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Resumo  

Na natureza, os organismos competem por diferentes de tipos de recursos, sendo os recursos mais 

estudados a comida, os hospedeiros e os parceiros sexuais. Infelizmente, o estudo de cada um destes 

recursos pertence a uma área de investigação diferente, o que dificulta a compreensão plena do papel 

da competição enquanto força selectiva. No trabalho que aqui se apresenta, começamos por 

demonstrar de que modo a evolução experimental pode ser aplicada transversalmente ao estudo da 

competição, de forma a permitir extrair padrões e processos comuns às várias áreas de investigação. 

Isto torna-se possível uma vez que, em todos os casos, os organismos competem por acesso a um 

recurso limitante, qualquer que seja esse recurso. 

Os capítulos seguintes da tese focam-se na competição por parceiros sexuais, um tipo de 

competição moldado pela selecção sexual. O principal objectivo deste trabalho foi estudar que 

adaptações são favorecidas pela selecção sexual em diferentes fases da reprodução, nomeadamente 

antes e depois do acasalamento. Desta forma, esperamos contribuir para enriquecer o nosso 

conhecimento no que diz respeito à ocorrência de poliandria, isto é, ao acasalamento de vários machos 

com uma única fêmea, em espécies com precedência espermática do primeiro macho. Nestas espécies, 

o primeiro macho a acasalar com uma fêmea é aquele que fertiliza todos os seus ovócitos. 

Consequentemente, parece paradoxal que estas fêmeas acasalem mais do que uma vez, a não ser que 

este comportamento traga alguma vantagem, esteja geneticamente relacionado com outra 

característica que seja vantajosa, ou ocorra inadvertidamente. De modo a poder abordar esta aparente 

contradição, usámos o ácaro-aranha Tetranychus urticae, uma espécie haplodiplóide, com precedência 

espermática do primeiro macho e cujos indivíduos acasalam frequentemente com fêmeas já 

fecundadas. 

Numa primeira abordagem, testámos se os machos desta espécie eram capazes de distinguir 

fêmeas virgens de fêmeas fecundadas e que tipo de pistas são usadas pelos machos para exercer a sua 

preferência. Graças a este estudo, pudemos confirmar que os machos usam pistas químicas, 

nomeadamente voláteis, e rastos químicos deixados no substrato, para distinguir fêmeas virgens de 

fêmeas fecundadas. Estes resultados permitiram-nos concluir que a poliandria não ocorre devido a uma 

incapacidade, por parte dos machos, de discriminar fêmeas fecundadas de fêmeas virgens, o que 

sugere que este comportamento é vantajoso para pelo menos um dos sexos. Na sequência desta 

constatação, procurámos encontrar potenciais benefícios provenientes da existência de poliandria em 

machos e fêmeas. Para esta experiência utilizámos a resistência a um pesticida como marcador 

genético, o que nos permitiu determinar a paternidade da descendência produzia pelas várias fêmeas 

testadas. Esta metodologia é essencial para determinar se a poliandria altera o padrão de precedência 
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espermática desta espécie, conferindo assim benefícios directos aos machos. Os nossos resultados 

indicam que nenhum dos sexos beneficia directamente com acasalamentos múltiplos. De facto, a 

precedência espermática do primeiro macho foi sempre mantida, independentemente do número e 

do intervalo entre acasalamentos, sugerindo que acasalar com fêmeas fecundadas não confere 

nenhum benefício directo aos machos. Para além disso, fêmeas que acasalaram múltiplas vezes 

apresentaram uma menor longevidade e fecundidade do que fêmeas que acasalaram só uma ou duas 

vezes, sugerindo que há custos em acasalar múltiplas vezes para as fêmeas. No entanto, os machos 

desta espécie, apesar de não terem obtido benefícios directos com a poliandria, não sofreram custos 

de longevidade quando foram colocados exclusivamente com fêmeas previamente fecundadas. Além 

do mais, o número total de descendência produzida pelo primeiro macho a acasalar com uma fêmea 

fecundada é menor quando essa fêmea acasala múltiplas vezes, do que quando essa fêmea não acasala 

novamente, ou acasala apenas mais uma vez. Esta diminuição do número de descendência quando a 

fêmea acasala múltiplas vezes, faz com que o sucesso reprodutor do primeiro macho diminua, levando 

a um aumento relativo do sucesso reprodutor dos machos seguintes. Este benefício indirecto pode 

explicar, ainda que em parte, a ocorrência de poliandria no ácaro-aranha. De qualquer forma, este 

resultado não exclui a possibilidade de existirem outros benefícios que possam explicar a existência de 

poliandria. Por exemplo, ao acasalarem múltiplas vezes, os indivíduos podem reduzir o risco de se 

envolverem apenas em acasalamentos inviáveis.  

A existência de acasalamentos inviáveis pode ser atribuída à presença de bactérias 

endosimbiontes. Estes organismos empregam diversas tácticas como, por exemplo, alterar a 

reprodução dos seus hospedeiros, de forma a favorecerem a sua transmissão. Quando essas tácticas 

são custosas para o hospedeiro, prevê-se que este evolua estratégias de modo a poder evitar ou reduzir 

os custos da infecção. Frequentemente, as populações de ácaros encontram-se infectadas com 

Wolbachia, uma bactéria endossimbiótica que induz incompatibilidade citoplasmática. A 

incompatibilidade citoplasmática resulta na redução do número de descendência fertilizada 

proveniente de acasalamentos entre fêmeas não infectadas e machos infectados. Com as experiências 

seguintes, procurámos saber se fêmeas de ácaros-aranha não infectadas evoluem a capacidade de 

escolher parceiros sexuais compatíveis ou de acasalar múltiplas vezes, de modo a contornar os custos 

impostos pela incompatibilidade citoplasmática. De forma a testar esta possibilidade, realizámos uma 

experiência na qual populações de ácaros-aranha evoluíam nas seguintes condições: i) populações 

totalmente infectadas com Wolbachia, ii) populações totalmente livres de Wolbachia ou iii) populações 

com uma prevalência intermédia deste simbionte. No último caso, a cada geração, fêmeas não 

infectadas foram colocadas com machos infectados e não infectados, na mesma proporção, de modo 

a promover os acasalamentos entre indivíduos. Este último regime de evolução experimental 
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corresponde às condições ideais para a evolução de um mecanismo compensatório contra a Wolbachia, 

por parte do hospedeiro. Após doze gerações de selecção, indivíduos mantidos com prevalência 

intermédia de Wolbachia não alteraram a sua capacidade de escolha. Para além disso, não se 

verificaram modificações na latência à copula ou na duração de cópula em qualquer um dos regimes. 

Isto permite-nos concluir que o efeito da Wolbachia na evolução de isolamento reprodutor em ácaros, 

se existe, é residual. Este resultado é relevante para o estudo da especiação, uma vez que o isolamento 

reprodutor é considerado um comportamento com elevado impacto neste processo. Apesar de não 

termos encontrado diferenças no comportamento que antecede a cópula, fêmeas não infectadas que 

evoluíram em populações com prevalência intermédia de Wolbachia apresentaram uma redução no 

grau de incompatibilidade citoplasmática após acasalarem com machos infectados e machos não-

infectados, sequencialmente. Este resultado permite-nos concluir que a poliandria pode ser vantajosa 

em ambientes em que existe o risco de acasalamentos inviáveis, uma vez que permite reduzir a 

incompatibilidade citoplasmática. Ao fazê-lo, os ácaros-aranha alteraram o seu padrão de precedência 

espermática a favor do segundo macho. No entanto, esta alteração só ocorreu numa direcção, uma vez 

que, nas situações em que o primeiro macho era compatível, i.e., não estava infectado com Wolbachia, 

a precedência espermática pelo primeiro macho foi mantida. A unidirecionalidade na alteração do 

padrão de precedência espermática é muito provavelmente um factor essencial à evolução de 

poliandria incitada pelos custos associados à incompatibilidade citoplasmática, em espécies com 

padrões de precedência espermática enviesados. 

Em suma, o trabalho desenvolvido ao longo desta tese, ao endereçar questões importantes 

que tinham sido, até agora, negligenciadas, permite-nos compreender mais aprofundadamente qual o 

papel da poliandria em espécies com precedência espermática do primeiro macho. Para além disso, os 

resultados apresentados aqui contribuem substancialmente para o estudo das interações entre 

endosimbiontes e os seus hospedeiros, bem como para compreender de que forma essa interação 

afecta o processo de especiação.  
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Abstract  

Organisms compete for several resource types, the most studied being food, hosts and mates. 

Regrettably, the study of competition for each of these resource types belongs to different research 

fields that rarely overlaps, which might hamper a comprehensive understanding of competition as 

pervasive selective force. In this work, we begin by showing how experimental evolution can be 

transversally applied to the study of competition across research fields and attempt to extract general 

patterns and processes, as in all cases individuals are competing for the use of a limiting resource.  

The rest of this thesis is directed towards competition for mates, a type of competition that is 

shaped by sexual selection. The main goal of this work was to study the adaptations favoured by sexual 

selection at different stages of reproduction, namely prior and after mating, in order to better 

understand the occurrence of polyandry in species with first male sperm precedence. In these species, 

the first male that mates with a female will sire all her offspring. Consequently, it seems paradoxical 

that females mate multiply, except if this behaviour provides an advantage for females or males, if it 

correlates with other traits, or if it occurs inadvertently. In order to tackle this, we used the spider mite 

Tetranychus urticae, a haplodiploid species with first male sperm precedence in which polyandry is 

pervasive. 

First, we tested whether males distinguish between virgin and mated females and which type 

of cues they use to exert their preference. In fact, spider mite males preferred virgin over mated 

females and used chemical cues, namely volatiles and chemical trails, to distinguish them. These results 

indicate that polyandry does not occur due to a lack of ability to discriminate females of different 

matings status, suggesting this behaviour might be advantageous for either sex. Consequently, the next 

step was to test the potential costs and benefits of polyandry for males and females. Neither males, 

nor females benefited directly with polyandry. In fact, females that mated multiple times survived less 

and laid fewer eggs, compared to females that mated once or twice only. Nevertheless, males did not 

suffer longevity costs when they mated with mated females and they were able to decrease the fitness 

of first males, gaining an indirect benefit with this behaviour. Polyandry can thus be, even if partially, 

explained by this indirect benefit. Still, these results do not rule out the existence of other, indirect 

benefits. For instance, by mating multiply, individuals might reduce the risk of only mating with 

incompatible mates.  

Incompatible matings may be attributed to the presence of endosymbiotic bacteria. These 

organisms can employ various tactics, such as altering the reproduction of their hosts, in order to favour 

their own transmission. When these tactics are costly for the host, hosts are expected to evolve 

strategies to avoid or reduce such costs. Spider mite populations are often infected with Wolbachia, an 
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endosymbiotic bacterium that induces cytoplasmic incompatibility (CI), whereby crosses between 

uninfected females and infected males yield reduced fertilized offspring. Here we tested whether T. 

urticae uninfected females evolve mate choice and multiple mating to circumvent the costs imposed 

by CI. To this aim, we performed experimental evolution on spider-mite populations with i) full 

Wolbachia infection, ii) no infection, or iii) mixed infection. In the latter, Wolbachia-uninfected females 

could copulate with both Wolbachia-infected and Wolbachia-uninfected males at each generation, 

which is expected to result in high costs for uninfected females, and hence promote the evolution of a 

compensatory mechanism. Evolving under mixed infection did not affect host mate choice, latency to 

copulation or copulation duration, after 12 generations of selection. Therefore, the role of Wolbachia 

in pre-copulatory reproductive isolation in spider mites, if present, is probably residual. However, after 

20 generations of selection, uninfected females evolving under mixed infection that mated with 

Wolbachia-infected males presented a higher degree of CI than those mated first with Wolbachia-

infected and then with Wolbachia-uninfected males evolving under mixed infection. Therefore, 

polyandry can be advantageous when there is the risk of incompatible matings, since it reduces the 

degree of CI. By doing so, spider mites break their sperm priority pattern in favour of the second male. 

However, this disruption of sperm precedence only occurred in one direction. Indeed, when the first 

mating was compatible, i.e., the first male was not infected with Wolbachia, individuals kept first male 

sperm precedence. The unidirectional disruption of the sperm precedence pattern might be a key 

factor for the evolution of CI-driven polyandry in species with skewed patterns of sperm precedence.  

Overall, the results obtained here contribute to improve our understanding of mating 

strategies by addressing important questions that have been largely neglected so far, namely the 

putative drivers of multiple mating in species with first male sperm precedence.  
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Competition shapes the evolution of organisms. Organisms compete for several resource types, the 

most studied being food, hosts and mates. The mechanisms underlying these processes are the same, 

but their study belongs to different research fields. In my thesis, I will focus on competition for mates, 

which is driven by sexual selection.  

Sexual selection was first proposed by Darwin (1871, p.256) in The descent of Man and Selection 

in Relations to sex to explain why the evolution of some traits depended “ on the advantage which 

certain individuals have over other individuals of the same sex and species in exclusive relation to 

reproduction.”  In this introductive chapter, I will focus on the adaptations favoured by sexual selection 

at different stages of the reproductive process (section 1).  I will summarize what is known about pre- 

and post-copulatory mating strategies and how these strategies can benefit competition for mates. In 

addition, given that endosymbiotic infection can have important consequences on the matings 

strategies of hosts, I will review what is known about endosymbiotic-host interactions and their effect 

on host reproduction, focusing mainly on the interaction between the endosymbiotic bacteria 

Wolbachia and arthropods (section 2). All along these lines, I will highlight how haplodiploidy and 

different mating systems can impact on evolutionary predictions. Finally, in the last section, I will 

provide a brief overview of the biology of the model species used in my experiments, the two-spotted 

spider mite Tetranychus urticae (section 3), followed by an outline of my thesis (section 4). 

 

1. Biology of mating strategies  

Sexual selection is divided in intra-sexual competition and inter-sexual choice. Intra-sexual competition 

occurs when individuals of one sex compete to gain access to, or monopolize, mates and their gametes. 

Inter-sexual choice arises when a trait of the chosen sex leads to non-random mating success of the 

choosy sex (Shuker 2014).  

In the classical view of sex roles, proposed by Darwin (1871) and reinstated by Bateman (1948), 

males compete for access to females and females select among males. However, throughout the years, 

it has become increasingly clear that the roles of males and females can be dynamic and 

interchangeable. Reverse sex roles, i.e., choosy males and female-female competition, were first 

observed in species where males contribute to parental care (Trivers 1972; Davies et al. 2012). For 

instance, in the pipefish Nerophis ophidion, embryo development occurs inside the body of the male. 

Pregnancy lasts several weeks during which females can produce several clutches of eggs. 

Consequently, males become the limiting resource and females compete for males, who prefer larger 

and more ornamented females (Rosenqvist 1990). Yet, male mate choice can occur even in species 
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where males contribute with little more than sperm to females (Bonduriansky 2001; Edward & 

Chapman 2011). In fact, even in taxa where the ratio of sexually active males to females (operational 

sex ratio, OSR) is male-biased, in which available females are scarce and males are likely to be able to 

mate with all available females, male mate choice can evolve if the benefits of choice outweigh the 

costs of being choosy (Arnqvist 2014, section 1.3). Thus, in many species, both sexes are selective in 

their choice of mates, i.e., there is mutual mate choice (Bergstrom & Dugatkin 2012). Similarly, 

competition for mating opportunities in females is not necessarily dependent on the OSR. In fact, strong 

female mate choice itself might select for female-female competition, if the amount of females 

exhibiting preference for the most attractive males exceeds their mating capacity  (Kvarnemo & 

Simmons 2013).  

The intensity of intra-sexual competition will depend on the benefits obtained with mating (see 

section 1.3) and on the number of available mates (see section 1.4). Indeed, the more time females 

spend in a sexually-unreceptive state, the more male-biased will the OSR be, selecting for stronger 

male-male competition (Edward & Chapman 2011). Likewise, several key factors affect the evolution of 

mate choice. First, the reproductive strategies of the choosy sex (mating effort, i.e., the amount of 

resources invested in each mating, and investment in parental care) are expected to influence mate 

choice (Bonduriansky 2001; Edward & Chapman 2011; Davies et al. 2012). For instance, long 

courtship/copulations should favour mate choosiness. Indeed, increased mating effort and/or parental 

care increases the number of mates available to copulate with in the population, but reduces the 

capacity of mating of each individual (Edward & Chapman 2011). Second, there must be variance in the 

quality of the chosen sex for mate choice to evolve (Bonduriansky 2001; Edward & Chapman 2011; 

Gibson & Langen 1996). Finally, the evolution of mate choice will be contingent on the costs and 

benefits of being choosy (Bonduriansky 2001; Edward & Chapman 2011; Gibson & Langen 1996), as we 

will see in section 1.3.  

In polyandrous species, i.e., in species where females have multiple mates, sexual selection can 

act prior to mating, via mate choice and competition for direct access to mates, or after mating, through 

sperm competition and cryptic choice. Consequently, sexual selection should favour adaptations that 

ensure male and female reproductive success both prior and after mating. However, adaptations for 

pre-copulatory and post-copulatory success are not necessarily synergistic (Kvarnemo & Simmons 

2013) and male and female adaptations are often antagonistic. The net strength of selection acting on 

males or females will thus depend on the interactions between male and female strategies within and 

across episodes of selection (Figure 1). 



 
4 

In this section, I will summarize the reproductive strategies that can arise both prior to – 

(section 1.1) or after mating (section 1.2) and highlight their benefits for males and females. I will finish 

by considering the effect of sperm priority (section 1.4) and haplodiploidy (section 1.5) in some of these 

strategies.   

 

Figure 1. Schematic representation of episodes of sexual selection, their interaction and their impact on fitness. 

White balloons represent stages during reproduction at which sexual selection can act. The first stage occurs 

before fertilization and will be discussed in section 1.1, the second takes place after mating and will be addressed 

in section 1.2. Arrows indicate synergistic (plus symbols) and antagonistic (minus symbols) selection. The net 

strength of selection acting on males or females will depend on the interactions between male and female 

processes within episodes of selection, and on the interactions across episodes of selection. (Adapted from 

Kvarnemo & Simmons 2013) 

 

1.1 Pre-copulatory mating strategies  

1.1.1  Intra-sexual competition 

As pointed out before, intra-sexual competition occurs when individuals of one sex compete to gain 

access to, or monopolize, mates and their gametes (Shuker 2014). Individuals can gain access to mates 

through several different pre-copulatory mechanisms, including endurance rivalry, scramble and 

physical contests (Shuker 2014). Endurance rivalry selects for traits that increase survival, assuming 

increased survival will result in increased reproductive success (Shuker 2014; Danchin & Cézilly 2008). 

Scramble competition, or exploitative competition, occurs whenever competitors exploit the same 

limiting resource, thereby reducing the quality of resources available (Chapter II, Danchin and Cézilly 

2008). This type of competition should select for traits that improve searching and monopolization of 
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mates. For instance, some species exhibit pre-copulatory mate guarding, a behaviour seen as means of 

monopolizing access to females until they become available for mating. In Sepsis cynipsea, for example, 

males guard gravid females while they oviposit, so copulation occurs as soon as females become 

receptive again, thus improving the male genetic representation in the subsequent eggs clutches 

(Simmons 2014). Finally, physical contests select for traits that improve the competitors’ ability to win 

fights, including weaponry, increased aggression and large size. For instance, in several species of dung 

beetles, females build tunnels and fill them with dung in which they lay their eggs. Males have evolved 

horns (Figure 2) that they use in fights against other males to guard the tunnels and the winner male 

mates repeatedly with the resident female. In laboratory experiments, males with longer horns were 

more likely to win contests (Emlen & Oring 1977; Emlen 2014). These intense contests may also select 

for alternative mating tactics, in which individuals display strategies that circumvent the costs of direct 

contact. Indeed, in these dung beetles, small hornless males sneak in tunnels guarded by other males, 

by digging new tunnels that intercept the guarded ones belowground (Emlen 1997; Moczek and Emlen 

2000; Emlen 2014 Figure 2). In this way, small males are able to avoid contests they were likely to lose 

and still fertilize some females. 

Note that none of the mechanisms presented above are mutually exclusive and that they do 

co-occur in several species (Shuker 2014).  

 

Figure 2. Examples of alternative male morphs in dung beetles. Onthophagus taurus (top), O. nigriventris (bottom). 

Large horned males are shown on the left and small hornless males on the right. Females (not shown) are entirely 

hornless in both species.  Adapted from Valena and Moczek 2012. 

 

1.1.2 Inter-sexual mate choice 

Prior to mating, mate choice can take place in two phases: mate location and mate assessment (Brooks 

& Griffith 2010; Danchin & Cézilly 2008). Individuals can use different cues to exert their preference. 

These cues can be phenotypic traits, or resources defended or provided by the chosen sex, like nests 
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or territories (Candolin 2003). Phenotypic traits include visual, chemical, acoustic, olfactory, tactile and 

behavioural traits (Candolin 2003; Johansson & Jones 2007). Some of these traits, such as body 

constitution, can arise and be maintained through natural selection but simultaneously be used as 

indicators of fitness. Others, like colourful ornaments or courtship behaviours, have evolved with the 

sole purpose of attracting mates and can be detrimental to survival (Candolin 2003).   

Any trait that attracts and stimulates partners, or the monopolization of any high-quality 

resource necessary for reproduction (Danchin & Cézilly 2008) should be favoured in the competing sex. 

For instance, across insects, the most common traits preferred by males are female size or weight, 

which often act as proxies for female fecundity, and female mating status. Mating status can predict 

the risk - the probability that a female will mate with two males - or intensity - the number of 

competitors- of sperm competition, as we will see in section 1.2.2.2 (Kelly & Jennions 2011; 

Bonduriansky 2001).  

Frequently, if not always, multiple cues are used in mate choice (Jennions & Petrie 1997; 

Candolin 2003). There are several explanations for the use of multiple cues. First, some of these cues 

might be unreliable indicators of mate quality solely maintained due to pre-existing sensory biases 

(Candolin 2003; Jennions & Petrie 1997). Second, they can provide different information regarding a 

prospective mate. In fact, there are some evidences that different signals are evaluated differently 

depending on which type of benefits the choosy individual is selecting (see section 1.3.1). For instance, 

in some species of birds, females use song repertoires, a proxy of male quality, to choose extra-pair 

mates, but use territory characteristics, like nest quality, to select cuckolded males (Candolin 2003). 

Third, multiple cues can be redundant. For instance, in Bicyclus anynana, females use both chemical 

and visual cues, even though only one type of cue is sufficient to elicit preference (Costanzo & Monteiro 

2007). The redundancy of cues is associated with a decrease in mate-choice errors (Candolin 2003). 

Finally, different cues can be differentially useful in different environments (Jennions & Petrie 1997; 

Bro-Jørgensen 2010). 

 

1.2 Post-copulatory mating strategies 

Parker (1970) was the first to emphasize that sexual selection can persist after mate acquisition. If 

females mate multiply, then the sperm from two or more males can still compete for the same set of 

eggs, a term coined “sperm competition”. Thus, sperm competition can be seen as the post-copulatory 

equivalent of pre-copulatory male-male competition. Sperm competition is a widespread phenomenon, 

given that females mate multiple in most internally fertilized species (Simmons 2001). Sperm 

competition will generate sexual selection on males to improve their reproductive success, ultimately 
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resulting in a pattern of sperm precedence, as we will see in section 1.4. However, before discussing 

the patterns of sperm precedence I will focus on the potential mechanisms of sperm competition 

(section 1.2.1).  

Storage, maintenance and utilization of sperm occurs within the female. Hence, these traits 

are, ultimately, under female control (Simmons 2001). Thus, in the same way sperm competition can 

be seen as the post-copulatory equivalent of pre-copulatory male-male competition, pre-copulatory 

female choice can be extended to after copulation, a phenomenon called cryptic female choice 

(Thornhill & Alcock 1983; Arnqvist 2014). In addition, given that sperm production is costly, males can 

exert male choice after mating. These mechanisms of post-copulatory mate choice are briefly 

summarized in section 1.2.2. Note that strategic parental investment can also occur. However, I will not 

address it in this introduction. 

Post-copulatory mechanisms can be essential to determine the intensity and direction of 

selection on sexual traits. Notwithstanding, there is a lot we do not know about them, mainly because 

of technical challenges related to direct observation of sperm within the female tract and of the limited 

ability to discriminate sperm from different males. For instance, until recently it was thought that in 

Drosophila melanogaster last male sperm precedence was achieved through chemical sperm removal 

(Harshman & Prout 1994). However, in 2010, when sperm observations were done in vivo, it was 

discovered that mechanical sperm displacement by rival males and sperm ejection by females were 

operating in this species, rather than chemical displacement (Manier et al. 2010). 

1.2.1 Sperm competition  

Sperm competition is usually viewed as an extension of male-male competition. Indeed, males are 

expected to evolve strategies that allow them to maximize their own reproductive success not only 

before but also after copulation, within the female. In fact, internal fertilization itself is thought to be 

an adaptation against sperm competition: the closer to the site of fertilization the sperm is delivered, 

the lower the intensity of sperm competition and thus the bigger the chance of successful fertilization 

(Simmons 2001). The existence of sperm competition can select for both defensive and offensive traits 

in males (Arnqvist & Rowe 2005). The outcome of a multiple mating will depend, in part, on how 

different male adaptations perform against each other (Danielsson 1998). 

1.2.1.1 Defensive traits  

Defensive traits reduce the risk of sperm competition – the probability that a female will mate with two 

males – by reducing or even preventing females from re-mating. These adaptations can be 

physiological, behavioural or mechanical. 
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Defensive reproductive behaviours include prolonged copulation and post-copulatory mate 

guarding. Prolonged copulations are described as a prolonged period of male-female association 

beyond the time necessary for insemination, functioning as a physical barrier against potential 

competitors. In post-copulatory mate guarding, in contrast, males stay attached to females without 

maintaining genital contact. Both behaviours prevent females from re-mating. However, frequently, 

during prolonged copulation and post-copulatory mate guarding, there are take-over attempts by other 

males. Selection is thus expected to favour males that are able to reduce or prevent those take overs. 

This can be achieved using special organs that serve to maintain the connection between male and 

female or displaying aggressive behaviour towards competitors (Danielsson 1998). Note that these 

strategies occur at the expense of mate searching, being selected only when the benefits of mate 

guarding are superior to the costs of lost mating opportunities. Consequently, selection is expected to 

favour phenotypic plasticity in mate guarding behaviour in response to the risk of sperm competition 

(Kvarnemo & Simmons 2013). For instance, in fire buds, Pyrrhochoris apterus, copulation duration is 

dependent on the OSR, with longer copulations, that can last up to seven days, occurring in more male-

biased OSR (Figure 3). This happens even though sperm transfer is finished a few hours after pairing, 

suggesting that extended time of copulation serves to prevent females from re-mating (Simmons 2014).  

  

Figure 3. Duration of copulation in firebugs, Pyrrhochoris apterusdepends on the sex-ratio of the populations. Sperm 

transfer is complete after 4 hours of copulation but males adjust their time of association with the female 

depending on the risk of re-mating. Adapted from Simmons 2014. Picture firebugs: Alex Hide 

 

Males can also evolve defensive strategies that allow them to continue mate searching after 

copulation. Along with sperm, males transfer products from the accessory glands. These seminal 

products may have significant impacts on female physiology and behaviour. Males can reduce the 
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attractiveness of females by decreasing their output of pheromones or by applying anti-aphrodisiac 

substances during copulation (Danielsson 1998). Alternately, seminal products can decrease or delay 

female receptivity to future matings and/or promote oviposition (Simmons 2001). For instance, an 

exhaustive study done on several mosquito species, namely ten Aedes species, Culex pipiens and 

Anopheles quadrimaculatus, has found that females with implanted male accessory glands on their 

thorax were never inseminated by males, while 75-100% of females with male gut on their thorax were 

successfully inseminated (Craig 1967). Another possible defensive strategy is to transfer with sperm 

masses of material secreted by the accessory glands that coagulate in the tract of the female, 

functioning as a physical barrier (Simmons 2001). These structures, called mating plugs serve the dual 

function of helping deliver the ejaculate (i.e., preventing passive loss of sperm; “leaking hypothesis”) 

and of plugging the reproductive tract preventing subsequent matings (Simmons 2001). However, they 

can be short-lived barriers and thus not totally effective against females re-mating. Nevertheless, the 

mean proportion of effective second matings is lower in species with mating plugs than in species 

without such structure (Simmons 2001).  

While these strategies leave the males free to search for additional mates, the production of 

seminal products can be a high-energy investment, limiting their ability to fertilize other females 

(Arnqvist 2014). Thus, as in mate guarding, we expect males to allocate their resources depending on 

the intensity of sperm competition (Arnqvist 2014). Consistent with this prediction, across species of 

butterflies, there is a negative correlation between female mating frequency and the investment of 

males in mating plugs (Figure 4).   

 

Figure 4. Correlated evolution of mating plugs and female re-mating frequency among butterflies. Species with small 

mating plus (top right) have high mating rates, while those with bigger plugs have moderate to low female mating 

rates. From top to bottom: Graphium sarpedon, Atrophaneura alcinous and Euryades corethrus. Adapted from 

Simmons 2014. 
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1.2.1.2 Offensive traits  

Offensive traits increase the ability of males to outcompete the ejaculate of other males within the 

female. Several adaptations for sperm priority have been suggested so far. For instance, males can 

improve their chance of fertilization success by evolving behavioural adaptations, such as prolonged 

copulation. Indeed, the degree to which a male can displace rival sperm may depend on the time he 

spends copulating with a given female (Simmons 2001). Besides, prolonged copulation can facilitate 

repeated inseminations and consequently increase the reproductive success of males in species with 

sperm mixing (Simmons 2001). This behaviour can thus function as defensive trait, as see in the 

previous section, and as offensive trait. In fact, this is the case for several male adaptations (Simmons 

2001).  

In addition, to prolonged copulation, sexual selection driven by variation in sperm fertilization 

success can lead to rapid and divergent evolution of male genitalia, sperm production and sperm 

morphology and physiology. 

Altered genitalia can act directly, by removing or displacing rival sperm, or by improving the 

chance of successful insemination. For instance, in seed beetles Callosobruchus maculatus, male’s 

altered genitalia pierce the internal walls of the female genital tract, allowing seminal fluid compounds 

to enter the female’s haemolymph. Males with longer spines have increased competitive fertilization 

success (Hotzy et al. 2012). These traumatic inseminations allow males to bypass the usual route of 

insemination, thus gaining a selective advantage over other males. Alternately, altered genitalia can act 

indirectly, stimulating the female reproductive tract in order to gain sperm priority (Simmons 2001; 

Danielsson 1998). Female stimulation can be achieved through chemical or behavioural processes, 

eliciting sperm transport, sperm removal and/or egg abortion. For example, in the fly Dryomyza analis, 

females expel a droplet of sperm before oviposition. By tapping repeatedly on the external genitalia of 

females, males succeed in increasing the proportion of sperm from previous males in the droplet 

expelled, thereby promoting their relative reproductive success (Danielsson 1998).  

Sperm form and function can also play a large role in fertilization success. For instance, in D. 

melanogaster, mechanical sperm displacement by rival males and sperm ejection by females operate 

as mechanisms of sperm priority (Manier et al. 2010). Long and slow-swimming sperm are better able 

to enter the seminal receptacle of the female and less likely to be displaced than other sperm, 

conferring an advantage to the male that produces them (Lüpold et al. 2012).   
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1.2.2 Cryptic choice 

Cryptic choice is defined as any pattern of non-random post-copulatory reproductive success across 

chosen individuals that is caused by the choosy individual (Thornhill & Alcock 1983; Arnqvist 2014; 

Bonduriansky 2001). As underlined before, cryptic choice can occur in both sexes.  

1.2.2.1 Cryptic female choice 

Cryptic female choice traits can be broadly categorized as morphological, physiological or behavioural 

(Arnqvist 2014). The shape of the female internal reproductive duct is an example of morphological 

cryptic female choice. For instance, long or fast sperm will gain an advantage over other sperm in a long 

and winding duct (Arnqvist 2014). Likewise, females might control the usage and storage of sperm. For 

instance, feral fowl females expel sperm following copulations with some males and yet accept sperm 

from others, biasing paternity (Simmons 2001; Pizzari & Birkhead 2000). Another example of cryptic 

female choice is found in the flour beetle Tribolium castaneum. In this species, a positive correlation is 

observed between the rate at which males rub with their tarsi on the lateral edges of the females’ elytra 

during copulation and males’ reproductive success in a double mating. However, when Edvardsson and 

Arnqvist (2000) ablated the tarsi of males, thus preventing the them from reaching the females’ elytra, 

the positive correlation found in control males was lost (Figure 5). This occurred even though 

manipulated males kept “rubbing” in the air and the same amount of sperm was transferred during 

copulation by manipulated and control males. Their experimental manipulation thus show that female 

perception of male copulatory courtship behaviour, rather than the behaviour of the male itself, affects 

male competitive fertilization success in the flour beetle. 

 

Figure 5. Cryptic female choice in the female 

flour beetle, Tribolium castaneum. When 

males have ablated tarsi, they are prevented 

from reaching the females’ elytra, which they 

normally rub during copulation. 

Consequently, the positive correlation found 

between the rate at which control males rub 

with their tarsi on the lateral edges of the 

females’ elytra and male reproductive 

success in a double mating is lost. Ablated 

males: filled circles and solid line; control 

males: open circles and dashed line. Adapted 

from Arnqvist 2014. 
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1.2.2.2 Cryptic male choice 

As females, males can exert cryptic male choice, through strategic adjustment of ejaculates and 

differential allocation of parental care (Edward & Chapman 2011). Here, I will only focus on strategic 

ejaculation. 

Strategic adjustment of ejaculates can involve changes in chemical composition, influencing 

sperm performance, in sperm morphology and in sperm number (Kelly & Jennions 2011). There are 

several main factors that can affect strategic ejaculation. Males should transfer more sperm in 

copulations with females of higher quality, assuming males can reliably assess female quality (Kelly & 

Jennions 2011; Wedell et al. 2002). Indeed, in some insects, males have been shown to transfer larger 

nutritious ejaculates to larger females, size being a proxy of fecundity (Kelly & Jennions 2011; Wedell 

et al. 2002). In addition, males should exhibit phenotypic plasticity in ejaculate properties in response 

to the risk and intensity of sperm competition (Kelly & Jennions 2011; Wedell et al. 2002; Edward & 

Chapman 2011). At low levels of sperm competition, when females may or may not mate with more 

than one male, males are expected to increase their ejaculate expenditure with increasing risk of 

competition, i.e., the probability that a female re-mates. Indeed, a meta-analysis done in 15 insect 

species has shown that males transfer more sperm in contact with rival males (Kelly & Jennions 2011). 

However, with increasing levels of sperm competition, which entails that all females mate more than 

once, male ejaculate expenditure should decrease with increased intensity of sperm competition, i.e., 

the number of male competitors (Kvarnemo and Simmons 2013; Simmons 2014; Figure 6). This is 

because the more polyandrous females are, the lower is their reproductive value for males (Kvarnemo 

& Simmons 2013). For instance, in the field cricket Teleogryllus oceanicus, males increase the 

proportion of viable sperm in their ejaculate when they perceive the odour of just one rival but reduce 

this proportion with cues from an increasing number of rivals (Thomas and Simmons 2009, Figure 6).  

The risk and intensity of sperm competition are often predicted by males via the female mating 

status. That is because a virgin female might not mate again after mating with the focal male, while a 

mated female already contains sperm from another male. The risk of sperm competition is thus higher 

in mated females. In this sense, males should increase their ejaculate expenditure in matings with 

mated females, provided there are no additional competitors. The intensity of sperm competition, on 

the other hand, is predicted to be higher in mated females than in virgins and males should increase 

their ejaculate expenditure in matings with virgins. In fact, males often copulate during a longer period 

of time with virgins than with mated females (Kelly & Jennions 2011).     
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Figure 6. The correlation between sperm ejaculate and sperm competition. a) Theoretical predictions from sperm 

competition game theory for ejaculate expenditure depending on the number of rivals. ESS: evolutionary stable 

strategy. After Parker and Simmons 1996 b) Empirical study using the field cricket Teleogryllus oceanicus. Females 

were impregnated with different amounts of extracted cuticular hydrocarbons (CHC), corresponding to a different 

number of rival males.  Tested males transfer more viable sperm with increased risk of competition, when they 

perceive the odour of just one rival, but reduce the proportion of viable sperm transferred when mating with 

females to which increasing quantities of CHC were applied – increased intensity of competition. After Thomas and 

Simmons 2009. Adapted from Simmons 2014. 

 

1.3 Costs, benefits and sexual conflicts in reproduction 

None of the strategies described so far is free of costs. Consequently, these mechanisms are expected 

to evolve when the reproductive advantage gained is superior to the costs incurred. However, as 

pointed out before, male and female adaptations do not need to be advantageous for the opposite sex. 

In fact, frequently the evolutionary interest of males and females do not coincide, giving rise to sexual 

conflicts, as we will see in the next section (1.3.2). In addition, I will summarize the potential costs and 

benefits of mate choice (1.3.1) and of mating (1.3.2).   

1.3.1 Costs and benefits of mate choice 

The costs of being choosy should be independent of the sex that chooses. Individuals risk decreasing 

their reproductive success with prolonged search time and loss of energy evaluating mates and/or 

wrong mate quality assessment. These costs are expected to be inversely proportional to the life 

expectancy, mating capacity and mate availability (Bonduriansky 2001). In addition, males and females 

risk increased exposure to predators, harassment, sexually-transmitted diseases and opportunity costs, 

b) a) 
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as the best mates can be removed from the pool of available mates as time passes (Brooks & Griffith 

2010). However, mate choice can be extremely advantageous as well. 

During the last decades, many empirical and theoretical studies have tackled the problem of what 

benefits females might gain from being choosy. Although poorly addressed in the literature, it seems 

straightforward to assume that these benefits can be transversally applied to females and males.  

Mate choice should be beneficial whenever it increases the number and/or quality of offspring for 

choosy individuals as compared to individuals that mate randomly (Johansson & Jones 2007). The 

benefits of mate choice are direct whenever choosy individuals acquire more resources that enhance 

their survival or reproductive success than non-selective ones. These resources include territories, food 

or protection (Hunt & Sakaluk 2014; Brooks & Griffith 2010; Davies et al. 2012). For instance, in hanging 

flies Hylobittacus apicalis, females mate with males that provide them with large insects, which they 

will eat while mating. This has direct implications for the reproductive success of the male, because the 

larger the insect, the longer he may copulate with the female and the more sperm he is able to transfer 

(Thornhill 1976). In some species, males supply females with more than one direct benefit. For instance, 

in flycatchers, males provide nest site, feeding territory, protection against harassment by other males, 

nest defence and parental care (Brooks & Griffith 2010).  

Choosy individuals do not always acquire material benefits. Indeed, they can distinguish among 

prospective mates on the basis of some phenotypic trait to improve the fitness of their offspring (Hunt 

& Sakaluk 2014). In this case, the benefits are indirect. Indirect, or genetic benefits, occur when certain 

genes (intrinsic male quality) or gene combinations (genetic compatibility) produce fitter offspring than 

others (Kvarnemo & Simmons 2013). In the first, discrimination is done based on the ability to produce 

sexier or better quality offspring. In this case, a certain genome always produces offspring of the same 

quality (Shuker 2014) In the second, genetic benefits arise as a consequence of an interaction between 

a given maternal and a given paternal genome and the quality of the offspring will depend on this 

interaction (genetic incompatibility hypothesis; (Zeh & Zeh 1997; Zeh & Zeh 1996; Tregenza & Wedell 

2000; Wedell 2013). Genetic incompatibility can arise due to male-female relatedness (Tregenza & 

Wedell 2002) and selfish genetic elements, such as cellular endosymbionts, as we will see in section 2 

(Zeh & Zeh 1996; Wedell 2013). 

1.3.2 Costs and benefits of mating 

Once individuals have been chosen, mating will take place. The act of mating encompasses several costs 

for both males and females as well (reviewed in Göran Arnqvist and Rowe 2005; Arnqvist and Nilsson 

2000), the most common being energy expenditure, increased risk of predation due to decreased 
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motility or greater visibility and loss of other mating opportunities. Besides the costs of mating 

themselves, male adaptations to sperm competition can also be costly for females. Females risk 

suffering from sexual harassment (McLain & Pratt 1999; Rossi et al. 2010), injury caused by male 

genitalia (Blanckenhorn et al. 2002; Rönn et al. 2007) and the effect of toxic ejaculate substances. For 

example, the seminal products transferred with sperm can have dramatic effects on female 

reproductive physiology, reducing its receptivity and longevity (Arnqvist & Rowe 2005). This was 

demonstrated in Drosophila melanogaster, in which an increasing exposure to products in the seminal 

fluid led to increased death rate in females (Chapman et al. 1995).  

The differences in costs and benefits obtained with each mating by males and females will give 

rise to sexual conflicts (Arnqvist & Rowe 2005). Note that in sexual diploid species it is always beneficial 

for both males and females to mate at least once, as mating is necessary to produce offspring (Arnqvist 

& Rowe 2005). In this case, we do not expect sexual conflicts to arise over the first mating of an 

individual. However, this is not the case in haplodiploid species, as we will see in section 1.5.  

Sexual conflicts occur whenever the fitness optimum of the sexes differs (Arnqvist & Rowe 

2005). There are numerous examples that confirm the existence of sexual conflicts over mating rate 

and describe the reproductive tactics employed either to persuade or to resist matings (for review see 

Göran Arnqvist and Rowe 2005). For instance, in the water strider Rheumatobates rileyi, males have 

grasping antennal claspers to grab females during copulation (Figure 7). In response, females possess 

modified genital segments that appear to reduce the efficiency of male grasping devices (Arnqvist & 

Rowe 2005). However, rejecting male attempts can become too costly for females (Arnqvist & Rowe 

2005). In these situations, females can mate at a rate higher than their optimum to avoid the costs of 

rejecting unnecessary mates, a phenomenon called convenience polyandry (Thornhill & Alcock 1983; 

Snook 2014). Note however, that females can harm males too during copulation, the most extreme 

cases being when males are eaten by females, as seen in several species of spiders (Arnqvist & Rowe 

2005). Even though females are frequently the sex with the lowest optimum mating rate, multiple 

mating does not have to be always costly for females.  

Polyandry is easily explained when females gain direct benefits by mating multiply. As in pre-

copulatory mate choice, multiple mating is considered a direct benefit when it increases females 

reproductive output (Danielsson 1998). Multiply-mated females can directly benefit from nutrients in 

the ejaculate and nuptial gifts, which can increase egg production in females and/or their longevity. 

Arnqvist and Nilsson (2000) have found compelling evidence that direct benefits can explain polyandry 

in several species, especially when nuptial gifts are involved. In addition, females can also benefit with 

increased parental care and guarding services for herself and her offspring. Finally, polyandry can 
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prevent against infertility when infertile or sperm depleted males are frequent in the populations 

(Snook 2014). In fact, the proportion of infertile matings in insects is quite high, varying between 0% 

and 63%, with a median of 22%, in a study with 30 insect species (Garcia-Gonzalez 2004). Ironically, 

polyandry can be the solution of sperm depletion but also the cause, when males mate with several 

females.  

 

 

 

Figure 7. a) Male and female evolved structures in response to sexual conflicts. Scanning electron microphotograph 

of the antennae of female (left) and male (right) Rheumatobates rileyi. The male uses his modified large antennae 

to grasp the female near the eye during the mating struggle in an attempt to subdue her (Image: Lock Rowe, 

university of Toronto) b) Female (left) and male (right) Rheumatobates rileyi. Adapted from Westlake, Rowe, and 

Currie 2000. 

 

Moreover, females might gain from polyandry indirectly, through increased performance of 

their offspring. As seen before, pre-copulatory mate choice can target genes that increase offspring 

performance. However, when gene quality cannot be assessed prior to mating, females may mate 

multiply to increase their chances of finding good quality sires. When there is variation in the genetic 

quality of males, multiple mating enables the female to exercise mate cryptic choice, thus improving 

offspring quality (the “good genes” hypothesis; reviewed in Andersson 1994; Davies, Krebs, and West 

2012; Snook 2014). The same logic is applied when there is variation in insemination success. By mating 

a) 

b) 
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repeatedly, the female is ensuring that the most competitive sperm will be the one fertilizing her eggs, 

thereby increasing the probability that her sons will also have competitive sperm (“sexy sperm” 

hypothesis; Parker 1970; Snook 2014). Moreover, polyandry can allow for increased genetic diversity 

of offspring which can be advantageous in unpredictable environments (Danielsson 1998). For instance, 

in the bumble bee Bombus terrestris, polyandry can increase colony resistance to parasites, thereby 

maximizing the chances that at least some individuals survive (Schmid-Hempel & Baer 1999). Finally, 

genetic benefits can be obtained through polyandry if females remate in order to avoid incompatible 

alleles (genetic incompatibility hypothesis; (Zeh & Zeh 1996; Zeh & Zeh 1997; Tregenza & Wedell 2000). 

By mating multiply, females will reduce the risk of mating with incompatible males only. In this case, 

polyandry is expected to increase the number of offspring, rather than improve offspring quality.  

 

1.4 How mating systems and sperm priority patterns affect costs, benefits and conflicts over 

mating 

Mating systems have long been recognized to influence the evolution of different mating strategies. 

For instance, in species where females are continuously receptive, monopolization is often impossible 

and pre-copulatory competition is, consequently, weak. However, competition among males can be 

extreme when females mate only once. For example, this may select for protandry - when males 

emerge or reach sexual maturity sooner than females- leading to increased monopolization of females 

(Kvarnemo and Simmons 2013, Simmons 2001). This phenomenon is observed in solitary bees, where 

males become adults several days before females and compete intensively for access to females as 

soon as they emerge, with larger males winning more matings (Paxton 2005).  

 Hosken et al. (2009) have reasoned that in monandrous species, where future matings do not 

exist, there may be conflicts of interest between males and females prior to mating, for instance over 

finding the best partner, but once mating has occurred the conflict between males and females 

disappears. The same rationale could be applied for mate competition or choice. Consequently, in 

monandrous species, we do not expect selection for post-copulatory strategies in either sex. Indeed, 

polyandrous species often present more complex male genitalia than monandrous species, suggesting 

that intra-sexual competition is more intense in the former (Hosken & Ward 2001; Crudgington et al. 

2009; Simmons & García-González 2008). However, this is only true if there is no potential for future 

matings, e.i. if monogamy is not imposed by one sex on the other. Otherwise monogamy is actually a 

consequence of sexual conflict (Hosken et al. 2009). In fact, monandry can be imposed by males upon 

females via defensive strategies against sperm competition. In the house fly Musca domestica, for 
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example, seminal fluids transferred with the sperm are responsible for permanently switching off the 

receptivity of females (Leopold et al. 1971). 

In polyandrous species, sexual conflicts and competition among mates continues after mating. 

Insemination success should depend on the outcome of the male strategies summarized above, such 

as the ability to reach and fertilize eggs and to displace other sperm (Kvarnemo & Simmons 2013), and 

on cryptic choice. The combination of these strategies will produce a pattern of sperm priority (or sperm 

precedence). Sperm priority patterns are generally classified as the species mean value of P2 – the 

proportion of offspring sired by the second of two males (Simmons 2001). Among insect species, 

around 45% show mixed sperm utilization, 45% last male precedence and 10% first male sperm 

precedence (Simmons 2001). Note, however, that first male sperm precedence seems to be more 

frequent in arachnids, namely in spiders, than in insects (Austad 1984; Wedell et al. 2002).  

Different patterns of sperm precedence reflect differences in mating opportunities. 

Accordingly, the patterns of sperm priority should influence mate choice. For instance, males are 

expected to adjust ejaculate investment differently, depending on the sperm precedence pattern 

(Engqvist & Reinhold 2006; Wedell et al. 2002). If the first male that mates with a female sires most of 

her offspring (first-male sperm precedence), males are expected to transfer more sperm when mating 

with virgins than with mated females, as mated females provide lower fertilization opportunities 

(Bonduriansky 2001). Indeed, in several species with first male sperm precedence, like the spiny orb 

weaver Micrathena gracilis, males provide fewer sperm to mated females than to virgins (Wedell et al. 

2002; Bukowski & Christenson 1997; Yasui 1996). Alternately, males can choose unmated females prior 

to mating, as shown in the bushcricket Requena verticalis. In this species, males have been shown to 

prefer mating with younger females that are more likely to be virgin (Simmons et al. 1994). The opposite 

behaviour is expected in species with last male sperm precedence, where mating with mated females 

is expected to result in a higher proportion of offspring being fertilized.  

Several hypotheses have been put forward to explain the variation in sperm priority patterns 

among species. In a comparative study with 57 insects, Ridley (1989) found support for the influence 

of mating frequency. In his hypothesis, he reasoned that in species with last male sperm precedence 

selection for increased mating rate should occur whereas if the first male was the most successful, then 

the species should evolve towards monandry. The evolutionary expectations for first male sperm 

precedence should thus be similar to the ones outlined for monandry. Indeed, strong selection pressure 

for the evolution of pre-copulatory strategies, such as protandry and pre-copulatory mate guarding, is 

found in species where the first male sires most of the offspring (Simmons 2001).  
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Besides variance in sperm priority observed among species, within species variance can be 

quite large as well (Simmons 2001). This variation can be due to differences in male competitive ability 

and in cryptic choice (Danielsson 1998). For instance, variation in sperm priority has been found to 

correlate with copulation duration, male size, sperm size, and seminal proteins. In addition, other 

factors such as the number of rematings, the interval between matings and sperm depletion may 

influence sperm priority (Amitin et al. 2014; Danielsson 1998; Zeh & Zeh 1994; Simmons 2001). For 

example, in the wasp Dahlbominus fuscipennis, when two successive matings occur within a few hours, 

there is sperm mixing. However, when the period between matings is longer, the sperm from the first 

male fertilizes the majority of the eggs (Wilkes 1966).  

 

1.5 Haplodiploidy and sexual conflicts over mating rate 

Unlike what happens in diploids, females in haplodiploid species can produce unfertilized offspring. 

Consequently, the conflict over mating can concern the act of mating itself, as females can potentially 

reproduce without paying the costs of mating. For example, in female-biased populations, producing 

sons is more advantageous than producing daughters. In haplodiploids this means that remaining a 

virgin in these conditions is beneficial (Charlat et al. 2003; Godfray 1990). This particularity of 

haplodiploids can be particularly useful in empirical studies, because it allows disentangling the cost of 

reproduction from the cost of mating.  

 

2. Host-symbiont conflicts over mating strategies 

Endosymbiotic bacteria are considered selfish genetic elements (SGE) because they employ various 

tactics, like altering their hosts behaviour or physiology, in order to favour their own transmission 

(reviewed in Wedell 2013; Price and Wedell 2008; Goodacre et al. 2006; Goodacre and Martin 2012). 

In the next section (2.1) I will review some of these tactics. As these bacteria are mainly transmitted 

through the female germ line, the tactics they employ to ensure their transmission may affect male and 

female mating strategies. Moreover, given the significant effects of these bacteria on the fitness of their 

hosts, hosts have evolved strategies to avoid or reduce infection costs, as we will see in section 2.2. In 

addition, the mode of reproduction of the host can affect the host-endosymbiont interaction. In section 

2.3, I will discuss the impact of haplodiploidy in cytoplasmic incompatibility, one of the reproductive 

phenotypes induced by Wolbachia. Finally, I will highlight some of the evolutionary implications of the 

interaction between hosts and endosymbionts (Zuk and Wedell 2014, section 2.4).  
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2.1 Effects of endosymbionts on host biology 

Endosymbiotic bacteria that act as SGEs are quite common in arthropods. Indeed, several intracellular 

bacterial lineages infect arthropods, like Ricketsiales, which include Wolbachia and Rickettsia, 

Bacteroidetes such as Cardinium, and Mollicutes such as Spiroplasma and Arsenophonus (Goodacre & 

Martin 2012). The most well studied bacterium in this context, Wolbachia, has been found in more than 

65% species of insect (Werren et al. 2008).  

Endosymbionts can promote their transmission through a variety of mechanisms. A summary 

of the four classical bacterial-induced phenotypes can be found in Table 1. These strategies include 

feminization, parthenogenesis induction, male killing and cytoplasmic incompatibility (CI) (Werren et 

al. 2008). Here, I will focus on cytoplasmic incompatibility (CI, henceforth), the most frequently found 

phenotype and the one present in Tetranychus urticae. I will also focus my attention on Wolbachia, the 

symbiont studied in my work.  

Besides these phenotypes, symbionts have been shown to induce a wide range of additional 

effects on host physiology and behaviour (Goodacre & Martin 2012), the most common being directly 

related to reproductive processes, as SGE frequently target sex cells (Zuk & Wedell 2014). Symbionts 

manipulation can be achieved, for instance, by modifying sperm during development. Such 

modification can affect traits like male fertility or its competitive ability (Price & Wedell 2008). For 

example, in the sperm heteromorphic Mediterranean flour moth, Ephestia kuehniella, infected males 

transfer fewer fertile sperm than uninfected males (Lewis et al. 2011). Likewise, Drosophila simulans 

males infected with Wolbachia, have a decrease in fertility of 94% compared to uninfected males, due 

to a decrease in sperm production (Snook et al. 2000). In contrast, in Tribolium confusum, the fertility 

of infected males is higher than that of uninfected males (Wade & Chang 1995). However, infected 

females of this species produce fewer offspring than uninfected ones (Wade & Chang 1995), suggesting 

endosymbionts can also affect female physiology.  

The effects of symbionts on the physiology and behaviour of the host can also be extended to 

traits unrelated to reproduction. For instance, symbionts can alter host susceptibility to viruses and 

fungi, change their susceptibility to pesticides or increase their survival (reviewed in (Haine 2008; 

Brownlie & Johnson 2009; Goodacre & Martin 2012). In Drosophila neotestacea, for example, 

Spiroplasma protects against the sterilizing effects of a parasitic nematode (Jaenike et al. 2010). Non-

reproductive behaviours include changes in dispersal (Alexandrov et al. 2007) and larval competitive 

ability (Goodacre et al. 2009). 
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Table 1 Symbiont-induced phenotypes in arthropods. Adapted from Werren et al. 2008 and Engelstädter and Hurst 

2009. 

 

 

Feminization is the process through which genetic males develop as 

females. Symbiont presence results in the hypertrophy of the 

androgenic gland of males inhibiting its function.  

Feminization has been described in the Hemiptera, Isopoda, 

Crustacea, Acari and Lepidoptera orders and can be induced by 

Wolbachia and Cardinium. 

 

 

Parthenogenesis induction has only been described in species with 

arrhenotokous development (haploid males result for unfertilized 

haploid eggs and diploid females stem from fertilized diploid eggs). 

Infected females produce daughters from unfertilized eggs which, 

unlike males, are able to transmit the symbiont to the following 

generations.  

Parthenogenesis is found in the Acari, Hymenoptera and 

Thysanoptera orders, induced by Cardinium, Wolbachia or 

Rickettsia. 

 

 

Male killing eliminates infected males mainly during 

embryogenesis, to the advantage of surviving infected female 

sibling.  

Male killing has been found in the Coleoptera, Diptera, Lepidoptera, 

Pseudoscorpiones, Hemiptera and Hymenoptera orders. 

Wolbachia, Rickettsia, Spiroplasma and Arsenophonus habe been 

found to induce this phenotype.  

 

 

Cytoplasmic incompatibility (CI) results in unsuccessful crosses 

between infected males and uninfected females or females that 

lack the same symbiont types.  CI speeds the spread of the symbiont 

in host populations but it diminishes the reproductive success of 

these female hosts.  

CI is induced by Wolbachia and Cardinium and was described in the 

Acari, Coleoptera, Diptera, Hemiptera, Hymenoptera, Isopoda, 

Lepidoptera and Orthoptera orders. This phenomenon is detailed 

in section 2.1.1. 
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2.1.1 Cytoplasmic incompatibility 

CI occurs when sperm from infected males is not compatible with the ovocyte of females, resulting in 

the disruption of embryonic development. In this process, Wolbachia acts in two ways: it induces the 

modification of sperm during spermatogenesis and it rescues embryos infected with the same 

Wolbachia strain, a process called “modification-rescue”. The mechanism of CI is currently unknown, 

although several propositions have been put forward (Poinsot et al. 2003; Lepage et al. 2017; Beckmann 

et al. 2017). Nevertheless, cytological work revealed that the incompatibility is due to an asynchrony of 

the male and female pro-nuclei in the beginning of mitosis. During metaphase, female’s chromatids 

become properly condensed while male’s chromosomes remain in a semi-condensed state, which 

hampers a proper segregation of paternal chromosomes during anaphase (Werren, Baldo, and Clark 

2008; Tram and Sullivan 2002; Figure 8). The outcome of CI is frequently the haploid development of 

the egg. In diploid species, this normally results in embryonic mortality but in haplodiploids it can result 

in normal male development (section 2.3).  

There are two types of CI, unidirectional and bidirectional (Werren et al. 2008). Unidirectional 

CI occurs in crosses between Wolbachia-uninfected females and Wolbachia-infected males. The 

opposite cross, between Wolbachia-infected females and Wolbachia-uninfected males, is compatible. 

Bidirectional CI arises when two different Wolbachia strains have different modification-rescue 

mechanisms, in which case, crosses are incompatible in both directions.  

Furthermore, CI can be incomplete, whenever some fertilized offspring is produced from 

incompatible matings, and the level of CI induction varies from 0 to 99%. In addition, maternal 

transmission fidelity is not always complete, in which case a small portion of the offspring of infected 

females is uninfected. Note that the level and type of CI may not completely depend on the bacteria 

itself. For instance, the level of CI can be correlated with the host genotype, bacterial density in the 

testes, male’s age and mating history (Zhao et al. 2013; Goodacre & Martin 2012). 
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Figure 8. Cytological basis of symbiont-induced cytoplasmic incompatibility. During metaphase, the chromatids of 

the female become properly condensed while male chromosomes remain in a semi-condensed state, which 

hampers a proper segregation of paternal chromosomes during anaphase. Adapted from Werren, Baldo, and Clark 

2008.  

 

2.2 Host responses to symbiont effects on reproduction 

Phenotypes induced by symbionts, such as reduced fertility or CI, have serious negative consequences 

on the reproductive success of the hosts. Uninfected hosts are thus expected to evolve strategies to 

avoid infected individuals or reduce the effect of infection. This avoidance can be achieved via pre-

copulatory mate choice or through multiple mating.  

2.2.1 Mate choice as strategy against endosymbionts effects on host reproduction 

An obvious prediction resulting from the negative effects of selfish genetic elements is that uninfected 

individuals should avoid mating with infected ones (Vala et al. 2004; Zuk & Wedell 2014; Tregenza & 
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Wedell 2000). Indeed, different theoretical models have shown that mate preference for uninfected 

males can evolve in populations with uni- or bidirectional CI-inducing Wolbachia (Telschow et al. 2005; 

Telschow et al. 2007). Similarly, male preference for uninfected females is predicted to evolve in 

populations harbouring male-killing Wolbachia (Randerson et al. 2000).  However, empirical studies 

provide evidence both in favour (Moreau et al. 2001; Vala et al. 2004; Sullivan & Jaenike 2006; Koukou 

et al. 2006) and against (Hoffmann et al. 1990; Wade & Chang 1995; Jiggins et al. 2002; Sullivan & 

Jaenike 2006; Champion de Crespigny et al. 2007; Duron et al. 2011; Arbuthnott et al. 2016) the 

existence of mate discrimination in species carrying endosymbionts. For instance, in the spider mite T. 

urticae, uninfected females prefer uninfected over males infected with CI-inducing Wolbachia, while 

infected females show no preference (Vala et al. 2004, Figure 13a). Likewise, in D. melanogaster, the 

removal of Wolbachia responsible for the induction of bi-directional CI, decreases the levels of mate 

discrimination between populations by around 50%, suggesting Wolbachia is responsible for the 

assortative mating observed (Koukou et al. 2006, Figure 9). In turn, in the African butterfly Acrea 

encelon and in Drosophila innubila, male-killing Wolbachia does not elicit preference for uninfected 

females (Jiggins et al. 2002; Sullivan & Jaenike 2006). Also, in D. simulans and D. melanogaster neither 

uninfected females nor CI-inducing Wolbachia infected males show preference for infected or 

uninfected mates (Champion de Crespigny et al. 2007).  

          

Figure 9. Effect of Wolbachia on the reproductive isolation between population of Drosophila melanogaster. Treated 

populations show a significant reduction in the level of assortative mating compared to untreated populations. 

Dark blocks show original untreated infected populations and white blocks the treated uninfected duplicated 

populations. Population identity: CM1, CM2, DE1, DE2. W superscript: Wolbachia-infected individuals; U 

superscript: Wolbachia-uninfected individuals; T superscript: tetracycline treated individuals; N: total number of 

matings observed. Adapted from Koukou et al. 2006 Drawing from Jeffrey Hall, Brandeis University. 
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The different results obtained across studies suggest that pre-copulatory mate preference is by 

no means universal, even if the effect on the host reproductive success is high. Most likely, the evolution 

of this behaviour depends on different factors, including the interaction between host and symbiont 

genomes. Indeed, different species of Nasonia exhibited different patterns of mate discrimination, 

being the ability to discriminate highly influenced, among other factors, by the natural distribution of 

the populations of each species (Buellesbach et al. 2014).  In addition, another study in D. melanogaster 

has shown that assortative mating depends on the infection status as well as on the genotype of the 

host (Markov et al. 2009).  

 Another way by which the host might exert mate preference is through strategic sperm 

expenditure (Price & Wedell 2008). This was indeed found in some systems. For instance, in the 

terrestrial pill-bug Armadillidium vulgare, males become sperm depleted when they mate multiple 

times. However, sperm depletion affects the fertility of females differently according to their infection 

status. Indeed, males transfer fewer sperm to females infected with feminizing Wolbachia, this way 

only reducing the fertility of these type of females (Rigaud & Moreau 2004). This conditional decrease 

of fertility should reduce the spread of Wolbachia in host populations (Rigaud & Moreau 2004). 

2.2.2 Polyandry as strategy against endosymbionts effects on host reproduction 

As stated in section 1.3, polyandry can be beneficial against genetic incompatibilities resulting from 

crosses with endosymbiont-infected individuals (Zeh & Zeh 1997; Wedell 2013; Zeh & Zeh 1996). By 

mating multiply, individuals improve the probability of mating with a compatible mate. This can occur 

through two different non-exclusive mechanisms. On the one hand, females might evolve the ability to 

bias paternity in favour of sperm from uninfected males. In this case, polyandry allows for cryptic female 

choice depending on the infection status of the male sperm. On the other hand, mating multiple times 

may promote sperm competition, without the need for female cryptic choice (Price & Wedell 2008).  

The success of both mechanisms might be contingent on the existence of costs that affect the 

mating success of infected males. Indeed, decreased sperm competitive ability of infected males is very 

frequent in species carrying SGE’s (Price & Wedell 2008). For example, in D. simulans multiple mating 

reduces significantly the costs of CI-inducing Wolbachia, owing to the decreased competitive ability of 

infected males (Champion de Crespigny & Wedell 2006; Champion de Crespigny, Hurst, and Wedell 

2007, Figure 10). This competitive disadvantage is thought to occur due to a decrease in the fertility of 

D. simulans infected males (Snook et al. 2000).   
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Figure 10. Paternity and offspring proportion in Drosophila simulans. a) Mean paternity achieved by infected and 

uninfected males in crosses with infected females. Paternity is presented as P2, the proportion of offspring sired 

by the second male to mate. Infected males exhibit a lower P2 than uninfected males, suggesting a decrease in 

sperm competitive ability. Adapted from Champion de Crespigny & Wedell 2006 b) Mean offspring production of 

polyandrous females. Dark gray bars indicate crosses where all males are incompatible with females. Light gray 

bars indicate crosses where one of two males is incompatible. White bars indicate entirely compatible crosses. 

Female and male infection status are described in the x-axes. In male infection status, the first letter indicates the 

infection status of the first male and the second letter the infection status of the second male. I - infected male, U 

- uninfected male. Adapted from Champion de Crespigny et al. 2007 

 

There are two theoretical predictions concerning polyandry and reproductive manipulators 

(Zuk & Wedell 2014): First, endosymbionts may promote the spread of polyandry in the host. Second, 

polyandry may inhibit or prevent the spread of reproductive manipulators within populations. A model 

built upon the results obtained in Drosophila simulans tested both predictions (Champion de Crespigny 

et al. 2007). On the one hand, they found that polyandry could inhibit or prevent the spread of 

Wolbachia in this species. On the other hand, they could not find support for the hypothesis that 

Wolbachia-induced CI promotes the evolution of polyandry. This was due mainly to the low probability 

of double matings with infected and uninfected males with increased infection prevalence and owing 

a) 

b) 
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to costs associated with multiple mating (Champion de Crespigny et al. 2007). Nonetheless, there are 

several lines of evidence supporting the hypothesis that the phenotypic effects of selfish genetic 

elements other than symbionts can promote polyandry (Zuk & Wedell 2014). For example, D. 

pseudoobscura uninfected females evolved increased mating rates when exposed for 10 generations 

to the risk of mating with males carrying a deleterious sex-ratio distorter (Price et al. 2008, Figure 11). 

In this case, mating rate was seen as a measure of the level of polyandry in the population, leading the 

authors to conclude that the risk of incompatible matings drove the evolution of polyandry.  

 

 

Figure 11. Proportion of D. pseudoobscura females observed re-mating after 10 generations of experimental 

evolution, for each selection regime. Uninfected females exposed to the risk of mating with males carrying a 

deleterious sex-ratio distorter evolved increased mating rates. No SR equal sex ratio: lines lacking a sex-ratio 

distorter maintained at a 1:1 female-to-male sex-ratio. No SR female biased: lines lacking a sex-ratio distorter 

maintained at a 2:1 female-to-male sex-ratio. SR present female biased: lines carrying a sex-ratio distorter (sex-

ratio) at an initial frequency of 30% maintained at a 2:1 female-to-male sex-ratio. *** P<0.001, n.s. - not 

significant. Adapted from Price et al. 2008 

 

The presence of endosymbionts is also associated with changes in male mating rate. For 

instance, D. simulans and D. melanogaster Wolbachia-infected males show higher mating rates than 

uninfected males (Champion de Crespigny et al. 2006). This behaviour can be Wolbachia-induced, as 

increased mating frequency will speed the endosymbiont spread in the population. Alternately, it can 

also be an adaptation of the host itself. In fact, matings with infected D. simulans males that have 

previously mated multiple times lead to reduced levels of CI, compared to matings with infected males 

that have mated only once (Karr et al. 1998). Increased mating rate could thus be a strategy of infected 

males to restore reproductive compatibility with uninfected females.  



 
28 

2.3 The consequences of haplodiploidy in host-symbiont conflicts 

The mode of reproduction of the host can influence the interaction between the host and the symbiont. 

Here I focus on the effects of haplodiploidy in the interaction between hosts and CI-inducing Wolbachia.  

In diploid species, CI results in an increase in F1 mortality. However, in haplodiploids, 

incompatible matings due to CI result in male-biased sex ratio. This occurs because in haplodiploids 

males come from unfertilized eggs and, consequently, they are not affected by CI. In haplodiploids there 

are two possible outcomes for fertilized eggs, resulting in two different modes of CI expression. In some 

species, like Nasonia vitripennis, CI causes complete loss of the paternal chromosomes in fertilized eggs, 

resulting in complete haploidization of the egg, thus increasing male proportion in the F1 at the 

expenses of the proportion of females (Breeuwer & Werren 1990). In other species, like the parasitoid 

wasp Leptopilina heterotoma, CI leads to the mortality of fertilized eggs, which decreases the number 

of females without affecting the number of males (Vavre et al. 2000). Note, however, that the mode of 

CI is not fixed within species. For instance, in T. urticae, both modes of CI have been documented 

(Breeuwer 1997; Perrot-Minnot et al. 2002). Regardless of the mode of CI, as male production is not 

affected in incompatible crosses, the conflict between haplodiploid host and Wolbachia is expected to 

be weaker than in diploid species.  

Haplodiploidy can also impact on the predictions concerning the threshold of Wolbachia 

invasion, i.e., the frequency below which the infection will disappear. Vavre et al. (2000) found that 

haplodiploidy should increase the threshold of infection, even more so when fertilized eggs originate 

males. This is because an uninfected male-biased sex-ratio decreases the proportion of infected males 

in the population, thereby reducing the probability of incompatible matings.  

Furthermore, an extra level of conflict should arise between Wolbachia and a haplodiploid host. 

In fact, females and Wolbachia do not have the same optimum sex-ratio. On the one hand, Wolbachia 

is expected to increase its transmission with increased number of infected females in the population. 

On the other hand, the female host benefits with the production of sons, as soon as the population sex-

ratio becomes female-biased, and provided it is not under local mate competition. The existence of this 

conflict has been elegantly demonstrated in T. urticae. Vala et al. (2003) found that Wolbachia-infected 

females produced a normal sex-ratio (around 30% males), while cured females produced a male-biased 

sex-ratio. However, 42 generations after curing, the sex-ratio of cured females changed back, 

approaching the sex-ratio produced by infected females. This suggests that the host evolved a 

compensatory mechanism that allowed infected females to produce the sex-ratio favoured by nuclear 

genes (Vala et al. 2003), this way solving the conflict in favour of the host. A more extreme example of 

host compensatory mechanism was found in Telenomus nawai. In populations infected with 



 
29 

Polyandry and host-endosymbiont conflicts  

in the spider mite Tetranychus urticae 

parthenogenesis-inducing bacteria, the benefit of producing sons for the haplodiploid host appears to 

have driven “functional virginity” to fixation, thereby eliminating sexual reproduction (Huigens & 

Stouthamer 2003; Jeong & Stouthamer 2005). 

 

2.4 Evolutionary implications of endosymbiotic-driven changes in host behaviour 

Infection can cause a restriction of gene flow within populations, for instance when it leads to 

incompatible crosses between uninfected females and infected males. Even if spatially or temporal 

restricted, such a restriction can potentially help the process of reproductive isolation and thus 

influence speciation (Engelstädter & Hurst 2009; Brucker & Bordenstein 2012; Shropshire et al. 2016; 

Hurst & Werren 2001). Furthermore, the existence of CI-induced costs can select for pre-mating 

isolation in the host, i.e reinforcement, strengthening reproductive isolation (Shropshire et al. 2016; 

Brucker & Bordenstein 2012). There are several theoretical models that studied the effect of CI-

inducing Wolbachia in speciation (Telschow et al. 2005; Telschow et al. 2007). In addition, empirical 

support for the existence of reinforcement was found in two sympatric species of Drosophila, D. recens 

fully infected by Wolbachia, and D. recens fully uninfected (Jaenike et al. 2006). Matings between 

uninfected D. subquinaria females and D. recens infected males result in a decrease of offspring viability 

due to interspecific CI. The opposite cross, between uninfected D. recens females and D. subquinaria 

infected males, on the contrary, is completely viable. In accordance to this, D. subquinaria females from 

the zone of sympatry discriminate against infected D. recens males, whereas females of the same 

species from allopatric populations do not. Furthermore, D. recens do no exhibit discrimination. This 

suggests that mate discrimination in D. subquinaria against D. recens in sympatry is promoted by 

selection against Wolbachia effects (Jaenike et al. 2006).  Besides this study, behavioural isolation 

promoted by the presence of Ci-inducing Wolbachia has been found, for instance, in populations of D. 

melanogaster that had been selected for 30 years for tolerance to toxins in food (Koukou et al. 2006) 

(Figure 9) and in the D. paulistorum complex of sympatric semi-species (Miller et al. 2010). In the first, 

the curing of Wolbachia using tetracycline leads to a 50% decrease in mate discrimination between 

populations, suggesting Wolbachia was responsible for the assortative mating observed (Koukou et al. 

2006). In the second, Drosophila paulistorum individuals infected with obligate mutualistic Wolbachia 

preferentially mate with individuals of their semi-species, which harbour the same type of Wolbachia. 

This ability is lost after mild rifampicin treatment, which leads to lower Wolbachia density (Miller et al. 

2010).  

Even when Wolbachia-induced costs do not lead to speciation, changes in the behaviour of the 

host, such as changes in dispersal or mating preference, are expected to influence the host genetic 
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diversity. For instance, changes in the number of reproducing individuals, due to CI or male-killing, will 

reduce the effective population size (Engelstädter 2010), which will render populations more sensitive 

to the effect of drift. Decreased genetic variability will ultimately reduce the ability of populations to 

adapt and persist (Goodacre & Martin 2012). In addition, both reduced effective size and altered host 

behaviour are expected to affect the strength and shape of sexual selection and sexual conflicts (Martin 

& Hosken 2003; Hayashi et al. 2007). For instance, Martin and Hosken (2003) evolved for 44 generations 

populations of Sepsis cynipsea at different densities. They found that large populations have stronger 

sexual conflict than small populations. In addition, larger populations diverged to a greater extent that 

smaller populations, probably owing to the increased sexual conflicts with density. Endosymbiont-

induced changes can also, on the contrary, favour population expansion, for instance by increasing 

females mating rate or by inducing parthenogenesis (Goodacre & Martin 2012).  

 

3. Biology of the two-spotted spider mite Tetranychus urticae 

In this section I will provide a brief description of the model species used in all experiments, the two-

spotted spider mite Tetranychus urticae (section 3.1). I will then focus on its reproduction (section 3.2) 

and what is known about Wolbachia infection in this species (section 3.3).  

3.1 General description  

The two-spotted spider mite Tretanychus urticae is a polyphagous mite that occurs on hundreds of 

different plants around the world, including crop plants of high economic importance such as tomato, 

bean and rose. Because it inflicts harm to their host plants, many of which of economic value, is it 

considered an important agriculture pest (Helle & Sabelis 1985).  

Spider mites are characterized by an arrhenotokous genetic system, i.e., males are haploid, 

stemming from unfertilized eggs, whereas females are diploid, resulting from fertilized eggs (Helle and 

Sabelis 1985, Figure 12). Consequently, unfertilized females produce sons, whereas mated females 

produce sons and daughters. Haploid eggs are smaller than diploid eggs (Macke et al. 2011a) and males 

have approximately 15 to 30% of female’s body weight (Mitchell 1973). Typically, their adult sex ratio 

is female biased (around 70% females; Mitchell 1972) but it can change with several factors such as 

temperature, maternal age and different scales of mate competition (Roy et al. 2003; Macke et al. 

2011b; Macke et al. 2012).  

During their life cycle, individuals go from egg to adult, passing through a six-legged larva and 

two eight-legged nymph stages, called protonymph and deutonymph stages. Between each mobile 
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stage, individuals undergo a quiescent period (Helle & Sabelis 1985) (Figure 12). Developmental time 

depends on factors such as temperature and humidity and is generally very fast (around 10 days at 

25ºC). In addition, spider mites are protandrous, i.e., males reach sexual maturity before females (Helle 

& Sabelis 1985; Boudreaux 1963).  

 

Figure 12. Life cycle and mode of reproduction of the spider mite Tetranhycus urticae. Individuals go from egg to 

adult, passing through 3 juvenile stages. Between each mobile stage, individuals undergo a quiescent period. 

Spider mites are haplodiploids, i.e., males are haploid, stemming from unfertilized eggs, whereas females are 

diploid, resulting from fertilized eggs. 

 

Spider mites have poor eye sight and often use chemicals to perceive surrounding information, 

like the presence of predators (Grostal & Dicke 1999; Pallini et al. 1997) or of potential mates (Rodrigues 

et al. 2017; Penman & Cone 1974; Penman & Cone 1972; Royalty et al. 1992). In addition, all 

developmental stages, while walking, spin web that can be used in locomotion and dispersal, protection 

against predators and adverse conditions and facilitation of mating encounters (Gerson 1985; Clotuche 

et al. 2011). Individuals distribute in patches and reproduce locally (Mitchell 1973). Thus, at low density 

sib-mating is often the rule but with increased individual numbers, matings occur mainly between non-

relatives.  With population growth, the density of spider mites peaks and the leaf becomes 

overexploited. At this point, young mated females disperse to find a new host plant and establish a new 

colony.  They achieve this by walking or by the wind attached to silk threads, a phenomenon called 

“ballooning” (Helle & Sabelis 1985).   
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3.2 Reproduction and mating behaviour in spider mites 

In T. urticae, females can lay eggs up to 10 eggs a day for a period of 20-30 days (Wrensch & Young 

1975). Fertilization occurs directly in the ovary, after sperm migration through the haemolymph 

towards the oocytes, suggesting that it occurs very early during egg development, just before the end 

of vitellogenesis (Pijnacker & Drenth-Diephuis 1973). Females produce all their fertilized eggs using the 

sperm of the first male they mate with, hence this species presents first male sperm precedence (in T. 

urticae, Helle 1967; in T. kanzawai, Oku 2008). Subsequent matings are ineffective, except if the first 

mating is incomplete, for example if it is interrupted (Satoh et al. 2001; Potter & Wrensch 1978).  The 

mechanism underlying sperm priority remains unclear, although several propositions have been put 

forward (mating plug, Boudreaux 1963; threshold of sperm volume, Overmeer 1972).  

Males form this species behave according to what is expected by theory for species with first 

male sperm precedence: Males actively guard quiescent, soon to be adult, females and mate with them 

as soon as they start emerging as adults (Boudreaux 1963; Potter et al. 1976). In addition, males prefer 

to mate with adult virgins over mated females (Oku 2010; Rodrigues et al. 2017), and they fight for their 

possession in male-biased conditions (Potter et al. 1976). Moreover, prolonged copulation has been 

documented in this species, so that sperm precedence is ensured (Satoh et al. 2001).  

Surprisingly, copulations between mated females and males have been observed (Oku 2010; 

Rodrigues et al. 2017; Clemente et al. 2016). This behaviour is unexpected as males reproductive 

capacity is limited (Krainacker & Carey 1989) and females pay a cost of multiple matings, having lower 

fecundity and a smaller proportion of fertilized eggs, when compared with once-mated females (Macke 

et al. 2012). This puzzling mating behaviour has been the main subject of my thesis.  

 

3.3 Wolbachia infection in spider mites 

Spider mites are polymorphic for Wolbachia infection. Several studies have documented the 

distribution of Wolbachia and other symbionts in numerous species of spider mites (Enigl & 

Schausberger 2007; Gotoh et al. 2007; Breeuwer & Jacobs 1996; Gotoh et al. 2003). CI expression within 

T. urticae can range from none to complete CI and, as said before, it can result in the mortality or male 

conversion of fertilized eggs (Perrot-Minnot et al. 2002; Xie et al. 2011). Furthermore, considerable 

changes in Wolbachia density in males and females have been observed, depending on individuals age 

and mating history (Zhao et al. 2013). For instance, Wolbachia density in females increases with age, 

whereas in males it decreases (Zhao et al. 2013).  
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Besides CI, Wolbachia has been shown to lead to hybrid breakdown, with incompatible crosses 

resulting in a decrease in F2 viability (Vala et al. 2000). Furthermore, Wolbachia can influence T. urticae 

life-history traits differently across populations. For instance, in a study done by Xie, Chen, and Hong 

(2011), only one in three populations showed enhanced fecundity of infected females. In addition, both 

positive and negative effects of Wolbachia infection were found for survival and developmental time 

(Xie et al. 2011). These differences were found even though all populations had an identical wsp gene 

sequence, suggesting that there is an effect of the host genotype on CI expression.  

Finally, only one study so far as explored the response of T. urticae to the costs induced by CI-

inducing Wolbachia. In this study, uninfected females, cured by heat shock, prefer to mate with 

uninfected males, exhibiting assortative mating against males harbouring CI-inducing Wolbachia (Vala 

et al. 2004) (Figure 13a). In addition, both infected and uninfected females aggregate their eggs in the 

vicinity of eggs of the same infection status, thereby promoting sib-mating (Vala et al. 2004) (Figure 

13b). These results suggest that spider mites can avoid the costs of CI. However, this was done using 

one and two isofemale lines, respectively for each test, possibly not being representative of the 

behaviour of this species.   

   a) b) 

 

 

 

 

Figure 13. Tetranychus urticae adaptations against the costs induced by Wolbachia. a) Proportion of uninfected 

females from the R1 strain mating with infected or uninfected males. Uninfected females, cured by heat shock, 

prefer to mate with uninfected males, exhibiting assortative mating against males harbouring CI-inducing 

Wolbachia. b) Distribution of eggs laid by R females. Infected and uninfected females aggregate their eggs in the 

vicinity of eggs of the same infection status, thereby promoting sib-mating. U: Wolbachia-uninfected; W: 

Wolbachia-infected; N: number of individuals tested. Adapted from Vala et al. 2004 
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4. Outline of my thesis  

In this thesis, I begin by reviewing the literature on competition, in an attempt to reconcile the 

knowledge from different research fields, namely competition for food, competition for hosts and 

competition for mates (Chapter II; Rodrigues et al. 2016). I then focus on competition for mates, 

studying both pre- and post-copulatory mating strategies in the haplodiploid Tetranychus urticae. I start 

by investigating which type of cues males use in mate choice to distinguish females from different 

mating status (Chapter III; Rodrigues et al. 2017) and studying the potential benefits of polyandry to 

males and females (Chapter IV). In the two following chapters I address the consequences of 

endosymbiotic infection on females mating strategies. I test whether T. urticae females evolve 

assortative mating in order to avoid incompatible Wolbachia-infected mates (Chapter V) and study the 

importance of polyandry as strategy against Wolbachia induced costs (Chapter VI). 
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Abstract  

Competitive interactions shape the evolution of organisms. However, often it is not clear whether 

competition is the driving force behind the patterns observed. The recent use of experimental evolution 

in competitive environments can help establish such causality. Unfortunately, this literature is 

scattered, as competition for food, mates, and hosts are subject areas that belong to different research 

fields. Here, we group these bodies of literature, extract common processes and patterns concerning 

the role of competition in shaping evolutionary trajectories, and suggest perspectives stemming from 

an integrative view of competition across these research fields. This review reinstates the power of 

experimental evolution in addressing the evolutionary consequences of competition, but highlights 

potential pitfalls in the design of such experiments. 
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Sexual selection; coinfection; character displacement; virulence; male-male competition; selection 
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What does an experimental evolution approach add to the study of competition?  

Competition has been extensively studied using mathematical models ever since the Lotka-Volterra 

equations (Krebs 2001). Following these classical models, numerous ecological experiments were 

conducted in the laboratory (Birch 1953; Crombie 1945; Gause 1932) and in natural populations 

(Schoener 1983) providing many examples of both exclusion and coexistence between species or 

phenotypes competing for resources. Since then, competition has been studied in many contexts, and 

three main types of competition have been described (Box 1).    

Darwin identified competition as a source of evolutionary change (Krebs 2001). In fact, one can 

argue that all evolution results from a competitive advantage of one genotype over another. However, 

there are specific questions pertaining to the role of competition, as an ecological interaction, on the 

evolution of populations. For instance, do traits improving competitive ability evolve, especially in the 

face of trade-offs with other life-history traits (Hastings 1980; Levins & Culver 1971)? How does 

competition drives niche width, i.e., under which circumstances will individuals expand or contract the 

range of their resource use? When will character displacement evolve (Brown & Wilson 1956; 

Macarthur & Levins 1967)? How do eco-evolutionary feedbacks, arising from how competition impacts 

the resource itself, change evolutionary responses? Unfortunately, study systems in which a causal link 

between competition and these evolved responses can be inferred are scarce (Hastings 1980; Losos 

2000; Pfennig & Pfennig 2012). Moreover, past competitive exclusion is nearly impossible to detect in 

the wild, a phenomenon coined as ‘the ghost of competition past’ (Connell 1980). Therefore, actual 

forces and mechanisms driving organisms’ distributions and traits, and their impact on ecosystems, are 

difficult to assess retrospectively, hampering a complete understanding of the reciprocal effects of 

competition on evolution. 

One way to overcome this is using experimental evolution. This methodology consists of 

following real-time evolution of populations subjected to specific selection pressures under controlled 

conditions. Its explanatory power relies on: (i) knowledge of the ancestral (i.e., initial) state, (ii) easy 

manipulation of selection pressures, (iii) replication at the population level, and (iv) the ability to follow 

the dynamics of a process (i.e., evolutionary change over time), instead of measuring only the end 

product – the pattern (Kawecki et al. 2012; Magalhães & Matos 2012). Although this methodology has 

been used extensively to study other biotic interactions, such as antagonistic host-parasite interactions 

(Brockhurst & Koskella 2013) its use to address the evolutionary consequences of competition is 

relatively recent (Edward et al. 2010).  
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Type or 

resource 

Type of competition 

exploitative interference Apparent 

 Within 

mates 
increase sperm swimming 

ability 

increase production of toxins 

against other sperm, or resist 

toxins of other sperm 

increase evasion of or 

resistance to toxins produced 

by females 

food increase feeding rate 
increase weapons or resist 

those of competitors 

resist or evade antipredator 

(resource) traits 

hosts 
increase strain growth and 

virulence 

increase production of toxins, 

or resistance to toxins 

produced by competitors 

increase evasion of, or 

resistance to host immunity 

 Among 

mates 
increase females’ searching 

and monopolising ability 

increase weapons or resist 

those of competitors (e.g., 

horns) 

Increase male persistence to 

overcome female’s increase 

resistance to mating 

food 
increase home 

range/searching ability 

increase traits that allow 

defence or attack of territories 

Evade antipredator (resource) 

traits by exploiting a novel 

food source 

host 

increase strain 

transmission/searching 

ability/infectivity/survival 

outside the host 

increase production of toxins, 

or resistance to toxins 

produced by competitors 

Overcome host resistance to 

superinfection 

 

Table 1 Examples of expected evolutionary outcomes for interference, exploitative, and apparent competition when 

competition is for mates, food, and hosts. Expected outcomes are given for competition occurring at different 

hierarchical levels: either within or among resources. Competition within resources refers to sperm competition (in 

competition for mates), competition for nutrients within a territory (in competition for food), and for resources 

within a host (in competition for hosts). Competition among resources refers to male–male competition (in 

competition for mates), competition for territories (in competition for food), and for access to hosts (in competition 

for hosts). 
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Organisms might compete for several resource types, the most studied (and probably 

biologically relevant) being food, mates, and hosts (Table 1). The mechanisms of competition for these 

resources are shared, yet their study belongs to different research fields, each with its own 

idiosyncrasies, including distinct vocabulary. Indeed, whereas competition for food is usually stated 

explicitly, competition for mates can be masked behind terms such as ‘sexual selection’ or ‘sexual 

conflict’, and competition for hosts is usually referred to as ‘coinfection’. However, in all cases, 

individuals are competing for the use of a limiting resource. Experimental evolution, as a methodology 

that is transversally applied to studies of competition across resource types, opens a unique 

opportunity to (i) establish parallels across research fields, in view of establishing a common integrative 

framework, and (ii) highlight potential lessons from one field to the other. Those are the aims of this 

review. 

 

Measuring evolutionary change: the importance of the ancestral state 

One significant advantage of experimental evolution is knowing the ancestral state of populations 

before selection (Kawecki et al. 2012; Magalhães & Matos 2012). In studies of competition for food or 

hosts, the ancestral state is often no competition. Evolutionary change can be directly inferred, by 

comparing traits in their ancestral state to those following selection in a competitive environment. For 

example, experimental evolution clearly demonstrated character displacement for carbon source 

exploitation in Escherichia coli strains as a result of evolving in competition (Tyerman et al. 2008). 

Establishing such causality is difficult in natural populations (Losos 2000). By contrast, studies of 

competition for mates are often initiated from panmictic populations with many interacting males and 

females, suggesting that competition is the ancestral state. However, often the intensity of competition 

among same-sex individuals in the ancestral population is unknown. This uncertainty over the ancestral 

state hampers a clear inference of the direction of evolution (Figure 1 and Outstanding Questions) (Bell 

& Reboud 1997; Magalhães et al. 2009). These studies might assume that monandry is the derived 

state, but this assumption should be clearly stated and tested (e.g., Crudgington et al. 2005). In fact, it 

should be clear whether the operational sex ratio (OSR) imposed in ‘control’ lines corresponds to that 

of the ancestral state, in which case these lines can effectively be used as control. For example, in a 

study of experimental evolution of the bruchid beetle Callosobruchus maculatus, both the ancestral 

state and the control populations were monandrous (Gay et al. 2011) (see also Nandy et al. 2013).  
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Figure 1: Measuring evolutionary change. Four possible scenarios of evolutionary trajectories of populations under-

going experimental evolution. The red line represents populations in which evolutionary change is expected (“high 

competition” lines), whereas the blue line represents “low competition” lines, which are expected to reflect the 

ancestral state (dashed grey line). However, note that control lines might be lines in which competition is high 

(usually in competition for mates – where polyandrous lines are assumed to represent the ancestral state of the 

population). Because the distance between trajectories of the two selection regimes is the same in all graphs, the 

conclusion drawn from that comparison is always that selected lines have adapted to the regime they were 

exposed to (they increased in fitness). However, in Scenario 2 this fitness increase is underestimated, in Scenario 3 

it is overestimated, and in Scenario 4 the conclusion of a fitness increase is incorrect. Therefore, it is important that 

control lines reflect the ancestral state. 

 

Experimental manipulations of competition and their (hidden) assumptions 

Intraspecific competition for one resource 

When competition concerns one species/strain and one resource, it is manipulated by either increasing 

the number of competitors or reducing the amount of resources per capita. Although these 

manipulations are equivalent from an ecological standpoint, they are not from an evolutionary 

perspective. Indeed, adding more competitors also potentially increases the amount of genetic 

variation, the raw material upon which evolution acts. This implies that responses to selection might 

differ among treatments, independently of the selection differential due to competition (Box 2). 

Therefore, manipulating resources leads to more straightforward evolutionary interpretations. Indeed, 

Drosophila melanogaster populations exposed to high competition increased their niche width (i.e., 
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diet breadth with increasing cadmium) at a faster rate than populations under low competition. In this 

study, competition was manipulated by exposing the same number of flies to varying numbers of food 

vials containing different cadmium concentrations, while keeping the proportion of each concentration 

constant (Bolnick 2001). 

Competition for mates is manipulated by varying the number of males (competitors) accessing 

females and/or the number of females (resource) offered to a male and/or density, sometimes resulting 

in changes in OSR. Stronger competition (i.e., more polyandry) is achieved when more males compete 

for fewer females (Edward et al. 2010). This implies that most treatments differ in genetic variability, 

since the effective population size is reduced with uneven sex ratios (Bergstrom & Dugatkin 2012). This 

can confound observed evolutionary responses (Reuter et al. 2008). Although, in some studies, 

treatments varying in sex ratio do not differ significantly in effective population size, as explicitly 

demonstrated in Drosophila melanogaster (Snook et al. 2009), this might not always be the case. By 

increasing the population size in parallel with the increase in female bias, it is possible to overcome this 

effect (Reuter et al. 2008), see also (Snook et al. 2009) for additional strategies).  

 

Outstanding questions 

The comparison of the literature regarding experimental evolution of competition for hosts, food or mates 

revealed a few questions that remain largely unexplored. Addressing these questions will contribute to a better 

understanding of the reciprocal effects of competition on evolution. 

1. Does competition lead to coevolutionary dynamics between competitors? If so, when is it 

characterised by arms race or fluctuating selection dynamics? And when does it allow for the 

maintenance of genetic variation in populations? 

2. Can character displacement evolve as a result of competition for mates or hosts? 

3. Does evolution toward monandry or polyandry evolve at different rates? 

4. How does competition between resources (e.g., competition for territories) affect competition within 

resources (within-territory competition for food)? 

5. How does the evolution of competition affect functional diversity in communities and ecosystems? 

 

 

 

Interspecific competition for one resource 

In competition studies between species or strains, two main designs are implemented: the ‘substitution 

design’, where the overall density is maintained across treatments and, consequently, the competition 

treatment contains half as many individuals of each species/strain as the single species/strain 
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treatments (2A, 1A:1B, 2B; e.g., Lawrence et al. 2012), and the ‘addition design’, where the competition 

treatment contains the same number of each competitor as the single species/ strain controls, entailing 

an increased overall density in this treatment (2A, 2A:2B, 2B, e.g., Terhorst 2011). This design is used in 

competition for hosts, although sometimes not explicitly stated (Dion et al. 2011; Garbutt et al. 2011). 

In competition for food, both designs are used (‘substitution’ = Lawrence et al. 2012, ‘addition’ = 

terhorst 2011, Wölfle et al. 2009). These designs are absent in competition for mates, as interspecific 

interactions were not addressed (but see Deere & Smallegange 2014). 

Each of these designs has its flaws, as discussed in the ecological literature (Inouye 2001). 

Indeed, in the addition design, the competition regime differs from controls in that (i) two 

species/strains are present instead of one, and (ii) there is a twofold increase in the overall density. 

Therefore, which of these factors affects differential trait evolution between treatments is unclear. 

Equalising per capita resources across treatments might minimise this problem. This, however, requires 

knowledge on species functional responses, as doubling resources does not necessarily imply doubling 

feeding rates. The advantage of the addition design is that the intensity of intraspecific competition is 

maintained across treatments. Still, this only holds if we assume that interspecific individuals do not 

alter intraspecific interactions. 

In the substitution design, all treatments have the same density hence, if intra- and 

interspecific/ strain competition have similar strengths, global competition levels are maintained across 

treatments. However, this implies lower intraspecific/strain density, hence lower intraspecific 

competition, in the ‘competition’ treatments. Thus, observed responses might be attributed to this 

rather than to interspecific/strain competition. Moreover, and importantly, differences in the number 

of individuals of each species result in differences in genetic variability. As in the single species case, 

this implies that responses to selection can differ among treatments, independently of the selection 

differential due to competition (Box 2). This can be overcome by seeding each of the intra- and 

interspecific/strain treatments with combinations of individuals from the same number of isogenic lines 

(Figure 2). 

 

More than one resource 

Although the addition and substitution designs have been used to describe the manipulation 

of competitors, they can also serve to describe manipulations of the resource. Indeed, competition can 

be manipulated by replacing half of the original resource by a novel one, or by adding a novel resource, 

while keeping the amount of the original constant. For example, Barret and colleagues manipulated 
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competition by varying the number of carbon substrates involved in different Pseudomonas metabolic 

pathways by keeping the concentration of each substrate constant, thus increasing substrate 

availability in treatments with more substrate types (Barrett et al. 2005). It should be noted that only 

in the substitution design is competition increased (assuming that novel resources are initially of poorer 

quality than the original). The addition of novel resources can promote niche expansion or character 

displacement leading to a decrease in competition, at least transiently. 

There are other, more subtle ways of addressing the role of competition, for example, by manipulating 

the spatial scale at which competition is operating (Griffin et al. 2004; Macke et al. 2011). For instance, 

Macke et al. (2011) varied the number of founders per patch to test whether local mate competition 

leads to a more female-biased offspring sex ratio (Hamilton 1967).  

 

 

Figure 2. How to manipulate competition while keeping genetic diversity constant. One possible way to keep overall 

densities the same across treatments (hence reducing the number of each species in competition) while 

maintaining similar levels of genetic variability is to use mixes of isogenic lines from each species in all treatments. 

In this way, all treatments could be drawn from the same number of isogenic lines (thus maintaining genetic 

diversity across treatments) but using a different number of individuals from each line (thus varying the 

intraspecific density as required in the substitution design). In the diagram, as an example: create three isofemale 

lines for species A and for species B; single species treatment A: use two individuals from each species A isofemale 

line, with a total of six individuals; single species treatment B: use two individuals from each species B isofemale 

line, with a total of six individuals; two species competition treatment A and B: use one individual from each 

isofemale of species A and species B, with a total of six individuals. Note: (i) a much higher number should be used; 

(ii) this solution is not valid if strong sib competition is an important concern in the system under study. 
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Evaluating the effect of competition 

In Tables 2 and S1.1, we compile representative examples of experimental evolution studies that 

manipulated competition for food, mates or hosts.  

Measuring the evolutionary response to competition 

In experimental evolution, adaptation is typically tested by comparing trait values in populations 

evolving under a given selection pressure (selection lines) with those evolving in conditions pertaining 

to the ancestral environment before the experiment (control lines). The general assumption is that 

control populations are at a steady state for the traits measured, hence differences observed can be 

attributed to evolutionary changes occurring in evolved populations (Kawecki et al. 2012) (Figure 1). 

In lines selected under competition, a higher competitive ability is expected to evolve. This can 

be evaluated by comparing the performance of individuals evolving in competition with that of 

individuals evolving under controlled conditions, in a competition environment. This is a typical test of 

local adaptation (Kawecki & Ebert 2004) and this prediction is generally met (Table 2).  

Evolving under competition might also affect resource utilisation. Testing this requires evolved 

and control lines to be tested in a competition-free environment. In some cases, such as in Tribolium 

castaneum feeding on wheat, evolution of resource utilisation in competitive and non-competitive 

environments is positively correlated (Agashe & Bolnick 2010). Other studies find trade-offs. For 

example, Drosophila evolving with competitive fungi perform better than control lines in the presence 

of the competitor, but this comes at a cost of performance in the ancestral, competitor-free 

environment (Wölfle et al. 2009). In another study, Drosophila evolving in crowded conditions increased 

resource acquisition, but had higher mortality when tested in uncrowded conditions (Joshi & Mueller 

1996). Therefore, the direction in which resource utilisation evolves varies among studies. 

Competition for or within resources 

Competition can concern access to an entire resource or a portion of it (Table 1). Indeed, males can 

compete for access to females and/or their sperm might compete for egg fertilisation within the female 

– sperm competition; parasites can compete for access to hosts, and for resources within the host; 

individuals can compete for territories, or for food within territories. In studies of competition for food 

and hosts, however, evolutionary responses to competition for territories or among hosts remain to be 

investigated (Box 2; see Outstanding Questions). 

The traits that respond to selection might differ depending on the level where competition is 

strongest. For example, mating rate is associated with competition for mates – between resources –
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whereas fertilisation success is a measure of sperm competition – within a resource. Furthermore, 

trade-offs can occur between levels. For example, higher mating rates can trade off with sperm 

competitive ability. In the same way, defending a larger territory might be incompatible with the 

defence of particular resources within it, and within-host competition for resources might trade off 

with competition for new hosts. Hence, experiments should be designed such that the level at which 

selection is acting (within or between resources) is clear. For example, Fricke and Arnqvist (2007) 

exposed bruchid beetle females to several males sequentially, thus only allowing for competition within 

the female to occur (within resource). Alternatively, traits acting on each of these levels should be 

measured, so that responses to selection do not go undetected. 

 

Correlated responses to selection: commonalities and specificities across resource types 

Competition for mates: sexual conflict and secondary sexual traits 

Sexual conflict is perhaps the most studied correlated response to selection using experimental 

evolution. When evolving in competitive environments, males typically become more harmful towards 

females. This can in turn select for female resistance. By contrast, under low male competition, male 

harassment and female resistance are no longer advantageous. For example, offspring of D. 

melanogaster females mated with males evolved in monandry, compared with polyandry, have lower 

mortality (Pitnick et al. 2001a). Moreover, ejaculates from males evolving in monandry are less effective 

at manipulating female behaviour towards being less receptive (Pitnick et al. 2001b). Conversely, 

females evolving in polyandry have higher mating rates, suggesting higher resistance to ejaculate 

manipulation (Pitnick et al. 2001b). Note that, when tested in a competitor-free environment, higher 

female fertility might be interpreted as relaxed sexual conflict (a correlated response to selection) or 

reduced resource exploitation by males (a direct response). 

Another potential correlated response is the evolution of secondary sexual characters. For 

example, males evolving under relaxed sexual selection showed reduced cognitive abilities, considered 

a secondary sexual character because it permits discrimination of receptive and non-receptive females 

(Hollis & Kawecki 2014). To our knowledge, few experimental evolution studies have investigated this 

(Smallegange & Deere 2014). 

Competition for host resources: evolution of virulence 

Within-host competition among parasites is expected to select for higher growth rates to overcome 

competitors (Alizon et al. 2013). As more parasites supposedly induce more harm, theory assumes that 

within-host growth rates are positively correlated with virulence (Alizon et al. 2009). Alternatively, 
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evolution of lower virulence is predicted if competing strains engage in interference competition 

(Gardner et al. 2004) (Box 1). Moreover, between-host competition can favour lower virulence if there 

is a trade-off with transmission (Alizon et al. 2009).  

The link between virulence evolution and within-host competition (i.e., single versus multiple 

infections) has been the subject of many theoretical studies and an excellent recent review (Alizon et 

al. 2013). However, to date, only two empirical studies test these predictions using experimental 

evolution. The first shows that virulence decreases in coinfections with Bacillus thuringiensis, probably 

due to the production of bacteriocins that kill competitors (Garbutt et al. 2011). In the second, virus 

strains become more virulent when evolving with other strains compared with single infections, when 

tested in competition (Leggett et al. 2013). This result is consistent with exploitative competition 

between parasites, although this has not been explicitly tested. 

Competition for food: niche width 

Competition can select for traits allowing new regions of resource space to be explored, leading to 

niche expansion (Pfennig & Pfennig 2012). Alternatively, it can favour traits that decrease niche overlap, 

leading to niche contraction. If sufficiently intense, these processes can lead to disruptive selection, in 

which both tails of the phenotypic distribution are favoured, potentially leading to character 

displacement (Pfennig & Pfennig 2012). Whether traits evolve in one direction or the other depends on 

the relative availability of the different resource. 

Results of experimental evolution studies on the role of competition on niche width are 

variable. For example, relaxing competition between two different Escherichia coli populations adapted 

to different carbon sources resulted in their phenotypic convergence; the reintroduction of 

competition led to character displacement, as predicted (Tyerman et al. 2008). However, this outcome 

might be contingent on the diversification ability of the competitor strain. Indeed, in Pseudomonas 

fluorescens, niche expansion of a focal strain is slowed when competing with generalist strains able to 

thrive in all environments. By contrast, competition with strains with reduced niche width promotes 

the diversification of the focal strain, facilitating the colonisation of a new environment (Bailey et al. 

2013). Other studies show that strong intraspecific competition selects for niche expansion (Bolnick 

2001; Agashe & Bolnick 2010; Bono et al. 2013). 

Other correlated responses can also evolve, such as cannibalism in Drosophila as a result of 

competition for food (Vijendravarma et al. 2013) and reduced immunocompetence following 

competition for mates in the Indian mealmoth Plodia interpunctella (McNamara et al. 2013) and the 

beetle Callosobruchus maculatus (van Lieshout et al. 2014). Moreover, one can establish parallels 
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between correlated responses: both virulence and sexual conflict, by-products of competition, induce 

harm to the resources (hosts and mates, respectively). Additional parallels are explored in Box 2. These 

could drive new research or reinterpretation of existing studies. 

 

Perspectives for future research 

Addressing all possible scenarios (coexistence vs exclusion) 

In studies of interspecific/strain competition, experimental conditions are conceived such that 

species/strain exclusion is prevented, forcing coexistence to be maintained across generations. This 

means that only one of the Lotka–Volterra scenarios is considered, that in which intraspecific is stronger 

than interspecific competition. Hence, by narrowing down the conditions used, the experimenter is 

directing the evolutionary outcomes. To test for alternative scenarios (i.e., where competitive exclusion 

is expected), one could replenish the outcompeted player at regular intervals and measure evolution 

in the superior competitor. 

This set-up would also allow to test how coevolution among competitors affects trait values as 

well as the maintenance of diversity (Pfennig & Pfennig 2012). Although this possibility has been 

theoretically proposed (Kisdi & Geritz 2001), it has never been tested in experimental evolution studies. 

Indeed, when competitors coexist, one can generate treatments in which both species coevolve and 

contrast them with treatments in which only one species evolves, the other being systematically 

replenished from the ancestral population at each generation, as in studies of host–parasite (Brockhurst 

& Koskella 2013) or male-female coevolution (Chapman et al. 2003). This set-up allows singling out the 

role of coevolution in shaping trait values, the rate of evolution and/or the maintenance of genetic 

diversity (Pfennig & Pfennig 2012) (cf. Outstanding questions). 

Experimental Evolution studies should be strongly rooted upon ecological knowledge  

Much theory has been developed to understand the ecological outcomes of competition. This 

knowledge might help interpret experimental evolution studies. For example, a clear definition of the 

type of competition helps refine predictions concerning experimental outcomes (Box 1). In fact, this 

approach has been taken to interpret the outcomes of coinfection scenarios (Graham 2008; Pedersen 

& Fenton 2007) and could also be applied to competition for mates or food. When the type of 

competition is unknown, it can later be inferred from the observed outcomes following evolution (i.e., 

which traits are affected and in which direction). In this case, evolution would inform ecology, providing 

knowledge on interactions among species or strains. 
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Experimental Evolution can shed light on functional traits and functional diversity  

Competition is a major component of ecosystems. As such, it is likely to affect the functional diversity 

of such ecosystems. Unfortunately, knowledge on which functional traits are affected by competition 

within a species community is in its infancy (Reiss 2009). In this context, experimental evolution can be 

instrumental to identify which traits respond to selection imposed by competition. Those traits are likely 

to be ecologically relevant, as they will affect other competitors as well as resource levels. Hence, they 

are expected to act as effect traits (i.e., traits that have an effect on the functioning of the ecosystem; 

Suding et al. 2008). Moreover, the strength of competition is, by definition, linked to the amount of 

resource present. Thus, traits involved in competitive interactions are also expected to act as response 

traits (i.e., traits that change after environ-mental disturbance). Often, traits that respond to 

perturbations are also the same traits that have a relevant role in ecosystem functioning. In light of the 

recent evidence for widespread rapid evolution and eco-evolutionary dynamics in nature (Schoener 

2011), it is clear that traits that respond to selection may be functional both in the evolutionary and in 

the ecological sense. Thus, knowledge stemming from experimental evolution might significantly 

contribute to strengthen the ongoing link between ecology and evolution, as it would contribute to 

merge ecosystem functioning to eco-evolutionary dynamics (cf. Outstanding Questions). 

 

Concluding remarks 

In summary, we aimed to highlight similarities in patterns and processes across diverse research fields 

that implicitly or explicitly study competitive interactions (parasitology, sexual selection, foraging 

ecology). We have shown how this integration helps generate novel predictions and clarify patterns 

observed in experimental evolution studies. Clearly, competition is a major biotic selection pressure 

imposed on organisms, the evolutionary outcomes of which are still largely unclear. Further 

experimental evolution studies addressing the rich diversity of competitive interactions across 

organisms will help clarify the commonalities among evolutionary responses to competition. 

 

Acknowledgements 

The authors thank Ana Rivero, David Shuker, Isabelle Olivieri, João Alpedrinha, Lukas Schärer, Margarida 

Matos, Michael Jennions, Yannis Michalakis and an anonymous referee for painful, but highly useful, 

comments that significantly improved this manuscript. LRR, SHC, AD and SM acknowledge funding by 

FCT-ANR//BIA-EVF/0013/2012 to SM and IO.  

 



 
61 

Polyandry and host-endosymbiont conflicts  

in the spider mite Tetranychus urticae 

Box1: Types of competition 

Competition can be categorised according to whether individuals are competing against individuals of 

the same or a different species (intraspecific and interspecific competition, respectively). Moreover, 

three types of competition can be distinguished, according to the mechanism that leads to fitness 

reduction in other individuals (Krebs 2001): 

1. Exploitative (or resource or scramble) competition is an indirect interaction, in which 

the consumption of a shared resource by some individuals entails a fitness cost for 

other individuals because these will be consuming a smaller share of the same 

resource. A classic example is competition between closely related beetle species 

(Tribolium) feeding on flour (Gause 1932). 

2. Interference (or contest) competition is a direct, negative interaction, often via attack, 

between individuals that use a common resource. A classic example of this is males 

fighting for access to females, for instance, in dung beetles (Emlen 1997). 

3. Apparent competition is a top-down indirect interaction leading to a fitness reduction 

in individuals that share an upper level resource (predator/host/female) (Holt 1977). 

For example, parasites can trigger the immune system of their host with negative 

consequences for other parasites sharing the same host (Mideo & al. 2009; Raberg et 

al. 2006). 

Although in some cases the distinction among these three types of competition is straightforward, in 

others it can be a difficult task. For example, sperm competition can be exploitative if some sperm have 

better swimming ability, or interference competition when sperm produce toxins that destroy other 

sperm types (Table 1). For instance, in D. melanogaster, it was initially postulated that the ejaculate of 

the first male was destroyed by that of the second inside the female, suggesting interference 

competition (Harshman & Prout 1994), but later more detailed studies demonstrated that sperm 

displacement, hence exploitative competition, was the mechanism operating (Manier et al. 2010). ]. 

Furthermore, the success of a particular sperm type might hinge on the female's genetic background, 

which parallels apparent competition (Clark 1999; Lüpold et al. 2013). In studies of experimental 

evolution, the type of competition might be known initially. For example, in Garbutt et al. (2011), 

bacteria produce toxins that destroy other bacteria, hence interference competition is operating. 

However, in many cases, the type of competition is initially unknown and is inferred only after 

experimental tests are done at the end of the evolutionary process (cf. main text). Note also that even 

the identification of the type of resource individuals are competing for might be a difficult task (Moya-

Laraño et al. 2002). 
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Box 2: Learning from parallels involving different resource types 

Female aggregation and evolution of mating rate 

In polygynous systems, evolution of mating rates is a function of their variance (e.g., Jones 2009). 

Hence, if some males can monopolise females, selection intensity for mating rates will be stronger than 

in systems with no female aggregation (Klug et al. 2010; Wade & Shulter 2004; Wade 1995), leading to 

runaway sexual selection, stopping when males cannot defend more females. Hence, selection intensity 

is not simply dependent on the ratio between competitor number and resource availability.  

Extrapolating to competition for food, it implies that the more resources (some) individuals can 

monopolise, the stronger selection for food acquisition. Hence, explicitly measuring standing genetic 

variance for resource acquisition might help to predict evolution. Moreover, if competition is 

experimentally manipulated through fewer resources, the opportunities for resource monopolisation 

can decrease, which might invalidate the prediction that more competition drives faster evolution. 

Similarly, parasites can evolve the ability to monopolise hosts, for example, by increasing host 

resistance to superinfection with other parasitoid wasps, as Hamiltonella defensa in aphids (Dion et al. 

2011). This might modify the evolution of virulence in such populations. 

Niche width 

Evolution of niche width has been tackled mostly as a consequence of competition for food (cf. main 

text). A host is also an ecosystem within which parasites exploit different niches (Pedersen & Fenton 

2007). Competition might thus select for parasites colonising novel hosts, or using different resources 

within a host (Mideo & al. 2009). For example, some trematodes specialise on different species or 

portions of the intestine (Karvonen et al. 2006). Experimental evolution could establish causal links 

between competition avoidance and within-host parasite distributions (e.g., evolution of niche 

expansion in viruses; Bono et al. 2013).  

Similarly, competition for mates can select for alternative tactics to acquire mates (Pfennig & 

Pfennig 2012), such as monopolising females or sneaking (Emlen 1997). However, the evolution of such 

morphs does not necessarily result from character displacement. Experimental evolution on alternative 

morphs is scarce (Smallegange & Deere 2014; Deere & Smallegange 2014), and such studies are needed 

to establish causality (Cf. Outstanding Questions).  
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Virulence 

How coinfections affect virulence evolution is discussed in the main text. Virulence can be paralleled 

with sexual conflict, and one can predict that exploitative or interference competition between sperm 

within females will lead to more or less male harm, respectively.  

The competition/colonisation trade-off in competition for food (Amarasekare 2003) mirrors 

the virulence/transmission trade-off. Extending the parallel leads to predicting that under exploitative 

competition patches would be depleted at a faster rate in the presence of competitors, the reverse 

being true under interference competition (cf. Outstanding Questions). 
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Table 2. Experimental evolution studies manipulating competition.  Examples of experimental evolution studies that 

have manipulated competition for food, mates or hosts. Our aim is to use representative examples, not to 

summarise all available literature. CA, Competitive ability; RU, resource use; M/P, monogamy and polygamy 

treatments; F-biased, female-biased. ↑, increase; ↓, decrease, ↔, no change. In Table S1.1 we provide more 

details and references. 

Type of 

resource 
Organism Manipulation CA RU 

Correlated 

Response 
References 

Food 
Drosophila 

melanogaster 

number 

competitors 
↑ 

↔

↓↑ 

↔ parasitoid 

resistance 

Joshi & Thompson 1996; 

Mueller & Ayala 1981; 

Mueller et al. 1991; 

Sanders et al. 2005 

Food 
Drosophila 

melanogaster 

resource 

quality 
↑ 

↔

↓↑ 

↑ cannibalism 

↓ motility 

Vijendravarma et al. 

2013; Vijendravarma et 

al. 2012; Kolss et al. 

2009; Bochdanovits & de 

Jong 2003 

Food 
Drosophila 

melanogaster 

resource 

quantity 
- ↑ 

niche 

expansion 
Bolnick 2001 

Food 
Drosophila 

melanogaster 

type of 

competitors 
↑ ↓ - 

Joshi & Thompson 1996; 

Wölfle et al. 2009 

Food Escherichia coli 
resource 

diversity 
- - 

character 

displacement 

Tyerman et al. 2008; 

Friesen et al. 2004 

Food Escherichia coli 
type of 

competitors 
↑ - 

character 

displacement 
Forde et al. 2008 

Food Fagus sylvatica 
type of 

competitors 
- ↓↑ 

character 

displacement 
Lawrence et al. 2012 

Food 
Pseudomonas 

fluorescens 

resource 

diversity 
↑ ↑ - Barrett et al. 2005 

Food 
Pseudomonas 

fluorescens 

type of 

competitors 
- - 

niche 

expansion, 

contraction 

Bailey et al. 2013 

Food 
Tribolium 

castaneum 

number & type 

competitors 
- - 

niche 

expansion 
Agashe & Bolnick 2010 

Mates 
Caenorhabditis 

elegans 

Outcrossing/ 

Selfing 
- - 

↓ genetic 

variability 
LaMunyon et al. 2007 

Mates 
Callosobruchus 

maculatus 

OSR, age at 

reproduction 
- - 

sexual conflict 

affects lifespan 
Maklakov et al. 2009 

Mates 
Callosobruchus 

maculatus 
M/P ↔ ↔ 

↑ sexual 

conflict 
Gay et al. 2011 
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Table 2. continued 

Type of 

resource 
Organism Manipulation CA RU 

Correlated 

Response 
References 

Mates 
Drosophila 

melanogaster 
OSR ↑ ↓? 

↑ sexual conflict, 

body size 

Crudgington et al. 

2005; Pitnick, Miller, et 

al. 2001; Pitnick, 

Brown, et al. 2001 

Mates 
Drosophila 

melanogaster 

OSR 

(female-biased) 
↓ - - Reuter et al. 2008 

Mates 
Drosophila 

melanogaster 
M/P ↑ ↔ 

↑ male cognitive 

ability 
Hollis & Kawecki 2014 

Mates 
Drosophila 

pseudoobscura 
OSR - - 

song elements, 

character 

displacement? 

Snook et al. 2005 

Mates 
Megabruchidius 

tonkineus 
OSR - ↑ 

↔ sexual 

conflict 
Booksmythe et al. 2014 

Mates Mus domesticus OSR ↑ - ↓ sexual conflict 
Firman 2011; Firman & 

Simmons 2010 

Mates 
Onthophagus 

taurus 
M/P ↑ ↑ 

↔ sexual 

conflict 

Simmons & García-

González 2008 

Mates 
Rhizoglyphus 

robini 
M/P ↑ - ↑ sexual conflict Tilszer et al. 2006 

Mates 
Scathophaga 

stercoraria 
OSR ↑ - ↑ sexual conflict Hosken et al. 2001 

Mates Sepsis cynipsea M/P - - 
↑ character 

displacement 
Martin & Hosken 2003 

Mates 
Tetranychus 

urticae 

local/global 

competition 
- - 

sex ratio 

adjustment varies 

with scale of 

competition 

Macke et al. 2011 

Mates 
Tribolium 

castaneum 
OSR ↑ - ↑ sexual conflict Michalczyk et al. 2011 

Mates 
Tribolium 

castaneum 

OSR, resource 

quality 
- ↓↑ ↑ sexual conflict Grazer et al. 2014 

Hosts 
Bacillus 

thuringiensis 

type of 

competitors 
↑ - ↓ virulence Garbutt et al. 2011 

Hosts 

vesicular 

stomatitis Indiana 

virus 

type of 

competitors 
↑ - - Carrillo et al. 2007 

Hosts 

vesicular 

stomatitis Indiana 

virus 

number & type 

competitors 
↑↓ - - Miralles et al. 2001 

Hosts lytic phage ɸ2 
type of 

competitors 
↑ ↓ ↑ virulence Leggett et al. 2013 

Hosts 
Lysiphlebus 

fabarum 

type of 

competitors 
 ↔  

Rouchet & Vorburger 

2014 
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Abstract 

The choice of the partner an individual will mate with is expected to strongly impact its fitness. Hence, 

natural selection has favoured the evolution of cues to distinguish among mates that will provide 

different fitness benefits to the individual that is choosing. In species with first-male sperm precedence, 

this is particularly important for males, as mating with mated females will result in no offspring. In the 

spider mite Tetranychus urticae only the first mating is effective, except if the interval between first and 

second copulations is shorter than 24 h. In line with this, males prefer to mate with virgin over mated 

females. They do not, however, choose between females that have mated at different time intervals. 

Here, we tested which type of cues males use to distinguish between females with different mating 

status (virgin versus mated). To do so, we firstly confirmed that males prefer virgins over mated females 

and that they do not select females on the basis of their age or mating interval. Next, we tested whether 

contact and volatile compounds or chemical trails affected male discrimination between mated and 

virgin females, by systematically varying the exposure of males to these cues. We found that volatile 

compounds and chemical trails were sufficient to induce discrimination between virgin and mated 

females in males. Direct contact with females, however, does not seem to play a role in this 

discrimination. The composition of such chemical cues (trails and volatiles) remains to be identified. 
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First male sperm precedence; mating interval; mating behaviour; chemical cues 

  



 
75 

Polyandry and host-endosymbiont conflicts  

in the spider mite Tetranychus urticae 

Introduction 

Patterns of sperm precedence range from last-male to first-male sperm precedence (Danielsson 1998). 

Expected mating behaviours depend on these patterns. In species with last-male precedence, selection 

in males should favour increased mating frequency as a result of adaptation to sperm competition 

(Ridley 1989a). In species with first-male precedence, however, males do not benefit from mating with 

females that have already mated. Moreover, females cannot choose to use the sperm of subsequent 

males, which should favour monandry. Hence, both sexes are expected to invest all resources in 

matings that involve virgin females only, except if the pattern of first-male precedence is incomplete 

and some copulations with mated females are effective. In males, first-male precedence should also 

favour the ability to distinguish virgin from mated females, as well as pre-copulatory mate guarding, 

which sometimes extends to immature females (Ridley 1989a, b).  

The existence of cues that enable a male to discriminate females with different mating status 

depends on the balance between costs and benefits conferred by this discrimination. In monogamous 

species, the benefits are clearly very high and thus such discrimination is likely to evolve. Indeed, several 

studies show that males from monogamous species prefer virgin over mated females (Thomas 2011). 

Moreover, even in species with multiple mating, males can evolve the ability to discriminate female 

mating status, depending on the species mating rate and sperm precedence patterns (Engqvist and 

Reinhold 2006). In particular, mated females of species with first-male sperm precedence, as well as of 

some species with mixed sperm precedence, provide low fertilization opportunities to males, if any. 

Accordingly, males frequently evolve the ability to discriminate female mating status, preferring virgins 

(e.g. Stoltz et al. 2007; Yasui 1994).  

To distinguish females of different mating status, males can use several types of cues. In 

arthropods, these cues are usually chemical (Johansson & Jones 2007; Thomas 2011) and can be 

perceived by contact (e.g., cuticular hydrocarbons, CHCs), left in the substrate (i.e., chemical trails) or 

released into the environment (i.e., volatile compounds). For example, Drosophila melanogaster uses 

CHC’s to distinguish mated from virgin females (Friberg 2006), whereas males of Agelenopsis aperta, a 

monogamous spider, use volatiles to identify virgin females (Riechert & Singer 1995). In the mealworm 

beetle Tenebrio molitor, males prefer virgin over mated females when only chemical trails are present 

in the arena (Carazo et al. 2004), indicating that such cues are sufficient for male discrimination. 

Identifying the type of cue used in mate choice adds to our understanding of mating behaviour, as it 

allows determining the ecological conditions in which they are perceived. For example, the minimal 

distance necessary for two individuals of the opposite sex to perceive each other’s mating status will 

vary depending on which cues are used. This in turn may have consequences for species conservation 

and management.  
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In spider mites, the first male fertilizes most of the female’s eggs (in Tetranychus urticae, Helle 

1967; in Tetranychus kanzawai, Oku 2008), meaning that this species follows a first-male sperm 

precedence pattern. Consequently, it is expected that males only attempt to mate with virgin females 

to avoid unnecessary costs, such as loss of other mating opportunities or reduced survival. This requires 

that males have access to cues allowing the perception of the female mating status. Indeed, males 

actively guard quiescent females and mating occurs as soon as females emerge as virgin adults (Potter 

et al. 1976). In addition, both prolonged copulation and post-copulatory guarding behaviours are 

observed in these species, which ensures first-male sperm precedence (Satoh et al. 2001). Moreover, 

when males outnumber virgin females, they actively fight for their possession (Potter et al. 1976). In 

accordance with these observations, recent studies showed that males prefer to mate with virgin rather 

than mated females (Oku 2010). In addition, females pay a cost of multiple mating, having lower 

fecundity and a smaller proportion of fertilized eggs, when compared with once-mated females (Macke 

et al. 2012). Together, these results lead to the expectation that in T. urticae both sexes should invest 

all resources in the first mating event. However, surprisingly, copulations between males and mated 

females have been observed (Oku 2010; Clemente et al. 2016).  

This puzzling behaviour could be adaptive if first-male sperm precedence in T. urticae is 

incomplete. In fact, the mating interval has been shown to affect the extent of first-male sperm 

precedence in this species, as found in other invertebrates (Danielsson 1998). In spider mites, if the 

interval between first and second copulations is shorter than 24 h, the second male can still sire some 

offspring (Helle 1967). However, a recent study has shown that, in an arena with females that have 

mated 6 or 30 h before the test, males first touch each female type indiscriminately (Oku 2013). Several 

possibilities may explain this result: (a) the female that is touched first does not fully represent mate 

choice, (b) the result is specific to the population/test details used, or (c) the result is a general feature 

of T. urticae populations, which seems to be maladaptive.  

In this study, we set out to test which type of cues males use in their mate choices. We tested 

the role of tactile stimuli (contact compounds), volatile compounds and the presence of chemical trails, 

the three main chemical cues involved in female spider mite attraction (Penman & Cone 1974). To this 

aim, we first confirmed that males do distinguish virgin from mated females. Moreover, to limit the 

choices under test to these two types of females, we also verified that males do not distinguish between 

females mated at different time intervals in a population other than that used in Oku (2013). 
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Materials and Methods 

Spider mite populations and rearing conditions 

Spider mites (T. urticae) were reared in large numbers (>2000) on whole cucumber plants (varieties 

Ventura, provided by Rijkzwaan, France), for experiment (a) and on whole bean plants (varieties Enana, 

provided by Germisem, Portugal), for experiment (b) (see details of the experiments below), under 

controlled conditions (25°C; photoperiod of 16L:8D). The population of spider mites used for 

experiment (a) was originally collected from a cucumber greenhouse in Pijinacker, the Netherlands, in 

May 1994, and kept in the same rearing conditions at the University of Amsterdam (the Netherlands). 

This population was then established at the University of Montpellier (France) in 2007 from 

approximately 5000 individuals sampled from the Amsterdam stock. The population used for 

experiment (b) was originally collected from tomato plants in Carregado, Portugal, in August 2010 and 

has since then been kept on bean plants at the University of Lisbon (Portugal). Both experiments were 

done under controlled conditions (25 °C; photoperiod of 16L:8D). 

Experimental Setup 

Male discrimination ability: female status, age and mating interval 

To address male discrimination between females with different mating status, males were given the 

choice between virgin and mated females, the latter being mated more or less than 24 h before the 

test. This interval has been shown to influence the extent of first-male precedence in T. urticae (Helle 

1967). Moreover, male mating preferences in several species have been correlated with female age, 

with older females being less attractive than younger ones (Johansson & Jones 2007; Delisle & Royer 

1994). In order to account for these differences, we controlled the age of the females tested, in addition 

to their mating interval. 

In total, 300 quiescent females were randomly allocated to different conditions of age (‘‘Y’’, 

young or ‘‘O’’, old, i.e., 2 days older), mating status (‘‘V’’, virgin or ‘‘M’’, mated) and mating interval 

(‘‘12’’ or ‘‘60’’, with first mating having occurred 12 (±1) or 60 (±1) hours before the test, respectively). 

The combination of conditions resulted in five types of females, corresponding to five treatments 

(Figure 1). To establish such treatments, males and quiescent females were selected from the base 

population. Males and females were separately placed in groups of 10 on 2 cm2 leaf squares on water-

saturated cotton. Twenty-four hours later (day 1), adult virgin females, 1 day old since the last moult, 

were placed on 0.8 cm2 leaf discs. One third of the leaf discs received one male (for the OM60 

treatment), whereas in the other two thirds, females were left alone (OV and future OM12 treatments). 

New males and quiescent females were selected from the base population on day 2 and, on day 3, the 
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females were either placed with males (YM12 treatment) or left alone (YV treatment). In addition, half 

the females kept as virgins in day 1 were allowed to mate on day 3, by adding one male to each leaf 

(OM12 treatment). Finally, on day 4, 12 hours after the establishment of the last three types of females, 

the preference of males was tested. Two females, each from a different treatment, were placed on a 

0.8 cm2 leaf square and randomly painted using pigment ink—blue or red—to allow for their 

discrimination by the human observer. These females were left alone for 10 minutes, after which one 

male was placed on the leaf disc and the first female the male touched and mated with was recorded 

as his mating choice. Simultaneously, time until the beginning of copulation (latency to copulation) and 

copulation duration were measured. If after 30 minutes the male had not touched any of the females, 

the group was discarded. 

In total, 6 preference tests were done (OM60 x OM12, OM12 x YM12, OV x OM60, OV x OM12, 

OV x YV and YV x YM12), with 50, 51, 48, 51, 50 and 53 replicates (i.e., focal males), respectively. All 

males used throughout the experiment were isolated—kept without females—for more than 24 h 

before being used, so that sperm replenishment was guaranteed and mating was more likely to occur. 

 

 

Figure 1. Experimental procedure to test Tetranychus urticae male choice. To test whether males prefer females 

having mated at different intervals, females were randomly allocated to different conditions of age, mating status 

and mating interval. After emergence (solid line), virgin females were left alone on day 1 and tested (dotted line) 

on day 4 (OV); or they were placed with males (dashed line) on day 1 and tested with new males (dotted line) on 

day 4 (OM60); or they were left alone, placed with males (dashed line) on day 3 and tested with new males (dotted 

line) on day 4 (OM12). On day 3, after emergence (solid line), new virgin females were left alone until day 4 and 

tested (dotted line) on day 4 (YV); or they were placed with males (dashed line) and tested with new males (dotted 

line) on day 4 (YM12). Hence, the preference of males for each female type was tested always on day 4 (dotted 

line), but females had different ages and mating histories. 

 



 
79 

Polyandry and host-endosymbiont conflicts  

in the spider mite Tetranychus urticae 

Type of chemical cues used in male discrimination 

To disentangle the role of tactile stimuli (contact compounds), volatile compounds and the presence of 

chemical trails in male discrimination ability, male choice between virgin and mated females was tested 

while varying the type of cues available to males (Figure 2). To this aim, quiescent females were 

collected from a subset of the base population (approximately 500 individuals) and they were placed in 

a patch of approximately 10 cm2—isolation patch—, either with an average of two males per female—

mated females—, or left alone, remaining virgins. The next day, males were removed. Two thirds of the 

females were isolated on the leaf discs used for the test the next day (treatments ‘‘alive’’ and ‘‘absent’’). 

One half of those females was removed from the patch immediately before the test, so that only 

chemical trails would remain (treatment ‘‘absent’’), whereas the females of the other half were left 

intact (treatments ‘‘alive’’). In addition, on the day of the test, the females remaining on the isolation 

patches were frozen at -4 °C for 1–2 hours prior to the beginning of the tests (treatments ‘‘dead’’). 

These females were then added to empty leaf discs. Immediately before adding the focal male, a bridge 

(3 cm x 0.5 cm) was added, either connecting (‘‘contact’’) or not (‘‘no contact’’) the two leaf discs (0.64 

cm2). This setup, made entirely of bean leaf, was used to perform the choice experiment (Figure 2). 

 

Figure 2. Experimental setup to address cues used by males to distinguish virgin from mated females. To test which 

type of chemical cues males use to discriminate among females with different mating status, male choice between 

virgin and mated females was tested under various combinations of type of arena (Contact/No-Contact) and 

female condition (alive, absent, dead). A dumbbell-shaped arena, consisting of two bean leaf discs of 0.64 cm2 

connected to each other by a bridge (3 cm x 0.5 cm), was used to perform the choice experiment. In treatment 

“alive with contact”, males had access to all types of cues, and in treatment “dead without contact” no cue could 

be perceived. In treatments “alive without contact”, “absent with contact” and “dead with contact”, the focal male 

could only perceive volatile compounds, chemical trails or direct contact, respectively. 



 
80 

Combinations of type of arena (contact/no-contact) and female condition (alive, absent, dead) 

were chosen in order to allow the focal males to perceive only one, all or none of the three types of 

cues. Treatments ‘‘alive with contact’’, in which males had access to all types of cues, and ‘‘dead without 

contact’’, in which no cue could be perceived, were used as positive and negative controls. In 

treatments ‘‘alive without contact’’, ‘‘absent with contact’’ and ‘‘dead with contact’’, the focal male 

could only perceive volatile compounds, chemical trails or direct contact, respectively (Figure2). In 

every test, a virgin and a mated female from the same treatment were placed in opposite sides of the 

arena. 

Focal males were collected at the quiescent stage and kept isolated for 1 day, in order to ensure 

their sperm was not depleted. The tests began with the placement of the focal male on a neutral zone 

(a 2 mm wide strip in the centre of the bridge). Each test lasted for 1 hour and total time spent by a 

male on either side of the neutral zone was recorded. A test was considered invalid if a male drowned 

or a female left her leaf disc. In total, 55 replicates of ‘‘alive with contact’’ and ‘‘alive without contact’’ 

and 54 replicates of ‘‘absent with contact’’, ‘‘dead with contact’’ and ‘‘dead without contact’’, were 

analysed. We only performed this experiment for virgin vs mated females because in experiment (a) 

we found no difference in preference for recently-mated versus earlier-mated females (cf. Results).  

To enhance the amount of volatile compounds, and of chemical trails in the females’ leaf discs, 

live females were placed in the discs 24 hours before the tests. Dead females, however, were placed 

on discs immediately before the beginning of the tests as, in that case, we wanted to minimize the loss 

of contact cues—due to tissue decomposition— following the females’ death. As such differences in 

the time females were placed on a patch could influence male behaviour, we first tested if male 

preference for live virgin over live mated females did not differ when females were placed in the leaf 

discs 1 hour before the test or 24 hours earlier, in a setup without contact.  

 

Statistical analyses 

Male discrimination ability: female status, age and mating interval 

All statistical analyses were performed with the software R (version 3.0.3, R Development Core Team 

2014). In order to test if touch and copulation were correlated, we did a Fisher exact test for each 

preference test. A strong correlation was found between first female touched and mated in every 

preference test (cf. Results). We thus conducted two different analyses of male choice: we considered 

that a male chose a female (a) when the female was touched and then mated, or (b) when the female 

was touched. As the results of the two analyses were similar, we only present the results of (a).  
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To test for a correlation between male choice and female pigment ink colour we used a 

Pearson’s Chi squared test. This test was done to determine if there was an overall effect of colour on 

male choice behaviour. Since no correlation was found (X2
4 = 2.08, P = 0.72), colour was not included 

in the subsequent statistical models. We then tested male choice within each preference test, again 

using a Pearson’s Chi squared test.  

To test for differences in mating behaviour between treatments (i.e., types of females), we used 

latency and duration of copulation as the response variables. To approximate both models to the 

assumptions of normality, we transformed the response variables using a boxcox transformation 

(package MASS, boxcox procedure). Treatment (of the chosen female), which was our variable of 

interest, was included as a fixed factor, and day and preference test as random factors. However, since 

none of the random factors was significant in both analyses (package lmerTest, rand() procedure), they 

were removed from the final models. We analysed both latency to copulation and copulation duration 

using a general linear model (lmer, lme4 package), with a gaussian distribution. A multiple comparison 

of means using a Tukey Contrast (multcomp package, glht procedure), test was done to compare 

duration and latency to copulation among female types. 

Type of chemical cues used in male discrimination 

To determine if the time spent by females on the leaf discs could influence male attraction, we used a 

generalized linear model with a quasibinomial error distribution (glm), as the response variable—the 

proportion of time spent with virgin females—was overdispersed. Time spent by females in the leaf 

discs—24 or 1 hours—and day were used as fixed factors. No differences were found between 24 hours 

and 1 hour in time spent with virgin females (F1,54 = 0.0012, P = 0.973).  

A Wilcoxon signed rank test with continuity correction was used to discard preference for one 

side of the arena—left or right, and no preference was found (V = 17169.5, P = 0.328). The same test 

was used to analyse our variable of interest—the proportion of time spent by the males with a virgin 

female. Each treatment was analysed separately and compared to a proportion of 0.5, i.e., to a situation 

with no preference.  

 

Results 

Male discrimination ability: Female Status, Age and Mating Interval 

A significant correlation was found between first female touched and first female mated in every 

preference test (OV x YV: Χ2
1 =21.59, P<0.001; YVYM12: Χ2

1 =17.249, P<0.001; OVO x M60:  

Χ2
1 =14.196, P<0.001; OVO x M12: Χ2

1 =13.5807, P<0.001; YVY x M12: Χ2
1 =17.249, P<0.001); 
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OM12OM60: Χ2
1 = 17.897, P=<0.001). Every time a preference test was composed of females that were 

either both virgin or both mated, males showed no preference, irrespective of the female age or mating 

interval (OV x YV: Χ2
1 = 2, P =0.157; OM60 x OM12: Χ2

1 =0.08, P =0.777; OM12 x YM12: Χ2
1 =0.49, 

P = 0.484; Figure 3). When males were offered the choice between a virgin and a mated female, they 

always preferred virgins, again, irrespective of the female age or mating interval (OV x OM60: 

Χ2
1 = 18.75, P < 0.001; OV x OM12: Χ2

1 = 18.843, P < 0.001; YV x YM12: X2
1 = 23.113, P < 0.001; Figure 

3).  

Both the time until copulation (i.e., latency to copulation) and the time males spent copulating 

with a female (i.e., copulation duration) were significantly different between treatments (i.e., types of 

females) (F4,296 = 5.37, P < 0.001 and F4,292 = 24.3, P < 0.001, respectively). Pairwise comparisons 

(Tuckey Contrasts) revealed that treatments can be grouped into two groups: virgin females (OV and 

YV) and mated females (OM60, OM12 and YM12) (Table 1, Figure 4). The two groups do not overlap in 

time of copulation but differences between OV and YM12 were only marginally significant in latency to 

copulation (t =2.624, P =0.067). Overall, latency to copulation was lower and copulation duration higher 

when males mated with virgins, as compared to when they copulated with mated females. Moreover, 

and confirming the choice analysis, neither the mating interval nor the age of the female affected 

significantly latency and copulation duration. 

 

 

Figure 3. Male preference between different types of females. Each bar represents the number of times a male 

mated first with a certain type of female (i.e., treatment) within a preference test. Each preference test was done 

by placing two females of two different treatments (e.g. Preference test: OV x YV) with a male. Treatments: Young 

virgins (YV); old virgins (OV); young females that mated 12 hours before the choice test (YM12); old females that 

mated 12 hours before the choice test (OM12); and old females that mated 60 hours before the choice test (OM60). 

Dark grey plots: mated females; light grey plots: virgin females. 
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Type of chemical cues used in male discrimination 

Males did not show a preference for virgins in treatments where females were dead, independently of 

the type of design used (contact or no contact) (treatment “dead without contact”:  = 787.5, P= 0.527; 

treatment “dead with contact”: V= 915.5, P= 0.137; Figure 5). In contrast, males from all other 

preference tests spent more time with virgins than expected by chance (treatment “absent with 

contact”: V= 974.5, P= 0.045; treatment “alive with contact”: V= 1268, P= < 0.001; treatment “alive 

without contact”: V= 1288, P= < 0.001; Figure 5). 

 

 
comparison a Estimate Std. Error t-value P-value b 

la
te

n
cy

 t
o

 c
o

p
u

la
ti

o
n 

OM12 x OM60 -0.250 0.682 -0.366 0.996 

OV x OM60 -1.714 0.624 -2.746 0.048* 

YM12 x OM60 -0.019 0.787 -0.024 1.000 

YV x OM60 -2.050 0.678 -3.023 0.022* 

OV x OM12 -1.465 0.513 -2.852 0.036* 

YM12 x OM12 0.231 0.702 0.328 0.997 

YV x OM12 -1.800 0.578 -3.115 0.017* 

YM12 x OV 1.695 0.646 2.624 0.067. 

YV x OV -0.335 0.508 -0.660 0.964 

YV x YM12 -2.030 0.698 -2.908 0.031* 

co
p

u
la

ti
o

n
 d

u
ra

ti
o

n 

OM12 x OM60 -1.798 3.557 -0.505 0.986 

OV x OM60 19.141 3.255 5.880 <0.001** 

YM12 x OM60 4.638 4.137 1.121 0.790 

YV x OM60 19.742 3.567 5.534 <0.001** 

OV x OM12 20.938 2.678 7.820 <0.001** 

YM12 x OM12 6.435 3.700 1.740 0.404 

YV x OM12 21.540 3.050 7.063 <0.001** 

YM12 x OV -14.503 3.411 -4.252 <0.001** 

YV x OV 0.601 2.692 0.223 0.999 

YV x YM12 15.104 3.710 4.071 <0.001** 
 

 

Table 1. Multiple comparisons of latency to copulation and copulation duration between treatments using Tuckey 

contrasts. a Treatments (i.e., type of female): Young virgins (YV), old virgins (OV), young females that mated 12 

hours before the choice test (YM12), old females that mated 12 hours before the choice test (OM12) and old 

females that mated 60 hours before the choice test (OM60). b ** - P < 0.001; * P < 0.05; . P marginally significant  
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Figure 4. Mean a) latency to copulation and b) copulation duration in matings involving Tetranychus urticae females 

of different ages and mating histories. Treatments (i.e., type of female): Young virgins (YV); old virgins (OV); young 

females that mated 12 hours before the choice test (YM12); old females that mated 12 hours before the choice 

test (OM12); and old females that mated 60 hours before the choice test (OM60). Different letters indicate 

significant differences in contrast analysis done using a Tukey test. Dark grey plots: mated females; light grey plots: 

virgin females. 

 

 

Figure 5. Proportion of time each focal male spent with virgin females during the choice test. Virgin and mated 

females were allocated to different combinations of type of arena (Contact/No-Contact) and female condition 

(Alive, Absent, Dead). Dashed bars: contact; solid bars: no contact; light grey: absent females; dark grey: alive 

females; black bars: dead females. A Wilcoxon signed rank test with continuity correction was used to analyse the 

proportion of time spent by the males with a virgin female. Each treatment was analysed separately and compared 

to a proportion of 0.5, i.e., to a situation with no preference. * P < 0.05; ** P < 0.001  

a) b) 
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Discussion 

In this study, we set out to investigate which type of cues T. urticae males use to distinguish between 

females with different mating status (virgin or mated). To determine whether males’ choice would also 

involve females with different mating intervals (mated 12 or 60 hours before the test), we first tested 

whether males distinguish between these female types, while controlling for their age. We found that 

males preferred virgins over mated females but did not discriminate between females that had mated 

at different time intervals, supporting earlier results (Oku 2010; Oku 2013). Latency to copulation was 

shorter and copulation duration longer when males mated with virgins relative to when they mated 

with mated females, which supports the hypothesis that they are more attracted to the former than to 

the latter. In addition, no differences were found in latency to copulation and copulation duration of 

mating events with mated females. Finally, no effect of female age on male choice was found.  

In several species, older females were found to be less attractive than younger ones (Johansson 

& Jones 2007; Delisle & Royer 1994), most likely due to the correlation between age and female fertility. 

In T. urticae, Krainacker and Carey (1990) showed that female spider mites produce a smaller 

proportion of daughters when mated 5 or 10 days after emergence, compared to females mated 

immediately after emergence. As age differences used in our experiments were smaller than these, 

differences in fertility were unlikely to occur among females, and hence to affect male choice. In 

addition, as shown by Rasmy & Hussein (1994), the sex pheromone released by T. urticae females and 

its perception by males are both affected by age, but only when both sexes are 7 days old, whereas our 

females were never older than 4 days.  

We also found that male choice is not affected by the female mating interval, a result that is 

consistent with those of Oku (2013), suggesting that this behaviour is not population-specific nor 

condition-dependent. Three alternative hypotheses may explain these discrimination patterns. A first 

possibility is that the mating interval does not play a role in determining the degree of first-male 

precedence. In this case, the fertilization success of males mating with recently-mated and earlier-

mated females would be similar. This, however, is not in agreement with the results presented in Helle 

(1967). The second possibility is that the mating interval plays a role in sperm precedence, but males 

are not able to perceive differences between females mated at different time intervals. The third 

possibility is that mating with mated females occurs for a reason different than fertilizing offspring, for 

example, to limit the effectiveness of fertilization by the first male (Macke et al. 2012). Indeed, in certain 

species, males are able to increase their relative fitness by removing the sperm from a previous male, 

or transmitting seminal components that neutralize the sperm of competitors (Chapman et al. 1995). 

Even without neutralizing the sperm of another male, if the act of re-mating is costlier to females than 

to males, males are decreasing the fitness of females and, hence, indirectly, that of other males. The 
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extent of such effects could still depend on the mating interval—being probably larger for recently 

mated females. However, the benefits of evolving a discrimination ability between recently-mated and 

earlier-mated females could be negligible for males. In order to disentangle these three hypotheses 

and to establish if the second mating results in viable offspring or reduced fertility of the first male, 

paternity and fertility tests should be performed in future studies, as well as analyses of female chemical 

profiles at different mating intervals. 

Because males did not discriminate females that had mated at different time intervals, we 

excluded this choice from the experiment where chemical cues were manipulated. In this experiment, 

male discrimination was not found in treatments where females were dead. Contact cues, such as CHCs 

(cuticular hydrocarbons), of adult females have been implicated in male arrestment in T. urticae 

(Royalty et al. 1992), but no discrimination between mated and virgin females had been tested. 

Possibly, CHC’s do not play a role in male discrimination of females with different mating status in this 

species. Alternatively, such compounds disappear at a fast rate in spider mites. As experiments with 

other arthropods show that dead females still contain enough CHCs to elicit male discrimination (e.g., 

Xue et al. 2016), the former hypothesis seems more likely. Nevertheless, we cannot rule out that female 

behaviour and contact compounds, though apparently not necessary, may contribute to male choice. 

Our results clearly indicate that chemical trails and volatile compounds trigger male preference 

for virgins. Volatile pheromones have been implicated in male searching behaviour for quiescent 

females, in distances similar to the ones we tested here (Penman & Cone 1972). In addition, in the same 

study, when males had access to both pheromones and web, male searching behaviour was 

exacerbated (Penman & Cone 1972). Possibly, the chemical trails used by males in our experiment also 

include web. This suggests that virgin and quiescent female detection by males may rely on the same 

type of cues. Although volatile cues are usually considered to trigger mite dispersal from plants (e.g., 

Pallini et al. 1997), it is not very likely that males use such cues to distinguish virgins from mated females 

over long distances. This is because females are the most dispersing sex in T. urticae (Li & Margolies 

1993), hence males will probably always have access to females within their closer environment. 

Unlike in the case of attraction towards quiescent females where web alone is not sufficient to 

trigger a response (Penman & Cone 1972), volatile compounds and chemical trails alone are sufficient 

to elicit female mating status discrimination in males. The redundancy in mate choice cues is predicted 

to increase mate-choice costs but also to decrease mate-choice errors. If multiple cues increase the 

amount of information obtained and/or reduce the energy spent on mate assessment, such 

redundancy is expected to be selected (Candolin 2003). In addition, different cues may be differentially 

perceived depending on environmental conditions or distances, hence relying on multiple cues 
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maximizes the probability of a correct mate choice in most environments (Bro-Jørgensen 2010). The 

fact that spider mite males are able to distinguish between females with different mating status, and 

that they rely on multiple cues to do so, reinstates that sperm precedence patterns affect the selection 

pressures on mating traits. Identifying the chemical composition of the cues involved in this behaviour 

will open the way to manipulative experiments allowing to go further in our understanding of the 

ecology and evolution of the mating behaviour of spider mites.   
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Abstract  

In the spider mite Tetranychus urticae, most offspring is sired by the first male. However, males often 

attempt to copulate with mated females. As mating is frequently costly, this behaviour seems 

paradoxical.  

Here, we test the potential costs and benefits of polyandry for T. urticae males and females. 

First, we measured sperm precedence, using a pesticide resistance marker. We found that first male 

precedence is most likely complete and independent of both mating interval and number of re-matings. 

Second, we measured the consequences of (re)mating in the fitness of males by measuring survival of 

males placed with different numbers of virgin or mated females and total offspring sired by first males, 

as indicator of potential indirect benefits. While being with 5 virgin females entailed survival costs, 

mating only with mated females did not. Furthermore, by mating multiple times with mated females, 

males were able to decrease the fitness of first males, indirectly benefiting with re-mating. Finally, we 

tested a potential benefit of polyandry in females, but found instead that multiple-mated females 

survived less and laid fewer eggs than females that mated once or twice. 

Together, this suggests that opportunity for sexual conflicts in this species might be subtler 

than previously thought. 

 

Keywords  

Multiple mating; sperm competition; mating costs; spider mites  
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Introduction 

Sperm competition plays a major role in the evolution of individual reproductive strategies. Indeed, 

patterns of sperm precedence, which range from last male to first male sperm precedence, give rise to 

different evolutionary predictions on mating rate, both in males and females (Danielsson 1998). In 

species with last male sperm precedence, selection in males should favour increased mating frequency 

as a result of adaptation to sperm competition (Ridley 1989b). However, the benefits obtained from 

multiple mating are not as straightforward for females, potentially leading to sexual conflict over mating 

rate (Bateman 1948; Arnqvist & Rowe 2005). In species with complete first male precedence, neither 

males nor females benefit from matings involving mated females. Hence, selection in these species 

should favour monandry, as both sexes are expected to invest all resources in copulations involving 

virgin females only (Thomas 2011). This pattern of sperm priority favours the evolution of pre-

copulatory behaviours (Ridley 1989b; Ridley 1989a). However, even though males guard immature 

females and discriminate between virgin and mated females (Potter et al. 1976; Rodrigues et al. 2017; 

Stoltz et al. 2007; Rypstra et al. 2003; Simmons et al. 1994), female re-mating is not absent and may 

even be common (Allen et al. 1994; Helle 1967; Rodrigues et al. 2017; Bullini et al. 1976). Curiously, 

empirical studies addressing this paradox are remarkably scarce (Fisher et al 2013, Boulton et al. 2016). 

Several possibilities could help explain this contradictory behaviour. One possibility is that 

males copulate with mated females because this enables them to sire offspring, i.e., if first male sperm 

precedence is incomplete. Different factors have been shown to affect the sperm precedence pattern 

in several invertebrates (Danielsson 1998; Simmons 2001). For example, the pseudoscorpion 

Cordylochernes scorpioides changes its precedence pattern, from last to mixed paternity, when females 

mated successively three times instead of twice (Zeh & Zeh 1994). Also, Culex pipiens second matings 

were only effective within the first 48 hours after the first mating, accounting for the siring of 10% of 

the offspring (Bullini et al. 1976). In addition, male traits and mating strategies, like male size and 

copulation duration, can also lead to intraspecific variation in male fertilization success. For instance, in 

the spider Linyphia triangularis, a complete mating results in first male sperm precedence, while an 

incomplete mating changes the precedence pattern to last male sperm precedence (Weldingh et al. 

2011). In the butterfly Pieris napi, larger first males have higher fertilization rates, and this in turn 

influences the fertilization success the second male (Bissoondath & Wiklund 1997).  

Even if males do not benefit directly (i.e., sire offspring) from mating with fertilized females, 

this behaviour may be selected if it provides indirect benefits to males. For example, by mating with 

mated females, males may be able to displace or kill the sperm inside the female and thereby indirectly 

increase their own reproductive success (Manier et al. 2010; Macke et al. 2012). Alternatively, males 

may mate indiscriminately early in their lives to gain experience in mating behaviour. This is the case 
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for Drosophila melanogaster males, which initially mate indiscriminately with males and females (Gailey 

et al. 1982) but later in life learn to distinguish between sexes. A similar pattern could occur between 

virgin and mated females.  

However the benefits, the cost of mating for males may also vary with the mating status of the 

female (i.e., virgin or mated),  if males allocate sperm differently according to the reproductive value of 

females (“strategic ejaculates”, Simmons 2001; Kelly & Jennions 2011). Females of increased value have 

been shown to receive more or better sperm than females of lower reproductive value (Kvarnemo & 

Simmons 2013; Kelly & Jennions 2011). For example, males of Australian field crickets, Teleogryllus 

oceanicus, can detect different intensities of sperm competition and allocate sperm of different quality 

according to the mating status of females (Thomas & Simmons 2009). Following the same logic, D. 

melanogaster males mate longer with mated females and transfer more sperm than with virgins, 

suffering more costs with longer copulations (Friberg 2006). Differences in male costs could also be due 

to differences in receptivity between the mating status of females. Indeed, mated females have been 

shown to reduce their receptivity after mating, due to the presence of seminal substances in the sperm 

of the male in several species (Simmons 2001). The costs of mating with mated females for males could 

then increase, due to increased female resistance (Simmons 2001). 

Finally, female re-mating in species with first male precedence may occur if it is beneficial for 

females. For example, females may benefit from nutrients in seminal fluids (Arnqvist & Nilsson 2000). 

This benefit may translate into a direct benefit for females, for example by producing more offspring, 

as shown in the bruchid beetle Callosobruchus maculatus (Eady et al. 2000). Moreover, mating multiply 

may result in increased survival. For instance, in the wasp Nasonia vitripennis, females increase their 

fecundity and survival when mating multiply with virgin males (Boulton & Shuker 2015).   

The two-spotted spider mite – Tetranychus urticae – is an excellent species to test each of these 

hypotheses as it is characterized by an arrhenotokous genetic structure, producing haploid sons, which 

result from unfertilized eggs, and diploid daughters, stemming from fertilized eggs (Helle & Sabelis 

1985). Therefore, male genetic contribution to the next generation is easily measured as the number 

of daughters produced by each female. In addition, a recessive mutation for resistance to a pesticide 

can be used in this species as a genetic marker to determine offspring paternity (see details below) and 

thus sperm precedence patterns. Finally, earlier studies suggest that in this species only the first 

copulation of a female is effective (Helle 1967). This, together with limited mating capacity in males 

(Krainacker & Carey 1989), leads to the expectation that males should only mate with virgin females to 

avoid unnecessary costs. Indeed, males actively guard juvenile quiescent females and mating occurs as 

soon as females become virgin adults (Potter et al. 1976), a behaviour that is consistent across species 

http://www.bioone.org/keyword/Callosobruchus%20Maculatus
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with first male sperm precedence (Ridley 1989a). Moreover, when males outnumber virgin females, 

they fight for their possession (Potter et al. 1976). In accordance with these observations, recent studies 

showed that males use volatiles and chemical trails to distinguish virgins from mated females 

(Rodrigues et al. 2017), and that they prefer to mate with virgins (Rodrigues et al. 2017; Oku 2010). 

Consequently, both sexes are expected to invest all resources in the female’s first mating event. 

However, surprisingly, males often mate with mated females in the absence of virgin ones, and mated 

females accept copulations (Oku 2010; Clemente et al. 2016). Here, we provide a comprehensive 

account of potential costs and benefits of such behaviour for both males and females. Specifically, we 

(a) performed paternity tests to describe the sperm precedence pattern in this species, (b) compared 

the total number of daughters sired by first males mated to females with different mating status, to 

assess the potential benefits of mating with mated females for males, (c) analysed differences in male 

survival in the presence of different numbers of virgin or mated females, and (d) measured the 

fecundity, survival and offspring sex-ratio of females that re-mated at different time points.  

  

Materials and Methods 

Spider mite populations, rearing conditions 

Three populations were used in this study. The TuTOM population was collected in Carregado, Portugal, 

in 2010 and was established at the University of Lisbon from approximately 300 individuals. The London 

strain, used as reference to sequence and annotate the spider-mite genome (Grbić et al. 2011) and a 

kind gift from M. Grbic, was originally collected in the Vineland region, Ontario, Canada and maintained 

at the University of Logroño. The EtoxR strain was originally collected in Japan and maintained for 5 

years in the laboratory at Bayer CropScience before being transferred to Ghent’s University, where it 

was maintained on potted bean plants and sprayed until runoff with 1,000 mg active ingredient per 

litre of etoxazole, a commonly used pesticide. This strain is fully resistant to etoxazole. The London 

strain, on the contrary, is completely susceptible to the same pesticide. Both strains were established 

at the University of Lisbon in 2013 from approximately 2000 individuals. EtoxR strain was infected by 

Wolbachia and Rickettsia and TuTOM was infected with Wolbachia. Although London strain was not 

infected, to account for potential side effects of antibiotic treatment, all strains were treated with 

antibiotics. This was done by placing groups of 30 adult females in petri dishes containing bean leaf 

fragments placed on cotton wet with tetracycline solution (0.1%, w/v). This treatment was applied 

continuously for three successive generations (Breeuwer 1997), then the population was maintained in 

a mass-rearing environment without antibiotics for more than three generations. Before use, pools of 

100 females were checked by PCR to confirm the absence of endosymbionts.   
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All spider-mite populations were reared in large numbers (>2000) on bean plants (Phaseolus 

vulgaris, Fabaceae, var. Enana; Germisem Sementes Lda, Oliveira do Hospital, Portugal), under 

controlled conditions (25°C, photoperiod of 16L: 8D). 

Experimental Setup 

Sperm precedence and potential benefits for male and female fertility 

Some spider mite populations are resistant to etoxazole, a pesticide that interferes with  chitin synthesis 

and deposition (Van Leeuwen et al. 2012), affecting spider mite embryos and juvenile stages at the time 

of hatching or ecdysis. In the EtoxR strain, resistance to this pesticide is recessive and conferred by a 

single chitin synthase 1 amino acid change (Van Leeuwen et al. 2012). In addition, in this strain 

resistance is fixed, which makes of resistance an excellent tool to be used as a marker for paternity tests 

(see protocol below). For this experiment, we used the EtoxR strain, resistant to etoxazole, and the 

London strain, fully susceptible to the same pesticide. 

Virgin females from the EtoxR strain were randomly selected and allocated to 10 different 

treatments resulting from the combination of the following conditions: females could a) mate once, 

twice or multiply, b) in the latter two cases, mate either first with a resistant and then with susceptible 

males, or the opposite, and c) be given a mating interval between the first and subsequent matings of 

either 0 or 24 hours. The mating protocol was designed as follows (Figure 1): EtoxR quiescent females 

selected from a subset of the base population (approximately 500 individuals) were isolated for 24 

hours on leaf discs on water-saturated cotton without males. Once they became adults (one day later), 

groups of 5 females were allowed to mate with 6 susceptible (S) - or resistant (R) - males on 0.8 cm2 

leaf circles. The patches were observed for 2 hours and every time there was a successful cross, the 

mated female was transferred to a new patch, either empty or with males of the other strain, in the 

same proportion. Half the females placed with males were observed for two more hours and isolated 

when mated (SR0/RS0). The other half was left unobserved in the same patch for 24 hours, thus 

allowing multiple matings (SmR0/RmS0) and, the next day, males were removed from the patch.  The 

females left alone after the first mating on the first day were either left alone for one more day (S/R) or 

transferred to patches with males of the alternative strain. As in the previous day, half the females 

placed with males were observed for two more hours and isolated if mated (SR24/RS24) and the other 

half was left unobserved in the same patch for 24 hours (SmR24/RmS24). All females that did not mate 

and all matings that were interrupted were discarded. When females were two- to three-days old, they 

were isolated on a 2.55 cm2 leaf disc placed on water-soaked cotton. Subsequently, females were 

transferred every three days to a new leaf and the eggs oviposited on the old leaves were counted. 

Female survival (FS) was followed daily. Average female daily fecundity was estimated considering their 
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survival (DF = total number of eggs laid per female / number of days the female was alive). To assess 

paternity, eggs were allowed to develop until the juvenile stage (three days after female transfer), then 

leaf discs were transferred to water-soaked cotton in which we diluted etoxazole to get a new medium 

with 500 ppm of pesticide. Six days later, the number of adult daughters, adult sons and dead juveniles 

on each leaf disc was recorded. The number of alive daughters and dead juveniles indicate, respectively, 

the amount of offspring sired by resistant and by susceptible males. In this way, we expect all, none or 

some daughters to die after pesticide application, depending on whether there is complete first, 

complete last or incomplete first male sperm precedence and whether the first male mating with the 

female is resistant or susceptible to the pesticide. Note however, that natural death in the quiescent 

stage may be confounded with death by pesticide exposure.  

 

 

Figure 1. Protocol followed to assess sperm precedence. Females could a) mate either first with a resistant and then 

with susceptible males, or the opposite, b) mate once, twice or multiply and c) mate with a mating interval between 

the first and subsequent matings of either 0 hours or 24 hours. Male type: R – resistant male from the EtoxR strain, 

S- susceptible male from the London strain. The first letter corresponds to the first male that copulated with a 

resistant female and the second letter to that of the second/subsequent male/s that mated with the same female. 

m – multiple matings; 0 – immediate second mating; 24 – twenty-four-hour interval between matings. 
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Consequences of mating frequency and female identity for male survival  

This experiment aimed to assess whether different numbers of females, and/or females with different 

mating status (i.e., virgin or mated) induced differential mating costs in males. Differences are expected 

as virgins are more valuable than mated females for T. urticae males, due to first male sperm 

precedence. Indeed, males prefer to mate with virgins rather than with mated females (Oku 2010; 

Rodrigues et al. 2017). In addition, males exhibit lower latency to copulation and mate longer with 

virgins than with mated females, suggesting these females have lower reproductive value (Rodrigues 

et al. 2017). To test this, males were individually placed in patches with different numbers of females 

of different mating status, replaced every day, and male survival was measured. Focal males were thus 

assigned to one of 6 treatments: they were placed with 1, 5 or 20 females and these females could be 

either mated (M1, M5, M20) or virgin (V1, V5, V20).  

Spider mite males and females were isolated separately at the quiescent stage, to control their 

age and mating status (virgin) prior to the experiment. When these individuals became adults (circa 24 

hours later), groups of ten females were either left isolated (virgin – V) or placed with 15 males (mated 

– M).  The next day, focal virgin one-day old males were placed in a leaf circle with either 1, 5 or 20 

mated or virgin females. To normalize densities across treatments, the size of the patch varied 

according to the number of individuals (0.38 cm2, 2.55 cm2 or 9.1 cm2 for patches receiving 1, 5 or 20 

females, respectively). The focal male was then transferred daily to a new patch with the same number 

of (mated or virgin) females in every treatment except for the one with 20 females. Since we know that 

male mating capacity decreases with age (Krainacker & Carey 1989), from the third day on, the focal 

male was placed with 12, instead of 20 females (size of the patch: 6.25cm2). Every day, until death, male 

survival (MS) was recorded.  

 

Statistical analyses 

All analyses were carried out using the R statistical package (v. 3.0.3). Maximal models were simplified 

by sequentially eliminating non-significant terms to establish a minimal model (Crawley 2007), and the 

significance of the explanatory variables was established using chi-squared tests, in the case of discrete 

distributions or F tests, in the case of continuous distributions (Bolker et al. 2008).  

Sperm precedence and potential benefits for male and female fertility 

The general procedure for building the statistical models used to analyse the effects of mating on 

female’s fitness was as follows: the number of re-mating (i.e., 0: once-mated, 1: twice-mated and M: 

multiply-mated) and the mating interval (i.e., 0 and 24) were fit as fixed explanatory variables, whereas 
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block and male type order (mated first with a resistant and then with susceptible males, or the opposite) 

were fit as random explanatory variables. Once-mated females were allocated randomly to the two 

mating intervals, so they could be analysed together with the female belonging to the other levels of 

number of re-mating.   

To analyse the proportion of offspring sired by the first male, we created two variables called 

contribution of the 1st male (1M) and contribution of the 2nd male (2M) to offspring. The first consisted 

in the number of dead juveniles or the number of alive daughters, depending on whether the first male 

was susceptible or resistant, respectively. The second consisted in the number of alive daughters or the 

number of dead juveniles, depending on whether the first male was susceptible or resistant, 

respectively. These parameters were computed using the function cbind. As they were greatly over-

dispersed, we used a generalized linear mixed model with a beta-binomial error distribution and added 

the term zeroInflation=TRUE to the models (glmmadmb, glmmADMB package) (Fournier et al. 2012; 

Skaug et al. 2013). We also analysed the total number of daughters sired by the first male, using the 

variable we named contribution of the 1st male (1M). This parameter was analysed using a model with 

negative binomial distribution and the term zeroInflation=TRUE, (glmmadmb, family=”nbinom”, 

glmmADMB package) to account for the overdispersion of the data (Θ= 14.624). 

Survival (FS) was analysed using Cox proportional hazards mixed-effect models (coxme, coxme 

package). Since the interaction between the fixed variables was found to be significant, we analysed 

separately each “re-mating interval”. A posteriori contrasts (Crawley 2007) between the number of re-

matings were carried out by aggregating factor levels together and by testing the fit of the simplified 

model using ANOVA. 

Daily fecundity per female (DF) was transformed to improve normality (λ=0.125) (Box-Cox 

transformation; Crawley 2007) and subsequently analysed using linear mixed-effect models (lmer, lme4 

package). A posteriori contrasts with Bonferroni corrections, were done to interpret the significant 

interaction between the two fixed variables (testInteractions, phia package).  

 

Consequences of mating frequency and female identity for male survival  

To analyse the effects of mating on male survival, female status (i.e., M. mated, V: virgin) and the 

number of females in each patch (1, 5, 20) were fit as fixed explanatory variables, whereas block was 

fit as a random explanatory variable. Male survival (MS) was analysed using a Cox proportional hazards 

mixed-effect model (coxme, coxme package). When the interaction between the fixed factors was 

significant, we analysed separately each female number for the effect of female status.  
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Results 

Sperm precedence and potential benefits for male and female fertility 

Overall, there was no significant effect of the mating interval (Χ2
1= 0.358, P=0.549), of the number of 

re-matings (Χ2
2=0.341, P=0.843), or of their interaction (Χ2

2=2.966, P=0.227) on the proportion of 

offspring sired by the first males (Figure 2). Since this analysis includes females that did not re-mate, 

this result indicates complete, or nearly complete, first male sperm precedence in this species. 

However, a significant effect of the interaction between mating interval and number of re-matings was 

found for the total number of daughters sired by the first male (mating interval:  Χ2
1=0.194, P=0.659, 

number of re-matings: Χ2
2=2.024, P= 0.364 and mating interval-number of re-matings interaction: Χ2

2= 

20.457, P=<0.001). Indeed, multiply-mated females with an interval of 24 hours between first and 

subsequent matings produced fewer fertilized offspring, compared to once and double mated females 

of the same mating interval (0-1:  X2
1=0.006, P=1.00; 0-M: X2

1=17.555, P=<0.001; 1-M: X2
1=18.471, 

P<0.001; Figure 3). On the contrary, when the interval between matings was of 0 hours, no significant 

differences in total number of offspring were observed (0-1:  X2
1=0.007, P=1.00; 0-M: X2

1= 1.516, 

P=1.00; 1-M: X2
1= 1.565, P=1.00; Figure 3).  

 

 

Figure 2. Proportion of fertilized 

and unfertilized offspring across 

treatments. Fertilized offspring is 

divided in proportion sired by the 

first (contribution 1st ♂) and the 

second male (contribution 2nd ♂). 

Females re-mated 0, 1, or multiply 

(M). Re-mating was set 

immediately (0h interval) or 24 

hours (24h interval) after the first 

mating. Vertical bars correspond 

to standard errors of the mean. 

 

The number of re-matings affected differentially the survival of females, depending on the 

interval between matings (number of re-mating - mating interval interaction: Χ2
2=9.01, P=0.011). 

Further analyses conducted for each interval separately revealed that females survived the same 

amount of time when the interval between matings was of 0 hours (Χ2
1=0.39, P=0.532; Figure 4). When 
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the interval between matings was of 24 hours, however, females that mated multiply survived less than 

females that did not re-mate or that re-mated once (Χ2
1=4.39, P=0.036 and Χ2

1=6.82, P<0.001 

respectively; Figure 4). The same pattern was found for daily fecundity. The interaction with number of 

re-matings and mating interval was significant (F2,428=10.03, P<0.001): there were no significant 

differences in fecundity when the interval between matings was of 0 hours (0 vs M: Χ2
1=3.28, P=0.421; 

1 vs M: Χ2
1=2.61, P=0.638; 1 vs 0: Χ2

1=0,01, P=1; Figure 5) but when the interval between matings was 

of 24 hours, females that mated multiple times laid less eggs per day than females that did not re-mate 

or re-mated twice, (Χ2
1=12.22, P<0.001 and Χ2

1=17.06, P<0.001 respectively; Figure 5).  

  

Figure 3. Total mean number of 

offspring sired by the first male. 

Females re-mated 0, 1, or multiply (M). 

Re-mating was set immediately (0h 

interval) or 24 hours (24h interval) 

after the first mating. Vertical bars 

correspond to standard errors of the 

mean. * P <0.01 

 

 

Consequences of mating frequency and female identity for male survival  

The analyses of male survival revealed a significant interaction between female status (i.e., M: mated, 

V: virgin) and the number of females on each patch (female status - number of females/patch: Χ2
2=7.07, 

p=0.029). Further analyses conducted for each number of females separately showed no significant 

differences in survival when males were placed with virgin or mated females, when 1 or 20 females 

were added per patch (Χ2
1=0.8, p=0.371 and Χ2

1=8e-04, p=0.978, respectively; Figure 6). However, 

males survived longer in the presence of mated females, in patches with 5 females per day (Χ2
2=7.085, 

p=0.008; Figure 6).   
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Figure 4. Survival curve of once, twice and multiply-mated females. Re-mating was set immediately (0 hours interval) 

or 24 hours (24 hours interval) after the first mating. 0 – not re-mated; 1– re-mated once, M – re-mated multiply.  

 

 

 

Figure 5. Mean number of eggs laid daily 

by females. Females re-mated 0, 1, or 

multiply (M). Re-mating was set 

immediately (0h interval) or 24 hours 

(24h interval) after the first mating. 

Vertical bars correspond to standard 

errors of the mean. * P <0.01 
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Figure 6. Survival curve of males placed 

daily with different numbers of virgin 

and mated females. V/M1 – male in the 

presence of one virgin/mated female; 

V/M5 – male in the presence of five 

virgin/mated females; V/M20 – male in 

the presence of twenty virgin/mated 

females.  

 

 

Discussion 

Our study revealed that all, or almost all, offspring of spider-mite females was sired by the first male, 

independently of the mating interval and the number of matings. In addition, the contribution of first 

males to the production of daughters did not change across treatments and they only suffered 

increased costs of mating when placed with 5 virgin females daily, and never when they mated with 

mated females. Finally, a decrease in fecundity and survival was found in females that had multiple 

mating opportunities after an interval of 24 hours between the first and subsequent matings.  

We cannot disentangle complete, to nearly complete, first male sperm precedence, owing to 

the fact that natural death in the quiescent stage may be confounded with death by pesticide exposure. 

Even though this is not frequent, there is a non-null threshold of detection for fertilization by second 

males. In any case, the general conclusion taken from our results is that the contribution of second 

males is not significantly relevant and probably does not explain the existence of polyandry in this 

species. In addition, our findings indicate that that first male sperm precedence is independent of the 

number of matings and their interval contradicts early findings by Helle (1967). This author tested the 

effect of several mating intervals, from 20 minutes to 6 days, on sperm precedence in spider mites and 

showed that the second male can sire some offspring if the interval between copulations is shorter than 

24 hours. However, he did not control for potential sperm depletion in males, as they were collected 

from the base population where they were in permanent contact with females right until the test. 

Indeed, Helle himself (1967) suggested that second males may stand a chance of siring some offspring 
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if the first male has transferred an insufficient quantity of sperm. In our study, we controlled for this to 

a certain extent, by isolating males prior to testing them. In addition, males could never copulate more 

than five times, a value below their daily reproductive limit (Krainacker & Carey 1989). Therefore, 

differences between the study of Helle and ours suggest that sperm depletion may allow some 

paternity in second males, a hypothesis that deserves further testing.   

Another factor proved to influence sperm precedence is mating interruption. Indeed, in T. 

urticae, the success of second males can increase with interrupted first matings (Potter & Wrensch 

1978), even if the disruption occurs after complete sperm transfer, i.e., during post-copulatory mate 

guarding. In our experiment, all interrupted matings were discarded, so this factor is not expected to 

affect our conclusions. The fact that both interrupted and sperm-depleted matings influence sperm 

precedence patterns and that both mating interval and number do not, suggests that a physical barrier, 

such as a mating plug, is established after complete sperm transfer (Boudreaux 1963). It has also been 

proposed that upon completion of the first mating, a threshold of sperm volume is reached, after which 

no sperm transfer is possible (Potter & Wrensch 1978). However, old females, most likely partially 

depleted of sperm, continue not to use the sperm from subsequent males (Potter & Wrensch 1978; 

Macke et al. 2012), a result that does not support this last hypothesis. It seems likely that subsequent 

matings can only be effective when there is a problem with the female’s first mating. Unfortunately, 

we have as yet no information on the frequency of both interrupted and sperm-depleted matings in 

natural populations, which is expected to determine their role in shaping the evolution of sperm 

priority.  

Assuming a low frequency of sperm-depleted females in populations, and given that the mating 

interval or the number of matings does not affect the degree of sperm precedence in T. urticae, there 

is apparently no reason for post-copulatory strategies to be selected in males (Dougherty et al. 2016). 

However, another possibility accounting for males mating with mated females is that polyandry can 

also provide indirect benefits to males. In fact, a decrease in the fecundity of multiple mated females 

had already been observed in a previous study with spider mites, which led researchers to propose that 

males could decrease the relative fitness of competitors by mating multiply (Relative Fitness hypothesis, 

Macke 2012). However, they were not able to confirm this hypothesis, since in haplodiploids, it is the 

total number of daughters, rather than total fecundity, that determines the reproductive success of 

males. In our experiment, we could measure the contribution of males to offspring production. In 

addition, we were able to disentangle the contribution of the first male from that of the subsequent 

males that mated with the females, owing to the use of resistance as genetic marker. We found that 

females from all treatments produced the same number of daughters sired by the first male, except 

when females mated multiply with an interval of 24 hours between the first and the subsequent 
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matings (M24), in which case there was a decrease in the number of fertilized offspring. Consequently, 

our experiment is the first to show that mating with mated females can indirectly increase male 

reproductive success. This result could explain, even if partially, why there is multiple mating in this 

species. Furthermore, we found that the benefit of re-mating is dependent on both the number of re-

matings and the interval between matings. Indeed, it seems that the conditions for sperm competition 

change with these factors. For instance, numerous copulations may be necessary for displacement of 

the sperm of the first male to occur, as shown in Trichogramma envanescens (Damiens & Boivin 2006). 

In our case, however, sperm competition would be acting without changing sperm precedence. 

Possibly, the second male produces seminal fluids that reduce the efficiency of the sperm from the first 

male. Alternatively, the sperm from the first male may activate a barrier against the effect of 

subsequent sperm that loses its effect around 24 hours after its transfer, explaining why the effect on 

the number of female offspring is only observed in these mating interval. Again, this would suppose 

sperm competition does not disrupt sperm precedence.  

Polyandry thus seems to be indirectly beneficial for males. However, mating can also entail 

costs and these costs may differ in matings with virgin and mated females. Here, the costs of polyandry 

for males were measured by analysing their survival when placed with different numbers of females 

from one of two different mating status (i.e., virgin or mated). In spider mites, matings with virgin 

females present a shorter latency to copulation and a longer copulation duration than matings with 

mated females (Clemente et al. 2016; Rodrigues et al. 2017). This suggests that, for a given amount of 

time, males are expected to spend more energy in matings with virgin females than in matings with 

mated females, given that they will mate more often and for longer periods. However, increased latency 

to copulation in matings with mated females can also reflect increased resistance to male mating 

attempts. If so, the pre-copulatory investment of males is likely to be higher in matings with mated 

females. In our experiment, by comparing the survival of males in patches with different numbers of 

mated females, we found that multiple mating exclusively with mated females does not result in costs 

of survival in males. However, a decrease in survival was observed when males were placed with 5, but 

not with 20, virgin females. This result is intriguing. Possibly, the resistance of virgin females is low, 

hence mating with virgins is not costly per se. In treatments with 20 virgin females, we do not expected 

an exhaustion of the pool of virgin females, as the number of females per patch is superior to the 

reproductive limit of spider mite males (Krainacker & Carey 1989), so there might be few costs on these 

patches. However, in patches with few virgin females, males are likely to mate with the same female 

repeatedly, suffering the costs of mated-female resistance. Because in those patches they are still 

perceiving cues from virgin females (Rodrigues et al. 2017), their mating propensity may be higher than 

in patches only with mated females. Hence, the costs of enduring female resistance may be higher in 
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patches with a mix of virgin and mated females than in patches with mated (or virgin) females only. If 

that is true, males in patches with 5 virgin females are the ones that will attempt more re-matings and 

thus suffer higher costs of female resistance. Indeed, males exhibited higher mortality when placed 

with 5 virgin females than when placed with 5 mated females. Further experiments, for instance 

observations of locomotion patterns, should be done to determine if indeed males approach more 

mated females in patches where virgin females had been, compared to empty patches and if those 

females resist male attempts, increasing the investment of males in each copulation. Such patches, 

impregnated with pheromones from virgin females, are very likely common in the field, suggesting that 

costs of mating do exist for males in natural conditions.   

Our results suggest that polyandry provides indirect benefit for males and costs can occur when 

males are placed in patches with a mix of virgin and mated females. It is as yet unclear whether benefits 

obtained with re-mating outweigh the costs of mating in mixed patches.  Hence, we cannot as yet safely 

conclude that indirect benefits are sufficient to explain multiple mating. In fact, polyandry may have 

also been selected because it is beneficial for females. As spider mites display first male sperm 

precedence under the conditions tested, an increase in fecundity or survival of females was only 

expected if the seminal products from following males could provide the female with nutritious 

substances or stimulate their egg production (Ridley 1988). However, a stimulation of egg production 

by the second male without a change in sperm priority would be costly since it would increase the 

fitness of the first male or at least increase the number of sons produced by a female, leading to an 

increase in male-male competition. This trait should thus be counter-selected in males. In line with this, 

we found no benefits of multiple mating for females. On the contrary, females that mated multiply with 

an interval of 24 hours between the first and the subsequent matings (M24) showed a significant 

decrease in survival and fecundity compared to females that mated once or twice in any mating interval 

and females that were presented with multiple mating opportunities immediately after the first. Similar 

results have been found previously for multiply-mated females in T. urticae: Macke et al. (2012) found 

that virgin females display a higher life span than multiply-mated females, and that treatments where 

multiply-mated females had more mating opportunities showed decreased daily fecundity. In addition, 

females living with males produced fewer eggs than females alone (Oku 2010). It is possible that costs 

of mating are only apparent when females re-mate more than twice, if increased number of matings 

lead to increased costs.  

Differences in fecundity and survival between females that mated multiply with different 

mating intervals could also be related with age. However, a recent study in this species has shown that 

males do not show any preference when having to choose between three- and one-day old mated 

females, nor did latency to copulation and copulation duration differ in crosses with those females 
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(Rodrigues et al. 2017). Since, all crosses in our experiment were done with females never older than 3 

days and an effect of female age or male’s loss of attraction is unlikely to explain our results. Another 

possibility is that the mating interval, instead of affecting the extent of sperm precedence, influences 

female receptivity. Females may become more resistant to re-mating a certain period after the first 

copulation, consequently suffering increased costs. In fact, females that mated 24 hours after the first 

mating, independently of the number of matings, took longer to mate and more easily interrupted 

matings than females who’s matings followed each other immediately (authors personal observations, 

Clemente et al. 2016). 

If females do not benefit from multiple matings, why then do they tolerate them? Possibly, 

females re-mate more than their optima to mitigate the costs incurred by persistent males attempting 

to copulate, a strategy called “convenience polyandry” (Thornhill & Alcock 1983). This might be the 

case if the re-mating rate in this species is driven by the indirect benefits observed for males. However, 

we cannot conclude that convenience polyandry is acting in our species, as we do not know if increased 

female resistance leads to higher costs for females.  

Here we have explored how polyandry can influence females directly. However, multiple 

mating can also provide females with genetic benefits. For instance, if there is variation in the genetic 

quality of males (“good genes” hypothesis; Yasui 1997; Kuijper et al. 2012) or in insemination success 

(“sexy sperm” hypothesis; Kuijper et al. 2012), by mating with several males, females can improve 

offspring quality. Furthermore, multiple mating can increase the chance that females reproduce with 

males with whom they produce viable offspring (genetic incompatibility avoidance hypothesis (Zeh & 

Zeh 1996; Zeh & Zeh 1997; Wedell 2013). However, since subsequent copulations are not effective in 

species with first male sperm precedence, none of these hypotheses hold in such systems. 

Nevertheless, the existence of high genetic costs in these species can select for a disruption of sperm 

priority, provided polyandry has been already established (Boulton & Shuker 2015). This hypothesis has 

seldom been tested (but see Boulton & Shuker 2015).  

 With this study, we found that first male sperm precedence is complete, or nearly complete, 

in this species after a successful first mating and that mating can be costly for males. Furthermore, the 

decrease in offspring number and female survival suggests that females suffer costs by mating multiply. 

However, males can benefit from polyandry by increasing their relative fitness indirectly. The few 

benefits of re-mating for males and the costs for females help explaining why mating with mated 

females is less common than mating with virgins. Based on the results obtained here, it seems that in 

this species the opportunity for sexual conflicts is much subtler than previously thought. Nevertheless, 

more studies are needed to fully understand the occurrence of multiple mating in this species. 
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Abstract  

Spider mite populations are often infected with Wolbachia inducing cytoplasmic incompatibility (CI), 

whereby crosses between uninfected females and infected males yield reduced fertilized offspring. It 

is thus expected that uninfected females avoid mating with Wolbachia-infected males, potentially 

contributing to reproductive isolation between populations. To test the prevalence of such behaviour 

in the spider mite Tetranychus urticae, we measured the choice of uninfected females between 

Wolbachia-infected and uninfected males in 5 naturally infected populations. Females showed no 

preference, but copulations with Wolbachia-infected males started sooner and lasted longer than with 

Wolbachia-uninfected males, suggesting that Wolbachia-infected males are better competitors. 

We then tested whether such behaviour evolved under conditions where it would yield most 

benefits. To this aim, we performed 20 generations of experimental evolution of spider-mite 

populations with i) full Wolbachia infection, ii) no infection, or iii) mixed infection. In the latter, we 

expect high benefits from choice, as females are continuously exposed to both infected and uninfected 

males. Evolving under mixed infection did not affect host mate choice, latency to copulation or 

copulation duration. Moreover, the previous advantage in Wolbachia-infected males disappeared. 

Therefore, the role of Wolbachia in pre-copulatory reproductive isolation in spider mites is probably 

residual. 
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Introduction 

Wolbachia are widespread endosymbiotic bacteria commonly found in arthropods, which key feature 

is the capacity of manipulating its host cellular and reproductive processes (Werren et al. 2008). The 

most frequent Wolbachia-induced phenotype is cytoplasmic incompatibility (CI), a mechanism that 

results in the embryonic death of fertilized offspring from crosses between Wolbachia-uninfected 

females and Wolbachia-infected males. As all other crosses are compatible, CI promotes Wolbachia 

transmission by increasing the success of infected females. However, it also reduces drastically the 

fitness of both uninfected females and infected males, as the number of offspring resulting from 

incompatible crosses is reduced relative to those of compatible ones. Such an adverse effect of CI is 

expected to exert a strong selective pressure on hosts to evolve strategies that reduce the frequency 

and/or costs of such matings.  

Discrimination of compatible mates prior to mating has been proposed as a potential strategy 

to avoid CI (Hoffmann et al. 1990; Vala et al. 2004; Champion de Crespigny & Wedell 2007). This, in turn 

may lead to reproductive isolation between infected and uninfected lineages. Indeed, different 

theoretical models predict that both bi- (Telschow et al. 2005) and unidirectional CI (Telschow et al. 

2007) can select for premating isolation. Wolbachia may thus severely reduce gene flow between 

populations, both by reducing the viability of crosses between infected and uninfected individuals and 

by selecting for mate discrimination in uninfected females or infected males. This process, potentially 

contributing to speciation, has gained empirical support from a study involving two different Drosophila 

species (Jaenike et al. 2006). As D. recens is fully infected by Wolbachia, and D. subquinaria is fully 

uninfected, crosses between D. subquinaria females and D. recens males are incompatible, while the 

reverse is not true. Accordingly, sympatric D. subquinaria females exhibit mating discrimination against 

D. recens males, whereas allopatric D. subquinaria females do not (Jaenike et al. 2006).  

Several studies tested mate discrimination in species manipulated by CI-inducing Wolbachia. 

Some of these could not find evidence for mate choice (Hoffmann & Turelli 1988; Hoffmann et al. 1990; 

Wade & Chang 1995; Champion de Crespigny & Wedell 2007; Arbuthnott et al. 2016; Duron et al. 2011), 

whereas several others did find that individuals discriminate between infected and uninfected mates 

(Vala et al. 2004; Jaenike et al. 2006; Koukou et al. 2006). Therefore, discrimination has not been 

universally selected across different species, and may similarly vary between populations within 

species. Indeed, most studies so far were done using strains instead of outbred populations, which may 

not reflect the full behavioural repertoire of the species. For example, four different Nasonia species 

exhibited different patterns of mate discrimination, being this ability to discriminate highly influenced, 

among other factors, by the natural distribution of the populations of each species (Buellesbach et al. 



 
114 

2014).  Another study has shown that, in a single population of D. melanogaster and D. simulans, neither 

uninfected females nor infected males exhibited preference for infected or uninfected mates 

(Champion de Crespigny & Wedell 2007). However, a few years later, a different study in D. 

melanogaster has shown that assortative mating depends on Wolbachia infection status as well as on 

the genotype of the host (Markov et al. 2009).  

This observed variation in the ability to discriminate between infected and uninfected 

individuals may hinge upon the benefits that such behaviour may provide. Indeed, the prevalence of 

Wolbachia and the intensity of CI vary across species and populations (Engelstädter & Telschow 2009; 

Werren et al. 2008). Concomitantly, the benefits of avoiding it differ. Indeed, discrimination is only 

expected to evolve if Wolbachia does induce a sufficient level of CI (i.e; cost of incompatible matings), 

and if individuals are often exposed to both infected and uninfected mates. The best conditions for CI 

avoidance to evolve are thus present in populations with intermediate infection levels, as choice is only 

possible in those circumstances. However, most studies addressing mate discrimination have been 

done in fully infected population and uninfected individuals were obtained after antibiotic treatment. 

Still, mate choice has been found under these settings (Koukou et al. 2006; Vala et al. 2004) and fully 

infected and uninfected populations that do not display mate choice may evolve to do so if they spend 

enough time under intermediate infection levels, assuming that preference is maintained at low 

frequency in the population. 

In this study, we investigate whether there is intraspecific variation for mate choice in the 

spider mite Tetranychus urticae and whether this trait responds to selection. An earlier study found 

that uninfected T. urticae females not only preferred to mate with uninfected males, but also increased 

the chance of compatible matings by preferentially ovipositing near uninfected eggs (Vala et al. 2004).  

However, this study was done with a single isogenic line. We thus started by studying whether 

Wolbachia-uninfected females (i.e., cured using antibiotics) could discriminate between Wolbachia-

infected and Wolbachia-uninfected males in 5 populations naturally infected by Wolbachia. Next, to 

test if the evolution of mate preference in response to CI is contingent upon the prevalence of 

Wolbachia infection in the population, we performed experimental evolution under three selection 

regimes, corresponding to populations of spider mites that were either fully infected with Wolbachia, 

fully uninfected, or with intermediate infection frequency.  
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Materials and Methods 

Spider mite populations, rearing conditions 

Seven spider mite (Tetranychus urticae) populations were used for these experiments: AMP, CH, COL, 

DC, DF, LOU, RF. They were collected in 2013 in Portugal, around the Lisbon area (see Figure S2.1 and 

S2.2), from different plants: AMP on Datura spp.; CH and RF on tomato (Solanum lycopersicum); COL 

and DF on bean (Phaseolus vulgaris); DC on zucchini (Cucurbita pepo) and LOU on eggplant (Solanum 

melongena). These populations were then established at the University of Lisbon from 65 to 500 

females. All populations were naturally infected with CI-inducing endosymbiotic bacteria Wolbachia 

(see Figure S2.3). To create uninfected homologue populations, roughly 3 months after collection, 

groups of 25 adult females were placed in petri dishes containing bean leaf fragments on cotton wet 

with tetracycline solution (0.1 %, w/v). This treatment was applied continuously for three successive 

generations (Breeuwer 1997), followed by at least 20 generations of mass-rearing in an antibiotic-free 

environment, to avoid (or limit) potential side effects of antibiotic treatment (Ballard & Melvin 2007; 

Zeh et al. 2012).  

Before being used in all experiments, pools of 100 females were checked by PCR to confirm the 

Wolbachia infection status (Zélé et al. in prep). All populations were reared, since arrival to the 

laboratory, on bean plants (Phaseolus vulgaris, Fabaceae, var. Enana; Germisem Sementes Lda, Oliveira 

do Hospital, Portugal) under controlled conditions (25°C, photoperiod of 16L: 8D). 

 

Experimental setup 

Mate choice in field-derived populations 

5 naturally Wolbachia-infected T. urticae populations (AMP, CH, COL, DC, LOU) and their treated 

homologues were used to test if, within each population, uninfected females displayed a preference 

for uninfected or infected males. Uninfected and infected adult males and uninfected quiescent 

females were separately isolated onto 8 cm2 leaf squares on water-saturated cotton from a subset of 

their base populations. The next day, quiescent females became virgin adults, roughly of the same age, 

whereas adult males had been isolated for around 24 hours, which guaranteed increased eagerness to 

mate (Krainacker & Carey 1990). Before the test, males were randomly painted with two different 

colours of water-based paint using a fine brush, so the observer could discriminate each male type. 

Within the same population, males from different infection status were painted with different colours. 

The tests were done on 0.5 cm2 leaf discs (called “arena” hereafter). Two males, from the same 
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population but different infection status, were placed on the arena. The test started as soon as an 

uninfected virgin female from the same population was added to the arena. Each preference test lasted 

for thirty minutes and both the time until the beginning of mating - latency to copulation - and 

copulation duration were measured using a stopwatch. Simultaneously, the colour of the male that 

copulated with the female was registered, and later assigned to a male type. Trials where no mating 

occurred during 30 minutes were included in the final analysis, as uninfected females, besides 

exhibiting choice, could become less receptive to mating in the presence of infected males, i.e., could 

have a different propensity to mate. In total, around 40-70 replicates per population were performed 

(AMP: n=44; CH: n=53; COL: n=48; DC: n=60; LOU: n=68). Out of these replicates, in around 30 replicates 

per population mating was observed (AMP: n=34; CH: n=33; COL: n=38; DC: n=32; LOU: n=37). 

Experimental Evolution  

Two subsets with the same number of founding individuals were created for each population collected 

in the field (AMP, CH, COL, DC, DF, RF), one of them having been treated with antibiotics. This was done 

by placing groups of 25 adult females in petri dishes containing bean leaf fragments on cotton with a 

tetracycline solution (0.1 %, w/v). This treatment was applied continuously for three successive 

generations (Breeuwer 1997), after which the populations were maintained in a mass-rearing 

environment without antibiotics for three more generations. Before use, pools of 100 females from 

each population were checked by PCR to confirm the Wolbachia infection status. Two base populations, 

Wolbachia-infected and Wolbachia-uninfected, were then started by mixing 50 females from each of 

the 6 Wolbachia-infected populations and from their 6 Wolbachia-uninfected homologues, 

respectively.  

Each population of experimental evolution was started by placing 200 infected (Wolbachia-

infected control; hereafter “I” selection regime) and 200 uninfected mated females (Wolbachia-

uninfected control; hereafter “C” selection regime) from the base populations in an experimental box 

(14x14x20cm) containing two bean plants (17 days old) at 23.5°C. Eggs laid by these females then 

hatched and developed to reach adulthood 14 days later (i.e., generation time; Figure 1). At each 

generation, 200 young mated daughters were randomly picked and placed anew on 2 bean plants. To 

allow for the evolution of host control over Wolbachia-induced CI, we created a third treatment 

(Wolbachia-uninfected mixed; hereafter “M” selection regime) consisting of Wolbachia-uninfected 

females and an even proportion of Wolbachia-infected and -uninfected males. In this regime, at each 

generation, 350 young adult virgin females were randomly picked-up from the offspring of the previous 

generation and placed on a patch where they could mate with 100 I and/or 100 M males. After mating, 

200 of these females were transferred on fresh plants in a new box (Figure 1). For each selection regime, 
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5 independent replicates were maintained for 20 generation. Despite considerable care in the mixed 

regime, one of the replicates got contaminated by Wolbachia (i.e., infected females were found in the 

box) at generation 13. This replicate was thus excluded from the entire experiment. Consequently, only 

4 replicates of all selection regimes were included in the experiment presented here. The experiment 

presented here was done from generations 12 to 15 of experimental evolution. 

Mate choice after experimental evolution 

Wolbachia-uninfected females belonging to the control (C) and mixed (M) regimes, were given the 

choice between males of the C and M regimes, of the I and M regimes or of the I and C regimes. To 

avoid an effect of preference due to differences in relatedness between and within replicates, females 

and males of each preference test belonged to different replicates: Replicate 1 females mated with 

replicate 2 males, replicate 2 females mated with replicate 3 males, replicate 3 females mated with 

replicate 4 males and replicate 4 females mated with replicate 1 males. 

The protocol followed here was similar to that of the first experiment except for the age and 

mating history of the males. It has been shown that Wolbachia density changes with male age (Zhao et 

al. 2013) and that male mating history may influence their mating behaviour (Krainacker & Carey 1989). 

To control for these factors, males, like females, were isolated as quiescent from a subset of their base 

populations. This way, during the test, both males and females were virgin adults, roughly of the same 

age.  

 

Statistical Analyses  

All analyses were carried out using the R statistical package (v. 3.0.3). Maximal models were simplified 

by sequentially eliminating non-significant terms (Crawley 2007), and the significance of the 

explanatory variables was established using chi-squared tests, in the case of discrete distributions, or F 

tests, in the case of continuous distributions (Bolker et al. 2008). 

Mate choice in field-derived populations 

To test for an effect of colour on mate choice, we used a Pearson’s Chi squared test. Since no colour 

effect was found (X2
1=0.205, P=0.651), this factor was not included in the subsequent statistical models. 

We then began by testing if mating propensity (i.e., whether individuals mated or not during the time 

of the observations) and female mate choice were dependent on population identity (AMP, CH, COL, 

DC, LOU). To do so, in both analyses, we fit population identity as a fixed explanatory variable while 
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block was fit as a random explanatory variable. Both mating propensity and mate choice were analysed 

using a generalized liner mixed effect model (glmer, lme4 package) with a binomial error distribution. 

To determine if mate choice was significantly different from 50/50, we changed the intercept of our 

model to zero. By doing so, the estimate of the fixed factor in a model with categorical factors and a 

binomial distribution is the difference to a probability of 0.5 (Crawley 2007).  

 

 

Figure 1. Protocol of Experimental Evolution. 

Three regimes were created, one fully 

uninfected (C) one fully infected (I) and one 

where the prevalence of Wolbachia was 

intermediate (M). In treatment M, at every 

generation, 200 M virgin females were isolated 

and allowed to mate with I and M males, then 

transferred to new bean leaves to lay eggs. In 

treatments C and I, 200 mated females were 

transferred directly to a new box. We expect 

females from the M regime to evolve the ability 

to avoid I males, as crosses with this type of 

males are partially incompatible. For each 

treatment, 4 independent replicates evolved 

during 20 generations. U: uninfected; I: 

Wolbachia infected. 

 

Latency and duration of copulation were analysed using a cox proportional hazard mixed-effect 

model (coxme, package coxme), a non-parametric technique to analyse time-to-event data (e.g. time-

to-death; Crawley 2007). In this analysis no censoring was used, as we only used analyzed data in which 

mating occurred during the observation time. Male type (infected or not with Wolbachia) and 

population identity were fitted as fixed explanatory variables, whereas day was fitted as random 

explanatory variable. Whenever there were significant differences across populations, a Tukey test with 

Bonferroni correction was done (glht, package multicomp).  
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Mate choice after experimental evolution 

As in the previous analysis, colour was not included in the statistical models since no effect of this factor 

on choice behaviour was found using a Pearson’s Chi squared test (Χ2
3=0.60923, P= 0.894). 

First, we tested whether mating propensity and female mate choice were dependent on the 

female selection regime (M or C) and/or on the type of preference test (choice between M and C, M 

and I or C and I). Both analyses were done using a generalized liner mixed-effect model (glmer, lme4 

package) with a binomial error distribution. Female selection regime and type of preference test were 

fit as fixed factors, whereas day and replicate were fit as random factors. Again, to determine if mate 

preference of each population was significantly different from 50/50, we changed the intercept of our 

model to zero.  

To test for differences in mating latency and duration of copulation between selection regimes, 

the male chosen (M, C or I) and the female selection regime (M or C) were fit as fixed explanatory 

variables, whereas type of preference test, day and replicate were fit as random explanatory variables. 

Latency and duration of copulation variables were analysed using a cox proportional hazard mixed-

effect model (coxme, package coxme).  

 

Results 

Mate choice in field-derived populations 

Different populations showed a significant difference in mating propensity (X2
4=13.306 P=0.01; Figure 

2a). However, the multiple comparisons analysis revealed that differences were only marginally 

significant between DC and COL (Z=-1.2015, P=0.063) and between LOU and COL (Z=-1.1581, P=0.071; 

Figure 2a; Table 1). Moreover, female preference did not vary between populations (X2
4=1.0765 

P=0.898) and it was not significantly different from random mating (X2
5=3.1658, P=0.674; Figure 2b). 

Latency to mate with infected males tended to be shorter than that with uninfected males, although 

the difference was only marginally significant (male type effect: X2
1=3.694, P=0.056; Figure 3). In 

addition, there was a significant difference in latency to copulation among populations (population 

identity effect: X2
4=17.708; P=0.001; male type - population identity interaction: X2

4=2.411; P=0.661; 

Figure 3). Contrasts between populations revealed that copulations started significantly sooner 

between males and females from the LOU population than between males and females from the DC 

population (Z=4.078; P<0.001; Table 2). As for copulation duration, it lasted longer with infected males 

than with uninfected males (male type - copulation duration interaction: X2
1=4.917, P=0.027), 
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independently of the population tested (population identity effect: X2
4=6.998; P=0.1360; male type - 

population identity interaction: X2
4=7.427; P=0.115; Figure 4).  

 

 

Figure 2. Mating propensity (a) and mate 

choice (b) in crosses between uninfected 

females and infected or uninfected males 

in five populations of T. urticae. a) Mating 

propensity across populations. Grey bars 

represent percentage trials where no 

mating occurred. White bars represent 

percentage of trials where uninfected 

females mated within the time of the 

observation. b) Mate choice across 

populations. Grey bars represent 

percentage of infected males chosen by 

uninfected females and white bars 

represent percentage of uninfected 

males chosen by uninfected females. 

Population identity: AMP, CH, COL, DC 

and LOU. Horizontal lines correspond to 

standard errors of the mean. 

Comparison Estimate SE Z P 

AMP x CH -0.723 0.458 -1.579 1 

AMP x COL 0.1112 0.5057 0.22 1 

AMP x DC -1.0902 0.4431 -2.46 0.1389 

AMP x LOU -1.0468 0.4344 -2.41 0.1596 

CH x COL 0.8342 0.4546 1.835 0.6647 

CH x DC -0.3672 0.3837 -0.957 1 

CH x LOU -0.3238 0.3736 -0.867 1 

COL x DC -1.2015 0.4396 -2.733 0.0628 

COL x LOU -1.1581 0.4308 -2.688 0.0719 

DC x LOU 0.0434 0.3553 0.122 1 

Table 1. Multiple comparisons of mating propensity between five populations of T. urticae. Population identity: AMP, 
CH, COL, DC and LOU. Multiple comparisons were done using Tukey contrasts with Bonferroni corrections.   

 

a) 

b) 
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Figure 3. Latency to copulation 

(in seconds) involving matings 

with infected or uninfected 

males of five populations of T. 

urticae. Population identity: 

AMP, CH, COL, DC and LOU. 

Infected males are 

represented by grey bars, 

uninfected males by white 

bars. 

 

 

 

Comparison Estimate SE Z P 

AMP X CH -0.004 0.249 -0.015 1.000 

AMP X COL 0.232 0.238 0.973 1.000 

AMP X DC -0.421 0.252 -1.672 0.945 

AMP X LOU 0.613 0.242 2.528 0.115 

CH X COL 0.235 0.244 0.964 1.000 

CH X DC -0.417 0.252 -1.653 0.983 

CH X LOU 0.616 0.248 2.490 0.128 

COL X DC -0.653 0.249 -2.625 0.087 

COL X LOU 0.381 0.233 1.634 1.000 

DC X LOU 1.034 0.254 4.078 <0.001 * 
 

Table 2. Multiple comparisons of latency to copulation between five populations of T. urticae. Population identity: 

AMP, CH, COL, DC and LOU. Multiple comparisons were done using Tukey contrasts with Bonferroni corrections.  

* indicate significant differences in contrast analysis  
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Figure 4. Duration of copulation 

(in seconds) involving matings 

with infected or uninfected males 

of five populations of T. urticae. 

Population identity: AMP, CH, 

COL, DC and LOU. Infected 

males are represented by grey 

bars, uninfected males by white 

bars. 

 

Mate choice after experimental evolution 

Overall, there was no significant effect of the female selection regime, of the type of preference test, 

nor of the interaction between these two factors on both mating propensity (Χ21=0.464, P=0.496; 

Χ22=2.720, P=0.257; Χ22=1.53, P=0.465, respectively; Figure 5a) and mate choice (Χ21=0.002, P=0.967; 

Χ22=1.736, P=0.42; Χ21=1.073, P=0.585, respectively; Figure 5b). Furthermore, females did no show a 

preference for a specific type of male (Χ23=5.3305, P=0.149). As in mating propensity and mate choice, 

no effect of female selection regime, type of preference test  or their interaction  was found for latency 

to copulation (female selection regime: Χ21=3.01, P=0.078, type of preference test: Χ22=0.709, 

P=0.702; female selection regime - type of preference test interaction: Χ21= 4.774, P=0.092; Figures 

6a) and copulation duration (female selection regime: Χ21=0.624, P=0.43; type of preference test: 

Χ22=2.324, P=0.313; female selection regime - type of preference test interaction: Χ21= 3.806, 

P=0.149, Figure 6b).  
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Figure 5. Mating propensity (a) and mate choice (b) in crosses with uninfected females and males from different 

selection regimes. Uninfected females from the control and the mixed regimes (C and M, respectively) were 

given the choice between males from two different regimes (cross type). Males could be from the mixed regime 

(M), from the uninfected control regime (C) or the infected control regime (I).  a) Grey bars represent percentage 

of trials where no mating occurred. White bars represent percentage of trials where uninfected females mated 

within the time of the observation. b) White bars represent males from the Wolbachia-uninfected control regime 

(C), grey bars represent males from the Wolbachia-infected control regime (I) and dashed bars represent males 

from Wolbachia-uninfected mixed regime (S). Horizontal lines correspond to standard errors of the mean. 

 

a) 

b) 



 
124 

  

Figure 6. Latency to copulation (a) and duration of copulation (b) of matings between uninfected females and males 

from different selection regimes. Grey bars: C females; white bars: M females. M –Wolbachia-uninfected no choice 

selection regime; C –Wolbachia-uninfected no choice regime; I –Wolbachia-infected no choice regime.  

 

Discussion 

In this study, we tested whether spider mites avoided mating with incompatible males. Out of the 5 

populations tested, none showed preference for Wolbachia-uninfected mates, indicating the absence 

of pre-copulatory strategies to avoid Wolbachia-induced incompatibilities. Even after 16 generations of 

evolution in a selection regime where choice between infected and uninfected males could be 

expressed, uninfected females continued not to show a preference for uninfected males, hence mate 

preference did not respond to selection. Moreover, in the experiment with field-derived populations, 

infected males started to mate sooner and mated longer than uninfected males. However, this 

difference was lost after experimental evolution  

A decrease in latency to copulation increases the chance of being the first to copulate with a 

female. In addition, increased time of copulation has also been implied in the insurance of paternity by 

the first male (Satoh et al. 2001; Potter & Wrensch 1978). These behaviours are thus particularly 

important in species with first male sperm precedence, such as T. urticae, given that being the first male 

to mate with a female is crucial to ensure the production of offspring. The fact that latency to copulation 

was shorter and copulation duration was longer in infected males suggests that they are better 

b) 

 

a) 
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competitors than uninfected males. Furthermore, prolonged copulation in infected males can be 

associated with an increase in the production of fertilized offspring (Simmons 2001). Thus, in a spider 

mite population with intermediate Wolbachia infection frequency, infected males (i) may produce 

more offspring than uninfected males when mated with infected females, and (ii) fertilize more eggs of 

uninfected females, thereby increasing the penetrance of CI. As a consequence, such behaviour is 

expected to enhance the spread of Wolbachia within the population. In fact, a behavioural advantage 

of infected males has been seen in other species infected with Wolbachia (Champion de Crespigny et 

al. 2006; Panteleev et al. 2007). However, the fecundity and sex-ratio in the field-derived populations 

studied here are overall similar in crosses between infected females and infected or uninfected males 

(Figure S2.4), which invalidates (i). In addition, a study in spider mites could not find any correlation 

between copulation duration and number of offspring (Satoh et al. 2001), suggesting that prolonged 

copulation may not be associated with increased fertility, which invalidates both (i) and (ii). Alternately, 

infected males may mate longer to compensate for a decrease in sperm quality or quantity, ending up 

with the same number of sired offspring as uninfected males. Indeed, Wolbachia has been shown to be 

associated with male fertility costs in several hosts (reviewed in Price and Wedell 2008). For example, 

in D. simulans, infected males sired fewer offspring than uninfected males due to a decrease in sperm 

production (Snook et al. 2000). Curiously, a similar pattern as the one presented here has been found 

for reproductive interference between two spider mite species. In T. urticae, incompatible crosses with 

T. evansi did not elicit strong mate choice but lasted less than conspecific crosses, suggesting changes 

in mating investment, rather than changes in preference (Clemente et al. 2016).  

The absence of female choice, together with the shorter latency to copulation of infected males 

compared to uninfected males, should result in a higher proportion of copulations with infected males. 

However, we did not observe any difference in the number of copulations with both types of males. 

These two findings may be reconciled if uninfected females reject attempts of copulation by infected 

males more often than attempts by uninfected males. If this would be the case, it would imply a form 

of choice by uninfected females. Precise behavioural observations are needed to corroborate this 

hypothesis. 

After experimental evolution, no differences in latency to copulation and copulation duration 

were observed between males from different selection regimes. Even if not selected directly, males 

from the mixed-infection selection regime could evolve increased competitive ability, as this would lead 

to more compatible crosses in a population with intermediate levels of infection, decelerating the 

spread of Wolbachia. The lack of differences in latency to copulation and copulation duration across 

selection regimes does not coincide with the results obtained with the field-derived populations, where 
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infected males tended to start mating faster and copulated for a longer time period. The differences 

between the two experiments could be related to more than 30 generations that elapsed between the 

field test and the tests done after experimental evolution (see Figure S2.1). During this time, either 

infected males could have lost their competitive advantage against uninfected males in a scenario of 

full prevalence, or uninfected males could have become better competitors in a scenario free of 

infection. In fact, although unlikely, uninfected females could have been suffering a side effect of the 

tetracycline treatment that was lost through time. The differences between experiments observed here 

could also be due to different male mating histories: in the first experiment, males were experienced, 

whereas males used after experimental evolution were virgin. On the one hand, differences in male 

fertility, such as a decrease in sperm production, might only be evident after a few copulations. As said 

before, male mating behaviour might be adapted to its sperm supply, in which case we could expect to 

find differences when using experienced males only. On the other hand, by using experienced males, 

we do not know how many females they mated with prior to the experiment. The results obtained with 

the field-derived populations could also be simply due to differences in mating history between infected 

and uninfected males. However, that would be unlikely, having into account that this result was 

consistent across populations. 

In contrast to differences in latency and copulation durations, we found no evidence for mate 

discrimination between infected and uninfected males across field-derived populations. This lack of 

mate discrimination suggests that the ability to choose between males with different infection status is 

not common in T. urticae populations. Hence, the results obtained by Vala et al. (2004) are probably 

not representative of the reproductive behaviour of this species. In fact, the variation found for mate 

discrimination in the literature (Vala et al. 2004; Markov et al. 2009; Hoffmann et al. 1990) suggests 

that the presence of discrimination may depend on a combination of several factors, such as the 

genotype, population structure and infection history of the host and the effect of the Wolbachia strain 

(Goodacre & Martin 2012; Engelstädter & Telschow 2009). Another factor that can condition the 

selection for mate discrimination in host populations is the prevalence of infection. To test this, we 

exposed uninfected females to a potential choice between infected and uninfected males during 12-15 

generations. Unexpectedly, uninfected females evolving under this selection regime, as those evolving 

in the control regime, did not choose to mate preferentially with uninfected males.  

The absence of mate preference in both experiments is surprising, given that the populations 

tested here present high CI levels (c.a. 30% for CH to 68% for DC; Figure S2.4, c.a. 48 % for the mixed 

population used for the experimental evolution; Figure S2.5), resulting in a strong decrease of the 

reproductive success of uninfected females. This lack of mate discrimination may take place, for 
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instance, because males do not provide sufficient cues for females to distinguish them. However, 

infection has been shown to often alter molecular cues used for mate recognition (Beltran-Bech & 

Richard 2014). For instance, commensal bacteria have been shown to alter the cuticular hydrocarbon 

profile of D. melanogaster, influencing the mate preference of the host. Another possibility is that these 

cues exist but females are not able to perceive them, both before and after selection.  

Females might not be able to discriminate males from different infection status for different 

reasons. For one, there may be no genetic variation for this trait in the starting populations, which 

would explain both the absence of choice in the field-derived populations and the fact that it did not 

evolve in the mixed regime. Alternatively, a preference allele could have been present in the starting 

populations at low frequency, but selection during experimental evolution was not strong enough for 

the allele to increase in frequency. Indeed, some factors in the biology of spider mites might have 

contributed to reduce the strength of selection for choice. For one, spider mites are haplodiploid, 

producing haploid sons and diploid daughters, stemming from unfertilized and fertilized eggs, 

respectively (Helle & Sabelis 1985). Consequently, females involved in incompatible crosses still pass 

on their genes by producing haploid males. In addition, CI is incomplete in this species (Figure S2.4, 

S2.5), which is expected to result in a weaker selection pressure for the evolution of preference, as part 

of the fertilized offspring resulting from incompatible crosses is still viable (Champion de Crespigny et 

al. 2005). The conflict between uninfected females and Wolbachia is thus weaker in spider mites than 

in diploid species and in species with complete CI. However, the phenotype induced by Wolbachia in 

these populations can still reduce the proportion of female offspring by up to 68% (Figures S2.4 and 

S2.5), which represents an important decrease in the reproductive success of uninfected females. 

Moreover, theoretical models predict that unidirectional CI is more likely to select for pre-mating 

isolation if the levels of incompatibility are intermediate, because under these circumstances 

polymorphism for infection is maintained for a longer period in the populations (Telschow et al. 2007). 

In addition, spider mites have first male sperm precedence, where only the first mating of a female is 

effective. We thus expect a strong selection pressure on pre-copulatory strategies in this species. 

Finally, mate choice may have not been observed because it trades-off with another beneficial trait. 

Indeed, this trait could have been already present in the population. For instance, if male quality is 

variable for other reasons, choosing better quality males can trade-off with choosing compatible males 

(Colegrave et al. 2002; Neff & Pitcher 2005). The ability to avoid incompatible crosses could then be 

too costly to be maintained in an environment where incompatible crosses do not occur, i.e., under 

complete prevalence or in an environment free of Wolbachia. This could explain our results since the 

populations studied here were kept in the laboratory, fully infected, for more than 1 year (around 24 

generations) before being tested for mate choice, and 30 more generations passed between these 
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measurements and the observations done after experimental evolution (Figure S2.1). However, we do 

not know if there is genetic variation in male quality in our populations. The selective pressure applied 

here may also have led to the evolution of another strategy that trades-off with mate choice or that 

renders mate-choice unnecessary. For instance, spider mites may have evolved cryptic female choice 

or improved sperm competitive ability to avoid incompatible matings, as seen in other species (Wedell 

2013; Price & Wedell 2008). However, it might be harder for species with complete first male sperm 

precedence to evolve post-copulatory strategies than for species with other sperm precedence 

patterns, as cryptic female choice and sperm competition by definition, do not occur in these species. 

Here we could not find evidences for the evolution for mate discrimination. Nevertheless, to 

our knowledge, this was the first attempt to test whether assortative mating evolves in response to 

genetic incompatibilities. This is surprising, given that this approach has the potential to significantly 

contribute to the understanding of a behaviour that underlies reproductive isolation and therefore 

speciation (Buellesbach et al. 2014; Jaenike et al. 2006). More studies on this subject using experimental 

evolution are thus needed, in order to determine under which conditions mate discrimination will 

evolve in response to CI-inducing Wolbachia.  
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Abstract 

In the spider mite Tetranychus urticae, the first male sires all the offspring of a female. Still, multiple 

matings with mated females take place frequently. Such behaviour may be adaptive if it decreases the 

costs of incompatible crosses that occur, for example, when uninfected spider mite females mate with 

males that are infected by the endosymbiotic bacterium Wolbachia. Indeed, such crosses lead to 

cytoplasmic incompatibility (CI), entailing the embryonic death of (some) fertilized offspring. 

Uninfected females are thus expected to evolve strategies to avoid the costs imposed by CI. For 

example, they may mate with multiple males to recover offspring viability. However, it is not clear 

whether such compensation occurs in species with first male precedence, such as spider mites, and if 

the evolution of this strategy is contingent upon the prevalence of infection.  

To test this, we performed experimental evolution of spider-mite populations that were either 

fully infected by Wolbachia, fully uninfected or with an intermediate infection frequency. In the latter, 

to promote the evolution of a compensatory mechanism, uninfected females could copulate with both 

Wolbachia-infected and uninfected males at each generation.  

After 20 generations of selection, uninfected females evolving under mixed infection frequency 

that mated with Wolbachia-infected males presented a higher degree of CI than those mated first with 

Wolbachia-infected and then with uninfected males evolving under mixed infection. These results 

suggest that spider mites are able to reduce CI by mating multiply. In addition, when the first male was 

uninfected and the second was infected, there was no induction of CI. This indicates that spider mites 

disrupt their pattern of sperm precedence pattern only when the first mating is incompatible, which 

might be a key factor for the evolution of CI-driven polyandry in species with skewed patterns of sperm 

precedence. These results constitute the first experimental evidence that evolution of CI-antagonist 

strategies is possible. 
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 Introduction 

Sexual selection should favour the evolution of polyandry whenever it confers direct or indirect benefits 

for males or females. For instance, it has been hypothesized that multiple mating can evolve as a 

strategy to avoid genetic incompatibilities, arising as an effect of inbreeding or intra-genomic conflicts 

caused by selfish genetic elements (genetic incompatibility avoidance hypothesis; Tregenza and Wedell 

2000; Wedell 2013; Zeh and Zeh 1996, 1997). Indeed, by mating with more than one male, females 

may increase the likelihood of using sperm from a compatible male and thereby improve their fitness 

(Zeh & Zeh 1997; Zeh & Zeh 1996; Tregenza & Wedell 2000; Wedell 2013). For instance, in the cricket 

Grillus bimaculatus, females that mate with siblings have decreased hatching rate, while those that 

mate with both a sibling and a non-sibling male are able to avoid the decrease in egg viability (Tregenza 

& Wedell 2002).  

Genetic incompatibilities can occur due to endosymbionts. For example, the maternally 

inherited bacterium Wolbachia can induce cytoplasmic incompatibility (CI), thereby causing the 

embryonic death of fertilized offspring from crosses between uninfected females and Wolbachia-

infected males. This mechanism ensures the spread of Wolbachia-infected hosts in mixed-infected 

populations, as it imposes an important cost to uninfected females. Uninfected females, in turn, are 

expected to evolve strategies to avoid or resist CI. Indeed, there are several studies on, for instance, 

mate discrimination in species manipulated by endosymbionts (Vala et al. 2004; Champion de Crespigny 

& Wedell 2007; Poinsot et al. 2003; Koukou et al. 2006). There are, however, remarkably little 

experimental studies on the benefits of polyandry against the negative effects of endosymbionts (but 

see reviews Tregenza and Wedell 2000; Wedell 2013). An exception is the work done by Champion de 

Crespigny and colleagues in Drosophila simulans. In this species, polyandrous uninfected females 

produce more viable offspring that monandrous uninfected females after mating with an infected male, 

which demonstrates that polyandry helps avoiding the costs of CI (Champion de Crespigny et al. 2007). 

In addition, infected males seem to be poor sperm competitors, which might inhibit or prevent the 

invasion of Wolbachia in the population (Champion de Crespigny et al. 2007).  

Sperm precedence patterns can be contingent on the quality of the previous matings 

(Danielsson 1998; Garcia-Gonzalez 2004). In fact, changes in these patterns have been observed in 

crosses between species with last male sperm precedence, suggesting that genetic incompatibilities 

can impact on sperm precedence patterns themselves (conspecific sperm precedence, Price 1997; Price 

et al. 2000; Rugman-Jones and Eady 2007). For instance, in Drosophila melanogaster, sperm 

precedence is biased in favour of the last mate. However, in double matings with a conspecific and a 

heterospecific male, the sperm of conspecifics fertilizes most of the eggs, regardless of the order to the 

matings (Price 1997). Notwithstanding, overcoming the cost imposed by mating with an incompatible 
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male is likely to be more difficult in species with first than in species with last male sperm precedence. 

Indeed, in the latter case, females can subsequently mate with a compatible male, thereby promoting 

sperm competition and potentially rescuing their offspring viability. This option is not available for 

species with first-male precedence, which, if mated with an incompatible male, cannot compensate 

later by mating with a compatible male. There should thus be strong selection for pre-copulatory mate 

choice in species with first male sperm precedence. Unfortunately, studies showing this are remarkably 

scarce (but see Vala et al. 2004). Alternately, tough not exclusively, such species may evolve the ability 

to distinguish sperm from infected and uninfected males, this way changing their pattern of sperm 

priority. Regardless, to our knowledge, no study has tested the effect of genetic incompatibilities on 

the evolution of sperm priority in species with first male sperm precedence. 

In the spider mite Tetranychus urticae only the first mating of a female is effective (Helle 1967, 

chapter 3). Still, multiple mating occurs (Oku 2010). This behavior could be, even if partially, explained 

by the few indirect benefits polyandry provides to males (Chapter 3). In any case, there are several ways 

through which polyandry can be also beneficial for females, either directly, by providing nutrients or 

enabling sperm replenishment, or indirectly, by improving offspring quality or genetic variability 

(Danielsson 1998; Arnqvist & Nilsson 2000; Slatyer et al. 2012). However, none of the previous 

opportunities, except for nutritional provisioning, are expected to apply to species with complete first 

male sperm precedence, as there is no cryptic female choice or sperm competition. In addition, 

nutritional provisioning has been excluded as a mechanism to explain multiple mating in this species, 

as multiply-mated females produce fewer eggs and survive less than females with fewer mating 

opportunities (chapter 3, Macke et al. 2012). One possible explanation for the existence of polyandry 

in spider mites relies on the occurrence of reproductive manipulators, such as CI-inducing Wolbachia.  

In T. urticae, Wolbachia prevalence varies across populations in the field (Figure S2.3), 

Breeuwer and Jacobs 1996; Enigl and Schausberger 2007; Gotoh et al. 2007), and these bacteria 

frequently induce intermediate to high level of CI, which will favour the evolution of antagonistic 

strategies against this phenotype. Due to the pattern of sperm precedence observed in this species, 

pre-copulatory mate choice is the most likely mechanism to avoid the costs of CI. Two different studies 

tested if there was mate discrimination against infected mates in this species. The first found that 

females from an isofemale line were capable of choosing between infected and uninfected males (Vala 

et al. 2004). However, a subsequent study, using 5 different outbred populations, showed that spider 

mite females were not able to distinguish males with different infection status, even after 15 

generations of evolution in mixed infection (chapter V). This suggests that preference for males with 

different infection status is not common in T. urticae. Possibly, spider mites reduce the costs of CI via 

post-copulatory strategies. However, this possibility has never been tested in this species.  
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The evolution of host antagonistic strategies is expected to be contingent upon the prevalence 

of Wolbachia in a given population (Wedell 2013; Engelstädter & Telschow 2009). Indeed, we expect 

these strategies to evolve only when the costs of CI are present, i.e., at intermediate infection 

frequencies. To test this prediction, we exposed spider mites populations to three selection regimes 

corresponding to different Wolbachia prevalences: null (0%), full (100%) and mixed prevalence (where 

0% prevalence in females but 50% prevalence in males).  

 

Material and Methods 

Spider mite populations, rearing conditions 

The six populations used for this experiment (AMP, CH, COL, DC, DF, RF) were collected in Portugal, 

around the Lisbon area in 2013, on different plants: AMP on Datura spp.; CH and RF on tomato 

(Solanum lycopersicum); COL and DF on bean (Phaseolus vulgaris); DC on zucchini (Cucurbita pepo) and 

LOU on eggplant (Solanum melongena) (Figure S2.1, S2.2). These populations were then established at 

the University of Lisbon (from 65 to 500 founders) and maintained in a mass-rearing environment on 

bean plants (Phaseolus vulgaris, Fabaceae, var. Enana; Germisem Sementes Lda, Oliveira do Hospital, 

Portugal) under controlled conditions (25°C, photoperiod of 16L: 8D). All populations were naturally 

infected with CI-inducing endosymbiotic bacteria Wolbachia (see Figure S2.3 and S2.4).  

 

Experimental Evolution 

Two subsets with the same number of founding individuals were created for each population collected 

in the field, one of them having been treated with antibiotics. This was done by placing groups of 25 

adult females in petri dishes containing bean leaf fragments on cotton with a tetracycline solution 

(0.1%, w/v). This treatment was applied continuously for three successive generations (Breeuwer 

1997), after which the populations were maintained in a mass-rearing environment without antibiotics 

for three more generations. Before use, pools of 100 females from each population were checked by 

PCR to confirm the Wolbachia infection status. Two base populations, Wolbachia-infected and 

Wolbachia-uninfected, were then started by mixing 50 females from each of the 6 Wolbachia-infected 

populations and from their 6 Wolbachia-uninfected homologues, respectively.  

Each population of experimental evolution was started by placing 200 infected (Wolbachia-

infected control; hereafter “I” selection regime) and 200 uninfected mated females (Wolbachia-

uninfected control; hereafter “C” selection regime) in an experimental box (14x14x20cm) containing 

two bean plants (17 days old) at 23.5°C. Eggs laid by these females then hatched and developed to 
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reach adulthood 14 days later (i.e., generation time; Figure 1). At each generation, 200 young mated 

daughters were randomly picked and placed anew on 2 bean plants. To allow for the evolution of host 

control over Wolbachia-induced CI, we created a third treatment (Wolbachia-uninfected mixed; 

hereafter “M” selection regime) consisting of Wolbachia-uninfected females and an even proportion 

of Wolbachia-infected and -uninfected males. In this regime, at each generation, 350 young adult virgin 

females were randomly picked-up from the offspring of the previous generation and placed on a patch 

where they could mate with 100 I and/or 100 M males. After mating, 200 of these females were 

transferred on fresh plants in a new box (Figure 1). For each selection regime, 5 independent replicates 

were maintained for 20 generation. Despite considerable care in the mixed regime, one of the 

replicates got contaminated by Wolbachia (i.e., infected females were found in the box) at generation 

13. This replicate was thus excluded from the entire experiment. Consequently, only 4 replicates of all 

selection regimes were included in the experiment presented here. The experiment presented here 

was done at generations 19 to 21. 

 

 

Figure 1. Protocol of Experimental Evolution. 

Three regimes were created, one fully 

uninfected (C) one fully infected (I) and one 

where the prevalence of Wolbachia was 

intermediate (M). In treatment M, at every 

generation, 200 M virgin females were isolated 

and allowed to mate with I and M males, then 

transferred to new bean leaves to lay eggs. In 

treatments C and I, 200 mated females were 

transferred directly to a new box. We expect 

females from the M regime to evolve the ability 

to avoid I males, as crosses with this type of 

males are partially incompatible. For each 

treatment, 4 independent replicates evolved 

during 20 generations. U: uninfected; I: 

Wolbachia infected. 

 

Polyandry as a compensatory mechanism 

To test if polyandry could reduce the effect of CI, and if this would be affected by the level of 

infection in the populations, we performed crosses between uninfected females, from either the 

control (C) or the mixed (M) regime, and infected (I) or uninfected males, which also stemmed from 
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either the control (C) or the mixed (M) regime.  We then assessed the level of CI by measuring the 

embryonic mortality and sex ratio of the offspring. In addition, to test whether the potential evolution 

of CI avoidance entails trade-offs, we also measured the survival and fecundity of the females. Finally, 

we recorded the latency to copulation of the second mating, which indicates the willingness to re-mate 

and is potentially correlated with the rate of polyandry. 

Twelve days before the beginning of the experiment, 50 quiescent females from the 3 regimes 

were isolated from a subset of the base population in a petri dish with a quarter of a leaf. Quiescent 

females emerge into adults within 24 hours, after which they lay unfertilized eggs that will give rise to 

haploid males. A high number of virgin females with the same age were allowed to lay eggs for one day, 

resulting in a cohort of virgin adult males roughly with the same age 10 days later. This way, age effects 

on Wolbachia density were controlled for (Zhao et al. 2013). Quiescent uninfected females from the 

control and the mixed regimes were isolated from the same population subsets as before. 48 hours 

later, females were allocated to different treatments (day 0), in which they could mate once or twice 

with either infected or uninfected males. To ensure matings, approximately 5 males and 5 females were 

placed together 0.5 cm2 leaf discs. Mated females were immediately transferred to a new patch without 

males. One hour later, new males were added to half of those patches, whereas in the other half, 

females remained alone. The identity of the second male varied with that of the first: if males on the 

first patch were uninfected, males on second patch were infected and vice-versa. Uninfected males 

belonged to the same regime as female (i.e., C females mated with C males, whereas M females mated 

with M males). Again, individuals were given 1 hour to mate and females were subsequently isolated 

onto a new leaf disc (0.95 cm2) without males. During the observation of crosses on the second patch, 

the latency to copulation of each female was registered. In addition, females that did not mate after 

one hour, in both patches, were excluded from the experiment. The next day (day 1), females were 

individually isolated on new leaf discs (2.55 cm2) where they laid eggs for 4 days. Female survival was 

registered daily and, at the fourth day females were removed, if alive (day 5). Eggs hatching rate was 

registered 4 days after female removal (day 9) and the number of sons and daughters per patch was 

recorded 6 days later (day 15). Note that spider mites are haplodiploid, whereby haploid sons stem 

from haploid eggs, and diploid daughters from fertilized eggs (Helle & Sabelis 1985). In this case, the 

phenotype of CI is a male-biased sex-ratio, as Wolbachia only affects the production of daughters, i.e., 

fertilized offspring. Thus, in T. urticae, the proportion of male offspring remains unchanged, while the 

effect of CI is measured as an increase in the number of unhatched fertilized eggs at the expense of a 

decrease in number of daughters (Breeuwer 1997). In our populations, however, CI is incomplete, since 

some daughters are produced from crosses between uninfected females and infected males (see Figure 

S2.4 and S2.5).  
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Finally, to avoid the effects of relatedness, females mated with males from a different replicate 

line of the same selection regime. Replicate combinations were assigned as follows: Replicate 1 females 

mated with replicate 2 males, replicate 2 females mated with replicate 3 males, replicate 3 females 

mated with replicate 4 males and replicate 4 females mated with replicate 1 males. 

 

Statistical Analysis 

All analyses were carried out using the R statistical package (v. 3.0.3). The general procedure for building 

the statistical models used to analyse the effects of re-mating on the offspring proportion of females 

and life history traits was as follows: selection regime (i.e., Wolbachia-uninfected from the control 

regime (C) and  Wolbachia-uninfected from the mixed regime (M), the type of cross (i.e., cross with 

uninfected males (U), with Wolbachia-infected males (I), with uninfected followed by infected males 

(UI), or with infected followed by uninfected males (IU)), and their interaction were fit as fixed 

explanatory variables, whereas block and replicate were fit as random explanatory variables. To analyse 

the level of CI, the relative proportions of unhatched eggs, of daughters, and of sons, were computed 

using the function cbind and analysed using a generalized linear mixed model with a beta-binomial error 

distribution to account for overdispersion (glmmadmb, glmmADMB package) (Fournier et al. 2012; 

Skaug et al. 2013). Daily fecundity per female was Box-Cox transformed to improve normality (Crawley 

2007) and subsequently analysed using linear mixed-effect models (lmer, lme4 package). Survival was 

analysed using a cox proportional hazards mixed-effect model (coxme, coxme package).To test the 

effect of the selection regime on the willingness to remate, latency to copulation was normalized using 

a Box-Cox transformation (Crawley 2007), then analysed using a linear mixed-effect models (lmer). In 

this model, the number of individuals per patch and the identity of the patch were added to the 

previous mentioned random explanatory variables.  

Maximal models were simplified by sequentially eliminating non-significant terms to establish 

a minimal model (Crawley 2007). The significance of the explanatory variables was established using 

chi-squared tests, in the case of discrete distributions, or F tests, in the case of continuous distributions 

(Bolker et al. 2008). When an interaction was significant each selection regime was analysed separately. 

A posteriori contrasts were done between levels of each significant variable using a test for General 

Linear Hypothesis (glht, multcomp package). 
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Results 

The analyses of the proportion of unhatched eggs revealed that the selection regime affected 

differentially the outcome of CI depending on the type of cross (regime-type of cross interaction: 

Χ2
3=8.136, P=0.043; Figure 2). Further analyses conducted for each regime separately revealed no 

significant differences in the proportion of unhatched eggs between once and double mated females if 

females belonged to the control regime (I – IU: Z=0.951, P=0.565; U – UI: Z=0.822, P=0.652; Figure 2). 

However, if females had been evolving under mixed-infection, females that first mated with infected 

males and then re-mated with uninfected males presented a lower proportion of unhatched eggs than 

females only mated to infected males (I – IU: Z=3.788, P<0.001; Figure 2), while this proportion was the 

same for once and double mated females mated first with an uninfected male (U – UI: Z= 0.261, 

P=0.957; Figure 2). These results thus suggest a partial rescue of CI by double mated females evolved 

under mixed Wolbachia-infection frequency. 

 

 

Figure 2. Effect of regime and cross type on the relative proportion of sons, daughters and unhatched eggs in spider-

mite offspring. Bars represent means (± s.e.) in the offspring of uninfected females from either the Wolbachia 

control regime (C) or the mixed regime (M) that mated with Wolbachia-infected (I) and/or Wolbachia-uninfected 

males (U). The order in which the letters appear in the x axis correspond to the order of matings: the first letter 

corresponds to the first male that copulated with the female, the second letter to the second male. Uninfected 

males belonged to the same regime as females (i.e., C females mated with C males; M females mated with M 

males).   
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The proportion of sons was higher for females from the mixed regime than for females of the 

control regime (regime: Χ2
1=6.032, P=0.014; cross type: Χ2

3= 1.059, P=0.787; regime-cross type 

interaction: Χ2
3=7.528, P=0.057; Figure 2), whereas the proportion of daughters was affected by the 

type of cross (Χ2
3=556.631, P<0.001; Figure 2) but not by the selection regime (Χ2

1=0.0018, P=0.966) or 

their interaction (Χ2
3= 4.325, P=0.228). In this case, in both regimes, females that mated first with 

uninfected males had the same proportion of daughters, independently of the existence of a second 

male (U – UI: Z=-4.09, P=0.995; Figure 2), whereas females that mated first with infected and then with 

uninfected males, produced more daughters than females only mated to infected males (I–IU: Z= -0.09, 

P<0.001; Figure 2). 

 

Figure 3. Effect of regime and cross type on female survival. Survival curves for uninfected females form a) the mixed 

regime (M), and b) the control regime (C). Females were mated with Wolbachia-infected (I) and/or uninfected 

males (U). The order in which the letters appear in the x axis correspond to the order of matings. Uninfected males 

belong to the same regime as females (i.e., C females mated with C males; M females mated with M males). 

 

The survival of females was not affected by their selection regime (Χ2
1=0.22, P=0.64), the type 

of cross (Χ2
3=0.693, P=0.875) or the interaction between these two factors (regime-cross type 

interaction: Χ2
3=7.679, P=0.053; Figure 3). However, the selection regime affected daily fecundity 

differentially, depending on the type of crosses (regime-cross type interaction: F3,841.44=2.7166, 

P=0.044). Indeed, the separate analyses of each selection regime revealed that only females from the 

mixed-infection regime exhibited differences in fecundity (control regime: F3,421.11=1.0605, P=0.366; 

mixed regime: F3,408.28=3.400, P=0.018; Figure 4). In this regime, females that mated twice, first with an 

uninfected and then with an infected male, produced more offspring than females once mated to 

uninfected males or females first mated with infected and then uninfected males (UI -UU: Z=2.871, 
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P=0.025; UI - IU: Z=2.785, P= 0.032; UI - I: Z=2.475, P= 0.0799; Figure 4).  Finally, no effect of regime 

(F3,33.235=0.3811, P=0.5412), male type (F3,35.199= 0.0256, P=0.8739) or their interaction (F1,30.537=2.1998, 

P=0.1483) was found for latency to copulation (Figure 5). 

 

Figure 4. Effect of regime and cross type 

on the daily fecundity of females. 

Average (±s.e.) daily fecundity per 

female (total number of eggs laid per 

female / number of days the female was 

alive) for Wolbachia-uninfected females 

from the control regime (C; light grey) 

and the mixed regime (M; dark grey). 

Females were mated with Wolbachia-

infected (I) and/or uninfected males (U). 

The order in which the letters appear in 

the x axis correspond to the order of 

matings. Uninfected males belong to the 

same regime as the female (i.e., C females mated with C males; M females mated with M males). Absent 

superscripts (*) above bars indicate non-significant differences at the 5% level (contrasts analyses). 

 

 

Figure 5. Effect of regime and infection status of the second 

male on the latency to copulation of females. Boxplot of the 

latency to copulation for Wolbachia-uninfected females 

from the control (C) or the mixed (S) selection regimes. 

Second mating could be with Wolbachia-infected (I) or 

uninfected (U) males. Uninfected males belong to the same 

regime as the female (i.e., C females mated with C males; 

M females mated with M males).  
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Discussion 

In this study, we tested if spider mites adopted strategies to reduce the fitness costs imposed by mating 

with incompatible mates, and whether such strategies were selected when females evolved in presence 

of both compatible and incompatible males. We found that females evolving under mixed infection 

produced a lower proportion of unhatched eggs when mated to uninfected males after mating with 

infected males than when mated to infected males only. This suggests that spider mites, a species with 

first male sperm precedence, can evolve the ability to avoid the negative effect of Wolbachia by partially 

rescuing CI. Moreover, females from the mixed regime that mated first with an uninfected and then 

with an infected male produced more offspring than females from the same regime mated to a single 

uninfected male. This was not the case of females from the control selection regime. Together, these 

results suggest that evolving under mixed infections selects for strategies that reduce the cost of CI. 

The unidirectional decrease of the proportion of unhatched eggs may be due to an inferior 

reproductive success of infected males. Indeed, decreased sperm competitive ability of infected males 

is very frequent in species carrying selfish genetic elements (Champion de Crespigny and Wedell 2006, 

in Wolbachia, and Price and Wedell 2008, for a review). This decrease may be due, for instance, to a 

decrease in quality or quantity of the sperm produced by infected males. In fact, an inferior fertility of 

infected males was found in D. simulans infected with Wolbachia (Snook et al. 2000), and in species 

carrying other SGE’s (see Price and Wedell 2008 for review). The evolved ability of females to distinguish 

sperm from each type of male in the mixed regime may hinge on this difference in sperm property 

between infected and uninfected males. Alternatively, it is possible that the ability to rescue CI is not 

due to evolved cryptic female choice but to sperm competition promoted by multiple mating (Price & 

Wedell 2008). In this case, rescued CI in the mixed regime should be an evolved strategy of the 

uninfected males. Finally, another possibility would be that both mechanisms are occurring 

simultaneously. In any case, a lower competitive ability of infected males could also explain why females 

from both selection regimes produced more daughters when they mated first with infected and then 

with uninfected males than when they mated with infected male only. Indeed, it has been shown 

previously that female spider mites are capable of using sperm from subsequent matings when the first 

mating is not fully effective (Satoh et al. 2001).  

Females from the mixed regime produced more sons than those from the uninfected control 

regime. This may represent a cost of evolving CI avoidance. Alternately, females from the mixed regime 

may produce more sons because sons are haploid and will be uninfected, independently of the infection 

status of the males the female mates with. In addition, uninfected males are never involved in 

incompatible crosses, as matings with males of this infection status and uninfected or infected females 

are compatible. By producing more sons, females can not only avoid the costs of incompatible matings, 
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but also slow down Wolbachia spread in a polymorphic population. However, this strategy may be non-

adaptive for females, for example under local mate competition, where a female-biased sex ratio is 

optimal (Hamilton 1967) This cost could help explain why in fully uninfected populations the ability to 

rescue CI is not maintained. 

In populations where polyandry is advantageous, we expect high mating rate to evolve. Indeed, 

increased female mating rate has evolved in Drosophila pseudoobscura exposed for 10 generations to 

the risk of mating with males carrying a deleterious sex ratio-distorting gene (Price et al. 2008). 

However, here, even though individuals from the mixed regime could partially rescue CI, females from 

both selection regimes had a similar latency to re-mating. One possible explanation is that latency to 

second copulation is not a proper indicator of increased mating rate in our species. Since double 

matings are not costly for spider mite females (Chapter 3), females are likely to accept these matings 

independently of the presence of Wolbachia-induced costs. However, costs of re-mating in subsequent 

matings do exist (Chapter 3, Macke et al. 2012). Hence, differences in latency to re-mate between 

control and mixed regimes, may exist in such matings, a possibility not tested here. Another possibility 

is that females did not increase their re-mating rate under mixed infection because the intensity of 

polyandry already present in the control regimes is sufficient to elicit CI rescue. As re-mating can be 

costly for females (Chapter 3, Macke et al. 2012), an increase in willingness to re-mate would not be 

selected except if it was necessary to enable evolution of strategies against the effect of CI avoidance. 

Indeed, the prevalence of Wolbachia varies across spider mites populations in the field (Zélé et al. in 

prep, Breeuwer and Jacobs 1996; Enigl and Schausberger 2007; Gotoh et al. 2007), which might enable 

the maintenance of polyandry even in populations that go through periods of complete presence or 

absence of Wolbachia. In addition, polyandry can be maintained as strategy against other incompatible 

crosses. For instance, incompatibility between species, populations and morphs of spider mites has 

been reported in the literature (Navajas et al. 2000; Gotoh et al. 2005; Clemente et al. 2016). However, 

when tested, re-mating could not reduce the costs of incompatible crosses between populations 

(Navajas et al. 2000). Nevertheless, polyandry alone is not sufficient to avoid the effect of CI in species 

with skewed sperm precedence patterns. Indeed, for polyandry to be advantageous in species with first 

male sperm precedence, the host needs to evolve the ability to disrupt its sperm precedence pattern 

when the first mating is incompatible, i.e., the first male is infected. However, to disrupt first male 

sperm precedence when the first mating is compatible would be deleterious for the host. Consequently, 

it is the combination of polyandry and disruption of sperm precedence pattern in one direction only 

that will confer on the host an advantage against the spread of Wolbachia. 

The ability to rescue CI could trade-off with other female traits. However, no costs of survival 

were observed and, on the contrary, females from the mixed regime that mated twice, first with an 
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uninfected and then with an infected male had a higher fecundity than females once mated to 

uninfected males and females first mated with infected and then uninfected males. This may suggest 

that females are able to detect the presence of infected males and increase their egg production while 

keeping first male sperm precedence. By producing more uninfected offspring, uninfected females gain 

an advantage over Wolbachia-infected ones, which constitutes another way to decrease the prevalence 

of Wolbachia in the population. Other types of post-copulatory differential investment have been 

documented for several species (Neff & Pitcher 2005).  

The fact that polyandry helps rescuing CI incompatibilities does not necessarily imply that 

polyandry evolved in response to the costs of CI.  Indeed, theoretical work predicted that CI is not likely 

to explain the evolution of polyandry, owing to costs of multiple mating and a decrease in the number 

of incompatible matings with increased Wolbachia prevalence (Champion de Crespigny et al. 2007). 

However, in our experiment females from the mixed regime, could break their sperm priority pattern 

unidirectionally, keeping first male sperm precedence when the first mating was compatible (i.e., the 

first male was not infected with Wolbachia). If rescue was bidirectional the second mating would be 

partially effective independently of the infection status of the males. This means that polyandry may 

allow for rescue of CI, but also for partial induction of CI, if infected males mate with uninfected females 

following matings with uninfected males.  This behaviour would thus only be advantageous for the host 

in some circumstances. In our species, however, first male sperm precedence is maintained in 

compatible crosses, while in incompatible ones CI is partially rescued. This behaviour is thus always 

beneficial for the host and costly for Wolbachia. Polyandry might thus have evolved in response to 

incompatible matings. Furthermore, theoretical work on the genetic incompatibility and the good 

genes hypotheses, has predicted that polyandry can evolve as a strategy against incompatible crosses 

(Colegrave et al. 2002). This is contingent upon a high cost of incompatibility and on the existence of 

some degree of post-copulatory selection for compatible matings (Colegrave et al. 2002). In our 

populations, the phenotype induced by Wolbachia greatly decreases the reproductive success of 

uninfected females as it reduces by up to 48% the proportion of their daughters (Figure S2.5), and post-

copulatory strategy for compatible matings did evolve in our study. Hence, the system studied here 

meets the theoretical assumptions necessary for the evolution of polyandry as a compensatory 

mechanism against incompatible crosses. 

Here, we have created the optimal conditions for the evolution of CI antagonistic strategies. 

However, whether this may be extrapolated to natural populations remains to be evaluated. In fact, 

host population structure is expected to have serious consequences on the infection dynamics of CI-

inducing Wolbachia (Engelstädter & Telschow 2009). Spider mites populations are thought to follow a 

so-called ‘haystack model’ of population structure (Nagelkerke & Sabelis 1996), under which most 
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selection occurs within patches. According to this model populations of spider are thus mainly exposed 

to soft selection, which is predicted to foster the spread of CI (Engelstädter & Telschow 2009). However, 

how this affects the probability that polyandry rescues CI is unclear. Indeed, on the one hand, CI-spread 

will select for CI-avoidance, on the other hand, too fast a spread of CI will hamper the effectiveness of 

this strategy.  

The work presented here is the first experimental evidence of evolution of a post-copulatory 

strategy in response to the adverse effects of Wolbachia. Indeed, we have found that the pattern of 

sperm precedence can be modified, to the benefit of the host, under the selection pressure imposed 

by symbiont infection. Further studies should be done to verify if the CI antagonistic strategies evolved 

here allows the host to slower Wolbachia invasion, or even prevent its fixation. 
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This thesis contributes to improve our understanding of mating strategies by addressing important 

questions that have been largely neglected so far, namely what are the drivers of multiple mating in 

species with first male sperm precedence. Indeed, although patterns of sperm priority have been well 

documented, the underlying evolutionary processes remain poorly understood. Here, we show that 

spider mites, a species with first-male precedence, do not benefit directly with multiple mating. 

However, we uncover prospective indirect benefits in polyandry for males. Furthermore, we show how 

spider mites, and potentially other species, can adjust their strategies to different selection pressures. 

Using experimental evolution of host-symbiont interactions, we provide the first test concerning the 

evolution of assortative mating in response to genetic incompatibilities, and the first evidence that the 

pattern of sperm precedence can evolve in response to infection. Our finds are of key importance to 

understand the dynamics between host and endosymbionts 

As these points have been extensively discussed in the previous chapters, I will refrain from 

discussing them here. I will rather summarize the key findings from this work and present some 

potential future directions.   

 

1. Key results 

1.1 Multiple mating is not explained by direct benefits 

We found that neither males nor females benefit directly with matings that involved females that had 

already mated. Nevertheless, males benefited indirectly by mating with mated females. This benefit 

might help explain why multiple mating with mated females occurs frequently in this species. Still, these 

results do not rule out the existence of other, indirect benefits. In fact, polyandry is most likely to have 

evolved due to several types of benefits, rather than just one (Ivy 2007). 

1.1.1 Spider mites use chemical cues to distinguish mated from virgin females  

In species with first male sperm precedence, virgin females provide higher fertilization opportunities to 

males than mated females. Accordingly, males are expected to exhibit mate choice in favour of virgins 

(Kvarnemo & Simmons 2013; Kelly & Jennions 2011). Here, we confirmed that spider mites prefer 

virgins over mated females and that they do not distinguish between mated females that have mated 

at different mating intervals (Figure 1.1A). Furthermore, we found that spider mites use chemical cues 

to make the distinction between virgin and mated females. Indeed, they use both volatiles and chemical 

trails, which are redundant cues (Figure 1.1B). These results indicate that re-mating does not occur due 

to a lack of ability to discriminate females of different matings status.  
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1.1.2 Spider mites exhibit complete first male sperm precedence  

Several factors have been implied in the variance observed in the patterns of sperm precedence within 

species, namely male size, number of re-matings and mating interval (Danielsson 1998; Simmons 2001). 

Here, we found that spider mites present complete, to nearly complete, first male sperm precedence 

and that this pattern is independent of the number of matings and the interval between them (Figure 

1.1C). This suggests that once the first mating of a females is successful, it is very likely that the 

subsequent matings are ineffective. Nevertheless, re-mating may provide direct benefits for males 

when first matings are ineffective. Indeed, several bodies of evidence suggest that this might be the 

case (Satoh et al. 2001; Potter & Wrensch 1978; Helle 1967). 

1.1.3 Re-mating provides males with indirect benefits 

Given that spider mites are haplodiploid, male contribution to offspring is easily measured as the total 

number of female offspring produced by a female. Taking advantage of Etoxazole resistance as a 

paternity marker, we were able to disentangle the contribution of the first male from that of 

subsequent males. When comparing the total number of daughters sired by the first male across 

treatments, we found that multiple matings are detrimental for the fitness of first males, as multiply-

mated females produced fewer daughters than once- and double-mated females (Figure 1.1D). This 

decrease in reproductive output of first males is indirectly advantageous for subsequent males. 

Polyandry can thus be, even if partially, explained by this indirect benefit.  

1.1.4 Re-mating alone is not costly for males 

By comparing the survival of males placed with different number of females of different mating status, 

we found that mating multiply exclusively with mated females does not result in costs of survival for 

males. However, the longevity of males decreased when they were placed with an intermediate 

number of virgin females (Figure 1.1E). This result was unexpected. We speculate that patches with an 

intermediate number of virgin females are impregnated with cues released by virgins even after all 

females become mated. Consequently, males might attempt the most re-matings in those patches, thus 

suffering more costs.  

1.1.5 Multiple mating reduces both fecundity and female survival 

Multiple mating can easily be explained when it provides direct benefits for females (Arnqvist & Nilsson 

2000). However, by comparing fitness traits between females belonging to different treatments, we 

have found that multiple mated females produced fewer eggs and lived less than once- or twice-mated 

females, when the interval between matings was of 24 hours. These results are in accordance with 

previous studies in spider mites (Macke et al. 2012; Oku 2010) and indicate that females diminish their 
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reproductive success when they mate multiple times. The degree of polyandry may thus be under male 

control, owing to the indirect benefits they obtain with this behaviour. In this case, females re-mate 

more than their optima to mitigate the costs incurred by persistent males attempting to copulate, a 

strategy called “convenience polyandry” (Thornhill & Alcock 1983; Snook 2014). However, it is unclear 

whether the benefits obtained by males with re-mating outweigh the costs of mating in mixed patches. 

Furthermore, there might be other benefits in polyandry for females (see General Introduction, section 

1.3.2). 

 

1.2 Wolbachia infection potentially shapes female reproductive strategies 

Wolbachia can act as a selfish genetic element, by altering host biology, in order to favour their own 

transmission (Werren et al. 2008). This manipulation can be costly for the host, in which case the host 

is expected to evolve strategies to avoid or reduce the cost of infection. We began by investigating 

whether there was intraspecific variation for mate choice between infected and uninfected males in 

spider mite females. Then, spider mites evolved for 20 generations under different prevalences of 

Wolbachia that correspond to the presence (mixed regime) or absence (control regime) of risk of 

incompatible matings and tested whether mate choice and polyandry evolved in response to these 

selection regimes.  

1.2.1 Assortative mating is not common across field-derived populations  

Out of the five field-derived populations tested, none exhibited assortative mating in favour of 

compatible mates (Figure 1.2A). This suggests that the ability to discriminate individuals with different 

infection status is not common in populations of Tetranychus urticae. Our results are in line with other 

empirical studies (Hoffmann et al. 1990; Champion de Crespigny & Wedell 2007) that show that this 

behaviour is not common across different species in the field.  

1.2.2 Assortative mating does not evolve under mixed infection 

Given that the prevalence of Wolbachia can condition the selection for choice, we exposed uninfected 

females to a selection regime where choice between infected and uninfected males could be expressed 

(mixed regime). After 12 generations of selection, females from the mixed regime did not show 

preference for uninfected males, meaning that mate preference did not respond to selection (Figure 

1.2B). The lack of mate discrimination could be explained by an absence of genetic variation for this 

trait in the ancestral, field-derived, populations or by weak selection pressure applied during 

experimental evolution. Alternately, host could have evolved other strategies against Wolbachia 

infection, rendering assortative mating unnecessary (see section below). To our knowledge, this was 



 
154 

the first time someone tested whether assortative mating could evolve in response to genetic 

incompatibilities. 

1.2.3 Polyandry helps avoiding the effects of CI 

By comparing the hatching rate of eggs produced by females from the control and mixed regimes, we 

found that females evolving under mixed infection produced a lower proportion of unhatched eggs 

when mated to uninfected males after mating with infected males, than when mated to infected males 

only (Figure 1.2C). This result suggests that spider mites can evolve the ability to reduce the negative 

effect of Wolbachia by partially rescuing CI. By doing so, spider mites break their sperm priority pattern 

in favour of the second male. However, this disruption of sperm precedence only occurred in one 

direction. Indeed, when the first mating was compatible, i.e., the first male was not infected with 

Wolbachia, individuals from the mixed regime kept first male sperm precedence. The unidirectional 

disruption of the sperm precedence pattern might be a key factor for the evolution of CI-driven 

polyandry in species with skewed patterns of sperm precedence. Indeed, it is the unidirectionality that 

makes this strategy always costly for Wolbachia but beneficial for the female host. Moreover, females 

from the mixed regime that mated first with an uninfected and then with an infected male, produced 

more offspring than females from the same regime mated to a single uninfected male (Figure 1.2D). 

These results constitute the first experimental evidence that evolution of CI-antagonist strategies is 

possible. 

1.2.4 Mating rate does not increase at intermediate prevalence of Wolbachia 

In a scenario where polyandry is advantageous, we expect a high mating rate. However, latency to 

second matings was not different between females of the control and the mixed regime, indicating that 

the mating rate did not increase at intermediate prevalence of Wolbachia, where the risk of 

incompatible matings exist and polyandry is advantageous. This result is not in accordance with what 

was found in Drosophila pseudoobscura by Price et al. (2008). In this species, females exposed to the 

risk of incompatible matings for 10 generations evolved increased mating rate. However, our result 

might be explained if the degree of polyandry necessary for the evolution of CI avoidance was already 

present in the ancestral population. The maintenance of polyandry might be due to variance in 

prevalence of Wolbachia across spider mites populations in the field (Zélé et al. in prep, Breeuwer and 

Jacobs 1996; Enigl and Schausberger 2007; Gotoh et al. 2007), and/or to the existence of other types 

of incompatible crosses, such as incompatibility between species, populations or morphs (Navajas et 

al. 2000; Gotoh et al. 2005; Clemente et al. 2016). 
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1.1 Multiple mating is not explained by direct benefits 

 

 

 
 

 
A. Male spider mites distinguish females according to 

their mating status and do not discriminate among 
mated females (Chapter III) 

B. Spider mites use volatiles and chemical traits to 
distinguish virgins from mated females (Chapter III) 

 

 

 

 

C. Spider mites have complete first male sperm 
precedence (chapter IV) 

D. First males sire less offspring in multiple matings 
(chapter IV) 

 

 
 

E. Males do not suffer costs of re-mating (chapter IV) 
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1.2 Wolbachia infection potentially shapes female reproductive strategies 
 

 

 

 

A. None of the 5 naturally infected populations 
exhibit mate discrimination (chapter V) 

B. There is no assortative mating after experimental 
evolution (chapter V) 

 

 
 

 

 

C. Rescue of CI is unidirectional in spider mites 
(chapter VI) 

D. Females from the mixed regime increase fecundity 
after re-mating with infected males (chapter VI) 

 

 

 

E. Individuals from the mixed regime do not evolve 
increased mating rate (chapter VI) 

 

* 
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2. Main perspectives 

This thesis suggests numerous exciting avenues for future research in mating strategies of polyandrous 

species, in particular with first male sperm precedence, such as spider mites. Here I propose potential 

perspectives that might provide additional significant information on the topics addressed here. 

2.1 Is the rate of mating attempts dependent on the type and intensity of cues present in a patch? 

In this thesis, we have seen that male longevity decreased in patches with an intermediate number of 

virgin females (Figure 1.1E) and that males use chemical cues left by females to exert their mating 

preference in favour of virgins (Figure 1.1B). We propose that patches with an intermediate number of 

virgin females were impregnated with cues released by virgins even after all females become mated. 

Therefore, males might attempt more re-matings in those patches, thus suffering more costs due to 

increased resistance in mated females. This hypothesis deserves to be tested.   

This could be tested by measuring the mating rate of males in patches previously occupied by 

different numbers of mated or virgin females. We could also observe the locomotion patterns of both 

sexes to determine if potential differences in mating rate with virgin and mated females are due to 

differences in resistance between females or to differences in mating propensity in males. To this aim, 

a MATLAB-based software appropriate for tracking spider mites in leaf discs has been developed in our 

lab, with some promising results (Figure 2).  

 

Figure 2. Net number of pixels travelled by each sex 

relative to the other. Virgin males and females were 

placed together and filmed for 30 minutes. The net 

distance travelled relative to the other mite was 

calculated by the sum of the differences of the 

distances between one mite and the other on frame 

x and of the distance between one mite on frame x 

and the other on frame x+1. This quantity was used 

as a proxy for attraction: if the total number of 

pixels is close to 0, mites travelled the same 

distance towards and away from their prospective 

mate, whereas if it is significantly different from 0, it suggests the individual is either approaching (negative value) 

or moving away from (positive value) the other. Here, males moved significantly more towards females than the 

opposite (linear mixed effects model with a normal error distribution: F= 10.454; p = 0.0034). Asterisk (*) 

represents significance level (p < 0.05).  

* 
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2.2 Does relatedness influence male mating strategies? 

In experiment IV, we have seen that males that mated with mated females can increase their relative 

fitness by decreasing the fitness of other males (Figure 1.1D). This could be achieved by removing sperm 

from the first male mechanically or by using seminal products that kill sperm from the first male, as 

found in several other species (Simmons 2001; Manier et al. 2010). Alternately, multiple matings can 

simply reduce female fecundity and survival, which will affect the fitness of the first male. One question 

arises from this result: Should males reduce their offensive mating strategies when competing with 

males are closely related? Indeed, individuals are predicted to behave more altruistically towards their 

relatives, with whom they share a relatively high proportion of genes (Hamilton 1963). Recently, it has 

been shown that females exposed to groups of three related males, unrelated to the female, have 

higher fecundity and reproductive lifespan compared to females exposed to groups of three unrelated 

males (Carazo et al. 2014), confirming this prediction. This could be tested in spider mites as well. 

Moreover, we could test whether evolving with related males would result in a decrease in the display 

of this strategy. We here propose an experimental evolution setting in which this could be tested (figure 

3). 

 

 

Figure 3. Schematic representation of the 

proposed treatments to test how evolving with 

related males may affect offensive male traits. 

Budding dispersal: Every generation, 2 mated 

females from each patch are transferred 

together to a new patch. Random dispersal: 

Every generation, 2 mated females per patch are 

transferred to a common patch. Females are 

then haphazardly transferred in pairs to new 

patches. 

 

 

If males adjust their mating strategies according to the relatedness of their opponents, one 

could also ask how do males achieve this: Do they decrease the degree of polyandry and/or do they 

reduce the negative effect of ejaculates? As we have seen, polyandry does not confer a direct benefit 

for males, only being beneficial because it decreases the fitness of other males (Figure 1.1D), assuming 

there is no risk of incompatible matings. In addition, males are able to discriminate virgin from mated 

… 
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females (Figure 1.1A). In the absence of incompatible matings or any other type of benefit related to 

polyandry, decreasing the degree of polyandry in presence of related males is thus more likely to evolve 

than maintaining polyandry but reducing the negative effect of ejaculates, as this latter strategy would 

not benefit neither the male nor its relatives. 

 

2.3 Is re-mating rate in males a by-product of selection for high mating frequency? 

Along this thesis, we have gathered evidence on how polyandry can be beneficial for spider mites. We 

have found that males benefit indirectly by reducing the contribution to offspring of first males (Figure 

1.1 D). In addition, males and females are able to reduce the negative effects of Wolbachia infection by 

mating multiply (Figure 1.2 C). However, we still do not know if polyandry evolved owing to, and/or is 

maintained in the populations by any of these benefits. Another possibility that could explain the 

existence of polyandry in this species is that female re-mating occurs because this trait is correlated 

with another trait in males. For example, males that re-mate often may also have a high mating rate. 

Because a high mating rate is probably advantageous for males, re-mating may be indirectly selected, 

even if it is costly for males and females (Macke et al. 2012). This could be tested by measuring the 

mating frequency of males and their propensity to mate with mated females in different isofemale 

lines. The genetic correlation between these traits can then be inferred.  

 

2.4 Does polyandry prevent the fixation of Wolbachia in spider mites? 

We have found that spider mites can evolve the ability to reduce the negative effect of Wolbachia by 

partially rescuing CI (Figure 1.2C). This was achieved by breaking the sperm priority pattern typical of T. 

urticae, in favour of the second male, only when it was advantageous for the host, i.e., when the first 

male mating with an uninfected female was infected and the second male was uninfected. A theoretical 

model has predicted that in diploid species with last male sperm precedence, the benefit provided by 

polyandry against the negatives effects of CI-inducing Wolbachia is sufficient to prevent Wolbachia 

fixation (Champion De Crespigny et al. 2007).  However, to our knowledge this has never been 

empirically tested. In addition, the phenotype of CI differs between diploid and haplodiploid species 

(see General introduction, section 2.3). It would thus be interesting to test whether the strategies 

evolved by the host here are sufficient to slow Wolbachia invasion or even prevent its fixation in the 

host population. The results stemming from this experiment would contribute substantially to our 

knowledge concerning the dynamics of Wolbachia invasion in haplodiploid species.  
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2.5 Is functional fertility a key factor in the variance of sperm precedence patterns in T. urticae? 

As we have seen along this thesis, in spider mites, once the first mating of a females is successful, the 

subsequent matings are ineffective (Figure 1.1C). However, we did not explore here what would happen 

if the first matings was not fully effective. Indeed, previous studies done in this species suggest that 

disruption of first matings and sperm depletion might influence the effectiveness of second matings 

(Helle 1967; Potter & Wrensch 1978; Satoh et al. 2001). Furthermore, our results concerning rescue of 

CI might be contingent on a decrease in quality or quantity of the sperm of infected males (chapter VI, 

Figure 1.2C). Consequently, several new questions can be posed, regarding the effect of functional 

fertility in intraspecific variation of sperm precedence. Indeed, functional fertility, i.e., the inability of a 

male to fertilize the egg of a female despite not being sterile, is predicted to be responsible for high 

intraspecific variation in sperm precedence patterns across species (Garcia-Gonzalez 2004). 

By testing each of the following hypothesis, we will be able to better understand the conditions 

necessary for the disruption of sperm precedence in spider mites and ultimately, in other species with 

first male sperm precedence. 

2.5.1 Does sperm depletion in the first male disrupt the pattern of sperm priority? 

In future studies, it may be interesting to test whether females that mate with a sperm depleted male 

are able to use the sperm from a subsequent male, this way breaking sperm priority. This experiment 

can be easily done in our model species using resistance as paternity marker, as it has been shown in 

chapter IV.  

This experiment will open numerous different avenues. For instance, if sperm depletion does 

disrupt the pattern of sperm priority, is this phenomenon significant enough to maintain re-mating in 

spider mite populations? Alternately, if the pattern of sperm priority is not altered, do females 

distinguish between sperm-depleted and sperm-replenished males in order to avoid the costs of mating 

without receiving sperm? Also, are sperm-depleted males less willing to mate than sperm-replenished 

males? In order to disentangle the last two questions, we can track the locomotion patterns of both 

sexes, taking advantage of the software previously described in section 2.1, using males containing 

different amounts of sperm.  

2.5.2 Does sperm depletion alter female receptivity to future matings? 

As we have seen in chapter II, matings with mated females take longer to begin and are shorter than 

matings with virgins. However, we do not know whether this change in behaviour is elicited by the use 

of sperm in fertilization or by-products in the seminal fluid of males. If the first hypothesis is true, 

females might behave as virgins after copulating with sperm-depleted males. Alternately, if the latter 
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hypothesis holds, sperm-depleted males might be able to decrease female receptivity to subsequent 

matings, improving their offspring representation in the population. This can be easily tested by 

comparing the latency to copulation and copulation duration of virgins, females mated with sperm-

depleted males and females mated to sperm-replenished males.  

 

2.5.3 Are Wolbachia-infected males worse competitors than Wolbachia-uninfected males? 

As we have seen in chapter VI, spider mites evolved the ability to reduce the effect of CI-inducing 

Wolbachia (Figure 1.2C). This ability might be contingent on a decrease in the quality or quantity of the 

sperm of infected males, as has been observed in several other species carrying selfish genetic elements 

(Price & Wedell 2008; Wedell 2013). If the sperm from infected males is of inferior quality, we would 

expect infected males to lose in competition against uninfected males in an environment neutral for 

both type of females. We could test this by measuring the pattern of sperm precedence in double 

crosses with infected females. If the proportion of offspring sired by the second male changes according 

to the infection status of the first male, then the disruption of sperm precedence can be attributed to 

a decrease in competitive ability of the first male. Another possibility is that a decrease in sperm 

quantity influences the mating frequency of males. Infected males with inferior sperm may mate with 

fewer females that uninfected males or be more selective and avoid mated females, with whom they 

are unable to sire offspring.  

 

2.6 Which sex controls CI rescue? 

The rescue of CI in the mixed regime might have taken place due to an evolved ability of females to 

exert cryptic choice or to an improvement in the sperm competitive ability of males. These two 

mechanisms can be disentangled by crossing females from the control regime mated with infected 

males with males from the mixed regime and vice versa. We would then be able to demonstrate which 

sex is adjusting the pattern of sperm precedence in spider mites. This would bring us one step closer to 

determine the mechanisms acting in the pattern of sperm precedence, which is crucial to determine 

the intensity and direction of sexual selection. 

 

2.7 Can evolved mechanisms be generalized to a Wolbachia-free environment? 

If it is proven that the mechanism acting against Wolbachia in the mixed regime is due to an 

improvement of sperm competitive ability in uninfected males, it would be interesting to further 



 
162 

explore whether this advantage is conditional, i.e., if males only have a competitive advantage against 

sperm from infected males, or whether this advantage is transversal to any type of sperm. This could 

be achieved by measuring, in uninfected females from the control regime, the degree of sperm 

precedence in double crosses with uninfected males from the mixed and the control regime.  

A similar reasoning could be applied for cryptic female choice. That is, assuming that the 

evolved mechanism against Wolbachia in the mixed regime is cryptic female choice, can females from 

the mixed regime express their preference for any sperm, or are they only capable of distinguishing 

infected sperm from uninfected sperm?  

A transversal improvement of competitive ability or cryptic female choice would indicate that 

disruption of sperm precedence is possible even in populations free of Wolbachia. Therefore, it might 

be interesting to test whether there is variability in the pattern of sperm precedence across individuals 

in a population. A screening for variability in sperm precedence could be done using isofemale lines of 

individuals resistant to the pesticide used here. By crossing males from different lines with females from 

a single line that have mated with susceptible males, we could determine whether there is genetic 

variation for competitive ability. Conversely, by crossing males from a single line with females from 

several lines that have mated with susceptible males, we could determine whether there is genetic 

variation for cryptic female choice. This protocol would be very similar to the one used in chapter IV. 
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Table S1 Experimental evolution studies manipulating competition. Examples of experimental evolution studies that manipulated competition for food, mates or hosts with some details on the 

experimental system, the traits measured and their responses to selection. Our aim here is not to be exhaustive but to merge different bodies of literature. Note that “resource diversity” refers to 

manipulations that use more than one type of resources. It may correspond to resource substitution, or to resource addition (cf. main text).  

Type of 
resource 

Ref Selection 
regime 

created in 

species/strain 
A 

species/strain 
B 

change in 
competition levels 

nr 
generations 

Response to selection 

competitive 
ability 

resource 
utilization 

Correlated Responses 

sexual 
conflict 

evolution of 
virulence 

niche width/ 
character 

displacement 

other 

Food Agashe 
and 
Bolnick 
2010 

Agashe and 
Bolnick 2010 

Tribolium 
Castaneum 

- varying the number 
of competitors 
(intraspecific), 
varying the type of 
competitors 
(interstrain) 

8 - - - - niche expansion - 

Food Bailey et 
al. 2013 

Bailey et al. 
2013 

Pseudomonas 
fluorescens 

Pseudomonas 
fluorescens 

varying the number 
of competitors 
(intrastrain), varying 
the type of 
competitors 
(interstrain) 

7 days - - - - niche 
contraction or 
expansion 
(depends on 
type of 
competitor) 

- 

Food Barrett 
and Bell 
2006  

Barrett et al. 
2005 

Pseudomonas 
fluorescens 

- varying resource 
diversity 

900 - - - - character 
displacement 

- 

Food Barrett et 
al. 2005 

Barrett et al. 
2005 

Pseudomonas 
fluorescens 

- varying resource 
diversity 

900 increase increase - - - - 

Food Bierbaum 
et al. 
1989 

Mueller and 
Ayala 1981 

Drosophila 
melanogaster 

- varying the number 
of competitors 
(intraspecific) 

20-36 increase no change - - - - 

Food Bochdan
ovits and 
de Jong 
2003 

Bochdanovits 
and de Jong 
2003 

Drosophila 
melanogaster 

- varying resource 
quality 

10 - decrease 
acquisition, 
increase 
utilization 

- - - - 

Food Bolnick 
2001 

Bolnick 2001 Drosophila 
melanogaster 

- varying resource 
quantity 

4 - increase - - niche expansion - 

Food Borash et 
al. 2000 

Borash et al. 
2000 

Drosophila 
melanogaster 

- varying resource 
quality 

21 increase no change - - - - 

Food Forde et 
al. 2008 

Forde et al.  
2008 

Escherischia coli T7 varying the type of 
competitors 
(interspecific), 

150 increase - - - character 
displacement 

- 
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varying resource 
quality 

Food Freisen 
et al. 
2004 

Freisen et al. 
2004 

Escherischia coli - varying resource 
diversity 

1000 - - - - character 
displacement 
(in 3 out of 12 
populations) 

- 

Food Futuyma 
1970 

Futuyma 
1970 

Drosophila 
melanogaster 

Drosophila 
simulans 

varying the type of 
competitors 
(interspecific), 
varying the levels of 
genetic variation 
(intraspecific) 

10 increase (in 1 
out of 28) and 
decrease (in 2 
out of 28) 

- - - - - 

Food Greig and 
Travisano 
2008 

Greig and 
Travisano 
2008 

Saccharomyces 
cerevisiae(toxin-
producing 
strain) 

Saccharomyces 
cerevisiae(toxin-
sensitive strain) 

varying the type of 
competitors 
(interstrain), varying 
the number of 
competitors 
(intrastrain and 
interstrain) 

unknown increase with 
toxin 
production 

- - - - - 

Food Griffin et 
al. 2004 

Griffin et al 
2004 

Pseudomonas 
aeruginosa 

- varying scale of 
competition (local vs 
global) 

7 local 
competition 
selects for 
lower levels 
of 
siderophore 
production 

- - - - - 

Food Guo et al. 
1991 

Mueller and 
Ayala 1981, 
Mueller et al. 
1991 

Drosophila 
melanogaster 

- varying the number 
of competitors 
(intraspecific) 

25 increase - - - - - 

Food Hollis 
2012 

Hollis 2012 Dictyostelium 
discoideum 

Dictyostelium 
discoideum 

 varying the type of 
competitors 
(interstrain) 

10 increase - - - - - 

Food Joshi et 
al. 1998 

Mueller et al. 
1993 

Drosophila 
melanogaster 

- varying the number 
of competitors 
(intraspecific) 

50 increase 
(adult/adult), 
trade-off 
between 
adult and 
juvenil 
crowding 

- - - - - 

Food Joshi and 
Mueller 
1988 

Mueller and 
Ayala 1981 

Drosophila 
melanogaster 

- varying the number 
of competitors 
(intraspecific) 

140 - increase - - - - 

Food Joshi and 
Mueller 
1996  

Mueller et al. 
1993 

Drosophila 
melanogaster 

- varying the number 
of competitors 
(intraspecific) 

50 - increase 
acquisition, 
decrease 
utilization 

- - - - 
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Food Joshi and 
Mueller 
1997 

Mueller et al. 
1993 

Drosophila 
melanogaster 

- varying the number 
of competitors 
(intraspecific) 

50 no changes - - - - - 

Food Joshi and 
Thompso
n 1995 

Joshi and 
Thompson 
1995 

Drosophila 
melanogaster 

Drosophila 
simulans 

varying the type of 
competitors 
(interspecific), 
varying resource 
diversity 

11 increase (in 8 
out of 9)  

- - - - - 

Food Joshi and 
Thompso
n 1996 

Joshi and 
Thompson 
1995 

Drosophila 
melanogaster 

Drosophila 
simulans 

varying the type of 
competitors 
(interspecific), 
varying resource 
diversity 

11 increase - - - - - 

Food Kloss et 
al. 2009 

Kloss et al. 
2009 

Drosophila 
melanogaster 

- varying resource 
quality 

29- 64 increase  no change - - - - 

Food Lawrence 
et al. 
2012 

Lawrence et 
al. 2012 

Fagus sylvatica 5 different 
species 

varying the type of 
competitors 
(interspecific) 

70 - increase + 
decrease 
(depends on 
spp) 

- - character 
displacement 

- 

Food MacLean 
et al. 
2005 

MacLean et 
al. 2005 

Pseudomonas 
fluorescens 

Pseudomonas 
fluorescens 

varying the type of 
competitors 
(interstrain) 

unknown - - - - character 
displacement 

- 

Food Mueller 
and Ayala 
1981 

Mueller and 
Ayala 1981 

Drosophila 
melanogaster 

- varying the number 
of competitors 
(intraspecific) 

8 increase decrease - - - - 

Food Mueller 
1988 

Mueller and 
Ayala 1981 

Drosophila 
melanogaster 

- varying the number 
of competitors 
(intraspecific) 

128 increase - - - - - 

Food Mueller 
1990 

Mueller and 
Ayala 1981 

Drosophila 
melanogaster 

- varying the number 
of competitors 
(intraspecific) 

125 - decrease - - - - 

Food Mueller 
et al. 
1991 

Mueller et al. 
1991 

Drosophila 
melanogaster 

- varying the number 
of competitors 
(intraspecific) 

25 increase decrease - - - - 

Food Mueller 
and 
Sweet 
1986 

Mueller and 
Ayala 1981 

Drosophila 
melanogaster 

- varying the number 
of competitors 
(intraspecific) 

130 increase( 
pupation 
height) 

- - - - - 

Food Mueller 
et al. 
1993 

Mueller et al. 
1993, Mueller 
and Ayala 
1981, Rose 
1984 

Drosophila 
melanogaster 

- varying the number 
of competitors 
(intraspecific), 
selection for 
starvation 

unknown increase 
resistance to 
starvation 

- - - - - 
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Food Pekkonen 
et al. 
2011 

Pekkonen et 
al. 2011 

Novosphingobiu
m  
capsulatum 

Serratia 
marcescens 

varying the type of 
competitors 
(interspecific), 
varying resource 
availability 

7 days increase - - - - - 

Food Sanders 
et al. 
2005 

Sanders et al. 
2005 

Drosophila 
melanogaster 

- varying the number 
of competitors 
(intraspecific) 

8 increase - - - - parasitoid 
resistance not 
correlated 

Food Santos et 
al. 1997 

Mueller et al. 
1993 

Drosophila 
melanogaster 

- varying the number 
of competitors 
(intraspecific) 

unknown - increase - - - - 

Food Sokolows
ky et al. 
1997 

Mueller and 
Ayala 1981,  
Sokolowsky et 
al. 1997  

Drosophila 
melanogaster 

- varying the number 
of competitors 
(intraspecific) 

286 - - - - - rover/sitter 
(density-
dependent 
selection) 

Food Stanton 
et al. 
2004 

Stanton et al. 
2004 

Sinapsis 
arvensis 

- varying the number 
of competitors 
(intraspecific), 
varying abiotic 
factors 

4 variable - - - - - 

Food Taper 
1990 

Taper 1990 Callosobruchus 
maculatus 

Callosobruchus 
chinensis 

varying the type of 
competitors 
(interspecific), 
varying resource 
diversity? 

9 - - - - character 
displacement 

- 

Food TerHorst 
2011 

TerHorst 
2011 

Colpoda Pseudocyrtolop
hosis alpestris 

varying the number 
of competitors 
(intraspecific), 
varying the type of 
competitors 
(interspecific)   

60-120 - - - - some traits 
converged and 
some diverged 

- 

Food Trienens 
and 
Rohlfs 
2011 

Wölfle et al. 
2009 

Drosophila 
melanogaster 

Aspergillus 
nidulans 

varying the type of 
competitors 
(interspecific) 

26 - - - - - tolerance vs 
survival 

Food Tyerman 
et al. 
2008 

Tyerman et 
al. 2008 

Escherischia coli - varying resource 
diversity? 

1000 - - - - character 
displacement 

- 

Food Vijendrav
arma et 
al. 2012 

Kloss et al. 
2009 

Drosophila 
melanogaster 

- varying resource 
quality 

80 - - - - - rover 
phenotype 
more frequent 
in high density 

Food Vijendrav
arma et 
al. 2013 

Kloss et al. 
2009 

Drosophila 
melanogaster 

- varying resource 
quality 

118 - - - - - cannibalism 

Food Wölfle et 
al. 2009 

Wölfle et al. 
2009 

Drosophila 
melanogaster 

Aspergillus 
nidulans 

varying the type of 
competitors 
(interspecific) 

3 and 6 increase decrease - - - - 
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Mates Crudingt
on et al. 
2005 

Crudington et 
al. 2005 

Drosophila 
melanogaster 

- varying the number 
of competitors 
(intraspecific) 

21, 23-25, 27, 
29, 30, 31, 35 

- - increase - - - 

Mates Demont 
et al. 
2014 

Demont et al. 
2014 

Tribolium 
castaneum 

- varying the number 
of competitors 
(intraspecific) 

36 increase no change - - - - 

Mates Firman 
and 
Simmons 
2010 

Firman and 
Simmons 
2010 

Mus domesticus  - varying resource 
quantity 

8 increase 
(indirect in 
males) 

- no - - - 

Mates Firman et 
al. 2011a 

Firman and 
Simmons 
2010 

Mus domesticus  - varying resource 
quantity 

16 increase - - - - - 

Mates Firman et 
al. 2011b 

Firman and 
Simmons 
2010 

Mus domesticus  - varying resource 
quantity 

12 increase - - - - - 

Mates Firman et 
al. 2011c 

Firman and 
Simmons 
2010 

Mus domesticus  - varying resource 
quantity 

16 no change 
(indirect) 

- - - - - 

Mates Firman et 
al. 2012 

Firman and 
Simmons 
2010 

Mus domesticus  - varying resource 
quantity 

14 - increase? - - - - 

Mates Fricke 
and 
Arnqvist 
2007 

Fricke and 
Arnqvist 2007 

Callosobruchus 
maculatus 

- varying the number 
of competitors 
(intraspecific), 
varying food quality 

35 - - - - niche expansion - 

Mates Gay et al. 
2010 

Gay et al. 
2010 

Callosobruchus 
maculatus 

- varying the number 
of competitors 
(intraspecific), 
varying resource 
quantity, varying 
density, varying the 
type of competitors 
(intraspecific) 

30 no change  no change increase - - - 

Mates Grazer et 
al. 2014 

Demont et al. 
2014 

Tribolium 
castaneum 

- varying the number 
of competitors 
(intraspecific), food 
quality 

39 - depends on 
environment 
tested  

depends on 
environme
nt tested  

- - - 

Mates Holland 
and Rice 
1999 

Holland and 
Rice 1999 

Drosophila 
melanogaster 

- varying the number 
of competitors 
(intraspecific) 

47 - - increase - - - 

Mates Hollis and 
Kawecki 
2014 

Hollis et al. 
2011 

Drosophila 
melanogaster 

- varying the number 
of competitors 
(intraspecific), 
varying resource 

100 increase no change - - - learning ability 
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quantity, varying 
density 

Mates Hosken 
et al. 
2001 

Hosken et al. 
2001 

Scathophaga 
stercoraria 

- varying the number 
of competitors 
(intraspecific) 

10 increase 
(direct and 
direct) 

- increase - - - 

Mates Hosken 
and Ward 
2001 

Hosken and 
Ward 2001 

Scathophaga 
stercoraria 

- varying the number 
of competitors 
(intraspecific) 

10 increase 
(indirect) 

- - - - - 

Mates LaMunyo
n and 
Ward 
2002 

LaMunyon 
and Ward 
2002 

Caenorhabditis 
elegans 

- outcrossing (sperm 
competition 
present) and selfing 
(no sperm 
competition) 

60 increase 
(indirect) 

- - - - - 

Mates LaMunyo
n et al. 
2007 

LaMunyon 
and Ward 
2002 

Caenorhabditis 
elegans 

- outcrossing (sperm 
competition 
present) and selfing 
(no sperm 
competition) 

60 - - - - - decreased 
genetic diversity 

Mates Macke et 
al. 2011 

Macke et al. 
2011 

Tetranychus 
urticae 

- varying scale of 
competition (local vs 
global) 

54 - - - - -  sex ratio 
adjustment 
varies with scale 
of competition  

Mates Lumley et 
al. 2015 

Lumley et al. 
2015 

Tribolium 
castaneum 

- varying the number 
of competitors 
(intraspecific), 
varying resource 
quantity, varying 
density 

54, 45 - - - - - protects from 
inbreeding 

Mates Maklakov 
et al. 
2009 

Maklakov et 
al. 2009 

Callosobruchus 
maculatus 

- varying the number 
of competitors 
(intraspecific), 
varying resource 
quantity, varying 
density, varying age 
at reproduction 

13,11 - - sexual 
conflict? 

- - - 

Mates Martin 
and 
Hosken 
2003 

Martin and 
Hosken 2003 

Sepsis cynipsea - varying the number 
of competitors 
(intraspecific), 
varying resource 
quantity, varying 
density 

35 - - - - - character 
displacement 

Mates Michalczy
k et al. 
2011 

Michalczyk et 
al. 2011 

Tribolium 
castaneum 

- varying the number 
of competitors 
(intraspecific), 
varying resource 
quantity 

20 increase - increase - - - 



 

172 

Mates Nandy et 
al. 2013 

Nandy et al. 
2013 

Drosophila 
melanogaster 

- varying the number 
of competitors 
(intraspecific), 
varying resource 
quantity 

45-47, 50 -55 - - increase - - - 

Mates Pitnick et 
al. 2001a 

Holland and 
Rice 1999 

Drosophila 
melanogaster 

- varying the number 
of competitors 
(intraspecific) 

38-81 increase 
(indirect, 
direct) 

decrease? increase - - body size 

Mates Pitnick et 
al. 2001b 

Holland and 
Rice 1999 

Drosophila 
melanogaster 

- varying the number 
of competitors 
(intraspecific) 

84 - - increase - - - 

Mates Reuter et 
al. 2008 

Reuter et al. 
2008 

Drosophila 
melanogaster 

- varying resource 
quantity 

24, 28 varies with 
trait 

- - - - - 

Mates Simmons 
and 
Garcia-
Gonzalez 
2008 

Simmons and 
Garcia-
Gonzalez 
2008 

Onthophagus 
taurus  

- varying the number 
of competitors 
(intraspecific), 
varying resource 
quantity, varying 
density 

21 increase increase decrease - - no evolution of 
horns 

Mates Snook et 
al. 2005 

Crudington et 
al. 05 

Drosophila 
pseudoobscura 

- varying the number 
of competitors 
(intraspecific) 

25, 27-29, 30-
33 

- - - - character 
displacement? 

 song elements 

Mates Tilszer et 
al. 2006 

Tilszer et al. 
2006 

Rhizoglyphus 
robini 

- varying the number 
of competitors 
(intraspecific), 
varying resource 
quantity, varying 
density 

37 increase - increase - - increased body 
size  

Mates Wigby 
and 
Chapman 
2004 

Wigby and 
Chapman 
2004 

Drosophila 
melanogaster 

- varying the number 
of competitors 
(intraspecific), 
varying resource 
quantity 

18, 22, 26, 32, 
31, 33 

- - increase - - - 

Mates Booksmy
the et al. 
2014 

Booksmythe 
et al. 2014 

Megabruchidius 
tonkineus 

- varying the number 
of competitors 
(intraspecific) 
varying resource 
quantity 

20 - increase no change - - - 

Mates Carter et 
al. 2015 

Carter et al. 
2015 

Nicrophorus 
vespilloides 

- artificial selection 
for mating rates 

12 - - - - - social plasticity 

Host Carrillo et 
al. 2007 

Carrillo et al. 
2007 

vesicular 
stomatitis 
Indiana virus 

vesicular 
stomatitis 
Indiana virus 

varying the type of 
competitors 
(interstrain), varying 
periodicity 

100 virus  increase - - - - - 
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Host Miralles 
et al. 
2001 

Miralles et al. 
2001 

vesicular 
stomatitis 
Indiana virus 

vesicular 
stomatitis 
Indiana virus 

varying the number 
of competitors 
(intrastrain), varying 
the type of 
competitors 
(interstrain), varying 
periodicity 

100 virus  yes 
(coinfection), 
no 
(superinfectio
n) 

- - - - - 

Host Garbutt 
et al. 
2011 

Garbutt et al. 
2011 

Bacillus 
thuringiensis 

Bacillus 
thuringiensis 

varying the type of 
competitors 
(interstrain) 

4 host  increase - - decrease - - 

Host Hall et al. 
2011 

Hall et al. 
2011 

lytic phage ɸ2 -  varying resource 
quantity 

80 host  - no change - - - - 

Host Leggett 
et al. 
2013 

Leggett et al. 
2013 

lytic phage ɸ2 - varying the number 
of competitors 
(intrastrain) 

400 host increase decrease - increase - - 

Host Rouchet 
et al. 
2014 

Rouchet et al. 
2014 

Lysiphlebus 
fabarum  

Hamiltonella 
defensa 

varying the type of 
competitors 
(interspecific) 

11 parasitoid  - no change - increase - - 

Host Dion et 
al. 2011 

Dion et al. 
2011 

Aphidius ervi Hamiltonella 
defensa 

varying the type of 
competitors 
(interspecific) 

10 parasitoid  - - - increase - - 

Host Sachs 
and Bull 
2006 

Sachs and Bull 
2006 

Bacteriophages  
f1 

Bacteriophage 
Ike 

varying the number 
of competitors 
(intraspecies), 
varying the type of 
competitors 
(interspecies) 

50 transfers increase - - - - - 
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Figure S2.1. Timetable of measurements and procedures performed in Tetranychus urticae populations, from the collection in the field to the end of the experimental evolution. 

TET: tetracycline treatment; G: generation (around two weeks). Each tick mark corresponds to one month. 



 
181 

Polyandry and host-endosymbiont conflicts  

in the spider mite Tetranychus urticae 

 

The supplementary material S2.2-S2.6 is part of different manuscripts (Zélé et al. in prep).  

 

 

Name Collection date Collection Location Coordinates Host plant 

DC 10/09/2013 S. Domingos  39.058742, -9.135427 Cucurbita pepo 

DF 10/09/2013 S. Domingos  39.058742, -9.135427 Phaseolus vulgaris 

COL 08/09/2013 Colares  38.799517, -9.448335 Phaseolus vulgaris 

LOU 03/10/2013 Lourinhã  39.248145, -9.276321 Solanum melongena 

CH 31/10/2013 Casal Hortelão  38.851962, -9.393918 Solanum lycopersicum 

RF 04/11/2013 Ribeira de Fráguas  39.366415, -8.851037 Solanum lycopersicum 

AMP 18/11/2013 Aldeia da Mata Pequena  38.534363, -9.191163 Datura stramonium. 

 

Figure S2.2. T. urticae populations collected in Portugal from September to November 2013.    
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Figure S2.3. Prevalence of endosymbionts in the laboratory for each T. urticae population 0-3 months (a), and 6 

months (b) after collection in the field. Each graph represents a population, in which the lines represent individual 

mites and the columns their infection status by W: Wolbachia; C: Cardinium; and R: Rickettsia. White cell: 

uninfected; Grey cell: infected; Hatched cells: Cardinium and Rickettsia failed sequences but positive through PCR. 

None of the tested colonies were infected by Spiroplasma or Arsenophonus.  

a) 

b) 
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Figure S2.4. Summary of the development of T. urticae eggs for intra-population crosses between Wolbachia-infected 

and -uninfected mites. Relative proportions of unhatched eggs (stripped bars), adult males (light grey bars) and 

females (dark grey bars) are given for each possible cross. U: tetracycline-treated Wolbachia-uninfected; I: 

Wolbachia-infected. Vertical lines correspond to standard errors of the mean. 

 

 

Figure S2.5. Summary of the 

development of T. urticae eggs for 

intra- and inter-regime crosses at 

generation 0 of experimental 

evolution. Relative proportions of 

unhatched eggs (stripped bars), 

adult males (light grey bars) and 

females (dark grey bars) are given 

for each cross. C: Wolbachia-

uninfected control regime; I: 

Wolbachia-infected control 

regime. Vertical lines correspond 

to standard errors of the mean. 

 


