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Abstract 

The lack of vaccines for emerging and re-emerging diseases highlights technical gaps and 

indicates a need for innovative approaches to produce new vaccines. Vaccines may be 

improved by knowledge of host responses to vaccination, disease pathogenesis, and the 

effect of age and genetics on vaccine outcome. This study’s purpose was to quantitatively 

assess the molecular epidemiology of Francisella tularensis (Ft) and Venezuelan Equine 

Encephalitis Virus (VEEV). Study results support the Epidemiology Nexus model which 

holds that association of changes in gene expression to vaccination facilitate 

understanding the mechanisms of immune development and link public health and 

disease epidemiology. My research questions assessed the relationship between gene 

expression following vaccination, the relationship between age and vaccine response, and 

the association between Human Leukocyte Antigen (HLA) allele and vaccine response. 

The study was a novel secondary analysis of human data subjected to ANOVA to 

measure association between treatment and outcome, correlation to measure association 

of age with vaccine outcome, and Mann-Whitney U tests to measure association of HLA 

allele with vaccine outcome. Both Ft and VEEV vaccination elicited significant changes 

in gene expression. A highly positive relationship between age and vaccine outcome was 

shown for VEEV. The results may affect positive social change by contributing to a 

growing compendium of evidence of vaccine efficacy mechanisms that may function to 

assure the public of vaccine safety, combat vaccine hesitancy, and promote vaccine 

acceptance, as well as contribute mechanistic knowledge to reduce developmental costs 

of novel vaccines. 
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Chapter 1: Introduction to the Study  

Introduction 

Global public health efforts to prevent disease from both Francisella tularensis 

(Ft) and Venezuelan equine encephalitis virus (VEEV) have been hampered by the lack 

of approved human vaccines and the lack of knowledge of the human molecular 

responses to infectious disease agents (Foley & Nieto, 2010; Wolfe et al., 2013; Wolfe et 

al., 2014). Molecular epidemiology studies in other infectious diseases have provided 

innovative information in humans and animal models; however, there is little 

understanding or information of the molecular consequences of human infection with 

either Ft or VEEV. In this dissertation project, I sought to make a novel contribution to 

the field of public health by studying the relationship between gene expression and the 

temporal effects of vaccination, the potential relationship between age and vaccine 

outcome, and the potential association between genetic make-up of individuals with 

vaccine outcome.  

This project may contribute to positive social change at multiple levels. First, 

transcriptomic analysis may provide evidence to support the Epidemiology Nexus 

conceptual model. I developed and named the model based on the collected works of 

several subject matter experts in the field of vaccinology and systems biology. I chose the 

word nexus as a descriptor to link the molecular epidemiology of the host responses to 

the traditional public health epidemiology of disease and specifically to link the 

molecular responses with a concrete social impact. The Epidemiology Nexus concept 

holds that examining changes in gene expression can contribute to a broad knowledge 
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base for understanding the molecular mechanisms of immune development and expand 

knowledge of the fundamental mechanisms of action of successful vaccination (Li et al., 

2015; Kennedy et al., 2014; Nakaya, Li, & Pulendran, 2011; Pulendran et al., 2013). 

Secondly, my use of molecular epidemiology data for the explicit purpose of creating 

rationally-designed vaccines supports a positive social change agenda relating to 

administrative policy; financial incentives are often absent with regard to development of 

neglected tropical or zoonotic diseases and the World Health Organization (WHO) 

recognizes that developmental costs for vaccines and lack of correlates of protection are 

unmet challenges (Hortez et al., 2016). Studying the common and unique changes to gene 

expression that are elicited by vaccination may make it possible to develop multi-agent 

vaccines that share similar immune-related mechanisms. By using Ft and VEEV to 

compare and contrast molecular epidemiology, I worked to contribute new knowledge to 

develop vaccines which can meet rigorous standards for licensure. Licensed vaccines 

could have a positive social impact on society on both and individual and family levels 

through reduced disease incidence, and impact on communities through reduced 

mortality and morbidity (Hortez et al., 2016; Reichert et al., 2009, Wolfe et al., 2013, 

Wolfe et al., 2014). The compendium of evidence I have built regarding the mechanisms 

of vaccine efficacy may also serve to assure the public that vaccines are well-tested and 

safe. Such assurance has become increasingly important as public health professionals 

seek to understand and combat vaccine hesitancy and to promote vaccine acceptance 

(Eskola, Duclos, Schuster, MacDonald, & the SAGE Working Group on Vaccine 

Hesitancy, 2015). 
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In this chapter, I introduce the background and basic epidemiology of both Ft and 

VEEV, including descriptions of the disease that each agent causes, the impact of disease 

on morbidity and mortality, and what is known regarding the economic impact of disease. 

A discussion of the research questions that I sought to address will follow the discussion 

of the epidemiology, and I conclude with a brief introduction to the type of data that I 

used in the analysis. 

Background 

Many global infectious diseases exist without viable vaccines for prevention or 

therapeutic treatment to resolve the infection. Two examples of diseases which fit this 

description include tularemia, caused by the gram-negative bacterium Ft, and Venezuelan 

equine encephalitis (VEE), caused by VEEV. According to the U.S. Centers for Disease 

Control and Prevention (CDC), each year roughly 200 cases of tularemia were reported to 

the National Notifiable Disease Surveillance System (NNDSS) in the United States alone, 

although the niche for tularemia infection is not limited to the United States (NNDSS, 

2016). Tularemia infection remains problematic in other parts of the world as well, with 

many human cases having been diagnosed in the past decade particularly in Norway, 

Russia, Australia, Germany, and Spain (HealthMap, 2016). VEE is mosquito-borne 

disease that is found primarily in Latin and South America, but has been detected in the 

southern United States during large epizootic outbreaks (Gubler, 2002). Since January of 

2010, there have been more than 100 confirmed cases of VEE in the United States, with 

four confirmed deaths (HealthMap, 2016). The number of cases of VEE is believed to be 

greatly underreported because of the similarity of symptoms and presentation of disease 
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with those of Dengue fever. Indeed, Aguilar et al. (2011) reported that up to 10% of cases 

diagnosed as Dengue may actually be VEE cases which are not detected due to lack of 

specialized tests or limited resources for testing. One of the largest outbreaks of VEE 

occurred in 1995 in Venezuela and Columbia, and resulted in more than 75,000 cases of 

disease and approximately 300 deaths (Operational Biosurveillance, 2010). Both Ft and 

VEEV are categorized by the CDC as Category B biological threat agents and present a 

global public health threat. 

General Overview of Francisella Tularensis 

Basic epidemiology: The effect of Ft on disease, deaths, disability, and 

economic impact. The species of bacteria Francisella tularensis subspecies tularensis 

was first described in 1919 by Edward Francis as a gram-negative intracellular 

coccobacillus (Francis, 1919). The bacterium was named after both the researcher and the 

county in which it was studied as an endemic disease of rodents (Tulare County, CA) 

(Francis, 1919). The disease caused by infection with the bacteria was termed Tularemia, 

and the basic epidemiology of the disease has been studied extensively over the last 

century (Sjöstedt, 2007).  

Tularemia disease has been described in several forms, each of which is 

dependent on the route of exposure. Forms of diseases have included ulceroglandular 

tularemia (the most common form), glandular tularemia, oculoglandular tularemia, 

oropharyngeal tularemia, intestinal tularemia, respiratory or inhalational tularemia (the 

most serious form), and typhoidal tularemia (NNDSS, 2016; Nelson, Kugeler, Petersen, 

& Mead, 2013). Ulceroglandular tularemia disease has been described as having been 
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produced by the bite of an infected tick, and disease presentation included localized 

cutaneous ulcers at the site of infection (Nelson et al., 2013). Researchers subsequently 

identified ticks as a common vector for transmission of percutaneous disease (Keim, 

Johansson, & Wagner, 2007) including three species of genus ixodid ticks, Amblyomma 

americanum, Dermacentor variabilis, and Dermacentor andersoni, which were shown to 

be responsible for disease transmission in North America in a predominantly terrestrial 

disease cycle (Keim et al., 2007). In other parts of the world, where researchers have 

found the Ft subspecies holarctica to be the predominant form of bacteria, the 

transmission vector has been shown to be more often mosquitos than ticks due to the 

aquatic nature of the transmission cycle (Ulu-Kilic & Doganay, 2014). Researchers have 

shown that the larval forms of mosquitos were infected with Ft holarctica, and thus adult 

mosquitos were primed with the ability to pass the bacteria to vertebrate hosts (Ulu-Kilic 

& Doganay, 2014). 

Respiratory tularemia has been shown to be caused by accidental inhalation of 

bacteria from an infected host (typically rabbits or rodents; Staples, Kubota, Chalcraft, 

Mead, & Petersen, 2006). Researchers have described pneumonic tularemia, a 

complication of respiratory tularemia, as one of the most serious forms of the disease in 

humans, and death from infection has been shown to occur with inhalation of as few as 

10 bacteria or colony forming units (CFU). The pathogenesis of human disease has 

included primary propagation of bacteria in macrophages, but also included widespread 

infection of lymphocytes, erythrocytes, and in plasma causing an intense anti-



6 

 

inflammatory response in the localized pulmonary environment (Dennis et al., 2001; 

Ellis, Oyston, Green, & Titball, 2002; Horzempa et al., 2011). 

The ecological niche where Ft bacteria have been found has had profound effects 

upon the incidence of disease. Early research efforts regarding the life-cycle of the 

bacteria were largely unsuccessful due to low incidence of human disease and small, 

pocket localizations of endemic areas of bacterial occurrence (Sjöstedt, 2007). Studies 

conducted in the United States, Europe, and parts of the middle east by Ariza-Miguel et 

al. (2014), Nakazawa et al. (2007, 2010), and Ulu-Kilic & Doganay (2014) showed 

results which were in agreement that the Ft bacteria persistently remained in localized 

environments, and that outbreaks were likely the result of human contact with the local 

foci, largely through hunting and outdoor activities. Nakazawa et al. (2007, 2010) used 

changes in climate patterns over the course of 50 years to construct a computer model of 

changing climate that paired disease incidence based on national surveillance reporting 

with environmental information consisting largely of variables that included minimum 

and maximum temperatures, average temperature, amount of rainfall, evaporation, and 

moisture surplus. This computer algorithm, termed the Genetic Algorithm for Rule-Set 

Prediction, used by Nakazawa et al. (as cited in Stockwell & Noble, 1992, Stockwell & 

Peters, 1999) had previously been tested and validated (Nakazawa et al., 2007). 

Death and disability caused by Ft. In the United States from 2004 through 2013, 

there were on average 137.8 cases of tularemia per year, with an accumulated total of 

1,378 (CDC, 2015a). The annual number of cases in recent times (~138 cases per year) 

was fewer than in the middle part of the 20th century when the annual number of reported 
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cases was between 500-1000 per year (CDC, 2015b; Staples et al., 2006). The reduced 

incidence of tularemia (predominantly manifested as ulceroglandular disease) was likely 

due to the gradual shift from a more agrarian society to a more urban society, and a 

reduction in animal to human contact thru small mammal hunting (Eliasson et al., 2006; 

Ellis et al., 2002). In contrast to the somewhat limited outbreaks of tularemia in the 

United States, there have been large outbreaks in Europe and the former Soviet Union 

during the mid-part of the 19th century to present; these outbreaks were largely 

manifested as ulceroglandular and oropharyngeal (Tärnvik, Priebe, & Grunow, 2006). An 

outbreak of more than 100,000 cases was reported in the Soviet Union during the late 

1940s, but it was unclear whether the source of the epidemic was a result of biological 

warfare or local conditions (e.g., contaminated water or tick infestation; Tärnvik et al., 

2006). An outbreak in Kosovo during the 1999-2000 conflict in that region resulted in 

over 300 cases of tularemia which were traced back to rodent infestation from 

unharvested crops; infected rodents contaminated local water supplies and most cases of 

tularemia observed were oropharyngeal infections (Tärnvik et al., 2006). In Spain over 

the period of 1997 through 2008, there were two distinct periods of outbreaks reported 

(1997-1998 and 2007-2008), each of which affected less than 1000 people (Ariza-Miguel 

et al., 2014). The first Spanish outbreak in 1997 was associated with small mammal 

hunting, with disease manifestation primarily observed as glandular or ulceroglandular 

tularemia (Ariza-Miguel et al., 2014). In contrast, a second major tularemia outbreak 

occurred in Spain between 2007-2008 following a population expansion of the common 

vole, a rodent amplification host commonly associated with typhoidal tularemia (Ariza-
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Miguel et al., 2014; Rossow et al., 2014). Because the disease presentation in the 

majority of patients was characterized as primarily typhoidal infection, epidemiology 

investigators concluded that the infections were likely transmitted via the inhalational 

route (Ariza-Miguel et al., 2014). Surveillance conducted in France between 2002 and 

2012 discovered small clusters of naturally occurring cases of tularemia infection, with a 

total of 433 cases reported, comprising roughly ten clusters of disease (Mailles & 

Vaillant, 2014). The majority of cases observed were glandular/ulceroglandular tularemia 

disease, which represented 72% of the disease cases and was associated most frequently 

with actions which involved handling of hares (41% of cases), typhoidal and pneumonic 

presentations of tularemia each represented 10% of the disease cases but were not 

associated with a specific exposure event (Mailles & Vaillant, 2014). 

The disease burden caused by naturally occurring tularemia in the United States 

has been documented to be predominantly one of morbidity rather than of mortality 

(CDC, 2015a). In contrast, the impact of tularemia infection when used as a bioterrorism 

pathogen during World War II has been reported to have primarily been a lethal disease 

(Dennis et al., 2001; Oyston, Sjostedt, & Titball, 2004). The threat of Ft has been 

documented as a continued biological threat problem, particularly for military personnel 

who may deploy into areas where infection is endemic or re-emerging, into areas with 

shifting political/military stability, or in areas with potential for biological terrorism 

(Wolfe, Florence, & Bryant, 2013). 

Economic impact of Ft infections. I found no published information regarding 

the incurred costs associated with naturally-occurring Ft infections. However, researchers 
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have conducted computer modeling and simulation studies for three biological threat 

agents to estimate the economic impact of an intentional large-scale aerosol delivery of 

Bacillus anthracis, Brucella melitensis, or Francisella tularensis in large city or suburban 

environments (Kaufmann, Meltzer, & Schmid, 1997). Kaufmann Meltzer, and Schmid 

(1997) noted that “the impact of a bioterrorist attack depends on the specific agent or 

toxin used, the method and efficiency of dispersal, the population exposed, the level of 

immunity in the population, the availability of effective postexposure and/or therapeutic 

regimens, and the potential for secondary transmissions” (p. 83). Intentional exposure to 

aerosolized Ft was estimated to cause a high rate of illness and death; for every 100,000 

persons exposed to aerosolized Ft, Kaufmann et al. (1997) estimated that exposure would 

cause 82,500 cases of pneumonic tularemia and result in 6,188 deaths. In the assessment 

of costs, Kaufmann et al. (1997) included such variables as cost of premature human 

death, cost of hospitalization, cost of post-hospitalization outpatient visits, and cost of 

diagnostic tests, and then compared the burden of infection against the cost of 

intervention. Hospital costs for Ft infection were estimated to be on average $6,338 to 

$7,582 over the course of an average 20-day stay (Kaufmann et al., 1997). Non-

hospitalization costs incurred for Ft infection (e.g., outpatient services, laboratory tests, 

lost productivity, etc.) were estimated to average between $722 and $1,120 per patient 

(Kaufmann et al., 1997). The cost to provide prophylaxis consisting of doxycycline and 

gentamicin treatment for Ft infection during a biological attack was estimated to average 

between $418,094 and $1,488,037, depending on the number of people who would need 

to be treated in suburban versus highly populated urban areas (Kaufmann et al., 1997). 
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Kaufmann et al. (1997) hypothesized that the cost of prophylaxis would provide a 

net savings over the economic losses that were simulated in the absence of treatment, 

with total costs of a biological attack with Ft ranging from $5.402 million to $5.507 

million, with the simulated assumption that 100,000 people would be exposed.  

General Overview of Venezuelan Equine Encephalitis Virus 

Basic epidemiology. Venezuelan equine encephalitis is caused by infection with 

a positive-strand RNA virus, Venezuelan equine encephalitis virus. Discovery of the 

virus in the early part of the 20th century was preceded by large enzootic outbreaks of 

viral infection in equids (Beck &Wyckoff, 1938; Kubes & Rios, 1939). The occurrence 

of disease among agricultural animals was occasionally observed to spill over into human 

populations as well, particularly amongst agricultural workers; the infection events that 

caused disease in humans were distinguished from outbreaks that only affected animals 

(e.g., enzootic) and termed epizootic events (Adams et al., 2012). Researchers have 

discovered several subtypes of VEEV and have characterized them into categories 

enumerated IA through IF (Steele & Twenhafel, 2010). Individual strains have been 

described according to whether they were enzootic or epizootic (Steele & Twenhafel, 

2010). Enzootic strains have been shown to circulate through mosquito-rodent cycles and 

include strain subtypes ID, IE, and IF (Weaver & Reisen, 2010). Horses and other equids 

have not been demonstrated to amplify enzootic viral strains, and enzootic strains are 

generally considered to be avirulent (Sahu, Pederson, Jenny, Schmitt, & Alstad, 2003; 

Steele & Twenhafel, 2010). In contrast, examination of epizootic strains that included 

subtypes IA/B and IC has shown that the lifecycle of epizootic subtypes included an 
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amplification cycle in equids, and resulted in high susceptibility to infection in both 

equids and humans (Steele & Twenhafel, 2010). 

There have been three major epidemic outbreaks (1962-1964, 1992-1993, and 

1995), which have resulted in human case fatalities; each of these events was associated 

with epizootic IC strains of VEEV (Brault et al., 2001). Human disease caused by VEEV 

has been described to range from very mild flu-like symptoms to severe clinical and 

neurological syndromes (Bowen, Fashinell, Dean, & Gregg, 1976; Ehrenkranz & 

Ventura, 1974). The most common symptoms observed or reported included complaints 

of sickness similar to influenza-like illness including fever, malaise, vomiting, sore 

throat, and lethargy (Rivas et al., 1997; Steele & Twenhafel, 2010). These symptoms 

comprised most mild cases of infection, which were typically resolved within three to 

five days after the initial symptoms appeared (Rivas et al., 1997). VEEV infection was 

reported to produce symptoms in nearly all human cases, regardless of the severity of 

infection (Steele & Twenhafel, 2010). Severe cases of infection, which were noted to 

have occurred predominantly in the very young or very old, were associated with case-

fatality rates of approximately 0.5% of adults and up to 4% of children (Wolfe et al., 

2014). Symptoms observed in cases of illness which progressed into serious clinical 

infection included fever, headache, photophobia, biphasic fever, seizures, ataxia, 

dysphasia, paresis, encephalitis, and pneumonia (Franz et al., 1997; de la Monte, Castro, 

Bonilla, Gaskin de Urdaneta, & Hutchins, 1985). Extensive involvement of lymphoid and 

endothelial tissues was also noted by de la Monte et al. (1985). The reported rates of 

overall severe infection varied in the literature. De la Monte et al. (1985) reported rates of 



12 

 

neurological disease ranging from 4-14% of VEEV cases. In contrast, Franz et al. (1997) 

reported a smaller percentage of VEEV cases that advanced to the severe neurological 

state (0.5% to 4%). However, those estimations appeared to be based on epidemic data 

from up to the 1970s and did not include the VEEV outbreaks in 1992-1993 or 1995. 

Death and disability caused by VEEV. The observed case-fatality rate for 

VEEV in humans has been low (estimated to be between 0.5 and 4%); however, the 

economic impact of disability caused by infection remains largely unknown and 

unstudied (Wolfe, 2014). Little has been reported on the neurological outcomes 

associated with non-fatal infection. Bowen et al. (1976) and Ehrenkranz and Ventura 

(1974) both reported on the extent of clinical signs during the fulminant and encephalitic 

phases of illness in both children and adults infected during the 1969-1971 VEEV 

epidemic. Among the clinical signs observed, “confusion, hallucinations, or gait 

abnormality in association with excessive drowsiness” and serious consequences which 

included “grand mal seizures, temporary paralysis, or coma” were described for serious 

encephalitic forms of infection (Bowen et al., 1976, p. 49). Longer-term complications 

were reported in 12 patients (13.6% of patients) at 1 month and 9-12 months after initial 

infection. The complications reportedly included unilateral muscle weakness in 

extremities; reduced sensory perception of taste, smell, and hearing; recurrent headaches; 

easy fatigue; poor concentration/forgetfulness; and depression (Bowen et al., 1976). The 

long-term symptoms reported are in keeping with the general long-term neurological 

sequelae that have been reported for a similar encephalitic disease, West Nile virus 

(Weatherhead et al., 2015). Weatherhead et al. (2015) conducted an observational study 
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in which they examined the progression of neurological complications in 60 patients 

following West Nile infection at 1-3 years post-infection, and 8-11 years post-infection. 

A total of 35 patients were classified as having had encephalitis during acute phase 

infection; of those, 86% (or 30 patients) displayed abnormal neurological issues at the 

first post-infection assessment (Weatherhead et al., 2015). At the second post-infection 

assessment, “57% (4/7) of West Nile fever (WNF), 33% (2/6) of West Nile meningitis 

(WNM), and 36% (5/14) of West Nile encephalitis (WNE) had developed new 

neurological complications” (Weatherhead et al., 2015, p. 1006). The complications 

described by Weatherhead et al. (2015) were similar to those described by Bowen et al. 

(1976) following VEEV infection, and likely represented general long-term consequences 

of encephalitis. The common sequelae included unilateral abnormalities in gait, loss of 

hearing, loss of motor reflexes, and persistent weakness in muscles. Neither study was 

able to differentiate whether the long-term issues experienced by patients were due to 

neuroinvasive infection or if the abnormalities occurred as a result of comorbidities 

(Bowen et al., 1976; Weatherhead et al., 2015). 

Economic impact of VEEV infections. The predominant economic losses 

associated with or due to enzootic infection in animals have been confined to the loss of 

agricultural animals, namely horses, donkeys, and mules (Navarro et al., 2005). Loss of 

production, productivity, and potential income for agricultural workers could have 

serious economic impact, depending on the local environment, but particularly in 

developing countries where farm animals may be the primary source of working the land 

(Aréchiga-Ceballos & Aguilar-Setién, 2015; Nara et al., 2010). I found no economic 
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information on the number of cases of humans affected post-infection with VEEV in 

terms of neurological sequelae or what, if any, economic impact their long-term care may 

have imposed. However, in one report on the economic burden sustained by survivors of 

a related alphavirus, eastern equine encephalitis virus (EEEV), researchers discussed the 

costs incurred by three individuals who experienced mild infection as well as three who 

survived infection-induced encephalitis (Villari, Spielman, Komar, McDowell, & 

Timperi, 1995). The cost/benefit analysis conducted by Villari et al. (1995) described the 

short-term (approximately one month) costs associated with the mild, transient cases of 

EEEV, including an average 20-day stay in the hospital, and calculated the average cost 

to be $21,051 per individual. For the three surviving individuals who experienced severe 

infection, all of whom were children, the neurological sequelae were remarkably similar 

in each case, and similar to other descriptions of VEEV long-term effects in children 

(Villari et al., 1995). For the encephalitis cases with long-term residual effects, the care 

costs began with longer, more extensive-care hospital stays (which averaged 86 days) 

than the milder cases of EEEV infection, rehabilitation hospital care (average stay 238 

days), round-the-clock nursing care once the individuals were well enough to go home, 

educational costs (e.g., remedial therapies, transportation), and loss of lifetime earnings 

as the afflicted children had such severe disabilities that it was suggested that none would 

ever attain productive employment (Villari et al., 1995). In light of the severity and 

longevity of caring for such afflicted individuals, Villari et al. (1995) estimated that the 

average lifetime costs resulting from EEEV infection would be $2.95 million per person, 

ranging from a little as $2.54 million to as much as $4.28 million. 
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The economic impact of VEEV infection from an intentional biological attack has 

never been estimated. 

The purpose of this dissertation project was to address a gap in knowledge by 

quantitatively assessing the molecular epidemiology of Ft and VEEV in a human vaccine 

model. I also worked to quantitatively assess the potential relationship between gene 

expression over time in response to treatment (vaccination) with either Ft or VEEV; to 

assess the potential relationship between the age of the vaccinated individuals and 

vaccine outcome (successful response to primary vaccination or vaccine failure); and to 

identify a potential correlation between HLA phenotype and vaccine response. My 

research was intended to add to the limited published information about the changes in 

gene expression that each vaccine elicits, and address the gaps in knowledge regarding 

the association of age and genetic makeup on vaccine outcome. 

Problem Statement 

Vaccination has been a fundamental pillar for the prevention of infectious 

diseases and improvement of public health for roughly two centuries (Centlivre & 

Combadière, 2015; Kennedy, Ovsyannikova, Lambert, Haralambieva, & Poland, 2014; 

Wilson & Karp, 2015). However, emerging and re-emerging diseases such as tularemia, 

dengue fever, Ebola, equine encephalomyelitis, and Zika highlight gaps in the 

development and approval of new vaccines as well as the need to incorporate innovative 

approaches to address global health challenges to produce new vaccines (Hotez et al., 

2016; Kennedy et al., 2014; Wilson & Karp, 2015). For many emerging or re-emerging 

diseases, traditional methods of vaccine development have sometimes failed to produce 
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effective vaccines. In these cases, many subject matter experts believe that knowledge of 

additional factors such the host innate and adaptive responses to vaccination, differences 

in genetic makeup, gender and age-related differences, and differences among diverse 

ethnic populations may provide evidence-based data needed to facilitate development 

strategies to overcome technological limitations, including identifying novel correlates of 

protection (Angel, Steele, & Franco, 2014; Kennedy et al., 2014; Hotez et al., 2016; 

Pulendran, Oh, Nakaya, Ravindran, & Kazmin, 2013). The lack of (a) knowledge 

surrounding the pathogenesis of disease in humans, (b) knowledge of vaccine outcome 

among diverse populations, and (c) knowledge of the effect of genetic makeup in relation 

to vaccine outcome have emerged as critical barriers to producing effective vaccines, 

particularly against emerging and re-emerging infectious diseases (Klein and Poland, 

2013). Researchers have conducted transcriptome studies of human responses to yellow 

fever vaccine, smallpox, and patients with naturally occurring upper-respiratory infection 

to quantitatively assess changes in gene expression and associate specific patterns of gene 

expression with molecular signatures for each of the viruses (Scherer et al., 2007). 

Similarly, in a study to assess transcriptional changes induced by infection with 

nontypeable Haemophilus influenza bacteria in humans, Baddal et al. (2015) highlighted 

pathogen-induced regulatory changes that facilitated pathogenesis and inflammation, and 

identified potential targets for infection control. In recent work with West Nile virus 

neuroinvasive disease, researchers have shown specific gene variants associated with 

seroconversion and HLA alleles that were associated with immunoprotection (Long, 

Deng, Singh, Loeb, Lauring, & Seielstad, 2016). For Ft and VEEV, two important re-
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emerging pathogens, there have been small studies published describing gene expression 

profiles in peripheral blood mononuclear cells (PBMCs); however, neither study 

addressed the issue of the host response to vaccination from whole blood and the 

sampling time frames are dissimilar for comparison purposes (Andersson et al., 2006; 

Erwin-Cohen, Porter, Pittman, Rossi, & DaSilva, 2012).  

There are several studies which have shown the association of age with vaccine 

outcome (Pawelec & Derhovanessian, 2010). The response of elderly people to influenza 

vaccination is greatly reduced (17-53% efficacy) in comparison to young adults who 

demonstrate between 70-90% efficacy in response to influenza vaccination (Pawelec & 

Derhovanessian, 2010). In a study of naïve aging individuals immunized with Hepatitis B 

vaccine (HBV), age was significantly associated with vaccine response; vaccinees aged 

40 years or younger responded better to vaccination than did individuals who were 65 

years of age or older (Fourati et al., 2015). The mechanisms of reduced vaccine response 

may be related to declining T cell populations in older individuals, as elderly men were 

found to have reduced T cells populations, in comparison to younger individuals (De 

Benedetto et al., 2015). There are no studies, to date, that have addressed a potential 

relationship between vaccine outcomes and age for vaccination with Ft. Pittman, Liu, 

Cannon, Mangiafico, and Gibbs (2009) discussed a small study in which age was 

investigated as a demographic factor for vaccine response to VEEV; however the authors 

reported only that there was no evidence of age being associated with primary vaccine 

failure in individuals who had previously been vaccinated with two other vaccines which 

are related to VEEV, eastern and western equine encephalitis viruses. Several researchers 
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have reported the association of specific genetic factors with vaccine outcome in response 

to vaccination with childhood vaccines (HBV, diptheria, tetanus, pertussis [DTaP]), 

smallpox, influenza, anthrax, and rubella (Li, Nie, & Zhuang, 2013; Narwaney et al., 

2013; Ovsyannikova, Jacobson, Ryan, Dhiman, Vierkant, & Poland, 2007; Ovsyannikova 

et al., 2013; Ovsyannikova, Pankratz, Salk, Kennedy, & Poland, 2014; Yucesoy et al., 

2013). HLA are encoded by the major histocompatibility complex (MHC) genes (Li et 

al., 2013). HLA class II molecules are responsible for presentation of antigens to 

ultimately elicit antigen-specific B cell responses (Li at al., 2013). The genes for HLA-

DR beta 1 (DRB1) and HLA-DQ beta 1 (DQB1) have been associated with immune 

dysregulation or autoimmunity (NLM, 2016; NLM, 2016b). There have been no studies, 

to date, which directly address the potential contribution of HLA phenotype with vaccine 

outcome in response to vaccination with either Ft or VEEV. 

Study Purpose 

The purpose of this dissertation project was to quantitatively assess the molecular 

epidemiology of Ft and VEEV in a human vaccine model. I worked to quantitatively 

assess the potential relationship between gene expression over time in response to 

treatment (vaccination) with either Ft or VEEV; to assess the potential relationship 

between the age of the vaccinated individuals and vaccine outcome (successful response 

to primary vaccination or vaccine failure); and to identify a potential correlation between 

HLA phenotype and vaccine response. I conducted this research to add to the limited 

published information about the changes in gene expression that each vaccine elicits, and 
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to address the gaps in knowledge regarding the association of age and genetic makeup on 

vaccine outcome. 

Research Questions and Hypotheses 

Research Question 1  

Is there a significant association between changes in the level of gene 

transcription and the time course of vaccination with Ft or VEEV? To answer this 

question I used a quantitative analysis utilizing three-way analysis of variance (ANOVA), 

where the dependent variable was level of gene expression for a given transcript and the 

independent variables which affect the dependent variable were time following 

vaccination, treatment status (which vaccine was administered or if the subject was a 

mock-vaccinated control), and the combined effect of time*treatment which I used to 

consider the role of both time and treatment as a single variable. The null hypothesis was 

that there is no association between changes in the level of gene transcription in response 

to vaccination with Ft or VEEV, and the alternative hypothesis was that there is 

association between changes in the level of gene transcription and vaccination with Ft or 

VEEV. 

Research Question 2 

Is there a significant association between changes in the level of gene 

transcription over the time course of vaccination with Ft in comparison to VEEV? The 

null hypothesis was that there is no association between changes in the level of gene 

transcription in response to vaccination with Ft in comparison to VEEV, and the 

alternative hypothesis was that there is association between changes in the level of gene 
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transcription and vaccination with Ft in comparison to VEEV. To answer this question, I 

used a quantitative analysis utilizing ANOVA, where the dependent variable was level of 

gene expression for a given transcript and the independent variables which affect the 

dependent variable were time following vaccination, treatment status (which vaccine was 

administered or if the subject was a mock-vaccinated control), and the combined effect of 

time*treatment which I used to consider the role of both time and treatment as a single 

variable. 

Research Question 3 

Is there a correlation between age of the vaccinated subject and vaccination 

outcome? This question can be addressed by conducting a correlation analysis. The null 

hypothesis was that there is no correlation between age of the vaccinated individuals and 

vaccine outcome (measured as the log10 neutralizing antibody titer), whereas the 

alternative hypothesis was that there is a statistical correlation between age and vaccine 

outcome. 

Research Question 4 

Is there a significant association between HLA phenotype and vaccination 

outcome? I answered this by employing Mann-Whitney U tests to examine the 

association of immune response with HLA-DRB1 or HLA-DQB1alleles. The null 

hypothesis was that there is no association between HLA allele and vaccine outcomes 

(measured as the log10 neutralizing antibody titer), whereas the alternative hypothesis 

was that there is a statistical association between HLA allele and vaccine outcome. 
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Conceptual Framework 

I based the conceptual framework for this study upon theories of rational vaccine 

design which have emerged in recent years. Historically, vaccine design has relied upon 

two tried and true methodologies – that of attenuation or inactivation of the biological 

agent (Plotkin, 2003; Plotkin, 2008). New methods of generating vaccines include efforts 

to produce vectored vaccines (i.e., vaccines that are delivered in a “shell” virus such as an 

adenoviral vector), and DNA-based vaccines, but no single ideal strategy has emerged 

(Plotkin, 2003). Genomic-based efforts provide an attractive alternative for modern 

vaccine design because they can provide mechanistic information that was previously 

unattainable (Seib, et al., 2009). Seib et al. (2009) discussed several ways in which 

genomics can contribute to efforts to overcome emerging infectious diseases, including 

the use of immunogenetics to understand the host immune response to infection, and 

cited the use of such information to understand the host responses to mumps virus 

vaccine. Indeed, Ovsyannikova et al. (2008) found that variation in response to mumps 

vaccine was associated with both single nucleotide polymorphisms (SNPs) in several 

cytokine genes and with specific human leukocyte antigen (HLA) phenotypes. Hoft, 

Brusic, and Sakala (2011) reviewed the use of immunogenetics information to predict 

differential development of specific T helper subsets, as well as the use of inhibitors such 

as rapamycin and metformin which can influence the generation of long-term memory T 

cells following vaccination. Hoft et al. (2011) also discussed their unpublished 

preliminary human data from their study on the molecular responses to TB vaccine. 

Immunogenetics can be used to understand host cell proteins and signaling processes 
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which are involved in both the pathogenesis and development of immunity against a 

specific biological agent (Seib et al., 2009). Additionally, such studies may also identify 

molecular correlates of protection (Pulendran and Ahmed, 2011). Understanding the 

underlying mechanisms of disease process and development of immunity can facilitate 

our understanding of the molecular inner armor that functions to protect that human host 

against infection (Nara et al., 2010). I have termed this collection of concepts the 

Epidemiology Nexus concept. I applied the notion of a nexus of information to connect 

the impact of disease upon individuals, families, and communities with the potential 

impact that such information could exert when applied to policy issues regarding vaccine 

design.  

Nature of the Study 

My basic goal was to study the association of transcriptional responses of two 

disease-causing agents with the temporal effects of treatment, and additionally to 

examine the correlation or association of demographic factors with vaccine outcome. By 

examining and comparing the transcriptional changes, genes and/or pathways that are 

important to both types of infection as well as genes and pathways that are unique to each 

type of infection can be identified. These data can contribute to a foundation of 

knowledge of the key molecular mediators and events that lead to the development of an 

appropriate immune response as well as the development of immune status through the 

identification of molecular correlates of protection. I leveraged existing data sets of 

human microarray data, and used two human vaccine study data sets (in vivo; one each 

for Ft and VEEV).  
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The key study variables I used to test association of vaccination with changes in 

the level of transcription included transcript expression level as the dependent or outcome 

variable, with independent variables such as time following vaccination and treatment. 

For the association of HLA phenotype or allele with vaccine outcome, the dependent 

variable was neutralizing antibody titer, and the independent variable was HLA allele. 

Given that this project was a secondary analysis, I used previously collected data. 

The data sets were available from the US Army Medical Research Institute of Infectious 

Diseases (USAMRIID) as electronic data comprised of fluorescence expression signals in 

the form of a pixelated image; the expression data are averaged to give a single intensity 

value for each probe set on each microarray chip; each Affymetrix Human Genome U133 

Plus 2.0 Array chip contains more than 54,000 probe sets which correspond to 

approximately 38,500 human genes (Affymetrix, 2004). The original vaccine studies 

conducted by researchers at USAMRIID included 39 participants between the two 

studies. The treatment groups were separated into 4 sub-groups which were comprised of 

10 control individuals who were given a placebo vaccination for Ft, 10 individuals who 

received the Ft vaccine, 10 control individuals who were given a placebo vaccination for 

VEEV, and 9 individuals who received the VEEV vaccine. Control and vaccinee 

volunteers were age-matched (+/- 5 years) and all study participants were males. Blood 

samples were collected at various time points before (0 hr) and after vaccination (or 

mock-vaccination) at 1, 4, 8, 24 hrs, as well as through days 2, 7, 14, 21, and 28. One 

study volunteer for the VEEV vaccine portion of the study was removed from the data set 
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due to primary vaccine failure (the volunteer failed to develop neutralizing antibody titer 

after vaccination and was thus reclassified as a vaccine non-responder). 

For generation of transcript expression profiles, each whole blood sample was 

used to isolate RNA which was subsequently hybridized to an Affymetrix Human 

Genome U133 Plus 2.0 Array chip (Affymetrix, 2004). Power calculations for the 

original studies (Statistical Applications Software [SAS] Institute Inc., 2011) were 

performed by a USAMRIID statistician to estimate that using 10 individuals per group 

should typically yield 95% power to detect 3.5-fold differences in gene expression using 

a two-sample t test at the 0.001 two-sided significance level, assuming that the coefficient 

of variation is 0.50. To maximize the number of transcripts that are examined, I 

decreased the cut off for fold expression to 2-fold up or down to broaden the number of 

transcripts examined. I applied this change and recalculated the power that could be 

achieved in the secondary analysis which resulted in anestimated reduction in the power 

to 90% (M. D. Anderson, 2016). 

Definitions 

Gene expression: “The process by which a gene's sequence is converted into a 

mature gene product or products (proteins or RNA)” (GO, 2012). Gene expression 

includes “the production of an RNA transcript as well as any processing to produce a 

mature RNA product or an mRNA (for protein-coding genes)” (GO, 2012). Gene 

expression and transcript expression are terms which are often used synonymously. 

Probe set: A set of synthetic oligonucleotide probes, typically 20 nucleotides in 

length, which are used to interrogate gene expression. The synthetic probes make up a set 
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that has been validated to recognize a specific gene of interest. A single gene of interest 

may be represented by multiple probe sets which can bind to different portions of the 

transcript RNA (Affymetrix, 2004). 

Microarray analysis: A technique used to measure changes in gene expression. 

Gene expression for any given transcript is the base 2 logarithm of the fluorescent 

intensity signal from a microarray chip; the RNA from each individual subject at each 

time point was hybridized to a single gene chip. A base 2 logarithm of the fluorescent 

intensity signal expression value is generated for every transcript at each experimental 

time point (Partek, 2016). The temporal trend of gene expression is assessed by analysis 

of variance (ANOVA), minimally comparing transcripts over time, treatment, and in 

deference to the combined effects of Time*Treatment. Individual gene expression levels 

do follow linear trends (as opposed to exponential, for example). 

 Human leukocyte antigen (HLA): This system, as part of the Major 

Histocompatibility Complex, is comprised of four genes (A, B, C, and D) encoded on 

human chromosome 6. The HLA genes encode specialized cell surface molecules which 

present antigenic peptides to the T cell receptor (TCR) on T cells in order to initiate a 

cell-based immune response. The HLA phenotype of an individual, particularly for HLA-

DR, HLA-B and HLA-A, is a critical determinant for tissue typing to match organ donors 

and recipients. However, there are also a number of immune and autoimmune diseases 

which have been associated with specific HLA alleles (Delves, 2016). 
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Assumptions 

I made some assumptions that may have affected the study. First, I assumed in the 

analysis of microarray data that the number of genes being assessed was large enough 

(typically more than 10,000) and that only a small number of genes would actually have 

differences in gene expression when comparing different points (either across time or 

treatment) (Wang & Xi, 2013). Although the chip that each of the data sets I used for the 

secondary analysis contained more than 54,000 RNA transcripts, only several hundred or 

thousand will exhibit differential expression. This was an important assumption which 

provided a basis for the data to be normalized by a process called robust multi-array 

analysis (RMA). A second assumption, related to the overall goal of the analysis, was 

that my evaluation of the data would provide information about the molecular 

epidemiology of the cells from which the RNA originated. These assumptions were 

critical to both the process by which the data from two independent data sets was 

combined and normalized, and for the implications for molecular epidemiology in 

cataloging the changes to gene transcription in response to vaccination. 

Scope and Delimitations. 

The researchers who conducted the two original vaccine studies limited the scope 

of the study temporally to immediately prior to vaccination and ending at day 28 

following vaccination. The researcher also limited the volunteers to those who had not 

previously received any vaccines within 30 days of the start of the Ft or VEEV 

vaccination protocol, previous vaccination to either Ft, VEEV, or to other, related 

alphavirus vaccines. Volunteers also had to be negative for infection with human 
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immunodeficiency virus (HIV), hepatitis B, and hepatitis C. Volunteers were excluded if 

a review of their medical history included abnormal findings in immune system function, 

evidence of anemia, or blood cell populations outside of normal ranges. The delimitations 

of the study included restricting participants to males of an adult age range (21-48 years 

of age). The researchers of the original studies placed no limitations on geographic origin 

of the participant pool; all volunteers were drawn from within the scope of active duty 

members of the US military. 

The above-mentioned factors may impact the overall generalizability of the 

secondary analyses, particularly in light of the fact that the study population did not 

include women. 

Limitations 

The secondary analyses of the two data sets I conducted for this study were 

limited by the design and quality of each of the original studies. In particular, it should be 

noted that each original data set did not contain any female study volunteers. In addition, 

only 10 volunteers were included in each treatment group (e.g., control and vaccinee). 

Sample size was likely not a limitation for the research questions related to association of 

transcript expression with treatment. My calculations for power and sample size 

demonstrated that 10 volunteers in each group would yield 90% power to detect 2 fold 

changes in gene expression, so in terms of the statistical analysis there was no limitation. 

Rather, the potential limitation may stem from a perception of just how generalizable the 

data are. The study volunteers were overwhelmingly of Caucasian, not Hispanic or Latino 

race and ethnicity; therefore, the data were also limited in that there can be no correlation 
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of vaccine response with any racial or ethnic group. 

 The live attenuated strain of Ft that was used in the original study may not 

produce the same host responses to infection that a wild-type pathogenic strain of 

bacteria may elicit. The live attenuated strain of VEEV that was used to vaccinate 

volunteers belongs to the IA/B strain of VEEV; the changes in gene expression that are 

associated with this particular strain may or may not be the same as what would be 

observed if using a virus from one of the other VEEV subtypes or with fully virulent 

strains. 

The researchers implemented measures during the collection of the original data 

to control bias, including blinding of sample collection personnel to the treatment groups, 

and collection of all samples within a pre-defined range of acceptable collection (e.g., 4 

hours post-vaccination ± 30 minutes, day 2 post-vaccination  ± 2 hours, or day 21 post-

vaccination ± 2 days). Some types of bias could not be controlled in the study, including 

attrition bias (study participants had the right to terminate participation in the study at any 

time) and exclusion bias—in particular the exclusion of women from the study in order to 

control variation in transcript expression that could be due to fluctuations in female 

hormone signaling. 

Significance 

Global public health efforts to prevent disease from both Ft and VEEV have been 

hampered by the lack of approved human vaccines and the lack of knowledge of the 

human molecular responses to infectious disease agents (Foley & Nieto, 2010; Wolfe et 

al., 2013; Wolfe et al., 2014). Molecular epidemiology studies of other infectious 
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diseases have provided innovative information in humans and animal models; however, 

there is little understanding or information of the molecular consequences of human 

infection with either Ft or VEEV. In this project, I sought to make a novel contribution to 

the field of public health by studying the relationship between gene expression and the 

temporal effects of vaccination, the potential relationship between age and vaccine 

outcome, and the potential association between genetic make-up of individuals with 

vaccine outcome.  

My study may contribute to positive social change at multiple levels. First, 

transcriptomic analysis may provide evidence to support the Epidemiology nexus 

conceptual model which holds that examining changes in gene expression can contribute 

to a broad knowledge base for understanding the molecular mechanisms of immune 

development and expand knowledge of the fundamental mechanisms of action of 

successful vaccination (Li et al., 2015; Kennedy et al., 2014; Nakaya, Li, & Pulendran, 

2011; Pulendran et al., 2013). Secondly, my use of molecular epidemiology data for the 

explicit purpose of creating rationally-designed vaccines supports a positive social 

change agenda relating to administrative policy; financial incentives are often absent with 

regard to development of neglected tropical or zoonotic diseases and the World Health 

Organization (WHO) recognizes that developmental costs for vaccines and lack of 

correlates of protection are unmet challenges (Hortez et al., 2016). Studying the common 

and unique changes to gene expression that are elicited by vaccination may make it 

possible to develop multi-agent vaccines that share similar immune-related mechanisms. 

By using Ft and VEEV to compare and contrast molecular epidemiology, I worked to 
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contribute new knowledge to develop vaccines which can meet rigorous standards for 

licensure. Licensed vaccines could have a positive social impact on society on both and 

individual and family levels through reduced disease incidence, and impact on 

communities through reduced mortality and morbidity (Hortez et al., 2016; Reichert et 

al., 2009, Wolfe et al., 2013, Wolfe et al., 2014). The compendium of evidence I have 

built regarding the mechanisms of vaccine efficacy may also serve to assure the public 

that vaccines are well-tested and safe. Such assurance has become increasingly important 

as public health professionals seek to understand and combat vaccine hesitancy and to 

promote vaccine acceptance (Eskola, Duclos, Schuster, MacDonald, & the SAGE 

Working Group on Vaccine Hesitancy, 2015). 

Summary 

Global public health efforts to prevent disease from both Ft and VEEV have been 

hampered by the lack of approved human vaccines and the lack of knowledge of the 

human molecular responses to infectious disease agents (Foley & Nieto, 2010; Wolfe et 

al., 2013; Wolfe et al., 2014). Molecular epidemiology studies in other infectious diseases 

have provided innovative information in humans and animal models; however, there is 

little understanding or information of the molecular consequences of human infection 

with either Ft or VEEV. In this dissertation project, I sought to make a novel contribution 

to the field of public health by studying the relationship between gene expression and the 

temporal effects of vaccination, the potential relationship between age and vaccine 

outcome, and the potential association between genetic make-up of individuals with 

vaccine outcome.  
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 In the next chapter, I review the relevant published literature for each 

infectious agent to provide readers with a comprehensive understanding of the subject 

matter, and to identify the gaps in the public health knowledge regarding each infectious 

agent. 
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Chapter 2: Literature Review 

Problem Addressed by the Study 

Emerging and re-emerging diseases such as tularemia, dengue fever, Ebola, 

equine encephalomyelitis, and Zika highlight gaps in the development and approval of 

new vaccines as well as the need to incorporate innovative approaches to address global 

health challenges to produce new vaccines (Hotez et al., 2016; Kennedy et al., 2014; 

Wilson & Karp, 2015). Vaccine subject matter experts believe that knowledge of factors 

such the host innate and adaptive responses to vaccination, differences in genetic 

makeup, gender and age-related differences, and differences among diverse ethnic 

populations may provide evidence-based data needed to facilitate development strategies 

to overcome technological limitations, including identifying novel correlates of 

protection (Angel, Steele, & Franco, 2014; Hotez et al., 2016; Kennedy et al., 2014; 

Pulendran et al., 2013). The lack of knowledge (a) surrounding the pathogenesis of 

disease in humans, (b) knowledge of vaccine outcome among diverse populations, and (c) 

knowledge of the effect of genetic makeup in relation to vaccine outcome have emerged 

as critical barriers to producing effective vaccines, particularly against emerging and re-

emerging infectious diseases (Klein & Poland, 2013). 

Purpose of the Study 

The purpose of this dissertation project was to quantitatively assess the potential 

relationship between gene expression over time in response to treatment (vaccination) 

with either Ft or VEEV; to assess the potential relationship between the age of the 

vaccinated individuals and vaccine outcome (successful response to primary vaccination 
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or vaccine failure), and to identify the potential correlation between HLA phenotype and 

vaccine response. I conducted the study to add to the limited published information about 

the changes in gene expression that each vaccine elicits, and to address the gaps in 

knowledge regarding the association of age and genetic makeup on vaccine outcome. 

Literature Relevant to the Problem 

Global public health efforts to prevent disease from both Ft and VEEV have been 

hampered by the lack of approved human vaccines and the lack of knowledge of the 

human molecular responses to infectious disease agents (Foley & Nieto, 2010; Wolfe et 

al., 2013; Wolfe et al., 2014). Worldwide the annual incidence rates of infection with Ft 

and VEEV vary from year to year, but are often thought to be underdiagnosed, 

particularly for VEEV, due to poor diagnostic capabilities in remote areas and the general 

symptoms of disease which are often misdiagnosed as other common diseases, such as 

dengue fever (Aguilar et al., 2011; NNDSS, 2016; HealthMap, 2016). There have been 

few studies to date which have examined human immune or molecular responses to 

infection with either Ft or VEEV. Changes in gene expression have been studied by 

microarray analysis following both naturally occurring infections as well as in purified 

blood cells populations following vaccination (Andersson et al., 2006; Erwin-Cohen et 

al., 2012; Fuller et al., 2007; Paranavitana et al., 2008b). However, researchers to date 

have not assessed changes in gene expression from whole blood as a sample source; the 

use of whole blood as source material has been postulated to be important to gene 

expression analysis because it would leave in vivo cell to cell signaling mechanisms 

intact rather than studying one type of blood cell population (Joehanes et al., 2012).  
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In this chapter, I review relevant literature related to the conceptual framework 

that guided my formulation of the research questions, literature that provides examples of 

how the Epidemiology Nexus concept has been applied previously to research efforts, 

and literature relating to how the framework can benefit the my dissertation research. 

Literature Search Strategy 

I executed multiple literature searches, and modified search strategies each time. 

The first searches were relatively narrow in terms of both years searched and the 

generality of search terms. The primary literature search for VEEV encompassed years 

ranging from 2010 to 2016, using the search terms Venezuelan equine encephalitis, VEE, 

epidemiology, effects, gene expression profiling, or biomarker separately and in 

conjunction. I conducted this search using the National Center for Biotechnology 

Information (NCBI) database, also known as PubMed. I filtered the search results by 

restricting them to human data. The same search strategy was subsequently used to 

conduct searches using the same search terms, but I expanded the scope of literature from 

years 2005 to 2016 in order to decrease stringency, capture more published articles, and 

maintain updated literature during the process of literature review synthesis. In the final 

search, I further expanded the range of references to include articles published between 

the years 2000 and 2016. Throughout the process, I found that there was less human-

relevant literature from which to draw for VEEV, in comparison to literature available 

related to Ft. Many recent VEEV studies reported results from studies of animal models, 

but the literature I chose for the review was restricted to only human data. 
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I also conducted several literature searches for Ft. The initial literature search was 

a relatively narrow search utilizing the terms Francisella tularensis, epidemiology, gene 

expression profiling, epidemiology, or biomarker, separately and in conjunction and 

filtering results for those applicable to humans only. I limited the initial search of the 

PubMed database to articles published between 2010 and 2016. The search strategy was 

subsequently modified to expand the scope of the search to include publications spanning 

2005-2016, but restricted to articles only relevant to human infection and published in 

English. I repeated literature searches periodically to ensure that up-to-date information 

was incorporated into the literature review. Many recent publications reported results 

from studies of animal models rather than reports of human studies or studies using 

human cell lines.  

Throughout my searches, I found a profound lack of literature published within 

the last 5 years on human disease with Ft or VEEV, particularly with regard to human 

responses to infection. Published reports extending beyond the past 5 years were deemed 

to be highly relevant to the dissertation study. 

Conceptual Framework 

Theoretical Concepts 

The theoretical concept that informed my recognition of the public health problem 

and formulation of quantitative research questions is that a comprehensive understanding 

of the human immune responses to vaccination may provide key insight into the 

molecular epidemiology of infectious diseases. Though many vaccines have been 

established following traditional paradigms of development, some diseases have proven 
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to be more difficult to address due to the nature of the disease and the lack of natural 

immunity (Nabel, 2013). Many emerging and re-emerging diseases such as tularemia, 

dengue fever, Ebola, equine encephalomyelitis, and Zika highlight gaps in the 

development and approval of new vaccines as well as the need to incorporate innovative 

approaches to address global health challenges to produce new vaccines (Hotez et al., 

2016; Kennedy et al., 2014; Wilson & Karp, 2015). Many subject matter experts believe 

that knowledge of additional factors such the host innate and adaptive responses to 

vaccination, differences in genetic makeup, gender and age-related differences, and 

differences among diverse ethnic populations may provide evidence-based data needed to 

facilitate development strategies to overcome technological limitations, including 

identifying novel correlates of protection (Angel, Steele, & Franco, 2014; Kennedy et al., 

2014; Hotez et al., 2016; Pulendran, Oh, Nakaya, Ravindran, & Kazmin, 2013). The lack 

of (a) knowledge surrounding the pathogenesis of disease in humans, (b) knowledge of 

vaccine outcome among diverse populations, and (c) knowledge of the effect of genetic 

makeup in relation to vaccine outcome have emerged as critical barriers to producing 

effective vaccines, particularly against emerging and re-emerging infectious diseases 

(Klein & Poland, 2013). For diseases in which it has been difficult or impossible to 

demonstrate natural immunity, a comprehensive understanding of immunopathogenesis is 

necessary to inform vaccine design (Nabel, 2013).  

I leveraged one aspect of a systems approach, the study of transcriptomics, to 

understand the connection between the complex molecular epidemiology of human 

responses to pathogen-derived disease and the mechanisms of action of successful 
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vaccination (Nakaya, Li, & Pulendran, 2011). 

I formulated the Epidemiology Nexus concept from leading subject matter experts 

in the field of systems vaccinology. This ides has influenced my dissertation research in 

that associating changes to the transcriptome that occur as a result of the host response to 

infection with bacterial or viral infectious agents may provide a foundation of knowledge 

for multiple disease paradigms which may be leveraged to influence combinatorial 

vaccine design, therapeutic targets, and diagnostic markers. The research actions which 

facilitate the acquisition of epidemiological knowledge include identification of genes 

(transcripts) which are modulated, and identification of the known signaling pathways 

which are significantly associated with the transduction of a biological signal (Kellam, 

2006; Kellam & Weiss, 2006; Nakaya et al., 2011). Collectively, these data provide a 

portrait of the host response to the vaccine (which is used as a surrogate for virulent 

infection) from which models of mechanisms of action, biological signatures, and 

predictive responses can be built (Nakaya et al., 2011). The overall philosophical concept 

of an Epidemiology Nexus has been described in consistent terms by several prominent 

figures in vaccinology including Angel, Steele, and Franco (2014), Kennedy et al. (2014), 

Li et al. (2013), Nabel (2013), Plotkin (2003), Pulendran and Ahmed (2011), and 

Pulendran et al. (2013). 

Key statements and definitions of the framework. Systems vaccinology has 

been defined as a field of study which combines system-wide measures, signaling 

pathways and networks, and contributes to predictive models within the context of 

vaccines (Nakaya et al., 2011). Transcriptomics is defined as the complete set of RNA 
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transcripts which are produced under specific circumstances or in a specific cell type and 

are assessed techniques such as microarray analysis (Affymetrix, 2004). 

Application in previous research. Several studies have applied theoretical 

concepts that are consistent with an Epidemiology Nexus connecting disease with 

alterations in the transcriptome in a manner similar to what I did for this dissertation 

research project.  

 There have been three independent studies which have applied the theoretical 

concept to the yellow fever vaccine in a manner similar to my approach. Scherer et al. 

(2007) first investigated the association between disease and gene expression profiles of 

peripheral blood mononuclear cells (PBMCs) from patients who were vaccinated with 

either smallpox, yellow fever, or from patients with naturally occurring upper-respiratory 

infection (URI). Healthy, naïve volunteers were recruited to receive either the smallpox 

vaccine Wetvax (n=24), or the yellow fever vaccine YF-VAX (n=20; Scherer et al., 

2007). The third experimental group was comprised of patients who presented with 

clinical symptoms including “fever, cough, chills, myalgia, pharyngitis, and rhinorrhea” 

and were presumed to have viral (URI; Scherer et al., 2007, p. 6). Each patient with 

presumed URI had experienced symptoms for 3.7 days on average (Scherer et al., 2007).  

 The timeframes for sample collection were not uniform; PBMCs from the 

volunteers vaccinated with Wetvax (smallpox) were collected at four general points 

corresponding to a pre-vaccination sample, a sample at 2-4 days post-vaccination, a 

sample at 5-7 days post-vaccination, and a convalescent sample at days 50-60 post-

vaccination (Scherer et al., 2007). For volunteers vaccinated with YF-VAX, the samples 
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were collected only at pre-vaccination and at days 5-7 post-vaccination (Scherer et al., 

2007). Finally, the samples collected for the URI group were collected at the initial visit, 

presumed to be approximately 3-7 days post-infection and then again four weeks later 

which corresponded to approximately 35 days post-infection (Scherer et al., 2007). 

Association of gene expression with disease was assessed by hybridization of samples to 

cDNA microarrays; smallpox samples were hybridized to Agilent human 1 cDNA 

microarrays and the yellow fever and URI samples were hybridized to Agilent human 1A 

oligo microarrays (Scherer et al., 2007).  

 Gaucher et al. (2008) and Querec et al. (2009) both employed transcriptional 

profiling to assess gene expression signatures in order to predict vaccine outcome and 

innate immune responses in response to vaccination with yellow fever virus vaccine. 

Gaucher et al. isolated RNA from whole, unfractionated blood from vaccinated 

volunteers (n=15) both prior to vaccination (day 0) and at several time points following 

vaccination (days 3, 7, 10, 14, 28, and 60). RNA samples were hybridized to Illumina 

Human RefSeq-8 BeadChips v2 to assess the transcriptional levels of more than 24,000 

unique probe sets (Gaucher et al., 2008). The researchers made Comparisons of 

statistically significant changes in gene transcription between the post-vaccination 

samples (days 3, 7, 10, 14, 28, and 60) and the pre-vaccination sample (day 0) using 

BioConductor software and the linear models for microarray analysis (LIMMA) protocol 

(Gaucher et al., 2008). Gaucher et al. discovered that the majority of changes to gene 

transcription occurred on days 3 and 7 post-vaccination. Several important functional 

categories were suggested to be modulated by vaccination including the interferon 
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pathway, complement systems, and dendritic cell-associated genes; natural killer cell-

associated genes were also up-regulated (Gaucher et al., 2008). Among the genes that 

were discovered to be down-regulated were those that belong to ribosomal protein 

families. 

The association of gene expression with disease from the study by Scherer et al. 

(2007) included 28 genes that overlapped between all three disease states (smallpox, 

yellow fever, or URI) and included several interferon-response genes (IFI27, IFI30, 

IFIT1, IFIT2, IFIT3, IFITM1, IFITM2, ISG15, ISGF3G) and genes involved in viral 

innate immunity (MX1, MX2), as well as genes associated with proteasome and 

transporter functions (PSMA4, PSMB9, PSME1, PSME2, TAP1). The study conducted 

by Querec et al. (2009) also assessed changes in gene expression in PBMCs of vaccinated 

individuals and reported transcript expression alteration in response to vaccination of 

genes belonging to the interferon family including ISRE, IRF7, SREBF1; genes 

associated with antiviral responses (OAS1, OAS2, OAS3, OASL); genes involved in 

viral recognition including TLR7, DDX58, IFIH1, DHX58, and EIF2AK; and genes 

involved in the mediation of viral immunity (CXCL10 and MX1). Many of the genes 

reported by Querec et al. (2009) overlapped with those reported by Scherer et al. (2007) 

and indicated a generalized immune response to viral infection that depended on early 

signals through interferon pathways including signals which indicated that early 

activation of the inflammasome is a key common response to viral presentation, 

regardless of the viral species (smallpox, yellow fever, or suspected viral URI). The 

experimental approach executed by Gaucher et al. (2008) was slightly different in 
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comparison to those of Scherer et al. (2007) or Querec et al. (2009) in that instead of 

assessing transcription in a purified cell population (i.e., PBMCs), the researches 

monitored changes in expression from whole, unfractionated blood. Importantly, the 

timeframes of sample collection overlapped similarly between all three studies with a 

pre-vaccination sample, and then post-vaccination samples collected at days 3, 7, 10, 14, 

28, and 60 (Gaucher et al., 2008).  

Gaucher et al. (2008) found most of the changes in gene expression occurred at 

days 3-7 post-vaccination and that composition of the aggregate changes included genes 

of the toll-like receptor pathway (TLR7, MYD88, and IRF7), the interferon stimulated 

pathway (IFI27, IFI30, and OAS-1), genes involved in antigen processing and transport 

(TAP1 and TAP2) and the complement system (C1QA, C1QB, C3AR1, and 

SERPING1). Overall, assessing molecular epidemiology through the analysis of changes 

in gene transcription produced remarkably similar responses in three independent studies 

using the yellow fever vaccine as a surrogate for endemic infection.  

The approach has continued to be relevant as shown by the recent study by 

Baddal et al. (2015) who used RNA-seq technology to assess transcriptional changes 

induced by infection with nontypeable Haemolphilus influenza. In their study, Baddal et 

al. (2015) well-differentiated, normal primary human bronchial epithelial cells and 

infected the apical side of the cultured cells with nontypeable Haemophilus influenza 

strain Hi176. Cells were harvested at 1, 6, 24, and 72 hours post-infection (in three 

independent experiments) were used to isolate RNA which was subjected to RNA-seq 

analysis (Baddal, et al., 2015). Results reported by Baddal et al. (2015) included a rapid 
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alteration of host cell junctional complexes, including decreased transcription of PCDH8, 

CLDN3, CLDN8, ADD3γ, and ARPC2. Analysis of functional groups revealed 

significant differential expression at 1-6 hours post-infection of genes involved in 

hypoxia response, regulation of cell death, epithelial cell differentiation, anchoring, and 

adhering junctions (Baddal, et al., 2015). In contrast, the predominant functional groups 

observed at the later 24-72 hour time points indicated involvement of immune, defense, 

and stress responses; wound response; inflammatory response; and cytoskeletal and 

matrix gene alterations (Baddal et al., 2015). 

The conceptual framework can be extended to include information relating to the 

utility of exploring potential relationships between factors such as age or genetic makeup 

with vaccine outcome. HLA are encoded by the MHC genes (Li et al., 2013). HLA class 

II molecules are responsible for presentation of antigens to ultimately elicit antigen-

specific immune-cell responses (Li at al., 2013). Recent work with West Nile virus 

neuroinvasive disease identified specific gene variants associated with seroconversion 

and HLA alleles that were associated with immunoprotection (Long et al., 2016). Several 

studies have reported the association of specific genetic factors with vaccine outcome in 

response to vaccination with childhood vaccines [HBV, diptheria, tetanus, pertussis 

(DTaP)], smallpox, influenza, anthrax, and rubella (Li et al., 2013; Narwaney et al., 2013; 

Ovsyannikova, Jacobson, Ryan, Dhiman, Vierkant, & Poland, 2007; Ovsyannikova et al., 

2013; Ovsyannikova, Pankratz, Salk, Kennedy, & Poland, 2014; Yucesoy et al., 2013). 

How the Current Study May Benefit From the Epidemiology Nexus Concept 

I based the Epidemiology Nexus concept upon theories of rational vaccine design 
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which have been described in recent years; particularly the need to understand the 

molecular epidemiology in order to influence rational vaccine designs. Historically, 

vaccine design has relied upon two tried and true methodologies – that of either 

attenuation or inactivation of the biological agent (Plotkin, 2003). New methods of 

generating vaccines include efforts to produce vectored vaccines (i.e., vaccines that are 

delivered in a “shell” virus, such as an adenoviral vector) and DNA-based vaccines, but 

no single ideal strategy has emerged (Plotkin, 2003). Genomic-based efforts provide an 

attractive alternative for modern vaccine design as they can provide mechanistic 

information that was previously unattainable (Seib et al., 2009). Seib et al. (2009) 

discussed several ways in which genomics can contribute to efforts to overcome 

emerging infectious diseases, including the use of immunogenetics to understand the host 

immune response to infection, and cited the use of such information to understand the 

host responses to mumps virus vaccine. Indeed, Ovsyannikova et al. (2008) found that 

variation in response to mumps vaccine was associated with both single nucleotide 

polymorphisms (SNPs) in several cytokine genes as well as associated with specific 

human leukocyte antigen (HLA) phenotypes. Hoft et al., (2011) reviewed the use of 

immunogenetics information to predict differential development of specific T helper 

subsets as well as the use of inhibitors such as rapamycin and metformin which can 

influence the generation of long-term memory T cells following vaccination. Hoft et al. 

(2011) also discussed their unpublished preliminary human data in which the molecular 

responses to TB vaccine were studied. Molecular epidemiology can be used to 

understand host cell proteins and signaling processes which are involved in both the 
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pathogenesis and development of immunity against a specific biological agent (Seib et 

al., 2009). Additionally, such studies may also identify novel molecular correlates of 

protection (Pulendran & Ahmed, 2011). 

Global public health efforts to prevent disease from both Ft and VEEV have been 

hampered by the lack of approved human vaccines and the lack of knowledge of the 

human molecular responses to infectious disease agents (Foley & Nieto, 2010; Wolfe et 

al., 2013; Wolfe et al., 2014). Molecular epidemiology studies in other infectious diseases 

have provided innovative information in humans and animal models; however, there is 

little understanding or information of the molecular consequences of human infection 

with either Ft or VEEV. This dissertation project seeks to make a novel contribution to 

the field of public health by studying the relationship between gene expression and the 

temporal effects of vaccination, the potential relationship between age and vaccine 

outcome, and the potential association between genetic makeup of individuals with 

vaccine outcome. 

Literature Review Related to Key Variables and Concepts 

Previous Transcriptomic Studies of Human Responses to Ft or VEEV: Relation to 

Key Study Variables 

There have been few human studies to date which have addressed the state of 

transcription in humans following infection with either Ft or VEEV. Andersson et al. 

(2006) analyzed the transcriptional responses of seven individuals who presented at a 

university hospital with naturally occurring Ft infection in central Sweden. The patient 

age ranged from 50-76 years of age, with an average age of 60.7 years old and were 
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approximately equal for male and female (four males, three females) (Andersson et al., 

2006). All patients were administered antibiotic treatment either at the first hospital visit 

or upon follow-up (approximately 6 days after the initial visit) (Andersson et al., 2006). 

Transcriptional changes were examined in RNA isolated from peripheral blood 

mononuclear cells of the seven patients, collected at various points beginning with the 

initial visit to the hospital (presumed to be roughly 2-3 days following the initial infection 

event), at days 6-7, 8-9, 10-11, and 13 following infection, and finally at about 3-4 

months following presumed initial infection to provide a convalescent sample (Andersson 

et al., 2006). Using Affymetrix HG-U133A microarrays, levels of gene transcription from 

patient samples were compared to the levels of transcription in RNA isolated from 

PBMCs of eight healthy adult donors who were demonstrated to be naïve for Ft infection; 

the RNA from the control donors was pooled, analyzed, and used for comparison as a 

single reference control (Andersson et al., 2006). The researchers in that study identified 

seven transcripts as potential biomarkers of early infection with Ft to include the genes 

STAT1, SECTM1, TNFAIP6, TNFSF10, CD3E, MSRB2, and IL2RB (Andersson et al., 

2006). There were several limitations of the Andersson study. The number of infected 

study subjects (n= 7) presented a limitation to statistical analysis and there was variation 

in the number of samples collected from each volunteer at each time point (Andersson et 

al., 2006). Ft samples were compared with RNA isolated from eight uninfected control 

subjects, and the control RNA samples were subsequently pooled together; there was no 

mention of the age of the control donors and the samples were not time-matched to the 

infected samples (Andersson et al., 2006). Finally, each of the Ft study subjects was 
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treated with antibiotics either upon the first presentation at the university hospital or at 

the follow-up visit one week later; the transcriptional results obtained may not be 

authentically representative of Ft infection due to the antibiotic treatment which was  

administered (Andersson et al., 2006). 

The effects of Ft on gene transcription were examined in vitro at very early times 

post -infection by Paranavitana, Pittman, Velauthapillai, Zelazowska, and DaSilva 

(2008b). Paranavitana et al. (2008b) isolated peripheral blood mononuclear cells 

(PBMCs) from eight healthy human volunteers with no previous Ft infection. PBMC 

cells were subsequently exposed to the live-attenuated vaccine strain of Ft (LVS) in vitro; 

cells were harvested and RNA isolated at 1, 4, 8, 16, and 24 hours post infection 

(Paranavitana et al., 2008b). The researchers confirmed the in vitro study results for four 

of the early disease biomarkers of the Andersson et al. (2006) study, including TNFAIP6, 

STAT1, TNFSF10, and SECTM1 and additionally observed the genes to be expressed in 

a temporal manner (Paranavitana et al., 2008b). Paranavitana et al. (2008b) also describe 

changes in novel pathways, such as changes in genes associated with tryptophan 

metabolism, lipid metabolism, and genes involved in activation of the inflammasome. 

Infection was also noted to induce a complex pattern of pro-inflammatory cytokines as 

well as anti-inflammatory cytokine responses, including IL-1Ra, IL2, GCSF, VEGF, IL-

17 and IL-22 (Paranavitana, Pittman, Velauthapillai, & DaSilva, 2008a; Paranavitana, 

Zelazowska, DaSilva, Pittman, & Nikolich, 2010). Some of the limitations associated 

with the in vitro study include a restriction to only very early transcriptional events (the 

time course of the exposures ranged from 1 hour to 24 hours post infection) and make 
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comparison to the Andersson et al. (2006) study difficult since the earliest estimated time 

point for that study was 2 to 3 days following presumed initiation of infection. 

In another study, the molecular epidemiology events following vaccination with 

the LVS Ft vaccine were examined from the PBMCs of healthy naïve donors who were 

subsequently vaccinated (Fuller et al., 2006; Fuller et al., 2007). The PBMCs of six adults 

(male and female) ranging in age from 22-54 years of age were collected at five time 

points:  6 days prior to vaccination, 18 hours post-vaccination, and then at days 2, 8, and 

14 post-vaccination to correspond with early (18 hours and day 2 post-vaccination) and 

late (days 8 and 14 post-vaccination) stages of infection (Fuller et al., 2006; Fuller et al., 

2007). Only samples from five of the six vaccinees were used in the analysis (Fuller et 

al., 2007). RNA isolated from the PBMCs was hybridized to Affymetrix HG U133 Plus 

2.0 microarray chips (Fuller et al., 2007). The data sampled from individual volunteers 

were compared and contrasted temporally between pre-vaccination and post-vaccination; 

no unvaccinated control volunteers were used in this study (Fuller et al., 2006; Fuller et 

al., 2007). The predominant pattern responses to infection were revealed through cellular 

processes which included “immune-related, cell cycle-related, apoptosis-related, and 

biosynthesis/metabolism” related processes (Fuller et al., 2007, p. 3177). Fuller et al. 

(2007) examined temporal patterns of transcript expression and used similar patterns to 

categorize transcripts; two patterns showed interesting activity. The first pattern, where 

the temporal pattern of expression showed reduced expression early on contained many 

genes related to immunity including CD96, CCL5, PTPRCAP, TNFRS25, CD3D, 

ZAP70, KLF2, GSPT1, RHOH, PPP2R5C (Fuller et al., 2007). Down-regulation of the 
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expression of these transcripts was postulated by the researchers to represent an early 

negative regulation of pro-inflammatory immune responses by LVS Ft (Fuller et al., 

2007). The second pattern in which the temporal pattern of expression indicated an early 

increased expression contained genes associated with activation of the innate immune 

response, including LAMP2, DCL-1, RNASE2, IL18, LY96, LILRA6, CD39, IL13RA1, 

CSAP2, and IRAK3 (Fuller et al, 2007). Fuller et al. (2007) distinguished their work 

from the similar studies conducted both by Andersson et al. (2006) and Paranavitana et 

al., (2008b) by examining and reporting specific responses that were linked to the 

activation of dendritic cells, which have been suggested as key modulators of long-term 

responses to Ft (Katz, Shang, Martin, Vogel, & Michalek, 2006). To that end, Fuller et al. 

(2007) reported the increased transcription and involvement of several MHC class I 

(B2M and TAP1) and MHC class II genes, and particularly toll-like receptors (TLR4, 

TLR5, and TLR8) and related genes (IRAK3, CARD8, and MYD88). These results were 

corroborated by a second human study conducted by Paranavitana et al. 2014, in which 

the recall responses to Ft were examined in human PBMCs isolated from individuals who 

had previously been vaccinated with Ft LVS and which then were subsequently re-

stimulated (for 24 hours) in vitro. Transcripts related to dendritic cell maturation were 

among the most significant responses to the re-challenge (Paranavitana et al., 2014). The 

pathways that were predominantly affected by re-stimulation with Ft included dendritic 

cell maturation, TREM-1 signaling, cytotoxic T-cell mediated apoptosis, and IL-4 

signaling (Paranavitana et al., 2014). Additionally, Paranavitana et al. (2010) 

demonstrated that the recall immune responses to Ft were driven by Th17 responses (IL-
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17 and IL-22 cytokine secretion and signaling) in addition to the previously described 

responses observed involving Th1 cytokines IFN-γ and IL-2.  

There have been two additional relevant studies which examined changes in gene 

transcript expression in response to biological threat agents other than Ft. One study was 

conducted as a proof of concept experiment that transcription expression patterns could 

be used as molecular signatures to differentiate between exposure to or infection with 

different biological threat agents that often presented clinically with similar flu-like 

symptoms (Das et al., 2008). Das et al., (2008) collected PBMCs from at least three 

independent donors, but did not report sex or ages for the donors who contributed to the 

VEEV portion of the study; the study population was merely described as male and 

female health volunteers between the ages of 19-61 years of age. The PBMCs were 

isolated and further separated into lymphocyte and monocyte subgroups by Ficoll 

gradient centrifugation, then re-mixed at a ratio of 1:4 monocytes to lymphocytes, which 

represented substantially enriched populations for both cellular subsets relative to normal 

levels (Das et al., 2008). PBMCs were then infected in vitro with biological threat agents 

including Bacillus anthracis, Venezuelan equine encephalitis virus, dengue fever virus, 

Brucella melitensis, Yersinia pestis, cholera toxin, staphylococcal enterotoxin B, or 

botulinum neurotoxin A at target doses that were appropriate for each agent to ensure 

optimal biological activity upon infection; infection was allowed to proceed for 30 

minutes then cells were washed and further incubated for various periods of time, 

relevant to each pathogen (Das et al., 2008). Researchers isolated RNA samples at time 

points specific for each biological threat agent and subjected the samples to microarray 
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analysis on custom arrays with genes corresponding to Human Atlas 1.2 (Das et al., 

2008). Changes in gene expression in the treated samples were compared by the 

researchers against the expression profiles of uninfected control samples, and gene 

transcripts that demonstrated variability in expression in the control samples were 

subtracted from the analysis leaving only stable baseline transcripts for comparison 

within the control groups (Das et al., 2008). The results of the expression analyses 

indicated a common transient induction of early response genes related to monocyte 

recruitment, whereas later time points demonstrated induction of genes consistent with 

DNA damage, hypoxia-inducible proteins, and proteases (Das et al., 2008). The results 

reported skewed heavily towards changes in expression for bacterial pathogens; no 

specific results for VEEV infection were noted (Das et al., 2008). 

Finally, an in vitro study of PBMCs isolated from unvaccinated, previously 

VEEV-vaccinated, and VEEV-vaccination nonresponders was conducted to examine the 

similar and diverging molecular responses (Erwin-Cohen et al., 2012). The study 

population consisted all male volunteers ranging from 18-45 years of age: The control 

subjects were demonstrated to be naïve to any previous alphavirus exposure (n=10); 

responder subjects were previously vaccinated with the live-attenuated VEEV vaccine 

(TC-83) and had a demonstrated positive titer in response to vaccination (n=10); 

nonresponder subjects were previously vaccinated with the live-attenuated VEEV 

vaccine (TC-83) but did not develop a positive titer after vaccination (n=3) (Erwin-Cohen 

et al., 2012). The researchers harvested PBMCs from each volunteer  and infected the 

cells in vitro with VEEV TC-83 and then harvested samples at 1, 4, 12, or 24 hours post-
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infection (Erwin-Cohen et al., 2012). The RNA isolated from the PBMC samples was 

hybridized to Affymetrix HG U133 Plus 2.0 Genechip arrays which contain 54,000 probe 

sets representing over 38,500 genes (Affymetrix, 2004; Erwin-Cohen et al., 2012). This 

study was unique among the other, similar studies which examined molecular 

epidemiological changes induced by vaccination (as a surrogate for virulent infection) as 

it included a group of subjects that had failed to respond to previous vaccination, yet the 

changes in gene expression upon re-challenge with the vaccine strain of virus were not 

the same as the control group (i.e., representing an innate response) which suggested that 

while the nonresponders did not produce an adequate neutralizing antibody response, 

they did mount some type of response – albeit an uncharacterized response (Erwin-Cohen 

et al., 2012). The canonical pathways that were most notably shown to be involved in 

recall responses included the pattern recognition receptors in recognition of bacteria and 

viruses, the IL-12 signaling pathway, the IL-15 production pathway, and the TREM-1 

signaling pathway (Erwin-Cohen et al., 2012). Altered transcription among the naïve and 

responder populations included up regulation of a number of interferon response genes 

(OAS1, OAS2, OAS3, IFNB1, IRF7), genes associated with activation of the 

inflammasome (DDX58, MYD88, IFIH1), as well as cytokine (IL-6) and toll-like 

receptor transcripts (TLR3) (Erwin-Cohen et al., 2012). The changes in transcription 

elicited in the nonresponder samples were predominantly observed to be decreased levels 

of transcription and included down regulation of TLR4, TLR8, C5AR1, NLCR4, 

CLEC7A, C1QA, C1QB, and C1Q3 (Erwin-Cohen et al., 2012). 
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Strengths and Weaknesses of Previous Experimental Approaches and Controversial 

Issues 

There are several variables from previous studies which presented either strengths 

or weaknesses in relation to the data, including the sample type (whole blood vs PBMCs), 

time of sampling, the number of human volunteers, the gender of the human volunteers, 

the controls used, and the type of array used to assess changes in gene transcription. 

Sample type. Previous attempts to catalog the human molecular epidemiology of 

infection with Ft have been conducted in explanted PBMC cells or lymphoid-derived 

subsets purified from PBMCs (Andersson et al., 2006; Fuller et al., 2006; Fuller et al., 

2007; Paranavitana et al., 2008a, Paranavitana et al., 2008b; Paranavitana et al., 2014). 

The use of explanted PBMCs was employed by Das et al. (2008) and Erwin-Cohen et al. 

(2012) to study the molecular epidemiology of VEEV. Gene expression analyses 

performed on whole-blood samples offer a distinct advantage over PBMCs for the ability 

to suggest which cell types are important in different phases of the infectious process and 

development of immunity. RNA samples “derived from whole blood capture RNA 

profiles of all cell types in whole blood, including erythrocytes, granulocytes 

(neutrophils, eosinophils, and basophils), lymphocytes, monocytes, and platelets” 

(Joehanes et al., 2012, p. 59). In contrast, PBMC samples isolated from Ficoll-gradient 

centrifugation contain primarily lymphocytes and monocytes and are devoid of 

granulocytes, platelets, and reticulocytes (Joehanes et al., 2012). The use of isolated 

PBMCs can provide insight into the changes in gene transcription within these cellular 

subsets; however, using whole unfractionated blood to examine transcriptional changes 
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which occurred in vivo included critical regulation and influence of important cell to cell 

signaling pathways that may not have been captured in the PBMC populations. 

Time points of sample collection. Time can be viewed as an important limitation 

of the previous studies that may have impacted the utility and interpretation of the data 

collected. In the PBMC studies of Ft-induced changes in gene expression conducted by 

Fuller et al. (2006, 2007) RNA from PBMCs was isolated following vaccination 

according to the following schedule:  6 days prior to vaccination, 18 hours following 

vaccination, and then at 2, 8, and 14 days after vaccination. Transcription profiles were 

compared back to a single pre-vaccination time point; no control (unvaccinated) subjects 

were used in the study (Fuller et al., 2006, 2007). The time points were chosen to 

represent early (18 hours, day 2), intermediate (day 8), and late (day 14) stages of 

infection (Fuller et al., 2006, 2007). Paranavitana et al. (2008b) isolated PBMCs and 

infected cells from each individual (n=8) with Ft then harvested RNA at 1, 4, 8, 16, and 

24 hours post-infection; a second set of PBMC cells from each individual was mock-

infected with saline to provide time-matched control samples. To describe the 

transcriptional responses of a memory or recall response, Paranavitana et al. (2014) 

isolated PBMCs from ten volunteers who had been previously vaccinated with LVS Ft 

(approximately 6-9 months prior) and developed a positive titer in response to 

vaccination. PBMCs were then subjected to in vitro infection with LVS Ft and harvested 

at 24 hours post-infection for transcriptional profiling or at both 24 and 72 hours post-

infection for transcriptional analysis of Th17 cytokine expression (Paranavitana et al., 

2010; Paranavitana et al., 2014). The early time points from the in vitro studies contrasted 
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with the time points estimated from the single in vivo transcriptional study of Ft whereby 

the time of sample collection could only be estimated relative to the date of 

presentation/assessment for medical treatment (Andersson et al., 2006). In the Andersson 

et al. (2006) study, patients with clinical signs of tularemia infection had six blood 

samples drawn over the course of diagnosis and treatment for ulceroglandular tularemia 

that were equivalent to days 2-3, 6-7, 8-9, 10-11, 13, and 90 days following first 

presentation at hospital. 

The sampling time frames for transcriptional analyses of VEEV were similar to 

several of the Ft studies. Das et al. (2008) used PBMCs from at least three individual and 

infected the cells with virulent VEEV then collected the cells for RNA isolation at 1, 4, 

and 8 hours post infection. Erwin-Cohen et al. (2012) used PBMCs isolated from three 

independent groups of subjects to study the transcriptional responses to VEEV 

vaccination; a naïve group, responder group which had previously been vaccinated with 

VEEV and developed an appropriate neutralizing antibody response, and a non-responder 

group which had previously been vaccinated with VEEV but failed to develop an 

adequate neutralizing antibody response. PBMCs isolated from each individual were 

infected in vitro with VEEV and samples were subsequently harvested at 1, 4, 12, and 24 

hours post infection (Erwin-Cohen et al., 2012). 

Number of subjects in study. The number of study participants has been limited 

for several of the previous studies. Relevant transcriptional profiling studies have 

incorporated as few as three subjects (Das et al., 2008) to as many as ten subjects in each 

sampling category (Erwin-Cohen et al., 2012; Paranavitana et al., 2014) to assess changes 
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in transcription to either Ft or VEEV. Andersson et al. (2006) recruited a total of seven 

patients which presented with naturally-occurring infection, comparing transcriptional 

profiles of infected samples against control samples collected at a single, unrelated time 

point from eight healthy volunteers. The number of participants per group in all previous 

relevant studies was fewer than or equal to ten; however, the observance of differentially 

expressed transcripts indicated that the sample sizes were sufficient to generate 

statistically significant data. The issue of sample size and how that relates to powered 

studies will be discussed further in the Materials and Methods chapter. 

Age and sex of study and control subjects. The ages of study participants for 

the studies relevant to the dissertation research ranged within each study. All volunteers 

were adult (>18 years of age) however some of the study participants were middle-aged 

(45-64 years of age) or elderly (> 65 years of age). The range of age of volunteering 

subjects was an important factor, particularly for VEEV, due to the manifestation of 

clinical disease and the greater threat to very young (children) and older populations for 

severe disease (Weaver & Reisen, 2010). Among the Ft studies, the volunteers who 

donated PBMCs for the Fuller et al. (2006, 2007) studies ranged in age from 22-54 years 

of age and consisted of a total of five subjects, three of whom were male and two were 

female. The subjects who donated PBMC cells for the examination of naïve responses to 

Ft conducted by Paranavitana et al. (2008b) ranged from 21-44 and were all male. The 

studies of recall responses conducted by Paranavitana et al. (2010, 2014) consisted of 

PBMCs isolated from all male volunteers who ranged in age between 18-50 years. The 

study participants for the study conducted by Andersson et al. (2006) were roughly equal 
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in terms of gender, with four male and three females who ranged in age between 50-76 

years of age. In the previous human VEEV transcriptional studies, the ages of subjects 

who donated PBMCs ranged from 19-61 for the Das et al. (2008) study and included both 

male and female subjects; the exact numbers of male versus female participants was not 

disclosed. Finally, the study conducted by Erwin-Cohen et al. (2012) consisted of all 

male volunteers whose ages ranged from 18-45 years of age. 

 One important feature that distinguishes several of the studies is the use of control 

volunteers which are matched to the vaccinated volunteers by age and sex. Matching 

volunteers by gender and age was reported as a strengthening refinement to the study 

design by Paranavitana et al. (2010, 2014) and Erwin-Cohen et al. (2012).  

 As a single variable, the sex of research volunteers has been discussed as an 

important consideration in the analysis of immunological and microarray data due to the 

confounding effects that hormonal signaling may have on gene transcription and 

immunity (Cook, 2008; Giefing-Kröll, Berger, Lepperdinbger, & Grubeck-Loebenstein, 

2015; Klein, Jedlicka, & Pekosz, 2010; Klein, Marriott, & Fish, 2015). Few studies have 

examined the disparity in responses in depth, however, Cook (2008), Klein et al. (2010), 

and Giefing-Kröll et al. (2015) conducted meta-analyses of the reported results of vaccine 

studies that demonstrated variable results in terms of humoral response or transcriptional 

response. The most relevant aspects of those studies to the dissertation research were the 

results in males versus females with regard to response to viral vaccination; 

transcriptomic data from a Yellow Fever Virus vaccine (17D) were obtained and 

analyzed independently by Klein et al. (2010) but the novel analysis included the contrast 



57 

 

of male-female responses, which was lacking in the first analysis reported by Querec et 

al. (2009). Klein’s re-analysis of the transcriptome data described a total of 660 genes 

that were differentially expressed in response to YF vaccination in women, but only 67 

genes differentially expressed in men only (of which, 64 were common to both men and 

women) (Klein et al., 2010). Additionally, adverse event reports were more frequent and 

severe in women than in men (Klein et al., 2010). Cook (2008) also reported on the 

differences observed between men and women regarding vaccine response in a meta-

analysis study that examined sex-differences in antibody production following 

vaccination. Cook (2008) found that in most of the viral vaccine studies, the antibody 

response from males was greater than that reported for females, including vaccines for 

measles, yellow fever, Venezuelan equine encephalitis, and in two of three rabies studies. 

However, females produced a more robust antibody response against vaccination for 

influenza, rubella, and in one of three rabies studies (Cook, 2008). Differences in 

mortality were noted to be greater in men than women in response to infection with 

hepatitis B, hepatitis C, and rabies (Giefing-Kröll et al., 2015) Differences in immune and 

transcriptional responses have been postulated to be attributable to a greater stimulatory 

effect of sex-related hormones in women, particularly for genes that stimulate and are 

regulated by interferon pathways which may lead to rapid clearance of viruses (Cook, 

2008; Klein et al., 2010). To that end, the studies which employed only male volunteers 

may have had an advantage by reducing any bias due to sex (and fluctuating hormonal 

patterns) particularly within such small sampling sizes, but overall the use of male-only 

study populations reduces the generalizability of the study. Interestingly, a meta-analysis 
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study conducted to address potential sex-specific variability in gene expression was 

conducted to address concerns of sex bias in preclinical studies, where the use of male 

study subjects has been disproportionate to the use or inclusion of female study subjects 

(Itoh & Arnold, 2015). The researchers compiled 293 microarray datasets, encompassing 

both human and mouse data from various tissues including brain, spleen, adrenal glands, 

kidney, and muscle; however, notably did not include blood or blood cells as a tissue 

source (Itoh & Arnold, 2015). The results of the analysis demonstrated only very small, 

minor variations in gene expression in the target tissues suggesting that any observed 

differences between sexes were likely to be regulated downstream of transcription and 

were likely subject to temporal effects of gonadal hormones (Itoh & Arnold, 2015). The 

issue of sex in relation to aging was discussed by Gubbels-Bupp (2015) and summarized 

to note changes in immune cell phenotypes in humans over the age of sixty to sixty-five 

years particularly for natural killer (NK) cell populations, which were dramatically 

increased in females, but with markedly decreased B and T cells numbers and 

correspondingly decreased production of IL-2, IFN-gamma, IL-17 cytokines in men. 

The effects age also represented a contentious variable, as discussed by a number 

of studies (Arlt & Hewison, 2004; Giefing-Kroöll et al., 2015; Gubbels-Bupp, 2015). In 

addition to the alterations noted in immune cell phenotype and function related to 

gonadal hormone signaling, Gubbels-Bupp (2015) noted many changes in B and T cells 

that were decreased in older populations, as well as decreases in interferon stimulated 

responses. The issue of immune responses in relation to age may be a serious weakness to 

the transcriptional study conducted by Andersson et al, 2006; samples from both males 
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and females combined with advanced age (ages ranged from 50-76 years of age in the 

study) of the subjects constitutes a weakness to the model of Ft molecular epidemiology 

due to the effects of immunosenescence, as has been suggested by Arlt and Hewison 

(2004). 

Type of array used to assess transcription. The type of microarray chip used by 

researchers in previous studies has predominantly been the Affymetrix human genome 

U133 2.0 Plus array chip, with two exceptions: The analysis conducted by Andersson et 

al. (2006) utilized the Affymetrix HG U133 GeneChip, which was an earlier version of 

the Affymetrix HG U133 2.0 array chip; and the analysis conducted by Das et al. (2008) 

employed custom cDNA arrays. 

Previous Studies of Association of Age or Genetic Makeup with Vaccine Outcome: 

Relation to Key Study Variables 

There are several studies which have described the association of age with 

vaccine outcome (Pawelec & Derhovanessian, 2010). The response of elderly people to 

influenza vaccination is greatly reduced (17-53% efficacy) in comparison to young adults 

who demonstrate between 70-90% efficacy in response to influenza vaccination (Pawelec 

& Derhovanessian, 2010). In a study of naïve aging individuals immunized with hepatitis 

B vaccine (HBV), age was significantly associated with vaccine response; vaccinees aged 

40 years or younger responded better to vaccination than did individuals who were 65 

years of age or older (Fourati et al., 2015). The mechanisms of reduced vaccine response 

may be related to declining T cell populations in older individuals as elderly men were 

found to have reduced T cells populations, in comparison to younger individuals (De 
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Benedetto, Derhovanessian, Steinhage-Thiessen, Goldeck, Müller, & Pawelec, 2015). 

There are no studies to date that have addressed a potential relationship between vaccine 

outcomes and age for vaccination with Ft. Pittman, Liu, Cannon, Mangiafico, and Gibbs 

(2009) discussed a small study in which age was investigated as a demographic factor for 

in relation to vaccination with VEEV; however the authors reported only that there was 

no evidence of age being associated with primary vaccine failure in individuals who had 

previously been vaccinated with two other vaccines which are related to VEEV, eastern 

and western equine encephalitis viruses.  

Several studies of infectious diseases have reported the association of specific 

genetic factors with vaccine outcome in response to vaccination with childhood vaccines 

[HBV, diptheria, tetanus, pertussis (DTaP)], smallpox, influenza, anthrax, and rubella (Li 

et al., 2013; Narwaney et al., 2013; Ovsyannikova et al., 2007; Ovsyannikova et al., 

2013; Ovsyannikova et al., 2014; Yucesoy et al., 2013). HLA are encoded by the MHC 

genes (Li et al., 2013). HLA class II molecules are responsible for presentation of 

antigens to ultimately elicit antigen-specific B-cell responses (Li at al., 2013). There have 

been no studies to date which address the potential contribution of HLA phenotype with 

vaccine outcome in response to vaccination with either Ft or VEEV. 

Rationale for Selection of Key Variable and Unanswered Questions 

For each of the relevant previous transcriptional studies of both Ft- and VEEV-

induced changes in gene expression, the dependent variable was common to all of the 

studies: changes to gene transcription (Andersson et al., 2006; Das et al., 2008; Erwin-

Cohen et al., 2012; Fuller et al., 2007; Paranavitana et al., 2008b; 2014). The independent 
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variables previously employed have predominantly been time and treatment; however, 

the study conducted by Erwin-Cohen et al. (2012) also included the additive effect of 

time*treatment as an independent variable. 

Random variables included age and gender of the study subjects. The relevant 

transcriptional studies varied in the use of study population; while three utilized study 

subjects of both sexes (Andersson et al., 2006; Fuller et al., 2007;, Das et al., 2008), three 

other studies used male-only subjects (Erwin-Cohen et al., 2012; Paranavitana et al., 

2008b; Paranavitana et al., 2014). The effect of sex in relation to changes in gene 

transcription in response to vaccination was discussed briefly in a study which examined 

the gene transcription induced by yellow fever virus vaccination, but sex as an 

independent variable remains to be studied in depth (Klein et al., 2010). It has been 

suggested that elimination of females from study populations may be a method to limit 

sex as a covariate and changing levels of hormones in females as a time-dependent 

covariate (Erwin-Cohen et al., 2012; Paranavitana et al., 2008b; Paranavitana et al., 

2014). Age was limited in several of the studies to include only adult study subjects (but 

not elderly subjects) (Erwin-Cohen et al., 2012; Paranavitana et al., 2008b; Paranavitana 

et al., 2014). The effect of age on transcription in response to vaccination has not been 

addressed directly and thus remains somewhat controversial. The potential relationship 

between age and the outcome of vaccination to either Ft or VEEV has not been addressed 

directly; with the caveat that Pittman et al. (2009) briefly discussed age of VEEV 

vaccinated individuals as a potential factor in primary vaccine failure following 
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sequential administration of other, related alphaviral vaccines [against Eastern equine 

encephalitis virus (EEEV) and western equine encephalitis virus (WEEV)]. 

Summary of Previous Studies and Relation to Research Questions 

Previous studies of the transcriptional responses to vaccination with live-

attenuated Ft or VEEV or to responses from naturally occurring Ft infection were 

groundbreaking glimpses into the molecular epidemiology of human infection with either 

agent. Both studies conducted by Andersson et al. (2006) and Fuller et al. (2007) 

incorporated assessments of the molecular epidemiology of Ft infection, via naturally 

occurring infection and live-attenuated vaccination, respectively. Several experimental 

conditions were similar, including the small study size (between 5-7 persons), the 

inclusion of both male and female study subjects, and overlapping time points (Day 2-3, 

Day 8-9, Day 13-14) however the results reported only a single transcript that overlapped 

at any time point, TAP-1 (Andersson et al., 2006, Fuller et al., 2007). Limitations that 

may have affected the results were the comparison of experimental results against a 

single pre-vaccination time point (Fuller et al., 2007), comparison against healthy 

controls from only a single time point (Andersson et al., 2006), the diverse ages of the 

study subjects, and the small sample sizes that each study employed. In contrast, in an in 

vitro PBMC Ft study, Paranavitana et al. (2008b) recruited eight male subjects with an 

age range of 21-44 years but also compared the experimental transcriptional responses 

against uninfected PBMCs at the same time points as the infected cells (1, 4, 8, 16, and 

24 hours post infection). The reported results corroborated results from Andersson et al. 

(2006) with the observation of increased transcription of CASP1, PSME2, TAP-1, GBP1, 
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and GCH1 predominantly at time points between 16-24 hours post infection 

(Paranavitana et al., 2008b). Comparison of transcriptional results reported by Fuller et 

al. (2007) revealed an overlap in increased transcript expression of LY96, TAP-1, CD80, 

ICAM-1, and TLR2 at 16-24 hours post infection (Paranavitana et al., 2008b).  

The transcriptional changes observed in response to in vitro infection with the 

live-attenuated strain of VEEV were deduced from a slightly larger sample set than was 

used for most of the Ft studies; Erwin-Cohen et al. (2012) examined PBMCs from 

individuals in three groups, previously vaccinated responders, vaccinated nonresponders, 

and naïve individuals. The sample size for each group was ten subjects with the exception 

of the nonresponder group, which only consisted of three volunteers (Erwin-Cohen et al., 

2012). The naïve and response groups were infected with the live-attenuated strain of 

VEEV in vitro and followed for 1, 4, 12, or 24 hours post infection; analysis was 

conducted by comparison to time-matched naïve PBMCs (Erwin-Cohen et al., 2012). The 

temporal changes in gene expression were described and included differentially 

expressed transcription in response to infection as well as pathway analysis and 

biomarker assessment for each response group (Erwin-Cohen et al., 2012). A previous 

study in human PBMCs by Das et al. (2008) included in vitro infection of PBMCs with a 

variety of biological agents, including VEEV but did not report transcriptional profiling 

results for VEEV. 

These results highlighted the need to understand the temporal changes in gene 

expression in vivo, in a manner that reduced potential transcriptional variability due to 

sex and hormonal signaling but that also could compare experimental results with control 
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results, at equally matched time points with control-experimental subjects matched for 

age and within a purely adult age range. The use of whole, unfractionated blood, as 

opposed to PBMCs purified from whole blood, was an important refinement to the 

dissertation study due to the complex cell-to-cell signaling and regulation constraints that 

would only exist in vivo. These issues prompted and informed the research questions for 

this dissertation work, including the questions of what are the changes to transcription, 

what molecular functions do the transcripts play, and what biological processes are 

involved in the development of immunity following vaccination with live-attenuated Ft 

or live-attenuated VEEV. The time points to be considered in the dissertation research 

were also influenced by previous results, thus the temporal range of the dissertation study 

will span from pre vaccination (0 hours) to 1, 4, 8, 24 hours post vaccination and then 

from days 2, 7, 14, 21, and 28 post vaccination. 

There are no studies, to date, that have addressed a potential relationship between 

vaccine outcomes and age for vaccination with Ft. There have been no studies to date 

which address the potential contribution of HLA phenotype with vaccine outcome in 

response to vaccination with either Ft or VEEV. Molecular epidemiology studies in other 

infectious diseases have provided innovative information in humans and animal models; 

however, there is little understanding or information of the molecular consequences of 

human infection with either Ft or VEEV. This dissertation project seeks to make a novel 

contribution to the field of public health by studying the relationship between gene 

expression and the temporal effects of vaccination, the potential relationship between age 
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and vaccine outcome, and the potential association between genetic make-up of 

individuals with vaccine outcome. 

Summary and Conclusions 

There have been few published studies which have described the molecular 

epidemiology of human infection with either Ft or VEEV; many studies directly relevant 

to the dissertation research were conducted more than five ago. The lack of recently 

published reports is an important part of the knowledge gap that surrounds the research 

questions. Knowledge of the molecular epidemiology of each infectious disease may 

provide critical data which can be used to design modern, rational vaccines (since no 

licensed vaccine currently exists for either infectious agent) but may also provide 

important epidemiological information about common host responses to infection or 

novel host targets for diagnostic tests. A broad review of the literature demonstrated that 

there remains a profound lack of knowledge and published literature in recent years 

regarding the effects of either Ft or VEEV infection in humans. 

My dissertation research study addresses gaps in the literature by examining 

potential association between changes in the level of gene transcription over time 

following vaccination with either Ft or VEEV. My study also investigates the potential 

correlation of age with vaccine out come and the relationship between HLA phenotype 

and vaccine outcome. 

The methodology used to assess changes in the transcriptome include a temporal 

assessment of RNA collected at specific time points following vaccination with a live-

attenuated virus or mock-vaccination (either Ft or VEEV) in human volunteers who had 
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been matched for age and gender. Samples of whole, unfractionated blood were collected 

from which RNA was isolated. Samples of whole, unfractionated blood were collected 

from which RNA was isolated. I leverage the technique of examining changes in the 

transcription of genes following an event (i.e., vaccination) to provide a snapshot of gene 

activity as it changes in response to vaccination. Some genes may be triggered to increase 

transcriptional levels, and in theory protein levels as well, while other genes may be 

induced to decrease transcription. Some of the changes are in response to the infectious 

invasion, whereas others are triggered to elicit development of immunity. Comparison of 

expression levels were normalized and assessed for analysis of variance using Partek 

Genomics Suite software. Analysis of biological process and molecular functions were 

conducted with Partek Genomics Suite Pathways Module and Ingenuity Pathway 

Analysis Software. 
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Chapter 3: Research Method 

Study Purpose 

The purpose of this dissertation project was to quantitatively assess the molecular 

epidemiology of Ft and VEEV in a human vaccine model. I worked to quantitatively 

assess the potential relationship between gene expression over time in response to 

treatment (vaccination) with either Ft or VEEV, to assess the potential relationship 

between the age of the vaccinated individuals and vaccine outcome (successful response 

to primary vaccination or vaccine failure), and to identify the potential correlation 

between HLA phenotype and vaccine response. This research was intended to add to the 

limited published information about the changes in gene expression that each vaccine 

elicits, and to address the gaps in knowledge regarding the association of age and genetic 

makeup on vaccine outcome. 

In the following sections, I describe the research design, including the use of pre-

existing data sets and refinements to the independent variables; the methodology of how 

the samples were generated, including details of the study populations recruited, rules for 

inclusion and exclusion, and the data analysis plan; and threats to validity, including 

ethical concerns. 

Research Design and Rationale 

This dissertation study was a novel, quantitative, secondary analysis. The study 

variables included the changes in the level of transcript expression as a dependent 

variable. The independent variables, which related to Research Questions 1 and 2 were: 

Time of blood sampling post vaccination; treatment – either vaccination of study subjects 
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with live-attenuated Ft or VEEV; or a third independent variable which combined the 

effect of time*treatment as a single variable. The study design was developed to produce 

data analyses to directly answer Research Questions 1: Is there a significant association 

between changes in the level of gene transcription and the time course of vaccination 

with Ft or VEEV? and Research Question 2: Is there a significant association between 

changes in the level of gene transcription over the time course of vaccination with Ft in 

comparison to VEEV?  

The dependent variable of vaccine outcome (measured by neutralizing antibody 

titer), and the independent variable of HLA alleles were the study variables which I used 

to address Research Question 4: Is there a significant association between HLA allele and 

vaccination outcome? 

Use of Secondary Datasets to Reduce Time and Resource Constraints 

The data sets I used in this novel secondary analysis were previously generated 

(USAMRIID FY05-01, 2012; USAMRIID FY06-17, 2012). By using these existing data, 

I eliminated time and resource constraints that would otherwise have be prohibitive to the 

execution of the study design due to the time and expense of writing/approval of a human 

use study protocol; recruitment, consent, and treatment of human volunteers; access and 

approval to use investigational new drug vaccines; and costs associated with microarray 

processing and hybridization. 

Refined Study Parameters Retain Consistency with Previous Studies 

The study design was consistent with other published studies (Andersson et al., 

2006, Erwin-Cohen et al., 2012; Fuller et al., 2007; Paranavitana et al., 2008b, 2014) 
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relevant to the dissertation topic, but included further refinements to the study design 

through the use of whole, unfractionated blood as a source of RNA; incorporation of time 

points that covered very early (within the first 24 hours), intermediate (2-14 days), and 

late (21-28 days) events following vaccination; and implementation of an equal number 

of age-matched control study subjects that were mock-vaccinated but had blood samples 

drawn on the same schedule and at the same time as the vaccinated study subjects. These 

additional measures to refine the study design expanded the improvements employed by 

Paranavitana et al. (2014), which included using PBMCs sampled from an equal number 

of study volunteers. With regard to the VEEV portion of the study, my design choice for 

the dissertation research was consistent with previously published human study reports 

(Erwin-Cohen et al., 2012) in terms of sample size and age-matched controls, but 

additional refinements to the study included the use of whole, unfractionated blood rather 

than PBMCs, and the time points of blood sample collection were expanded to cover the 

very early events following vaccination (less than one day), intermediate events (2, 7, and 

14 days) and late transcriptional events (21-28 days). 

Methodology 

In this study, I used secondary data sets which were collected through previous 

studies conducted at USAMRIID (USAMRIID protocol FY05-01, 2012, and USAMRIID 

FY06-17, 2012). The original studies used research protocols for both independent 

studies conducted under good clinical practice (GCP) quality systems, approved by the 

USAMRIID institutional review board (IRB), and under which volunteers signed a 

written informed consent document (ICD) prior to enrollment in each study which 
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described the purpose of the study and the manner in which samples would be collected, 

used, and disposed. The original study protocols described the purpose and goals of the 

studies and how the microarray data would be used. No personally-identifiable 

information was contained in the data sets or supporting documents, and the data were 

available to open publication in medical or military journals. I used the microarray data 

generated by the previous two studies, and combined that data to generate a novel 

secondary analysis. In the next sections, I describe procedures regarding how the data 

were originally collected and generated. 

Study Populations from Original Data 

The selection processes for both of the original Ft and VEEV studies were 

designed in a similar manner. Ft study subjects consisted of male volunteers between the 

ages of 21 and 44 years. Male volunteers were used to reduce potential variability in 

global gene expression that could be attributed to hormonal changes occurring during the 

menstrual cycle, rather than changes induced by the Ft vaccine. All potential study 

participants were screened for previous exposure to Ft and demonstrated to be negative 

by microagglutination titer assay. Ten study volunteers received 0.5 ml of attenuated Ft 

live vaccine strain (LVS) (NDBR-101 vaccine) administered by skin scarification with a 

bifurcated needle. The same skin scarification process was used to administer 0.5 ml of 

saline to 10 control subjects. Whole blood was collected from control and vaccine 

volunteers at specific time points prior to (0 h) and post-vaccination (1, 4, 8 hours, and 

days 1, 2, 14, 21, and 28) for isolation of RNA. On day 28, serum was tested from 

members of the vaccine group to assess development of a titer against tularemia. RNA 
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samples from ten Ft vaccinees and ten control subjects were used for the microarray 

analysis. This study was conducted in accordance with USAMRIID Human Use Protocol 

FY05-01. 

The population for the VEEV portion of the study consisted of 20 male volunteers 

between the age of 23 and 48 years. To eliminate potential variables in the study which 

could be attributed to estrogen signaling, only male volunteers were selected for the 

study. In addition, each study volunteer was age-matched to a control volunteer. Study 

participants included individuals who had not previously received any alphavirus IND 

vaccines (e.g., EEE, WEE, or VEE). Prior to enrollment and participation in the study, all 

study participants were screened for antibodies by enzyme-linked immunosorbent assay 

(ELISA) and plaque reduction neutralization titer (PRNT) assays for previous exposure 

to new world alphaviruses (VEE, EEE, and WEE) and demonstrated to be negative for 

previous exposure. Whole blood was collected from control and vaccine volunteers at 

specific time points prior to (0 h) and post-vaccination (1, 4, 8, and 24 hours, and days 2, 

7, 14, 21, and 28) for isolation of RNA. On day 56, serum was tested from members of 

the vaccine group to assess development of a neutralizing antibody titer against VEEV. 

RNA samples from nine vaccinees and 10 control subjects were used for the microarray 

analysis; one vacinnee was removed from the study analysis as the individual failed to 

develop a positive neutralizing antibody response following vaccination and was deemed 

to be a vaccine nonresponder. This study was conducted in accordance with USAMRIID 

Human Use Protocol FY06-17. 
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Inclusion and Exclusion Criteria Used in Original Study 

For inclusion in the original Ft study, clinical researchers required volunteer and 

control group volunteers to be male, between 18-49 years of age, willing to forego blood 

donation for at least 56 days following completion of participation in this protocol, and 

have signed the ICD. In addition, volunteers in the vaccine group were required to be 

participants in the special immunization protocol program (SIP) and be scheduled to 

receive the tularemia vaccine because of occupational risk of exposure to Ft. 

To be eligible for inclusion in the original VEEV study, researchers required 

volunteer and control group volunteers to be male between the ages of 18-49 years of 

age, willing to allow study personnel to review their most recent HIV and hepatitis B and 

C test results and VEE vaccination records including titers, willing to undergo all blood 

draws including blood draws for complete blood counts (CBC), VEE titer (control 

group), ELISA for alphavirus exposure, and HIV and hepatitis screening tests if these 

latter two tests had not been performed within the past year, forego blood donation of 

greater than 125 mL for at least 30 days following completion of participation in the 

protocol, and have signed the ICD. Additionally, volunteers in the vaccine group were 

required to be participants in the SIP and be scheduled to receive TC-83 vaccine (NDBR-

102) because of occupational risk of exposure to VEE virus. 

Criteria which researchers used to exclude volunteers from participation in either 

original study protocol included a history of immune system abnormalities (e.g., positive 

HIV test, positive hepatitis B or C test), less than 18 years of age, hematology screening 

with parameters out of normal laboratory range (e.g., anemia), previous vaccination with 
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Ft or any new world alphavirus or immunity from naturally-occurring infection, receipt 

of any vaccine 30 days prior to or following vaccination with either Ft, VEEV, or 

placebo; donation of 125 mL or more of blood within 30 days prior to or following 

vaccination; having received antiviral medication within 7 days prior to vaccination; and 

taking immunosuppressive therapy (excluding topical steroids). 

Power Calculations and Sampling Size 

The goal of my study using the microarray experiment as a secondary data source 

was to detect significantly differential expression between two types of samples, namely 

naïve and vaccinated. The Affymetrix human HG-133 Plus 2.0 microarray chips contain 

47,000 transcripts representing 38,500 genes (Affymetrix, 2004). I reassessed the power 

that could be achieved by combining the two datasets using the M. D. Anderson 

bioinformatics sample size for microarray experiments calculator (M. D. Anderson, 

2016). I set the number of genes to be assessed at 47,000 with an acceptable number of 

false positives set to 4700 (a 10% false discovery rate). The minimum fold difference 

desired for detection between two samples was set to 2 and the desired power was set to 

90%. I used a suggested standard deviation of 0.75, and the sample size for each group 

was calculated to be 10 subjects to generate a per-gene value of alpha of 0.1 (M. D. 

Anderson, 2016). Power calculations for each original study were conducted using 

Statistical Applications Software (SAS) and estimated that using 10 individuals per group 

would typically yield 95% power to detect 3.5-fold differences in gene expression using a 

two-sample t-test at the 0.001 two-sided significance level, assuming that the coefficient 

of variation was 0.50. My dissertation research refined the power calculations to include 
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transcripts that displayed 2-fold changes in gene expression to capture a broader view of 

transcriptional changes and to remain consistent with other relevant published reports. 

Sampling Procedures of Original Study 

Each original study protocol reported that study samples were collected as a 

stratified random sampling of adult males, stratified by treatment (mock-vaccination with 

saline or vaccination with live-attenuated Ft or live-attenuated VEEV vaccines). 

Blood samples were drawn by percutaneous venous puncture using a 19- or 21-

gauge straight or butterfly needle. To minimize local effects of vaccination/placebo 

administration, blood samples were drawn from the arm that did not receive the 

vaccine/placebo (contralateral arm) whenever possible. Up to 10 mL of whole blood was 

drawn for transcriptome studies at each time point and collected in PAXgene tubes. The 

sampling timeline included a pre vaccination sample on the day of vaccination (0 hour), 

then subsequent sampling at 1, 4, 8, and 24 hours post vaccination, and days 2, 7, 14, 21, 

and 28 post vaccination. Samples were collected along an identical timeline, with the 

exception that the Ft study did not collect a sample at day 7 post vaccination. RNA was 

isolated from samples using the PAXgene RNA isolation kit (QIAGEN, Inc., Valencia, 

California). Samples were hybridized to Affymetrix HG U133 2.0 Plus microarray chips 

according to manufacturer’s protocol. 

Sampling in Original Study 

The VEEV in vivo study, conducted under the guidelines of an approved human 

use protocol (USAMRIID FY06-17, 2012), included 10 vaccinees who received 0.5 ml 

live-attenuated TC-83 VEE virus (NDBR-102 vaccine), roughly equivalent to 1.7 x 105 
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plaque forming units (PFU) of virus, administered subcutaneously (SC) in the upper outer 

aspect of the arm, as well as 10 control subjects who were administered 0.5 ml saline via 

the same procedure. Researchers collected whole, unfractionated blood at specific time 

points immediately prior to (0 hours) and following vaccination (1, 4, 8 hours and days 1, 

2, 7, 14, 21 and 28) and from which RNA was isolated. On day 56 post vaccination, a 

serum sample was collected from volunteers to test for development of neutralizing 

antibody titer against VEE virus; one vaccinee failed to respond to vaccination, as 

measured by the lack of neutralizing antibodies against VEEV, and was removed from 

the analysis. Thus the data set for my secondary analysis was comprised of RNA samples 

from the 9 responsive vaccinees and 10 control subjects which were then subjected to 

microarray analysis.  

The procedures conducted by clinical researchers under an approved human 

protocol for the Ft study included administration of 0.5 ml of attenuated Ft [live vaccine 

strain (LVS) (NDBR-101 vaccine)] to 10 study volunteers, in which the vaccine was 

given via skin scarification with a bifurcated needle. The same skin scarification process 

was used to administer 0.5 ml of saline to 10 control subjects. Whole blood was collected 

from control and vaccine volunteers at specific time points prior to (0 hours) and post 

vaccination (1, 4, 8, 24 hours, and days 2, 14, 21, and 28) for isolation of RNA. On day 

28, a serum sample was collected and tested from members of the vaccine group to assess 

development of an antibody titer against Ft. RNA samples from 10 vaccinees and 9 

control subjects were used for the microarray analysis; an incomplete sample set 

disqualified the samples from one control volunteer. 
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Use of Archival Data 

Procedures for data collection, including recruitment, consent, and participation, 

have been described above. I used archival data in the form of Affymetrix .CEL files for 

my secondary analysis that were provided by USAMRIID. I received permission to 

access and use data as well as publish results relating to the human data sets from 

USAMRIID FY05-01 and FY06-17 which was granted by United States Army Medical 

Research Institute of Infectious Diseases (USAMRIID), Office of Human Use and Ethics 

(OHU&E), Human Use Committee (HUC) on 11 March 2016 (Appendix A). The 

Exempt Determination Official (EDO) made the determination that the data do not meet 

the definition of “human subject” under 32 CFR 219.102 (f) (1) nor (f) (2). 

Research Questions and Hypotheses 

Research Question 1. Is there a significant association between changes in the 

level of gene transcription and the time course of vaccination with Ft or VEEV? 

 Null Hypothesis 1. There is no significant change [first assessed by Step Up-

corrected p-value (p>0.1), followed by assessment of fold-change (< 2.0 in either 

direction)] in the mean gene expression level for any given transcript in the vaccinated 

group (for Ft or VEEV) compared to the control group, or between vaccinated and 

control at any specific time point. 

Alternative Hypothesis 1. There is a significant change [first assessed by Step 

Up-corrected p-value (p<0.1), followed by assessment of fold-change (> 2.0 in either 

direction)] in the mean gene expression level for any given transcript in the vaccinated 

group (for Ft or VEEV) compared to the control group, or between vaccinated and 
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control at any specific time point. 

Research Question 2. Is there a significant association between changes in the 

level of gene transcription over the time course of vaccination with Ft in comparison to 

VEEV? 

Null Hypothesis 2. There is no significant change [first assessed by Step Up-

corrected p-value (p>0.1), then assessed by fold-change in expression (< 2.0 in either 

direction)] in the mean gene expression level for any given transcript when comparing 

the Ft vaccinated group and the VEEV vaccinated group, or between the vaccinated 

groups at any specific time point. 

Alternative Hypothesis 2. There is a significant change [first assessed by Step 

Up-corrected p-value (p<0.1), then assessed by fold-change in expression (> 2.0 in either 

direction)] in the mean gene expression level for any given transcript when comparing 

the Ft vaccinated group and the VEEV vaccinated group, or between the vaccinated 

groups at any specific time point. 

Research Question 3. Is there a correlation between age of the vaccinated subject 

and vaccination outcome? 

Null Hypothesis 3. There is no correlation between age and postvaccination titer. 

Alternative Hypothesis 3. There is correlation between age and postvaccination 

titer. 

Research Question 4. Is there a significant association between Human 

Leukocyte Antigen (HLA) phenotype and vaccination outcome?   

Null Hypothesis 4. There is no significant difference in postvaccination titer 
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between HLA phenotypes. 

Alternative Hypothesis 4. There is significant difference in postvaccination titer 

between HLA phenotypes. 

Data Analysis Plan 

Software. I conducted quantitative analysis of transcriptional data using Partek 

Genomics Suite software (version 6.6) I made analyses of pathways through use of the 

Pathways Module within Partek Genomics Suite or Ingenuity Pathway Analysis (IPA) 

(IPA, 2016; Partek, 2016). Statistical tests for pathway analysis included the use of 

Fisher’s exact test to examine the statistical likelihood of a gene being represented within 

a pathway (Li et al., 2013, IPA, 2016). Tests to measure the correlation of age with 

vaccine outcome or the association of HLA allele with vaccine outcome were conducted 

with GraphPad software. 

Normalization of data. Data consisting of Affymetrix .CEL files were imported 

into Partek Genomics Suite (version 6.6). I used a data normalization configuration that 

included a background correction using the Robust Multiarray Algorithm (RMA) 

background correction algorithm on the perfect-match (PM) probe values (Bolstad et al., 

2003; Partek, 2016) and data were normalized by quantile normalization, Log base 2 

transformed, and underwent median polish summarization (Partek, 2016). As part of the 

statistical software program, I conducted quality assurance and quality check procedures 

which included conducting principal component analysis for the visualization of data 

variance. 

Statistical tests and procedures. Following importation of individual Affymetrix 
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data files into Partek Genomics Suite software, background correction using the RMA 

algorithm, quantile normalization, and median polishing, I subjected the data to a batch-

removal procedure to remove any biases to the data, which may have been due to 

unwanted effects of factors such as processing batches, and which may have occurred on 

different days or at different fluidic stations, for example (Irizarry et al., 2003). 

 After the batch-removal step has been executed, the cleaned data will be 

examined to elucidate the amount of variation and the sources of variation in the gene 

expression data by principal component analysis (PCA) (Partek, 2016). The parameters 

for assessing variation will include Time (hour or day of blood sample collection) and 

Treatment (control or vaccinated). 

 I then assessed changes in the levels of gene transcription mixed models 

analysis of variance (ANOVA) of the normalized data. The change in gene expression 

was expressed as a ratio of the mean expression level for any particular transcript at a 

specific time point in the vaccinated group relative to the mean expression level of the 

same transcript at the same time in the mock-vaccinated control group. The parameters 

for a 4-way mixed models ANOVA included comparisons of time, treatment, and the 

intersection of time*treatment using the following formula and methodology of restricted 

maximum likelihood (REML), rather than Method of Moments (MoM), as the variance 

component estimation method (Baayen, Davidson, & Bates, 2008; Krueger & Tian, 

2004): 
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Model: Yijklm = μ + scan date i + time point j +treatment k + subject (treatment) kl + 

time point * treatment jk + εijklm  

 

Where Yijklm represented the mth observation of gene expression on the ith scan 

date jth time point kth treatment lth subject; μ was the common effect for the whole 

experiment. εijklm represented the random error present in the mth observation of gene 

expression on the ith scan date jth time point kth treatment lth subject. The errors εijklm were 

assumed to be normally and independently distributed with mean 0 and standard 

deviation δ for all measurements (Partek, 2016). Scan date and subject were considered 

random effects. I used the REML approach for estimation of variance components in 

favor of the alternative method of moments because the data sets were not balanced 

(Partek, 2016). 

Although the data from each data set represented repeated measures from the 

same individuals, analysis of the data by repeated-measures ANOVA I could not employ 

analysis of the data by repeated-measures ANOVA because the data sets were not 

balanced (in each data set, there was one subject that had to be removed from the study, 

resulting in an unbalanced dataset for both Ft and VEEV). I chose a more robust method 

for analysis of repeated measures, complex, multivariate, temporal data analysis through 

use of a mixed models ANOVA, which is a type of repeated-measures ANOVA, with 

contrast analysis to answer the question of changes in level of gene expression (the 

dependent variable) as a function of the independent variables of time, treatment 

(vaccination) and the effect produced by the interaction of time and treatment. Contrasts 
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were calculated using Fisher's Least Significant Difference (LSD) (Partek, 2016; 

Tamhane & Dunlop, 2000). I performed the following contrast(s) to compare, (1) 

differential expression of transcripts induced by Ft vaccination; (2) differential expression 

of transcripts induced by VEEV vaccination; and (3) differential expression between Ft 

compared with VEEV: 

Research Question 1: Part A- Differential expression induced by Ft vaccination: 

0 hr * Ft Vaccine vs. 0 hr * Control 

1 hr * Ft Vaccine vs. 1 hr * Control 

4 hr * Ft Vaccine vs. 4 hr * Control 

8 hr * Ft Vaccine vs. 8 hr * Control 

day 01 * Ft Vaccine vs. day 01 * Control 

day 02 * Ft Vaccine vs. day 02 * Control 

day 14 * Ft Vaccine vs. day 14 * Control 

day 21 * Ft Vaccine vs. day 21 * Control 

day 28 * Ft Vaccine vs. day 28 * Control 

 

Research Question 1: Part B- Differential expression induced by VEEV 

vaccination: 

0 hr * VEEV Vaccine vs. 0 hr * Control 

1 hr * VEEV Vaccine vs. 1 hr * Control 

4 hr * VEEV Vaccine vs. 4 hr * Control 

8 hr * VEEV Vaccine vs. 8 hr * Control 
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day 01 * VEEV Vaccine vs. day 01 * Control 

day 02 * VEEV Vaccine vs. day 02 * Control 

day 07 * VEEV Vaccine vs. day 07 * Control 

day 14 * VEEV Vaccine vs. day 14 * Control 

day 21 * VEEV Vaccine vs. day 21 * Control 

day 28 * VEEV Vaccine vs. day 28 * Control 

 

Research Question 2:  Differential expression induced by Ft vaccination in 

comparison to VEEV vaccination: 

(0 hr * Ft Vaccine + 0 hr * Ft Control) - (0 hr * VEEV Vaccine + 0 hr * VEEV 

Control) 

(1 hr * Ft Vaccine + 1 hr * Ft Control) - (1 hr * VEEV Vaccine + 1 hr * VEEV 

Control) 

(4 hr * Ft Vaccine + 4 hr * Ft Control) - (4 hr * VEEV Vaccine + 4 hr * VEEV 

Control) 

(8 hr * Ft Vaccine + 8 hr * Ft Control) - (8 hr * VEEV Vaccine + 8 hr * VEEV 

Control) 

(day 01 * Ft Vaccine + day 01 * Ft Control) - (day 01 * VEEV Vaccine + day 01 

* VEEV Control) 

(day 02 * Ft Vaccine + day 02 * Ft Control) - (day 02 * VEEV Vaccine + day 02 

* VEEV Control) 
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(day 14 * Ft Vaccine + day 14 * Ft Control) - (day 14 * VEEV Vaccine + day 14 

* VEEV Control) 

(day 21 * Ft Vaccine + day 21 * Ft Control) - (day 21 * VEEV Vaccine + day 21 

* VEEV Control) 

(day 28 * Ft Vaccine + day 28* Ft Control) - (day 28* VEEV Vaccine + day 28* 

VEEV Control) 

Or 

(0 hr * VEEV Vaccine + 0 hr * VEEV Control) - (0 hr * Ft Vaccine + 0 hr * Ft 

Control) 

(1 hr * VEEV Vaccine + 1 hr * VEEV Control) - (1 hr * Ft Vaccine + 1 hr * Ft 

Control) 

(4 hr * VEEV Vaccine + 4 hr * VEEV Control) - (4 hr * Ft Vaccine + 4 hr * Ft 

Control) 

(8 hr * VEEV Vaccine + 8 hr * VEEV Control) - (8 hr * Ft Vaccine + 8 hr * Ft 

Control) 

(day 01 * VEEV Vaccine + day 01 * VEEV Control) - (day 01 * Ft Vaccine + 

day 01 * Ft Control)  

(day 02 * VEEV Vaccine + day 02 * VEEV Control) - (day 02 * Ft Vaccine + 

day 02 * Ft Control)  

(day 14 * VEEV Vaccine + day 14 * VEEV Control) - (day 14 * Ft Vaccine + 

day 14 * Ft Control)  
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(day 21 * VEEV Vaccine + day 21 * VEEV Control) - (day 21 * Ft Vaccine + 

day 21 * Ft Control)  

(day 28 * VEEV Vaccine + day 28 * VEEV Control) - (day 28 * Ft Vaccine + 

day 28 * Ft Control)  

 I refined the results of the mixed model ANOVA analysis by conducting a 

multiple test correction in the form of False Discovery Rate (FDR), and set an acceptable 

limit of not more than 10% false discovery. As part of the FDR analysis, the p-value for 

each contrast was corrected by the Step-up method (Benjamini & Höchberg, 1995; 

Partek, 2016).  

Finally, results of the mixed model ANOVA analysis were further refined to only 

include those transcripts where the change in gene expression level was 2-fold or greater 

in either direction (increasing transcription or decreased transcription) (Partek, 2016). 

I performed Pathway analysis as part of the Partek Genomics Suite software (or 

Ingenuity Pathway Analysis software) on the down-selected list of significantly modified 

transcripts identified by the criteria of significant FDR-corrected Step-up p-value and 2-

fold or greater change in expression. Significance of pathways was determined by 

enrichment score, calculated as the negative natural log of the enrichment p-value derived 

from the contingency table (Fisher’s Exact test) and p-value < 0.05 (IPA, 2016; Partek, 

2016). 

I conducted statistical tests to address Research Question 3 with GraphPad 

software and tested the correlation between age as either a continuous variable or a 

dichotomous variable in relation to vaccine outcome (as a dichotomous variable).  
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I conducted Mann-Whitney U tests and one-way ANOVA statistical tests to 

address Research Question 4 on the association of HLA-DRB1 or HLA-DQB1alleles 

with vaccine outcome. 

Interpretation of Results 

The interpretation of transcript expression results as significant were determined 

first by a given transcript having an expression value with FDR-corrected Step-up p-

value ≤ 0.1 and a 2-fold or greater change in level of expression (in either direction) in 

order to reject the Null hypothesis and accept the Alternative hypothesis. Interpretation of 

Pathway analysis data was considered significant based on both on a minimum of 2 genes 

in any given pathway and the pathway enrichment p-value ≤ 0.05. Correlation of age with 

vaccine outcome was interpreted by commonly accepted “rule of thumb” rules where 

correlation coefficients between 0.0 to 0.3 would be considered a negligible correlation; 

correlation coefficient between 0.3 to 0.5 would be considered a low correlation; 

correlation coefficient between 0.5 to 0.7 would be interpreted as a moderate correlation; 

0.7 to 0.9 interpreted as a high correlation; and correlation coefficient between 0.9 to 1.0 

would be interpreted as a very high correlation (Mukaka, 2012). 

Threats to Validity 

There were three factors that I determined could be perceived to be threats to 

internal validity in the study. First, the selection of the study subjects was limited to 

males only, restricted to ages between 18-48 years of age, and participants were not 

randomly assigned into either the treatment or control group; rather, the participants who 

received the vaccine were identified as being at risk of infection due to their work 
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environment(s). The restriction of study participants to males only was done as a way to 

control the extraneous variable of hormonal fluctuation. 

The selection of only male volunteers to the study may be considered an external 

threat to population validity for the study. The general population is comprised of both 

males and females in roughly equal numbers, so the use of only male study volunteers 

make threaten the generalizability of the study results. Demographic information that was 

collected on the study participants showed that the original study populations were almost 

completely white, non-hispanic or latino; in addition to the wide range of ages of the 

volunteers, there was an assumption that the participants were represented the general 

population in terms of race and ethnicity which was not quite met. Each volunteer was 

treated the same with regard to the administration of the test materials (either as a mock-

vaccination with saline or vaccination with one of the two live-attenuated vaccines); 

however, I determined that the repeated blood sample collection could have posed a 

threat to external validity through multiple-treatment interference. The threat was 

minimized because the control subjects also experienced the same repeated blood sample 

collection manipulations. Finally, vaccine failure in one of the VEEV-vaccinated test 

subjects resulted in that individual being eliminated from the study; the loss of the one 

volunteer may reduce the power of the statistical tests to detect significantly different 

transcripts in the VEEV-vaccinated group. 

I incorporated measures in the data analysis to control threats to the validity of the 

statistical conclusions. Overall, microarray experiments are powered at a level that is 

seldom observed in other types of studies, with power calculations typically exceeding 
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90-95%, even in small sample sizes (e.g., less than 10 study subjects) (SAS, 2011). The 

novel secondary study as planned accounted for an adequate power to detect differences 

between the two study groups. I used the False Discovery Rate test as a multiple test 

correction with Step-up correction of p-values is to decrease Type I error. The 

heterogeneity of the human genome could be perceived as a variable that could contribute 

to Type II error, as could influences of nutrition, sleep habits, and fasting or non-fasting 

on blood sample collection days. 

Ethical Procedures 

The original studies were approved by the USAMRIID institutional review board 

and met all federal regulations described in 45 CFR 46 Subpart A entitled The Federal 

Policy for the Protection of Human Subjects, 21 CFR 56 on Institutional Review Boards, 

21 CFR 50 on Informed Consent, and Health Insurance Portability and Accountability 

Act of 1996 (HIPAA). The Archival data used in the dissertation research, in the form of 

Affymetrix .CEL files, were provided by USAMRIID. Permission to access and use data 

as well as publish results relating to the human data sets from USAMRIID FY05-01 and 

FY06-17 was granted by United States Army Medical Research Institute of Infectious 

Diseases (USAMRIID), Office of Human Use and Ethics (OHU&E), Human Use 

Committee (HUC) on 11 March 2016. The Exempt Determination Official (EDO) made 

the determination that the data did not meet the definition of “human subject” under 32 

CFR 219.102 (f) (1) nor (f) (2). There were no ethical issues related to using de-identified 

archived data; the data, once de-identified, were no longer subject to human-use 

protections. Permission was granted to proceed with the study by the Walden University 



88 

 

institutional review board, under IRB approval # 08-23-16-0185842, granted on 23 

August 2016. 

Each original raw data sample file was identified solely by a volunteer 

identification number (VIN) that contained no personally-identifiable information; the 

key to the coded VIN numbers was retained by the original institutional study principal 

investigator (PI)I, but was not available nor conveyed as part of the access to the archival 

data. The data are free to be openly published in military or scientific journals. 

The original study was conducted within the work environment of the dissertation 

student at USARMIID. 

Summary 

The dissertation research involved the use of previously collected, archived 

human vaccine data to conduct a novel secondary analysis of the molecular epidemiology 

of human response to vaccination. The data modeled a comparison between a live-

attenuated bacterial vaccine and a live-attenuated viral vaccine, both of which can be 

used as surrogates for virulent infection. The analysis I conducted incorporated 

commonly used statistical measures that were consistent with other, similar human 

studies in terms of the procedures employed for background correction of the raw 

transcript data, normalization procedure, analysis of variance, and multiple test 

corrections (Erwin-Cohen et al. 2012, Paranavitana et al., 2008b, Paranavitana et al., 

2014). The pathways analysis I employed leveraged new capabilities of the Partek 

Genomics Suite software; the software module was a visualization tool for pathway 

enrichment which utilized the KEGG database for human data and significance was 
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achieved by applying Fisher’s Exact Test to transcripts that were differentially expressed 

and matched to known pathways (Partek, 2016).  

In Chapter 4, I report the results of my data analysis. Results directly address the 

research questions, including which transcripts were significantly expressed in response 

to vaccination with Ft, with VEEV, or as a comparison between the between the two 

vaccines. I will also report the results of the tests for correlation of age with vaccine 

outcome and tests to measure the association of genetic makeup with vaccine outcome. 
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Chapter 4: Results  

Brief Overview 

In this chapter I discuss the management of archival datasets, , data analysis 

procedures are discussed, and I present the results and interpretation of the data analyses. 

The purpose of my research project is to quantitatively assess the association between 

gene expression over time in response to treatment (vaccination) with either Ft or VEEV, 

or to Ft in direct comparison to VEEV; to assess the correlation between the age of the 

vaccinated individuals and vaccine outcome (successful response to primary vaccination 

or vaccine failure), and the association between HLA phenotype and vaccine response. 

My research is intended to add to the limited published information about the changes in 

gene expression that each vaccine elicits, and address the gaps in knowledge regarding 

the association of age and genetic makeup on vaccine outcome. 

Research Questions and Hypotheses 

Research Question 1. Is there a significant association between changes in the 

level of gene transcription and the time course of vaccination with Ft or VEEV? 

Null Hypothesis 1. There is no significant change [first assessed by Step Up-

corrected p-value (p>0.1), followed by assessment of fold-change (< 2.0 in either 

direction)] in the mean gene expression level for any given transcript in the vaccinated 

group (for Ft or VEEV) compared to the control group, or between vaccinated and 

control at any specific time point. 

Alternative Hypothesis 1. There is a significant change [first assessed by Step 

Up-corrected p-value (p<0.1), followed by assessment of fold-change (> 2.0 in either 
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direction)] in the mean gene expression level for any given transcript in the vaccinated 

group (for Ft or VEEV) compared to the control group, or between vaccinated and 

control at any specific time point. 

Research Question 2. Is there a significant association between changes in the 

level of gene transcription over the time course of vaccination with Ft in comparison to 

VEEV? 

Null Hypothesis 2. There is no significant change [first assessed by Step Up-

corrected p-value (p>0.1), then assessed by fold-change in expression (< 2.0 in either 

direction)] in the mean gene expression level for any given transcript when comparing 

the Ft vaccinated group and the VEEV vaccinated group, or between the vaccinated 

groups at any specific time point. 

Alternative Hypothesis 2. There is a significant change [first assessed by Step 

Up-corrected p-value (p<0.1), then assessed by fold-change in expression (> 2.0 in either 

direction)] in the mean gene expression level for any given transcript when comparing 

the Ft vaccinated group and the VEEV vaccinated group, or between the vaccinated 

groups at any specific time point. 

Research Question 3. Is there a correlation between age of the vaccinated subject 

and vaccination outcome? 

Null Hypothesis 3. There is no correlation between age and postvaccination titer. 

Alternative Hypothesis 3. There is correlation between age and postvaccination 

titer. 

Research Question 4. Is there a significant association between Human 
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Leukocyte Antigen (HLA) phenotype and vaccination outcome?   

Null Hypothesis 4. There is no significant difference in postvaccination titer 

between HLA phenotypes. 

Alternative Hypothesis 4. There is significant difference in postvaccination titer 

between HLA phenotypes. 

Data Collection and Handling of Data Files 

Archival data files for the secondary analyses were obtained following approval 

of my research proposal from the USAMRIID Human Use Committee and the Walden 

University institutional review board, under IRB approval number 08-23-16-0185842. 

The dissertation research project involved a secondary analysis combining two studies 

that were previously conducted at USAMRIID. Figure 1 illustrates the experimental 

design schema of the two original studies, which were conducted under GCP standards of 

quality.  
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Figure 1. Schematic of original studies for Ft and VEEV vaccination. 

 Original study volunteers were screened for health and demonstrated to be naïve 

for previous exposure to either vaccine or disease. Blood sampling occurred prior to 

vaccination and then at 1, 4, and 8 hours following vaccination, and at days 1, 2, 7, 14, 

21, and 28 (with the exception that there was no day 7 sample in the Ft study). At the 

final blood sample collection, serum was collected to conduct post-vaccination serology 

tests to assess vaccine response (neutralizing titer). Whole blood was used as a source of 

RNA and the RNA was subjected to microarray hybridization and analysis which resulted 

in differential gene expression data.  

The resulting transcriptome data files were provided to me for my secondary 

analysis as Affymetrix .CEL files. Sample data file descriptions including de-identified 

sample names with demographic data, results of vaccine outcome, and results of HLA 

typing were provided in a separate Excel file. Transcriptome data were imported into 
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Partek Genomics Suite software (version 6.6) from 375 Affymetrix .CEL files and were 

subjected to background correction using a robust multi-array algorithm, quantile 

normalization, and median polish probe set summarization. The next figures visually 

illustrate the QC metrics I used to assess the fitness of the data. 

 

 

Figure 2. Log2 expression of microarray hybridization controls.  

 The hybridization control metrics are listed in the expected order from high to 

low. For the hybridization controls, AFFX-rs-P1-cre-avg should be higher than AFFX-r2-

Ec-bioD-avg, which should be higher than AFFX-r2-Ec-bioC-avg, which should be 
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higher than AFFX-r2-Ec-bioB-avg, as indicated by the red arrow. Ft and VEEV samples 

are on X axis and the y-axis represents log2 values of the normalized spike in control 

probe-sets. 

 

  

Figure 3. Log2 expression of microarray labeling controls. 

 The labeling control metrics are listed in the expected order from high to low. 

Four unlabeled polyA control spikes were inserted into the study samples prior to 

labeling and the resulting detection of the control spikes is dependent on the labeling 

reaction that labels the biological samples. The labeling controls are spiked in at 

increasing concentrations of Lys < Phe < Thr < Dap. The values are represented in log2 
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expression (y-axis) and the x-axis represents the study samples in the order that they 

appear on the post-import spreadsheet. 

 

Figure 4. 3’/5’ in vitro transcription (IVT) ratio of microarray samples. 

 The reverse transcriptase reaction that transcribes RNA into cDNA should process 

from the 3’ through towards the 5’ end. The 3’ / 5’ ratio compares the abundance of the 

signal at the 3’ end over the abundance at the 5’ end, as a measure of the quality of the 

transcription reaction. A ratio of 3 or less is considered acceptable. It is apparent that 

there are several samples in which the 3’/5’ IVT ratio is far greater than the 

recommended cutoff of 3. 

Post-import quality control (QC) of each data file was assessed by microarray 

chip hybridization, labeling, 3’/5’ in vitro transcription (IVT) ratio, as well as perfect 
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match and mismatch mean probe intensity values. I removed data files that were either 

missing or failed QC metrics prior to statistical analyses (listed in Tables 1 and 2).  

Table 1 

Ft Data Files Missing or Removed From Analysis 

Subject 
ID 

Sample 
time Sample file removed Reason for removal 

Ft-0005 Day 28 FY05-01-0005-D28.CEL Failed post-import QC, hybridization 
Ft-0006 Day 28 No sample Lost to follow-up 
Ft-0025 1 Hr No data file Failed RNA integrity check 
Ft-0026 Day 1 No data file Failed RNA integrity check 

 

For the Ft samples, from a total possible 180 samples, 4 were eliminated from the 

final analysis either due to loss of the study volunteer prior to that study collection point, 

poor quality isolated RNA, failure to hybridize properly. 
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Table 2 

VEEV Data Files Missing or Removed From Analysis 

Subject ID Sample 
time Sample file removed Reason for removal 

VEEV-0005 1 Hr FY06-17-0005-D0H1.CEL Failed 3'/5' IVT ratio metrics 
VEEV-0006 1 Hr FY06-17-0006-D0H1.CEL Failed 3'/5' IVT ratio metrics 
VEEV-0013 0 Hr FY06-17-0013-D0H0.CEL Non-responder 

 
1 Hr FY06-17-0013-D0H1.CEL Non-responder 

 
4 Hr FY06-17-0013-D0H4.CEL Non-responder 

 
8 Hr FY06-17-0013-D0H8.CEL Non-responder 

 
Day 1 FY06-17-0013-D1.CEL Non-responder 

 
Day 2 FY06-17-0013-D2.CEL Non-responder 

 
Day 7 FY06-17-0013-D7.CEL Non-responder 

 
Day 14 FY06-17-0013-D14.CEL Non-responder 

 
Day 21 FY06-17-0013-D21.CEL Non-responder 

 
Day 28 FY06-17-0013-D28.CEL Non-responder 

VEEV-0021 4 Hr FY06-17-0021-D0H4.CEL Failed 3'/5' IVT ratio metrics 

 
8 Hr FY06-17-0021-D0H8.CEL Failed 3'/5' IVT ratio metrics 

 
Day 28 FY06-17-0021-D28.CEL Failed 3'/5' IVT ratio metrics 

VEEV-0027 0 Hr FY06-17-0027-D0H0.CEL Failed post-import QC, labeling 
VEEV-0033 0 Hr No data file Failed RNA integrity check 
VEEV-0034 0 Hr No data file Failed RNA integrity check 

 

For the VEEV samples, from a total possible 200 samples, 18 were eliminated 

from the final analysis due to poor quality of isolated RNA, failure to label appropriately, 

failure of 3’/5’ IVT ratio, or in the case of VEEV study volunteer VEEV-0013, after the 

in-life portion of the study was completed, the study subject was found to be a primary 

vaccine failure and did not produce a neutralizing antibody titer. 
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Figure 5. Principle component analysis. 

 Principle component analysis is a method to visualize highly dimensional data by 

reducing it to just three dimensions (x, y, and z axes) that can explain the variance in the 

data. The analyzed data are ordered by the amount of variance observed (x > y > z), the 

reduced variables are uncorrelated, and the reduced dimensionality of the data explain all 

of the variance in the dataset (Partek, 2016). From the combined Ft and VEEV datasets, 

the factor that is responsible for the greatest amount of variance in the data is that of 

treatment (Principle component 1, x-axis, represented by the size of the spheres). The 

next greatest source of variation is that of time (Principle component 2, y-axis, 

represented by the color of the spheres). The third axis represents the variance attributed 

to the interaction of time*treatment (Principle component 3, z-axis). 
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Figure 6. Principle component analysis, by scan date.  

When principle component analysis was conducted and data were separated by 

scan date, it became apparent that the batch effects of RNA samples that were hybridized 

and read on different scan dates accounted for a great amount of the sample to sample 

variation.  

Demographic and Descriptive Data 

Each original study was planned to include twenty study volunteers; 10 pf which 

would be assigned to as mock-vaccination controls that would receive saline instead of 

the live-attenuated vaccine, and 10 of which would receive the live-attenuated vaccine. 

Tables 3 and 4 display demographic and descriptive characteristics of the de-identified 

subjects of each study. 
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Table 3 

Descriptive and Demographic Characteristics of Ft Study 
Participants 

   
Subject ID Age Gender Race Ethnicity 

HLA 
DRB1 

HLA 
DQB1 

Log10 post-vaccination 
titer 

Ft-0001 32 M Caucasian Non-Hispanic/Latino 11 / 04 03 / 03 1.9 
Ft-0002 24 M Caucasian Non-Hispanic/Latino 01 / 04 03 / 05 0 
Ft-0003 29 M Caucasian Non-Hispanic/Latino 04 / 11 03 / 03 2.2 
Ft-0004 24 M Caucasian Non-Hispanic/Latino 03 / 13 02 / 06 0 
Ft-0005 37 M Caucasian Non-Hispanic/Latino 11 / 13 03 / 06 3.11 
Ft-0006 25 M Other Hispanic 04 / 14 03 / 05 0 
Ft-0007 24 M Caucasian Non-Hispanic/Latino 04 / 07 02 / 03 1.6 
Ft-0009 31 M Caucasian Non-Hispanic/Latino 04 / 15 03 / 06 2.51 
Ft-0010 39 M Caucasian Non-Hispanic/Latino 11 / 13 03 / 06 0 
Ft-0011 39 M Caucasian Non-Hispanic/Latino 14 / 15 05 / 03 1.9 
Ft-0013 26 M Caucasian Non-Hispanic/Latino 11 / 15 03 / 06 3.11 
Ft-0014 33 M Caucasian Non-Hispanic/Latino 03 / 15 02 /06 0 
Ft-0016 40 M Caucasian Non-Hispanic/Latino 13 / 15 06 / 06 2.2 
Ft-0017 39 M Caucasian Non-Hispanic/Latino 07 / 10 02 / 05 0 
Ft-0018 44 M Caucasian Non-Hispanic/Latino 01 / 07 03 / 05 0 
Ft-0019 21 M Caucasian Non-Hispanic/Latino 04 / 07 03 / 03 0 
Ft-0020 43 M Caucasian Non-Hispanic/Latino 07 / 13 02 / 06 0 
Ft-0021 40 M Caucasian Non-Hispanic/Latino 03 / 15 02 / 06 2.2 
Ft-0025 25 M Caucasian Non-Hispanic/Latino 13 / 15 05 / 06 0 
Ft-0026 31 M Caucasian Non-Hispanic/Latino 10 / 15 05 / 06 2.2 
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Table 4 

Descriptive and Demographic Characteristics of VEEV 
 study participants 

   
Subject ID Age Gender Race Ethnicity 

HLA 
DRB1 

HLA 
DQB1 

Log10 post-vaccination 
titer 

VEEV-0005 30 M Caucasian Non-Hispanic/Latino 04 / 15 03 / 06 0 
VEEV-0006 31 M Caucasian Non-Hispanic/Latino 04 / 07 02 / 03 2.51 
VEEV-0011 24 M Caucasian Non-Hispanic/Latino 04 / 07 03 / 02 0 
VEEV-0012 38 M Caucasian Non-Hispanic/Latino 07 / 15 02 / 06 2.51 
VEEV-0013 24 M Caucasian Non-Hispanic/Latino 11 / 13 03 / 06 0 
VEEV-0015 42 M Caucasian Non-Hispanic/Latino 03 / 07 02 / 02 0 
VEEV-0016 25 M Caucasian Non-Hispanic/Latino 03 / 04 02 / 03 1.6 
VEEV-0017 25 M Caucasian Non-Hispanic/Latino 07 / 13 02 / 03 0 
VEEV-0018 46 M Caucasian Non-Hispanic/Latino 07 / 14 03 / 05 3.11 
VEEV-0019 46 M Caucasian Non-Hispanic/Latino 01 / 07 05 / 03 0 
VEEV-0020 24 M Caucasian Non-Hispanic/Latino 08 / 15 04 / 06 2.2 
VEEV-0021 23 M Caucasian Non-Hispanic/Latino 03 / 16 02 / 05 0 

VEEV-0027 25 M 
African-

American Non-Hispanic/Latino 04 / 07 03 / 02 0 
VEEV-0028 26 M Caucasian Non-Hispanic/Latino 04 / 07 03 / 02 1.9 
VEEV-0029 48 M Caucasian Non-Hispanic/Latino 15 / 15 06 / 06 3.11 
VEEV-0030 46 M Caucasian Non-Hispanic/Latino 01 / 07 05 / 03 0 
VEEV-0031 37 M Caucasian Non-Hispanic/Latino 04 / 07 03 / 02 1.3 
VEEV-0032 39 M Caucasian Non-Hispanic/Latino 04 / 07 03 / 02 0 
VEEV-0033 32 M Caucasian Non-Hispanic/Latino 11 / 13 03 / 06 2.2 

VEEV-0034 25 M 
African-

American Non-Hispanic/Latino 03 / 15 04 / 06 0 
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The study volunteers recruited to the two original studies represented a small 

sampling of the general population. The studies were designed to only include males for 

the transcriptome analysis; females were excluded from both original studies due to 

concerns regarding the influence of estrogen on the immune response and the small 

sample size precluding adequate controls for that variable. From the results of the 

demographic tables, I determined that the sample population was predominantly of 

Caucasian race and of non-Hispanic or non-Latino ethnicity and concluded that no further 

demographic analysis of these factors could be made in association with vaccine 

outcome. The ages ranged from 24 to 48 in the Ft study and from 23 to 48 in the VEEV 

study; as such the age range is representative of adults, and does not include 

representation for either children or elderly subjects. The relatively narrow demographic 

characteristics of the study population may limit generalization of the study results; 

however, the subjects are typical for age and sex of military personnel.  

The results of HLA typing were listed for each individual in each vaccine study. 

Typically HLA is represented by a four-digit code (e.g., 0603); however, the data I have 

presented have been condensed to represent only major groupings of HLA alleles due to 

the small overall sample size of the studies. The post-vaccination titers are presented as 

Log10 titer. Individuals who did not mount an immune response were part of the control, 

mock-vaccinated groups with the exception of subject VEEV-0013, who failed to 

produce neutralizing antibody after vaccination and was deemed to be a primary vaccine 

failure (all data from this individual were then removed from my research study). 
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Results 

Descriptive Statistics for Transcriptome Data 

In the Partek Genomics Suite statistical analysis program, I grouped the data by 

subject, time point, or treatment condition and performed descriptive statistics to assess 

the mean gene expression, standard deviation, median, minimum, maximum, 25th 

percentile, 75th percentile, and interquartile range (Q3-Q1) for the 54,675 probesets 

represented on each Affymetrix HG U133 2.0 array chip (Affymetrix, 2004), expressed 

as Log2 values. These data are represented in the following tables for the Ft study 

organized by subject (Table 5), the VEEV study organized by subject (Table 6), as well 

as the descriptive statistics for both Ft and VEEV studies combined, organized by the 

independent variables of time (Table 7) or treatment (Table 8). 
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Table 5 

Descriptive Statistics for Ft Study: Log2 Transcript Expression Values by Study Subject Over All Time Points 

Subject ID Treatment N Mean Std. Dev. Median Min Max Q1 Q3 IQR 
Ft-0001 Ft Vaccine 9 4.6591 1.7411 4.2713 2.0692 14.8570 3.3080 5.6215 2.3134 
Ft-0002 Ft Control 9 4.6584 1.6878 4.2915 2.1357 14.9013 3.3490 5.6045 2.2555 
Ft-0003 Ft Vaccine 9 4.6471 1.6529 4.3097 2.0995 14.8913 3.3618 5.5861 2.2243 
Ft-0004 Ft Control 9 4.6689 1.7620 4.2679 2.1054 14.8892 3.3037 5.6335 2.3299 
Ft-0005 Ft Vaccine 8 4.6448 1.6662 4.2989 2.1515 14.9260 3.3508 5.5838 2.2330 
Ft-0006 Ft Control 8 4.6525 1.7198 4.2810 2.1044 14.8892 3.3145 5.6048 2.2903 
Ft-0007 Ft Vaccine 9 4.6468 1.6667 4.3109 2.1274 14.8938 3.3599 5.5677 2.2078 
Ft-0009 Ft Vaccine 9 4.6579 1.6738 4.3119 2.1408 14.8651 3.3571 5.6027 2.2456 
Ft-0010 Ft Control 9 4.6489 1.6737 4.3060 2.1188 14.8625 3.3546 5.5729 2.2183 
Ft-0011 Ft Vaccine 9 4.6558 1.7136 4.2850 2.1055 14.8950 3.3246 5.6067 2.2822 
Ft-0013 Ft Vaccine 9 4.6544 1.6770 4.3104 2.1238 14.9033 3.3575 5.5805 2.2229 
Ft-0014 Ft Control 9 4.6544 1.6937 4.3020 2.1218 14.8902 3.3526 5.5699 2.2173 
Ft-0016 Ft Vaccine 9 4.6545 1.6795 4.2963 2.1391 14.8804 3.3519 5.5906 2.2387 
Ft-0017 Ft Control 9 4.6600 1.6474 4.3342 2.1218 14.9003 3.3844 5.5866 2.2023 
Ft-0018 Ft Control 9 4.6645 1.6855 4.3025 2.1464 14.8855 3.3543 5.6176 2.2633 
Ft-0019 Ft Control 9 4.6570 1.7414 4.2526 2.1322 14.8871 3.3095 5.6072 2.2977 
Ft-0020 Ft Control 9 4.6376 1.6602 4.3016 2.1201 14.9246 3.3497 5.5772 2.2275 
Ft-0021 Ft Vaccine 9 4.6414 1.6715 4.3005 2.1021 14.9275 3.3459 5.5806 2.2346 
Ft-0025 Ft Control 8 4.6637 1.7274 4.2823 2.1116 14.9211 3.3261 5.6124 2.2864 
Ft-0026 Ft Vaccine 8 4.6662 1.7368 4.2784 2.1194 14.9056 3.3222 5.6144 2.2922 

N = number of samples; SD = standard deviation; MIN = smallest observation; MAX = largest observation; Q1 = 25th percentile; Q3 = 75th percentile; IQR 
= inter-quartile range = Q3-Q1. 
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Table 6 

Descriptive Statistics for VEEV Study: Log2 Transcript Expression Values by Study Subject 

Subject ID N Treatment Mean Std. Dev. Median Min Max Q1 Q3 IQR 
VEEV-0005 9 VEEV Control 4.6044 1.6364 4.2562 2.1222 14.9999 3.3325 5.5221 2.1896 
VEEV-0006 9 VEEV Vaccine 4.5992 1.6360 4.2454 2.1189 15.0134 3.3321 5.5115 2.1794 
VEEV-0011 10 VEEV Control 4.6307 1.6811 4.2648 2.1209 14.9804 3.3209 5.5729 2.2520 
VEEV-0012 10 VEEV Vaccine 4.6866 1.7454 4.2688 2.1510 14.8982 3.3278 5.6466 2.3188 
VEEV-0015 10 VEEV Control 4.6847 1.7621 4.2451 2.1130 14.8953 3.3230 5.6335 2.3104 
VEEV-0016 10 VEEV Vaccine 4.6834 1.7308 4.2571 2.1180 14.8896 3.3479 5.6198 2.2718 
VEEV-0017 10 VEEV Control 4.6786 1.7239 4.2777 2.1139 14.9322 3.3321 5.6447 2.3127 
VEEV-0018 10 VEEV Vaccine 4.6717 1.6665 4.3132 2.1384 14.9117 3.3697 5.6196 2.2500 
VEEV-0019 10 VEEV Control 4.6712 1.6727 4.3036 2.1506 14.9136 3.3689 5.6149 2.2459 
VEEV-0020 10 VEEV Vaccine 4.6736 1.7331 4.2526 2.1175 14.9143 3.3297 5.6277 2.2980 
VEEV-0021 7 VEEV Control 4.6797 1.7673 4.2431 2.1372 14.9128 3.3020 5.6590 2.3570 
VEEV-0027 9 VEEV Control 4.6777 1.7931 4.2418 2.1276 14.9005 3.2837 5.6634 2.3797 
VEEV-0028 10 VEEV Vaccine 4.6712 1.7114 4.2983 2.1271 14.9102 3.3360 5.6430 2.3070 
VEEV-0029 10 VEEV Vaccine 4.6764 1.7506 4.2665 2.1242 14.8902 3.3099 5.6601 2.3502 
VEEV-0030 10 VEEV Control 4.6725 1.6756 4.3145 2.1559 14.8972 3.3625 5.6280 2.2655 
VEEV-0031 10 VEEV Vaccine 4.6829 1.7870 4.2457 2.1034 14.8646 3.2944 5.6650 2.3705 
VEEV-0032 10 VEEV Control 4.6697 1.6958 4.2996 2.1339 14.9247 3.3420 5.6425 2.3005 
VEEV-0033 9 VEEV Vaccine 4.6756 1.7345 4.2826 2.1137 14.9059 3.3162 5.6713 2.3552 
VEEV-0034 9 VEEV Control 4.6744 1.7323 4.2844 2.1147 14.9069 3.3229 5.6479 2.3250 

N = number of samples; SD = standard deviation; MIN = smallest observation; MAX = largest observation; Q1 = 25th percentile; Q3 = 75th percentile; 
IQR = inter-quartile range = Q3-Q1. 
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The descriptive statistics for both the Ft and VEEV studies (Tables 5 and 6, 

respectively) present the Log2-transformed expression values for 54,675 probes, parsed 

by subject ID. All of the data were transformed as part of the importation and 

normalization process that I conducted, which is reflected in the largely uniform 

expression values between subjects. The post-transformation descriptive statistics are 

indicative that any potentially skewed original raw data were reduced to approximate 

normality by the Log2-transformation process. 

 

Table 7 

Descriptive Statistics: Log2 Expression Values by Time Point (Includes Both Ft and 
VEEV) for All Subjects 

Time N Mean Std. Dev. Median Min Max Q1 Q3 IQR 
0 Hour 37 4.6549 1.6980 4.2842 2.1166 14.9101 3.3355 5.6021 2.2666 
1 Hour 38 4.6600 1.7122 4.2775 2.1210 14.8936 3.3296 5.6121 2.2824 
4 Hour 39 4.6555 1.6934 4.2879 2.1286 14.9135 3.3406 5.6026 2.2619 
8 Hour 39 4.6621 1.7269 4.2696 2.1243 14.9069 3.3230 5.6170 2.2940 
Day 1 38 4.6630 1.7043 4.2854 2.1285 14.9046 3.3382 5.6157 2.2775 
Day 2 39 4.6596 1.7030 4.2852 2.1201 14.9109 3.3367 5.6079 2.2712 
Day 7 20 4.6804 1.7465 4.2624 2.1247 14.8881 3.3193 5.6531 2.3339 

Day 14 40 4.6645 1.7095 4.2842 2.1211 14.9008 3.3369 5.6174 2.2804 
Day 21 40 4.6616 1.6997 4.2897 2.1283 14.9154 3.3398 5.6122 2.2724 
Day 28 37 4.6613 1.6803 4.3010 2.1262 14.9116 3.3550 5.5997 2.2447 
N = number of samples; SD = standard deviation; MIN = smallest observation; MAX = largest observation; Q1 = 
25th percentile; Q3 = 75th percentile; IQR = inter-quartile range = Q3-Q1. 
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Table 8 

Descriptive Statistics:  Log2 Expression Values by Treatment (Includes Both Ft and 
VEEV) 

Treatment N Mean Std. Dev. Median Min Max Q1 Q3 IQR 
Ft Control 89 4.6566 1.6994 4.2924 2.1221 14.8949 3.3403 5.5984 2.2582 
Ft Vaccine 88 4.6527 1.6876 4.2975 2.1174 14.8940 3.3441 5.5933 2.2492 

VEEV Control 94 4.6643 1.7121 4.2744 2.1290 14.9265 3.3304 5.6221 2.2917 
VEEV Vaccine 97 4.6709 1.7210 4.2722 2.1266 14.9088 3.3309 5.6318 2.3009 
N = number of samples; SD = standard deviation; MIN = smallest observation; MAX = largest observation; Q1 = 
25th percentile; Q3 = 75th percentile; IQR = inter-quartile range = Q3-Q1. 

 
 

In the descriptive statistics for both the Ft and VEEV studies, I present the Log2-

transformed expression values for 54,675 expression probes, parsed by time (Table 7), or 

by treatment (Table 8). As with the descriptive results organized by subject, the results 

organized by time or treatment also demonstrate means that are highly comparable.  

Inferential Statistics 

The hypotheses for Research Questions 1 and 2 of the research study were 

assessed by mixed model ANOVA followed by False Discovery Rate (FDR) test as a 

multiple test correction.  

Analysis of Variance  

Data that passed QC following importation and normalization were subjected to 

mixed model ANOVA to address research questions regarding association of time or 

treatment with level of gene expression. The ANOVA mixed model is: 

Yijklm = μ + scan date i + time point j +treatment k + subject (treatment) kl + time 

point * treatment jk + εijklm  
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Where Yijklm represents the mth observation of gene expression on the ith scan date 

jth time point kth treatment lth subject; μ is the common effect for the whole experiment. 

εijklm represents the random error present in the mth observation of gene expression on the 

ith scan date jth time point kth treatment lth subject. The errors εijklm are assumed to be 

normally and independently distributed with mean 0 and standard deviation δ for all 

measurements (Partek, 2016). Scan date and subject are random effects. The mixed 

model also considers the effect of within-subject variation. The restricted maximum 

likelihood (REML) approach for estimation of variance components was chosen over the 

alternative, Method of Moments (MoM), because the data sets were not balanced (Partek, 

2016).  

Following the ANOVA analysis, I subjected the data to multiple test correction 

using the Step-Up method to correct p-values as part of a False Discovery Report (FDR) 

set to limit false discoveries to 0.1. 

 The purpose of conducting a multiple test correction was to control Type I errors. 

The FDR is the proportion of false positives among all positive results. As a multiple test 

correction protocol, the Step-up method described by Benjamini and Höchberg (1995) is 

less restrictive than the Bonferroni correction method, which is again less restrictive than 

using a Family Wise Error Rate (FWER) multiple test correction protocol (Partek, 2016), 

but any of these methods is more restrictive than using an uncorrected p-value. The Step-

up method was chosen for the FDR to generate a corrected p-value which was used to 

assess significance; the corrected p-value is the smallest overall significance level at 

which a particular hypothesis would be rejected. Briefly, the Step-up correction is 
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calculated by sorting all of the p-values in ascending order (stepping up); there are n p-

values sorted by ascending order, where m represents the rank of each p-value. The Step-

up calculation compares p-value*(n/m) with the specified alpha level (which in this case 

was set to 0.1), and the cut-off p-value is the one that generates the last product that is 

less than the alpha level (Partek, 2016). 

Following the multiple test correction, significant transcripts were assessed for 

fold-change in expression. Fold change in transcript expression is calculated by Partek 

Genomics Suite; briefly, the program calculates the least squares mean (LS Mean) as the 

linear sum of the estimated means from the ANOVA model. Fold change for each 

contrast (e.g., Treatment at 1 hour vs. Control at 1 hour) is calculated such that: 

 LS Mean (Treatment at 1 hour) 

 LS Mean (Control at 1 hour) 
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Table 9  

False Discovery Rate Report: ANOVA Analysis Contrasting Ft Vaccinated with Ft 
Control Subjects 

Variable Cutoff p-value* # Transcripts** 
# Transcripts 

(± 2-Fold change in 
expression) 

Time 2.65E-02 14468 
 Treatment 3.65E-02 19958 
 Time * Treatment 4.99E-03 2730 
 0 Hr Vax vs Ctrl 1.83E-06 0 
 1 Hr Vax vs Ctrl 1.83E-06 0 
 4 Hr Vax vs Ctrl 1.83E-06 0 
 8 Hr Vax vs Ctrl 3.66E-06 2 0 

Day 1 Vax vs Ctrl 1.83E-06 0 
 Day 2 Vax vs Ctrl 2.93E-05 16 5 

Day 14 Vax vs Ctrl 3.66E-06 2 0 
Day 21 Vax vs Ctrl 1.83E-06 0 

 Day 28 Vax vs Ctrl 1.83E-06 0 
 

 

*Significance Level:   0.1 
**Multiple Test Correction Method:  Step-Up 

The combined results from my analysis using the mixed model ANOVA and FDR 

multiple test correction of the Ft data set provide evidence to address the first part of 

Research Question 1, Is there a significant association between changes in the level of 

gene transcription and the time course of vaccination with Ft? The cut-off p-values 

generated by the mixed model ANOVA and subsequent FDR analysis range from 2.65E-

02 to 3.66E-06. Based on cut-off p-value alone, there were 14,468 transcripts that were 

differentially expressed over time (for all treatments combined). In response to treatment 

(for all time points) there were 19,958 differentially expressed transcripts. When effect 

time and treatment were considered as a single variable, 2,730 transcripts were identified 

as being differentially expressed. The list of significant transcripts was further 
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constrained by fold-expression level. Fold expression is determined using Fisher's least 

significant difference (LSD) and is expressed as the ratio of least squares means 

comparing vaccinated versus control. When fold-change in expression level was also 

added as criteria to evaluate the hypothesis for research question 1, then the number of 

transcripts which were both significantly differentially expressed and which met a 

minimum fold-change of ±2 fold in either direction, the number of transcripts was 

drastically reduced for the Ft data set (Table 9). The analysis results were used to 

determine whether to accept the null hypothesis or reject in favor of the alternate 

hypothesis as follows: 

H0:  There is no significant change [first assessed by Step Up-corrected p-value 

(p>0.1), then assessed by fold-change in expression (< 2.0 in either direction)] in the 

mean gene expression level for any given transcript in the Ft vaccinated group compared 

to the control group, or between vaccinated and control at any specific time point. 

Ha:  There is significant change [first assessed by Step Up-corrected p-value 

(p<0.1), then assessed by fold-change in expression (≥ 2.0 in either direction)] in the 

mean gene expression level for any given transcript in the Ft vaccinated group compared 

to the control group, or between vaccinated and control in at least one time point. 

When all determining criteria are assessed, the null hypothesis must be rejected in 

favor of the alternate hypothesis, that there is a significant change in gene expression 

following Ft vaccination in comparison to the unvaccinated control subjects, due to the 

observation of five transcripts at Day 2 which met both criteria of p≤ 2.93E-05 and ± 2-

fold change in transcript expression.
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Table 10 

False Discovery Rate Report: ANOVA Analysis Contrasting VEEV Vaccinated with 
VEEV Control Subjects 

Variable Cutoff p-value* # Transcripts** 
# Transcripts 

(± 2-Fold change in 
expression) 

Time 2.65E-02 14468 
 Treatment 3.65E-01 19958 
 Time * Treatment 4.99E-03 2730 
 0 Hr Vax vs Ctrl 1.82E-06 0 
 1 Hr Vax vs Ctrl 1.82E-06 0 
 4 Hr Vax vs Ctrl 1.82E-06 0 
 8 Hr Vax vs Ctrl 1.82E-06 0 
 Day 1 Vax vs Ctrl 1.82E-06 0 
 Day 2 Vax vs Ctrl 6.27E-03 3429 227 

Day 7 Vax vs Ctrl 1.23E-03 673 140 
Day 14 Vax vs Ctrl 2.83E-02 15482 326 
Day 21 Vax vs Ctrl 1.82E-06 0 

 Day 28 Vax vs Ctrl 1.82E-06 0  
 

*Significance Level:   0.1 
**Multiple Test Correction Method:  Step-Up 

The resulting ANOVA and FDR analyses of the VEEV data set provide evidence 

to address the second part of Research Question 1, Is there a significant association 

between changes in the level of gene transcription and the time course of vaccination 

with VEEV?  The cut-off p-values generated by mixed model ANOVA and subsequent 

FDR analysis range from 3.65E-01 to 1.82E-06. Based on cut-off p-value alone, there 

were 14,468 transcripts that were differentially expressed over time (for all treatments 

combined). In response to treatment (for all time points) there were 19,958 differentially 

expressed transcripts. When effect time and treatment were considered as a single 

variable, 2,730 transcripts were identified as being differentially expressed. When fold-
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change in expression level was also added as determining criteria, then the number of 

transcripts which were both significantly differentially expressed and which met a 

minimum fold-change of ±2 fold in either direction, the number of transcripts was 

reduced for the VEEV data set (Table 10). The analysis results were used to determine 

whether to accept the null hypothesis or reject in favor of the alternate hypothesis as 

follows: 

H0:  There is no significant change [first assessed by Step Up-corrected p-value 

(p>0.1), then assessed by fold-change in expression (< 2.0 in either direction)] in the 

mean gene expression level for any given transcript in the VEEV vaccinated group 

compared to the control group, or between vaccinated and control at any specific time 

point. 

Ha:  There is significant change [first assessed by Step Up-corrected p-value 

(p<0.1), then assessed by fold-change in expression (≥ 2.0 in either direction)] in the 

mean gene expression level for any given transcript in the VEEV vaccinated group 

compared to the control group, or between vaccinated and control in at least one time 

point. 

When all determining criteria are assessed, the null hypothesis must be rejected in 

favor of the alternate hypothesis, that there is a significant change in gene expression 

following VEEV vaccination in comparison to the unvaccinated control subjects, due to 

the observation of numerous transcripts which met the criteria on Day 2 of p≤ 6.27E-03 

and ± 2-fold change in transcript expression, on Day 7 p≤ 1.23E-03 and ± 2-fold change 
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in transcript expression, and on Day 14 p≤ 2.83E-02 and ± 2-fold change in transcript 

expression. 

 

Table 11 

False Discovery Rate Report: ANOVA Analysis Contrasting Ft Vaccinated against VEEV 
Vaccinated Subjects 

Variable Cutoff p-value* # Transcripts** 
# Transcripts 

(± 2-Fold change in 
expression) 

Time 2.65E-02 14468 
 Treatment 3.65E-02 19958 
 Time * Treatment 4.99E-03 2730 
 0 Hr Ft vs VEEV 2.67E-02 14593 361 

1 Hr Ft vs VEEV 4.12E-02 22527 497 
4 Hr Ft vs VEEV 2.67E-02 14612 393 
8 Hr Ft vs VEEV 2.16E-02 11795 310 
Day 1 Ft vs VEEV 4.34E-02 23724 527 
Day 2 Ft vs VEEV 3.05E-02 16655 360 
Day 14 Ft vs VEEV 3.65E-02 19954 609 
Day 21 Ft vs VEEV 3.32E-02 18153 355 
Day 28 Ft vs VEEV 3.24E-02 17738 411 

 

*Significance Level:   0.1 
**Multiple Test Correction Method:  Step-Up 

The resulting ANOVA and FDR analyses of the Ft data set in comparison to the 

VEEV data set provide evidence to address Research Question 2, Is there a significant 

association between changes in the level of gene transcription and the time course of 

vaccination with Ft in comparison to that of VEEV? The cut-off p-values generated by 

mixed model ANOVA and subsequent FDR analysis range from 2.16E-02 to 4.99E-03. 

Based on cut-off p-value alone, there were 14,468 transcripts that were differentially 

expressed over time (for all treatments combined). In response to treatment (for all time 
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points) there were 19,958 differentially expressed transcripts. When effect time and 

treatment were considered as a single variable, 2,730 transcripts were identified as being 

differentially expressed. When fold-change in expression level was also added as 

determining criteria, then the number of transcripts which were both significantly 

differentially expressed and which met a minimum fold-change of ±2 fold in either 

direction, the number of transcripts was reduced for the comparison of FT against VEEV 

data (Table 11). The analysis results were used to determine whether to accept the null 

hypothesis or reject in favor of the alternate hypothesis as follows: 

H0:  There is no significant change [first assessed by Step Up-corrected p-value 

(p>0.1), then assessed by fold-change in expression (< 2.0 in either direction)] in the 

mean gene expression level for any given transcript when comparing the Ft vaccinated 

group and the VEEV vaccinated group, or between vaccinated and control at any specific 

time point. 

Ha:  There is significant change [first assessed by Step Up-corrected p-value 

(p<0.1), then assessed by fold-change in expression (≥ 2.0 in either direction)] in the 

mean gene expression level for any given transcript when comparing the Ft vaccinated 

group and the VEEV vaccinated group, or between vaccinated and control in at least one 

time point. 

When all determining criteria are assessed, the null hypothesis must be rejected in 

favor of the alternate hypothesis, that there is a significant change in gene expression 

when comparing the Ft vaccinated group and the VEEV vaccinated group, due to the 

observation of numerous significant transcripts that met or exceeded the cut-off p-value 
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at each time point as well as had ± 2-fold change in expression in either direction (Table 

11). 

Correlational Analysis of Relationship Between Age and Neutralizing Titer 

I conducted a correlation analysis to measure the strength of relationship between 

the age of the vaccinated subjects and the neutralizing antibody titer produced by 

successful primary vaccination. Due to the small sample size for each vaccination group 

(n=10 for Ft; n=9 for VEEV) non-parametric Spearman rank correlation was used to 

measure the relationship. Analyses were conducted first between the groups with 

participant ages reduced to age category, where age 21-30 was classified as group 1, and 

participants with ages 31-50 were classified as group 2. An additional ad hoc analysis 

was conducted with age as reported. 

To address Research Question 3, I stated in the null hypothesis that there is no 

correlation between age and postvaccination titer. In the alternate hypothesis I stated that 

there is correlation between age and postvaccination titer.  

Correlation of age group with post-vaccination titer:  Ft study. For the 

comparison of age of Ft study subjects, the two-tailed test of significance indicated no 

relationship between age group of the Ft subjects and the Log10 post-vaccination titer (r 

= 0.0395, p = 0.967). The data are illustrated in Figure 7. Based on the results of the 

Spearman rank correlation, there is only a negligible correlation and the null hypothesis 

that there is no relationship between the two variables is accepted. 
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Figure 7. Correlation between age group and titer in Ft study. 

For the comparison of age of Ft study subjects, the two-tailed test of significance 

indicated no relationship between age of the Ft subjects and the Log10 post-vaccination 

titer (r = 0.0095, p = 0.984). The data are illustrated in Figure 8. Based on the results of 

the Spearman rank correlation, there is only a negligible correlation and the null 

hypothesis that there is no relationship between the two is accepted. 
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Figure 8. Correlation between Age and Titer in Ft study. 
 

For the comparison of age of VEEV study subjects, the two-tailed test of 

significance indicated no relationship between age group of the VEEV subjects and the 

Log10 post-vaccination titer (r = 0.5085, p = 0.179). The data are illustrated in Figure 9. 

Based on the results of the Spearman rank correlation, there is a moderately positive 

relationship between age group of the VEEV vaccinated individuals and post-vaccination 

titer; however, the results are not statistically significant. The null hypothesis is accepted. 
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Figure 9. Correlation between age group and titer in VEEV study. 

For the comparison of age of VEEV study subjects, the two-tailed test of 

significance indicated no relationship between age of the VEEV subjects and the Log10 

post-vaccination titer (r = 0.6245, p = 0.080). The data are illustrated in Figure 10. Based 

on the results of the Spearman rank correlation, there is a moderately positive relationship 

between the age of the VEEV vaccinated individuals and post-vaccination titer; however, 

the results are not statistically significant. The null hypothesis is accepted. 
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Figure 10. Correlation between Age and Titer in VEEV study. 

The lack of significance prompted me to more closely examine the individual data 

points in the VEEV age data set; I observed that one of the data points, corresponding to 

an individual at 37 years of age with a Log10 post-vaccination titer of 1.3, appeared to be 

an outlier. When I removed that individual’s data from the calculation, the two-tailed test 

of significance indicated a highly positive relationship between age of the VEEV subjects 

and the Log10 post-vaccination titer (r = 0.8365, p = 0.015). The data are illustrated in 

Figure 11. Based on the results of the Spearman rank correlation, there is a highly 

positive relationship between age of the VEEV vaccinated individuals and post-

vaccination titer and the results are statistically significant at the alpha = 0.05 level. The 

null hypothesis is rejected and the alternative hypothesis that there is a correlation 

between age and vaccine outcome in the VEEV data set is accepted. 
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Figure 11. Correlation between Age and Titer in VEEV study (with outlier removed). 

Association Between HLA Allele and Post-Vaccination Titer 

To address research question 4, is there a significant association between HLA 

phenotype and vaccination outcome?  a series of Mann-Whitney tests were conducted. 

Tests were not conducted between groups with only one value. 

The data pairs were graphed to illustrate the spread of the data points, particularly 

where there was only one data point in a category; in such case no comparison could be 

made between that group and others (Figures 12-15). 
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Figure12. HLA DRB1 allele and post-vaccination titer from the Ft study group. 
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Figure 13. HLA DQB1 allele and post-vaccination titer from the Ft study group. 
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Figure 14. HLA DRB1 allele and post-vaccination titer from the VEEV study group. 
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Figure 15. HLA DQB1 allele and post-vaccination titer from the VEEV study group. 

Mann-Whitney test for Ft study:  HLA DRB1 allele. For the Ft study group, I 

made statistical comparisons for the DRB1 allele between the following groups:  DRB1-

04, DRB1-11, DRB1-13, and DRB1-15. A two-tailed Mann-Whitney test indicated that 

the post-vaccination titer of study subjects with HLA allele DRB1-04 (Mdn = 2.05) was 

not significantly different than the titer for study subjects with HLA allele DRB1-11 

(Mdn = 2.655), U = 4, p = 0.343.  

A two-tailed Mann-Whitney test indicated that the post-vaccination titer of study 

subjects with HLA allele DRB1-04 (Mdn = 2.05) was not significantly different than the 

titer for study subjects with HLA allele DRB1-13 (Mdn = 2.655), U = 1.5, p = 0.400. 
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A two-tailed Mann-Whitney test indicated that the post-vaccination titer of study 

subjects with HLA allele DRB1-04 (Mdn = 2.05) was not significantly different than the 

titer for study subjects with HLA allele DRB1-15 (Mdn = 2.2), U = 7.5, p = 0.429. 

A two-tailed Mann-Whitney test indicated that the post-vaccination titer of study 

subjects with HLA allele DRB1-11 (Mdn = 2.655) was not significantly different than the 

titer for study subjects with HLA allele DRB1-13 (Mdn = 2.655), U = 3.5, p > 0.999. 

A two-tailed Mann-Whitney test indicated that the post-vaccination titer of study 

subjects with HLA allele DRB1-11 (Mdn = 2.655) was not significantly different than the 

titer for study subjects with HLA allele DRB1-15 (Mdn = 2.2), U = 10, p = 0.795. 

A two-tailed Mann-Whitney test indicated that the post-vaccination titer of study 

subjects with HLA allele DRB1-13 (Mdn = 2.655) was not significantly different than the 

titer for study subjects with HLA allele DRB1-15 (Mdn = 2.2), U = 4, p = 0.786. 

Based on the results of the Mann-Whitney test, the null hypothesis must be 

accepted that there is no association between HLA DRB1 allele among the Ft study 

subjects and post-vaccination titer. 

Mann-Whitney test for Ft study:  HLA DQB1 allele. For the Ft study group, I 

made statistical comparisons for the DQB1 allele between the following groups:  Ft 

DQB1-02, Ft DQB1-03, Ft DQB1-05, and Ft DQB1-06. 

A two-tailed Mann-Whitney test indicated that the post-vaccination titer of study 

subjects with HLA allele DQB1-02 (Mdn = 1.9) was not significantly different than the 

titer for study subjects with HLA allele DQB1-03 (Mdn = 2.2), U = 5.5, p = 0.509. 
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A two-tailed Mann-Whitney test indicated that the post-vaccination titer of study 

subjects with HLA allele DQB1-02 (Mdn = 1.9) was not significantly different than the 

titer for study subjects with HLA allele DQB1-05 (Mdn = 2.05), U = 1.5, p > 0.999. 

A two-tailed Mann-Whitney test indicated that the post-vaccination titer of study 

subjects with HLA allele DQB1-02 (Mdn = 1.9) was not significantly different than the 

titer for study subjects with HLA allele DQB1-06 (Mdn = 2.2), U = 2, p = 0.222. 

A two-tailed Mann-Whitney test indicated that the post-vaccination titer of study 

subjects with HLA allele DQB1-03 (Mdn = 2.2) was not significantly different than the 

titer for study subjects with HLA allele DQB1-05 (Mdn = 2.05), U = 7.5, p = 0.891. 

A two-tailed Mann-Whitney test indicated that the post-vaccination titer of study 

subjects with HLA allele DQB1-03 (Mdn = 2.2) was not significantly different than the 

titer for study subjects with HLA allele DQB1-06 (Mdn = 2.2), U = 20.5, p = 0.257. 

A two-tailed Mann-Whitney test indicated that the post-vaccination titer of study 

subjects with HLA allele DQB1-05 (Mdn = 2.05) was not significantly different than the 

titer for study subjects with HLA allele DQB1-06 (Mdn = 2.2), U = 2, p = 0.222. 

Based on the results of the Mann-Whitney test, the null hypothesis must be 

accepted that there is no association between HLA DQB1 allele among the Ft study 

subjects and post-vaccination titer. 

Mann-Whitney test for VEEV study:  HLA DRB1 allele. For the Ft study 

group, comparisons were made for the DRB1 allele between the following groups:  

DRB1-04, DRB1-07, and DRB1-15. A two-tailed Mann-Whitney test indicated that the 

post-vaccination titer of study subjects with HLA allele DRB1-04 (Mdn = 1.75) was not 
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significantly different than the titer for study subjects with HLA allele DRB1-07 (Mdn = 

2.51), U = 6, p = 0.389. 

A two-tailed Mann-Whitney test indicated that the post-vaccination titer of study 

subjects with HLA allele DRB1-04 (Mdn = 1.75) was not significantly different than the 

titer for study subjects with HLA allele DRB1-15 (Mdn = 2.81), U = 1.5, p = 0.086. 

A two-tailed Mann-Whitney test indicated that the post-vaccination titer of study 

subjects with HLA allele DRB1-07 (Mdn = 2.51) was not significantly different than the 

titer for study subjects with HLA allele DRB1-15 (Mdn = 2.81), U = 6, p = 0.389. 

Based on the results of the Mann-Whitney test, the null hypothesis must be 

accepted that there is no association between HLA DRB1 allele among the VEEV study 

subjects and post-vaccination titer. 

Mann-Whitney test for VEEV study:  HLA DQB1 allele. For the Ft study 

group, comparisons were made for the DQB1 allele between the following groups:  

DQB1-02, DQB1-03, and DQB1-06. A two-tailed Mann-Whitney test indicated that the 

post-vaccination titer of study subjects with HLA allele DQB1-02 (Mdn = 1.9) was not 

significantly different than the titer for study subjects with HLA allele DQB1-03 (Mdn = 

2.05), U = 13.5, p = 0.864. 

A two-tailed Mann-Whitney test indicated that the post-vaccination titer of study 

subjects with HLA allele DQB1-02 (Mdn = 1.9) was not significantly different than the 

titer for study subjects with HLA allele DQB1-06 (Mdn = 2.51), U = 5, p = 0.159. 
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A two-tailed Mann-Whitney test indicated that the post-vaccination titer of study 

subjects with HLA allele DQB1-03 (Mdn = 2.05) was not significantly different than the 

titer for study subjects with HLA allele DQB1-06 (Mdn = 2.51), U = 7.5, p = 0.193. 

Based on the results of the Mann-Whitney test, the null hypothesis must be 

accepted that there is no association between HLA DQB1 allele among the VEEV study 

subjects and post-vaccination titer. 

One-way analysis of variance:  Ft study. In addition to the Mann-Whitney tests, 

an ad hoc one-way ANOVA was also performed to measure association between HLA 

allele and post-vaccination outcome.  

To reiterate, research question 4 asks if there is an association between the HLA 

allele of a study subject and the post-vaccination titer. The null hypothesis is that there is 

no significant difference on postvaccination titer between HLA phenotypes, while the 

alternative hypothesis states that there is a significant difference on postvaccination titer 

between HLA phenotypes. 

The one-way ANOVA for the Ft study was calculated on the HLA DRB1 allele 

and post-vaccination titer. The analysis was not significant, F(3,12) = 1.02, and p = 

0.418. 

The one-way ANOVA for the Ft study was calculated on the HLA DQB1 allele 

and post-vaccination titer. The analysis was not significant, F(3,16) = 1.082, and p = 

0.385. 

One-way analysis of variance:  VEEV study. The one-way ANOVA for the 

VEEV study was calculated on the HLA DRB1 allele and post-vaccination titer. The 
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analysis was not significant, F(3,3) = 1.667, and p = 0.343. 

The one-way ANOVA for the VEEV study was calculated on the HLA DQB1 

allele and post-vaccination titer. The analysis was not significant, F(2,13) = 1.933, and p 

= 0.184. 

Based on the results of the one-way, the null hypothesis must be accepted that 

there is no association between either the HLA DRB1 or HLA DQB1 allele or post-

vaccination titer in either the Ft or VEEV study. 

Additional Ad Hoc Analyses:  Ingenuity Pathway Analysis 

Information from significantly differentially expressed transcripts, incorporating ± 

2-fold changes in expression, were revealed from the mixed model ANOVA analysis 

conducted in Partek Genomics Suite and uploaded into QIAGEN’s Ingenuity® Pathway 

Analysis (IPA) program (IPA, 2016). Data were analyzed through the use of IPA with a 

focus on the involvement of top transcripts in known canonical pathways. The 

significance of pathway enrichment was calculated using Fischer’s Exact Test, with the 

cut-off for statistical significance set at p < 0.05. Pathway diagrams were generated using 

IPA.  

Pathway analysis:  Ft study. For the Ft study data set, only five transcripts were 

identified (Table 9) as meeting the criteria for differential expression and all were only 

differentially expressed on Day 2 post vaccination. The transcripts represented only three 

individual genes (each gene may have more than one transcript that represents it) and 

include STAT1, GBP1, and ANKRD22. All three genes have been implicated in 

interferon-stimulated or regulated pathways as illustrated in Figure 16, and the genes are 
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predominantly controlled by or affected by Type I and Type II interferon-stimulated 

responses. 

 

Figure 16. Pathway analysis of significant genes from Ft study.  

Pathway analysis:  VEEV study. For the VEEV study data set, hundreds of 

transcripts were identified (Table 10) as meeting the criteria for differential expression 

and were differentially expressed on Days 2, 7, and 14 post vaccination. The top five 

canonical pathways indicated for Days 2 and 7 were highly overlapping (Figure 17), 

whereas the top five canonical pathways revealed for Day 14 were very different (Figure 

18). 
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Figure 17. Top five canonical pathways for Days 2 and 7 in VEEV study. 

The predominant pathway that was indicated by the analysis was interferon 

signaling. The minimum threshold of significance (the –log of p = 0.05) is indicated by 

the red line; the pathways are ordered by decreasing significance. Table 12 lists the 

individual genes that are implicated in each pathway illustrated. 
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Table 12 

List of Genes in Top Canonical Pathways (Day 2-7) in VEEV Vaccine Study 

Canonical pathway Study day Differentially expressed genes in pathway 
Interferon Signaling VEEV Day 2 OAS1,IFIT1,IFITM1,STAT1,IFIT3,STAT2,ISG15,MX1,IFI35,SOCS1,IFI6 

VEEV Day 7 OAS1,IFIT1,IFITM1,STAT1,IFIT3,STAT2,ISG15,MX1,IFI35,IFI6 
VEEV Day 14 OAS1,IFIT1,ISG15,IFI6 

Activation of IRF by 
Cytosolic Pattern 
Recognition Receptors 

VEEV Day 2 IRF7,STAT1,IFIH1,STAT2,ISG15,DDX58,ZBP1,IFIT2 
VEEV Day 7 IRF7,STAT1,IFIH1,STAT2,ISG15,DDX58,ZBP1,IFIT2 
VEEV Day 14 IFIH1,ISG15 

Role of Pattern 
Recognition Receptors  

VEEV Day 2 EIF2AK2,OAS1,IRF7,IRS2,IFIH1,OAS3,OAS2,DDX58 CXCL8 

VEEV Day 7 EIF2AK2,OAS1,IRF7,IFIH1,OAS3,OAS2,DDX58 
VEEV Day 14 OAS1,IFIH1,OAS3,ATM,OAS2 

Retinoic acid Mediated 
Apoptosis Signaling 

VEEV Day 2 PARP12,ZC3HAV1,TNFSF10,PARP9,PARP14 

VEEV Day 7 PARP12,ZC3HAV1,TNFSF10,PARP9,PARP14 
VEEV Day 14 CYCS 

UVA-Induced MAPK 
Signaling 

VEEV Day 2 PARP12,IRS2,ZC3HAV1,STAT1,PARP9,PARP14 
VEEV Day 7 PARP12,ZC3HAV1,STAT1,PARP9,PARP14 

VEEV Day 14 RRAS2,ATM,CYCS 
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Figure 18. Top five canonical pathways for Day 14 in the VEEV study. 

 The predominant pathway that was indicated by the analysis was pyrimidine 

deoxyribonucleotides de novo biosynthesis. The minimum threshold of significance (the 

–log of p = 0.05) is indicated by the red line; the pathways are ordered by decreasing 

significance. Table 13 lists the individual genes that are implicated in each pathway 

illustrated. 
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Table 13 

List of Genes in Top Canonical Pathways (Day 14) in VEEV Vaccine Study 

Canonical 
pathway Study day Differentially expressed genes in pathway 

Pyrimidine 
Deoxyribonucleotides 
De Novo 
Biosynthesis I 

VEEV Day 2 CMPK2 

VEEV Day 7 CMPK2 

VEEV Day 14 RRM2,RRM1,TYMS,CMPK1,CMPK2 

EIF2 Signaling VEEV Day 2 EIF2AK2,IRS2 

VEEV Day 7 EIF2AK2 

VEEV Day 14 RPS27L,RPL17,RRAS2,ATM,RPL35,RPS7,RPS24,RPL36A,RPL22L1,RPL23 

Hematopoiesis from 
Pluripotent Stem 
Cells 

VEEV Day 2 CXCL8 

VEEV Day 7  

VEEV Day 14 IGLC1,CD3D,IGHM,IGHG1,IGHA1 

Protein Ubiquitination 
Pathway 

VEEV Day 2  

VEEV Day 7 UBE2L6,USP18 

VEEV Day 14 PSMA4,HSP90B1,UBR1,HSPA13,PSMA3,HSPE1,USP1,HSPH1,PSMC6,HSP90AA1,
DNAJB9,DNAJB14,USP53 

Systemic Lupus 
Erythematosus 
Signaling 

VEEV Day 2 TNFSF13B,IL1RN,IRS2 

VEEV Day 7 IL1RN 

VEEV Day 14 SNRPD2,SNRPG,LSM5,CD28,RRAS2,CD3D,ATM,IGHM,IGHG1,PRPF39 

 
 
 

Pathway analysis:  Ft study in comparison to VEEV study. For the direct 

comparison between changes in the levels of gene expression from the Ft study compared 

with the VEEV study, hundreds of transcripts were identified (Table 11) as meeting the 

criteria for differential expression at every time point post vaccination. The top five 

canonical pathways illustrate the involvement of key canonical pathways across all days 

following infection with Ft in comparison to VEEV vaccination (Figure 19). 
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Figure 19. Top five canonical pathways in the comparison of Ft to VEEV study. 

The minimum threshold of significance (the –log of p = 0.05) is indicated by the 

red line; the pathways are ordered by decreasing significance. Table 14 lists the 

individual genes that are implicated in each pathway illustrated. 
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Table 14 

List of Genes in Top Canonical Pathways in Ft Compared to VEEV Vaccine Study 

Canonical pathway      Study day          Differentially expressed genes in pathway 

PI3K/AKT Signaling Tuli-VEEV, 1 Hr PPP2R5E,PIK3CD,INPP5D,PTEN,MCL1,PTGS2,PPP2R1A,CDC37,JAK1,BCL2L1,HSP90AB1,SOS1 
Tuli-VEEV, 4 Hr PPP2R5E,PIK3CD,PTEN,MCL1,PPP2R1A,CDC37,JAK1,BCL2L1,HSP90AB1,YWHAZ,HSP90AA1 
Tuli-VEEV, 8 Hr PPP2R5E,PIK3CD,INPP5D,PTEN,MCL1,PPP2R1A,CDC37,JAK1,BCL2L1,HSP90AB1,YWHAZ 
Tuli-VEEV, Day 1 PPP2R5E,PIK3CD,PTEN,MCL1,PPP2R1A,JAK1,BCL2L1,HSP90AB1,YWHAB,SOS1 
Tuli-VEEV, Day 2 PPP2R5E,PIK3CD,PTEN,MCL1,PPP2R1A,JAK1,BCL2L1,HSP90AB1 
Tuli-VEEV, Day 14 PPP2R5E,PIK3CD,INPP5D,PTEN,MCL1,JAK1,BCL2L1,HSP90AB1,YWHAZ,YWHAB,PPP2R2A, 

SOS1 
Tuli-VEEV, Day 21 PPP2R5E,PIK3CD,INPP5D,PTEN,MCL1,PPP2R1A,JAK1,BCL2L1,HSP90AB1 
Tuli-VEEV, Day 28 PPP2R5E,PIK3CD,INPP5D,PTEN,MCL1,JAK1,BCL2L1,HSP90AB1,YWHAZ,PPP2R2A,SOS1 

B Cell Receptor Signaling Tuli-VEEV, 1 Hr PTEN,RAC2,SOS1,RASSF5,CFL1,PIK3CD,INPP5D,BCL10,PPP3R1,APBB1IP,PTPRC,BCL2L1, 
NFAT5, RAP2A 

Tuli-VEEV, 4 Hr CDC42,CFL1,PIK3CD,PTEN,PIK3AP1,IGHG1,PTPRC,RAP2B,BCL2L1,NFAT5,RAC2,RASSF5 
Tuli-VEEV, 8 Hr CFL1,PIK3CD,INPP5D,PTEN,PIK3AP1,APBB1IP,PTPRC,RAP2B,BCL2L1,NFAT5,RAC2,RASSF5 
Tuli-VEEV, Day 1 CFL1,PIK3CD,PTEN,PPP3R1,PIK3AP1,CREB5,PTPRC,BCL2L1,NFAT5,RAC2,SOS1,RASSF5 
Tuli-VEEV, Day 2 CFL1,PIK3CD,PTEN,PIK3AP1,PTPRC,BCL2L1,NFAT5,RAC2,RASSF5 
Tuli-VEEV, Day 14 PTEN,PIK3C2A,RAC2,MAP3K13,SOS1,RASSF5,CFL1,INPP5D,PIK3CD,CREB5,PPP3R1,PIK3AP1, 

RAP2B, PTPRC, BCL2L1,NFAT5 
Tuli-VEEV, Day 21 CFL1,PIK3CD,INPP5D,PTEN,PPP3R1,PIK3AP1,CREB5,PTPRC,BCL2L1,NFAT5,RAC2,RASSF5 
Tuli-VEEV, Day 28 PTEN,RAC2,SOS1,RASSF5,CFL1,INPP5D,PIK3CD,CREB5,PPP3R1,PIK3AP1,RAP2B,PTPRC, 

BCL2L1, NFAT5 
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Table 14 (Con’t) 

List of Genes in Top Canonical Pathways in Ft Compared to VEEV Vaccine Study (Con’t) 

Canonical pathway Study day Differentially expressed genes in pathway 
Virus Entry via Endocytic 
Pathways 

Tuli-VEEV, 1 Hr FYN,PIK3CD,FLNA,ACTB,FOLR1,AP2A1,B2M,ITGB2,AP2M1,RAC2 
Tuli-VEEV, 4 Hr CDC42,FYN,PIK3CD,FLNA,ACTB,ITGB2,ACTA2,AP2M1,RAC2 
Tuli-VEEV, 8 Hr PRKCD,FYN,PIK3CD,FLNA,ACTB,AP2A1,ITGB2,AP2M1,RAC2 
Tuli-VEEV, Day 1 FYN,PIK3CD,FLNA,ACTB,AP2A1,B2M,ITGB2,AP2M1,RAC2 
Tuli-VEEV, Day 2 FYN,PIK3CD,FLNA,ACTB,AP2A1,B2M,ITGB2,RAC2 
Tuli-VEEV, Day 14 FYN,PIK3CD,PIK3C2A,FLNA,ACTB,AP2A1,B2M,ITGB2,RAC2 
Tuli-VEEV, Day 21 FYN,PIK3CD,FLNA,ACTB,AP2A1,B2M,ITGB2,RAC2 
Tuli-VEEV, Day 28 FYN,PIK3CD,FLNA,ACTB,AP2A1,B2M,ITGB2,RAC2 

HIPPO signaling Tuli-VEEV, 1 Hr PPP2R5E,DLG1,ITCH,PPP1R12A,MOB1A,PPP2R1A,CD44,STK4 
Tuli-VEEV, 4 Hr PPP2R5E,DLG1,PPP2R1A,PPP1CB,YWHAZ,CD44 
Tuli-VEEV, 8 Hr PPP2R5E,PPP1R12A,PPP2R1A,YWHAZ,CD44 
Tuli-VEEV, Day 1 PPP2R5E,DLG1,ITCH,PPP1R12A,PPP2R1A,YWHAB,CD44,STK4 
Tuli-VEEV, Day 2 PPP2R5E,DLG1,ITCH,PPP1R12A,PPP2R1A,CD44 
Tuli-VEEV, Day 14 PPP2R5E,DLG1,ITCH,PPP1R12A,PPP1CB,YWHAZ,YWHAB,PPP2R2A,CD44,STK4 
Tuli-VEEV, Day 21 PPP2R5E,DLG1,ITCH,PPP2R1A,CD44,STK4 
Tuli-VEEV, Day 28 PPP2R5E,PPP1CB,YWHAZ,PPP2R2A,CD44,STK4 

Lipid Antigen Presentation 
by CD1 

Tuli-VEEV, 1 Hr AP2A1,PSAP,B2M,AP2M1 
Tuli-VEEV, 4 Hr PSAP,AP2M1 
Tuli-VEEV, 8 Hr AP2A1,PSAP,AP2M1 
Tuli-VEEV, Day 1 AP2A1,PSAP,B2M,AP2M1 
Tuli-VEEV, Day 2 AP2A1,PSAP,B2M 
Tuli-VEEV, Day 14 AP2A1,PSAP,B2M 
Tuli-VEEV, Day 21 AP2A1,PSAP,B2M 
Tuli-VEEV, Day 28 AP2A1,PSAP,B2M 
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Summary 

Answers to Research Questions Based on Observed Results 

I based my answers to the four research questions on the results obtained by the 

statistical analyses planned and executed as part of the dissertation research. 

Research Question 1. Is there a significant association between changes in the 

level of gene transcription and the time course of vaccination with Ft or VEEV? 

In the Ft study group, comparing Ft vaccinated individuals with mock-vaccinated 

control subjects, there were statistically significant changes in the level of expression 

over time as an independent variable, in response to treatment as an independent variable, 

in response to time*treatment considered as a single variable, for 8 hr, Day 2, and Day 14 

post-vaccination. When fold-change was added to the decision criteria, only Day 2 results 

still retained transcripts that were both significant by p value and by fold-change in level 

of gene expression. The five transcripts represented only three genes, GBP1, STAT1, and 

ANDRD22. 

In the VEEV study group, comparing VEEV vaccinated individuals with mock-

vaccinated control subjects, there were statistically significant changes in the level of 

expression over time as an independent variable, in response to treatment as an 

independent variable, in response to time*treatment considered as a single variable, for 

Day 2, Day 7, and Day 14 post-vaccination. When fold-change was added to the decision 

criteria, Days 2, 7, and 14 results still retained transcripts that were both significant by p 

value and by fold-change in level of gene expression, although the numbers were greatly 

reduced. The differentially expressed transcripts were found to participate in several 
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canonical signaling pathways at early time points, including interferon signaling, 

activation of interferon response factors by pattern recognition receptors, role of pattern 

recognition receptors, apoptosis signaling and MAPK signaling. By Day 14, the active 

pathways shifted to include pyrimidine biosynthesis, hematopoiesis by pluripotent stem 

cells, the protein ubiquitination pathway, and EIF2 signaling. 

Research Question 2. Is there a significant association between changes in the 

level of gene transcription over the time course of vaccination with Ft in comparison to 

VEEV? 

Comparing Ft vaccinated individuals against VEEV vaccinated individuals; there 

were statistically significant changes in the level of expression over time as an 

independent variable and in response to treatment as an independent variable. In response 

to time*treatment considered as a single variable, there were significant changes in the 

level of gene expression at every time point post-vaccination. When a ± 2-fold-change in 

transcript expression was added to the decision criteria, all time point results still retained 

transcripts that were both significant by p value and by fold-change in level of gene 

expression, although the numbers were greatly reduced. The differentially expressed 

transcripts were found to participate in several canonical signaling pathways at various 

time points, including the PI3K/AKT signaling pathway, the B cell receptor signaling 

pathway, the HIPPO pathway, and the lipid antigen presentation by CD1 pathway. 

Research Question 3. Is there a correlation between age of the vaccinated subject 

and vaccination outcome? 
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The relationship between age (or age group) and post-vaccination titer was 

assessed by correlation and negligible relationship was observed between the age of the 

Ft vaccinated study subjects and post-vaccination titer. The relationship between the age 

of the VEEV vaccinated study subjects and post-vaccination titer was observed to be 

moderately positive. In both cases, however, the resulting p values were not significant. 

Research Question 4. Is there a significant association between Human 

Leukocyte Antigen (HLA) phenotype and vaccination outcome? 

Association between HLA allele and post-vaccination titer was assessed both by 

nonparametric Mann-Whitney t-tests and by one-way ANOVA. There was no significant 

association between any HLA allele (DRB1 or DQB1) and post-vaccination titer for 

either Ft or VEEV study subjects. 

In the next Chapter, I will discuss the results in greater detail in order to formulate 

conclusions. My discussion will include the limitations of the study, recommendations 

for future work, and implications of the research project will also be addressed. 
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Chapter 5: Discussion, Conclusions, and Recommendations 

Overview 

In this final chapter, I interpret results from the data analyses, discuss the 

limitations of the research study, I will make recommendations which may improve 

future statistical data analyses, address implications of the resulting findings on social 

change, and offer conclusions with possible explanations for some of the results. The 

discussion will begin by addressing each of the research questions and providing the 

findings of the research analyses. 

The purpose of this study was to measure the potential relationship between gene 

expression over time and in response to treatment (vaccination) with either Ft or VEEV 

(as well as a direct comparison of Ft to VEEV); to assess the potential relationship 

between the age of the vaccinated individuals and vaccine outcome (successful response 

to primary vaccination or vaccine failure); and to assess the potential association between 

HLA phenotype and vaccine response.  

The data analyses showed the association of a very small number of differentially 

expressed genes with vaccination with the live-attenuated Ft vaccine, in contrast to 

hundreds of differentially expressed genes that were associated with vaccination with 

live-attenuated VEEV vaccine. The results of the analysis in which I directly compared 

the levels of gene expression in Ft-vaccinated study subjects with the levels of gene 

expression in VEEV-vaccinated study subjects showed hundreds of differentially 

expressed genes in response to vaccination at every time point assessed. During analysis 

of the relationship between age and vaccine outcome (neutralizing antibody titer), I did 
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not find evidence of a relationship in either the Ft-vaccinated study group or in the 

VEEV-vaccinated study group. Finally, the analysis to examine the association of HLA 

allele and vaccine outcome (neutralizing antibody titer) failed to show a significant 

association between any specific DRB1 or DQB1 allele and vaccine outcome 

(neutralizing antibody titer) for Ft or VEEV-vaccinated study subjects. 

Interpretation of the Findings 

Association of Level of Gene Expression with Time and Treatment Following 

Vaccination 

Research Questions 1 and 2 queried whether there were significant associations 

between changes in levels of gene transcription and the time course of vaccination with 

Ft or VEEV when compared against unvaccinated controls, or in direct comparisons 

made between Ft to VEEV vaccinated individuals.  

Analysis Interpretations for Ft Vaccinated Versus Controls 

In the literature review (Chapter 3), I detailed results from previous transcriptional 

studies involving Ft. The issue of the timing of sample collection was raised in previous 

studies; in the study conducted by Andersson et al. (2006) samples from seven patients 

presenting with naturally-occurring tularemia were collected and subjected to 

transcriptomic analysis (at roughly day 2-3, 6-7, 8-, 10-11, and 13 days following 

estimated time of infection), whereas in the Fuller et al. study (2007), PBMCs were 

isolated from six human volunteers at specified time points before and then after 

vaccination with the live-attenuated strain of Ft (before, then 18 Hr, 48 Hr, Day 8, and 

Day 14 following vaccination). In a third study by Paranavitana et al. (2008b), PBMCs 
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were collected from eight volunteers and challenged in vitro with the live-attenuated 

vaccine strain of Ft, collected at 1, 4, 8, 16, and 24 hours post-infection, and then 

subjected to transcriptomic analysis. In the present study, 10 vaccinated study subjects 

were age-matched to 10 control volunteers who received a mock vaccination. All subject 

pairs reported for post-vaccination sample collected within study protocol time lines 

(typically ± 1 hour for early time points).  

The results of the mixed model ANOVA I conducted on samples from Ft 

vaccinated study subjects in comparison to mock-vaccinated controls only showed five 

transcripts which were differentially expressed, and transcript expression levels were 

only significant on day 2 following vaccination. The five transcripts represented three 

genes, STAT1, GBP1, and ANKRD22. The results for STAT1 and GBP1 confirm 

previously published results; however, ANKRD22 appears to be a novel transcript 

expressed in response to vaccination with Ft and extends the knowledge of human 

molecular responses to Ft vaccination. Both Andersson et al. (2006) and Paranavitana et 

al. (2008b) also observed differential expression of STAT1 and GBP1 genes at roughly 

the same time frame in their studies. None of these transcripts was identified as being 

differentially expressed in the study by Fuller et al. (2007). The function of ANKRD22 is 

not well understood, but the gene has been implicated in several disease states including 

as a diagnostic marker of pancreatic ductal adenocarcinoma and as an interferon-gamma 

stimulated gene implicated in T-cell mediated transplant rejection (Caba et al., 2014; 

Venner et al., 2014).  
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Analysis Interpretations for VEEV Vaccinated versus Controls 

Differentially expressed transcripts were associated with VEEV vaccination on 

Days 2, 7, and 14 post-vaccination. The top canonical pathways that include the 

transcripts that were expressed include the interferon signaling pathway, activation of 

interferon-response factors by pattern recognition receptors pathway, the role of pattern 

recognition receptors pathway, the retinoic-acid receptor mediated apoptosis signaling 

pathway, and the MAPK signaling pathway. There is only a single report of human host 

responses to VEEV with which to compare the current results; the current results 

corroborate the previous publication with the observation that the role of pattern 

recognition receptors pathway was also indicated as a top canonical pathway in that 

previous report (Erwin-Cohen et al., 2012).  

The study reported by Erwin-Cohen et al. (2012) was of PBMCs treated in vitro 

with the live-attenuated vaccine strain of VEEV, and samples were subsequently 

collected at 1, 4, 12, and 24 hours post-infection. Some of the most abundantly expressed 

transcripts in the VEEV human in vivo study which correspond to transcripts identified 

by the previous in vitro VEEV report by Erwin-Cohen et al. (2012) include OAS1, 

OAS2, OAS3, IFIH1, IRF7, DDX58, EIF2AK2, and STAT1. The broad involvement of 

interferon signaling responses was corroborated between the in vitro and in vivo studies, 

as well as transcripts that signal engagement of the inflammasome (Guo, Callaway, & 

Ting, 2015). 

Many transcripts that were tentatively identified as biomarkers of a naïve or 

normal response by Erwin-Cohen et al. (2012) were also observed to have significantly 
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increased transcript expression in the current study including IFIT2, NEXN, TNFSF10, 

DDX58, SAMD9L, XAF1, LAMP3, and SLAMF7. Interestingly, the biomarkers that 

were suggested to represent or identify a molecular nonresponse to the vaccine strain of 

VEEV were not significantly differentially expressed in the current study, thus 

corroborating the data that those transcripts are only up-regulated during an alternate 

primary vaccine failure response. 

Analysis Interpretations for Comparison of Ft to VEEV Vaccinated Responses 

I structured the analysis results to compare the top expression results from the 

perspective of the Ft group, as well as the opposite where results are structured from the 

perspective of the VEEV group. The top canonical pathways included the PI3K/AKT 

signaling pathway, the B cell receptor signaling pathway, the pathway describing virus 

entry via endocytic pathways, the HIPPO signaling pathway (also known as the Salvador-

Warts-Hippo pathway), and the lipid antigen presentation by CD1 pathway. Many of the 

top molecules in each of these pathways overlap with the other top pathways, and 

indicate that there is a great deal of signaling crosstalk in the pathways that transduce 

biological signals.  

Among the hundreds of molecules that were observed to have increased 

transcription in response to Ft vaccination compared with VEEV vaccination, many 

molecules were observed to have expression that displayed a similar trend to what has 

previously been reported for other Ft studies (Andersson et al., 2006; Paranavitana et al., 

2008b). Molecules including CASP1, GBP1, IFI16, SOD2, STAT1, NMI, PIM1, and 

TAP1 displayed a pattern of differential transcript expression where expression early (4-8 
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hours following vaccination, up to day 2) was significantly up-regulated. Other 

transcripts, including CD3E, CD59, and KPNA2 displayed a pattern of sustained elevated 

transcript expression following vaccination. 

None of the transcripts identified by Fuller et al. (2007) as part of the “sustained 

up,” “down early,” “up early,” or “down late” patterns of expression were observed to 

have significantly altered levels of expression (both by p-value and fold-change in 

expression) in the present study at any time point following vaccination; however, some 

of the transcripts displayed lower levels of altered expression (less than 2-fold in either 

direction).  

Overall, in the present research, the molecules which I observed to have the 

broadest involvement in canonical signaling pathways included PPP2R5E, PIK3CD, 

PTEN, JAK1, BCL2L1, SOS1, NFAT5, CDC42, RAC2, RASSF5, FYN, CD44, ITCH, 

AP2A1, PSAP, and B2M. 

PPP2R5E, PIK2CD, PTEN, JAK1, BCL2L1, and SOS1 are part of the PI3K/AKT 

signaling pathway. I observed a down-regulated pattern of expression for the PPP2R5E 

transcript in response to Ft vaccination in comparison to VEEV vaccination. The gene is 

a regulatory subunit which functions as part of a cascade that controls the activity of 

protein phosphatase PP2A (Cristóbal et al., 2015). In colorectal cancer, down regulation 

of PPP2R5E was suggested to be an important mechanism in the pathogenesis of disease 

(Cristóbal et al., 2015). The effect of Ft vaccination on PPP2R5E expression, as a 

regulator of PP2A, may indicate that Ft infection impinges on the PP2A pathway as a 

mechanism of controlling regulatory T cell (T reg) homeostasis (Apostolidis et al., 2016). 
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Apostolidis et al. (2016) reported that PP2A was a previously-unrecognized requirement 

for T reg function, and Gerriets et al. (2016) provided additional support for the idea, 

noting that the PI3K/AKT pathway regulates metabolism needed to support the T reg 

function. Novel regulators of PP2A activity, including FTY720, may facilitate 

proliferation of immune cells in response to infection (or vaccination) as well as caspase-

dependent apoptosis (Cristóbal et al., 2015).  

The involvement of PI3KCD transcripts within the PI3K/AKT pathway that I 

observed demonstrate the potential involvement of neutrophil activation signals in the 

pathogenesis of Ft disease or within the immune response generated by vaccination with 

the live-attenuated form of Ft; however, the mechanistic role of neutrophils in the course 

of tularemia infection has been suggested to be one where Ft leverages suppression of the 

natural turnover of neutrophils as part an innate immune suppression strategy (Schwartz 

et al., 2012).  

Decreased expression of PTEN may be related to a vaccine-induced dampening of 

the innate immune responses by elicited through the activation of interferon and 

impinging on the expression of IL-6 (Li et al., 2016). The role of PTEN in antiviral 

immunity has been discussed previously (Li et al., 2016); however the current data 

suggest a novel function for PTEN in anti-microbial immunity as well. Indeed, decreased 

PTEN expression has a downstream consequence of leading to increased numbers of T 

reg cells; however, those T reg cells have a decreased stability (Huynh et al., 2015). 

JAK1 expression varied over time in response to Ft vaccination compared to VEEV 

vaccination; at very early time points, JAK1 expression was decreased (1, 4 hours post 
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vaccination) however, at 8 hours, day 2, and day 28 post-vaccination, JAK1 expression 

was up-regulated by Ft vaccination. The temporal effects I observed in transcript 

expression are in agreement with the tightly-controlled regulation of expression and 

activation of Janus kinases as well as the pleotropic role that JAK1 plays as a signal 

transducer of multiple cytokine signals (e.g., interferon signaling and various 

interleukins) (Roskoski, 2016).  

The role of BCL2L1 in the PI3K/AKT canonical pathway is likely one of 

mediating apoptosis through the activation cascade of TGF-beta1 and p53 

signaling/apoptosis; the transcript levels for this gene were consistently elevated in 

response to vaccination with Ft compared with VEEV vaccination (IPA, 2016). Finally, I 

showed that the expression of SOS1was consistently decreased in response to vaccination 

with Ft at following vaccination, which was in contrast to the expression level expected 

or predicted by IPA; SOS1 is a guanine nucleotide exchange factor and adaptor protein 

which functions via the ERK and MAPK signaling cascades to mediate the activation of 

RAS (Tian & Feig, 2001). 

I observed that the genes encoding NFAT5, CDC42, RAC2, RASSF5 were 

differentially expressed in response to Ft vaccination in comparison to VEEV 

vaccination; these genes participate in the B cell receptor signaling pathway. NFAT5 was 

observed to have sustained decreased transcript expression over time following Ft 

vaccination which was opposite of the predicted normal response of the gene as part of 

the B cell receptor signaling pathway. The observation I made of differential inhibition of 

expression of NFAT5 suggests that the mechanism of immune suppression following 
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vaccination with Ft may leverage the nuclear factors of activated T cells family of 

transcription factors (IPA, 2016). I identified other important molecules in the B cell 

receptor signaling pathway that displayed increased expression in response to Ft 

vaccination, including CDC42, RAC2, and RASSF5. Both CDC42 and RAC2 are part of 

a family of small GTPases; each has also been shown to have ubiquitin protein ligase 

activity and may impact the B cell signaling pathway as part of a concerted immune 

suppression mechanism (IPA, 2016). 

I found that two additional molecules of importance to the analysis were those of 

TLR4 and NOD2. I observed that TLR4 displayed increased expression at key time 

points of 4-8 hours following vaccination with Ft in comparison to VEEV as well as at 

Day 2; TLR4 is an important molecule involved in activation of the inflammasome. 

Conversely, NOD2 expression was decreased at each time point following vaccination. 

NOD2 plays an important role in the immune response to intracellular bacterial 

lipopolysaccharides (LPS) by recognizing the muramyl dipeptide (MDP) derived from 

them and activating the NFKB pathway (IPA, 2016). The inclusion of TLR4 as a key 

gene that was observed to have differential expression in response to vaccination is 

important to potential future vaccine constructs as TLR4has been used as a natural 

adjuvant to boost innate immune signals for rationally designed vaccines such as 

Melacine, Fenrix, and Cervarix (Reed, Hus, Carter, & Orr, 2016). 

Analysis Interpretations Relative to Epidemiology Nexus Conceptual Theory 

In brief terms the theoretical concept, discussed in far greater depth in chapter 3, 

that guided my dissertation study was a comprehensive understanding of human immune 
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responses to vaccination may provide key insight into the molecular epidemiology of 

infectious diseases and suggest innovative approaches to address global health challenges 

to produce new vaccines. I have termed this collection of concept ideals from leading 

subject matter experts the Epidemiology Nexus Concept. The results I report from my 

dissertation research illustrate association between changes in the levels of gene 

expression in response to vaccination with Ft, VEEV, and between Ft compared with 

VEEV, and further indicate how those differentially expressed molecules interact and 

overlap with key canonical signaling pathways. Collectively, I present the results as a 

quantitative analysis of the complex biological interactions that jointly result in 

immunocompetence and contribute a small piece of a knowledge foundation on the 

mechanisms of action for the Ft and VEEV vaccines. I formulated the Epidemiology 

Nexus Concept as a theory to describe the connections that exist and need to be explored 

between host genetic responses, demographic factors, disease responses, and the health 

outcomes of individuals. I conclude that the results from my research study support the 

Epidemiology Nexus conceptual theory formulated by subject matter experts. 

Analysis Interpretations for Comparison of Age to Vaccine Responses 

I conducted correlational analyses to examine the relationship between age and 

vaccine response in both the Ft study and VEEV studies. My interpretations of the results 

lead me to accept the null hypothesis for the Ft study data set. For the VEEV study, after 

I conducted my initial analysis for the relationship between age and production of 

neutralizing titer as a measure of vaccine success, I conducted an additional analysis 

where I removed one data point that appeared to be an outlier. Once the outlier point was 
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removed from the data set, I observed a highly positive relationship between age and 

vaccine titer in the VEEV group. These results were also statistically significant. For the 

Ft study, the small number of subjects in the data set was likely a contributing factor to 

the lack of significance in the correlation. 

Analysis Interpretations for Comparison of HLA to Vaccine Responses 

Based on the analyses to examine the association of HLA phenotype and vaccine 

response in both the Ft study and VEEV study, I accepted the null hypothesis for both the 

Ft and VEEV studies. For both studies, the small number of subjects in each data set was 

likely a contributing factor to the lack of significant association.  

Limitations of the Study 

The secondary analyses of the two data sets used in this study are limited by the 

design and quality of each of the original studies. In particular, it should be noted that 

each original was comprised of only male study volunteers. The study volunteers were 

overwhelmingly of Caucasian, not Hispanic or Latino race and ethnicity; therefore, the 

data are also limited in that there can be no correlation of vaccine response with any 

racial or ethnic group. In addition, only 10 volunteers were included in each treatment 

group (e.g., control and vaccinee). Sample size is not a limitation for the research 

questions related to the association of transcript expression with time or treatment; 

however, such small sample sized lacked power for the research questions of relationship 

between age and vaccine outcome and association between HLA phenotype and vaccine 

outcome.  
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 The live attenuated strain of Ft that was used in the original study may not 

produce the same host responses to infection in a human that a wild-type, fully 

pathogenic strain of bacteria may elicit. The live attenuated strain of VEEV that was used 

to vaccinate volunteers belongs to the IA/B strain of VEEV; the changes in gene 

expression that are associated with this particular strain may or may not be the same as 

what would be observed if using a virus from one of the other VEEV subtypes or with 

fully virulent strains. There is no way to test the veracity of the live attenuated vaccine 

strains as surrogates of virulent infection in humans. Future studies in appropriate animal 

models may be able to suggest whether or not the host responses to infection are similar. 

Measures were implemented during the collection of the original data to control 

bias, including blinding of sample collection personnel to the treatment groups and 

collection of all samples within a pre-defined range of acceptable collection (e.g., 4 hours 

post-vaccination ± 30 minutes, day 2 post-vaccination ± 2 hours, or day 21 post-

vaccination ± 2 days). Some types of bias could not be controlled in the study including 

attrition bias (study participants had the right to terminate participation in the study at any 

time) and exclusion bias, in particular the exclusion of women from the study in order to 

control variation in transcript expression that could be due to fluctuations in female 

hormone signaling. An additional type of bias was revealed during the analysis and that 

represents a technical bias; variances in the transcriptional data were observed to coincide 

with the scan date that the Affymetrix chips were read following hybridization.  
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Recommendations 

Based on both the results of the research analyses and a review of the study 

limitations, there are several recommendations that I suggest to facilitate future studies. 

First, future transcriptomic studies should plan to include women; it would be helpful to 

examine the association of changes in the level of gene expression in response to 

vaccination in each individual population. As I discussed in the literature review, it has 

been suggested that normal hormonal variation in adult, non-menopausal women can 

affect their immune responses; however, it could be highly beneficial to future vaccine 

studies to examine this conundrum directly. Second, in terms of testing the potential 

relationship between age and HLA phenotype with vaccine outcome, my results suggest 

that far greater numbers of volunteers will need to be examined. While 10 individuals per 

group was more than sufficient for the microarray portion of the study, that number fell 

far short for correlation of age to vaccine outcome or association of HLA with vaccine 

outcome. My third recommendation would be to examine the relationship between a 

diversified study sample and vaccine outcome. The study populations for the Ft and 

VEEV studies consisted predominantly of Caucasian race and non-Latino or Hispanic 

ethnicity. 

With regard to the transcriptome studies (microarray), one of the sources of 

variation or noise in the data that I found was the scan date on which the Affymetrix 

chips were processed and read; future studies should endeavor to have all relevant chips 

processed within the same batch and the results read on the same day. The mixed model 

ANOVA that I employed to examine the effects of Time*Treatment incorporated scan 
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date and thus the effects of scan date as a variable were considered in the analysis. The 

issue of missing sample data may not be able to be resolved completely; it is impossible 

to prevent loss to follow-up; however, I recommend recruiting additional study 

participants may alleviate the number of samples falling below the minimum number for 

which the study is powered. As an example, if power calculations estimate that 10 

volunteers are needed, then recruiting twelve with an estimated 20% loss to follow up 

could reduce biased results due to inadequate samples in analyses. Additionally, I 

observed few responses using the parameters for acceptance of Step-up p-value < 0.01 

and fold-change in gene expression ± 2-fold change in expression level. For future 

analyses of association of changes in the levels of transcript expression, it may be 

beneficial to consider changes that are more modest, for example ± 1.5-fold or less. The 

interpretation of microarray data using lower cutoff values for fold-change elicits the 

question of whether biological relevance or statistical significance is more important 

within the context of data interpretation (Dalman, Deeter, Nimihakavi, & Duan, 2012).  

Implications 

Positive Social Change 

The research I have described in the dissertation may have implications for social 

change on several levels, and as such also represents an important component of the 

Epidemiology Nexus concept that I believe supports the links between molecular 

epidemiology and health outcomes. At the human level (individual, family, community) 

vaccination with Ft or VEEV could alleviate mortality and morbidity due to endemic 

disease. Since the greater threat of disease caused by either agent is one of a biological 
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threat, vaccination could prevent large-scale deaths and morbidity, and in turn prevent 

catastrophic costs associated with the long term effects of disease, particularly in the case 

of VEEV infection. 

At the level of policy, the research project I have described in the dissertation may 

serve as part of a foundation of knowledge of the molecular epidemiology of host 

responses to either Ft or VEEV; in turn, such knowledge may be useful in comparing the 

transcriptional responses to vaccination with a multitude of other infectious agents, such 

as traditional childhood diseases (e.g., chicken pox, measles, whooping cough, etc.), 

other biological warfare agents (e.g., Bacillus anthracis, Yersinia pestis, Ebola, etc.), or 

emerging diseases such as Zika virus and West Nile virus. Understanding the host 

molecular responses to these diseases through vaccination may decrease developmental 

costs associated with the design and approval of new vaccines which can meet the 

rigorous standards of FDA licensure. Indeed, the observation that I made of increased 

expression of a Toll-like receptor, TLR4, as induced by Ft vaccination suggests that 

rationally designed vaccines which incorporate TLR4 as a biological adjuvant may be 

able to enhance innate and adaptive immune responses to Ft vaccination. 

Conclusion 

The results I have reported in the dissertation study provide key informative 

findings regarding the association of host transcripts and treatment with either Ft or 

VEEV live-attenuated vaccines. From the patterns of expression in response to Ft 

vaccination, it is apparent that the Ft vaccine promoted a systemic immunosuppression 

which was observed as an overall lack of variation in transcript expression; indeed only 
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three genes were significantly altered and observable only at day 1 following vaccination. 

In contrast, I observed that vaccination with VEEV induced a robust interferon-driven 

response that was most noticeable at days 2, 7, and 14 post-vaccination. When levels of 

expression in response to Ft and VEEV vaccination were compared directly, the 

differences elicited in transcript expression between the two vaccines were quite 

different, with expression of several hundred transcripts significantly modulated at each 

time point following vaccination. The participation of specific genes suggested key 

canonical pathways which are dissimilarly involved in the innate and adaptive response 

to Ft versus VEEV vaccination including the PI3K/AKT pathway, B cell receptor 

signaling, virus entry by endocytic pathways, HIPPO signaling, and lipid antigen 

presentation by CD1. In addition to the suggestion that there are diverse pathways 

involved in the mediation of immune responses between Ft and VEEV vaccination, the 

data from the analyses I have made may provide a basis for natural adjuvants which can 

be leveraged in rational vaccine design to augment the innate and adaptive immune 

response, for example through the use of TLR4 as a biological adjuvant. 

I reported a highly positive correlation between the age of the vaccinated 

volunteers and the production of neutralizing titer in the VEEV study which was 

statistically significant. The mechanisms which may be contribute to higher neutralizing 

titers in older populations are not clear and it remains to be determined if the trend is 

consistent in a larger group of volunteers. Future studies should be conducted to 

corroborate and extend the results I have observed within this research project. Greater 

numbers of volunteers may provide power to detect more discreet differences in gene 
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expression, as well as effects on vaccine outcome due to age of the individual and HLA 

phenotype. 
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