. Statistical analysis was performed using a t-student test (Mann-
Whitney test, α=0.05). ns – non-significant (p-value≥ 0.05), * - significant (p-value=0.01 to 0.05), ** - very significant (p-
value=0.001 to 0.01), *** - extremely significant (p-value=0.0001 to 0.001), **** - extremely significant (p-value< 0.0001). 

Additionally, two selective media for detection of extended-spectrum beta-lactamases (ESBL) 

producing gram-negative bacteria, namely the ESBL Chromogenic medium with ESBL antibiotic 

supplement (ESBL w/AS) and the ready-to-use Brilliance ESBL medium (Brilliance), were used. As 

well, we decided to compare the differences resulting from the addition of the ESBL antibiotic 

supplement, incubating in ESBL Chromogenic medium without this supplement (ESBL w/o AS). 

In ESBL chromogenic medium, metallic blue colonies belonged to morpho-physiological type 

(MT) II, light blue colonies belonged to MT-VII, and pink colonies belonged to MT-IX, being putative 

E. coli. Colorless colonies were very diverse, fitting to different MT, namely MT-I, M-III to MT-VI, 

MT-VIII to MT-XI, MT-Vibrium, and MT-Others. 
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In ESBL w/o AS, bacterial recovery was, on average, 3.35x1011 CFU/mL; most colonies were 

colorless (3.3x1011 CFU/mL), although MT-II (1.8x108 CFU/mL), MT-VII (3.9x107 CFU/mL), and E. 

coli-like (4.5x106 CFU/mL) colonies were also present (Figure 3.1 C). E. coli-like colonies were only 

observed in female samples (n=3). Moreover, ESBL w/AS presented an average bacterial load of 

1.6x107 CFU/mL, with an even distribution between MT-II (1.3x107 CFU/mL) and MT-VII (3.4x106 

CFU/mL) colonies (Figure 3.1 D). In both ESBL Chromogenic media, there were no significant 

differences between sexes in the number of colonies of any color and morpho-physiological type (Figure 

3.1 C/D). 

Additionally, a comparison between ESBL Chromogenic media was made (Figure 3.2). 

Microbial diversity and abundance are lower in the medium with antibiotic supplement, when compared 

to the non-supplemented one. 

 

Figure 3.2 – Comparison of microbial load (expressed as log CFU/mL) in female and male mongoose samples inoculated 

in ESBL Chromogenic medium without (gray bars) and with (white bars) ESBL antibiotic supplement. Each 

media/condition is presented by colony color: colorless colonies (light gray), metallic blue colonies (dark blue), light blue 

colonies (light blue), pink colonies (pink), and the total number of colonies (dark gray). Horizontal bars represent the mean and 

error bars represent the standard deviation from 10 (male and female) and 20 (total) independent values. Statistical analysis 

was performed using a t-student test (Mann-Whitney test, α=0.05). ns – non-significant (p-value≥ 0.05), *significant (p-value 

0.01 to 0.05), **very significant (p-value 0.001 to 0.01), ****extremely significant (p-value< 0.0001) differences. 

 

Bacterial growth in Brilliance ESBL medium was only registered in eight fecal samples, mostly 

originated from female hosts (n=6) with a bacterial load average of 4.2x103 CFU/mL (Figure 3.3 A). No 

significant differences were noticed between sexes. The distinct colonies grown on the medium were 

similar, characterized by lack of pigmentation and putatively identified as Salmonella spp. and/or 

Acinetobacter spp. 



 

15 

 

 

Figure 3.3 – Comparison of bacterial load (expressed as Log CFU/mL) between (A) chromogenic media and (B) non-

selective media. Brilliance ESBL medium (Brilliance), ESBL Chromogenic medium without ESBL supplement of antibiotics 

(ESBL w/o AS), ESBL Chromogenic medium with ESBL supplement of antibiotics (ESBL w/AS), and YCFA medium 

incubated in aerobiosis (YCFA w/ O2). Results from male (M), female (F), and in total (T) are represented. Horizontal bars 

represent the mean and error bars represent the standard deviation from 10 (male and female) and 20 (total) independent values. 

Statistical analysis was performed using a non-parametric ANOVA (Kruskal-Wallis test, α=0.05) with a Dunn’s Multiple 

Comparison post-test for media comparison and using a t-student test (Mann-Whitney test, α=0.05) for gender comparison in 

Brilliance ESBL medium and non-selective media comparison. ns – non-significant (p-value≥ 0.05), * - significant (p-

value=0.01 to 0.05), ** - very significant (p-value=0.001 to 0.01), *** - extremely significant (p-value=0.0001 to 0.001), **** 

- extremely significant (p-value< 0.0001). 

As expected, supplemented ESBL selective media led to lower bacterial viability (1.6x107 

CFU/mL), when compared to 3.3x1011 CFU/mL in ESBL w/o AS (Figure 3.3 A). A more marked 

reduction was recorded in Brilliance (4.2x103 CFU/mL) medium that registered differences of 108 and 

104 CFU/mL, when compared to ESBL Chromogenic medium, without and with antibiotic supply, 

respectively (p-value<0.0001 and p-value<0.01) (Figure 3.3 A). 

Interestingly, under aerobiosis, microbial load in ESBL w/o AS was higher than in YCFA (p-

value<0.0001) (Figure 3.3 B). 

3.2. Detection of mycobiota community 

In an attempt to study the intestinal fungi community (mycobiota) of the Egyptian mongoose, 

PDA medium supplemented with chloramphenicol (PDA w/CHLO) was inoculated, allowing the 

selective growth of fungi (Figure 3.4). 

The average number of viable fungi found in fecal samples were 1.1x107 CFU/mL, with an even 

distribution of yeasts and filamentous fungi (FF) (5.0x106 CFU/mL and 5.8x106 CFU/mL, respectively). 

Examining yeast colonies, no significant differences were shown between sexes (8.6x106 CFU/mL and 

1.3x106 CFU/mL, for male and female mammals, respectively). However, comparing FF, a very 

significant difference (p-value=0.0031) between male and female samples were registered, with 

microbial loads in the former of approximately 1.2x107 CFU/mL, and no detection in the latter samples. 
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Figure 3.4 – Comparison of microbial load (expressed as Log CFU/mL) between yeast and filamentous fungi (FF) in the 

PDA medium with chloramphenicol. Results from male (M), female (F), and in total (T) are presented. Horizontal bars 

represent the mean and error bars represent the standard deviation from 10 (male and female) and 20 (total) independent values. 

Statistical analysis was performed using a t-student test (Mann-Whitney test, α=0.05). ns – non-significant (p-value≥ 0.05), * 

- significant (p-value=0.01 to 0.05), ** - very significant (p-value=0.001 to 0.01), *** - extremely significant (p-value=0.0001 

to 0.001), **** - extremely significant (p-value< 0.0001). 

3.3. Differences between media selectivity and detection of diversity 

Comparing the percentage of isolates belonging to each MT that was registered in different 

growth media (Figure 3.5), some differences could be noticed between rich and selective media. As 

expected, rich media enabled the growth of a great variety of morpho-physiological types depending on 

the incubation condition: more than seven MT in YCFA media, while in ESBL w/o AS a greater 

diversity of MT was obtained (n=13). In contrast, all selective media led to a lower diversity of morpho-

physiological types (1 to 3 MT). 

 

Figure 3.5 – Percentage of isolates belonging to each morpho-physiological type in each media/condition in Egyptian 

mongoose individuals. PDA w/ CHLO – PDA medium with chloramphenicol, MacConkey – MacConkey medium, Brilliance 

– Brilliance ESBL medium, ESBL w/o AS – ESBL Chromogenic medium without ESBL supplement of antibiotics, ESBL 

w/AS - ESBL Chromogenic medium with ESBL supplement of antibiotics, YCFA P w/o O2 – YCFA medium supplemented 

with sodium taurocholate and incubated under anaerobiosis, YCFA w/o O2 - YCFA medium incubated under anaerobiosis, 

YCFA P w/O2 - YCFA medium supplemented with sodium taurocholate and incubated under aerobiosis, YCFA w/ O2 - YCFA 

medium incubated under aerobiosis. Morpho-physiological types are represented as discussed in Material and Methods chapter. 

Results are the sum of percentages of all 20 host individuals. 
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As expected, MacConkey medium and Brilliance ESBL medium only registered growth of MT-

IX isolates, with MacConkey medium registering the higher number than other media (p-value<0.0001), 

and PDA w/CHLO only registered growth of MT-XII and MT-XIII isolates. Surprisingly, MT-XI (p-

value<0.0001) and MT-Vibrium were only isolated from ESBL chromogenic medium without antibiotic 

supplementation. ESBL chromogenic medium with antibiotic supplementation registered the higher 

number of MT-II isolates than the remaining media (p-value<0.001, except YCFA w/ O2, wherein non-

significant differences were found).  

In YCFA medium, MT-XII and MT-Others only grew in YCFA P w/ O2 and MT-IV only grew 

in YCFA w/o O2. MT-XI and MT-Vibrium were not isolated in any of YCFA-growth conditions. 

Comparing aerobiosis and anaerobiosis conditions, aerobiosis favored the isolation of MT-II (YCFA - 

76.2%; YCFA P – 53.9%). Bacteria from MT-VI, MT-VIII and MT-XII only grew in aerobic conditions 

while MT-III and MT-X only grew in anaerobic conditions. In addition, MT-VII was almost exclusive 

of anaerobic conditions, being able to also grow in YCFA in the presence of oxygen (0.6%). MT-I was 

absent in pasteurized samples, with the exception of YCFA P w/o O2 (0.01%). 

3.4. Host individuals as representatives of single communities 

Comparing the percentage of isolates belonging to each MT, in each host individual, in all 

YCFA media (in both aerobic and anaerobic conditions) (Figure 3.6), we did not find any significant 

difference between sexes but did find some significant differences across host individuals 

(Supplementary Table 7.4). 

The total aerobic microbiota (YCFA under aerobic conditions) is composed of diverse morpho-

physiological types, namely, MT-I, MT-II, MT-V, MT-VI, MT-VII, MT-VIII, MT-IX, and MT-XIII, 

with MT-II isolates being the most detected type, appearing in at least 75% of individuals. Moreover, 

the total anaerobic microbiota (YCFA under anaerobic conditions) is composed of MT-I, MT-II, MT-

III, MT-V, MT-VII, MT-IX, MT-X, and MT-XII, with detection of MT-II isolates in at least 75% of 

individuals, and MT-VII in at least 60% of individuals. Furthermore, the total aerobic sporobiota (YCFA 

P under aerobic conditions) is composed of diverse morpho-physiological types, namely, MT-II, MT-

V, MT-VI, MT-VIII, MT-IX, MT-XII, MT-XIII, and MT-Others, with MT-VI isolates being the most 

detected type, appearing in at least 50% of individuals. Also, the total anaerobic sporobiota (YCFA P 

under anaerobic conditions) is composed of MT-I, MT-II, MT-III, MT-IV, MT-VII, MT-IX, and MT-

X, with detection of MT-II and MT-VII in at least 75% of individuals. 

Thus, in these conditions, the MT-II, MT-VI, and MT-VII may be considered the core gut 

microbiota community and the remaining morpho-physiological types can be considered part of the 

intra-specific individual microbiota community.  
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Figure 3.6 – Percentage of isolates belonging to each morpho-physiological type in each Egyptian mongoose individual 

in 4 different media/conditions: YCFA incubated under aerobiosis (first/bottom bar), YCFA supplemented with sodium 

taurocholate and incubated under aerobiosis (second bar), YCFA incubated under anaerobiosis (third bar), and YCFA 

supplemented with sodium taurocholate and incubated under anaerobiosis (fourth/top bar). Numbers are internal references 

and represent each individual. Morpho-physiological types are represented as discussed in Material and Methods chapter. 

Comparing the percentage of isolates belonging to each MT, in each host individual (Figure 

3.7), we found a higher number of MT-II isolates in female samples (p-value<0.05) when compared to 

male samples, in both ESBL chromogenic media supplemented with antibiotics. We also found some 

significant differences across host individuals (Supplementary Table 7.4). 

The total aerobic microbiota (ESBL w/o AS) is composed of diverse morpho-physiological 

types, namely, MT-I, MT-II, MT-III, MT-IV, MT-V, MT-VI, MT-VII, MT-VIII, MT-IX, MT-X, MT-
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XI, MT-Vibrium, and MT-Others, with MT-II isolates being the most detected type, appearing in at 

least 75% of individuals, and MT-VII and MT-XI in at least 65% of individuals. Moreover, the total 

ESBL-producing microbiota (ESBL w/ AS) is composed of MT-II, MT-VII, and MT-Other, with 

detection of MT-II isolates in at least 75% of individuals. 

Thus, in these conditions, the MT-II, MT-VII, and MT-XI types may be considered the core 

aerobic gut microbiota community and the remaining morpho-physiological types can be considered 

part of the intra-specific individual microbiota community. Additionally, we perceived that the majority 

of individuals possess MT-II ESBL-producing bacteria. 

 

Figure 3.7 – Percentage of isolates belonging to each morpho-physiological type in each Egyptian mongoose individual 

between ESBL Chromogenic medium without (bottom bars) and with (top bars) ESBL supplement of antibiotics. 

Numbers are internal references and represent each individual. Morpho-physiological types are represented as discussed in 

Material and Methods chapter. 

Comparing the percentage of the sum of isolates belonging to each MT, discovered in all media, 

in each host individual (Figure 3.8), we found a higher number of MT-IX isolates in female samples (p-

value<0.01) when compared to male samples. We also found some significant differences across host 

individuals (Supplementary Table 7.4). 

Based on morpho-physiological tests, the gut microbiota is dominated by Gram-positive 

bacteria (76%) and rod-shaped bacteria (77%). The total microbiota (sum of all media) is composed of 

diverse morpho-physiological types (n=15), with MT-IX appearing in 100% of individuals, MT-II and 

MT-VII in at least 95% of individuals, MT-VIII and MT-XI, in at least 60% of individuals. 



 

20 

 

Figure 3.8 – Percentage of the sum of isolates belonging to each morpho-physiological type discovered in all media in 

each Egyptian mongoose individual. Numbers are internal references and represent each individual. Morpho-physiological 

types are represented as discussed in Material and Methods chapter. Results are the sum of the percentages of all 9 

media/conditions. 

Thus, the MT-II, MT-VII, MT-VIII, MT-IX, and MT-XI may be considered the core gut 

microbiota community and the remaining morpho-physiological types can be considered part of the 

intra-specific individual microbiota community. 

3.5. Molecular identification and molecular fingerprinting of bacterial isolates 

The differentiation of isolates was based on RAPD fingerprints, after an initial screening with 

seven isolates using four different primers. The fingerprints produced by OPC19 and 1281 showed low 

polymorphic profiles and badly-defined amplification patterns, with faint fragments (data not shown). 

The selected primers M13 and PH provided suitable fingerprints, with well-defined amplification 

patterns. The reproducibility of fingerprints with these primers, estimated by the similarity average value 

for all pairs of duplicates, was 97.2% ± 3.3% for M13 and 83.1% ± 9.6% for PH. To integrate all this 

information, a composite dendrogram based on M13 and PH fingerprints was generated for 

differentiation of bacterial isolates. Using 70% similarity as the cutoff value for cluster formation, one 

isolate of each cluster was selected and identified through 16S rRNA gene sequencing.   
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Figure 3.9 - Bacterial isolates identification and differentiation by a hierarchical numerical analysis. The PCR fingerprints obtained 

for M13 and PH were integrated, similarity was calculated by Pearson correlation coefficient and clustering was performed with UPGMA. 

The scale corresponds to global percentage of similarity. Cut-off value for cluster formation at 70% similarity. N – No; Y – Yes; (L) - 

Lactating 
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(Continuation) Figure 3.9 - Bacterial 

isolates identification and 

differentiation by a hierarchical 

numerical analysis. The PCR 

fingerprints obtained for M13 and PH 

were integrated, similarity was calculated 

by Pearson correlation coefficient and 

clustering was performed with UPGMA. 

The scale corresponds to global 

percentage of similarity. Cut-off value for 

cluster formation at 70% similarity. N – 

No; Y – Yes; (L) - Lactating 
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We obtained a total of 122 clusters, 55 of them being single-member clusters (data not shown). 

To reduce the entropy resulted in the enormous diversity of isolates, we grouped the isolates of each MT 

in individual dendrograms (Figure 3.9). Additionally, the isolates of identified genera, that were 

misplaced due to erroneous results on the morpho-physiological testes, were also regrouped into the 

right MT. One isolate of each newly formed unidentified clusters was then selected for 16S rRNA gene 

sequencing. 

The identification of isolates was accomplished when both primers were used. This 

identification capability was tested and proved by coherent results when sequencing more than one 

isolate of the same cluster. The differentiation of isolates of the same taxonomic group was also 

accomplished, however, no clear pattern was observed between the formed clusters and host features. 

 

  

(Continuation) Figure 3.9 - Bacterial isolates identification and differentiation by a hierarchical numerical analysis. The PCR 

fingerprints obtained for M13 and PH were integrated, similarity was calculated by Pearson correlation coefficient and clustering was 

performed with UPGMA. The scale corresponds to global percentage of similarity. Cut-off value for cluster formation at 70% similarity. 

N – No; Y – Yes; (L) - Lactating 
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(Continuation) Figure 3.9 - Bacterial isolates identification and differentiation by a hierarchical numerical analysis. The PCR 

fingerprints obtained for M13 and PH were integrated, similarity was calculated by Pearson correlation coefficient and clustering was 

performed with UPGMA. The scale corresponds to global percentage of similarity. Cut-off value for cluster formation at 70% similarity. 

N – No; Y – Yes; (L) - Lactating 
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(Continuation) Figure 3.9 - Bacterial isolates identification and differentiation by a hierarchical numerical analysis. The PCR 

fingerprints obtained for M13 and PH were integrated, similarity was calculated by Pearson correlation coefficient and clustering was 

performed with UPGMA. The scale corresponds to global percentage of similarity. Cut-off value for cluster formation at 70% similarity. 

N – No; Y – Yes; (L) - Lactating 
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Sequencing of 16S rDNA amplicon from 139 representative bacterial species (Supplementary 

Table 7.5), defined according to morpho-physiological tests and molecular profiling, generated partial 

sequences located in the early region of the gene (V1-V3), which is informative for the identification of 

most genera, since it is a highly polymorphic moiety (50). Homology searches of obtained sequences 

with publicly available sequences generated pairwise nucleotide identities between 82% and 100%. We 

based phylotype assignment on information from top three best matches displaying the higher nucleotide 

pairwise identity. 

We successfully identified bacteria isolates belonging to three phyla: Firmicutes (67% of 

bacterial species), Proteobacteria (32%) and Actinobacteria (1%) (Figure 3.10). Bacteria affiliated with 

Bacilli class predominated (50%), followed by Gammaproteobacteria (23%), Clostridia (18%), 

Betaproteobacteria (8%), and Actinobacteria (1%). Isolates fitting to Bacillales order dominated (30%), 

followed by Lactobacillales (20%) and Clostridiales (18%). Pseudomonadales (12%), Burkholderiales 

(8%), Enterobacteriales (8%) and Xanthomonadales (3%) were only sporadically isolated, while 

Actinomycetales (1%) was rare. 

Bacillaceae (23%) and Enterococcaceae (18%) were the most represented families. 

Pseudomonadaceae (11%), Clostridiaceae (9%), Peptostreptococcaceae (8%), Enterobacteriaceae 

(7%), Xanthomonadaceae, Comamonadaceae, Burkholderiaceae and “Rummeliibacillus-family” (4% 

each) were occasionally detected. Carnobacteriaceae, Planococcaceae, Staphylococcaceae, 

Lachnospiraceae, Paenibacillaceae, Propionibacteriaceae and Hafniaceae (1% each) were rare. We 

were not able to determine the family of 1% of the sequenced isolates. 

We found bacterial isolates from twenty genera, with Enterococcus spp. (18%) and Bacillus 

spp. (14%) being the most abundant, while Pseudomonas spp. (10%), Clostridium spp. (9%), 

Lysinibacillus spp. (6%), Delftia spp., Ralstonia spp. and Rummeliibacillus spp. (4% each) were less 

denoted. Some genera were rare: Paraclostridium spp. and Stenotrophomonas spp. (3% each), 

Paeniclostridium spp. and Romboutsia spp. (2% each), Carnobacterium spp., Sporosarcina spp., 

Staphylococcus spp., Paenibacillus spp., Pantoea spp., Propionibacterium spp., Psychrobacillus spp., 

Solibacillus spp. and Robinsoniella spp. (1% each). We were not able to determine the genus of 13% of 

the sequenced isolates.  

Paeniclostridium spp., Pantoea spp., Sporosarcina spp., Solibacillus spp., and 

Stenotrophomonas spp. were only detected in female individuals. In contrast, Paenibacillus spp., 

Propionibacterium spp., Robinsoniella spp. and Staphylococcus spp. were only detected in male 

individuals. 

 We only successfully identified the species of 30% of the sequenced bacterial isolates. 

Rummeliibacillus stabekissi represented four percent each, followed by Enterococcus faecalis and 
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Clostridium tertium that represented three percent each, Clostridium perfringens, Paraclostridium 

bifermentans, Bacillus anthracis and Ralstonia pickettii that represented two percent each. The 

remaining species were only detected once: Bacillus kokeshiiformis, Clostridium septicum, Clostridium 

baratii, Delftia lacustris, Enterococcus faecium, Enterococcus mundtii, Lysinibacillus fusiformis, 

Paenibacillus borealis, Paeniclostridium tenue, Pantoea eucrina, Propionibacterium acnes, 

Psychrobacillus soli, Ralstonia insidiosa, Robinsoniella peoriensis and Sporosarcina newyorkensis. 

 

Figure 3.10 - Gut microbiota abundance of Egyptian mongoose population at different taxonomical levels. The major six 

groups of each taxonomical level are represented. Results are the sum of all 20 host individuals. 

Sequencing of ITS and D1/D2 amplicons from six representative fungi species (Supplementary 

Table 7.6), according to morpho-physiological tests, generated partial sequences usable for 

identification of most genera. Homology searches of obtained sequences with publicly available 

sequences generated pairwise nucleotide identities between 94% and 99%. We based phylotype 

assignment on information from top three best matches displaying the higher nucleotide pairwise 

identity. 

We successfully identified fungi isolates from four genera: Pseudozyma and Naganishia 

(Basidiomycota phylum), Penicillium (Ascomycota phylum) and Mucor (Mucoromycota phylum). 

Mucor circinelloides, Naganishia albida (=Cryptococcus albidus) and Penicillium amaliae were the 

three identifiable species. 

At the bacterial genus level, a diversity analysis was performed for both female and male 

population (separately), but also for the mongoose population as a whole. Three diversity indices were 

calculated: Simpson’s index, Shannon index, and Species evenness index derived from Shannon index 
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(Table 3.1), allowing the appraisal of the balance between the number of individuals and the number of 

species under analysis in each community. These diversity indices were very similar across males, 

females and the overall population. Moreover, nonparametric estimators of species richness were 

calculated, namely Chao 1, which analyses species abundance data, and Chao 2, that considers species 

incidence data (Table 3.1), with numerical values of 21, in both cases.  

Table 3.1 – Diversity measurements for male, female, and the total population of Egyptian mongoose. 

 

  Male Female Total 

N 67 54 121 

S 16 16 21 

H' 2.48 2.38 2.55 

D 0.90 0.88 0.89 

E 0.89 0.86 0.84 

Chao 1   21 

Chao 2     21 
N is the total number of clones in the sample; S is the 

number of OTUs in the sample; H’ is the Shannon 

index; D is the Simpson’s index; E is the Shannon 

evenness; Chao 1 analyses species abundance data; 

Chao 2 analyses species incidence data. 

3.6. Interaction between microbiota and bio-environmental features 

For microbiota and bio-environmental data integration, we performed a Principal Component 

Analysis (PCA) using available information for all 20 Egyptian mongoose specimens. The microbiota 

matrix was composed of 72 OTUs representing the presence/absence of every hierarchical bacterial 

level. Additionally, the biological matrix was composed of 26 biological variables related to sex, age 

class, reproductive status, stomach content at the time of death, and different body measurements. Also, 

the environmental matrix was composed of 17 environmental variables related to georeferenced 

location, land-use, climatic data, road net, river net, and population data.  

We used a PCA methodology to reduce the number of variables, redistributing the original 

variables in principal components. We started by performing a PCA using the normalized microbiota 

matrix. This matrix registered a cumulative variance of 42% (PC1 – 17%; PC2 – 13%; PC3 – 12%). The 

dispersal areas of the microbiota data obtained for each age class (Figure 3.11) and sex (Figure 3.12) 

were compared. 

Observing the microbiota data and comparing the individuals forming three clusters according 

to their age group, we can see that juvenile individuals overlap in total with adult individuals, but sub-

adult individuals are separated from the others (Figure 3.11). Sub-adults tend to have a microbiota 

composed of Clostridiaceae and Actinobacteria phylum. 

When we compare individuals by forming two clusters according to their sex, we can see that 

the two clusters have partial overlaps (Figure 3.12), but female specimens tend to have a microbiota 
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composed of Clostridia class (of Firmicutes phylum) and Actinobacteria phylum; and in contrast, male 

specimens tend to have a majority of Proteobacteria, in particular, Burkholderiales, Enterobacteriales, 

and Pseudomonadaceae groups, but also of Bacilli class. 

The dendrogram originated from the normalized Euclidean distance derived from the projection 

matrix using UPGMA produced eight clusters, five of them, being single member clusters when a cut-

off value of 0.182 of normalized Euclidean distance was used (Figure 3.13). The 2-way Mantel test 

shows a matrix correlation of 0.912.  

Similarly, the dispersal areas of biological (Figure 3.14) and environmental (Figure 3.15) data 

obtained for the clusters originated from the previous microbiota dendrogram were compared. These 

matrices registered a cumulative variance of 55% (PC1 – 29%; PC2 – 14%; PC3 – 11%) and 68% (PC1 

– 34%; PC2 – 18%; PC3 – 16%), respectively. We can see that cluster II is a very diverse group in terms 

of biological and environmental characteristics (Figure 3.14 and 3.15). 

Regarding the biological characteristics and taking into consideration the first two PCs (Figure 

3.14 A), it is clear that all clusters overlap, except for cluster IV and cluster VII. Cluster IV has the 

individual HI508, which has high values of biometric features related to the size and low values of 

biometric features related to the weight, but also a stomach content at the time of death composed of a 

smaller percentage of mammals and invertebrates. Cluster VII comprises the HI471 individual, who has 

high values of biometric features related to size, but unlike the previous one, high values of biometric 

features related to weight and a stomach content at the time of death composed of a greater percentage 

of mammals and invertebrates. When analyzing PC1 and PC3 (Figure 3.14 B), cluster IV overlaps with 

the rest, but cluster III, formed by the HI502 and HI516 individuals, is clearly separated from the rest, 

probably because the stomach contents at the time of death had a higher percentage of reptiles. Cluster 

VII remains separate from the remaining clusters. Considering the three PCs, cluster VII is distant from 

the rest of the clusters and cluster III is only partially overlapping with the other clusters (data not 

shown). 

Regarding the environmental characteristics, and starting with the first two PCs (Figure 3.15 A), 

it is evident that all clusters overlap, apart from cluster VIII, and cluster I is partially overlapped with 

the rest of the clusters. Cluster VIII includes the individual HI388, whose land-use is mainly composed 

of agroforestry and mixed forest, and high river network; a high annual rainfall is characteristic of its 

habitat, while on the contrary, it has a low annual average temperature, annual thermal amplitude, and 

a reduced road network. Cluster I encompass the HI462 and HI383 individuals, with the same general 

characteristics as cluster VIII. When analyzing PC1 and PC3, all clusters are superimposed (Figure 3.15 

B), showing that shrub and altimetry do not affect the gut microbiota composition. Considering the 3 

PCs, cluster VIII is distant from the rest of the clusters and the remaining clusters are overlapping (data 

not shown). 
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Microbiota, biological, and environmental PCA explanatory variables for each PC and their 

explanatory value are shown in Tables 3.2 and 3.3, respectively. 

Table 3.2 – Microbiota PCA explanatory variables for each principal component (PC) and their 

explanatory value. 

Variables PC 
Explanatory 

value 
Variables PC 

Explanatory 

value 

Clostridium_tertium 1 + Bacillus_kokeshiiformis 2 + 

Lysinibacillus_fusiformis 1 + Enterococcus_mundtii 2 + 

Propionibacterium_acnes 1 + Pantoea_eucrina 2 + 

Psychrobacillus_soli 1 + Ralstonia_insidiosa 2 + 

Clostridium 1 + Rummeliibacillus_stabekisii 2 + 

Propionibacterium 1 + Enterococcus 2 + 

Psychrobacillus 1 + Lysinibacillus 2 + 

Clostridiaceae 1 + Pantoea 2 + 

Propionibacteriaceae 1 + Rummeliibacillus 2 + 

Actinomycetales 1 + Sporosarcina 2 + 

Actinobacteria (class) 1 + Enterococcaceae 2 + 

Actinobacteria (phylum) 1 + Planococcaceae 2 + 

Pseudomonas 1 - Lactobacillales 2 + 

Pseudomonadaceae 1 - Clostridia 2 - 

Burkholderiales 1 - Clostridiales 2 - 

Enterobacteriales 1 - Bacillus 3 + 

Proteobacteria 1 - Delftia 3 - 

Betaproteobacteria 1 - Comamonadaceae 3 - 

Gammaproteobacteria 1 -    
The explanatory variables of each Principal Component (PC) were selected if the correlation coefficient between the variable 

and the PC were |0.5|. If a variable had this behavior with more than one PC, this variable was used as an explanatory variable 

for the PC with the higher correlation coefficient. The variables with positive correlation with a given PC are represented with 

(+), and with negative correlation with (–). 
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Table 3.3 – Biological and environmental PCA explanatory variables for each PC and their explanatory 

value. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The explanatory variables of each Principal Component (PC) were selected if the correlation coefficient between the variable 

and the PC were |0.5|. If a variable had this behavior with more than one PC, this variable was used as an explanatory variable 

for the PC with the higher correlation coefficient. The variables with positive correlation with a given PC are represented with 

(+), and with negative correlation with (–). BW – body weight; HBL – head and body length; RHLL – right hind leg length; 

SH – shoulder height; NP – neck perimeter; HD – head diameter; HW – hearth weight; KW – kidney weight; STL – snout-tail 

length; TL – tail length (terminal hairs not included); SW – spleen weight; SFI – subcutaneous fat index; PFI – perivisceral fat 

index; RHFL – right hind foot length. 

  

Biological PCA Environmental PCA 

Variables PC 
Explanatory 

value 
Variables PC 

Explanatory 

value 

Adult 1 + Urban 1 + 

Sub_adult 1 + Vineyardsorchads 1 + 

BW 1 + Coniferous 1 + 

HBL 1 + Population 1 + 

RHLL 1 + RoadNet 1 + 

SH 1 + Agroforestry 1 - 

NP 1 + RiversNet 1 - 

HD 1 + Mixforests 2 + 

HW 1 + Annual_rainfall 2 + 

KW 1 + Agriculture 2 - 

STL 1 - Average_annual_temperature 2 - 

TL 1 - Average_temperature_range 2 - 

Mammals 2 + Shrubs 3 + 

Invertebrates 2 + Altimetry 3 + 

SW 2 +    

SFI_3 2 +    

PFI_2 2 +    

PFI_3 2 +    

Sex 3 -    

Reptiles 3 -    

RHFL 3 -    
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Figure 3.11 – Two principal component (PC) plots depicting the dispersal area of microbiota data of each Egyptian 

mongoose specimens. The 20 specimens are projected in the (A) PC1xPC2 and (B) PC1xPC3 planes resulting from a Principal 

Component Analysis performed on the Boolean matrix of the presence/absence of the different hierarchical bacterial levels. 

The vertices of each polygon correspond to the microbiota data observed for each specimen. Each polygon corresponds to age 

class (juvenile in light green, sub-adults in green, and adults in dark green) clustering.  
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Figure 3.12 – Two principal component (PC) plots depicting the dispersal area of microbiota data of each Egyptian 

mongoose specimens. The 20 specimens are projected in the (A) PC1xPC2 and (B) PC1xPC3 planes resulting from a Principal 

Component Analysis performed on the Boolean matrix of the presence/absence of the different hierarchical bacterial levels. 

The vertices of each polygon correspond to the microbiota data observed for each specimen. Each polygon corresponds to sex 

(male in blue and female in pink) clustering.  
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Figure 3.13 – Dendrogram representing the relationship between the Egyptian mongoose specimens in terms of 

microbiota. The 20 specimens were clustered using the normalized Euclidean distance derived from the projection matrix of 

the PCA obtained from the microbiota data and clustered using UPGMA. The cut-off value was determined at 0.18 of 

normalized Euclidean distance, producing 8 clusters, 5 of them single member clusters. M – Male; F- Female. 
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Figure 3.14 – Two principal component (PC) plots depicting the dispersal area of biological data of each Egyptian 

mongoose specimens. The 20 specimens are projected in the (A) PC1xPC2 and (B) PC1xPC3 planes resulting from a Principal 

Component Analysis performed on the matrix of the biological data. The vertices of each polygon correspond to the biological 

data observed for each specimen. Each polygon corresponds to the clusters originated from the microbiota data dendrogram. 

Cluster I – HI383 and HI462 (light green); Cluster II – HI396, HI509, HI504, HI636, HI501, HI460, HI675, HI399, HI466, 

HI505, and HI463 (pink); Cluster III – HI502 and HI516 (blue); Cluster IV – HI508 (yellow); Cluster V – HI519 (dark green); 

Cluster VI – HI467 (red); Cluster VII – HI471 (orange); Cluster VIII - HI388 (purple).  
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Figure 3.15 – Two principal component (PC) plots depicting the dispersal area of environmental data of each Egyptian 

mongoose specimens. The 20 specimens are projected in the (A) PC1xPC2 and (B) PC1xPC3 planes resulting from a Principal 

Component Analysis performed on the matrix of the environmental data. The vertices of each polygon correspond to the 

environmental data observed for each specimen. Each polygon corresponds to the clusters originated from the microbiota data 

dendrogram. Cluster I – HI383 and HI462 (light green); Cluster II – HI396, HI509, HI504, HI636, HI501, HI460, HI675, 

HI399, HI466, HI505, and HI463 (pink); Cluster III – HI502 and HI516 (blue); Cluster IV – HI508 (yellow); Cluster V – HI519 

(dark green); Cluster VIII - HI388 (purple); Cluster VI (HI467) + Cluster VII (HI471) are shown in brown in (A) and Cluster 

IV + Cluster V + Cluster VI + Cluster VII are shown in grey in (B) due to a complete overlap of the clusters in both cases.  
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CHAPTER IV – DISCUSSION 

Gut microbiota is nowadays an important topic of investigation in biological and medical 

science due to its recognized importance in host biology and ecology. In this study, we generated, for 

the first-time, extended baseline information on the microbiome of mongoose, enabling the exploitation 

of microbial community differences between sexes and exploring the influence exerted by the biological 

and environmental context of each host in its microbiota signature. 

For gut microbiota evaluation, fecal samples were used as a proxy of the entire gut community. 

Two main groups of methods may be utilized for microbiota analysis: culture-dependent and culture-

independent methods. In this work, to enable a wide range culture-dependent approach, different media 

and growth conditions were used in order to capture the most representative diversity of gut microbiota. 

To enable recovery of culturable bacteria from the fecal samples, two rich media were used, 

YCFA and ESBL w/o AS. In aerobic conditions, both media registered the higher bacterial abundance 

and diversity. We accounted for an average of 2.8x109 CFU and 3.3x1012 CFU, respectively, of total 

aerobic bacteria per gram of feces. The abundance results from YCFA medium are similar to those 

reported by other microbiota studies, using different media, for carnivores mammals such as grizzly and 

polar bears (3, 56, 57), dogs (58), and cats (59), but also for mammals with other food regimen, such as 

humans (53, 54), pigs (55), cattle, sheep and goats (55). Moreover, the abundance results obtained in 

ESBL w/o AS are similar to those reported by other studies, using different media, with human samples 

(55, 60, 61). Besides inter-specific differences, different results reported by different studies may arise 

from different media composition, but may also be the result of individual-specific differences. 

YCFA medium was previously demonstrated as a media that enables a great variety of bacteria 

to grow under anaerobic conditions, with 72% of coverage comparing to metagenomics (37). In this 

study, the average amount of anaerobic bacteria detected was 5.5x109 CFU/g of feces. Other study using 

a different rich medium also recorded analogous amounts of viable anaerobic bacteria in human fecal 

samples (53). 

Comparing the bacterial diversity obtained in YCFA medium under differential oxygen 

availability, MT-VI, MT-VIII and MT-XII were only detected in aerobic conditions while, in contrast, 

MT-III and MT-X were only detected under anaerobiosis. In addition, MT-VII isolates were almost 

exclusively detected in anaerobic conditions. Therefore, these results may indicate that the isolates 

capable of growing in this medium, belonging to MT-III and MT-X, are obligate anaerobes and, in 

contrast, the isolates belonging to MT-VI, MT-VIII, MT-XII and MT-XIII are obligate aerobes. MT-

VII isolates are probably aerotolerant bacteria since they growth preferentially in anaerobic conditions. 

The remaining MTs are probably facultative anaerobic bacteria.Surprising, YCFA medium allowed the 

growth of fungi, both yeasts and filamentous fungi, which has not been reported in previous studies (37). 

This may be justified by a bacteriological focus of this previous study. 
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In mammal species, gut microbiota is dominated by strict anaerobic bacteria, with poorly known 

mechanisms to survive environmental exposure during cross-transmission between individuals (3). A 

possible mechanism relies on the production of dormant structures with extremely resistant capacities, 

the endospores. These spores facilitate the persistence of the host and also in the environment (62). This 

resistance property is responsible for the wide dispersion of endospore-forming bacteria (sporobiota) in 

the environment and enables a recurrent exchange between numerous distinct ecological niches and 

between living organisms, suggesting that sporobiota plays a particular role in the microbiota and, 

consequently, in host biology (63). However, only a few number of bacteria associated with the gut 

sporobiota community have been cultured. Metagenomic data suggest a highly abundant population of 

potentially sporulating bacteria: an average of 60% of the genera contain endospore-forming bacteria, 

which represent 30% of the total gut microbiota (37, 62). To study this particular community, we used 

YCFA medium supplemented with 0.1% de sodium taurocholate, a biliary acid which triggers the 

germination mechanism (37) and incubated in both aerobic and anaerobic conditions, after 

pasteurization of the inoculum. The pasteurization process allows killing vegetative cells, while keeping 

viable the remaining resistant structures (64).We detected an average of 5.1x105 CFU/g of endospore-

forming bacteria in aerobiosis and 4.2x108 CFU/g in anaerobiosis. To our knowledge, no other study 

reported the viable number of spore-forming bacteria in gastrointestinal samples. Furthermore, the 

pasteurization process only eliminated MT-I isolates from the samples, possibly due to the absence of 

resistant structure formation or to the presence of sodium taurocholate which may have inhibited this 

morpho-physiological type growth. 

Enterobacteriaceae are a very important group of bacteria since they are part of the normal gut 

microbial community of mammals, although they may also be involved in human, cattle, and wildlife 

health-related problems (65). MacConkey is a selective medium that allows gram-negative bacteria 

growth, permitting, in addition, the determination of lactose fermentation metabolism. An average of 

8.0x109 CFU/g of putative Enterobacteriaceae were detected, contrasting with previous studies, in 

which the amount of this family had been reported as 108 copies genes/g from grizzly and polar bears 

(3, 56, 57). Studies based in animals with other food regime, namely, a study that analyzed ileal samples 

detected 107 CFU/g from pigs (66) and 107 CFU/g of coliform bacteria from humans (53). This 

difference may be due to the growth of Pseudomonas-like bacteria, which can be misidentified as 

Enterobacteriaceae. 

ESBLs are a very important issue in human and animal health since they confer resistance to 

most β-lactam antibiotics, including penicillins, monobactams, first-, second-, third-, and fourth-

generation cephalosporins (67). Two chromogenic media were used to detect and isolate ESBL-

producing gram-negative bacteria, namely, the ESBL Chromogenic medium with ESBL antibiotic 

supplement and the ready-to-use Brilliance ESBL medium. According to the manufacturer, ESBL 

antibiotic supplement possesses both ESBL-producing bacteria selectivity and gram-negative bacteria 
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selectivity. As expected, our results show that ESBL w/AS medium have a clear reduction of bacterial 

growth of all types of colonies. Putative E. coli and colorless colonies belonging to different MT had 

their growth inhibited in the presence of this antibiotic supplement. An astonishing lack of selectivity to 

gram-negative bacteria is also reported since we perceived bacterial growth of gram-positive 

microorganisms in approximately 99% of culturable bacteria ([gram-positive bacteria]:[total 

bacteria]*100 = 1.2x108 CFU/g : 1.21x108 CFU/g*100). Cefpodoxime, a third-generation 

cephalosporin, is currently the β-lactam antibiotic of choice incorporated in Brilliance ESBL medium 

(38). This medium enabled lower bacterial load among antibiotic selective media, supporting the growth 

of an average of 4.2x104 CFU/g of putative ESBL-producing Salmonella spp. and/or Acinetobacter spp. 

The presence of both LF and LNF bacteria isolates in MacConkey and putative E. coli isolates 

in ESBL w/o AS indicates a variety of Enterobacteriaceae genera in the samples but in Brilliance only 

Pseudomonas spp.  were detected. So, all Enterobacteriaceae present in the samples presumably were 

not-ESBL-producing bacteria. Thus, the differences observed between growth in both ESBL media may 

be due to an almost exclusive selectivity of ESBL antibiotic supplement to ESBL-producing bacteria. 

The phenotype and genotype of ESBL-growing isolates recovered from ESBL w/ AS and also from 

Brilliance ESBL medium, in terms of resistance to antibiotics, especially, to β-lactams should be 

addressed in future work. Moreover, previous studies reported the existence of fecal-oral cross-

transmission of bacteria between the human population and wildlife  (68), in particular, with individuals 

from the Herpestidae family (69), demonstrating the possibility of transmission of antibiotic-resistant 

bacteria to wildlife living in close contact with human areas. Refining the phenotype and genotype 

associated with ESBL-resistant bacteria isolated (0.005%) in this work will enable estimating how much 

ESBL-producing bacteria circulate in wild mammals of Herpestidae family, in Portugal.  

Besides bacterial community, the GI tract also harbors a fungi community, many times 

neglected in microbiota studies. To access the gut mycobiota of the Egyptian mongoose, PDA medium 

supplemented with chloramphenicol was inoculated. This medium allows the selective growth of both 

yeasts and FF, inhibiting almost all bacterial growth. We recorded 100% growth of fungi, with a mean 

of 1.1x108 CFU/g. This result, to our knowledge, is the higher ever detected in a GI sample, with 

previous studies reporting a maximum of 106 CFU/g (70) and 107 copies gene/g (71). About 5.0x107 

CFU/g of yeasts and 5.8x107 CFU/g of FF were recorded. Individual reports of amounts of yeast are 

rare, with a single report describing 104 CFU/g in human samples (72); publicly available data was not 

found for FF. 

The influence of host sex and reproductive status on microbial community composition is nearly 

unknown. A higher microbial load of fecal samples from female hosts was quantified in YCFA w/o O2 

and YCFA P w/o O2 media. Also, we only registered the growth of putative E. coli in ESBL w/o AS 

medium from female host samples. Additionally, six of the eight samples that had culturable bacteria in 

https://en.wikipedia.org/wiki/Mongoose
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Brilliance medium were from female hosts. In terms of diversity, we saw a higher number of MT-II 

isolates in ESBL w/AS medium and MT-IX isolates when summing percentages from all media. In 

contrast, we detected FF exclusively in fecal samples from male hosts. Studies on chimpanzees, black 

howler monkeys, and rufous mouse lemurs (16, 19, 20) have shown some differences in bacterial 

microbiota community between sexes, probably related to differences in the feeding behaviors (19, 20), 

and in host physiology, such as hormones excretion and immune system (20), but also due to the start 

of the gestation period in the time of trapping (16). Relatively to mycobiota, a study on human samples, 

show differences between sexes, reporting higher bacterial richness and diversity (number of species 

recovered from samples of female hosts)  (73).In contrast to these examples, sex does not influence 

microbiota composition in baboons and wild mice (4, 74, 75). In wild baboons, host sex was significant 

in infants, probably due to differences in maternal care, since these differences vanish in adulthood (74). 

Reproductive status, such as pregnancy and lactation, may also be associated with alteration of 

the gut microbiota composition (17, 21, 22), as the manipulation of the gut community by the host to 

promote metabolic changes that are vital to their fitness is possible, as it may support healthy pregnancy 

and lactation. In our study, we analyzed one sample recovered from a lactating female and did not find 

differences when comparing it with the remaining samples (both males and non-lactating females). 

However, this study needs to continue in the future with more fecal samples from lactating female to 

enable a robust statistical analysis. 

Looking at each individual host as a habitat with its own community, the MT-II, MT-VI, MT-

VII, MT-IX and MT-XI types may be considered the core gut microbiota community and the remaining 

morpho-physiological types can be considered part of the intra-specific individual microbiota 

community. These differences probably result in inter-individual variability, since all samples have 

stomach content, geographic, and land-use similarities. Inter-individual variability has been shown to 

occur in different wildlife animals (6), and also in humans (5). Additionally, we perceived that the 

majority of individuals possess MT-II ESBL-producing bacteria. 

RAPD relies on the random amplification of polymorphic DNA through PCR, using generic 

primers with 6 to 10 base pairs long, under low stringency conditions, allowing unspecific binding and 

amplification, creating multiple amplicons that can be separated by agarose gel electrophoresis to 

generate a bacterial fingerprint used to compare the relatedness of bacterial strains (76). The major 

disadvantage of this technique relies on the alteration of reproducibility when slight changes in reagents, 

amplification conditions or analysis parameters, occur (77). The principal advantage is the short amount 

of time to conduct the analysis and the unnecessary prior knowledge of the bacterial genome sequence 

to identify specific target sites (77).In this study, we used this technique to assist in bacteria identification 

and to perform intra-species differentiation. Using a 70% similarity cut-off value, the clustering allowed 

bacterial identification at the genus level. In a differentiation perspective, we do not find any clear 
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pattern in cluster formation related to host sex or age class, despite the existence of a social behavior 

that may increase microbiota similarities among age classes in this species (34).  

The core gut bacterial microbiota community from the analyzed Egyptian mongoose specimens 

was dominated by Gram-positive bacteria (76%), mainly of the phylum Firmicutes (68%), with Bacilli 

isolates (50%) prevailing, in particular, Enterococcus spp. (18%) and Bacillus spp. (14%).The 

Firmicutes members are normally the most abundant bacterial phylum present in the vertebrate GI tract, 

being mostly responsible for protein degradation (78). Most of them are commensal and are narrated as 

important in the preservation of gut homeostasis and host immunity development (78).  

Bacillaceae members (23%) are frequently associated with air and soil samples initially thought 

to be transient in the GI tract originated from the ingested plant and root materials (79). Additionally, 

the ingestion of soil is frequent in wildlife mammals and has been described for grizzly bears, wild 

otters, and chimpanzee (3). Nowadays, these genera are considered to be part of the resident GI 

microbiota of vertebrates (9). Bacillus spp. are also associated with an extended lifespan influence on 

host gene regulation of immune factors and cell proliferation, as well as the availability of key vitamins 

and cofactors (80).  

In this study, Lactobacillales members are well represented in Egyptian mongoose specimens 

(20%), in particular, Enterococcus spp. (18%). Animal GI tracts likely represent the greatest reservoir 

for enterococci, being opportunistic pathogens for both humans and animals. Recent studies in Portugal 

identified enterococci in a broad range of environments, including wild animals, which have particularly 

been highly associated with carnivores (68, 81, 82). In this study, this hypothesis is reinforced. We 

detected three different species of Enterococcus spp., namely, E. faecalis and E. faecium, well-known 

human pathogens, but can also cause infection in livestock and wildlife, and E. mundtii, normally 

associated with natural environments but can also cause infection in animals (82). However, evidence 

of gastroenteritis were not observed in any of the animals under analysis. 

Clostridia members were also isolated in this work (17%); these are considered one of the most 

important groups of bacteria present in the vertebrate GI tract. This group is composed of obligate 

anaerobes that only perform fermentation metabolism, being an important intervenient in the breakdown 

of carbohydrates and proteins, but also in nutrient absorption (57). These bacteria are usually detected 

in a wide range of animals, including humans (83). High-protein contents have been reported to select 

for proteolytic bacteria, such as Clostridium spp. (9%) (57, 84), which is concordant with the 

carnivorous diet of Egyptian mongoose specimens (33, 85). In addition, this class is known to contain 

some important pathogens that can release toxins and cause intestinal diseases, besides the species that 

are commensal of GI tract microbiota (86). The presence and potential excretion of Clostridium 

pathogenic strains, whose virulence is attributed to numerous exotoxins, is a known risk for lethal 

enteritis and enterotoxaemia infections in livestock and wildlife (87, 88). In this work, C. perfringens 
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was isolated, being previously positively associated with protein intake and negatively correlated with 

dietary fiber content in grizzly bears (57), with is consistent with dietary patterns of Egyptian mongoose 

specimens. Peptostreptococcaceae family members (of Clostridia class) are highly related to 

Clostridium species and were also found in this study (8%). Paraclostridium (3%) and Paeniclostridium 

(2%) are genera previously identified as part of human’s microbiota and as opportunistic pathogens. 

Romboutsia spp. (2%) are obligate anaerobes normally found in the digest and fecal samples of humans 

and rats, but also in mud and alkaline saline lake sediment (89, 90). Besides bacteria belonging to 

Firmicutes phylum, we also detected bacterial isolates belonging to Proteobacteria phylum (31%). 

Proteobacteria members are abundant in most mammal GI tract, being the most extensively studied 

phylum due to ease culturability. All proteobacteria are gram-negative but are extremely diverse in terms 

of metabolism (78). This phylum is classified into five sub-divisions: Alpha-, Beta-, Gamma-, Delta- 

and Epsilon- Proteobacteria. In this work, Gammaproteobacteria were detected (23%), having 

previously been reported to be the most common in mammal GI tract, being responsible for the 

breakdown and fermentation of complex sugars and production of vitamins (78). Enterobacteriaceae 

are the most representative family of this class (7%), its members are endotoxin-producing opportunistic 

pathogens and have putatively shown a relation in the development of obesity in humans (67, 91). This 

group was prominent in the fecal samples from grizzly bears and giant panda (56, 57, 92). 

Pseudomonaceae were also detected in our study (11%), particularly Pseudomonas genus (10%). 

Several Pseudomonas species are opportunistic pathogens including P. aeruginosa and P. fluorescens 

(93). Some, such as P. aeruginosa and P. putida, are also minor members of the normal gastrointestinal 

microbiota (93). 

The individual microbiota was characterized by a great diversity of bacteria. We found other 

bacillus-like species, such as Psychrobacillus soli, a known oil-degrading bacterium (94), Paenibacillus 

borealis, a known nitrogen-fixing species (95), Lysinibacillus fusiformis, a known cause of human 

bacteremia (96), and Rummeliibacillus stabekisii, previously isolated from soils and from insect and 

bird gut (97). From Bacillales order, we also identified Sporosarcina spp., in particular, S. newyorkensis, 

previously isolated from human infected blood and raw cow’s milk (98), and Staphylococcus spp., a 

known member of mammals’ gut microbiota with opportunistic pathogenic behavior (99). 

Carnobacterium spp. was also present, being usually found in a range of foods, including fish, meat, 

and some dairy products, but also in natural environments, such as sediments and water bodies (100). 

To our knowledge, this is the first study to report Carnobacterium spp. in the GI tract microbiota of 

mammals. We also detected Lachnospiraceae family members, such as Robinsoniella spp.. This family 

is involved in the maintenance of gut health through their role in plant-derived material degradation in 

the gut (101) and has been linked to obesity and protection from colon cancer in humans, mainly due to 

the association of many species within the group with the production of butyric acid, a substance that is 

important for both microbial and host epithelial cell growth (101).  Pantoea genus was detected. This 
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genus inhabits various habitats such as plants, soil, water, and animals, with known capacity of causing 

plant and human disease (102).  

Xanthomonadaceae family members, such as Stenotrophomonas spp. were detected. This genus 

is a known plant and human opportunistic pathogen ubiquitously found in natural and anthropogenic 

environments (103). We also detected Betaproteobacteria isolates, such as Ralstonia spp. and Delftia 

spp. Both genera were previously reported agents of human nosocomial infections (104, 105). 

Actinobacteria phylum members were also identified in this study. This bacteria are heterotrophic 

typically associated to soil microbiota, but can also be found in animals, being a minor component of 

the GI tract bacterial community (78). We detected Propionibacterium acnes that were previously 

isolated from human skin and GI tract (106). To our knowledge, no clear relationship between this genus 

and any GI function has been made, however, a recent study may indicate a relationship between P. 

freudenreichii and the reduction of inflammation markers and gonadal adipose tissue (107). 

The Egyptian mongoose specimens analyzed in this study revealed a high level of Proteobacteria 

(32%) and a low level of Bacteroidetes (not detected in this study), leading to a high ratio 

Proteobacteria/Bacteroidetes. Such pattern has also been observed in GI tract microbiota of other 

carnivorous mammals, such as cheetah, Tasmanian devil, spotted hyena, and polar bear (108). Actually, 

this feature seems to be related to a carnivorous or scavenger dietary regime.  Likewise, this ratio pattern 

has been associated with the high efficient harvest of energy and an increased possibility of obesity 

development, in both humans and mice (109). Besides, a high ratio promotes the degradation of 

polysaccharides to short chain fatty acids, increasing acetate and decreasing butyrate production (110). 

We only detected four fungi genera, all previously found to be gut commensal of mammals. 

Penicillium and Naganishia genera are commensal fungi previously found in Pygmy Loris (111), 

Yunnan snub-nosed monkeys (112), and humans (113). Penicillium spp. form a lot of microscopic 

spores that are frequently found in air and soil and can easily be inhaled or ingested during the feeding 

process, being able to grow on GI tract of mammals (113). Pseudozyma members are normally found 

associated with plants, is also part of the normal gut microbiota of giant pandas (114). This genus is also 

rarely associated with human fungemia, in particular, P. aphidis (115). Mucor spp. was previously found 

in GI tract of human individuals, but his function on the gut microbiota is still unknown (113). 

The Shannon, Simpson, and Shannon evenness diversity indices allow the appraisal of the 

balance between the number of individuals and the number of species under analysis in each community 

(52). These indices were chosen since they represent a coherent system for diversity estimates, and they 

are also the most common indices used in diversity analysis in microbial ecology studies (52). Regarding 

the calculated diversity indices, the higher the value, the high is the diversity of the community in the 

analysis (52). In our study, at the genus level, all three communities (male, female, and total population) 

have similar values; all can be considered well-balanced communities, with high evenness. 
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Nonparametric estimators of species richness Chao 1, which analyses species abundance data, and Chao 

2, that considers species incidence data, were also calculated (52), evidencing a completeness of the 

sampling method of 100%, in both cases, suggesting that all 21 genera detected in this study correspond 

to the total theoretical amount of genera present in the community. All parameters considered, we 

conclude that the panel of sampled isolates and number of isolates used for 16S rRNA sequencing is 

adequate for the purposes of this study of characterizing the core microbiota of the Egyptian mongoose 

population. 

PCA is a simple non-parametric method with the main objective of reducing the number of 

adjacent variables of a complex group of data. This is accomplished by redistributing the original 

variables in a new group of axes throughout the transformations of the original variables, being these 

new axes named principal components. As standard procedure in this methodology, 75% of cumulative 

variance in the first three principal components is the minimum to assume a representability of variables 

in our analysis. This was not accomplished, so the results must be carefully considered. However, with 

this analysis, we perceived a gut microbiota community similarity between adult and juvenile 

specimens. This similarity may be due to the higher proximity and interaction between these two groups 

since mongoose has a social behavior that implies protection and feeding of the cubs, scent marking and 

social latrines, increasing diet similarity and fecal-oral transmission of microbiota (34). This type of 

social behavior may ease host-to-host transmission of microbiota, as was already been observed in 

captive and wild animals, such as mice, birds, and humans (5). Unfortunately, a clear association 

between the microbiota and the bio-environmental characteristics was not evident by the statistical 

analysis of data. 

CHAPTER V – CONCLUDING REMARKS AND PERSPECTIVES 

Culture-dependent methods can underestimate microbial abundance and diversity, namely due 

to limitations on the detection of unculturable and fastidious microorganisms. The origin of our samples 

can also lead to a reduced abundance and diversity, since the time between death and recovery of the 

carcasses is unknown and sometimes could be very high, leading to a partial autolysis of the sample and 

a reduction in nutrient supply available for microbial maintenance. Using our methodology, based on 

the picking of morphologically different colonies, in both rich and selective media and in the morpho-

physiological test, allowing for a selection of the most diversity possible for molecular identification 

and molecular fingerprinting, allowing as to achieve an extensive and comprehensive collection of 

microbial isolates. The recovered genera were concordant at a population level and the diversity indices 

calculated were supportive of this idea of a compilation of isolates that represent the core microbiota of 

the GI tract of the Egyptian mongoose population. However, several studies demonstrated the 

importance of microbial cultivation, namely Lagier et al. (116) who showed that, when adequate culture 

conditions are used, a significant number of species may be isolated, particularly those that occur at low 

abundances, which are not detected in the same samples when using sequencing approaches. Wide-
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range culture-dependent methods have the potential to increase our knowledge of this recent field-of-

study, giving us the ability to culture bacteria previously unculturable and detect species never reported 

in the gut communities, and also discover new species (64, 116-119). 

For microbial differentiation, we used classic phenotypic methods, namely gram staining 

combined with enzymatic profiles of energy metabolism enzymes (oxidase and catalase tests) associated 

with molecular methods. Direct observation of microorganisms has frequently been the first step in 

identification and differentiation. Gram staining is a useful and cost-effective technique that is 

commonly used in bacteriology to differentiate between Gram-positive and Gram-negative bacteria, and 

that was used in initial studies of the gut microbiota (53, 61). However, Gram staining is not a robust 

method to identify bacteria from the genera Bacillus, Gemella, Listeria, Mycoplasma, Rickettsia, 

Chlamydia, Mycobacterium, among others, since these bacteria can display aberrant Gram staining and 

appear Gram variable (64). Therefore, for more rigorous bacteria identification, we used 16S rDNA 

amplification and sequencing, which have offered a large opportunity to describe new bacterial species 

among cultured bacteria and can increase the efficiency of bacterial identification (120, 121). 

Most studies of wildlife microbiota highlight the relationship between our knowledge of the 

microbiota and our ability to help in conservation of endangered species, in both zoos and reintroduction 

facilities (108). This is obviously an important component of microbiota studies since microbiota can 

influence several aspects of host biology and ecology (6). Also, several opportunistic pathogens have 

been driving many endangered species to decline or even to extinction (122). This problem can 

potentially escalate due to the ability that many of these pathogens have to infect threatened wildlife 

species through their contact with domestic, livestock and invasive species (122).  

However, most studies neglect the undeniable threat of extinction of microbial communities that 

are associated with critically endangered host (5). Presently one-quarter of mammals species face 

extinction, and combining this number with other vertebrate species under threat, the probable loss of 

inherent microbial diversity is overwhelming (5).  

Despite the methodological limitations mentioned above, this study represents an extended 

comprehensive attempt to characterize the microbial composition of GI tract of Egyptian mongoose, in 

particular, those from South of Portugal, which until now was poorly characterized. Future studies using 

culture-independent methods will improve our knowledge of this species and lead to a better 

understanding of its gut microbial community. Moreover, the comparative nature of our study relative 

to sex-related differences contributes to an increased knowledge of the indirect effect of host biological 

features, such as behavior, diet, and reproduction, on gut microbiota. Finally, our results reinforce the 

need to consider the microbiota as a fundamental component of host biology and a key element 

necessary to understand mammal ecology.  



 

46 

 

CHAPTER VI – BIBLIOGRAPHY 

 
1. Oh PL, Benson AK, Peterson DA, Patil PB, Moriyama EN, Roos S, Walter J. 2009. Diversification 

of the gut symbiont Lactobacillus reuteri as a result of host-driven evolution. ISME J 4:377-387. 
2. Yeoman CJ, Chia N, Yildirim S, Miller MEB, Kent A, Stumpf R, Leigh SR, Nelson KE, White BA, 

Wilson BA. 2011. Towards an Evolutionary Model of Animal-Associated Microbiomes. Entropy 
13:570. 

3. Schwab C, Cristescu B, Boyce MS, Stenhouse GB, Gänzle M. 2009. Bacterial populations and 
metabolites in the feces of free roaming and captive grizzly bears. Canadian Journal of 
Microbiology 55:1335-1346. 

4. Weldon L, Abolins S, Lenzi L, Bourne C, Riley EM, Viney M. 2015. The Gut Microbiota of Wild 
Mice. PLOS ONE 10:e0134643. 

5. Ley RE, Lozupone CA, Hamady M, Knight R, Gordon JI. 2008. Worlds within worlds: evolution 
of the vertebrate gut microbiota. Nature reviews Microbiology 6:776-788. 

6. Amato KR. 2013. Co-evolution in context: The importance of studying gut microbiomes in wild 
animals, vol 1, Microbiome Science and Medicine. 

7. Ley RE, Hamady M, Lozupone C, Turnbaugh PJ, Ramey RR, Bircher JS, Schlegel ML, Tucker TA, 
Schrenzel MD, Knight R, Gordon JI. 2008. Evolution of Mammals and Their Gut Microbes. 
Science 320:1647-1651. 

8. Amato KR, Leigh SR, Kent A, Mackie RI, Yeoman CJ, Stumpf RM, Wilson BA, Nelson KE, White 
BA, Garber PA. 2015. The Gut Microbiota Appears to Compensate for Seasonal Diet Variation 
in the Wild Black Howler Monkey (Alouatta pigra). Microbial Ecology 69:434-443. 

9. Maurice CF, Cl Knowles S, Ladau J, Pollard KS, Fenton A, Pedersen AB, Turnbaugh PJ. 2015. 
Marked seasonal variation in the wild mouse gut microbiota. ISME J 9:2423-2434. 

10. Moran NA. 2006. Symbiosis. Current Biology 16:R866-R871. 
11. Yildirim S, Yeoman CJ, Sipos M, Torralba M, Wilson BA, Goldberg TL, Stumpf RM, Leigh SR, 

White BA, Nelson KE. 2010. Characterization of the Fecal Microbiome from Non-Human Wild 
Primates Reveals Species Specific Microbial Communities. PLOS ONE 5:e13963. 

12. Flint HJ, Bayer EA, Rincon MT, Lamed R, White BA. 2008. Polysaccharide utilization by gut 
bacteria: potential for new insights from genomic analysis. Nat Rev Micro 6:121-131. 

13. McFall-Ngai M. 2007. Adaptive Immunity: Care for the community. Nature 445:153-153. 
14. Lee, Mazmanian. 2010. Has the microbiota played a critical role in the evolution of the 

adaptive immune system? Science (New York, NY) 330:1768-1773. 
15. Peterson DA, McNulty NP, Guruge JL, Gordon JI. 2007. IgA Response to Symbiotic Bacteria as 

a Mediator of Gut Homeostasis. Cell Host & Microbe 2:328-339. 
16. Aivelo T, Laakkonen J, Jernvall J. 2016. Population- and Individual-Level Dynamics of the 

Intestinal Microbiota of a Small Primate. Applied and Environmental Microbiology 82:3537-
3545. 

17. Springer A, Fichtel C, Al-Ghalith GA, Koch F, Amato KR, Clayton JB, Knights D, Kappeler PM. 
2017. Patterns of seasonality and group membership characterize the gut microbiota in a 
longitudinal study of wild Verreaux's sifakas (Propithecus verreauxi). Ecology and Evolution 
doi:10.1002/ece3.3148:n/a-n/a. 

18. Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, Sogin ML, Jones WJ, 
Roe BA, Affourtit JP, Egholm M, Henrissat B, Heath AC, Knight R, Gordon JI. 2009. A core gut 
microbiome in obese and lean twins. Nature 457:480-484. 

19. Degnan PH, Pusey AE, Lonsdorf EV, Goodall J, Wroblewski EE, Wilson ML, Rudicell RS, Hahn 
BH, Ochman H. 2012. Factors associated with the diversification of the gut microbial 
communities within chimpanzees from Gombe National Park. Proceedings of the National 
Academy of Sciences 109:13034-13039. 

20. Amato KR, Leigh SR, Kent A, Mackie RI, Yeoman CJ, Stumpf RM, Wilson BA, Nelson KE, White 
BA, Garber PA. 2014. The role of gut microbes in satisfying the nutritional demands of adult 



 

47 

 

and juvenile wild, black howler monkeys (Alouatta pigra). American Journal of Physical 
Anthropology 155:652-664. 

21. Koren O, Goodrich JK, Cullender TC, Spor A, Laitinen K, Backhed HK, Gonzalez A, Werner JJ, 
Angenent LT, Knight R, Backhed F, Isolauri E, Salminen S, Ley RE. 2012. Host remodeling of 
the gut microbiome and metabolic changes during pregnancy. Cell 150:470-480. 

22. Carrothers JM, York MA, Brooker SL, Lackey KA, Williams JE, Shafii B, Price WJ, Settles ML, 
McGuire MA, McGuire MK. 2015. Fecal Microbial Community Structure Is Stable over Time 
and Related to Variation in Macronutrient and Micronutrient Intakes in Lactating Women. J 
Nutr 145:2379-2388. 

23. Salonen A, Salojärvi J, Lahti L, de Vos WM. 2012. The adult intestinal core microbiota is 
determined by analysis depth and health status. Clinical Microbiology and Infection 18:16-20. 

24. Palomares F. 1993. Opportunistic feeding of the Egyptian mongoose, Herpestes ichneumon, 
in southwestern Spain. Société nationale d'acclimatation et de protection de la nature. 

25. Kingdon J. 1999. The Kingdon Field Guide to African Mammals. Academic Press, San Diego, 
California, xviii + 464 pp. ISBN 0-12-408355-2. Journal of Mammalogy 80:692-693. 

26. Detry C, Bicho N, Fernandes H, Fernandes C. 2011. The Emirate of Córdoba (756–929 AD) and 
the introduction of the Egyptian mongoose (Herpestes ichneumon) in Iberia: the remains from 
Muge, Portugal. Journal of Archaeological Science 38:3518-3523. 

27. Riquelme-Cantal JA, Simón-Vallejo MD, Palmqvist P, Cortés-Sánchez M. 2008. The oldest 
mongoose of Europe. Journal of Archaeological Science 35:2471-2473. 

28. Gaubert P, López-Bao JV, Machordom A, Morales A, Palomares F, Tània B, Veron G. 2011. 
Comparative phylogeography of two African carnivorans presumably introduced into Europe: 
disentangling natural versus human-mediated dispersal across the Strait of Gibraltar. Blackwell 
Publishing. 

29. Borralho R, Rego F, Palomares F, Hora A. 1996. The distribution of the Egyptian Mongoose 
Herpestes ichneumon (L.) in Portugal. Mammal Review 26:1-8. 

30. Balmori A, Carbonell R. 2012. Expansion and distribution of the Egyptian mongoose 
(Herpestes ichneumon) in the Iberian Peninsula, vol 24. 

31. Barros T, Carvalho J, Pereira MJR, Ferreira JP, Fonseca C. 2015. Following The Trail: Factors 
Underlying the Sudden Expansion of the Egyptian Mongoose (Herpestes ichneumon) in 
Portugal. PLOS ONE 10:e0133768. 

32. Do Linh San E, Maddock, A.H., Gaubert, P. & Palomares, F. 2016. Herpestes ichneumon. The 
IUCN Red List of Threatened Species 2016. http://dxdoiorg/102305/IUCNUK2016-
1RLTST41613A45207211en Downloaded on 25 October 2017. 

33. Bandeira V, Virgós E, Barros T, Cunha MV, Fonseca C. 2016. Geographic variation and sexual 
dimorphism in body size of the Egyptian mongoose, Herpestes ichneumon in the western limit 
of its European distribution. Zoologischer Anzeiger - A Journal of Comparative Zoology 264:1-
10. 

34. Schneider TC, Kappeler PM. 2014. Social systems and life-history characteristics of 
mongooses. Biol Rev Camb Philos Soc 89:173-198. 

35. Palomares F, Delibes M. 1993. Key Habitats for Egyptian Mongooses in Donana National Park, 
South-Western Spain. Journal of Applied Ecology 30:752-758. 

36. Palomares F, Delibes M. 1993. Resting ecology and behaviour of Egyptian mongooses 
(Herpestes ichneumon) in southwestern Spain. Journal of Zoology 230:557-566. 

37. Browne HP, Forster SC, Anonye BO, Kumar N, Neville BA, Stares MD, Goulding D, Lawley TD. 
2016. Culturing of ‘unculturable’ human microbiota reveals novel taxa and extensive 
sporulation. Nature 533:543-546. 

38. Gazin M, Paasch F, Goossens H, Malhotra-Kumar S. 2012. Current trends in culture-based and 
molecular detection of extended-spectrum-beta-lactamase-harboring and carbapenem-
resistant Enterobacteriaceae. J Clin Microbiol 50:1140-1146. 

http://dxdoiorg/102305/IUCNUK2016-1RLTST41613A45207211en
http://dxdoiorg/102305/IUCNUK2016-1RLTST41613A45207211en


 

48 

 

39. Huang TD, Bogaerts P, Berhin C, Guisset A, Glupczynski Y. 2010. Evaluation of Brilliance ESBL 
agar, a novel chromogenic medium for detection of extended-spectrum-beta- lactamase-
producing Enterobacteriaceae. J Clin Microbiol 48:2091-2096. 

40. Huey B, Hall J. 1989. Hypervariable DNA fingerprinting in Escherichia coli: minisatellite probe 
from bacteriophage M13. Journal of Bacteriology 171:2528-2532. 

41. Chambel L, Sol M, Fernandes I, Barbosa M, Zilhao I, Barata B, Jordan S, Perni S, Shama G, 
Adriao A, Faleiro L, Requena T, Pelaez C, Andrew PW, Tenreiro R. 2007. Occurrence and 
persistence of Listeria spp. in the environment of ewe and cow's milk cheese dairies in Portugal 
unveiled by an integrated analysis of identification, typing and spatial-temporal mapping along 
production cycle. Int J Food Microbiol 116:52-63. 

42. Akopyanz N, Bukanov NO, Westblom TU, Kresovich S, Berg DE. 1992. DNA diversity among 
clinical isolates of Helicobacter pylori detected by PCR-based RAPD fingerprinting. Nucleic 
Acids Res 20:5137-5142. 

43. Massol-Deya AA, Odelson D, Hickey RF, Tiedje JM. 1995. Bacterial community fingerprinting 
of amplified 16S and 16S-23S ribosomal DNA gene sequences and restriction endonuclease 
analysis (ARDRA). Akkermans, ADL, van Elsas, JD, de Bruijn, FJ (Eds), Molecular Microbial 
Ecology Methods. 

44. Marchesi JR, Sato T, Weightman AJ, Martin TA, Fry JC, Hiom SJ, Wade WG. 1998. Design and 
Evaluation of Useful Bacterium-Specific PCR Primers That Amplify Genes Coding for Bacterial 
16S rRNA. Applied and Environmental Microbiology 64:795-799. 

45. Kurtzman CP, Robnett CJ. 1998. Identification and phylogeny of ascomycetous yeasts from 
analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antonie Van 
Leeuwenhoek 73:331-371. 

46. Larena I, Salazar O, Gonzalez V, Julian MC, Rubio V. 1999. Design of a primer for ribosomal 
DNA internal transcribed spacer with enhanced specificity for ascomycetes. J Biotechnol 
75:187-194. 

47. O’Donnell K. 1993. Fusarium and its near relatives In: Reynolds DR & Taylor JW. The Fungal 
Holomorph: Mitotic, Meiotic and Pleomorphic Speciation in Fungal Systematics:225-233. 

48. White TM, Bruns, T., Lee, S., Taylor, J. 1990. Amplification and direct sequencing of fungal 
ribosomal RNA for phylogenetics. In: Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J. PCR 
protocols: a guide to methods and applications:315-321. 

49. Stackebrandt E, Ebers J. 2006. Taxonomic parameters revisited: tarnished gold standards. 
Microbiol Today 33:152-155. 

50. Yarza P, Yilmaz P, Pruesse E, Glockner FO, Ludwig W, Schleifer KH, Whitman WB, Euzeby J, 
Amann R, Rossello-Mora R. 2014. Uniting the classification of cultured and uncultured 
bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol 12:635-645. 

51. White JR, Maddox C, White O, Angiuoli SV, Fricke WF. 2013. CloVR-ITS: Automated internal 
transcribed spacer amplicon sequence analysis pipeline for the characterization of fungal 
microbiota. Microbiome 1:6-6. 

52. Hill TC, Walsh KA, Harris JA, Moffett BF. 2003. Using ecological diversity measures with 
bacterial communities. FEMS Microbiol Ecol 43:1-11. 

53. Van Houte J, Gibbons RJ. 1966. Studies of the cultivable flora of normal human feces. Antonie 
Van Leeuwenhoek 32:212-222. 

54. Hugon P, Lagier J-C, Robert C, Lepolard C, Papazian L, Musso D, Vialettes B, Raoult D. 2013. 
Molecular Studies Neglect Apparently Gram-Negative Populations in the Human Gut 
Microbiota. Journal of Clinical Microbiology 51:3286-3293. 

55. Whitman WB, Coleman DC, Wiebe WJ. 1998. Prokaryotes: The unseen majority. Proceedings 
of the National Academy of Sciences 95:6578-6583. 

56. Schwab C, Ganzle M. 2011. Comparative analysis of fecal microbiota and intestinal microbial 
metabolic activity in captive polar bears. Can J Microbiol 57:177-185. 



 

49 

 

57. Schwab C, Cristescu B, Northrup JM, Stenhouse GB, Gänzle M. 2011. Diet and Environment 
Shape Fecal Bacterial Microbiota Composition and Enteric Pathogen Load of Grizzly Bears. 
PLOS ONE 6:e27905. 

58. Mentula S, Harmoinen J, Heikkila M, Westermarck E, Rautio M, Huovinen P, Kononen E. 
2005. Comparison between cultured small-intestinal and fecal microbiotas in beagle dogs. 
Appl Environ Microbiol 71:4169-4175. 

59. Rochus K, Janssens GP, Hesta M. 2014. Dietary fibre and the importance of the gut microbiota 
in feline nutrition: a review. Nutr Res Rev 27:295-307. 

60. O'Hara AM, Shanahan F. 2006. The gut flora as a forgotten organ. EMBO Rep 7:688-693. 
61. Gossling J, Slack JM. 1974. Predominant gram-positive bacteria in human feces: numbers, 

variety, and persistence. Infect Immun 9:719-729. 
62. Galperin MY, Mekhedov SL, Puigbo P, Smirnov S, Wolf YI, Rigden DJ. 2012. Genomic 

determinants of sporulation in Bacilli and Clostridia: towards the minimal set of sporulation-
specific genes. Environmental Microbiology 14:2870-2890. 

63. Tetz G, Tetz V. 2017. Introducing the sporobiota and sporobiome. Gut Pathogens 9:38. 
64. Lagier J-C, Hugon P, Khelaifia S, Fournier P-E, La Scola B, Raoult D. 2015. The Rebirth of Culture 

in Microbiology through the Example of Culturomics To Study Human Gut Microbiota. Clinical 
Microbiology Reviews 28:237-264. 

65. Sorum H, Sunde M. 2001. Resistance to antibiotics in the normal flora of animals. Vet Res 
32:227-241. 

66. Metzler-Zebeli BU, Hooda S, Pieper R, Zijlstra RT, van Kessel AG, Mosenthin R, Gänzle MG. 
2010. Nonstarch Polysaccharides Modulate Bacterial Microbiota, Pathways for Butyrate 
Production, and Abundance of Pathogenic Escherichia coli in the Pig Gastrointestinal Tract. 
Applied and Environmental Microbiology 76:3692-3701. 

67. Bradford PA. 2001. Extended-spectrum beta-lactamases in the 21st century: characterization, 
epidemiology, and detection of this important resistance threat. Clin Microbiol Rev 14:933-
951, table of contents. 

68. Sousa M, Goncalves A, Silva N, Serra R, Alcaide E, Zorrilla I, Torres C, Canica M, Igrejas G, 
Poeta P. 2014. Acquired antibiotic resistance among wild animals: the case of Iberian Lynx 
(Lynx pardinus). Vet Q 34:105-112. 

69. Pesapane R, Ponder M, Alexander KA. 2013. Tracking pathogen transmission at the human-
wildlife interface: banded mongoose and Escherichia coli. Ecohealth 10:115-128. 

70. Scanlan PD, Marchesi JR. 2008. Micro-eukaryotic diversity of the human distal gut microbiota: 
qualitative assessment using culture-dependent and -independent analysis of faeces. Isme j 
2:1183-1193. 

71. Qiu X, Zhang F, Yang X, Wu N, Jiang W, Li X, Li X, Liu Y. 2015. Changes in the composition of 
intestinal fungi and their role in mice with dextran sulfate sodium-induced colitis. Sci Rep 
5:10416. 

72. Samonis G, Gikas A, Anaissie EJ, Vrenzos G, Maraki S, Tselentis Y, Bodey GP. 1993. 
Prospective evaluation of effects of broad-spectrum antibiotics on gastrointestinal yeast 
colonization of humans. Antimicrob Agents Chemother 37:51-53. 

73. Strati F, Di Paola M, Stefanini I, Albanese D, Rizzetto L, Lionetti P, Calabro A, Jousson O, 
Donati C, Cavalieri D, De Filippo C. 2016. Age and Gender Affect the Composition of Fungal 
Population of the Human Gastrointestinal Tract. Front Microbiol 7:1227. 

74. Ren T, Grieneisen LE, Alberts SC, Archie EA, Wu M. 2016. Development, diet and dynamism: 
longitudinal and cross-sectional predictors of gut microbial communities in wild baboons. 
Environ Microbiol 18:1312-1325. 

75. Tung J, Barreiro LB, Burns MB, Grenier J-C, Lynch J, Grieneisen LE, Altmann J, Alberts SC, 
Blekhman R, Archie EA. 2015. Social networks predict gut microbiome composition in wild 
baboons. eLife 4:e05224. 



 

50 

 

76. Foley SL, Lynne AM, Nayak R. 2009. Molecular typing methodologies for microbial source 
tracking and epidemiological investigations of Gram-negative bacterial foodborne pathogens. 
Infect Genet Evol 9:430-440. 

77. Hadrys H, Balick M, Schierwater B. 1992. Applications of random amplified polymorphic DNA 
(RAPD) in molecular ecology. Mol Ecol 1:55-63. 

78. Colston TJ, Jackson CR. 2016. Microbiome evolution along divergent branches of the 
vertebrate tree of life: what is known and unknown. Molecular Ecology 25:3776-3800. 

79. Stenfors Arnesen LP, Fagerlund A, Granum PE. 2008. From soil to gut: Bacillus cereus and its 
food poisoning toxins. FEMS Microbiol Rev 32:579-606. 

80. Donato V, Ayala FR, Cogliati S, Bauman C, Costa JG, Leñini C, Grau R. 2017. Bacillus subtilis 
biofilm extends Caenorhabditis elegans longevity through downregulation of the insulin-like 
signalling pathway. Nature Communications 8:14332. 

81. Poeta P, Costa D, Saenz Y, Klibi N, Ruiz-Larrea F, Rodrigues J, Torres C. 2005. Characterization 
of antibiotic resistance genes and virulence factors in faecal enterococci of wild animals in 
Portugal. J Vet Med B Infect Dis Vet Public Health 52:396-402. 

82. Lebreton F WR, Gilmore MS. 2014. Enterococcus Diversity, Origins in Nature, and Gut 
Colonization. In: Gilmore MS, Clewell DB, Ike Y, et al, Enterococci: From Commensals to 
Leading Causes of Drug Resistant Infection. 

83. McFarland LV, Mulligan ME, Kwok RY, Stamm WE. 1989. Nosocomial acquisition of 
Clostridium difficile infection. N Engl J Med 320. 

84. Glad T, Bernhardsen P, Nielsen KM, Brusetti L, Andersen M, Aars J, Sundset MA. 2010. 
Bacterial diversity in faeces from polar bear (Ursus maritimus) in Arctic Svalbard. BMC 
Microbiol 10:10. 

85. Rosalino LM, Santos MJ, Pereira I, Santos-Reis M. 2009. Sex-driven differences in Egyptian 
mongoose’s (Herpestes ichneumon) diet in its northwestern European range. European 
Journal of Wildlife Research 55:293. 

86. Mallozzi M, Viswanathan VK, Vedantam G. 2010. Spore-forming Bacilli and Clostridia in 
human disease. Future Microbiol 5:1109-1123. 

87. Dahms C, Hübner N-O, Wilke F, Kramer A. 2014. Mini-review: Epidemiology and zoonotic 
potential of multiresistant bacteria and Clostridium difficile in livestock and food. GMS Hygiene 
and Infection Control 9:Doc21. 

88. Uddin W, Menke S, Melzheimer J, Thalwitzer S, Heinrich S, Wachter B, Sommer S. 2017. Gut 
microbiomes of free-ranging and captive Namibian cheetahs: diversity, putative functions, and 
occurrence of potential pathogens. Mol Ecol doi:10.1111/mec.14278. 

89. Gerritsen J, Fuentes S, Grievink W, van Niftrik L, Tindall BJ, Timmerman HM, Rijkers GT, Smidt 
H. 2014. Characterization of Romboutsia ilealis gen. nov., sp. nov., isolated from the gastro-
intestinal tract of a rat, and proposal for the reclassification of five closely related members of 
the genus Clostridium into the genera Romboutsia gen. nov., Intestinibacter gen. nov., 
Terrisporobacter gen. nov. and Asaccharospora gen. nov. Int J Syst Evol Microbiol 64:1600-
1616. 

90. Ricaboni D, Mailhe M, Khelaifia S, Raoult D, Million M. 2016. Romboutsia timonensis, a new 
species isolated from human gut. New Microbes New Infect 12:6-7. 

91. Gao X, Jia R, Xie L, Kuang L, Feng L, Wan C. 2015. Obesity in school-aged children and its 
correlation with gut E.coli and Bifidobacteria: a case-control study. BMC Pediatr 15:64. 

92. Xue Z, Zhang W, Wang L, Hou R, Zhang M, Fei L, Zhang X, Huang H, Bridgewater LC, Jiang Y, 
Jiang C, Zhao L, Pang X, Zhang Z. 2015. The bamboo-eating giant panda harbors a carnivore-
like gut microbiota, with excessive seasonal variations. MBio 6:e00022-00015. 

93. Wagner J, Short K, Catto-Smith AG, Cameron DJS, Bishop RF, Kirkwood CD. 2008. 
Identification and Characterisation of Pseudomonas 16S Ribosomal DNA from Ileal Biopsies of 
Children with Crohn's Disease. PLoS ONE 3:e3578. 

94. Pham VH, Jeong SW, Kim J. 2015. Psychrobacillus soli sp. nov., capable of degrading oil, 
isolated from oil-contaminated soil. Int J Syst Evol Microbiol 65:3046-3052. 



 

51 

 

95. Elo S, Suominen I, Kampfer P, Juhanoja J, Salkinoja-Salonen M, Haahtela K. 2001. 
Paenibacillus borealis sp. nov., a nitrogen-fixing species isolated from spruce forest humus in 
Finland. Int J Syst Evol Microbiol 51:535-545. 

96. Wenzler E, Kamboj K, Balada-Llasat J-M. 2015. Severe Sepsis Secondary to Persistent 
Lysinibacillus sphaericus, Lysinibacillus fusiformis and Paenibacillus amylolyticus Bacteremia. 
International Journal of Infectious Diseases 35:93-95. 

97. Cui Y, Wang Q, Liu S, Su J, Zhou Y. 2016. Intestinal microbial community of caged and free 
living chickens as determined by PCR-DGGE analysis. Academia Journal of Agricultural 
Research 4:355-362. 

98. Wolfgang WJ, Coorevits A, Cole JA, De Vos P, Dickinson MC, Hannett GE, Jose R, Nazarian EJ, 
Schumann P, Van Landschoot A, Wirth SE, Musser KA. 2012. Sporosarcina newyorkensis sp. 
nov. from clinical specimens and raw cow's milk. Int J Syst Evol Microbiol 62:322-329. 

99. Akinkunmi EO, Adeyemi OI, Igbeneghu OA, Olaniyan EO, Omonisi AE, Lamikanra A. 2014. The 
pathogenicity of Staphylococcus epidermidis on the intestinal organs of rats and mice: an 
experimental investigation. BMC Gastroenterology 14:126. 

100. Leisner JJ, Laursen BG, Prévost H, Drider D, Dalgaard P. 2007. Carnobacterium: positive and 
negative effects in the environment and in foods. Fems Microbiology Reviews 31:592-613. 

101. Meehan C, Beiko R. 2014. A phylogenomic view of ecological specialization in the 
Lachnospiraceae, a family of digestive tract-associated bacteria. Genome Biol Evol 6. 

102. Walterson AM, Stavrinides J. 2015. Pantoea: insights into a highly versatile and diverse genus 
within the Enterobacteriaceae. FEMS Microbiology Reviews 39:968-984. 

103. Ryan RP, Monchy S, Cardinale M, Taghavi S, Crossman L, Avison MB, Berg G, van der Lelie D, 
Dow JM. 2009. The versatility and adaptation of bacteria from the genus Stenotrophomonas. 
Nat Rev Microbiol 7:514-525. 

104. Ryan MP, Adley CC. 2014. Ralstonia spp.: emerging global opportunistic pathogens. Eur J Clin 
Microbiol Infect Dis 33:291-304. 

105. Shin SY, Choi JY, Ko KS. 2012. Four cases of possible human infections with Delftia lacustris. 
Infection 40:709-712. 

106. Foligné B, Breton J, Mater D, Jan G. 2013. Tracking the microbiome functionality: Focus on 
Propionibacterium species, vol 62. 

107. Oksaharju A, Kooistra T, Kleemann R, van Duyvenvoorde W, Miettinen M, Lappalainen J, 
Lindstedt KA, Kovanen PT, Korpela R, Kekkonen RA. 2013. Effects of probiotic Lactobacillus 
rhamnosus GG and Propionibacterium freudenreichii ssp. shermanii JS supplementation on 
intestinal and systemic markers of inflammation in ApoE*3Leiden mice consuming a high-fat 
diet. Br J Nutr 110:77-85. 

108. Cheng Y, Fox S, Pemberton D, Hogg C, Papenfuss AT, Belov K. 2015. The Tasmanian devil 
microbiome — implications for conservation and management. Microbiome 3:76. 

109. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. 2006. An obesity-
associated gut microbiome with increased capacity for energy harvest. Nature 444:1027-1031. 

110. Bifari F, Ruocco C, Decimo I, Fumagalli G, Valerio A, Nisoli E. 2017. Amino acid supplements 
and metabolic health: a potential interplay between intestinal microbiota and systems control. 
Genes Nutr 12:27. 

111. Xu B, Xu W, Yang F, Li J, Yang Y, Tang X, Mu Y, Zhou J, Huang Z. 2013. Metagenomic Analysis 
of the Pygmy Loris Fecal Microbiome Reveals Unique Functional Capacity Related to 
Metabolism of Aromatic Compounds. PLOS ONE 8:e56565. 

112. Xu B, Xu W, Li J, Dai L, Xiong C, Tang X, Yang Y, Mu Y, Zhou J, Ding J, Wu Q, Huang Z. 2015. 
Metagenomic analysis of the Rhinopithecus bieti fecal microbiome reveals a broad diversity of 
bacterial and glycoside hydrolase profiles related to lignocellulose degradation. BMC 
Genomics 16:174. 

113. Richard ML, Lamas B, Liguori G, Hoffmann TW, Sokol H. 2015. Gut fungal microbiota: the Yin 
and Yang of inflammatory bowel disease. Inflamm Bowel Dis 21:656-665. 



 

52 

 

114. Tun HM, Mauroo NF, Yuen CS, Ho JCW, Wong MT, Leung FC-C. 2014. Microbial Diversity and 
Evidence of Novel Homoacetogens in the Gut of Both Geriatric and Adult Giant Pandas 
(Ailuropoda melanoleuca). PLoS ONE 9:e79902. 

115. Joo H, Choi YG, Cho SY, Choi JK, Lee DG, Kim HJ, Jo I, Park YJ, Lee KY. 2016. Pseudozyma 
aphidis fungaemia with invasive fungal pneumonia in a patient with acute myeloid leukaemia: 
case report and literature review. Mycoses 59:56-61. 

116. Lagier JC, Khelaifia S, Alou MT, Ndongo S, Dione N, Hugon P, Caputo A, Cadoret F, Traore SI, 
Seck EH, Dubourg G, Durand G, Mourembou G, Guilhot E, Togo A, Bellali S, Bachar D, Cassir 
N, Bittar F, Delerce J, Mailhe M, Ricaboni D, Bilen M, Dangui Nieko NP, Dia Badiane NM, 
Valles C, Mouelhi D, Diop K, Million M, Musso D, Abrahao J, Azhar EI, Bibi F, Yasir M, Diallo 
A, Sokhna C, Djossou F, Vitton V, Robert C, Rolain JM, La Scola B, Fournier PE, Levasseur A, 
Raoult D. 2016. Culture of previously uncultured members of the human gut microbiota by 
culturomics. Nat Microbiol 1:16203. 

117. Lagier JC, Million M, Hugon P, Armougom F, Raoult D. 2012. Human gut microbiota: 
repertoire and variations. Front Cell Infect Microbiol 2:136. 

118. Lagier JC, Armougom F, Million M, Hugon P, Pagnier I, Robert C, Bittar F, Fournous G, 
Gimenez G, Maraninchi M, Trape JF, Koonin EV, La Scola B, Raoult D. 2012. Microbial 
culturomics: paradigm shift in the human gut microbiome study. Clin Microbiol Infect 18:1185-
1193. 

119. Hugon P, Lagier JC, Colson P, Bittar F, Raoult D. 2017. Repertoire of human gut microbes. 
Microb Pathog 106:103-112. 

120. Drancourt M, Bollet C, Carlioz A, Martelin R, Gayral JP, Raoult D. 2000. 16S ribosomal DNA 
sequence analysis of a large collection of environmental and clinical unidentifiable bacterial 
isolates. J Clin Microbiol 38:3623-3630. 

121. Das S, Dash HR, Mangwani N, Chakraborty J, Kumari S. 2014. Understanding molecular 
identification and polyphasic taxonomic approaches for genetic relatedness and phylogenetic 
relationships of microorganisms. Journal of Microbiological Methods 103:80-100. 

122. Smith KF, Acevedo-Whitehouse K, Pedersen AB. 2009. The role of infectious diseases in 
biological conservation. Animal Conservation 12:1-12. 

 



 

53 
 

CHAPTER VII - APPENDIXES 

Supplementary Table 7.1 – Matrix of microbiota variables (OTUs) based in presence/absence of every hierarchical bacterial level. 

 HI383 HI388 HI396 HI399 HI460 HI462 HI463 HI466 HI467 HI471 HI501 HI502 HI504 HI505 HI508 HI509 HI516 HI519 HI636 HI675 

Bacillus_anthracis 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 

Bacillus_kokeshiiformis 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

Clostridium_perfringens 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 

Clostridium_septicum 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

Clostridium_tertium 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 

Delftia_lacustris 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

Enterococcus_faecalis 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 1 0 0 0 

Enterococcus_faecium 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

Enterococcus_mundtii 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

Lysinibacillus_fusiformis 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Paenibacillus_borealis 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 

Paeniclostridium_tenue 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

Pantoea_eucrina 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

Peptoclostridium_bifermentans 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 

Propionibacterium_acnes 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Psychrobacillus_soli 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Ralstonia_insidiosa 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 

Ralstonia_pickettii 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

Robinsoniella_peoriensis 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

Rummeliibacillus_stabekisii 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 

Sporosarcina_newyorkensis 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

Bacillus 0 0 1 0 0 0 1 1 0 1 1 1 1 0 1 1 1 1 0 0 

Carnobacterium 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 
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 HI383 HI388 HI396 HI399 HI460 HI462 HI463 HI466 HI467 HI471 HI501 HI502 HI504 HI505 HI508 HI509 HI516 HI519 HI636 HI675 

Clostridium 0 1 1 0 1 0 1 0 0 0 1 0 1 0 1 1 1 1 1 1 

Delftia 1 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 

Enterococcus 0 1 0 1 0 1 0 1 1 1 1 1 1 1 1 0 1 0 0 0 

Lysinibacillus 0 1 0 0 0 0 1 1 0 1 0 0 1 1 1 0 0 0 0 0 

Paenibacillus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 

Paeniclostridium 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 

Pantoea 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

Peptoclostridium 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 

Propionibacterium 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Pseudomonas 1 0 1 0 0 1 0 1 1 0 0 0 0 1 0 0 0 1 0 0 

Psychrobacillus 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Ralstonia 0 0 0 0 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 

Robinsoniella 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

Romboutsia 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 

Rummeliibacillus 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 

Sporosarcina 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 

Staphylococcus 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Stenotrophomonas 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 

Bacillaceae 0 1 1 0 0 0 1 1 0 1 1 1 1 1 1 1 1 1 0 0 

Burkholderiaceae 0 0 0 0 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 

Carnobacteriaceae 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 

Clostridiaceae 0 1 1 0 1 0 1 0 0 0 1 0 1 0 1 1 1 1 1 1 

Comamonadaceae 1 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 

Enterobacteriaceae 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

Enterococcaceae 0 1 0 1 0 1 0 1 1 1 1 1 1 1 1 0 1 0 1 0 

Lachnospiraceae 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

Xanthomonadaceae 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 
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 HI383 HI388 HI396 HI399 HI460 HI462 HI463 HI466 HI467 HI471 HI501 HI502 HI504 HI505 HI508 HI509 HI516 HI519 HI636 HI675 

Paenibacillaceae 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 

Peptostreptococcaceae 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 0 1 1 0 0 

Planococcaceae 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 

Propionibacteriaceae 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Pseudomonadaceae 1 0 1 0 0 1 0 1 1 0 0 0 0 1 0 0 0 1 0 1 

Staphylococcaceae 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Hafniaceae 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

Actinomycetales 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Bacillales 0 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 0 0 

Burkholderiales 1 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 

Clostridiales 1 1 1 1 1 1 1 0 1 0 1 1 1 0 1 1 1 1 1 1 

Enterobacteriales 1 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 

Lactobacillales 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 0 1 0 1 0 

Xanthomonadales 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 

Pseudomonadales 1 0 1 0 0 1 1 1 1 0 0 0 0 1 0 0 0 1 0 1 

Bacilli 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 

Clostridia 1 1 1 1 1 1 1 0 1 0 1 1 1 0 1 1 1 1 1 1 

Actinobacteria 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Betaproteobacteria 1 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 

Gammaproteobacteria 1 0 1 0 0 1 1 1 1 1 0 1 0 1 0 0 1 1 0 1 

Actinobacteria 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Proteobacteria 1 0 1 0 1 1 1 1 1 1 1 1 0 1 0 0 1 1 0 1 
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Supplementary Table 7.2 – Matrix of 26 biological variables related to sex, age class, reproductive status, stomach content at time of death, and different body 

measurements. 

  HI383 HI388 HI396 HI399 HI460 HI462 HI463 HI466 HI467 HI471 HI501 HI502 HI504 HI505 HI508 HI509 HI516 HI519 HI636 HI675 

Sex 1 0 0 0 1 0 1 1 1 1 0 1 0 0 0 1 1 0 0 1 

Adult 1 0 1 1 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 

Subadult 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 

Lactating 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

Mammal 100 100 100 100 100 96 0 100 77 0 100 100 95 65 97 89 100 100 88 100 

Reptil 0 0 0 0 0 4 0 0 20 0 0 0 0 35 3 0 0 0 0 0 

Inverteb 0 0 0 0 0 0 29 0 3 0 0 0 0 0 0 0 0 0 13 0 

Eggs 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 

BW 2943 2127 2262 2021 1476 2602 2462 3279 2425 2691 2627 2048 2079 2490 2741 2981 2864 2439 2714 2590 

STL 95,5 96,1 97,9 90,5 82 95,2 99,1 104 100,5 104,5 86,7 101,6 87 93,8 99,2 99,2 102,7 101 98,5 94,5 

TL 41,7 42,2 42,1 37,2 39,1 45,1 46,4 47 44,2 45,5 41,5 43,2 44,2 41 43,3 43,7 47,5 43,5 46,5 42,6 

HBL 53,8 53,9 55,8 53,3 42,9 50,1 52,7 57 56,3 59 45,2 58,4 42,8 52,8 55,9 55,5 55,2 57,5 52 51,9 

 RHLL 24,2 22,4 22,3 18,9 20,2 21,3 22,7 23,7 24 23,7 23 22,9 21,6 20,2 22,7 23,2 25,4 21,1 23,8 22,2 

 RHFL 10 9 9,3 8,5 9 9,8 9,5 10,1 9 9,9 9,2 9,9 9 8,4 9,3 9,5 9,9 9,5 9,8 10 

SH 19,2 16,1 17,1 15,5 15,5 17,6 17,2 17 18 19 16 16,6 14,5 18,4 18,6 19,8 19 16,5 18 18,2 

NP 22,2 18,7 19,8 22 16,4 19,9 20,5 20,8 21,3 20,5 21,5 18,8 18,5 21,2 20 21 20,3 19,7 20,5 19 

HD 9 8 8,2 8 7,5 8,5 10 9,5 8,7 9,1 8,7 7 8,1 8,7 9,1 9,4 10 8,5 10 8,4 

HW 23 18,5 17,6 19,7 11 19,1 21 26 24,2 28,4 21,6 15,7 9,1 20,1 28 29 16,4 17,2 29,3 15 

SW 
0,4077

47 

0,6676

07 

0,2298

85 

0,4354

28 

0,2235

77 

0,2690

24 

0,7798

54 

0,4452

58 

0,4123

71 

0,5574

14 

0,4377

62 

0,2929

69 

0,38

48 

0,4538

15 

0,2480

85 

0,3421

67 

0,2409

22 

0,4141

04 

0,4274

13 

0,5250

97 

KW 10 7,6 6,4 6,9 6,1 7,9 7,4 10 10,1 10,5 12,2 5,4 7 9,4 8,6 11,6 7,6 4,8 10 99999 

SFI_2 1 1 1 1 0 0 1 1 0 1 1 1 1 1 1 1 1 1 0 0 

SFI_3 1 0 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 

SFI_4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 

PFI_2 1 1 1 1 1 0 0 1 0 1 1 1 1 1 1 1 1 1 1 0 
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PFI_3 1 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 

PFI_4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

Sex: 0 – Female; 1 – Male; Inverteb – Invertebrates; BW – body weight; HBL – head and body length; RHLL – right hind leg length; SH – shoulder height; NP – neck perimeter; HD – head 

diameter; HW – hearth weight; KW – kidney weight; STL – snout-tail length; TL – tail length (terminal hairs not included); SW – spleen weight; SFI – subcutaneous fat index; PFI – perivisceral 

fat index; RHFL – right hind foot length. This information was obtained from University of Aveiro, which developed ecological studies with the same specimens (33). 

Supplementary Table 7.3 – Matrix of 17 environmental variables related to georeferenced location, land-use, climatic data, road net, river net, and population 

data. 

  HI383 HI388 HI396 HI399 HI460 HI462 HI463 HI466 HI467 HI471 HI501 HI502 HI504 HI505 HI508 HI509 HI516 HI519 HI636 HI675 

District 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 

Season 1 1 1 1 2 2 2 1 1 1 3 3 3 4 3 3 3 4 2 3 

Urban 0,00 0,00 0,00 0,00 0,00 0,00 93,39 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 75,63 75,63 0,00 0,00 0,00 

Agroforestry 233,2

1 

233,2

1 

134,8

6 

134,8

6 
0,00 

134,8

6 
17,38 

126,8

8 

126,8

8 

126,8

8 

134,8

6 
0,41 

233,2

1 

126,8

8 

126,8

8 
0,00 0,00 

134,8

6 

134,8

6 

126,8

8 

Shrubs 0,00 0,00 92,93 92,93 249,65 92,93 0,00 
116,1

8 

116,1

8 

116,1

8 
92,93 0,00 0,00 

116,1

8 

116,1

8 
3,59 3,59 92,93 92,93 

116,1

8 

Vineyards 

orchards 0,00 0,00 0,00 0,00 0,00 0,00 169,66 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 

Coniferous 0,00 0,00 0,00 0,00 3,55 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 123,37 123,37 0,00 0,00 0,00 

Mixforests 125,1

9 

125,1

9 

172,2

1 

172,2

1 
0,00 

172,2

1 
0,00 0,00 0,00 0,00 

172,2

1 
0,00 

125,1

9 
0,00 0,00 7,99 7,99 

172,2

1 

172,2

1 
0,00 

Agriculture 41,59 41,59 0,00 0,00 131,56 0,00 109,97 
156,9

4 

156,9

4 

156,9

4 
0,00 

399,5

9 
41,59 

156,9

4 

156,9

4 
189,42 189,42 0,00 0,00 

156,9

4 

Altimetry 
205,9

7 

205,9

7 

201,9

1 

201,9

1 
333,59 

201,9

1 
82,23 

189,3

8 

189,3

8 

189,3

8 

201,9

1 

217,1

7 

205,9

7 

189,3

8 

189,3

8 
201,03 201,03 

201,9

1 

201,9

1 

189,3

8 

Population 0,23 0,23 0,69 0,69 17,15 0,69 736,61 0,91 0,91 0,91 0,69 0,28 0,23 0,91 0,91 475,74 475,74 0,69 0,69 0,91 

RoadNet 
5187,

56 

5187,

56 
0,00 0,00 

22489,

47 
0,00 

30776,

41 

1245,

14 

1245,

14 

1245,

14 
0,00 

2588,

37 

5187,

56 

1245,

14 

1245,

14 

22917,

77 

22917,

77 
0,00 0,00 

1245,

14 

RiversNet 
1534,

80 

1534,

80 

2725,

91 

2725,

91 
0,00 

2725,

91 

1696,3

2 

3534,

81 

3534,

81 

3534,

81 

2725,

91 

2171,

90 

1534,

80 

3534,

81 

3534,

81 
0,00 0,00 

2725,

91 

2725,

91 

3534,

81 

Average 

_annual 

_temperature 

162,6

7 

162,6

7 

166,1

7 

166,1

7 
156,00 

166,1

7 
162,33 

168,2

5 

168,2

5 

168,2

5 

166,1

7 

162,6

7 

162,6

7 

168,2

5 

168,2

5 
167,00 167,00 

166,1

7 

166,1

7 

168,2

5 

Average_ 

temperature 

_range 

235,3

3 

235,3

3 

256,0

0 

256,0

0 
257,50 

256,0

0 
207,67 

268,5

0 

268,5

0 

268,5

0 

256,0

0 

244,1

7 

235,3

3 

268,5

0 

268,5

0 
271,33 271,33 

256,0

0 

256,0

0 

268,5

0 
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Annual_rain

fall 

633,3

3 

633,3

3 

531,0

0 

531,0

0 
898,75 

531,0

0 
761,17 

527,0

0 

527,0

0 

527,0

0 

531,0

0 

605,8

3 

633,3

3 

527,0

0 

527,0

0 
534,50 534,50 

531,0

0 

531,0

0 

527,0

0 

NDVI 0,61 0,40 0,39 0,39 0,50 0,39 0,47 0,48 0,48 0,48 0,46 0,70 0,71 0,41 0,41 0,59 0,60 0,39 0,60 0,48 

District: 0- Setúbal; 1 – Beja. Seasson: 1 - Spring; 2 – Summer; 3 – Autumn; 4 – Winter. Number of hectares of each habitat type (urban, rice fields, agroforestry, shrubs, inland water bodies, 

vineyards and orchards, coniferous, broadleaved and mix forests and agriculture areas) were retrieved from Corine Land Cover (2006) with spatial resolution of 250m. Mean altimetry value (data 

SRTM, NASA, resolution of 30 m) was gathered using the ASTER Global Digital Elevation Model platform (http://gdem.ersdac.jspacesystems.or.jp/) (ASTER, 2016). Number of inhabitants per 

km2 in each grid was investigated using data from Eurostat per kilometer (http://epp.eurostat.ec.europa.eu/) (European Commission, 2016), distance in meters of road and hydrographic network, 

respectively with data from Instituto Geográfico Português (www.igeo.pt/) and SNIRH (http://snirh.apambiente.pt/) (SNIRH, 2016). Average annual temperature in degrees multiplied by 10 and 

annual rainfall in mm were gathered from BioClim (http://www.worldclim.org/bioclim) at 30arc-second resolution (Hijmans et al., 2005). Finally, primary productivity based on Normalized 

Difference Vegetation Index (NDVI) of each collected sample location was used as a proxy of primary productivity (Pettorelli, 2013). The NDVI value for each record was calculated from satellite 

images supplied by MODIS (2016) (Moderate Resolution Imaging Spectroradiometer; http://modis.gsfc.nasa.gov) at a spatial resolution of 250 m. These variables were represented by mean values 

of the 2×2 km grid cell, considering the home-range of the Egyptian mongoose. This information was obtained from University of Aveiro, which developed ecological studies with the same 

specimens (33). 
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Supplementary Table 7.4 – Statistical significant results from data represented in Figures 3.6, 3.7 

and 3.8. 

Growth 

Medium 
Host 

Microbial 

load 
MT 

Significantly different from (Number of 

hosts) 

YCFA w/ O2 

HI383 

↓ II 5 HI388 

HI509 

HI509 ↑ V 16 

HI583 ↑ VII 18, except HI467 

HI388 ↑ IX 18, except HI460 

YCFA P w/ O2 

HI383 

No microbial growth 

HI399 

HI462 

HI467 

HI509 

HI463 

↑ II 13 HI508 

HI675 

HI519 ↑ V 18, except HI502 

HI396 

↑ VI 

9 

HI466 
11 

HI471 

HI636 13 

YCFA w/o O2 

HI396 

↑ 

II 

5 
HI466 

HI471 

HI505 

HI388 

↓ 3 

HI399 

HI463 

HI504 

HI509 

HI463 
↑ VII 9 

HI504 
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Growth 

Medium 
Host 

Microbial 

load 
MT 

Significantly different from (Number of 

hosts) 

YCFA P w/o O2 

HI509 

↑ II 10 HI460 

HI466 

HI388 

↑ 

VII 6 

HI462 

HI463 

HI504 

HI509 

HI675 

HI383 

↓ 

HI396 

HI460 

HI466 

HI471 

HI502 

HI383 
↑ IX 18, except HI501 

HI396 

ESBL w/o AS 

HI466 ↑ II 11 

HI509* ↑ VII All 

HI396* 
↑ VIII All 

HI505* 

HI383 

↑ XI 

9 

HI460 

11 

HI516 

HI519 

HI636 

HI675 

HI501 Only with MT-Vibrium 

ESBL w/ AS 

HI383 No microbial growth 

HI509 

↓ II 9 HI519 

HI675 

HI509 

↑ VII 10 HI519 

HI675 

Sum of all 

media 

HI501 

↑ IX 

9 

HI504 8 

HI509 5 

HI460 
↑ XI 12 

HI519 
These results were obtained from a statistical analysis of data represented in Figures 3.6, 3.7, and 3.8, using a two-

way ordinary ANOVA (α=0.05), with a Tukey's Multiple Comparison post-test and had a p-value<0.05. ↑ - higher 

microbial load; ↓ - lower microbial load. * These results had a p-value<0.01. 
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Supplementary Table 7.5 – Information on the 16S rDNA nucleotide sequences of a selected group of bacterial isolates. 

Isolate Animal 
Phenotypic 

Identification1 

Nucleotide 

Sequence 

Length 

Closest Reference 

Sequence Match Query cover E-value Nucleotide Sequence Identity Accession Number 
Assigned Phylotype* 

8 462 IX 1087 

Pseudomonas 

plecoglossicida strain 

NBRC 103162 16S 

ribosomal RNA gene, 

partial sequence 

99% 0.0 99% NR_114226.1 
Pseudomonas 

9 467 VII 638 

[Clostridium] 

bifermentans strain JCM 

1386 16S ribosomal 

RNA gene, partial 

sequence 

97% 0.0 99% NR_113323.1 
Paraclostridium 

11 466 II 246 

Enterococcus faecium 

strain NBRC 100486 

16S ribosomal RNA 

gene, partial sequence 

95% 0.0 99% NR_113904.1 
Enterococcus 

22 462 I 1136 

Staphylococcus 

saprophyticus subsp. 

bovis strain GTC 843 

16S ribosomal RNA 

gene, partial sequence 

100% 0.0 99% NR_041324.1 
Staphylococcus 

29 462 V 582 

Shigella sonnei strain 

CECT 4887 16S 

ribosomal RNA gene, 

partial sequence 

99% 0.0 99% NR_104826.1 
Enterobacteriaceae 

43 467 IX 1049 

Clostridium baratii 

strain IP 2227 16S 

ribosomal RNA gene, 

complete sequence 

100% 0.0 99% NR_029229.1 
Clostridium baratii 
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Isolate Animal Phenotypic Identification1 Nucleotide Sequence Length 
Closest Reference 

Sequence Match 
Query 

cover 
E-value 

Nucleotide 

Sequence 

Identity 

Accession Number 
Assigned Phylotype* 

72 467 VII 1036 

[Clostridium] 

sordellii strain JCM 

3814 16S ribosomal 

RNA gene, partial 

sequence 

100% 0.0 98% NR_113140.1 
Peptostreptococcaceae 

79 399 VII 1095 

Romboutsia 

lituseburensis strain 

ATCC 25759 16S 

ribosomal RNA 

gene, partial 

sequence 

99% 0.0 98% NR_118728.1 
Romboutsia 

84 462 VII 455 

[Clostridium] 

bifermentans strain 

JCM 1386 16S 

ribosomal RNA 

gene, partial 

sequence 

100% 0.0 99% NR_113323.1 
Paraclostridium bifermentans 

91 501 IX 400 

Bacillus anthracis 

strain SBS1 16S 

ribosomal RNA 

gene, partial 

sequence 

87% 2,00E-149 99% NR_118536.1 
Bacillus anthracis 

101 519 VII 617 

[Clostridium] 

bifermentans strain 

JCM 1386 16S 

ribosomal RNA 

gene, partial 

sequence 

100% 0.0 99% NR_113323.1 
Paraclostridium bifermentans 
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Isolate Animal Phenotypic Identification1 Nucleotide Sequence Length 
Closest Reference 

Sequence Match 
Query 

cover 
E-value 

Nucleotide 

Sequence 

Identity 

Accession Number 
Assigned Phylotype* 

116 636 II 600 

Enterococcus 

faecalis strain 

NBRC 100480 16S 

ribosomal RNA 

gene, partial 

sequence 

100% 0.0 94% NR_113901.1 
Enterococcaceae 

117 636 VII 955 

Clostridium tertium 

strain JCM 6289 

16S ribosomal RNA 

gene, partial 

sequence 

100% 0.0 99% NR_113325.1 
Clostridium tertium 

131 516 VII 1018 

[Clostridium] 

bifermentans strain 

JCM 1386 16S 

ribosomal RNA 

gene, partial 

sequence 

99% 0.0 99% NR_113323.1 
Paraclostridium bifermentans 

137 516 III 719 

Stenotrophomonas 

maltophilia strain 

ATCC 13637 16S 

ribosomal RNA 

gene, partial 

sequence 

100% 0.0 98% NR_112030.1 
Stenotrophomonas 

147 501 VII 958 

Bacillus 

thuringiensis strain 

NBRC 101235 16S 

ribosomal RNA 

gene, partial 

sequence 

99% 0.0 98% NR_112780.1 
Bacillus 

 



 

64 
 

Isolate Animal Phenotypic Identification1 Nucleotide Sequence Length 
Closest Reference 

Sequence Match 
Query 

cover 
E-value 

Nucleotide 

Sequence 

Identity 

Accession Number 
Assigned Phylotype* 

170 396 IX 1062 

Pseudomonas 

plecoglossicida 

strain NBRC 

103162 16S 

ribosomal RNA 

gene, partial 

sequence 

100% 0.0 99% NR_114226.1 
Pseudomonas 

184 462 II 629 

Pseudomonas 

alcaligenes strain 

IAM 12411 16S 

ribosomal RNA 

gene, complete 

sequence 

52% 3,00E-85 82% NR_043419.1 
Pseudomonadales 

205 467 III 675 

Hafnia alvei strain 

JCM 1666 16S 

ribosomal RNA 

gene, partial 

sequence 

99% 0.0 99% NR_112985.1 
Hafniaceae 

215 466 IX 966 

Pseudomonas 

nitritireducens 

strain WZBFD3-

5A2 16S ribosomal 

RNA, partial 

sequence 

99% 0.0 99% NR_133020.1 
Pseudomonas 

221 396 IX 400 

Pseudomonas 

nitroreducens strain 

IAM1439 16S 

ribosomal RNA 

gene, complete 

sequence 

96% 0.0 98% NR_115611.1 
Pseudomonas 
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Isolate Animal Phenotypic Identification1 Nucleotide Sequence Length 
Closest Reference 

Sequence Match 
Query 

cover 
E-value 

Nucleotide 

Sequence 

Identity 

Accession Number 
Assigned Phylotype* 

225 467 III 566 

Ralstonia pickettii 

strain NBRC 

102503 16S 

ribosomal RNA 

gene, partial 

sequence 

100% 0.0 98% NR_114126.1 
Ralstonia 

235 466 II 992 

Enterococcus 

faecalis strain 

NBRC 100480 16S 

ribosomal RNA 

gene, partial 

sequence 

99% 0.0 99% NR_113901.1 
Enterococcus faecalis 

246 466 IX 474 

Lysinibacillus 

sphaericus strain 

NBRC 15095 16S 

ribosomal RNA 

gene, partial 

sequence 

100% 0.0 98% NR_112627.1 
Lysinibacillus 

248 462 IX 1014 

Shigella boydii 

strain P288 16S 

ribosomal RNA 

gene, partial 

sequence 

100% 0.0 99% NR_104901.1 
Enterobacteriaceae 

260 462 VII 1032 

Delftia lacustris 

strain 332 16S 

ribosomal RNA 

gene, partial 

sequence 

99% 0.0 99% NR_116495.1 
Delftia 
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Isolate Animal Phenotypic Identification1 Nucleotide Sequence Length 
Closest Reference 

Sequence Match 
Query 

cover 
E-value 

Nucleotide 

Sequence 

Identity 

Accession Number 
Assigned Phylotype* 

271 396 IX 901 

Pseudomonas 

nitritireducens 

strain WZBFD3-

5A2 16S ribosomal 

RNA, partial 

sequence 

97% 0.0 97% NR_133020.1 
Pseudomonas 

293 505 IX 1043 

Pseudomonas 

plecoglossicida 

strain NBRC 

103162 16S 

ribosomal RNA 

gene, partial 

sequence 

99% 0.0 99% NR_114226.1 
Pseudomonas 

302 396 IX 1070 

Bacillus anthracis 

strain ATCC 14578 

16S ribosomal RNA 

gene, partial 

sequence 

100% 0.0 98% NR_041248.1 
Bacillus 

320 501 VII 1102 

Bacillus 

thuringiensis strain 

NBRC 101235 16S 

ribosomal RNA 

gene, partial 

sequence 

98% 0.0 99% NR_112780.1 
Bacillus 

325 501 VII 656 

Bacillus 

marcorestinctum 

strain LQQ 16S 

ribosomal RNA 

gene, partial 

sequence 

93% 0.0 92% NR_117414.1 
Bacillaceae 
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Isolate Animal Phenotypic Identification1 Nucleotide Sequence Length 

Closest 

Reference 

Sequence Match 

Query 

cover 

E-

value 

Nucleotide Sequence 

Identity 
Accession Number 

Assigned Phylotype* 

340 516 VII 937 

Bacillus 

toyonensis strain 

BCT-7112 16S 

ribosomal RNA 

gene, complete 

sequence 

100% 0.0 99% NR_121761.1 
Bacillus 

344 516 II 248 

Enterococcus 

faecalis strain 

NBRC 100480 

16S ribosomal 

RNA gene, 

partial sequence 

96% 2E-121 99% NR_113901.1 
Enterococcus faecalis 

349 462 VII 1052 

Shigella boydii 

strain P288 16S 

ribosomal RNA 

gene, partial 

sequence 

99% 0.0 99% NR_104901.1 
Enterobacteriaceae 

366 399 VII 1073 

Enterococcus 

faecium strain 

DSM 20477 16S 

ribosomal RNA 

gene, complete 

sequence 

99% 0.0 99% NR_114742.1 
Enterococcus 

388 388 II 1050 

Enterococcus 

hirae strain 

ATCC 9790 16S 

ribosomal RNA 

gene, complete 

sequence 

100% 0.0 99% NR_075022.1 
Enterococcus 
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Isolate Animal 
Phenotypic 

Identification1 

Nucleotide Sequence 

Length 

Closest 

Reference 

Sequence 

Match 

Query 

cover 

E-

value 

Nucleotide Sequence 

Identity 

Accession 

Number 
Assigned Phylotype* 

456 516 OTHER 676 

Rummeliibacill

us stabekisii 

strain NBRC 

104870 16S 

ribosomal RNA 

gene, partial 

sequence 

98% 0.0 99% NR_114270.1 
Rummeliibacillus 

stabekisii 

462 516 VIII 951 

Rummeliibacill

us stabekisii 

strain NBRC 

104870 16S 

ribosomal RNA 

gene, partial 

sequence 

100% 0.0 99% NR_114270.1 
Rummeliibacillus 

stabekisii 

477 501 VIBRIUM 606 

Ralstonia 

pickettii strain 

NBRC 102503 

16S ribosomal 

RNA gene, 

partial sequence 

100% 0.0 99% NR_114126.1 
Ralstonia pickettii 

492 504 II 1094 

Enterococcus 

faecium strain 

DSM 20477 

16S ribosomal 

RNA gene, 

complete 

sequence 

99% 0.0 99% NR_114742.1 
Enterococcus 
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Isolate Animal Phenotypic Identification1 Nucleotide Sequence Length 
Closest Reference 

Sequence Match 
Query 

cover 
E-value 

Nucleotide 

Sequence 

Identity 

Accession Number 
Assigned Phylotype* 

505 508 II 950 

Pseudomonas 

nitritireducens 

strain WZBFD3-

5A2 16S ribosomal 

RNA, partial 

sequence 

97% 0.0 97% NR_133020.1 
Pseudomonas 

506 508 XI 1110 

Carnobacterium 

gallinarum strain 

DSM 4847 16S 

ribosomal RNA 

gene, complete 

sequence 

99% 0.0 98% NR_042093.1 
Carnobacterium 

509 508 IX 1150 

Lysinibacillus 

fusiformis strain 

NBRC15717 16S 

ribosomal RNA 

gene, partial 

sequence 

100% 0.0 98% NR_112569.1 
Lysinibacillus 

531 505 V 122 

Lysinibacillus 

alkaliphilus strain 

OMN17 16S 

ribosomal RNA, 

partial sequence 

71% 3,00E-37 98% NR_136779.1 
Lysinibacillus 

541 636 II 491 

Enterococcus hirae 

strain LMG 6399 

16S ribosomal RNA 

gene, complete 

sequence 

99% 0.0 99% NR_114783.2 
Enterococcus 
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Isolate Animal Phenotypic Identification1 Nucleotide Sequence Length 
Closest Reference 

Sequence Match 
Query 

cover 
E-value 

Nucleotide 

Sequence 

Identity 

Accession Number 
Assigned Phylotype* 

589 504 VII 401 

Bacillus toyonensis 

strain BCT-7112 

16S ribosomal RNA 

gene, complete 

sequence 

99% 0.0 98% NR_121761.1 
Bacillus 

596 508 VIII 500 

Bacillus pumilus 

strain NRRL NRS-

272 16S ribosomal 

RNA gene, partial 

sequence 

100% 0.0 98% NR_116191.1 
Bacillus 

611 466 II 974 

Enterococcus 

faecium strain 

NBRC 100486 16S 

ribosomal RNA 

gene, partial 

sequence 

100% 0.0 98% NR_113904.1 
Enterococcus 

626 467 II 401 

Enterococcus 

faecium strain DSM 

20477 16S 

ribosomal RNA 

gene, complete 

sequence 

100% 0.0 100% NR_114742.1 
Enterococcus faecium 

627 467 OTHER 1047 

Delftia lacustris 

strain 332 16S 

ribosomal RNA 

gene, partial 

sequence 

100% 0.0 99% NR_116495.1 
Delftia lacustris 
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Isolate Animal 
Phenotypic 

Identification1 

Nucleotide Sequence 

Length 

Closest 

Reference 

Sequence Match 

Query 

cover 

E-

value 

Nucleotide Sequence 

Identity 

Accession 

Number 

Assigned 

Phylotype* 

629 467 OTHER 851 

Pseudomonas 

nitroreducens 

strain NBRC 

12694 16S 

ribosomal RNA 

gene, partial 

sequence 

96% 0.0 98% NR_113601.1 
Pseudomonas 

630 467 OTHER 410 

Stenotrophomon

as maltophilia 

strain NBRC 

14161 16S 

ribosomal RNA 

gene, partial 

sequence 

60% 
5,00E-

110 
95% NR_113648.1 

Xanthomonadaceae 

640 462 II 912 

Enterococcus 

durans strain 

JCM 8725 16S 

ribosomal RNA 

gene, partial 

sequence 

100% 0.0 98% NR_113257.1 
Enterococcus 

665 383 IX 980 

Pseudomonas 

nitritireducens 

strain WZBFD3-

5A2 16S 

ribosomal RNA, 

partial sequence 

99% 0.0 98% NR_133020.1 
Pseudomonas 
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Isolate Animal 
Phenotypic 

Identification1 

Nucleotide Sequence 

Length 

Closest 

Reference 

Sequence 

Match 

Query 

cover 
E-value 

Nucleotide Sequence 

Identity 

Accession 

Number 

Assigned 

Phylotype* 

680 502 V 224 

Bacillus 

thuringiensis 

strain NBRC 

101235 16S 

ribosomal RNA 

gene, partial 

sequence 

99% 
2,00E-

111 
99% NR_112780.1 

Bacillus 

687 502 OTHER 408 

Stenotrophomon

as maltophilia 

strain ATCC 

19861 16S 

ribosomal RNA 

gene, complete 

sequence 

99% 0.0 96% NR_040804.1 
Stenotrophomonas 

690 502 OTHER 584 

Stenotrophomon

as maltophilia 

strain ATCC 

13637 16S 

ribosomal RNA 

gene, partial 

sequence 

100% 0.0 97% NR_112030.1 
Stenotrophomonas 

691 502 OTHER 740 

Stenotrophomon

as maltophilia 

strain ATCC 

13637 16S 

ribosomal RNA 

gene, partial 

sequence 

99% 0.0 98% NR_112030.1 
Stenotrophomonas 
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Isolate Animal Phenotypic Identification1 Nucleotide Sequence Length 
Closest Reference 

Sequence Match 
Query 

cover 
E-value 

Nucleotide 

Sequence 

Identity 

Accession Number 
Assigned Phylotype* 

734 471 VII 1039 

Bacillus toyonensis 

strain BCT-7112 

16S ribosomal RNA 

gene, complete 

sequence 

98% 0.0 99% NR_121761.1 
Bacillus 

738 471 IV 1100 

Ralstonia insidiosa 

strain AU2944 16S 

ribosomal RNA 

gene, partial 

sequence 

100% 0.0 99% NR_025242.1 
Ralstonia insidiosa 

746 471 V 236 

Rummeliibacillus 

stabekisii strain 

NBRC 104870 16S 

ribosomal RNA 

gene, partial 

sequence 

95% 1E-114 99% NR_114270.1 
Rummeliibacillus stabekisii 

747 471 V 400 

Sporosarcina soli 

strain I80 16S 

ribosomal RNA 

gene, partial 

sequence 

95% 0.0 98% NR_043527.1 
Sporosarcina 

756 460 XI 678 

Ralstonia pickettii 

strain NBRC 

102503 16S 

ribosomal RNA 

gene, partial 

sequence 

100% 0.0 99% NR_114126.1 
Ralstonia pickettii 
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Isolate Animal 
Phenotypic 

Identification1 

Nucleotide Sequence 

Length 

Closest 

Reference 

Sequence 

Match 

Query 

cover 
E-value 

Nucleotide Sequence 

Identity 

Accession 

Number 
Assigned Phylotype* 

802 463 XI 668 

Ralstonia 

insidiosa strain 

AU2944 16S 

ribosomal RNA 

gene, partial 

sequence 

99% 0.0 99% NR_025242.1 
Ralstonia insidiosa 

805 463 VII 360 

Bacillus 

anthracis strain 

ATCC 14578 

16S ribosomal 

RNA gene, 

partial 

sequence 

97% 0.0 100% NR_041248.1 
Bacillus anthracis 

837 508 V 752 

Bacillus cereus 

ATCC 14579 

16S ribosomal 

RNA (rrnA) 

gene, complete 

sequence 

100% 0.0 99% NR_074540.1 
Bacillus 

852 675 II 477 

Pseudomonas 

nitritireducens 

16S ribosomal 

RNA, partial 

sequence 

84% 2E-160 92% NR_133020.1 
Pseudomonadaceae 

864 471 VIII 968 

Lysinibacillus 

sphaericus 16S 

ribosomal RNA 

gene, partial 

sequence 

99% 0.0 98% NR_112627.1 
Lysinibacillus 
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Isolate Animal 
Phenotypic 

Identification1 

Nucleotide Sequence 

Length 

Closest 

Reference 

Sequence 

Match 

Query 

cover 
E-value 

Nucleotide Sequence 

Identity 

Accession 

Number 
Assigned Phylotype* 

879 505 II 571 

Lysinibacillus 

sphaericus 

strain NBRC 

15095 16S 

ribosomal RNA 

gene, partial 

sequence 

100% 0.0 98% NR_112627.1 
Lysinibacillus 

889 504 VIII 1145 

Lysinibacillus 

sphaericus 

strain NBRC 

15095 16S 

ribosomal RNA 

gene, partial 

sequence 

100% 0.0 98% NR_112627.1 
Lysinibacillus 

915 516 II 252 

Enterococcus 

faecalis strain 

NBRC 100480 

16S ribosomal 

RNA gene, 

partial 

sequence 

94% 1E-113 98% NR_113901.1 
Enterococcus 

919 463 VI 220 

Rummeliibacill

us stabekisii 

16S ribosomal 

RNA gene, 

partial 

sequence 

98% 
3,00E-

110 
99% NR_114270.1 

Rummeliibacillus 

stabekisii 
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Isolate Animal 
Phenotypic 

Identification1 

Nucleotide Sequence 

Length 

Closest Reference 

Sequence Match 
Query 

cover 

E-

value 

Nucleotide Sequence 

Identity 

Accession 

Number 

Assigned 

Phylotype* 

 

928 
502 VI 139 

Geobacillus 

thermoglucosidasi

us strain R-35637 

16S ribosomal 

RNA gene, partial 

sequence 

61% 
3,00E-

28 
92% NR_116983.1 

Bacillaceae 

942 466 VI 447 

Bacillus cereus 

ATCC 14579 16S 

ribosomal RNA 

(rrnA) gene, 

complete sequence 

100% 0.0 100% NR_074540.1 
Bacillus 

952 502 VI 412 

Romboutsia 

lituseburensis 

strain ATCC 

25759 16S 

ribosomal RNA 

gene, partial 

sequence 

100% 0.0 98% NR_118728.1 
Romboutsia 

953G 502 OTHER 801 

Pseudomonas 

nitroreducens 

strain NBRC 

12694 16S 

ribosomal RNA 

gene, partial 

sequence 

99% 0.0 98% NR_113601.1 
Pseudomonas 
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Isolate Animal Phenotypic Identification1 Nucleotide Sequence Length 

Closest 

Reference 

Sequence Match 

Query 

cover 
E-value 

Nucleotide 

Sequence 

Identity 

Accession Number 
Assigned Phylotype* 

956 502 V 312 

Bacillus subtilis 

subsp. 

inaquosorum 

strain BGSC 

3A28 16S 

ribosomal RNA 

gene, partial 

sequence 

97% 4,00E-160 100% NR_104873.1 
Bacillus 

963 504 VI 396 

Rummeliibacillus 

stabekisii strain 

NBRC 104870 

16S ribosomal 

RNA gene, partial 

sequence 

98% 0.0 99% NR_114270.1 
Rummeliibacillus stabekisii 

966 463 II 630 

Pseudomonas 

taiwanensis strain 

BCRC 17751 16S 

ribosomal RNA 

gene, partial 

sequence 

61% 6,00E-106 85% NR_116172.1 
Pseudomonadales 

978 471 VI 677 

Bacillus 

toyonensis strain 

BCT-7112 16S 

ribosomal RNA 

gene, complete 

sequence 

99% 0.0 99% NR_121761.1 
Bacillus 

 

 



 

78 
 

Isolate Animal 
Phenotypic 

Identification1 

Nucleotide Sequence 

Length 

Closest 

Reference 

Sequence 

Match 

Query 

cover 

E-

value 

Nucleotide Sequence 

Identity 

Accession 

Number 

Assigned 

Phylotype* 

998 516 IX 637 

Solibacillus 

silvestris16S 

ribosomal 

RNA gene, 

partial 

sequence 

99% 0.0 99% NR_028865.1 
Solibacillus 

1001 388 VIII 448 

Lysinibacillus 

xylanilyticus 

16S ribosomal 

RNA gene, 

partial 

sequence 

93% 0.0 98% NR_116698.1 
Lysinibacillus 

1004 388 VI 903 

Psychrobacillu

s soli 16S 

ribosomal 

RNA, partial 

sequence 

89% 0.0 99% NR_137244.1 
Psychrobacillus soli 

1020 383 VII 86 

Uncultured 

bacterium 

partial 16S 

rRNA gene 

33% 
3,00E-

04 
100% LT173941.1 

Enterobacteriaceae 

1023 383 VII 400 

Delftia 

tsuruhatensis 

strain NBRC 

16741 16S 

ribosomal 

RNA gene, 

partial 

sequence 

99% 0.0 99% NR_113870.1 
Delftia 
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Isolate Animal 
Phenotypic 

Identification1 

Nucleotide Sequence 

Length 

Closest 

Reference 

Sequence 

Match 

Query 

cover 

E-

value 

Nucleotide Sequence 

Identity 

Accession 

Number 

Assigned 

Phylotype* 

1029 467 II 300 

Delftia 

tsuruhatensis 

16S ribosomal 

RNA gene, 

partial 

sequence 

99% 
4,00E-

100 
89% NR_113870.1 

Comamonadaceae 

1040 467 V 655 

Bacillus 

cereus 16S 

ribosomal 

RNA gene, 

complete 

sequence 

100% 0.0 99% NR_074540.1 
Bacillus 

1042 462 V 681 

Shigella 

boydii 16S 

ribosomal 

RNA gene, 

partial 

sequence 

100% 0.0 99% NR_104901.1 
Enterobacteriaceae 

1047 462 I 945 

Enterococcus 

faecalis 16S 

ribosomal 

RNA gene, 

partial 

sequence 

100% 0.0 99% NR_113901.1 
Enterococcus 

faecalis 
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Isolate Animal Phenotypic Identification1 Nucleotide Sequence Length 

Closest 

Reference 

Sequence Match 

Query 

cover 
E-value 

Nucleotide 

Sequence Identity 
Accession Number 

Assigned Phylotype* 

1071 466 VII 86 

Delftia deserti 

strain YIM Y792 

16S ribosomal 

RNA, partial 

sequence 

91% 1,00E-35 100% NR_136837.1 
Delftia 

1073 466 II 948 

Bacillus anthracis 

strain ATCC 

14578 16S 

ribosomal RNA 

gene, partial 

sequence 

100% 0.0 99% NR_041248.1 
Bacillus 

1110 388 II 356 

Clostridium 

tertium strain 

JCM 6289 16S 

ribosomal RNA 

gene, partial 

sequence 

100% 0.0 100% NR_113325.1 
Clostridium tertium 

1120 508 VII 325 

Clostridium 

tertium strain 

JCM 6289 16S 

ribosomal RNA 

gene, partial 

sequence 

98% 5,00E-159 98% NR_113325.1 
Clostridium 

1124 508 II 1085 

Enterococcus 

faecium strain 

DSM 20477 16S 

ribosomal RNA 

gene, complete 

sequence 

100% 0.0 99% NR_114742.1 
Enterococcus 
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Isolate Animal Phenotypic Identification1 Nucleotide Sequence Length 

Closest 

Reference 

Sequence Match 

Query 

cover 
E-value 

Nucleotide 

Sequence Identity 
Accession Number 

Assigned Phylotype* 

1153 388 V 400 

Propionibacterium 

acnes strain 

ATCC 6919 16S 

ribosomal RNA, 

complete 

sequence 

100% 0.0 99% NR_040847.1 
Propionibacterium acnes 

1162 508 II 1005 

Enterococcus 

faecium strain 

NBRC 100486 

16S ribosomal 

RNA gene, partial 

sequence 

98% 0.0 99% NR_113904.1 
Enterococcus 

1164 508 VII 1026 

Robinsoniella 

peoriensis strain 

PPC31 16S 

ribosomal RNA 

gene, complete 

sequence 

100% 0.0 99% NR_041882.1 
Robinsoniella peoriensis 

1185 516 IX 900 

Enterococcus 

faecalis strain 

NBRC 100480 

16S ribosomal 

RNA gene, partial 

sequence 

100% 0.0 98% NR_113901.1 
Enterococcus 

1188 471 IX 774 

Pantoea eucrina 

strain LMG 2781 

16S ribosomal 

RNA gene, partial 

sequence 

97% 0.0 99% NR_116246.1 
Pantoea eucrina 
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Isolate Animal 
Phenotypic 

Identification1 

Nucleotide Sequence 

Length 

Closest 

Reference 

Sequence 

Match 

Query 

cover 
E-value 

Nucleotide Sequence 

Identity 

Accession 

Number 

Assigned 

Phylotype* 

1202 504 VII 233 

Clostridium 

tertium strain 

JCM 6289 

16S 

ribosomal 

RNA gene, 

partial 

sequence 

94% 
2,00E-

111 
99% NR_113325.1 

Clostridium tertium 

1295 501 II 826 

Enterococcus 

faecium 

strain NBRC 

100486 16S 

ribosomal 

RNA gene, 

partial 

sequence 

99% 0.0 99% NR_113904.1 
Enterococcus 

1319 501 II 224 

Enterococcus 

faecium 

strain NBRC 

100486 16S 

ribosomal 

RNA gene, 

partial 

sequence 

98% 
2,00E-

112 
100% NR_113904.1 

Enterococcus 

1321 501 IX 1052 

Clostridium 

septicum 16S 

ribosomal 

RNA gene, 

complete 

sequence 

100% 0.0 98% NR_026020.1 
Clostridium 
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Isolate Animal 
Phenotypic 

Identification1 

Nucleotide Sequence 

Length 

Closest 

Reference 

Sequence 

Match 

Query 

cover 
E-value 

Nucleotide Sequence 

Identity 

Accession 

Number 

Assigned 

Phylotype* 

1343 519 X 323 

Romboutsia 

sedimentoru

m strain 

LAM201 

16S 

ribosomal 

RNA, partial 

sequence 

90% 
2,00E-

132 
96% NR_134800.1 

Romboutsia 

1353 519 IV 220 

Paenibacillus 

borealis 16S 

ribosomal 

RNA gene, 

complete 

sequence 

96% 
2,00E-

107 
99% NR_025299.1 

Paenibacillus 

borealis 

1359 502 IV 998 

Enterococcus 

durans 16S 

ribosomal 

RNA gene, 

partial 

sequence 

100% 0.0 99% NR_113257.1 
Enterococcus 

1362 502 X 940 

[Eubacterium

] tenue 16S 

ribosomal 

RNA gene, 

partial 

sequence 

100% 0.0 99% NR_115794.1 
Paeniclostridium 

tenue 
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Isolate Animal Phenotypic Identification1 Nucleotide Sequence Length 

Closest 

Reference 

Sequence 

Match 

Query 

cover 
E-value 

Nucleotide Sequence 

Identity 
Accession Number 

Assigned Phylotype* 

1376 471 IV 1072 

Bacillus 

kokeshiiformis 

strain MO-04 

16S ribosomal 

RNA, partial 

sequence 

99% 0.0 99% NR_133975.1 
Bacillus kokeshiiformis 

1377 516 VII 234 

Clostridium 

tertium strain 

JCM 6289 16S 

ribosomal RNA 

gene, partial 

sequence 

94% 1E-109 99% NR_113325.1 
Clostridium tertium 

1381 509 VII 1037 

Clostridium 

septicum strain 

Pasteur III 16S 

ribosomal RNA 

gene, complete 

sequence 

100% 0.0 99% NR_026020.1 
Clostridium septicum 

1388 463 VII 214 

Clostridium 

perfringens 

strain JCM 

1290 16S 

ribosomal RNA 

gene, partial 

sequence 

98% 4,00E-103 98% NR_113204.1 
Clostridium 
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Isolate Animal Phenotypic Identification1 Nucleotide Sequence Length 

Closest 

Reference 

Sequence 

Match 

Query 

cover 
E-value 

Nucleotide Sequence 

Identity 
Accession Number 

Assigned Phylotype* 

1398 675 II 215 

Enterococcus 

faecium strain 

NBRC 100486 

16S ribosomal 

RNA gene, 

partial 

sequence 

99% 1,00E-108 99% NR_113904.1 
Enterococcus 

1404 463 VII 1074 

Carnobacterium 

mobile strain 

DSM 4848 16S 

ribosomal RNA 

gene, partial 

sequence 

99% 0.0 98% NR_040926.1 
Carnobacterium 

1409 471 II 415 

Enterococcus 

faecium strain 

NBRC 100486 

16S ribosomal 

RNA gene, 

partial 

sequence 

100% 0.0 99% NR_113904.1 
Enterococcus 

1421 516 VII 774 

[Clostridium] 

sordellii strain 

JCM 3814 16S 

ribosomal RNA 

gene, partial 

sequence 

99% 0.0 98% NR_113140.1 
Paeniclostridium 

1Based on morphological (cell morphology, Gram, and endospore staining) and biochemical tests (catalase and oxidase tests). 
*Phylotype assignment based on information from top three best matches displaying the higher nucleotide pairwise identity, using taxonomic threshold similarity values as discussed in Material 

and Methods chapter. 
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Supplementary Table 7. 6 – Information on the ITS nucleotide sequences of a selected group of fungi isolates. 

Isolate Animal 
Phenotypic 

Identification1 

Nucleotide 

Sequence 

Length 

Closest Reference Sequence Match 
Query 

cover 
E-value 

Nucleotide 

Sequence 

Identity 

Accession 

Number 

Assigned 

Phylotype2 

1205 471 XIII 400 

Pseudozyma sp. JS1231 18S rRNA gene 

(partial), ITS1, 5.8S rRNA gene, ITS2 and 

26S rRNA gene (partial), isolate 1231 

80% 
5,00E-

134 
94% AM176740.1 Pseudozyma 

1206 675 XIII 400 

Mucor circinelloides strain S032IMR 18S 

ribosomal RNA gene, partial sequence; 

internal transcribed spacer 1 and 5.8S 

ribosomal RNA gene, complete sequence; 

and internal transcribed spacer 2, partial 

sequence 

100% 0.0 99% KU198340.1 
Mucor 

circinelloides 

1212 509 XII 459 

Cryptococcus albidus var. kuetzingii 

culture-collection CBS:6086 large subunit 

ribosomal RNA gene, partial sequence 

98% 0.0 99% KY106964.1 

Cryptococcus 

albidus/ Naganishia 

albida 

1213 463 XII 400 

Cryptococcus albidus var. kuetzingii strain 

YM26709 26S ribosomal RNA gene, 

partial sequence 

62% 
1,00E-

105 
95% KY463404.1 

Cryptococcus 

albidus/ Naganishia 

albida 

1331 460 XIII 400 

Penicillium citreonigrum strain 

SFCF20120912-25 18S ribosomal RNA 

gene, partial sequence; internal transcribed 

spacer 1, 5.8S ribosomal RNA gene, and 

internal transcribed spacer 2, complete 

sequence; and 28S ribosomal RNA gene, 

partial sequence 

90% 
2,00E-

163 
96% KF313080.1 Penicillium 

1334 463 XIII 482 

Penicillium amaliae strain CV401 18S 

ribosomal RNA gene, partial sequence; 

internal transcribed spacer 1, 5.8S 

ribosomal RNA gene, and internal 

transcribed spacer 2, complete sequence; 

and 28S ribosomal RNA gene, partial 

sequence 

100% 0.0 99% JX091440.1 
Penicillium 

amaliae 

1Based on morphological (hyphal septation and spores color, morphology, and septation, cell morphology, and division) tests. 
2Phylotype assignment based on information from top three best matches displaying the higher nucleotide pairwise identity, using taxonomic threshold similarity values as discussed in Material 

and Methods chapter. 


