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Abstract 

Autism spectrum disorders (ASD) constitute life-long neurodevelopmental conditions. 

Globally, ASD risk for males remains 2 to 4 times greater than for females. Critical 

exposure mechanisms, their timing on ASD risk, and associations with the ASD gender 

differential remain elusive. The purpose of this study was to describe the relationship 

between preconception, pregnancy, recalled lactation practice, and infant traits, on ASD 

risk, and the gender differential of ASD.  A recently published temporal framework was 

adapted to study effects of maternal smoking and vitamin use, and recalled lactation 

practice on offspring ASD diagnosis with adjustment for preconception health and infant 

breathing traits. A retrospective case-control analysis using 733 child data records from a  

U.S. autism registry that contained familial and nonfamilial controls characterized child 

gender-stratified relationships of 9 study variables. Logistic regression results showed 

prior maternal smoking, male gender, and maternal recollection of  lactation practices 

were associated with significantly higher odds of offspring ASD diagnosis.  Exposure 

factors associated with ASD did not differ significantly by child gender or maternal 

vitamin use. Infant respiratory distress at birth was a covariate and collinearly related to 

obstetric risks.  Maternal smoking was antecedent to respiratory distress and lactation 

practice. Study limitations included incomplete responses without repeated measures for 

recalled lactation practice and maternal diet variables. Implications for positive social 

change include a better understanding of reproductive, preconception, and prenatal risk 

factors of ASD.  The study results have implications for reproductive health, smoking 

cessation programs, family planning, and prenatal care for women of reproductive age.     
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Chapter 1: Introduction to the Study 

The medical and educational terminology and criteria used to describe essential or 

early onset autism has changed over the years but continues to reflect a common 

observable outcome based on social, comunicative, and repetitive behavioral 

observations (American Psychological Association, 1994; Centers for Disease Control 

and Prevention [CDC], 2007; Daniels et al., 2011; United States Department of Health 

and Human Services [DHHS], 2008). The increased global prevalence and public health 

costs of autism affect health care, education, and community health economics. Annual 

health care utilization costs within a U.S. nationwide sample were estimated to be $5,000 

more per year for children with ASD than health care utilization costs for typically 

developing children (Liptak, Stuart, & Auinger, 2006).  A more recent estimate suggested 

medical costs alone may be $49 billion annually, with families spending $67,000 per year 

in medical, educational, and psychological therapy to care for an autistic child; this 

accumulates to an estimated $3.2 million over the lifetime of the person with autism 

(Saunders, 2010).   

As early as 1968, epidemiologists began to suspect autism was associated with 

biological rather than psychological dysfunction (Rutter, 1968).  Genomic research 

suggests that more than 80 to 85% cases cannot be directly attributed to particular genetic 

risks (Bukelis, Porter, Zimmerman, & Tierney, 2007; Hallmayer et al., 2011; Miles, 

McCathren, Stichter, & Shinawi, 2010).  Despite the increased number of cases of ASD 

over time globally and within the United States, the gender differential has consistently 

been  reported to be approximately 4 times higher for males (Elsabbagh et al., 2012) for 
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diagnostic criteria used by psychologists, physicians, and educational professionals 

(Daniels et al., 2011; DHHS, 2008).    

ASD comparative pathobiology associated with gene expression in nonaffected 

siblings suggested genes and metabolism are involved in the nervous system 

development, inflammation, and cytoskeletal organization (Hu et al., 2009).  Organ and 

metabolic dysfunction within six biochemical pathways has been associated with ASD in 

children, but it is unclear if these are secondary symptoms or primary causes of ASD 

(Abrahams & Geschwind, 2008; Gabory, Attig, & Junien, 2009). Metabolic biomarkers 

for cellular stress and dietary exposures have been studied with inconclusive results. The 

influence of restrictive and selective dietary preferences and pharmacotherapy use by 

children with ASD confounds study designs and data interpretation. 

ASD studies generally employ case-control designs for hypothesis testing, but 

few studies have reported on gender differences among ASD cases. Study designs and 

research progress are limited by the rarity of the condition, especially among females, 

which complicates study of the ASD gender differential. There are also few theories 

about causative roots the of ASD gender differential.  

Large population based studies containing over 500 cases and case control studies 

have shown gender-associated relationships between parental age, fetal distress, induced 

labor, and maternal health status (Burstyn, Wang, Yasui, Sithole, & Zwaigenbaum, 2011; 

Croen et al., 2007; Dodds et al., 2012; Gregory, Anthopolos, Osgood, Grotegut, & 

Miranda, 2013; Habek & Kovacevic, 2011; Krakowiak et al., 2012; Mann, McDermott, 

Bao, Hardin, & Gregg, 2010). The relative contribution of these prenatal factors is a core 
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focus of etiological research. However, even for large population based studies, a case-

control design is ineffective for investigating temporality of risk factors (Colditz, 2010; 

McDonald & Paul, 2010). The critical molecular, epigenetic, or biological exposure 

mechanisms, gene-environment interactions, the impact of their timing on ASD onset, 

and the ASD gender differential remains largely a scientific mystery.   

Therefore, it is of epidemiologic interest to understand if the ASD gender 

differential may inform the root causes of ASD. Research on gender-associated metabolic 

differences are lacking in ASD cohorts. In addition, there is need for a unifying, temporal 

framework of reproductive factors. 

Observable, consistently detailed medical records and readily documented 

gender-based factors may provide robust analysis of the effect of reproductive and 

prenatal factors on the gender differential of autism. Retrospective, externally validated 

prenatal risk factors, including parental age, preconception health status, parental risk 

behaviors, pregnancy and delivery complications, and familial genetics are likely 

associated with ASD risk. Insights into shared and unique risk exposures and the timing 

of such exposures during fetal and child development may also inform ASD risk profiles 

for subsequent offspring. Such interrelated factors may also inform the gender-

differential risk associated with autism onset. The gender differential in autism is 

generally presumed in the literature to be biologically and possibly hormonally based, but 

this area of etiologic research deserves more attention to better understand the role of 

preconception heath, prenatal health, and epigenetics in the development of ASD risk. 
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In the remainder of this chapter, I present the exposure, genetic, and epigenetic 

literature background for the theoretical construct of a temporally-constructed framework 

to study ASD risk factors, and the ASD gender differential. The concepts of biological 

susceptibility and deterministic fetal programming, further articulation of the etiological 

problem, the purpose of my dissertation, and a hierarchical framework to study essential 

research questions will be described in this chapter. The framework is an adapted 

temporal model from previous population research on ASD etiology but includes 

hypotheses about possible epigenetic theories of ASD. 

Background 

 Preconception, prenatal and perinatal gene-environment mechanisms, and 

subsequent changes in metabolic processes may be integral to ASD etiology. Suggestive, 

replicated evidence of altered metabolic processes that reflect a comprehensive profile of 

metabolic dysfunction has been characterized for autism (Abrahams & Geschwind, 2008; 

Gabory et al., 2009). However, these theories have not integrated the temporality of fetal 

risk factors. Furthermore, reproducible biomarkers for autism have not been identified. 

Moreover, generalized causative mechanisms have not addressed the risk factors 

associated with infant gender or identified biomarkers of exposure. The proposed 

pathways have not theoretically accounted for the gender differential that is consistently 

reported across race, ethnicity, culture, genome, and parental health status. Additionally, 

temporality, uncertain etiology, and gender-stratified risk profiles are challenges to the 

characterization of  autism onset and diagnosis. Hence, exposure analysis research for 

ASD risk is  problematic. It is unclear if proposed biomarkers are symptoms or biological 
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indicators of ASD.  It is also unclear whether the ASD gender differential is a genetic, 

hormonal, gene-environment, or social risk factor. Thus, the study of plausible epigenetic 

mechanisms may inform fetal exposure risk profiles. A more comprehensive, theoretical 

framework that reflects ASD  etiology is needed. 

Exposure Factors 

Exposure-induced altered genetic and cellular metabolic processes may be 

measureable if proxy variables for these changes can be identified and quantified. 

Intermediate biologic markers for critical pathways, as proxy indicators of body burden, 

are typically modeled to estimate dose or outcome effect (Checkoway, Pearce, & Kriebel, 

2004;  Moeller, 2005). Biologic markers may be proxies for exposure, for metabolic 

uptake or “body burden,” or they may represent symptomatic or downstream metabolic 

effect indicators (Checkoway et al., 2004; Katzung, 2001). Biomonitoring indicators may 

not reflect cumulative dose or may be highly variable over time or between subjects.  

Individual genetic traits, past exposures, lifestyle, and health status of study participants 

may confound the relationship through individual susceptibility (Belsky & Pluess, 2009; 

Miles et al., 2010; Taylor & Rogers, 2005; Teschke et al., 2002).  

Various blood biomarkers have been extensively studied in children diagnosed 

with ASD, but most studies were complicated by the lack of comprehensive 

characterization of prenatal health factors, pregnancy history, and unique social and 

biological developmental trajectories of affected children and families (Lauritsen, 

Pedersen, & Mortensen, 2005; McDonald & Paul, 2010).  Studies reporting the use of 

metabolite biomarkers were complicated by current dietary practices and  pharmaceutical 
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therapy for affected children who were predominantly male (Adams et al., 2011; Evans et 

al., 2008; Nikolov et al., 2008; Rosenberg, Landa,  Law, Stuart, & Law, 2010; Taurines et 

al., 2010). There has been very little clarification in biomarker research regarding the 

discernment of timing, causes, and symptoms of autism or the gender differential of ASD 

(Kumbier, Dudley, & Thome, 2010; Ratajczak, 2011).  

Due to temporal factors, there are concerns that biomarker candidates for autism 

may be clinical manifestations or symptoms of the condition, rather than critical proxy 

variables of causation. Autism diagnosis is often validated after a child’s social and 

language skills have matured and stabilized, typically at age 8, in order to minimize 

diagnostic variability and bias  (CDC, 2012; Daniels et al., 2011; Posserud, Lundervold, 

& Gillberg, 2009). Therefore, prenatal and early life exposures may not be well 

characterized or documented in anticipation of potential subsequent diagnosis at age 8 

calendar years. For ethical reasons, prenatal or genetic screenings for autism and for 

gender-based diagnostic risk are ill-advised due to concerns over test sensitivity and 

specificity (Miles et al., 2010; National Human Genome Research Institute [NHGRI], 

2011; Wilfond & Ross, 2009).   

Vaccinations containing thimerosol are often reported in the popular press to be a 

key ASD risk factor. However, the reported associations of ASD and childhood vaccine 

or thimerosol exposure are not adequately supported by current scientific evidence 

(DeStefano & Thompson, 2004; Makela, Nuorti, & Peltola, 2002; Poland, 2011).  In 

addition, there does not appear to be a direct relationship between autism and 

inflammation-induced cytokines or between ASD and reactive immunoglobulin 
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expression in infants or children (Goines et al., 2011; Onore, 2009; Rosen, Yoshida, & 

Croen, 2007).  Despite observable tendency to encephalitic outcomes in ASD toddlers 

(Schumann, Barnes, Lord, & Courchesne, 2009) and documented sulfation pathway 

anomalies in ASD children (Campbell et al., 2009; Erickson et al., 2005) there are few 

stable cytokine, dietary, or urinary biomarkers that can be studied in association with 

ASD (Kidd, 2010; Ratajczak, 2011; Wilson, 2014). 

There are also few, if any, identified unifying, validated, or conclusive childhood 

predictive ASD biomarkers of shared or unique environmental exposures (Zerbo, Iosif, 

Walker, Ozonoff, Hansen, & Hertz-Picciotto, 2013). Comorbidities and confounding 

interactions related to childhood food allergenicity and selective and repetitive food 

selection among autistic children are common (Genuis & Bouchard, 2009; Johnson, 

Handen, Mayer-Costa, & Sacco, 2008).  Furthermore, many commonly administered 

pharmacotherapies for children with autism affect developing digestive processes, 

metabolism, hormones, nutrient uptake, and biomarker composition (Palmieri, Papeleo, 

Porcelli, Scarcia, & Gaita, 2010; Schultz et al., 2008).  However, the inability to identify 

reproducible ASD biomarkers may also be due to possible confounding effects of genetic 

expression or allele profiles on metabolism (Cheslack-Pestova et al., 2007; Nijmeijer et 

al., 2010; Schmidt et al., 2011; Wilhelm-Benartzi et al., 2012).  

Only a few research papers were identified that addressed hypothesized 

mechanisms, exposures, or biomarkers that may be related to gender-differentials of ASD 

(Adams et al., 2011; Ashwood et al., 2008; Default et al., 2009, 2012; Evans et al., 2008; 

Hu et al., 2009; Lauritsen et al., 2005; Nikkila et al., 2008;  Pan, Ober, & Abney, 2007; 
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Pastural et al., 2009; Wiest, German, Harvey, Watkins, & Hertz-Picciotto, 2009). The 

gender differential of ASD, however, is a well known fact.  Few papers  proposed 

mechanisms and simultaneously quantified related biomarker associations for the gender-

differential in children with ASD. Therefore, gender-specific metabolic biomarker 

research among healthy males and female infants and children has been  identified as an 

emerging area of autism study. Significant gender differences in serum biomarkers were 

identified in healthy infants at age 1 (Nikkila et al., 2008), and earlier research suggested 

X-linked chromosome or epigenetic effects may  influence biomarkers such as 

lipoprotein and tryiglyceride levels (Pan et al., 2007). 

Because of uncertain etiology, indeterminate biomarker monitoring, and disparate 

timing of onset and diagnosis, autism research designs tend to be ecological and 

retrospective in nature. Most are observational studies based on an environmental 

epidemiological framework, with presumed exposure profiling designed to test the degree 

of association, magnitude, and direction between exposure and outcomes. Challenges 

arise in assessing the current autism etiology research literature due to the uncertain 

timing of exposures that may include secular change and multiple, diverse, confounding, 

or mediating environmental, chemical, or biological agents.   

Genetic Factors 

Historically, the persistent gender prevalence ratio risk for other developmental 

disabilities was attributed to genetic variability (perhaps X-chromosome or gene related) 

expressed in females only when pathological (i.e., both X-genes affected).  Random 

genetic mosaicism  or genetic diversity of human females is reportedly higher than males 
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(Gabory et al., 2009, Pan et al., 2007; Ober, Loisel, & Gilad, 2008).  However, offspring 

statistics on ASD-positive mothers have not shown an increased reproductive risk of 

subsequent onset autism diagnosis (Goin-Kochel, Abbacchi, & Constantino, 2007; 

Pickles et al., 2000). Thus, ASD inheritance mechanisms attributed to dominant X 

chromosome (i.e., X-X genotype traits)  are not  directly associated with  autism 

diagnosis among offspring.  However, it is plausible that other genetic factors, such as 

random, Mendelian gene-gene interactions may also contribute to the risk of autism 

onset.  Genome-wide analysis techniques have been used to study the relationship among 

gene transcription patterns, familial genetic profile characterizations, and subsequent 

autism diagnosis in offspring. 

More than 40 published genome-wide association studies for autism have been 

reviewed with suggestive but  inconclusive results (Miles et al., 2010).  Even among 

monozygotic and dizygotic twins studies, concordance rates for autism diagnosis have 

been reported to be in the range of only 60 to 82% (Hallmayer et al., 2011; Hu, Frank, 

Heine, Lee, & Quackenbush, 2006; Lauritsen & Ewald, 2001; Rai, 2010; Sharp et al., 

2011).  This low concordance suggests genetic risk is not equally shared, even among 

twins. Hu et al. (2009) used a case-control like design for gene expression profiling 

among twins and nonaffected sibling pairs and speculated cholesterol/steroid metabolism 

and androgenic hormone levels may affect the gender differential pathiobiology of 

autism. Low concordance in twin studies provided evidence for the hypothesis that 

chromatin reversion and/or epigenetic mechanisms may be at least partially responsible 

for subsequent onset autism (Chao et al., 2010; Gibson et al., 2010).  Genetic studies 
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designed to investigate sex-specific autosomal or X-gene-linked effects have not 

improved statistical power for the replication of high risk group profiles (Carayol et al., 

2011), even when using innovative techniques such as sequential oligogenetic linkage 

analysis routines- SOLAR (Kent, Dyer, & Blangero, 2005;  Kent et al., 2005).  Therefore, 

gene transcription profiling has not been implicated as a fundamental mechanism related 

to autism onset.  

 The consequences of assisted reproductive technology with regard to alteration in 

genetic material, chromatin reversion, cytostolic environment, and genetic function and 

expression continue to be better understood, but they likely also affect genetic 

susceptibility and fetal programming. Furthermore, the prevalence of assisted 

reproductive technology is not consistently measured in the United States due different 

reporting systems used in vital records, clinical records, and federally supported 

surveillance programs (Barradas et al., 2012). 

Increased parental age may be associated with chromosomal damage or assisted 

reproductive technology (Jenkins, 2013; Schieve et al., 2011). Genetic susceptibility due 

to chromosomal damage or preexisting maternal conditions may have different relative 

risk contributions to ASD than do epigenetic mechanisms associated with placental 

transfer mechanisms. However, these factors and epigenetic theories have not been 

adequately studied to provide insight into ASD risk and the gender differential of ASD. 

 Gene function and expression  may be dynamically affected through gene-

environment interactions, which may affect ASD onset. The relationship of gene-

environment intereactions and autism  is an emerging field of etiological study.  Several 
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plausible concepts have been proposed to describe the interaction of genetic and 

environmental exposure factors, also referred to as epigenetic interaction factors.  A 

graphic summary of noteworthy genetic, parental, and child risk factors associated with 

ASD is shown in Figure 1. The temporality, interaction, and directional association of 

these factors is not well-understood.  Hence, there is need to further study the temporal 

sequence of  ASD mechanisms. 

Genetic, Parental, and Child Risk Factors 

Commonly Associated with ASD Etiology

•Family based 
association tests

•Gender specific

association tests

• Genetic allelle
variation 

Familial 
genetic  
heritability

•Paternal age

•Maternal  age

•Maternal health

•Parental smoking 

Parental traits

•Maternal Pregnancy Diet

•Assisted Reproduction 

•Maternal health during 
pregnancy

• Obstetric health

• Labor/delivery events

• Breastfeeding duration

Maternal health

Odds Ratio analysis of Risk Factors

Few ASD Gender Comparisons

Gender-Associated Attributable

Risk Factors for  Autism Diagnosis

•Infant gender

• Birth order and parity

• Gestational birth age

• Infant breathing 

•Infant  sleeping

•Infant snoring

Infant  traits

Retrospective population or cohort and case-control design

Figure 1.  Genetic, parental, and child exposure factors associated with ASD. 

Epigenetic Theories 

There are two unifying concepts that are generally proposed to rationalize the 

sequence of events that may result in adverse offspring consequences, including 

childhood disorders and autism risk. These concepts have been expanded and are 

described below.  
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Biological susceptibility was first described by Wade Hampton Frost in 1937 with 

regard to chronic disease conditions (Frost, 1977).  Subsequent refinement of the concept 

was offered by the concept of  multifactor liability threshold (Tsia et al., 1981), which 

describes the impact of multiple, weak associations of risk factors associated with autism 

onset and diagnosis. The ASD liability was presumed to be normally distributed, but 

individuals would not be affected unless environmental factors exceeded a certain 

threshold level. While Tsia et al. (1981) described the theorized mechanism as more 

complex than the classic environmental exposure-dose-disease model, the researchers did 

not address genetic variability, temporal factors of exposures, or childhood 

developmental risk profiles that may be associated with autism.   

Barker and Connor (1986) first described the concept of fetal programming with 

regard to chronic disease outcomes and suggested that trigger mechanisms for later life 

conditions such as cardiovascular disease were strongly influenced by the fetal 

environment.  The concept of fetal programming has been expanded to consider a 

dynamic interaction between fetal development and growth and unique and fluctuating 

maternal health status (Finney-Brown, 2011; Lillycrop, 2011). Recent research in 

placental transport and physiology has provided evidence that fetal programming may 

provide an explanatory mechanistic framework for the trigger events and consequences 

that affect fetal development (Salafia, 2011; Sibley, 2009).  However, the impact of 

genetic variability on the concept of fetal programming is not well known. 

There is no consensus on the definition of genetic susceptibility to ASD, and genomic 

studies have been inconclusive. Dodds et al. (2011) used the term to represent an ASD 
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case subject having an affected sibling or mother with a history of psychiatric or 

neurologic condition.  

 Therefore, among a well characterized genomic cohort, a focus on preconception 

health, well-documented prenatal factors and early life exposures may provide more 

study control over pivotal risk factors and exposure profiles associated with initial autism 

diagnosis at age 8.  Expansive, prospective cohort studies, such as the Earlistudy funded 

by the National Institute of Health and the advocacy group Autism Speaks, have recently 

been initiated to clarify the effects of certain prenatal and perinatal risk factors implicated 

in autism (as cited in Newschaffer et al., 2012).    

Critical windows of prenatal exposure to chemical agents such as tobacco smoke 

have been documented (Gardener, Spiegelman, & Buke, 2011; Gray, Eiden, Leonard, 

Shisler, & Huestis, 2010) and provide suggestive evidence to support the biological 

susceptibility of multiple weak environmental assaults and/or the more deterministic fetal 

programming concepts that may apply to autism onset and the ASD gender differential 

(McDonald et al., 2006). Common gender-associated infant trait risk profiles, respiratory 

dysfunction such as fetal hypoxia and distress, induced  labor, and overlapping exposures 

factors associated with sudden infant death and nonregressive autism have been reported 

in the literature with little etiologic explanation (Dodds et al., 2011; Elsabbagh et al., 

2012; Gregory et al., 2013; Kinney & Thatch, 2009; Kolvezon, Gross, & Reichenberg, 

2007).   

The purpose of this study was to investigate the relationship between 

preconception health, obstetric health, prenatal health, maternal smoking and nutrition, 
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lactation duration, and infant breathing and sleeping patterns and ASD in a U.S. genomic 

cohort. Using a narrowed focus on early life, prenatal exposures, and closed-system or 

captively controlled dietary intake (prior to the use of solid foods) within a genomic 

cohort, I aimed to study the relationship of parental traits, pregnancy onset factors, and 

neonatal behavior to autism diagnosis to explore the gender risk differential in autism.  

Using case-control methodology, the association of pregnancy factors (maternal smoke 

exposure, multivitamin use, and lactation) to ASD outcome was explored, with 

consideration of the effect of preconception parental age, preconception maternal health 

status, obstetric complications, and neonatal  traits. These exposure-timing relationships 

were studied with stratification of infant gender and compared between cases and a 

diverse control group within an autism family genomic registry cohort.   

Proxy exposure variables associated with direct placental exchange theory were 

proposed to relate to higher odds ratio of autism diagnosis. Thus, fetal exposure risks 

during pregnancy and lactation may suggest significant main effects in the overall 

exposure risk relationship and ASD. It was of interest whether direct placental exchange 

mechanisms may inform the gender differential of ASD between boys and girls. A 

proposed framework for the study is illustrated in Figure 2. The biological rationale for 

the ASD gender differential has not been studied extensively, and the pathobiology 

deserves additional research attention. Gender-stratified observational study results may 

improve understanding of autism etiology, inform future prospective cohort study 

designs, and validate reproductive and maternal health education practices, potential 

preconception, prenatal behavioral, and dietary interventions. 
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Distal causes and/or 

correlates (Z)

Parental Age

Maternal Preconception Risk

High blood pressure,   

Diabetes type & onset

Low iron/anemia,

Low vitamin B12

Neural tube risk/low folate

Albuminurea)

Obstetric Health Risk 

(preeclampsia, jaundice)

Confounders

(W)
Infant Sleep /snoring

Infant Breathing/ 

interruptions

Infant Gender

Main Effect Variables

(X)
Smoke Exposure & Maternal 

Diet During Pregnancy

(fish intake, multivitamins)

Lactation duration

Fetal Gender

Health Outcome

(Y) 

Autism Spectrum 

Disorder Diagnosis

The hypothesized hierarchical relationship between distal preconception risk factors (Z), direct 

placental fetal exposures (X), and neonatal infant sleep and breathing patterns (W) and autism 

diagnosis (Y).  Adapted from Figure 1. and Burstyn, Wang, Yasui, Sithole, & Zwaigenbaum 2011

Genetic Susceptibility

Placental Transport

 

Figure 2. Proposed temporal and epigenetic theory of exposure factors and ASD. 

 

Problem Statement 

Uncertain timing and impact of exposures and gene-environment interactions 

complicate ASD etiological research (McDonald & Paul, 2010).  For example, 

reproducible suggestive evidence exists for physiologic differences in nervous system 

development, inflammation, and cytoskeletal function among ASD and typical 

developing children (Abrahams & Geschwind, 2008; Gabory et al., 2009;  Hu et al., 

2009).  Additionally, three epigenetic and six altered metabolic processes have been 

characterized for ASD (Abrahams & Geschwind, 2008; Gabory et al., 2009). However, 

etiologic mechanisms have not addressed the exposure-timing aspects of genetic 
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susceptibility versus environmental exposure risks associated with ASD, the relative 

contribution of epigenetics versus exposure-dose on the gender differential of autism.  

There is a persistent gender risk differential in ASD onset between boys and girls 

across race, ethnicity, culture, and genome (Elsabbagh et al., 2012).  The medical, 

biological, or biochemical rationale for the 4-fold predominance of male autistic children 

compared to females has not been deeply explored but has been accepted as a social or 

biological norm. There is also a significant gap in the medical and epidemiological 

literature regarding plausible hypotheses that may help elucidate the rationale for trebled 

or quadrupled clinical autism prevalence ratio of males to females. 

In addition, there remains a lack of unifying or hierarchical framework for the 

study of ASD risk factors. The plausibility of direct placental exchange or fetal 

programming mechanisms applied to ASD or the gender differential deserves more 

attention (Lillycrop, 2011; Myatt, 2010; Wilhelm-Benartzi et al., 2012).  Moreover, the 

discovery of plausible genetic or cellular mechanisms that may impact ASD risk and the 

ASD gender differential is not well studied. There are substantial uncertainties about 

genetic and epigenetic risk mechanisms of ASD onset. Research regarding biomarkers 

and metabolic profiles for healthy persons stratified by gender is just emerging as a focus 

of metabolomic study (Mittelstrass et al., 2011; Nikkila et al., 2008; Weiss, Pan, Abney, 

& Ober, 2006). Metabolomics as a function of exposure-timing may inform the gender 

differential consistently reported for subsequent autism diagnosis.   

A study design of  plausible, prioritized, temporally clustered prenatal, early life 

exposures and parental behavioral factors associated with the gender differential in 
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autism prevalence was constructed. The framework presumed genetic susceptibility  

reflected preconception gene function and expression, which may be influenced by 

parental use of assisted reproductive technology. However genetic factors were a 

secondary consideration in this study. Gene expression and epigenetic mechanisms, 

presumed to be associated with maternal exposures and direct placental transfer and fetal 

programming mechanisms, were hypothesized to be associated with temporality of ASD 

risk factors. Figure 2 reflects hypothesized relationships of epigenetic and temporal 

theories for ASD. 

Purpose and Nature of the Study 

The purpose of the study was to describe relationships between three pregnancy-

related exposures and ASD outcome, as mediated by preconception health, prenatal 

health, obstetric complications, and neonatal traits, stratified by infant gender. Using a 

well-characterized genomic cohort, the study contributed to the limited body of research 

on the hierarchical relationship and temporality of factors, shared familial environmental 

risks, unique pregnancy related exposures, and possible confounding risk factors, such as 

infant gender, with ASD risk.   

A retrospective, observational, case-control design was  designed using a well-

characterized population and  diverse controls based on several  previous Autism Genetic 

Resource Exchange (AGRE) cohort studies (Anello et al., 2009; Cantor, Yoon, Furr, & 

Lajonchere, 2007; Carayol et al., 2011; Cheslack-Postova et al., 2007; Hallmayer et al., 

2011; Hu et al., 2009; Lu & Cantor, 2012; Martin & Horriat, 2012; Stone, Merriman, 

Cantor, Geschwind, & Nelson, 2007; Strom, 2010; Strom et al., 2010; Wallace, 



18 
 

 

Anderson, & Dubrow, 2008). The categorical or binary dependent variable was clinical 

autism diagnosis based on DSM-IV or ICD-9 (ADIR) criteria documented in AGRE case 

registry records. The categorical independent variables included preconception parental 

age, preconception maternal health (assessed by high blood pressure, diabetes, 

anemia/maternal iron deficiency, vitamin B12 deficiency, neural tube defect [low folate] 

risk, albuminurea status), obstetric complications (assessed by preeclampsia, jaundice 

delivery), maternal smoke exposure and diet (fish intake, maternal multivitamin use) 

during pregnancy trimesters and lactation, and  neonatal infant breathing and sleeping 

patterns per medical record history data bases for families enrolled in the AGRE registry. 

The AGRE registry contained family-based medical records for ASD-affected 

children and unaffected siblings (Lajonchere, 2012). The focus of the AGRE registry 

research has been on genetic blood sampling and analysis; however, additional attention 

is focused on psychometric analysis of clinical phenotype records (R. Butler, personal 

communication, August 7, 2013).  Phenotypic medical records were  archived by AGRE 

and included documentation of case definitions for complimentary and partially 

redundant parental self-report and physician-recorded survey items, ASD onset date and 

age, well defined exclusion criteria related to single gene disorders, assisted reproductive 

technology (ART) use, and regressive forms of autism.  The use of coded data helped 

ensure blinded use of the AGRE open access registry population datasets of clinical data 

for characterized familial genetic profiles and familial history records.   
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Research Questions and Hypotheses 

In this dissertation, I proposed a framework for prioritizing plausible early life 

exposures that may be associated with ASD, as affected by shared environment, gender, 

and genomics. This research studied the relationship of proxy, preconception, pregnancy, 

and early life exposure variables on ASD diagnosis and the ASD gender differential. The 

research questions addressed exposure-timing relationships of pregnancy factors to ASD 

and the gender differential of ASD. The relationship between pregnancy factors and ASD 

was adjusted for hypothesized  and posthoc identified confounding neonatal factors and 

theorized covariates of preconception risk factors. Based on the independent variables of 

maternal smoke exposure and diet during pregnancy, lactation, and gender and their 

combination, subhypotheses were proposed. The specific study question and hypotheses 

are stated below for ASD outcome, with theorized confounders and covariates described 

in detail.  Presumed covariate preconception factors and confounding infant traits were 

analyzed independently and in combination to inform the collinearity of relationships to 

ASD and the ASD gender differential risk. 

The initial research questions addressed the exposure-timing relationship between 

pregnancy factors, individually or in combination and ASD outcome within the AGRE 

sample cohort. Secondly, it was of interest whether the relationship of pregnancy factors 

to ASD outcome was confounded by neonatal traits. The third series of questions tested 

whether preconception factors were effect modifiers of the relationship of pregnancy 

factors and ASD.  
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The initial three research questions addressed whether there was a statistically 

significant association between pregnancy factors such as maternal multivitamin use and 

direct maternal  smoke exposure during pregnancy and exclusive lactation practice and 

the outcome variable, ASD diagnosis by ADIR criteria. These initial hypotheses 

presumed a primary, main effect relationship of pregnancy factors to ASD via plausible 

placental transfer mechanisms. 

Research Question 1:  What is the relationship between maternal smoke exposure 

before or during pregnancy and ASD risk in offspring within the AGRE cohort?   

  Hо1:  There is no association between maternal smoke exposure and ASD 

outcome within the AGRE cohort.  

 Ha1:  There is a positive association between maternal smoke exposure and ASD 

outcome within the AGRE cohort.   

Research Question 2:  What is the relationship between maternal diet (fish and 

multivitamin intake) during pregnancy trimesters as ASD risk in AGRE offspring?   

 Hо2:  There is no association between maternal fish and multivitamin intake 

during pregnancy and ASD outcome within the AGRE cohort.  

 Ha2:  There is an inverse association between fish and multivitamin intake during 

pregnancy and ASD outcome within the AGRE cohort.   

Research Question 3:  What is the relationship between lactation and ASD risk? 

 Ho3:  There is no association between lactation and ASD risk in cohort offspring.  

 Ha3:  There is an inverse association between lactation and ASD risk in cohort 

offspring within the AGRE cohort.  
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After exploring the hypothesized primary relationship of pregnancy related 

variables to ASD outcome, the most robust and significant relationships were carried 

forward for further study. The potential confounding of neonatal traits and the effect 

modification of preconception risk factors was tested in subsequent analysis for ASD as 

defined by ADIR outcome criteria. 

 The fourth research question addressed whether neonatal sleeping or breathing 

traits confound the relationship of pregnancy factors to ASD outcome within the AGRE 

cohort.   

Research Question 4:  How is the exposure-timing relationship of pregnancy 

variables (maternal smoke exposure, diet, and lactation) to ASD confounded by neonatal 

infant sleeping or breathing traits when analyzed separately or in combination in the 

AGRE sample?   

 Hо4:  The relationship between pregnancy exposures (maternal smoke exposure, 

diet, and lactation) and ASD outcome is not confounded by infant sleeping or breathing. 

 Ha4:  The relationship between pregnancy exposures (maternal smoke exposure 

diet, and lactation) and ASD outcome is confounded by infant sleeping or breathing.         

The fifth research question addressed whether infant gender mediated the effect of 

pregnancy related variables and ASD diagnosis among cases and controls in the cohort.  

Research Question 5: How does the exposure-timing relationship of pregnancy 

variables (maternal smoke exposure, diet, and lactation) to ASD outcome differ by infant 

gender?   



22 
 

 

 Ho5:  The relationship of maternal diet, smoke exposure during pregnancy, and 

lactation to ASD outcome does not vary by infant gender. 

 Ha5:  The relationship of maternal diet, smoke exposure during pregnancy, and 

lactation to ASD outcome does vary by infant gender.  

The last three research questions addressed whether the relationship of pregnancy 

exposures (maternal smoke exposure and diet during pregnancy and lactation) to ASD  

varies by preconception parental age, preexisting maternal health, or obstetric risks.   

Research Questions 6 through 8:  How does the exposure-timing relationships 

between pregnancy exposure-timing variables (maternal smoke exposure, diet, and 

lactation) and ASD vary by preconception  parental age, preexisting maternal health 

conditions, and obstetric risks? 

 Ho6:  The relationship between pregnancy exposures (maternal smoke exposure, 

diet, and lactation) to ASD outcome does not vary by preconception parental age. 

 Ha6:  The relationship between pregnancy exposures (maternal smoke exposure, 

diet, and lactation) to ASD outcome varies inversely by preconception parental age.  

 Ho7:  The relationship between pregnancy exposures (maternal smoke exposure, 

diet, and lactation) to ASD outcome does not vary by preconception maternal health. 

 Ha7:  The relationship between pregnancy exposures (maternal smoke exposure, 

diet, and lactation) to ASD outcome varies positively with preconception maternal health. 

 Ho8:  The relationship between pregnancy exposures (maternal smoke exposure, 

diet, and lactation) to ASD outcome does not vary by obstetric risks within the cohort. 
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 Ha8:  The relationship between pregnancy exposures (maternal smoke exposure, 

diet, and lactation) to ASD outcome varies positively by obstetric risks within the cohort. 

The purpose of this quantitative study was to describe the hierarchical relationship 

between pregnancy related risk factors to ASD outcome,  the effect modification of 

preconception and confounding neonatal traits that may be associated with ASD and the 

gender-based diagnosis of autism. Categorical temporal clusters of archival data for 

variables representing preconception health, fetal exposures during pregnancy and 

lactation, and early life infant traits were compared among cases and controls and 

stratified by gender for a cohort of well-characterized familial genomes. Group 

comparisons between cases and controls and intraclass odds ratio analysis between 

genders was conducted while testing for main effects, covariates, and the interaction of 

study variables.  Tests of association, tests of trends, gender-stratified odds ratios, 

covariate collinearlity, and logit regression analysis were conducted. 

Conceptual Framework 

 A hierarchical framework of ASD causal mechanisms may help to explain 

potential relationships among exposures and affected genetic, cellular, and metabolic 

processes in a fetus or infant.  An exposure modeling framework seeks to address 

temporal factors, the specificity of key or critical assaults and coherent, plausible routes 

of disease progression, and clinical manifestation of the condition (Checkoway, Pearce, 

& Kriebel 2004; Seixas, Robins, & Becker 1993). Generalized pathways of metabolic 

dysfunction associated with autism diagnosis have been validated by many independent 

researchers, but uncertain etiology, indefinite critical windows of exposure, and necessity 
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of case-control study designs constraint the ability to identify biomarkers of ASD and 

characterize gender-differentiation of genetic, hormonal, and environmental factors 

affecting risk of ASD. These risk factor categories are further described in Chapter 2.  

Evidence of a coherent or comprehensive exposure modeling framework for the onset of 

autism is lacking. However, a study design framework that included distal, ecological, 

and neonatal factors hypothesized to be associated with autism was recently published 

(Burstyn, Wang, Yasui, Sithole, & Swaigenbaum, 2011) using birth delivery records and 

adjusting for maternal age within a cross-sectional study of Canadian populations.  

 The methodology of Burstyn et al. (2011) accounted for distal factors as well as a 

primary causal relationship and adjusted for confounding variables. The researchers 

developed an exposure algorithm that addressed the binary outcome of autism onset as a 

relationship among prenatal factors including fetal hypoxia and adjusted for 

socioeconomic status, birth year, and fetal gender. The research design was an example 

of a well-articulated conceptual framework of distal and critical or main effect exposure 

factors. Burstyn et al. (2011) also used an efficient logistic modeling to account for the 

multiple risk factors, and defined autism diagnosis as a binary outcome variable.  

Distal Factors:  Preconception Health and Obstetric Complications 

An etiologic framework such as that used by Burstyn et al. (2011) may describe a 

critical path or the logical flow of effect among exposures and genetic, cellular, and 

metabolic processes (Creswell 2009; Trochim & Donnelly 2007).  Relationships among 

these variables may be hypothesized to be coincidental or associated with identifiable, 

plausible mechanisms (Checkoway et al., 2004; Seixas et al., 1993).  Dodds et al. (2011) 
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reported the role of obstetric and neonatal factors associated with ASD as defined by 

ICD-9 code 299 criteria differed by preexisting maternal disease state within a Canadian 

cohort. Gregory et al. (2013) reported similar results using vital statistics for a North 

Carolina population cohort. However, adjustment for the confounding effect of assisted 

reproductive technology was not discussed by Dodds et al. or Gregory et al..  In addition, 

infant congenital heart defects are often associated with chromosome X-linked disorders 

and particular genes such as ZIC3, HTX1, and HTX, which may be coincidentally 

associated with hypoxia and SIDS (Bailliard & Anderson 2009; Gioli-Perira et al., 2008). 

However, pediatric heart defects have also been associated with epigenetic mechanisms 

affecting delivery outcomes (American Academy of Pediatrics 2011; Zhu et al., 2007).  

Causative evidence of an association with SIDS and ASD is also lacking.  Associations 

of SIDS and ASD may be mediated by distal risk factor effects (Dodds et al., 2011). 

In this study, I proposed a framework for prioritizing plausible early life 

exposures that may be associated with ASD, affected by a shared environment, gender, 

and genomics (Figure 2). A multifactorial liability model was proposed to investigate 

multiple fetal assault risk factors  via proxy variables for placental transport and fetal 

programming during pregnancy (smoke exposure and diet during pregnancy and 

lactation) as mediated genetic susceptibility (preconception parental age, preexisting 

maternal health, obstetric complications) and confounded by neonatal gender and 

sleeping and breathing traits within an AGRE cohort. The model was based on the 

previous temporal and statistical framework proposed by Burstyn et al. (2011) as 

described above.  An adaptation of the framework is illustrated in Figure 2, as applied to 
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the proposed variables of this study.  Obstetric complications were presumed to be 

genetically predetermined. 

Main Effect Factors:  Maternal Diet and Smoke Exposure, Gender, and Lactation  

 Proxy variables that reflect direct exchange of cells, gas molecules, or fluids 

through placental transfer or breast milk from mother to fetus or infant are hypothesized 

to have a direct or main effect on ASD risk. Critical human pregnancy exposures have 

been well documented (Dietert, Dietert, & DeWitt, 2011; Wilhelm-Benartzi et al., 2012).  

In this study,  presumed placental transport mechanisms were represented by pregnancy 

onset variables of maternal smoke exposure, fish intake, and vitamin use during 

pregnancy and lactation.  Preconception health factors such as maternal diabetes, high 

blood pressure, low iron/diagnosed anemia, Vitamin B12 deficiency, low folate intake, or 

albuminurea were hypothesized to be distally correlated with ASD and the gender 

differential of ASD occurrence. Obstetric complications assessed by diagnosed 

preeclampsia or jaundice delivery were proposed to mediate the relationship of 

pregnancy factors to ASD diagnosis. Assisted reproductive technology (ART) was 

associated with older parents, complicated pregnancies, obstetrics, and ASD risk 

(Schieve et al., 2011).  ART use among parents with ASD offspring has not been studied 

extensively; however, Zachor and Itzchak (2011) reported ART use among families with 

ASD offspring tended to be higher (10.7%) than population prevalence (3.06%) in an 

Israeli sample. Parental age, low birth weight, and gestational age distributions did not 

differ by case-control status (Zachor & Itzchak, 2011).  
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Confounding Factors:  Infant Sleeping and Breathing, Infant Gender 

Infant breathing and sleeping patterns were presumed to be confounders, as they 

may represent underlying congenital heart defects, asthma, allergies, symptoms of 

psychotherapy medication, comorbid mental health conditions, or ear infections 

(Hartshorne et al., 2009).  Furthermore, methodology and survey instruments for infant 

sleeping and sleep apnea traits are not standardized (Mahoney & Caterino 2011; Stewart 

& Amar 2013; Young, Dempsey, Peppard, Neto, & Hia 2009). These unrelated health 

conditions may not be directly impacted by placental transport pregnancy factors, fetal 

distress, hypoxia, or ASD associated risks. Sleeping position, asthma, infection, or 

congenital heart defects were presumed to be extraneous factors in the explanatory main 

effect factors of ASD.  Infant gender was also defined as a confounder in this study in 

order to study statistical comparisons ceteris paribus. 

     Definition of Terms  

            In this study, the broad case definition of ASD was predefined by the AGRE 

registry inclusion criteria based on medical assessment of autism by the interactive 

interview (ADIR) described in Appendix A.  The dependent variable criteria, ADIR score 

of 1, has been standardized and includes ASD and pervasive developmental disorders not 

otherwise specified (PPD-NOS) as the outcome variable. ADIR results for age-

appropriate assessment were used. 

Proposed main effect independent variables included archival categorical values 

of maternal smoke exposure during pregnancy, maternal diet during pregnancy, and 

lactation as measured by fish and multivitamin intake, lactation duration and dedication, 
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and fetal gender as described by parental recall and medical records collected by AGRE 

researchers (Cantor et al., 2007; Geschwind et al., 2001). Independent variables for the 

components of preconception health risk indices (parental age, maternal high blood 

pressure, diabetes, low blood iron/diagnosed anemia, vitamin B12 deficiency, low 

folate/neural tube defect risk, and albuminurea) and obstetric health risk (preeclampsia 

and/or jaundice delivery) have been defined and coded using a standardized 

questionnaires implemented by AGRE researchers (Cantor et al., 2007; Geschwind et al., 

2001; Stone et al., 2004).  Independent, presumed confounding variables of infant traits 

of sleep pattern and infant breathing interruptions have been defined by AGRE medical 

history questionnaires. Coding and possible categorical definition of variables and risk 

indices are described in Chapter 3, Table 4. 

Biological susceptibility was first described by Wade Hampton Frost in 1937 to 

reflect a propensity for particular individuals to be more prone to risk of chronic disease 

conditions.  The concept did not ascertain whether the individual risk was attributed to 

genes or random chance. 

The multifactor liability threshold (Tsia et al., 1981) theory described the impact 

of multiple, weak associations of risk factors associated with autism onset and diagnosis.  

ASD liability was presumed to be normally distributed, but individuals would not be 

affected unless environmental factors exceeded a certain threshold level of overall risk 

contributed by complex mechanisms. 

Fetal programming was defined by Barker and Connor (1986) to explain the 

relationship of chronic disease outcomes as being associated with exposures within the 
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fetal environment. The concept of fetal programming has been expanded to consider a 

dynamic interaction between fetal development and growth, and unique and fluctuating 

maternal health status (Finney-Brown 2011; Habek & Kovacevic 2011; Lillycrop 2011; 

Saugstad 2011).  A logical inference is that fetal programming may vary by genome. 

Placental transport research involves the study of placental supply, morphology, 

and transfer mechanisms of gas or nutrients to the fetus (Fowden, Ward, Wooding, 

Forhead, & Constancia, 1996; Sibley, Glazier, & D’Souza 1997).  Such research 

provided evidence that fetal programming may provide an explanatory mechanistic 

framework for the effects and consequences of maternal exposures and health status that 

may affect fetal development (Salafia, 2011; Sibley, 2009). Placental transport 

mechanisms may characterize epigenetics. 

Sexual dimorphism was initially defined as qualitative descriptions of anatomical 

and behavioral trait differences between genders by Cunningham in 1900, but research 

has expanded the definitional scope to include sex-specific psychological, biochemical, 

gene expression, and genetic phenotypes (Gabory, Attig, & Junien, 2008; Ober, Loisel, & 

Gilad, 2006). Increased understanding of gender-specific metabolimics may expand the 

concept of sexual dimorphism. 

Assumptions, Delimitations, and Limitations   

The retrospective study was premised on the use of an archival genetic registry 

data source of recruited families with immediate family members diagnosed with autism.  

The AGRE registry is an ongoing collection of more than 3,308 families, not population 

based (Lajonchere, 2010) but expanded in 2012 by 24% to include 383 families cross-
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referenced in the National Database for Autism Research federated database (Lajonchere, 

2012).  AGRE study results have been generalized to wider population studies of risk 

factors such as parental traits, maternal health, obstetric and preconception risk factors, 

and ASD diagnostic criteria. 

The focus of AGRE is genetic research. Therefore, shared environmental 

exposures and family and offspring data were internally validated while family and 

participant identities were concealed and confidentiality preserved, which likely fostered 

honest responses. In addition,  it is presumed the self-reported parental behavioral data 

were supplemental or secondary AGRE information. Therefore, Hawthorne effect bias, 

history, and maturation bias may be minimal. AGRE matching criteria often included 

familial controls that may have minimized confounding biases and reinforced the validity 

of shared environmental and genetic factors.  Efforts were made to minimize research 

bias and increase study validity by using corroborating maternal, paternal, and sibling 

data records for parental behaviors rather than childhood biomarkers. Consideration to 

the temporal aspects of exposures was addressed by the conceptual framework of 

preconception, pregnancy, and neonatal factors (Burstyn et al., 2011; Dietert et al., 2011; 

Gregory et al., 2013). Another study goal was to achieve adequate statistical power to 

investigate the gender differential of ASD using the AGRE registry sample.  

Assumptions were made with regard to the level and type of matching protocols used by 

previous AGRE researchers. Matched controls identified and assigned within the data 

registry data set were presumed to be minimally biased, and any source of information 

bias was presumed to be nondifferential. Matching protocols were described by previous 



31 
 

 

researchers but may not be standardized among researchers (Anello et al., 2008; Cantor et 

al., 2007; Carayol et al., 2011; Cheslack-Pestova et al., 2007; Hallmayer et al., 2011; 

Serajee, Nabi, Zhong, & Huq, 2004; Stone et al., 2004; Strom et al., 2010; Wallace et al., 

2008).  In this study, controls reflected both familial and nonfamilial records in data 

analysis. A comparative analysis of familial and nonfamilial controls was conducted in 

this dissertation to assess the degree of participant and control group homogeneity. 

Independent variables used in this study were presumed to be operationalized or 

reclassified with minimal bias as done by previous AGRE researchers. The tiered clinical 

definition of  strict and broad ASD definition used with the AGRE registry has been 

commonly used by other U.S. researchers (Heiderken et al., 2005; Honda et al., 2009; 

Mayes  et al., 2009; Posserud et al., 2009). Studies  reconfirmed the acceptable validity 

and reliability of clinical ASD case definition used by AGRE researchers under proposed 

DSM-V criteria (Huerta, Bishop, Duncan, Hus, & Lord, 2012). ADIR is considered a 

more strict ASD criterion than ADOS (Martin & Horriat, 2012). Factor analysis for 

predictive ASD is commonly done using the formalized interview format used to 

construct ADIR scores (Norris et al., 2012).  

The scope and delimitations of the study reflect the AGRE inclusion and 

exclusion criteria during recruitment of families (Lajonchere, 2010).  However, the 

registry criteria of language fluency, recent birth records, standardized ASD definition, 

and exclusion of single-gene disorders and children with low intelligence quotient (IQ) 

scores were not expected to adversely affect this research. Inclusion criteria required at 

least one English speaking parent; and recruitment priority was given to families with 
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two or more immediate family members affected with ASD (Lajonchere, 2010).  The 

AGRE registry inclusion criteria may reduce any potential impact of medical record 

misclassification and increase genetic homogeneity. Autism affected offspring in the 

AGRE were all born since 1992 (Cantor et al., 2007). Thus, risks of using disparate or 

changes in ASD diagnostic criteria were minimized regarding the distinction of 

intellectual disability (i.e., IQ less than 70) and ASD specified in ICD-9 and DSM-IV 

clinical criteria  (Lauritsen et al., 2005). 

The U.S. based AGRE databases were not  relational databases with a 

standardized structure, which presented limitations with regard to the recoding values for 

particular independent variables. Data for maternal preconception diet factors were 

largely unavailable. Smoke exposure was presumed to reflect maternal, paternal, or 

household smoke exposure. For this study, prior maternal smoking behavior, maternal 

age, and any duration or AGRE defined dedicated lactation practice were deemed to best 

fit the conceptual construct in Figure 2.  

Nonstandardization of matching strategies required data pooling and adjustment 

for missing values. Treatment of missing values involved comparing maternal and 

paternal survey responses, temporal assignment of risk behavior in antecedent periods, 

and assumptions of shared smoke and multivitamin exposures for multiple birth 

deliveries and siblings. History, maturation, and self-reported parental recall were study 

limitations of the retrospectively collected quantified variables for individuals and 

registry family members. Predetermined ordinal coding was proposed to minimize 

possible biases and test for misclassification bias. 



33 
 

 

The study outcome, presence or lack of case by clinical or medical assessment 

using the DSM or ICD autism diagnostic criteria, was presumed to be independent of 

exclusion factors. Categorical treatment of the dependent variable included the validated 

AGRE classification of broad ASD: ADIR positive or ADOS positive criteria, wherein 

each ASD outcome was  binary coded. Outcome exclusion criteria included child or 

parental Fragile X,  trisomy or quadrupled 15q11-13, trisomy 21 & Xp22.3, Rett or 

Tourette's syndrome, phenylketonuria (PKU), Tuberous sclerosis, Angelman’s, Timothy 

Syndrome, Prader-Willis, mental retardation, and Wechsler Intelligence Scale for 

Children score < 70  as recorded on AGRE Child Medical History Survey Instrument. 

Reproducibility of results with previous AGRE researchers is presumed to suggest 

adequate internal and external study validity (Carayol et al., 2011; Stone et al., 2004; 

Yonan et al., 2003).  

The focus of the AGRE registry has historically been on genetic blood sampling 

and genome wide association test analysis within a well-characterized familial genomic 

population.  However, AGRE studies on the relationship of pertinent research variables to 

ASD diagnosis and severity have shown generalizability to other broader cross-sectional 

population studies. Specifically, studies on  the relationship of parental age, obstetric 

complications, preconception health, birth order, and ASD with the AGRE registry 

confirmed generalized trends of other studies (Anello et al., 2009; Cantor et al., 2007; 

Martin & Horriat, 2012; Wallace et al., 2008). Prior use of assisted reproductive 

technology was asked in the AGRE surveys. The further analysis of preconception, 

pregnancy, and early life exposure variables in AGRE archival datasets may validate 
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generalized findings of other researchers and inform the metabolic and genomic findings 

to advance research into the pathobiology of ASD.  

Significance of the Study 

The relative contribution of genetic and gene-environment or epigenetic factors 

affecting autism diagnosis is not well understood despite decades of pathobiological 

research. Additional research was needed to explore the exposure-timing of risk 

exposures associated with ASD risk and the ASD gender differential. The gender risk 

differential has been accepted as a social and biological norm with little rationale 

provided for the implications for medical or educational systems. This study has 

implications for health science research, applied health literacy and educational 

strategies, and positive social change for individuals, families, and communities. The 

health science impact of the study was to add to the knowledge base of ASD etiology and 

the ASD gender differential. The study outcomes provided insight into the framework of 

Burstyn et al. (2011),  who classified factors as distal, confounding, and main effect 

variables.  The constructs of the multiliability threshold and fetal programming may be 

better understood given the proxy varaibles in this study associated with in uetero 

exposure parameters. Study outcomes may inform the proportional risk of shared and 

unique exposures, preconception health, and reproductive health impact on ASD and the 

ASD gender-risk by exploring exposure-timing relationships. These study outcomes may 

impact future observational and prospective study designs given the variables identified 

in this study.  Some study variables reflect controllable health behaviors during 

preconception and pregnancy with primary preventive practice implications. 
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Autism research continues to focus efforts toward better understanding of 

preconception, prenatal care, and environmental antecedents of maternal and child health.  

Such insights may inform preventive health strategies and refocus attention on 

preventive, preconception, and prenatal health planning. Surprisingly, few studies have 

explored the relationship prenatal maternal health and lactation to ASD risk. Maternal 

diet and health before and during pregnancy may be associated with lactation capacity as 

well as ASD risk. Insights into differences in maternal diet or lactation behavior; which 

may be associated with nutrient metabolism differences, may inform the ASD gender 

differential.  Better understanding of factors affecting the gender differential risk of 

autism diagnosis may inform future prospective studies on autism or plausible 

metabolomic studies of the ASD gender differential.  

Awareness of mediating factors in SIDS prevention, such as smoke exposure, 

fetal hypoxia, infant respiratory health, interrupted sleep or breathing patterns, and efforts 

to improve lactation competence among new mothers are possible implications of this 

study. Study outcomes may increase recognition and understanding of reproductive risk 

profiles associated with subsequent ASD with implications for primary prevention. If 

genetic, epigenetic, environmental, or prenatal health antecedents are gender-based and 

associated with confirmed diagnosis, preventive prenatal care and behavioral 

modification may be useful in reducing onset, prevalence, and management of  ASD 

diagnosis. The gender-differentiated ASD risk may have a relationship with infant 

respiratory distress and family size or gravida. A better understanding of the factors that 

affect gender differences may inform reproductive risk profiles of women of childbearing 
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age. In this study, the exposure-timing risk relationships were suggestively related in 

meaningful ways. It is my hope the study outcomes may challenge the focus on tertiary 

care and management of ASD symptomology toward preventive health care. 

The positive social change implications of this study have potential considering 

the burden of autism on health care and educational systems as well as the economic, 

social, and quality of life impact on communities, families, and individuals. Autism is 

rated the most expensive disability due to extended insurance needs, medical costs, and 

lack of living and employment skills (Cimera & Cowan, 2009). The educational costs of 

ASD are approximately 3 times higher than for traditional social, constructivist learners 

(Karim, 2009).  ASD disrupts the social fabric of communities, schools, and families.  

Families with affected children have higher physical, emotional, mental, and financial 

stress, social and communication challenges with teachers and school staff and medical 

professionals, and reduced workloads and pay to caretake for their child (Woodgate, 

Ateah, & Secco, 2008).  More than 3,70 PhD dissertations and theses related to ASD 

were published in ProQuest since 2001, but only 353 addressed biomedics, physiology, 

or etiology. Of the 52 Walden Univeristy PhD dissertations on the topic of ASD 

published in ProQuest since 2001, 51 were affiliated with the Schools of Pyschology or 

Education. Only one dissertation focused on ASD etiology (Hendrix, 2011).  Additional 

basic and applied biomedical etiology research is needed to better understand ASD risk 

profiles and the ASD gender risk differential. 
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Summary and Transition  

  Autism spectrum diagnosis is a life-long condition with no biological cure. The 

increased global prevalence and public health costs of autism are staggering. There are 

few theories that can explain the onset of autism, despite the presumption that biological 

causes are involved (Rutter, 1968). Autism genomic research suggests less than 20% of 

cases are directly attributed to genetic risk factors (Bukelis, Porter, Zimmerman, & 

Tierney, 2007; Miles, McCatheren, Strichter, & Shinawi, 2010). Despite the increased 

number of cases of autism, the gender differential risk is stable. The gender differential 

risk has consistently been reported to be approximately 4-fold higher for males 

(Elsabbagh et al., 2012) for standardized diagnostic criteria used by psychologists, 

physicians, and educational professionals (Daniels et al., 2011; DHHS, 2008).  Further 

research into the gender differential of autism diagnosis may shed light on the 

mechanisms of ASD onset.   

Three epigenetic pathways and six altered metabolic processes reflecting a 

general profile of biochemical dysfunction have been characterized for autism (Abrahams 

& Geschwind, 2008; Gabory et al., 2009; Hu et al., 2009). Basic research on the relative 

contribution and interactions of gene expression, gene-environment, and affective status 

or phenotypic expression of autism (Lathrop, 1993) have recently gained intense research 

attention (Gaita et al., 2010; Khoury et al., 2010;  Meany, 2010; Tordjman et al., 2014).  

However, these mechanisms do not adequately account for the gender differential.  

Common gender-associated risk profiles have been reported for other developmental 

disorders and delays, sudden infant death, and nonregressive autism. ART may play a 
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role in these trends (Jenkins, 2013; Schieve et al., 2011), but validated prevalence 

estimates of the technology are still under investigation (Barradas et al., 2012).  Parental 

preconception health-based need for ART may confound ASD risk factor contributions. 

Due to uncertain etiology, indeterminate biomarker identification, and disparate 

timing of onset and diagnosis, ASD studies tend to be ecological and retrospective in 

nature.  Case-control designs using state-level vital record and birth certificates are the 

norm. However, these records do not support preconception medical histories (Barradas 

et al., 2012). A focus on a hierarchical model of detailed, prioritized preconception, 

parental, obstetric, prenatal diet, and well documented epigenetic factors may provide a 

degree of study control and reflect the temporality of exposure risk factors. To this end, 

an exposure-model to describe temporal, interrelated risk factors for the onset of initial, 

nonreversible autism was recently published (Burstyn et al., 2011). The researchers used 

provincial infant delivery records, speculated smoke exposure was underreported, and did 

not account for potential use of assisted reproductive technology, instead using covariates 

of maternal age, maternal diabetes, and weight gain. 

Improved awareness of the relative contribution of indirect and direct 

pathobiological proxy variables for genetic, maternal, and epigenetic biomarkers and 

infant/childhood trait risk profiles may inform plausible, gender-specific risk profiles for 

subsequent autism diagnosis. A better understanding of the possible relationship of 

plausible gender-specific, biochemical risk factors and clinically confirmed ASD 

diagnosis may inform possible biomedical mechanisms, facilitate prevention and medical 

intervention, and support family and individual behavioral change. 
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A pragmatic, retrospective study of the relationship of genetic inheritance, 

prenatal, and neonatal exposure-timing of parental and infant risk factors may inform 

exposure modeling and provide insight into primary prevention strategies for ASD.  

There are advantages to design studies using a narrowed focus on preconception health 

(with control of ART impact), prenatal maternal health, and early life conditions of 

captively controlled infant dietary intake.  These specific factors may reflect plausible 

fetal programming and placental transfer mechanisms.  

A case-control study, with temporal independent exposure-dose considerations for 

the hypothesized relationship of pregnancy related  main effect variables of maternal 

smoke exposure via self, partner, paternal, or household smoke exposure, maternal diet, 

lactation, and gender on ASD was needed.  As a major premise, pregnancy risk factors 

were presumed to be confounded by neonatal traits such as infant respiratory status, as 

measured by regularity of infant breathing during waking hours and infant sleep patterns. 

The impact of hypothesized covariates of the preconception period on the exposure-

timing relationship to ASD was an additional major premise in this thesis. Distal 

antecedent factors of parental age and preconception maternal health status may mediate 

epigenetic mechanisms associated with maternal health status during pregnancy. 

Obstetric and delivery complications were theorized in this study to reflect preexisting 

preconception health or other underlying genetic susceptibility risk factors.   

The effect modification of gender on association of these exposure-timing 

variables to autism diagnosis is also of interest since substantial antidotal evidence exists 

for the gender differential of ASD, with little biological explanation. Therefore, fetal 
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gender was presumed to be a main effect variable in the conceptual framework and 

interpreted in light of the independent adjustment for confounders and distal correlates of 

the main effect relationships. Child gender is also a possible confounder in the 

relationship of pregnancy factors and ASD outcome. Neonatal proxy variables were 

hypothesized to be associated with extraneous factors such as respiratory infections, side 

effects of psychotherapy treatment, congenital heart defects are presumed to confound the 

hypothesized main effect relationship of pregnancy factors and ASD. 

The logic and rationale for the temporal clustering of the study variables into 

preconception-distal factors, fetal exposures during pregnancy, and  lactation as main 

effect variables, and confounding infant traits was based on the state of the scientific 

literature as detailed in Chapter 2. The effect estimate for the covariation of pregnancy 

variables with ASD outcome and rationale for temporal precedence and the hierarchical 

exposure-timing hypotheses are summarized as part of the literature review in Chapter 2. 
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Chapter 2: Literature Review 

Introduction 

The purpose of this quantitative study was to focus on early life and prenatal 

factors to describe the relationship between parental and childhood traits or biomarkers 

and gender-stratified analysis of autism diagnosis. The purpose of this chapter is to draw 

parallels among risk factors of other developmental disorders, sudden infant death, and 

autism and highlight plausible pathways and biomarkers reported in autism etiology 

research. In this chapter, I include a review of ecological trends in autism and 

developmental disorders, diagnostic criteria for autism, and a literature review of 

biochemical pathways, critical windows of exposure associated with autism risk factors 

as well as a discussion of the challenges of identifying autism biomarkers.  Suggestive 

and reproducible evidence in the literature for plausible relationships between risk factors 

of preconception parental age, smoking status, obstetric complications, and pregnancy 

factors such as maternal smoking, perinatal diet, lactation, and the gender differential of 

autism are summarized in the final section of this literature review.   

Fewer than 10 papers have described gender-based symptomology of autism 

(Klusek, Losh, & Martin, 2014; Rivet & Matson, 2011). While generalized pathways of 

metabolic dysfunction associated with autism diagnosis have been validated by many 

independent researchers, less than 15 papers were identified in this literature review that 

described gender-based metabolic or dietary biomarkers among persons healthy persons 

stratified by gender or for group comparisons of children with autism and matched 

controls. Literature related to genetic, hormonal, and environmental factors affecting 
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metabolic gender-differential of unaffected children were included in the review due to 

the lack of studies specifically focused on male predominance risk of clinical initial 

autism diagnosis at age 8.    

Literature Search Strategy 

The purpose of this review is to provide background information on replicated 

studies that identified medical or biomedical risk factors associated with diagnosis on the 

autism spectrum. ASD case definition criteria were reviewed, as were biological 

pathways and candidate biomarkers associated with diagnosis. The review compared and 

contrasted biological plausibility and gender stratified results for risk factors among 

parents and offspring.  A review of the etiologic aspects of the ASD research literature 

focused on maternal or parental genetic, prenatal, environmental, or behavioral factors 

associated with subsequent clinical diagnosis. The literature scope was limited to articles 

published in the English language since 1960, with predominantly U. S. based sampling 

frames or datasets represented by U.S. cohorts and maintained by American researchers. 

The rationale for including literature published since 1960 was to make sure that articles 

on infant newborn screening initiatives in the United States were captured as well as 

special education literature publications and the emergence of autism etiology research 

(Newschaffer et al., 2012).   

The following databases were used:  ABI/INFORM Global, Academic Complete 

Search Premier, Cochrane Database of Systematic Reviews, EBSCO, Health and Social 

Care Encyclopedias from Sage, Education Research Complete, Expanded Academic 

ASAP, Google Scholar, Health and Medical Complete (ProQuest), PubMed, Health 
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Sciences: A Sage Full-Text Collection,  InfoSci Journal, MEDLINE with Full Text, 

ProQuest Central, and Thoreau.  The following keywords were used:  autism, 

epidemiology, autism spectrum disorder, case definition, diagnostic criteria, behavioral 

and environmental risk factors, etiology, biologic mechanisms, pathways, risk factors, 

exposure, maternal health, paternal health, parental age, smoking, maternal diet, 

nutrition, protein intake, fatty acids, lipids, obstetric complications, assisted reproductive 

technology, biomarkers, genetics, genome wide association studies, immune, gut health, 

epigenetic, imprinting, environmental exposure, environmental risk; exposures; prenatal; 

gender-differential; sexual dimorphism; gender; sex; metabolism, prevalence, sudden 

infant death syndrome, placental transfer, and metabolomics. Only text in English was 

reviewed; the most relevant literature has been published since 2000. Articles from the 

reference lists of previously obtained articles were included. Gender-stratified analysis 

and the gender-differential literature were noted to be more frequent after theories of  

“excessive male brain”  and androgen  literature were published (Baron-Cohen, 2002; 

Mills et al., 2007). 

The literature search strategy focus for the outcome variable was nonregressive 

autism spectrum diagnosis with  exclusion of specific congenital gene mutations such as 

Rett’s, Prader-Willis, Angelman’s syndrome, Fragile X, phenylketonuria, and tuberous 

sclerosis. The search strategy included a focus on gender comparison study designs for 

independent variables of parental behavioral traits, infant traits, neurotransmitter, and 

endocrine and hormonal biomarkers associated with autism spectrum disorders in peer 

reviewed scholarly journals. Generalized findings of gender-differentiated serum 
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metabolites among healthy adults and gender-associated autism diagnosis symptomology 

were summarized by Ober et al. (2008) and Rivet and Matson (2011), respectively.   

The scope and purpose of this study was based on biomedical pathway and 

marker research rather than psychosocial dimensions of autism. Research papers on 

comparative anatomy based on postmortem, tomography, or magnetic resonance imaging 

analysis of brain anatomy and brain region physiology among cases and controls were 

not a focus of the literature review. The scope of the literature review was observational 

studies of prenatal and neonatal biomarkers and developmental risk profiles among 

childhood populations. Original research articles based on anatomical gender-differences 

in human or rodent models published in English after 2008 were included if the study 

focus was neonatal or neurochemical antecedent biomarkers, gene-expression, epigenetic 

methylation, or neurotransmitter metabolites known to affect neonatal brain region 

development.  

More than 50 genome wide assocation research studies have been published since 

2001 on autistic patients and matched controls but were not a focus of the behavioral 

traits literature review, and few reported gender differentials among cases (Miles, 

McCathren, Stichter, & Shinawi, 2010;  Yu et al., 2013; Yuan & Doughtery, 2014).  

Emerging studies suggested maternal allele variations, phenotypic expression, and 

neurosteroid influence during fetal brain development may be antecedent risk factors of 

autism (Courchesne, 1997; Ebstein et al., 2009; Fukumoto et al., 2009; Habek & 

Kovacevic, 2011;  Lerer et al., 2008; Redclay & Courchesne, 2005; Scheiffele, 2011; 

Yuan & Doughtery, 2014).  Geocultural, haploid, and phenotype variance and blood 
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relation diversity impact gene allele pools across race/ethnicity and region (Gaita et al., 

2010; Khoury et al., 2010;  Meaney, 2010). Sex-specific genetic variation has been 

documented.  

 Suggestive and reproducible evidence in the literature for plausible relationships 

between independent risk factors of preconception parental age, smoking status, obstetric 

complications, and pregnancy factors such as maternal smoking, perinatal diet, lactation, 

and the gender differential of autism are summarized in the final section of this literature 

review.  A review of published research on the effect of parental and infant variables used 

in this study for the intended study cohort, AGRE, a well recognized open access autism 

registry, is also described. The AGRE population was the sampling frame for this study. 

Thus, observational study designs for AGRE cohorts were also researched and included 

in this literature review. A summary of AGRE population genetic characterization studies 

stratified by infant gender was included in the final section of this literature review.  

   Initial Autism Clinical Case Definition 

 There is high agreement and definitional overlap between DSM-IV and ICD-10 

diagnostic case criteria for initial autism diagnosis (see Appendix A); both describe social 

dysfunction in at least three domains. Cognitive and psychological constructs for autism 

(DSM-IV) are valid and reliable (Heiderken et al., 2005; Honda et al., 2009; Kim et al., 

2014; Mayes et al., 2009; Posserud et al., 2009).  The U.S. Department of Education 

added supplemental criteria to the DSM-IV and ICD-10 autism case crtieria, and 

diagnosis is typically done at 8 years of age. U.S. public schools have added criteria for 

nonperformance at grade level as an ASD diagnostic metric (CFR, 2008).  It should be 
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noted that the current CDC surveillance program (CDC, 2007a, CDC 2007b, 2009, 2012) 

is based on the Code of Federal Regulations (2008) case definition of autism spectrum 

disorders.  Because of the concern over lack of possible nonstandardized assessment of 

these additional criteria, the literature review was limited to case definitions based on 

DSM-III, DSM-IV,  DSM-IV-TR, and/or ICD criteria, rather than Code of Federal 

Regulation case definitions. 

Biological Pathways Implicated in Autism  

There were numerous articles identified that described hypothetical, biological 

pathway dysfunction associated with autism diagnosis. Three seminal papers 

independently detailed epigenetic mechanisms and potential metabolic consequences of 

those associated mechanisms (Abrahams & Geschwind, 2008; Gabory et al., 2009; Hu et 

al., 2009). Gabory et al. (2009) proposed that multigenerational epigenetic mechanisms 

associated with nuclear receptor sites, direct chromatin modification, and membrane-

receptor signalling cascades were triggered in pregnant woman in response to 

environmental exposures such a dietary intake, pharmacotherapy, or chemical exposure.  

Hu et al. (2009)  studied the genome wide association differences using a pseudo-case 

control design for ASD children and nonaffected siblings enrolled in the AGRE cohort to 

compare genomic profile by ASD and gender. They concluded genes implicated in 

nervous system development, inflammation, and cytoskeletal organization were 

associated with ASD. Cholesterol/steroid metabolism and androgenic hormones were 

speculated to be associated with the gender differential of ASD.  Moreover, Tordjman et 

al. (2014)  reviewed a multitude of plausible epigenetic remodeling mechanisms 
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associated with ASD. The study of documented prenatal exposures and epigenetic factors 

using a well-characterized genetic cohort may provide insight into the possible role of 

epigenetic alterations in ASD.  

Abrahams and Geschwind (2008) summarized autism disorders as involving 

inhibitory synapse mechanisms, serotonin, glutamertergic, and/or calcium signaling 

pathway components among cases and controls. These molecular pathways were 

consistently proposed in the published literature to hypothesize etiology of diagnosis but 

the results were rarely, if ever, discussed with regard to a rationale for the ASD gender-

differential (Adams et al., 2011; Erickson et al., 2005; Evans et al., 2008;  McGinnis, 

2004; Schultz et al., 2008). The mechanism-related literature results did not propose 

biomarkers or proxy variables for the proposed pathways and lacked evidence of unifying 

biological plausibility, timing, specificity of mechanism, or exposure and biological 

gradient to address atributable risk by gender. Reviews of the limitations of identifying 

valid, reliable, and specific biomarker candidates for the generalized six pathways was 

recently published (Ratajczak, 2011; Tordjman et al., 2014), but the discernment of 

biomarkers that may inform the ASD gender-differential was lacking.   

The epigenetic mechanisms described by Gabory et al. (2009) associated genetic 

profile clusters suggested by Hu et al. (2009) and metabolic pathway consequences 

detailed by Abrahams and Geschwind (2008) and could be hypothetically unified in an 

exposure-effect model of  maternal dietary factors associated with autism. Maternal 

health status certainly affects fetal health risks including ASD risk (Saugstad, 2011). 

Cultural trends toward reduced milk and dairy consumption and reduced sunlight 



48 
 

 

exposure have been speculated to be coincidental with an increase in autism prevalence 

(Cannell, 2008; Grant & Sales, 2009). Research has indicated maternal and fetal genetic 

and nutritional status of Vitamin D and related binding proteins may be  important gender 

level predictors of autism risk (Cannell, 2008; Cannell & Hollis, 2008; Grant & Sales, 

2009;  McGrath et al., 2001) and explain the gender-risk differential (Bolland et al., 2007; 

Hagenau et al., 2009).    

However, it is unclear from the literature whether these biomarkers reflect 

phenotypic symptomology, coincidence with offspring dietary patterns, underlying 

gender metabolism or hormonal differences in biochemical regulation, comorbidity, or 

underlying autism etiology mechanisms. Biomarkers have not been identified as reliable, 

independent, or main-effect indicators of gender differences in autism onset, progress, or 

mediation.  The relationship of prenatal maternal health status and autism diagnosis in 

offspring is not well understood and deserves more study.  However, the hypothesis that 

epigenetic factors appear to be associated with subsequent autism diagnosis is well 

documented.  Research on the dose, type, and timing of exposures associated with 

epigenetics, adverse fetal development, and subsequent autism risk deserves additional 

research attention. Such research may inform the gender differential in ASD. 

Critical Windows of Exposure Associated With Austism  

 Autism research continues to focus efforts toward better understanding of 

prenatal care and environmental antecedents of maternal and child health. The study of 

genetic susceptibility, gene-environment interactions, and perinatal health status on ASD 

and the gender differential of ASD require study frameworks that can account for 
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exposure variables before conception as well as gene-environmental interactions before 

conception and during preganancy and delivery.  

Dietert et al. (2011) summarized putative critical windows of prenatal 

environmental exposures for autism risk by pregnancy trimester as illustrated in Table 1 

based on evidence from rodent and human studies.  

First trimester exposure to valproic acid (contained in antiepileptic medicine), 

thalidomide, misoprostal, lack of food aversion and vomiting, viral infection, and 

hospitalization were cited as risk factors for ASD (Dietert et al., 2011). Valproic acid has 

been shown to potentiate the response of inflammatory factors and interlukins in mice 

(Awale, 2012). A reduction in macrophage activation occured in both male and female 

mice but was more pronounced in male mice and reproduced using two separate 

macrophage cell lines. 

Table 1   

Prenatal Exposures Associated With Subsequent Autism Diagnosis 

Prenatal 
trimester 

Exposure risk factor for subsequent autism diagnosis 

First Valproic acid, thalidomide, misoprostal  
Food adversion and maternal vomitting 
Viral infections 

Second Bacterial and/or murine viral infections 
Maternal psychosocial stress and/or depression 

Third Vitamin D deficiency, terbutaline 
Chorioamnionitis infection 
Premature birth and/or low birth weight 

 

Habek and Kovacevic (2011) reported fetal hypoxia verified by ultrasonography 

at 10 to 20 weeks gestation in pregnant women who smoked more than 20 cigarettes 
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daily.  The authors followed the course of pregnancy of 60 women (grouped by smoking 

behavior) from gestation to offspring health outcomes at age 10 and reported increased 

broncho-obstructive syndrome, fetal hypoxia, and SIDS risk increased for mothers who 

smoked more than 10 cigarettes per day.   

Other researchers reported bacterial or murine viral infections and general 

maternal stress were risk factors in the second trimester of pregnancy (Dietert et al., 

2011).  Using pregnant mice exposed to influenza A virus, Miller et al. (2013) reported 

exposure in first trimester produced behavioral symptoms such as loss of locomotor 

control particularly in male offspring. The authors speculated sex-specific dopamine or 

brainstem inflammation was significantly higher in male offspring based on tissue assays 

(Miller et al., 2013). Bacterial metabolites, such as 3-hydroxyphenylalanine have also 

been shown to affect brain catecholamine levels and be associated with ASD (Shaw, 

2010). Some research has shown a  tendency toward higher male-associated maternal 

transmission or placental transfer risk of measles and respiratory syncytial viral infections 

(i.e., a risk factor for SIDS); but a recent published meta-analysis concluded little 

increased gender risk of ASD due to prenatal, neonatal, or childhood infections (Zerbo et 

al., 2013).  However, maternal fever during pregnancy was associated with ASD and 

pervasive developmental disabilities OR= 2.12,  95% CI [1.17 - 3.84]. Cannell (2014) 

proposed the use of paracetamol, fever reducing chemical found in brands such as 

Anacin®, DayQuil® and Tylenol® increased oxidative stress, particularly in vitamin-D 

deficient pregnant women and may be a contributing factor to ASD. 
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Vitamin D deficiency and use of terbutaline or pitocin, a treatment used to delay 

premature birth were cited as environmental risk factors in the third trimester of 

pregnancy by Dietert et al. (2011).  Low maternal vitamin D status (< 75 nmol/l at 32 

weeks gestation) was shown to be associated with reduced developmental language 

scores at age 6 months compared to children born to rural Vietnamese women with 

higher 25-hydroxyvitamin D levels (Hanieh et al., 2014). Low prental vitamin D levels 

(25-OHD) were also associated with small for gestational age, larger head circumfrence 

at birth, and  lower infant length-for-age at six months (n=960). Neggers (2014) reviewed 

several theories which have emerged to explain the relationship of periconception and 

maternal vitamin D deficiency and ASD risk in offspring which include increased cellular 

oxidation, reduced anti-inflammatory potential, horomonal or enzyme activation 

disruption, and DNA repair and maintenance. 

Periconception vitamin use has been associated with reduced risk of offspring 

ASD.  Braun et al., (2014b) reported second trimester prenatal vitamin use and maternal 

whole blood folate levels were positively associated with social responsiveness scales for 

children aged 4-5 years among 209 mother-child pairs. Schmidt, Tancredi, Krakowiak, 

Hansen, and Ozonoff (2014) reported higher maternal iron intake from dietary 

supplelments and cereals periconceptionally, during pregnancy and lactation was 

associated with reduced ASD risk. Mothers of cases were less likely to report using iron 

supplements and had lower mean daily iron intake estimates. Schmidt et al., (2012) 

studied the relationship of prenatal vitamin use on genetic alleles associated with 

methylation, and the risk of ASD in a U.S. population-based case-control study.  Results 
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showed prenatal folic acid use three months before pregnancy, or the first month of 

pregnancy was associated with lower ASD risk. Risk of ASD was highest for mothers 

who did not take vitamins periconceptionally. There was a significant interaction with 

regard to genetic allele form of caetchol-O-methyltransferase (COMT), tetrahydrofolate 

reductase, (MTHFR) and CBS (enzyme cofactor for Vitamin B6) genes associated with 

vitamin B metabolism. ASD risk was greater for particular maternal MTHFR and CBS, 

and infant COMT-472AA genetic alleles. COMT codes for an enzyme associated with 

dopamine, adrenaline and noradrenaline regulation, and has been associated with other 

development disabilities such as ADHD (Matthews et al., 2012; Palmason et al., 2010; 

Vorstman et al., 2009). Saugstad (2011) proposed lack of prenatal essential fatty acids in 

the third trimester affected epigenetics associated with SIDS risk. The effect of exposure 

by trimester may be associated with particular timing of fetal developmental milestones.  

Pineal gland expression is known to occur within three weeks after conception in rodents 

(Munoz, et al., 2007) and three human  primary brain vesiciles are evident by four weeks 

(Marieb, 2001a).  Immune development, triggered by tissue and organ seeding begins at 

four to seven weeks gestation (Leibnitz, 2005) concurrent with brain microglia cell 

differentiation (Monier, Evrard, Gressens, & Verney 2006) while thymic events are 

thought occur 8-18 weeks gestation (Leibnitz, 2005). Myelination of fetal nerve cells 

begins around 24-25 weeks gestation and accelerates to a peak growth rate at age one 

year (Steinman & Mankuta, 2013). Women carrying female fetuses have significantly 

higher placental growth hormone in their blood than women carrying male fetuses at 28 

weeks gestation; which may be a key factor in subsequent offspring ASD (Steinman & 
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Mankuta, 2013).  Little brain synaptic development occurs before the third trimester of 

pregnancy; at which time the rate accelerates to 40,000 synaptic connections per minute 

and continues to childhood calendar age of two years (Bourgeois, 1997). There is a strong 

relationship between synaptic connection rate and glucose metabolism rate (Johnson, 

2003). Gender may play a role in glucose metabolism based on studies in healthy adults 

and children with autism (Evans et al., 2008; Mittelstrass et al., 2011).   

Cellular dysfunction, mitochondrial distress, lack of homeostatic control, and 

exogenous stress associated with early or initial autism diagnosis provides evidence for 

the hypothesis that autism onset or antecedent trigger mechanisms for risks of autism 

onset likely occur within perinatal and prenatal periods. Prenatal exposure evidence for 

the gender differential of ASD is not well understood, has not been extensively studied, 

and deserves further investigation.  

 Gene-environment interaction, more specifically, maternal gene-diet/exposure 

factors may be related to fetal programming and subsequent onset risks of autism. Gabory 

et al., (2009) described three broad types of epigenetic mechanisms leading to sexual 

dimorphism of second to fifth generation (F2-F5) offspring : 

1. nuclear receptor binders such as endocrine disruptors, genestein, bisphenol A,     

   retinol, peroxisome, polyunsaturated fatty acids, drug fibrates which may alter  

   chromatin remodeling enzyme(s) function(s);  

2. direct chromatin modification via folate deficiency, methionine, resveratrol, 

   sulphoraphane, valproate (valproic acid exposure has been associated with the      

 onset of autism-like traits in rats), trichostatine A, fungicide/vinclozolin, and  



54 
 

 

     corticoid steroids/dexamethasone exposure; 

  3. membrane-receptor signalling cascades due to social/behavioral responses 

     affecting serotonin, cortisol cascades, and sodium, potassium, and calcium    

     signalling channels.  

Many theorized autism pathway mechanisms rely on animal-based (e.g. rodent) 

studies with fewer published human studies (Dietert et al., 2011; Tordjman et al., 2014).  

Rogers cautioned that rodents are born developmentally earlier than humans, thus third 

trimester human development mechanisms are postnatal mechanims in rodent models 

(Brown, Sawyer, & Grossblatt, 2011).  Heindel agreed and noted animal models are not 

typically used for longitudinal or later-onset disease research stage (Brown et al.,2011).  

Researchers have cited the common use of inbred strains of laboratory animals reduces 

the ability to study gene-enviornment interactions (Brown et al., 2011; Shelton, Hertz-

Picciotto, & Pessah, 2012). Thus, the validity of rodent models to predict human fetal 

exposure-effect relationships associated with autism etiology is questionable.  However, 

the ability to study prenatal risk factors and the gender differential is likely more 

problematic in humans. 

With regard to human population studies, cultural factors, longitudinal changes in 

maternal behaviors, obstetric and medical practices, and subtle refinements in case 

definition diagnosis complicate estimation of autism incidence. From an ecological 

perspective, McDonald and Paul (2010) used literature reviews from three longitudinal 

studies (~10 years) to determine cumulative incidence of autism within each cohort study 

for children diagnosed at age five years or older. In Danish, California, and Japanese 
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cohorts for the period 1988-1996, cumulative incidence for all five core subtypes of 

autism increased; 1988-1989 was identified as an inflection point representing 

accelerated prevalence rates for the Danish and California cohort studies whereas the 

Japanese studied showed a constant incidence rate increase. In the Danish cohort, 

acknowledgement of ICD-8 case definition was used prior to adoption of ICD-10 case 

definition in 1993 (Lauritsen, Pedersen, & Mortensen, 2005). Therefore, the seminal 

distinctions of childhood schizophrenia, mental retardation, and infantile autism defined 

in ICD-9 criteria may not have been used in the Danish cohort analysis using case counts 

prior to 1993.  In addition, the changepoint years of 1988-1993 were also coincidental 

with the increased popularity of assisted reproductive technology (Schieve et al., 2011). 

Germ cell imprinting, a key concern for assisted reproductions has been documented 

(Halliday, 2007) and associated with lower birth weight, preterm birth (McDonald, Han, 

Mulla, Murphy, Beyene, & Ohlsson, 2009) obstetric complications, multiple births 

(Halliday, 2007; Schieve, et al., 2011) and risk of autism diagnosis in the U.S., Finland, 

and Japan (Klemetti, Sevon, Gissler, & Hemminki, 2006; Schieve et al., 2011; Shimada 

et al., 2012). These risk factors tended to more adversely affect boys more so than girls. 

Sandin, Nygren, Iliadou, Hultman, and Reichenberg (2013) reported the specific 

technique of intracytoplasmic spermatozoid injection was associated with higher ASD.  

Therefore, there was suggestive evidence that common and specific prenatal 

exposures during pregnancy affect subsequent autism diagnosis based on rodent models 

and ecological human studies. These exposures may be associated with epigenetic 

changes which may be associated with post-natal metabolic and nutritional biomarker 
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profiles. It was of interest whether gender-differences in infant proxy biomarker profiles 

or arrays were reported in the literature. 

    Inconclusive Childhood Biomarker Candidates for Autism  

Ratajczak (2011) recently reviewed key biomarker candidates of immunology, 

gastrointestinal function, neurologic and toxicological systems associated with autism 

published in the Pub-Med and Ovid Medline database literature since 1943 and proposed 

the hypothetical concept of a comprehensive biomarker array profile with attributed 

autism risk contributions from risk factors. Suggestive evidence of specific epigenetic or 

metabolic pathways such as those described above were hypothesized by Ratajczak 

(2011) and Wilson (2014) to explain the association of risk factors and subsequent 

diagnosis of autism. It would seem valid and reliable biomarker candidates or 

biochemical intermediates must serve as proxy variables for the proposed metabolic 

pathways.  It was of interest whether these proxy biomarkers may also inform the gender 

risk differential in autism. The literature regarding biomarker feasibility of  interleukin, 

cytokines, immunoglobulins, hormones and catecholamines as confirmatory proxy 

biochemical intermediates for ASD and the gender differential in ASD have been 

summarized and showed mixed results (Corbett et al., 2008; Geier et al ., 2009; Kern et 

al., 2011; Rosen, Yoshida & Croen, 2007; Steinman & Mankuta, 2013). The relationship 

of ASD and interleukins associated with maternal and infant or childhood dietary 

exposure have been inconclusive (Goines et al., 2011; Onore et al., 2009). Unfortunately, 

very few studies addressed the ASD gender differential of these biomarkers. 
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Stigler, Sweeten, Posey, and McDougle (2009) concluded that while a 1964 

rubella epidemic was a unique, specific hazard exposure for increased risk of autism, 

other infectious, autoimmune, and cytokine-related etiologic studies showed mixed 

results. Childhood infection patterns  suggested a slightly higher risk of infection within 

the first 30 days of life for persons with autism in a case-control study, but the trend was 

not evident over 2 years of the child’s life (Rosen et al., 2007).  In general, innate or 

acquired aadaptive immunity responses are triggered by foreign or adverse biochemical 

agents, which in turn initiate a cascade of cellular responses and cytokine release across 

the blood-brain barrier, resulting in inflammation, fever and tissue swelling. Clearance of 

measles and other viruses requires the development of adaptive immunity (Marieb, 

2001b; Nelson & Williams, 2007).  Neonate and infant immune challenge or autoimmune 

disorders may lead to encepahalopathy which is often coincidental with post-mortem 

analysis of brain matter for persons with autism (Campbell et al., 2009; McMillin, 

Richards, Mein, & Nelson 1999; Mills et al., 2007; Newschaffer et al., 2007).  The 

amygdala brain has been reported to be enlarged in autistic children (Miller et al., 2013; 

Schumann, Barnes, Lord, & Courchesne 2009; Steyaert & Marche, 2008; Wakefield, 

Puleston, Montgomery, Anthony, O’Leary, & Murch 2002).  

 Encephalitis type physiological outcomes in infants from 1-2 years of age have 

been consistently associated with subsequent onset of ASD but causal mechanisms, and 

reliable biomarkers indicating timing or sequence of biologic events, are unknown 

(Corbett  et al., 2008; Ghaziuddin, Zaccagnini, & Elardo, 1999; Lopata, Volker, Putnam, 

Thomeer, & Nida, 2008; Naber et al., 2007; Redclay & Courchesne, 2005).  
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Neuroanatomical abnormalities such as larger head circumference among autistic infants 

and toddlers (Barthomoleusz, Courchesne, & Karns, 2002; Redclay & Courchesne, 

2005), enlarged grey and white matter volume in prefrontal cortex and other brain regions 

tissue, (Herbert et al., 2004; Polleux & Lauder, 2004) and decreased number of Purkinje 

cells in cerebellum tissue (Bauman & Kemper, 2005; Courchesne, 1997; Fatemi et al., 

2002; Kemper & Bauman, 2002) are associated with autistic children compared to 

matched controls. Some researchers suggested disruption of brain cerebellar tissue 

development or interconnectivity, synaptic pruning, gestational insult, or limbic system 

imbalance were biochemical mechanisms of ASD onset (Courchesne, 1997; Kidd, 2010; 

Saugstad, 2011; Schumann et al., 2009). 

The identification, measurement, and utility of biomarkers as proxy variables for 

possible autism mechanistic pathways remain a daunting epidemiologic challenge. The 

complex, integrated biochemical pathways, and uncertain assessment of symptomatic, 

coincidental, and/or co morbid conditions of human physiology result in at best, 

inconclusive, tentative relationships between autism diagnosis and endocrine biomarker 

candidates. The relationship of valid, reproducible biomarker candidates and ASD onset 

or the timing of autism “trigger” mechanisms deserves further study.  The effect of 

gender on pre-conception, pregnancy and postnatal developmental trajectory biomarkers 

is also of interest. In addition to endocrine biomarker research, research into gender 

effects of dietary metabolic markers has been reported. Characterization of dietary 

metabolites for perinatal, fetal and neonatal exposure may inform the criticality of 
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epigenetic mechanisms associated with ASD. Dietary metabolic research may provide 

evidence of the relationship of dietary factors to the gender differential of ASD. 

    Childhood Dietary Metabolities as Proxy Biomarkers for Autism  

The impact of compromised immune function in autistic children may present as 

clinical evidence of nutritional deficiencies and nutrient imbalances, but it is difficult to 

determine the timing of the metabolic assault. Therefore it it difficult to detail whether 

nutritional deficiencies were a risk factor at birth due to prenatal epigenetic factors 

(Braun et al., 2014b; Gabory et al., 2009; Schmidt, Tancredi, Krakowiak, Hansen, & 

Ozonoff, 2014) or metabolic consequences of childhood dietary inadequacies as 

described by Abrahams and Geschwind (2008) and others (James et al., 2010; Taurines et 

al., 2010).  To gain insight into this phenomena, a literature review of dietary metabolites 

associated with autism was conducted. There were a few papers which identified dietary 

recall differences between autistic children and normally developing children, but studies 

generally did not include biomarker data and reported conflicting results (Herndon, 

DiGuiseppi, Johnson, Leiferman, & Reynolds 2009). These studies will be detailed in this 

section and include results for gender-stratified studies. 

An emerging area of research in childhood autism etiology is the study of the 

central nervous system integration as it affects regulation and coordination of body 

functions under the control of limbic-hypothalmic-pituitary-adrenocorticol axis (Kahn, 

2012; Kidd, 2010). The relationship between gut, brain, nutritional, and toxic exposure-

effects has been associated with increased cellular oxidative stress and ASD (Bradstreet, 

Smith, Baral, & Rossignol, 2010; Cannell, 2014; James et al., 2004; Lillycrop, 2011; 
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McGinnis 2004; Neggers 2014; Tordjman et al., 2014). Erickson, Stigler, Corkins, Posey, 

Fitzgerald, and McDougle (2005) completed a meta-analysis of metabolic and gastro-

intestinal symptoms suggestively associated with autism spectrum diagnosis. Several 

authors suggested a decreased metabolic sulfation capacity or transsulfuration 

abnormalities in children with autism (Geier et al., 2009; Moss & Waring, 2003). These 

studies and original research related to oxidative stress and sulfation metabolites, blood 

and urinary amino acid, vitamin D and mineral nutritional metabolites among children 

with autism (with or without the use of pharmacotherapy) are summarized below. A 

review of the study findings also illustrates the fact that few gender-specific dietary 

metabolite research findings were identified in the literature. Early published ecological 

studies emerged on diet factors; investigative environmental chemical exposure studies 

soon followed. 

Dufault, Schnoll, Lukiw, LeBlance, and Cornett (2009) conducted a macro- 

ecological U.S. study and proposed cultural diet trends toward lower essential fatty acid 

intake, higher fish consumption and high fructose corn syrup intake affected mineral 

balance (i.e. higher mercury, lower zinc status), glutathione metabolism and increased 

oxidative cellular stress risk factors among children. These trends were suggested to 

increase autism risk among U.S. children. A follow-up comparative ecologic study of 

U.S. and Italian children suggested high fructose corn syrup and organopesticide 

exposures may be risk factors for onset autism prevalence among U.S. children (Dufault, 

Lukiw, Crider, Schnoll, Wallinga, & Deth, 2012). Dufault et al. (2009, 2012) did not 

report gender stratified data in either the U.S. or Italian cohorts used in the two studies.  
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Kinney, Barch, Chayka, Napoleon, and Munir (2010) identified nine chemical mutagenic 

risk exposures and four environmental factors (urbanization, geographic latitude, 

precipitation and sun exposure) from the literature which were speculated to be 

associated with ASD in the U.S.. 

U.S. environmental exposures to pollutants, endocrine-disrupting chemicals, 

occupational exposures, and agricultural pesticides have been studied  and many studies 

reported suggestive evidence related to ASD risk (Braun et al., 2014a; Chen et al., 2014; 

Roberts et al., 2013; Shelton et al., 2012; Windham et al., 2013). Maternal exposure to 

occupational hazards such as volatile organic compounds (Windham et al.); heavy 

metals, petroleum-based solvents (Roberts et al.) and maternal exposure during 

pregnancy to polybrominated diphenyl ethers (Chen et al.) were associated with increased 

ASD and risk of child developmental delays for ecological studies using exposure 

modeling estimates. In the Nurses' Health Study II cohort, Roberts et al. reported linear, 

positive trends for exposure to air pollutants and risk of ASD with significantly stronger 

associations for boys than girls. Suggested explanations for the gender-differential were 

lower neurotoxic or inflammatory thresholds for boys, or sex-specific social behavioral 

effects related to dopamine regulation (Roberts et al.).  Other researchers suggested 

children diagnosed with ASD have impaired detoxification mechanisms which inhibit the 

body's ability to adapt to increased environmental neurotoxins; regardless of child gender 

(Alabdali, Al-Ayadhi, & El-Ansary, 2014; DeSoto 2009). Volk, Kerin, Lurmann, Hertz-

Picciotto, McConnell and Campbell (2014) reported particular allele forms of the MET 
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gene promoter were associated with roadway air pollution (benzopyrene) and ASD in 

mouse studies modeled to simulate California roadway pollution. 

Other researchers reported  an association of in utero levels of maternal 

organopesticide xenobiotic clearance as measured by higher liver enzyme paraoxonase 

(PON1) levels and reduced neurodevelopmental risk within a California infant birth 

cohort;  no offspring gender differential was reported (Eskenazi et al., 2010).  However, 

higher PON1 levels have been found to be higher in female rats and hamsters as 

compared to males (bin Ali, Zhang, Lim, Fang, Retnam, & Lim, 2003; Thomas-Moya, 

Gianotti, Llado, & Proenza, 2006). Rodent PON1 associated enzyme levels in liver tissue 

were equally reduced in both genders upon xenobiotic exposure (Feingold, Memon, 

Moser, & Grunfeld, 1998) or calorie restriction (Thomas-Moya et al., 2006). Therefore, 

the literature suggests effects of xenobiotic exposure and measurable detoxification 

mechanisms of organopesticides, volatile organic chemicals, heavy metals, high fructose 

corn syrup, and fatty acid intake on PON1 activity and dietary metabolite markers are 

inconclusive. 

Early studies on autism etiology were focused on dietary biomarkers for ASD 

risk. Arnold, Hyman, Mooney, and Kirby (2003) analyzed plasma amino acid levels 

among 36 children  with autism, stratified by dietary intake and matched by age and 

gender. Autistic children on casein and gluten restricted diets had lower plasma levels of 

tryptophan and tyrosine; which are neurotransmitter precursors and were speculated to 

reflect dietary intake. No gender-stratified analysis was reported. The authors speculated 

casein and gluten restricted diets may reduce serum levels of tryptophan, a serotonin 
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precursor, and tyrosine in autistic children. Plasma tryptophan is imporant for normal 

sleep cycle function; and coincidentally, lack of regular sleep pattern is common among 

children with autism (Krakowiak, Goodlin-Jones, Hertz-Picciotto, Croen, & Hansen, 

2007; Margoob & Mushtaq, 2011). It is difficult to ascertain the effect of restricted diets 

on sleep patterns in children with autism. Dietary restriction related to opiatic peptides 

found in dairy products is a common intervention for children with autism. The effect of 

pre and post-natal vitamin D associated metabolites on subsequent ASD risk is unclear. 

Molloy, Kalkwarf, Manning-Courtney, Mills, and Hediger (2010) studied plasma 

vitamin D levels, as measured by 25 hydroxyvitamin D in male children aged 4-8 years 

diagnosed with autism and matched male controls.  Plasma vitamin D levels were 

compared for unrestricted diet groups (40 cases and 40 controls) and a small subgroup of 

cases on casein-restricted diets (n = 9) after adjustment for seasonality/sunlight effect on 

vitamin D and the use of dietary supplements. There were no significant group 

differences but 61% of children had low (less than 20ng/ml) plasma vitamin D levels.  

This minimum level is recommended to ensure adequate bone health.  

Gong et al. (2014) reported Chinese children initially enrolled in a hospital 

neurology department for ASD therapy had low indigenous levels of serum 25-OH 

vitamin D even after adjustment for age, sex, body mass index and serum levels of 

calcium, phosphate, magnesium and seasonality/light exposure. Serum 25-OH vitamin D 

levels were an independent predictor biomarker of ASD. Odds risk of low (< 20 ng/l) 

serum vitamin D among ASD children was 1.23,  95% CI [1.10-1.37].  Xia, Zhou, Sun, 

Wang, and Wu (2013) showed that while severe malnutrition was a factor in 8.1% of 



64 
 

 

children enrolled in a ASD clinic, dietary recall methods shows that 111 children aged 2-

9 had low daily intakes of vitamin A, B6, C, folic acid, calcium and zinc. However, 

vitamin E, niacin, iron and magnesium intake exceeded 80% of daily recommended 

intakes and growth rates were typical for the cohort of Chinese children. 

Other researchers also investigated the relationship of childhood plasma vitamin 

D levels and autism diagnosis, but studies did not control for diet, sunlight or dietary 

practices and/or showed no differences among cases and controls (Fernell, Barnevik-

Olsson, Bagenholm, Gillberg, Gustafsson, & Saaf, 2010; Grant & Sales, 2009; Meguid, 

Hashish, Anwar, & Sidhom, 2010). Other researchers reported dairy mineral levels were 

associated with ASD (Adams et al., 2011). Sulfur metabolism biomarkers have  been 

suggested to differ among cases and controls. 

Adams et al. (2011) reported lower plasma glutathione, sulfate, tryptophan and 

higher levels of oxidative stress and plasma glutamate in autistic children aged 5-16 years 

matched by age, gender and geography. Regression analysis for the cohort (n = 99, 11 

females) indicated lower calcium, magnesium, and lithium biomarker levels among 

affected children; severity of autism was associated with significant regression 

coefficients for calcium, iron, zinc, and potassium biomarker measurements from red 

blood cell specimens. All subjects refrained from nutritional supplements for at least two 

months prior to study enrollment in 2008. However, 29% of cases reported use of 

psychopharmaceuticals (risperdone and clonidine), and 5-9% reported the use of central 

nervous system stimulants and/or gastrointestinal medications. Medications like 

risperdone, clonidine, methylphenidate are known to disrupt metabolic pathways and 
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therefore affect metabolite profiles and biomarker levels (Adams et al., 2011; Erickson et 

al., 2005; Evans et al., 2008; Nikolov et al., 2008). Thimerosol, prescribed to control 

epileptic behavior in autistic children has been shown to affect intracellular calcium 

levels (Palmieri et al., 2010).  

The high use prevalence (40-70%) of psychopharmaceutical central nervous 

system stimulants and gastrointestinal medications use among American autistic children 

further complicates blood and urinary biomarker analysis (Adams et al., 2011; Erickson 

et al., 2005; Evans et al., 2008;  Mayer, Padua, & Tillisch 2014; Nikolov et al., 2008; 

Rosenberg, Mandell, Farmer, Law, Marvin, & Law 2010; Taurines et al., 2010.)   Several 

reviews of nutrient status for autistic children and cases have been conducted with mixed 

results due to dietary intake, medication and behavioral factors. Underlying food allergies 

complicated biomarker studies aimed at identifying ASD causality.  

Few studies have examined nutrient status and gastrointestinal symptoms in 

autistic childhood populations not using medications for psychosis or mood disorders.  

Evans et al. (2008) quantified the urinary metabolic output of autistic children, compared 

to that of matched (mostly sibling-matched) control children (age 5-15 years; median age 

7-9 years) enrolled in two clinics in Australia. Thirty-four autistic children were 

identified, including 12 untreated cases, and 22 cases receiving various therapies 

including antifungal treatment for gastrointestinal Candida infection, probiotics, injection 

of secretin hormone to control duodenum pH, and casein and gluten-free diets 

administered and recorded by parental compliance. Control females had significantly 

higher levels of urinary glucose and aspartic acid; aspartic acid was three times 



66 
 

 

significantly higher (p = 0.05) than the male control group. No explanation was provided 

for this finding. The unmedicated autistic group had the lowest level of amino acids 

excreted, including eight essential amino acids. There were no differences in urinary 

glucose, sucrose, arabinose or tartaric acid among untreated ASD, treated ASD or the 

control group. The researchers speculated a possible role of lower phenylalanine and 

tyrosine with regard to dopamine levels, lower tryptophan levels affecting serotonin 

levels, and ornithine levels affecting ammonia toxicity or retinal degenerative 

photosensitivity in untreated autistic patients.  The effect of gender on dietary metabolites 

was reported for glucose and aspartic acid, but these findings were not interpreted. 

Other biochemical gender-differences among ASD cases have been reported. 

Longer light reflect response, smaller and slower pupil constriction has been associated 

with autism diagnosis and was more symptomatic of boys rather than girls and was 

proposed to be a diagnostic screening criteria for ASD (Fan, Miles, Takahaski, & Yao, 

2009).  Gender differences in xenobiotic gene (CYP and GST) expression have been 

identified in ocular tissue of rats aged 3 to 8 week old (Nakamura, Fujiki, & Tamura, 

2005).  Female rats tended to have higher levels of CYP gene expression. Within the 

literature review, only two controlled studies using either children or adults not subjected 

to psychosis-related medication reported gender differences in metabolic biomarkers 

(Evans et al., 2008; Mittelstrass et al., 2011).    

Therefore, there is limited and inconclusive evidence of the identification of 

amino acid, urea cycle and serotonin biomarkers associated with autism. There is very 

limited evidence of gender-associated differences in glucose metabolic markers among 



67 
 

 

post-natal females with or without autism diagnosis. In addition, based on rodent models, 

possible early maturity and/or increased PON1 and/or CYP gene function in females may 

affect the body’s ability to clear or detoxify prenatal or infant xenobiotic exposures. 

Evidence for dietary metabolites associated with autism is complicated by the dual 

impact of dietary restriction and intervention therapies, as well as food refusal and 

selective, repetitive dietary choice characteristic of children with autism (Ahearn, 

Castine, Nault, & Green, 2001; Paterson & Peck, 2011; Ritvo & Freeman, 1978). These 

factors, and the biostability of many blood or urinary biomarkers confound their use to 

inform plausible mechanisms of ASD or explain the gender differential of ASD.  

Therefore, information about metabolites and biomarker measurements for a well-

characterized and early life stage restricted diet of breast milk and/or infant formula may 

inform autism etiology. 

  Lactation as a Neonatal Biomarker for Autism 

The rationale for searching literature for the relationship between prenatal, 

neonatal and postnatal dietary metabolites was to inform the identification of biomarker 

candidates for well-characterized metabolic dysfunctions associated with ASD.  Prenatal 

critical timing of environmental exposure and dietary factors associated with ASD were 

briefly reviewed in the previous section describing critical windows of exposure. The 

literature evidence for the relationship between childhood blood, urinary, and dietary 

metabolite factors and ASD was limited and inconclusive as detailed in the previous two 

sections detailing biomarker candidates and dietary metabolites associated with ASD.  It 

was of interest to review biomarker literature related to a more restricted or controlled 
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neonatal diet- using lactation as a proxy variable for infant metabolic status. Gender 

effects on lactation practice were also of interest. A recent symposium on the impact of 

breast milk and infant formula diet on the nutritional, microbial, and immune status of 

offspring discussed emerging research topics (James, 2012).  But the discussion focused 

on broad themes and did not address autism or ASD gender risk. The symposium 

addressed various types and complimentary breast milk and lactation practices. 

The World Health Organization,WHO, criteria of exclusive breastfeeding is 

defined as the following: 

no other food or drink, not even water, except breast milk (including milk 

expressed or from a wet nurse) for 6 months of life, but allows the infant to 

receive ORS, drops and syrups (vitamins, minerals and medicines). (WHO, 2001)   

Adequate maternal health fosters healthy lactation capacity and competence; but 

nutrient profiles of maternal diet may not be directly transmitted and reflected in breast 

milk composition (Godfrey & Meyers, 2009; Meldrum et al., 2012).  Rather, breast milk 

reflects a dynamic nutrient composition which differs over time, with maternal hormone 

status and with infant delivery status (Davis, Nguyen, Garcia-Bravo, Fiorotto, Jackson, & 

Reeds, 2007; Fidler & Koletzko, 2000; Godfrey & Meyers, 2009; Kuipers, Luxwolda, 

Dijck-Brouwer, & Muskiet, 2011; Meldrum et al., 2012).  Breast milk composition 

differs from infant formula in many respects, including the inclusion of defensin proteins, 

IgG, IgM, lysozymes, lower protein content and different polysaccharides, fatty acid, and 

lipid profiles in human breast milk (James 2012). Walther et al. (2011) reported a high 

protein weaning diet lead to SIDS-like syndrome in a mice study and suggested fetal 
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programming mechanisms may adversely affect offspring metabolism. The researchers 

suggested implications for high protein human maternal diets.  

Healthy People 2020 prevalence targets include increased WHO-exclusive 

breastfeeding (0-3 mo.) to 46%, and 25.5% (0-6 mo.) since breastfeeding affords higher 

immunity defense against child ear and respiratory infections, dermatitis, gastroenteritis, 

type 2 diabetes, obesity, SIDS, and fostered skin-to-skin and maternal-child bonding 

(DHHS, 2007, 2014).  Li, Dee, Li, Hoffman, and Grummer-Strawn (2014) reported that 

infants (n=1281) exclusive breastfed by WHO definition beyond 6 months had lower 

odds of sinus, ear, nose, and throat infections at age six; but breastfeeding practice had no 

effect on upper respiratory or lung infections. Evidence of lactation benefits to maternal 

and child health have been reported in several meta-analyses; as have the risks associated 

with nonbreastfeeding (American Academy of Pediatrics, 2012; Ip et al., 2007; Chung, 

Raman, Trikalinos, Lau & Ip, 2008; Godfrey & Meyers, 2009; Hauck, Thompson, 

Tanabe, Moon, & Vennemann, 2011). One meta analysis suggested breastfeeding for any 

duration may be protective against SIDS risk but the summary odds ratio was estimated 

to only be OR= 0.55, 95% CI [0.44-0.69] for 288 studies conducted from 1966-2009 

(Hauck et al., 2011).  The specific effects of lactation practice on subsequent offspring 

autism risk deserves more research attention. 

With regard to the relationship of lactation and ASD and the gender differential of 

autism, few papers were identified in the literature. One paper addressed psychosocial 

bonding and trust benefits or biomarkers, such as oxytocin signaling in rat models 

(Higashida et al., 2010). Other papers addressed environmental exposures and risks 
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related to bottle feeding or environmental pollutants using ecological study designs 

(Hertz-Picciotto et al., 2011; VanDen Hazel et al., 2006). Chemically derived 

contaminants such as bis-phenols (BPA) and other plastic additives in processed food can 

and lid liners, plastic bottles, and  baby bottle nipples were listed as potential health risk 

factors (Olshan, 2007; WHO, 2010).  

One case study paper discussed food refusal, breastfeeding and failure to thrive 

among six infants in Ohio (O’Connor & Szekely, 2001).  The effect of gender, and ASD 

risk was not addressed. Lucas (2011) conducted a retrospective study using a 

convenience sample of 20 mothers in Illinois to discuss the maternal breastfeeding 

experiences and behavior of children later diagnosed with ASD.  The conceptual 

framework for the study included behavioral and biological factors with adjustment of 

socioeconomic status, intrapartum history, and professional breastfeeding assistance. 

Mothers were categorized based on type of professional breastfeeding assistance during 

the first month after delivery for 23 full term singleton neonates with birth weights above 

2500 grams, and ASD diagnosis before age 11. Mothers completed a survey of socio-

environmental questions, a semi-structured interview and postinterview summary.  

Consistent thematic responses included "insatiable feeding", a vigorous suck that did not 

stop with satiation, diminished social interaction with mother during lactation, and > 70th 

percentile for weight gain during the first year. Some researchers have suggested infants 

with bronchopulmonary dysplasia, cytomegalovirus infections, Prader-Willis syndrome, 

and ASD have difficulty performing typical suck:swallow:breathe ratios and exhibit 

periods of apnea, inability to feed, and difficulty with initiation of nutritive suck (Gewolb 
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& Vice, 2006; Lucas 2011; Miller et al., 2011).  However, Lucas (2011) reported 

adequate first year weight gain among infants later diagnosed with autism. 

Field (2014) reported breastfeeding was a risk for ASD among first born males to 

mothers diagnosed with psychopathology among a case-control study of 112 cases and 

139 age and sex matched controls. In the absence of parental psychopathology recorded 

on medical records, breastfeeding more than twice per day, for at least four months 

duration was associated with lower risk of ADHD and ASD. Breastfeeding practice did 

not differ by maternal age, but was less likely to occur after the first-born child, 

regardless of ASD status. Field (2014) reported 24-29% of the sample was either bottle-

fed, or breastfed for less than 4 months. 

Three additional research articles quantified lactation proxy variables associated 

with autism. The articles used different study designs to address metabolic markers, 

lactation duration and subsequent ASD risk (Ostergard et al., 2011; Schultz et al., 2006; 

Shamberger, 2011). Some researchers described speculative commentary regarding the 

pivotal role of fatty acids in human breast milk and reduced autism risk (Brown & 

Austin, 2009).   

Shamberger (2011) conducted an ecological study of the relationship of 

participation rate in the U.S. Department of Agriculture’s Food and Nutrition Service 

(FNS) for Women, Infant and Children (WIC) to ASD prevalence rates in states and U.S. 

counties. WIC is a federal grant program for supplemental foods, health care referrals, 

and nutrition education for low-income pregnant, breastfeeding, and nonbreastfeeding 

postpartum women, and to infants and children up to age five (FNS, 2012). States with 
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highest WIC participation had significantly lower ASD prevalence rates (p < 0.02).  For 

21 counties with New Jersey and 30 counties in Oregon, a similar observation was 

reported (p < 0.02 and 0.05, respectively). Exclusive breastfeeding prevalence had 

increased from the period 2000 to 2004 but infants who were solely breast-fed tended to 

have diets with lower thiamine, riboflavin and vitamin D than U.S. minimum daily 

requirements for these nutrients. Effect of gender on WIC use or ASD was not reported.  

An original research article described the effect of breastfeeding duration on ASD 

in a retrospective, internet based survey conducted between February and April 2005 

using 861 children with pervasive or regressive autism and 123 matched controls in the 

New Jersey-based nonprofit organization, Autism Internet Research Survey (Schultz et 

al., 2006). Breastfeeding was recorded using nine categories of duration. The nine 

duration categories were recoded to five categories; less than 2 months, 2-6 months, more 

than six months, unknown, or none. The researchers reported odds ratio for subsequent 

autism diagnosis for the absence of breastfeeding, compared to breastfeeding for more 

than six months was 2.48, 95% CI [1.42, 4.35] for all cases in the case-control design. 

After limiting the case definition to include only regressive autism, the odds ratio was 

decreased to 1.95, 95% CI [1.01, 3.78]. Data for parental recall of specific infant formula 

brand was also collected to discern the use of infant formula with or without 

docosahexanenoic acid and arachidonic (DHA) supplementation. Results suggested the 

odds ratio of subsequent autism diagnosis for children fed infant formula without DHA 

fortification  versus exclusive breastfeeding was 4.41, 95% CI [1.24, 15.7].  No gender 

stratified results were reported.  Brown and Austin (2009) noted that Schultz et al. (2006) 
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did not account for colostrum intake, which is known to contain higher levels of 

immunoglobulins, protein, and polyunsaturated fatty acids (PUFA). The two studies 

above (Schultz et al., 2006; Shamberger, 2011) did not adjust for maternal nutrition 

status. Brown and Austin (2009) hypothesized fatty acid deficiencies may be linked to 

increased autism risk but did not discuss a gender differential.   

Ostergard et al. (2011) reported breastfeeding duration, adjusted for infant mean 

energy intake and diet supplementation was a strong predictor of plasma vitamin D status 

in a cross- sectional study of nine-month old Danish infants. Eighty-nine percent of 

infants had concentrations above 20 nmol/L; a minimum threshold level associated with 

bone health (Humble, Gustafsson, & Bejerot 2010). Plasma vitamin D levels were much 

higher in these infants than in Danish teen-agers and were much higher than levels 

reported in a US case-control design of to study the relationship of plasma vitamin D and 

autism for boys aged 4 -8 years of age (Molloy et al., 2010).  The role of vitamin D in 

autism was recently summarized by Kocovska, Fernell, Billstedt, Minnis, and Gillberg 

(2012). While the review did not include a discussion of the role of lactation or gender in 

the association of autism and vitamin D status of mothers and offspring, the researchers 

discussed the limitations of the Molly et al. (2010) study with regard to the health status 

of controls. Kocovska et al. (2012) proposed vitamin D status affects brain development 

and gene regulation. The gender-differentiating role of vitamin D and will be discussed in 

detail later in this chapter as it has been reported in healthy persons.  

There were surprisinglyfew publications identified which studied the relationship 

of lactation duration with subsequent ASD. The effect of gender on lactation and 
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subsequent autism was not discussed in the literature but deserves more attention. 

Lactation status may serve as a reliable, valid proxy variable which may inform the 

relationship of epigenetic (infant diet) factors and subsequent autism diagnosis. Because 

lactation occurs typically before the age of autism diagnosis, there is a lessened 

likelihood of metabolic confounding or interaction with pharmacotherapy, food refusal 

and other dietary restrictions. Lactation status is a noninvasive, readily-recalled factor 

which aligns well with case-control study designs. Neonatal diet as measured by lactation 

duration was identified as a result of the literature review as a possible, reproducible, 

non-biased early proxy variable to study ASD etiology and the gender ASD risk. 

Gender-Differentiated Metabolites as Biomarkers  

Generalized literature results corroborate the basic metabolic pathways of 

mitochondrial dysfunction, increased oxidative stress with co morbid neurologic, 

immunologic, gastrointestinal, and toxilogical consequences associated with autism 

(Abrahams & Geschwind, 2008; Gabory et al., 2009; Hu et al., 2009; James et al., 2010; 

Ratajczak, 2011; Taurines et al., 2010). Those studies do not account for the critical 

windows of exposures related to autism onset, or interpret the relative contribution of 

epigenetic risk factors. Therefore, the literature review was expanded to include 

publications on genetic, hormonal and behavioral factors affecting metabolic gender-

differential of healthy, unaffected children due to the lack of studies specifically focused 

the relationship of biomarker candidates and male predominance for risk of clinical initial 

autism diagnosis conducted at age eight years. The plausibility of gender-associated 

biochemical markers as a main effect variable, rather than a confounding variable in the 
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relationship to ASD was explored in the literature. Gender-specific metabolic biomarker 

research among healthy males and female infants and children was identified in the 

literature as an emerging area of metabolomic study. Gender-associated differences in 

lipid, carbohydrate and vitamin D metabolism were reported as described below. 

  Nikkila et al. (2008) reported metabolic lipid profile changes over an 11 year 

period among healthy children between birth and four years of age stratified by gender.  

The Finnish cohort study included more than 8,000 children with characterized serum 

lipid profiles using hidden Markov models. The results indicated the major 

developmental stage difference between girls and boys was attributed to serum 

sphingolipids levels at 1year of age. Girls tended to have higher sphingolipid levels. 

Sphingolipids are key and common membrane components, resemble phosphatidyl-

ethanolamine and phosphatidylcholine with similar electric charge and are present in 

most membranes and myelin sheath surrounding central nerve cells (Lehninger, 1982). 

Gender-based progressive trajectories in longer chain triacylglycerols (storage lipids) 

characterized metabolomics for aged cohorts of 1 to 4 years. Using a healthy Hutterite 

founder population in a genome-wide association study, Weiss et al. (2006) reported high 

density lipoprotein-c and triglycerides levels were strongly sexually dimorphic, as was 

systolic and diastolic blood pressure, body mass index, height, and serotonin levels 

among 806 adult subjects. It was presumed that these metabolic differences were gender-

specific since genetic inheritance changes were controlled and fairly homogenous.  

Hagenau et. al. (2009) conducted a global ecological meta-regression analysis of 

394 cross-sectional studies on serum 25 hydroxyvitamin D and concluded women had 
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slightly higher levels than men and Caucasians had higher levels than  nonCaucasians. 

Bolland et al. (2007) reported women had higher vitamin D binding protein levels than 

men in a cross-sectional cohort but levels were not related to age or adiposity. It was 

speculated that women had higher serum vitamin D levels because vitamin D binding 

protein levels rises in response to system estrogen levels. Other researchers also 

speculated estrogen has a protective effect against low serum vitamin D active metabolite 

levels in women (Cannell, 2008; Hagenau et al., 2009). Other researchers have 

hypothesized higher estrogen in females may mediate the toxic effects of excessive 

glutamate associated with ASD based on theorized mechanisms in rodent models 

(Pastural et al., 2009). Skin color, sunlight exposure also affect vitamin D levels as 

reported in studies involving immigration to Northern latitudes (Kocovska et al., 2012). 

Mittelstrass et al. (2011) showed significant gender-based differences in lipids, 

selective amino acids, and six-carbon sugar metabolites. Quantified gender differences 

were reported for 102 of 131 tested metabolites in a healthy German adult population 

cohort. Serum levels and gene function associated with sphingolipids, glycine, serine 

levels were higher; and those associated with hexose sugars were lower in women. This 

finding was congruent with the research of Evans et al. (2008) who reported teen-aged 

Australian girls used as controls in the study had higher urinary glucose levels than 

control boys in a case-control ASD study (see  Table 2). But Evans et al. reported no 

gender-stratified urinary glucose trend for the 12 children diagnosed with ASD  not 

subjected to prescribed medication or restricted dietary intake.   
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Table 2 summarized biomarker literature identified which reported gender-

stratified results for infants and children. Biomarker studies that reported gender-based 

biomarkers among healthy controls, including healthy adult controls were included in 

Table 2. The literature search for studies of gender-differential risk in autism resulted in a 

refinement and narrowed scope such that very few studies, including meta-analyses, 

reported gender-stratified data or discussion of gender as a covariate within publications 

addressing autism outcomes. 

 The data in Table 2 showed seven of 11 publications indicated gender differences 

in fatty acid and/or lipid related biomarkers, or adipose tissue associated hormones such 

as leptin. Three studies reported higher levels of serum vitamin D in healthy infants and 

white women. 

  Ostergard et al. (2011) reported differences (p = 0.37) in plasma active vitamin D 

levels among infant girls (25-151 nmol/L) and boys (12-150 nmol/L) in a healthy cohort 

of 255 nine-month old children. Of the 11 studies with gender-stratified results for 

metabolic biomarker differences, only three studies (Ashwood et al., 2008; Evans et al., 

2008; Wiest et al., 2009; Wiest, 2007) involved ASD as the dependent variable. In these 

three studies of children aged 2-15 years, dietary intake was not standardized or 

controlled. Biomarkers associated with significant gender and/or ASD were not 

replicated, and included plasma leptin level, urinary glucose levels, and serum 

triglycerides. Wiest et al. (2009) reported reduced fatty acid oxidation levels in both 

autism case and control girls used in the study of 169 children. The authors theorized 

females metabolize polyunsaturated fatty acids more efficiently than males, regardless of 
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ASD status; but did not report dietary regime or adjustments made to metabolic 

biomarker data to account for nonstandardized dietary intake and nutritional status.  

Wiest (2007) reported fish intake was monitored, but did not account for fish oil dietary 

supplementation, which the author suggested could account for mixed results.  

  Mills et al. (2007) suggested circulating blood DHEA levels may be a biomarker 

of growth-hormone related metabolism. In a study of 71 boys with ASD screened for 

steroid-related pharmacoptherapy use, blood levels of DHEA and DHEA sulfate did not 

differ among ASD cases and controls whereas growth-related hormone factors (IGF-1, 

IGF-2 IGFBP-3 and GHBP) were higher among ASD cases. The effect of dietary 

supplementation was not addressed in the study. Gender effect was not reported or 

studied due to the small number of female cases in the sample (Mills et al. 2007).  
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Table 2    
 
Gender-Stratified Studies of Biomarker Analysis in Infant and Child Cohorts 
Researcher Area and time 

period 
Population 
enrollment 

Percent or number 
by gender 

Autism or 
outcome criteria 

Independent 
variables 

Study design 
and method 

Results 

Ashwood et 
al., 2008 

California 
2003-2006. 
MIND, CCEH and 
CHARGE 
registries. 
169 children. 
 
 

Age range 2-15 
years (mean  4 
yrs) 
  
70 autistic 
(included  37 
regressed) 
 
99 aged-matched 
controls (included 
26 siblings and 23 
pervasive 
developmental 
disorder not 
otherwise 
specified 
(PPDOS) 

76-87% boys in 
controls (78 total; 
18 girls) TDs, 20 
sibs, 
20 develop-
mentally disabled) 
86-88% boys in 
cases. (60 total; 16 
girls including 31 
with early onset 
ASD. And 29 
regressive) 

ADIR(DSM-
IV/ICD-9) and 
an ADOS cutoff 
value on 
modules 1or 2.  
Four group 
comparison 
(ASD, typically 
developing, or 
TD, (total 
disability) and 
develop-mentally 
delayed  
(DD) siblings 

Plasma leptin 
samples,  Body 
mass index 
measured by 
mean, and 
median values 
per group.   
Body mass 
index  (BMI) 
for age Z-
scores.  

Four group 
comparison. 
 
Rank sums of 
leptin and log-
transformed 
leptin level. 
No repeated 
measures or 
discussion of 
effect of 
pharmaco-
therapy 

Leptin levels 
were 
significantly 
higher in early 
onset ASD 
compared to 
controls, 
siblings and 
children with  
delays (TD, 
DD). 
Leptin level 
was not 
associated with 
BMI or BMI for 
age Z-score 

Bolland et 
al., 2007 

New Zealand Age 38-85 
Healthy adults 

50 men 
50 women 

Healthy controls Plasma  
vitaminD ( 25-
OH-vitaminD) 

Group 
comparison 

Women had 
higher vitamin 
D & Vitamin D 
binding protein- 
not related to 
BMI or age 

Evans et al., 
2008 

Australian medical 
clinic 

Age range 5-15 
years (mean 7-9) 
Excl. Asperger, 
ADD, ADHD 
34 cases 
29 control 
 

45% boys in 
controls (29 total; 
16 girls) 
91% boys in cases 
(34 total; 3 girls) 
22 of 34 cases on 
medicine  or diets 

DSM-IV 
assessed by 2 
physicians 

First urine 
morning 
midstream 
urine.Urinary 
amino acids, 
tartaric acid, 
and sugars 
analyzed 

Group 
comparison. 
Amino acids 
and relative 
abundance (to 
correct for 
urine protein 
level) 

Control females 
had 
significantly 
higher aspartic 
acid and 
glucose in 
urine. 
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Researcher Area and time 
period 

Population 
enrollment 

Percent or number 
by gender 

Autism or 
outcome criteria 

Independent 
variables 

Study design 
and method 

Results 

Hagenau  
et al., 
2009 

Meta analysis 
1970-2004 

394 published 
global studies 

Age 0-75 years 
 277 reports for 
women; 105 
reports for men 

Healthy Controls Serum 25-OH-
vitamin D 

Meta-analysis 
and Meta 
regression 

Women had 
higher mean 
serum Vita D 
levels, followed 
by Caucasian 
men 

Kuipers 
 et al., 2012 

African fetuses  Fetuses 
postmortem 

Not gender 
stratified  

Gestational Age Fatty acids  3rd trimester 
differences 

Mittelstrass 
et al., 2011 

German 
Cooperative Health 
Research in the 
Region of 
Augsburg, KORA 
cohort 

Cardiovascular 
population  
 
Adult registry 

1452 males 
1552 females 

Not Applicable 131 Serum 
biomarkers; 
amino 
acids,phosphati
dyl-choline, 
sphingo-myelin, 
acyl-carinite, 
C6-sugar  

Group 
comparison 
Linear 
regression.  
Bonferroni-
estimate on 
gene single 
nucelotide 
polymorphism
(SNPs) 

Females had 
higher serine, 
glycine, lower 
C6-sugar, 
higher phingo-
lipids. GWAS 
(p< 0.05) for 
carbamoyl-
phosphate 
synthase1 
region 
 

Ostergard  
et al., 2011 

Denmark SKOT 
cohort 

Infant ( 9 mo) 
civil registration 

128 males 
127 females 

Plasma  
Vitamin  D 

Lactation, BMI, 
Supplements 

T-tests & 
regression 

Girls had higher  
Vita D 
 

 
Pastural  
et al.,  
2009 

 
Minnesota clinic 
(Jonty Foundation) 
1 yr study. 
4/15 cases on 
carnitine 

 
Age range 2-10 yr 
12 controls 
 15 cases 

100% male cases  
 
(15 total) 
75% male controls 
(12 total; 3 girls) 

DSM-IV Fasting plasma 
taken each 6 
mo. 
polyunsaturated 
fatty acids, very 
long chain fatty 
acid, amino 
acids, glutamate 

Group 
Comparison 

Cases had 
higher levels of 
poly-unsaturaed 
fatty acids and  
ethanolamine 
phospholipids. 
Control girls: 
higher 
glutathione, 
cysteine,and 
homocysteine. 
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Researcher Area and time 
period 

Population 
enrollment 

Percent or number 
by gender 

Autism or 
outcome criteria 

Independent 
variables 

Study design  
and method 

Results 

Nikkila  
et al., 
2008 

Finland 
Type 1 Diabetes 
Registry 
Longitudinal 
(1994-2006) 
8000 children 

Age 0-4 years 27 boys 
32 girls 

Healthy Controls Serum lipid 
profiles tested 
at 3 month 
intervals to 
confirm no 
progression to 
Type 1 diabetes 
(11 
samples/child) 

Bayesian 
based hidden 
Markov model 
to biotransition 
stages 

Girls had higher 
sphingolipids at 
age 1. Medium 
chain triacyl-
glycerols at age 
1-2 yrs and 
higher long 
chain 
triacylglycerols 
age age/stage  
2-4 years. 
 

Novak & 
Innis, 
2012 

Canada 
Healthy subjects 
 

631 (233 
pregnant) 
and 313 children 

27 % males 
Incl. 150 boys 

EPA, DHA 
intake 
By dietary recall 

Pregnancy, 
gender, age 

ANOVA EPA &DHA 
intake 
associated with 
protein intake 

Weiss et al., 
 2006 

US Hutterite 806 
people 
Mean age 29 
(range 6-89) 

Inbreed coeff; 
approximately 1.5 
cousins)  

567 complete 
profiles collected 
with 95% response 

Not Applicable 17 GWAS  tests 
for morning 
serum collected 
over two winter 
periods 

Monte Carlo 
simulation 

Lipids, blood 
pressure,FEV, 
Eos, IgE, lymph 
cortisol, 
serotonin 
differed by sex 
 

Wiest et al., 
 2009;  
Wiest, 2007 

 See Ashwood et 
al  2008 above 

See Ashwood et 
al., 2008 above 

See Ashwood  et 
al., 2008 above 

30 Plasma fatty 
acids in 7 
classes. 
One blood 
draw. Raw and 
log-transformed 
data. 

Group 
comparison 
Linear mixed 
effect model 

ASD+females 
had lower 
20:4n-6 
triglycerides 
than control 
females. All 
girls: < fatty 
acid oxidation 

 
Note.  ADD= attention deficit disorder;  ADHD= attention deficit hyperactivity disorder;  GWAS= genome wide association  studies;  
EPA= eicosapenaenoic acid; DHA= docosahenaenoic acid; FEV= forced expiratory volume; Eos= eosinophils;  IgE= immunoglobulin E. 
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Childhood dietary nutritional factors have been shown to affect biomarker studies 

in autism research, as summarized previously in this chapter. A comparison of two case-

control childhood studies and two cross-sectional adult studies (Fernell et al., 2010; 

Humble, Gustafsson, & Bejerot, 2010) which measured the effect of plasma vitamin D on 

autism diagnosis among children and adults with autism showed mixed results (Kocovska 

et al., 2012).  Health status of controls, maternal plasma vitamin D levels and severity 

vitamin D deficiency interacted and complicated results; and none of the four studies 

indicated breastfeeding history or duration as a study variable or confounder in the dose-

response relationship to ASD (Kocovska et al., 2012). Case-control studies for the 

childhood cohorts in China, Vietnam, Egypt, and the U.S. have been discussed in this 

literature review (Gong et al., 2014; Hanieh et al., 2014; Meguid et al., 2010; Molloy et 

al., 2010). Neither the four childhood studies, nor two adult studies on the effect of 

vitamin D status on autism reported the effect of gender on health status or the effect of 

gender on ASD. Vitamin D status may not be a reliable, biostable, standardized proxy 

biomarker for ASD or ASD gender-differential risk. 

 Neonatal diet data measured by the proxy variable of breastfeeding status, may 

provide a more consistent, reproducible relationship with autism status and inform the 

gender differential in autism diagnosis. Ostergard et al. (2011) reported breastfeeding 

duration, adjusted for infant mean energy intake and diet supplementation was a strong 

predictor of plasma vitamin D status. For these reasons lactation duration may be an 

adequate, reproducible surrogate marker for neonatal nutritional and health status. 

Ronald, Happe, Dworzynski, Bolton, and Plomin (2010) reported lack of breastfeeding 
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was a consistent risk factor for neonatal complications in twins.  Breastfeeding intention, 

capacity, and competence influence lactation duration (DiGirolamo, Thompson, 

Martorelli, Fein, & Grummer-Strawn, 2005; Lucas 2011; McCann, Baydar & Williams, 

2007). Breast milk composition differs over time with maternal hormone and infant 

delivery status (Davis, Nguyen, Garcia-Bravo, Fiorotto, Jackson, & Reeds, 2007; Fidler 

& Koletzko, 2000; Godfrey & Meyers, 2009; Kuipers et al., 2011; Meldrum et al., 2012).  

Nutritional status of lactating mothers influences infant health status (Mariani, Chalies, 

Jeziorski, Ludwig, Lalande, & Rodiere 2009; Shamberger, 2011).  

It is plausible that prenatal maternal nutrition affects epigenetic pathways, 

placental transfer, and gender-specific risks associated with autism spectrum disorder. 

Rogers (2008) speculated that enhanced maternal folate status may increase survival rates 

of particular genotypes with subsequently higher postnatal requirements for methylation 

needed for typical neurodevelopmental growth. Schmidt et al. (2012) reported low 

parental folic acid intake was associated with ASD risk, mediated by particular maternal 

methylene tetrahydrofolate reductase (MTHFR) gene alleles. Maternal lipid, protein, 

vitamin D, and other nutrient intakes may affect fetal development, as well as breast milk 

composition. It is of interest whether there are gender-specific effects of these 

metabolites which may inform the ASD gender differential. The effect of gender on 

perinatal diet, lipid, vitamin D and ASD is largely understudied.  

The speculative role of estrogen in gender-differentiated metabolism has far-

reaching consequences (Bolland et al., 2007; Cannell 2008; Hagenau et al., 2009; Hu et 

al., 2009).  Hu et al. studied nonaffected sibling and AGRE ASD cases and concluded 
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gender differential risks may be associated with cholesterol/steroid metabolism at the 

androgenic hormone level, based on differences in genetic expression profiles. 

Interactions of biochemically based maternal and paternal factors may have heretofore 

unrecognized effects on the gender differential pattern associated with autism. 

Observable, consistent, and readily documented or recalled gender-based factors may 

provide robust analysis of the effect of these prenatal factors on the gender differential of 

autism. Retrospective, externally validated prenatal risk factors, including parental age, 

health status, parental risk behaviors, pregnancy and delivery complications, and familial 

genetics are likely also associated with epigenetics of autism. These factors may also help 

to explain the gender-differential risk associated with autism onset. Suggestive, recurrent 

literature evidence for prenatal risk factors which indicate gender specific effects on 

autism diagnosis are addressed in the next section. 

Prenatal, Gender-Associated Risk Factors for Autism 

Evidence supporting a plausible gender-differential risk factor profile was related 

to variables of parental age, SIDS type symptoms, and infant hypoxia risk, parental 

smoking status, obstetric or pregnancy complications, perinatal maternal diet as it 

affected birth outcome and offsring epigenetics, and parental genomic analysis. 

Independent variables amenable to retrospective, direct observation, direct measurements 

or externally validated recall measurement were the primary focus of the literature review 

on this topic. These study topics are summarized below.  The ASD risk factors of infant  

hypoxia, preterm birth, preeclampsia, vitamin D intake, estrogen levels, xenobiotic 

clearance liver enzymes, and lactation are described. 
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Parental Age   

Relationship of pregnancy outcomes, and developmental risks including autism 

have been generally identified in the literature to be “U”shaped with regard to parental 

age for U.S. and European populations. At young age (i.e. less than 20 to 25 years) 

increased  risks of suboptimal parental health and behavioral risk profiles appear to 

influence pregnancy status (Anello et al., 2009;  Cantor et al., 2007).  At increasing age 

(i.e. greater than 35-50 years), cumulative behavioral, nutritional and/or environmental 

exposures  affected fertility as well as pregnancy outcomes (Anello et al., 2009; Durkin et 

al., 2008; Field, 2014; Puleo, Reichenberg, Smith, Kryzak, & Silverman 2008; 

Lundrstrom et al., 2010). Jenkins (2013) reported age-associated alterations to sperm 

DNA methylation at the global and cytosine phosphate guanine (CpG) levels with 

increasing methylation in DNA regions biased toward hypomethylation. This finding was 

in stark contrast to somatic cell age-associated methylations. 

Lauritsen et al. (2005) estimated higher relative risk (RR 1.7) of autistic offspring 

for maternal age for mothers 12-19 years old, lowest risk for maternal age 25-29 year (RR 

1.1) and increased  relative risk (RR 1.2) of autistic offspring for mothers aged  more than 

30 years. Lundstrom et al. (2010) reported a U-shaped risk assocations for paternal age 

and autism diagnosis in U.K. and Swedish cohorts recruited from 1992 to 1998. Each 

cohort contained more than 11,000 subjects, with childhood autism diagnosis at age 9-12 

years. Paternal age group categories were: less than 25, 25-34, 35-44, 45-50, and greater 

than 50 years. Paternal age less than 25 years or greater than 50 years was associated with 

unadjusted odds ratio of 2.5 and 3.2, respectively. After adjustment for maternal age, 
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zyogsity and socioeconomic status, adjusted odds ratio were 1.9 and 3.4, respectively for 

father age-cohorts younger than 25 or older than 50 years. Reichenberg et al, (2006) 

reported autism risk increased from 10 to 107 per 10,000 births over five increasing 

paternal age groups in an Israeli birth cohort (N = 318,506) over a six year study period 

in the 1980’s. A ten year increase in maternal age was associated with a 38% increase in 

odds ratio for subsequent autism diagnosis in offspring  in a California cohort of 

singleton births born from 1989 – 2002 to mothers from age 15 to 44 years; median age 

27-28 years (Grether, Anderson, Croen, Smith & Windham 2009). In the same study, a 

ten year increase in paternal age was associated with a 22% increase in odds ratio for 

fathers from age 15-64 years (median age 29 -31 years). Similar adjusted odds ratio (1.3) 

was found for 10 year increases in maternal and paternal age in a smaller California 

cohort recruited from 1995 to 1999 (Croen et al., 2007). Offspring sex-differences were 

not signficantly different in the 2007 study, but there was a higher relative risk of autism 

diagnosis in girls, RR= 1.55,  95% CI [0.93-2.59] than boys, RR= 1.27, 95 % CI [1.01-

1.60] as a function of increasing maternal and paternal age. Field (2014) reported higher 

risk of ASD among female offspring with increased parental age but the trend was not 

found for male offspring (n=112 cases). 

  Durkin et al. (2008) reported that after adjustment for the other parent’s age, birth 

order, maternal education and other covariates, both paternal and maternal age were 

independently associated with offspring autism at age eight for the Center for Disease 

Control and Prevention’s Autism and Developmental Disabilities Monitoring Network of 

ten geographic areas for all 326,785 livebirths in 1994. Adjusted odds ratio for maternal 
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age of 35 years or greater was 1.3, 95% CI [1.1, 1.6] and adjusted odds ratio for paternal 

age of 40 years or greater was 1.4, 95% CI [1.1, 1.8]. Frequency of gestational age less 

than 37 weeks averaged 12.5 -13.6% for ASD  cases and 8.7-9.8% for the full cohort. 

Among 2,142 cases defined by ADOS criteria, 81.2% were male offspring and 32.4% of 

children had intellectual impairment (I.Q.  less than 70). Firstborn infants of two older 

parents were three times more likely to develop ASD compared to third or later born 

offspring of moms aged 20-34 years and fathers less than 40 years old.   

Anello et al. (2009) reported the typical male:female ratio of autism diagnosis 

(4:1) reflected a U shaped distribution as a function of paternal age in an AGRE cohort. 

The male:female ratio ranged from 6.2 for fathers less than 30 years old, to 3.3 for fathers 

aged 40-44 years in a U.S. cohort of 393 cases in families with two or more diagnosed 

autism cases using a “strict”, ADI-R based case definition.  Trends were not affected by 

adjustment for maternal age. 

     Therefore, the literature suggests paternal and maternal age were independent 

risk factors of ASD among offspring and generally showed less risk of diagnosis for  

parents aged 25-40 years of age. In two studies, the male-female gender differential risk 

ratio decreased with increasing parental age (Anello et al., 2009; Croen et al., 2007).  

Risk of autism diagnosis was found to be higher among first born children compared to 

multiparous families for parents in the age range of 20 to 40 years (Durkin et al., 2008). 

The impact of assisted reproductive health in older adults, and parenting techniques are 

other parental age-related factors which may affect ASD prevalence (CDC 2012; Schieve 

et al., 2011).  At young age (i.e. less than 20 to 25 years) increased risks of suboptimal 
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parental health and behavioral risk profiles appear to influence pregnancy status (Anello 

et al., 2009; Cantor et al., 2007). Younger parents may be more likely to engage in risky 

behaviors such as smoking and drinking. Anderson, Johnson, and Batal (2005) reported 

smokers were more likely to be single, non-Hispanic, less educated and were 

significantly more likely to report alcohol use during pregnancy in a U.S. study. The 

research also showed that while parenting changes in infant sleep position has decreased 

the overall rate of sudden infant death, attributed risk associated with maternal smoking 

and SIDS has increased from 50% to 80% in the study conducted from 1989-1998 

(Anderson et al.).  Maternal smoking prevalence was not different by infant gender, but 

odds ratio of SIDS death was two-fold for infant males (Anderson et al.,2005).   

Sudden Infant Death and Infant Hypoxia Risk 

 Prevalence. Stable gender differential prevalence (i.e. male predominance) has 

been replicated in ASD and for other pervasive developmental disorders (PPD) outcomes. 

Increased prevalence rates for the more narrowed definition of autism have been 

implicated worldwide since 2000 (Elsabbagh et al., 2012).  It is plausible that underlying 

pathobiological mechanisms may affect increased prevalence rates and differential 

gender risk ratios for many developmental delays; including ASD.  Differential gender 

diagnosis risk ratios have been reported to be five- or six-fold higher for other pervasive 

developmental disorders (PPDs), including dyslexia, Tourette, Aspberger, and Timothy 

syndromes in the U.S. and Europe (Baron-Cohen, Lombardo, Auyeung, Ashwin, 

Chakrabarti & Knickmeyer, 2011; Bauermeister et al., 2007; Chakrabarti & Fombonne 

2005). Perhaps genetic or biochemical gender-associated biological susceptiability or 



89 

 

fetal programming may explain broader PPD and more specific autism risk prevalance. 

Shared or inherent gender-associated profiles may have common mechanisms, pathways 

or biomarkers. 

The prevalence of sudden infant death syndrome (SIDS) has persistently shown a 

3:1 male-to-female mortality risk among infants despite behavioral interventions to 

promote supine sleep position for infants of both sexes in the United Kingdom, 

Scandinavia, U.S. and Australia (Mage & Donner, 2007; Mitchell & Stewart, 1997). 

There are similar or overlapping risk factor and biochemical disregulation mechanisms 

documented for SIDS and ASD (Habek & Kovacevic, 2011; Kinney & Thatch, 2009). 

The critical development period of SIDS risk appeared to be age two-four months when 

brain weight typically doubles (Carolan & Bye, 2011).  Low birth weight, smoke 

exposure or parental smoking, apnea, previous episodes of interrupted breathing, and 

hypoxia are SIDS risk factors (American Academy of Pediatrics, 2011; Goldwater, 2011; 

Van Norstrand & Ackerman, 2010).  SIDS-related risk factors appear to more adversely 

affect male infants than female infants independent of race/ethnicity (Kinney & Thatch, 

2009).  Gender-stratified analysis of prenatal, neonatal and infant exposures may inform 

evidence for overlapping or common risk profiles for subsequent SIDS and ASD.   

Mechanisms.  Burstyn et al. (2011) studied the association of fetal hypoxia at 

birth and subsequent autism diagnosis by ICD-9 criteria and medical assessment among a 

population based cohort born between 1998 and 2004 in Canada.  The researchers 

reported an excess ASD  risk among males (OR 1.0 to 1.6) who were hypoxic at birth for 

premature and full-term infants diagnosed with fetal hypoxia. Plausible explanatory 
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hypotheses for hypoxia-ASD relationship described in the study publication included 

prenatal dopamine (serotonin inhibitor) exposure, maladaptive stress responses and/or 

gender-specific placental physiology (Burstyn et al., 2011).  

The interrelationships of smoke exposure, brainstem development, serotonin, and 

dopamine regulation are an active area of SIDS research (American Academy of 

Pediatrics, 2011). Croen, Grether, Yoshida, Odouli, and Hendrick (2011) reported 

maternal serotonin reuptake inhibitor use, mediated by maternal allele form, for up to 12 

months, and in particular, the first trimester of pregnancy significantly increased the risk 

of ASD in offspring which aligned with the theory serotonin inhibition may be associated 

with hypoxia risk (Burstyn et al., 2011; Habek & Kovacevic, 2011; Previc, 2007). Certain 

genetic polymorphisms of fatty aid oxidation have also been associated with SIDS 

(Kinney & Thatch, 2009). However serotonergic (5-HT) genetic alleles responsible for 

infant gasping response were not associated with SIDS in a U.S. case control study of 96 

gender and ethnicity matched pairs (Rand, Berry-Karvis, Fan, Weese-Mayer, 2008). Liu 

and Deneris (2011) reported transcriptional control of serotonin 5-HT receptor deficiency 

associated with SIDS occurred before central nervous system neural circuitry formed. 

Complex multiple weak stressors or underlying congenital factors may impact SIDS. 

Like autism, SIDS pathophysiology is presumed to include a convergence of risk 

factors. The heritable contribution of serotonin transport, cardia channelopathies, and 

autonomic nervous system genetic regulation and SIDS outcome is under investigation 

(American Academy of Pediatrics, 2011). Infant congenital heart defects have been 

associated with chromosome X-linked disorders and particular genes such as ZIC3, 
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HTX1 and HTX which may be coincidentally associated with hypoxia and SIDS 

(Bailliard & Anderson 2009; Gioli-Perira, Pereira, Bergara, Mesquit, Lopes, & Krieger, 

2008; Kinney & Thatch, 2009). However, pediatric heart defects have also been 

associated with epigenetic mechanisms affecting unique delivery outcomes such as low 

birth weight and prematurity (Zhu, Bonnet, Boussion, Vedie, Sidi, & Jeunemaitre, 2007). 

Therefore, serotonin and dopamine dysregulation may be associated with hypoxia; which 

may be a risk factor for SIDS and ASD (Previc, 2007). Nijmeijer et al. (2010) reported 

maternal smoking was associated with ASD and ADHD symptoms but the relationship 

was mediated by the maternal genetic allele form of COMT and serotonin transporter 

(SLC6A4) genes. The effect of maternal allele on ASD or ADHD case gender was not 

reported. In a review of seven large population cohort studies which are detailed below, 

Kolevzon, Gross and Reichenberg (2007) concluded birth weight, gestational age, and 

intrapartum hypoxia were significant risk factors for ASD. The common plausible 

pathobiology of SIDS and ASD has not been fully explored. Maternal smoking during 

pregnancy is a common risk factor for fetal hypoxia which may be associated with 

placental insufficiency (Habek & Kovacevic, 2011).  The relationship of infant breathing 

and sleeping disturbance as proxy variables for ASD risk has not been extensively 

studied, and not studied at all using gender-stratified sample populations.       

Parental Smoking Status  

Prevalence. Smoking continues to be the predominant behavioral risk concern for 

pregnant women and women of reproductive age.  In the U.S., an estimated 20 to 30% of 

pregnant women may smoke (Cnattingius, Haglund, & Meirik, 1988; DiFranza & Lew, 
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1995).  In a separate U.S. study, 20% of pregnant women denied smoking, but had high 

urinary cotinine levels suggesting self-reporting bias and/or environmental smoke 

exposure (Ford, Tappin, Schluter, & Wild, 1996).  In this section, the results of a 

literature search for autism, smoking prevalence, and related biochemical impacts are 

described for articles which addressed attention-deficit hyperactivity disorder (ADHD) as 

well as ASD, and SIDS  outcomes.   

In cross-sectional studies, the association of parental smoking, and in particular, 

maternal smoking and ASD among offspring has shown mixed results for studies in the 

U.S., Europe and China (Kalkbrenner et al., 2012; Lee et al., 2012; Mann et al., 2010; 

Zhang et al., 2010). Measurement or recall bias of smoking behavior was theorized to be 

strongly confounded by maternal education level, other socioeconomic variables, and 

mode of data collection (i.e. birth certificates versus medical records) in several studies 

(Dietz et al., 2011; Kalkbrenner et al., 2012;  Lee et al., 2012; Burstyn, Lee, Gidaya, & 

Yudell, 2012; Vinikoor, Messer, Laraia, & Kaufman, 2010; Zhang, et al., 2010). 

Nondisclosure of smoking tended to be higher for younger women (age 20-24 years) in a 

U.S. cohort which quantified blood cotinine concentration to validate smoking status 

(Dietz et al.). The association of maternal smoking during pregnancy and offspring ASD 

diagnosis appears to be strongest for higher functioning ASD and for the broader case 

definition of autism (Kalkbrenner et al.; Lee et al.). Even when large sample sizes were 

used, cross-sectional studies, case-cohort and case-control designs did not addressed 

gender specific risks associated with maternal smoking and autism.  
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Kalkbrenner et al. (2012) conducted a population-based case-cohort study of 

633,989 children, including 3,315 confirmed ASD cases actively registered in the CDC 

Autism and Developmental Disability Monitoring Network and born in the U.S. between 

1992 and 1998. The study objective was to estimate the association between maternal 

smoking during pregnancy and ASD. Maternal smoking during pregnancy was reported 

for approximately 13% of the source population and 11% of the population with ASD 

affected children. The prevalence ratio of maternal smoking was adjusted for maternal 

education, race/ethnicity, marital status and maternal age. The researchers reported no 

association between maternal smoking during pregnancy and ASD. When the broader 

case definition of ASD was used, there was a slightly higher ASD prevalence ratio 1.26, 

95 % CI  [0.91, 1.75], but the trend was not statistically significant.  The effect of child 

gender on prevalence was not reported. Burstyn et al. (2012) cautioned that the 

researchers did adequately control confounders or assess the impact of smoke exposure 

misclassification. A conclusion that maternal smoking does not affect fetal development 

is counterintuitive. A review of the biochemical impact of direct, first-hand maternal 

smoke exposure suggests evidence for an association with ASD. 

Pathobiology.  In healthy individuals, acetylcholine, released in the brain which 

activates neurons in the peripheral nervous system then actives cholinergic receptors to 

coordinate respiration, maintain heart rate, memory, alertness, and muscle movement 

(American Academy of Pediatrics, 2011). Nicotine has chemical homology to 

acetylcholine and therefore with repeated exposure, disrupts brain neurotransmitter 

receptor number and sensitivity (Rosenthal & Weitzman, 2011; Wang, 2007, p 9-10; 
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Xuei, Flury-Wetherill, Bierut, Dick, & Nurnberger, 2007; Zhang, Kranzler, Weiss, 

Xinguang, & Brady, 2009). Disruption may cause minor muscle tremors which releases 

adrenalin in glands which increase coronary blood flow, heart rate, blood pressure and 

skin vasoconstriction (Wang 2007) and releases pleasure-associated dopamine in nucleus 

accumbens. In the case undeveloped or dysfunctional synaptic receptors, or lack of 

neurotransmitter connections, tics and minor muscle tremors may be a phenotypic 

biological outcome expression (Meany, 2010; Xuie et al., 2007). There is speculation that 

maternal smoking affects acetylcholine receptor functions which in turn affect infant 

brain neuro-development (Duncan, Paterson, & Kinney 2008; Slotkin, 2004: Habek & 

Kovacevic, 2011; Slotkin, MacKillop, Rudder, Ryde, Tate, & Sedler 2007; Soothill, 

Morafa, Ayida, & Rodeck 1996). Nicotine reaches the brain within 10 seconds, and has 

been identified in breast milk and umbilical blood of newborns (Wang-Sattler et al., 

2008). Metabolic profiles of non-smokers, former and current smoking adults showed 

current smokers had lower sphingomyelins and acyl-alkyl-phosphatidylcholines 

suggesting loss of peroxisomal enzyme activity in smokers (Wang-Sattler, et al.).  

Acetylcholine imbalance has been documented in male children with ADHD 

(Coccini, Crevani, Rossi, Assandri, & Balottin, 2009). The researchers reported reduced 

monoamine oxidase type B activity which may affect acetylcholine and monoamine 

balance in unmedicated affected boys but not girls in an Italian sample of 44 children. In 

general, female resistance to hypoxia has been shown to reduce infant mortality rate by 

19-25% relative to males in children aged 1-4 years (Taket, 1986).  Fowler, Cassie, 

Rhind, Brewer, and Collinson (2008) reported liver concentration of polycyclic aromatic 
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hydrocarbons and blood cotinine were confirmatory biomarkers of maternal smoking 

status among 69 UK mothers during second trimester of pregnancy. For a smaller paired 

test using genotyped mothers, among 30 gene candidates representing hedgehog pathway 

signaling, xenochemical signaling, steriodogenesis (CYP liver-xenobiotic clearance 

enzymes), endocrine signaling, transcription,Wnt pathway signaling, development and 

growth, hyposadias and testis descent), only desert hedgehog gene product in Sertoli 

cells differed significantly between 12 controls and 10 smoking mothers.   

Smoking is also associated with increased SIDS rates, despite the uncertain 

biopathology of SIDS (American Academy of Pediatrics, 2011; Habek & Kovacevic, 

2011; Young, Watson, Ellis, & Raven, 2012). SIDS risk increased significantly for 

mothers who smoked more than 6 cigarettes per day (Shellscheidt et al., 1997 in Habek 

and Kovacevic, 2011). Anderson, Johnson, and Batal (2005) reported the risk of SIDS 

was two-fold for mothers who smoked despite promotional campaigns and behavioral 

reinforcement of placing infants on their backs, without co-bedding during sleep. 

McDonald et al. (2006) reported maternal smoking elevated umbilical cord levels of 

adrenocorticotropin hormone among 104 infants delivered by elective caesarean section. 

The authors speculated cigarette smoking may be associated with hypoxia-related events 

as a result of hypothalamic-pituitary-adrenal axis involvement in fetal programming 

responses resulting in increased caroxyhaemoglobin, reduced placental oxygenation, and 

uterine vessel vasoconstriction. Burstyn et al. (2011) concluded fetal hypoxia was a main 

effect variable in the relationship to autism after adjustment for socioeconomic status, 
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birth year, and fetal gender. Hypoxia status and neonatal testing prevalence for hypoxia 

was skewed to infant males (Burstyn et al., 2011). 

Mechanisms. Slotkin et al. (2007) showed permanent, sex-selective cholinergic 

hypoactivity response (more pronounced in males) in rat pups exposed to second-hand 

smoke. Nicotine and cotinine have been shown to cross the placenta and accumulate in 

fetal tissue in both animal and human models (Barnea 1994; Koren 1995; Jauniax, 

Gulbis, Acharaya, Thiry, & Rodeck, 1999).  Prasodjo et al. (2014) reported that prenatal 

direct maternal smoking or secondhand smoke at 16 weeks gestation resulted in blood 

cotinine levels of 0.012 to 0.224 ng/ml and tended to be associated with low whole blood 

folate levels in women enrolled in an home environmental study in Ohio. Among mothers 

who smoke after delivery, postnatal exposure of nicotine and cotinine is estimated to be 

two-to three fold higher in breast milk than in maternal plasma or skin (Onuki et al., 

2003; Sastry, Chance, Hemontolor, & Goddijn-Wessel, 1998). Gray et al. (2010) reported 

that among 87 mothers who self-reported tobacco use in the third trimester of pregnancy, 

nicotine, contine and nicotine metabolites were identified in meconium, the first neonatal 

feces samples for newborns. Gardnener, Spiegelman, and Buke (2011) reported aspirated 

meconium and feeding difficulties, fetal distress, umbilical cord complications, 

hyperbilirubinemia, neonatal anemia and delivery complications were associated with 

ASD in a meta-analysis of forty case-control studies. These epigenetic and neonatal 

findings provide suggestive evidence of biological plausibility of specific prenatal gene 

transcription and allelic expression as a consequence of in utero smoking exposure 

associated with reduced maternal peroxisome activity, lower airway responsiveness, 
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hypoxia, and xenobiotic clearance which are plausible risk factors associated with sudden 

infant death and ASD, but do not specifically address the gender differential of ASD.    

Increased levels and activity of genes associated with xenobiotic clearance (i.e. 

PON1, CYP and GST genes) have been found in female as compared to male rat, 

hamster, and mice models (bin Ali, et al., 2003; Feingold et al., 1998; Thomas-Moya et 

al., 2006).  Ronald et al. (2010) reported smoking and non-breastfeeding have been 

consistently identified as risk factors for prenatal and neonatal complications and autistic 

and Asperger syndrome in U.S. twin populations.     

Maternal daily smoking, particularly in early phases of pregnancy (up to 22 weeks 

gestation) has been associated with increased ASD risk in offspring in Swedish and 

American cohorts (Hultman, Sparen, & Cnattingius, 2002; Rodier, Ingram, Tisdale, 

Nelson, & Romano, 1996; Steenweg-de Graaff, Ghassabian, Jaddoe, Tiemeier, & Roza, 

2014; Stromland, Nordin, Miller, Akerstrom, & Gillberg, 1994). Mann et al. (2010) 

reported maternal antenatal tobacco use was associated with increased odds OR= 1.02, 

95% CI [0.80, 1.30] of ASD in offspring but male gender (OR 5.68) and pre-eclampsia, 

OR= 1.85, 95% [1.38, 2.47] were stronger predictors of autism than maternal smoking 

for multivariate modeling of 13 risk factors among 691 cases and 80,000 controls in a 

retrospective cohort of births in a South Carolina Medicaid registry. The researchers 

concluded birth weight mediated the association of preeclampsia and autism. 

Animal model research, placental transfer theories, and intrauterine or fetal 

epigenetic mechanisms may support the finding by Coccini et al. (2009) that xenobiotic 

clearance of smoke exposure appeared to be slower or less efficient among boys with 
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diagnosed ADHD.  Fetal exposure to smoke has been implicated in gender-differentiated 

risks of infant hypoxia (Burstyn et al., 2011; Taket,1986). Lower gene expression of 

hedgehog regulatory genes in Sertoli cells associated with male testis development was 

also shown to be affected by smoke exposure (Fowler et al., 2008). There is evidence 

that glutathione-transferase (GST) gene expression in maternal erythrocytes, lung and 

placental tissue support xenobiotic clearance of smoke and may cross placental barriers 

(Watson, Stewart, Smith, Massey, & Bell, 1998). Grazuleiciene, Danileviciute, 

Nadisauskiene, and Vencloviene (2009) reported mothers who smoked had significantly 

higher odds ratio, OR= 3.3, 95% CI [0.6-18.4] of intra-uterine growth restricted 

offspring when the mothers also had particular allele forms of two key glutathione-

transferase enzymes (null GSTM1 and GSTT1). Wilhelm-Benartzi et al. (2012) studied 

epigenetic markers associated with maternal smoking and alcohol consumption among 

380 pregnant U.S. women. The researchers reported in utero exposure to tobacco smoke 

and alcohol modified methlyation gene markers in placental tissue and suggested 

epigenetic alternations associated with exposures mediated placental function in support 

of  the fetal programming hypotheses. The effect of in utero exposure to primary or 

second-hand smoke on fetal development and autism risk deserves more attention. The 

plausible effect of placental transport of prenatal exposures may provide further insight 

into ASD etiology. Pedersen et al. (2013) reported maternal smoking, exposure to 

secondhand smoke during pregnancy, and ethylene oxide exposure was associated with 

DNA placental cord adducts which may affect intrauterine growth. Maternal reported 

consumption of fruits and vegetables was associated with  lower frequency of DNA 
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placental cord adducts in a study of 229 mothers and 612 European children. Additional 

research on proxy variables or biomarkers of obstetric placenta function and placental 

transport mechanisms on infant traits, ASD and the ASD gender differential is needed. 

Obstetric Complications  

Types.  Increased cesarean section prevalence, placental dysfunction, and other 

obstetric complications may affect secular and pregnancy-specific outcomes associated 

with ASD (Gardener, Spiegelman, & Buka, 2011; Guinchat, Thorsen, Laurent, Cans, 

Bodeau, & Cohen, 2012). Preterm birth, low birth weight, preeclampsia, caesarean 

section, and delivery complications are common birth outcome risk factors. Preterm 

delivery is generally predicated by adversely affected maternal vascular health (Tiedje et 

al., 2008). Low birth weight (< 2500 grams) and preterm birth of less than 33 weeks 

(Dawson, Glasson, Dixon, & 2009), and caesarean section have been associated risk 

factors for ASD and higher odds ratio of other PDDs (Gialloreti, Benvenuto, Benassi, & 

Curatolo, 2014; Langridge et al., 2013; Mann et al., 2010; Schnedel & Bhasin, 2008; 

Wilhelm-Benartzi et al., 2012).  Maternal diabetes, hypertension, and obesity were 

associated with higher risk of PPD and ASD (Dodds et al., 2011; Krakowiak et al., 2012; 

Langridge et al., 2013; Neggers, 2014; Tordjman et al., 2014). Cesarean delivery was 

also associated with ASD risk in cases without intellectual disability in an Australian 

population cohort study (Langridge et al.). Pregnancy complications have been indicated 

in autistic offspring (and their nonaffected sibilings) in a study of Australian children 

(Glasson et al., 2004; Langridge et al.) and in U.S. cohorts (Bilder et al., 2009, Korelinger 

et al., 2004; Krakowiak et al., 2012). Premature infants were up to four times more likely 
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to develop autism and have up to an eight-fold autism risk ratio if the mother had 

preexisting, preconception allergies (Theoharides, Angelidou, Alysandratos, Asai, Fracis, 

& Kaolgeromitros, 2011). Thirteen obstetric and neonatal factors including abnormal 

presentation, birth injury or trauma, umbilical cord complications, maternal hemorrhage, 

low birth weight, infant size, Apgar score, and hyperbilirubinemia were positively 

associated with ASD in a meta-analysis of 60 risk factors (Gardener et al. 2011). 

 Guinchat et al. (2012) postulated risk factors for PPDs including autism may be 

associated with improvements in obstetrical and neonatal management which have 

increased survival rate of infants with preexisting brain damage. Offspring gender effect 

on obstetric risk is unclear since complications may be birth-speific. 

Diagnosis.  Early detection of preeclampsia and jaundice risk is a primary 

intervention focus in pregnancies in all countries because preeclampsia is a leading cause 

of maternal and perinatal morbidity and mortality. Preconception health of women likely 

affects the course of pregnancy and fetal development. Preeclampsia tends to present in 

late term with a mild clinical course; but maternal complications may include gestational 

hypertension, renal failure, proteinuria, and edema (Myatt & Webster 2008, Scifres, 

Catov, & Simhan, 2011), hemolysis, elevated liver enzymes, and low platelet counts 

(Kuc, Wortelboer, Rijn, Franx, Visser, & Schielen, 2010) with increased risk of later life 

diseases in mothers and offspring (Aris, Benali, Ouellet, Moutquin, & Leblanc 2009). 

Pre-pregnancy weight, maternal pulmonary, heart, renal disease and anemia were 

reported as key non-genetic risk factors of ASD in a Canadian case-control study of  924 

cases (Dodds et al., 2011). Gregory et al. (2013) reported maternal diabetes was a 
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significant preconception risk factor affecting ASD in a U.S. case-control population 

cohort. It was of interest whether pre-conception health measures, such as iron, folate or 

vitamin deficiencies can be associated with obstetric complications during pregnancy; 

which are in turn associated with ASD.   

Identification of defective placental function has become a focus of prenatal care, 

monitored by first-trimester serum markers such as Placental Protein 13 (Romero, et al., 

2008), Placental Growth Factor (PIGF), and uterine artery Doppler ultrasound (Kuc et al.,  

2010; Myatt, 2010).  Preeclampsia is characterized by oxidative stress and permanent 

systemic vasoconstriction (Aris et al., 2009; Myatt, 2010), and has been associated with 

metabolic-syndrome like metabolic effects which were indicated by elevated maternal 

serum fatty acid binding protein 4; FABP4 (Scifres et al., 2011). Maternal metabolic-

syndrome like effects were indicated by elevated maternal serum fatty acid binding 

protein 4; FABP4 measured at 13 weeks gestation; before onset of preeclampsia (Scifres 

et al.). A similar lipid biomarker has been used to screen nonpregnant individuals with 

suspected dyslipidemia and insulin resistance. Lower midgestational serum vitamin D 

levels were associated with high odds, OR= 3.63, 95% CI[ 2.02-14.52] of severe 

preeclampsia (Baker, Haeri, Camargo, Espinola, & Stuebe, 2010) in a U.S. case-control 

study.  Robinson, Alanis, Wagner, Hollis, and Johnson (2010) confirmed reduced serum 

vitamin D levels were associated with early onset, severe preeclampsia in a separate 

population. 

Amin, Smith, and Wang (2011) summarized the results of 13 studies on the 

relationship of neonatal jaundice and ASD for DSM-III,  DSM-IIIR,, DSM-IV and ICD-9 
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case definitions. Matched controls often included unaffected siblings, suggesting 

adjustment for genetic and other environmental factors. Only 6 of 13 studies adjusted for 

confounders such as birth weight, gestational age, Apgar score, birth order or infant 

gender. The formal meta-analysis showed despite high cohort heterogeneity and minimal 

publication bias, results indicated jaundice, assessed by total serum bilirubin was 

associated with ASD, OR= 1.43, 95% CI [1.22- 1.67] for studies involving at least 30 

children. Jaundice was not consistently defined, but was estimated as serum bilirubin 

greater than 10 mg/dl for birth weight above 2500 gram (Amin et al., 2011). Croen, 

Yoshida, Odoul,i and Newman (2005) did not find an association of billlirubin levels as a 

measure of jaundice and ASD in a California neonatal study cohort.  

Mechanisms. Swamy, Ostbyn, and Skjaerven (2008) conducted a 20-year 

longitudinal study of preterm and low birth weight infants and reported preterm birth rate 

was higher among boys, and that preterm infants had a increased risk of childhood 

mortality, were more susceptible to illness until the age of 10, were more prone to 

developmental and educational delay, disabilities and mental handicaps, and their adult 

rates of reproduction were lower. These results suggest preterm male infants were more 

adversely affected than girls with consequences for mortality and development disorder 

risk as well as biologic abnormalities. Froehlich-Santino et al. (2014) reported respiratory 

distress and hypoxia were associated with increased risk for ASD in males, OR= 1.99,  

95% CI [1.04-3.80] whereas jaundice was associated with increased ASD risk in females, 

OR= 2.94, 95% CI [1.28-6.74] in a California twins study enrolled during the period of 

1987-2004 in a Stanford University family cohort. 
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Maimburg, Bech, Vaeth, Moller-Madsen, and Olsen (2010) recently concluded  

that for a population-based cohort study of live, full-term births in Denmark between 

1994 and 2004, neonatal jaundice was associated with increased (56-88%) hazard ratio of 

psychological disorders, including ASD. The excess risk of infantile autism was 67% 

higher if the child was conceived by a multiparous mother or was born between October 

and March. Infantile autism prevalence was higher for boys than girls born between 

October and March. A recent clarification of the ICD codes included in the term 

“jaundice” as used by Mainberg et al. was published and the hazard ratio (HR) was 

revised from an estimated 1.56 to 1.25; the researchers did not report analysis of bilirubin 

level or breastfeeding duration on the relationship to ASD (Rosti, Lambertini, Stucchi, & 

Condo, 2011).  

In the AGRE cohort, Lee, Newschaffer, Lessler, Lee, Shah, and Zimmerman 

(2008) reported a trend toward higher ASD among singletons and multiple births born in 

April, June, and October. ASD concordant multiple births were higher in March, May, 

and September.  The authors concluded non-heritable factors during the pre or perinatal 

period influenced ASD risk and gender differential ASD risk. The nongenetic, gender-

based findings add to the body of evidence of a plausible relationship of prenatal health, 

liver dysfunction or immaturity and ASD diagnosis, particularly among boys. 

Male embryos reportedly grow more slowly or at sporadic rates, whereas female 

embroyos experience more constant growth hormone due to growth hormone-liver 

dimorphism (Steinman & Mankuta, 2013; Wauthier & Waxman, 2008). A sex-specific 

susceptibility threshold to fetal assault may be moderated by sex hormones (Baren-Cohen 
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et al., 2011; Field 2014; Hu et al., 2009; Ober et al., 2008). Similar theories of growth 

hormone or growth factor sex-differences, and male predominance (1.2- 1.6 per 1.0 

female) at the time of fertilization have also been proposed to account for the male risk 

differential in childhood cancers (Dorak, Pearce, Hammal, McNally, & Parker, 2007).  

In conclusion, preterm infants (less than 33 weeks) were reported to have an 

excessive risk of ASD.  Placental dysfunction, resulting in preeclampsia was associated 

with fetal oxidative stress, and low gestational Vitamin D intake and maternal 

proteinuria.  Infants born in the winter or early spring (Hendrix, 2011) and/or in Northern 

climates tend to be at higher risk for jaundice and autism- particularly among boys born 

to multiparous mothers. Gender differences in growth hormone, liver function and 

xenobiotic clearance and liver maturity were speculated to reduce neonatal infant male 

resistance to smoking exposure, and enhance risk of mitochondrial dysfunction and lipid 

oxidation in males.   

Preeclampsia and other symptoms of placental restriction maybe associated with 

fetal distress, and hypoxia. Among infant and children, mitochondrial disfunction and 

enhanced oxidative stress have been strongly associated with ASD (Abrahams & 

Geschwind, 2008;  Hu et al., 2009; Taurines et al., 2010). Obstetric complications may be 

an  initial trigger for biochemical dysfunction which present as metabolic dyfunction such 

as oxidative stress and hypoxia in later life (Burstyn et al., 2011; Mann et al., 2010). 

Krakowiak et al. (2012) and Langridge et al. (2013) reported maternal hypertension, 

diabetes, and obesity were associated with ASD but did not report gender-differential 

effects. Langridge et al. proposed preterm delivery may be related to infection or 



105 

 

inflammation during pregnancy associated with cytokine development and the potential 

impact on dentrocyte and myelin sheath development, or associated with placental 

dysfunctions, preeclampsia, and fetal growth restriction. There is substantial evidence 

that perinatal  maternal health likely affected fetal programming epigenetics which affect 

gender-differentiated birth outcomes such as jaundice delivery, infant hypoxia, and 

preeclampsia, and ASD risk. 

Perinatal Diet Effect on Birth Outcomes 

  Vitamin D. Placental transfer and placental dysfunction, maternal diet, fatty acid 

and fat soluble vitamin status (i.e. vitamin D)  research are active research areas 

associated with "fetal programming” hypotheses (Baker, Haeri, Camargo, Espinola, & 

Stuebe, 2010; Novak & Innis, 2012;  Robinson, Alanis, Wagner, Hollis, & Johnson, 

2010; Saugstad, 2011). Parathyroid hormone (PTH) involvement in calcium homeostasis 

has been extensively studied over the past 25 years (Bergwitz & Juppner, 2010, McCann 

& Ames, 2008), but insight and understanding of the critical role of the hormonal bone-

parathyroid-kidney axis, modulated by liver generated active vitamin D species and CYP 

gene expression reflects more recent research (Levenson &  Figueiroa, 2008; Smolders, 

Moen, Damoiseaux, Huitinga, & Holmoy, 2011). There appear to be  fundamental gender 

difference in serum vitamin D levels or metabolism among Caucasian men and women 

(Bolland et al., 2007; Cannell, 2008; Hagenau et al., 2009). Because of the renewed 

interest in adequacy of Vitamin D in the U.S. diet, the suggestive evidence of a 

relationship between vitamin D status with obstetric complications, and the relationship 

of maternal diet status and fetal development, studies cited in this section relate to effect 
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of gender-associated Vitamin D metabolism on birth outcomes such as small for 

gestational age, preeclampsia, jaundice, and liver function.  

Several rodent models and fewer human studies suggest biological plausibility 

and some evidence of association between vitamin D inadequacy and offspring cognitive 

and behavioral performance (McCann & Ames, 2008). Vitamin D deficiency appears to 

permit and support expression of vitamin D receptor proteins (VDP) in developing fetal 

brains, but the VDP appeared to be non-functional or altered as a result of vitamin D 

deficiency (Haussler, Jurutka, Mizwicki, & Norman, 2011; Levenson & Figueiroa, 2008). 

Vitamin D receptor modulates several gene transcriptions which affect intestinal 

absorption, calcium, and skeletal homeostatis (Haussler et al.). Maternal vitamin D 

depletion affected fetal rat brain neuronal regulation and interrupted anti-inflammatory 

processes (Cui, McGrath, Burne, Mackay-Sim, & Eyles 2007; Eyles, Brown, Mackay-

Sim, McGrath, & Feron, 2003; McCann & Ames, 2008).   

The literature suggested a relationship between low serum 25-hydroxyvitamin D 

and risk of preeclampsia, and independent association with CYP gene expression; key 

factors which may affect birth outcomes. Low maternal vitamin D levels in the third 

trimester of pregnancy have also been associated with risk of subsequent autism (Dietert 

et al., 2011). No original research studies were identified which reported a direct 

relationship between prenatal vitamin D levels and gender-stratified autism diagnosis; 

perhaps because of the prolonged onset of autism diagnosis and the recall errors related to 

dietary recall, dietary nutritional, hormonal intake estimation, and associated 

measurement biases for hormonal regulation, various bioactive forms of vitamin D and 
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the impact of sunlight exposure on vitamin D bioavailability. There are several bioactive 

forms of vitamin D which are preferrentially stored in various body tissue, enter 

circulation depending on health, nutrition and hormonal status and fluctuate rapidly but 

also vary seasonally (Cannell & Hollis, 2008; CDC, March 2011; Haussler et al., 2011; 

Heaney & Holick, 2011; Ross, Taylor, Yaktine, & Del Valle, 2011). Vitamin D 

biomarker research is an active area of research but may not provide adequate stability 

and external validation to be used as a biomarker in retrospective studies such as those 

designed to study the relationship to subsequent autism diagnosis. It seems plausible that 

a more robust measure of vitamin adequacy and vitamin D level may be related to 

vitamin supplement usage. 

De-Regil, Palacios, Ansary, Kulier, and Pena-Rosas (2012) conducted a meta-

analysis for the World Health Organization to determine whether vitamin D 

supplementation alone or in combination with calcium and other vitamin and minerals 

improved maternal and neonatal outcomes. Randomized and quasi-randomized Cochrane 

Pregnancy and Childbrith Groups Trial Register, the International Clinical Trials Registry 

Platform, and the Networked Digital Library of Theses and Dissertations were searched 

through October 2013. Interim  results of six completed studies and 10 on-going studies 

suggested maternal serum vitamin D levels were higher among women using vitamin D 

supplementation, but highly heterogenous compared to pregnant women who received no 

intervention or placebo. Health outcomes related to preeclampsia and birthweight were 

inconclusively suggestive of benefits associated with vitamin D supplementation. Single 

dosage effect of supplementation showed no differences in the health outcomes of 
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stillbirths, neontal death, or nephritic syndrome. No studies reported effects on preterm 

birth, maternal death, rate of admission to intensive care, or infant Apgar scores. The 

authors concluded inconclusive effects of single or continued vitamin D supplementation 

trials during pregnancy due to a lack of reproducible trial results.  

Mechanisms. Researchers have suggested a fundamental gender difference in 

vitamin D serum 25 hydroxyvitamin D levels or metabolism exists among men and 

women and speculated  the gender differential is perhaps related to estrogen in adults 

(Bolland et al., 2007; Cannell, 2008; Hagenau et al., 2009). It is unclear whether 

estrogenic protective effect may account for the higher plasma vitamin D levels in infant 

girls as reported by Ostergard et al. (2011). But fat-soluble vitamin levels may represent 

metabolic proxy measures for maternal diet adequacy, placental transport function, 

preeclampsia and jaundice risk as well as breast milk quality. These birth outcomes are 

known to be associated with autism, and the gender differential in ASD. Due to the 

genetic variability in vitamin D receptor function, the effect of skin color, sunlight 

exposure, nutritional supplementation and diversity of foods which may include vitamin 

D (such as dairy products, boney fish) the overall association of vitamin D levels to ASD 

is a complex relationship (Kocovska et al., 2012). The relationship of plasma fatty acid 

profiles and ASD may reflect metabolic dysfunction, fish intake, or fish oil 

supplementation (Wiest, 2007). A generalized profile of prenatal health which reflects 

prenatal maternal diet which accounts for fish intake, nutritional supplement use may be 

associated with obstetric complications, autism and may inform the gender-differential of 
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autism. The effect of maternal nutrition and dietary intake on epigenetics and temporality 

of ASD risk factors deserves further research attention.  

Perinatal Diet Effect on Offspring Epigenetics  

The understanding of the impact of prenatal, maternal nutrition on birth outcomes 

has been studied more extensively than the impact of prenatal nutrition on offpsring 

epigenetics. Epigenetic changes are documented for maternal diet and behavioral factors 

associated with subsequent offspring autism diagnosis. Reproductive health and maternal 

gene-diet interactions are speculated to signficantly affecting the quality of eggs and 

uterine environment (Burdge & Lillycrop, 2010;  Gabory et al., 2009). Several studies 

have shown permanent and reversible effects of maternal diet inadequecies with 

evidence-based effects of low global energy, protein–restricted diet, low polyunsaturated 

fatty acid intake, low folic acid intake, on birth weight and later life disease onset (Barker 

& Osmond, 1986; Burdge & Lillycrop, 2010;  Phillips et al., 2009; Gluckman & Hanson, 

2004; Heijmans et al., 2008; Koletzko, Larque, & Demmelmair, 2007; Lane 2011; 

Lillycrop, 2011; Ryan, Keske, Hoffman, & Nelson, 2009). Lillycrop (2011) suggested 

maternal diet deficiencies may promote methylation and induce stable alterations 

associated with gene transcription as described earlier by Gabory et al. (2009). Fatty acid 

levels of EPA and DHA have been shown to affect genetic transcription factor regulation 

as well as gene expression (Novak & Innis, 2012). Epigenetic methylation changes in 

genes within placental tissue, in response to maternal smoking have been documented as 

well (Pedersen et al., 2013; Wilhelm-Benartzi, et al., 2012).  



110 

 

Nutrients. Schmidt et al. (2012) reported folic acid supplementation three months 

before pregnancy, and first trimester was associated with lower risks of ASD. Results 

suggested one-carbon methylation of folate and cysteine metabolism-related (MTHFR, 

COMT and CBS) gene expression was altered for particular gene alleles in pregnant 

women. Steenweg-de Graaff, et al. (2014) reported lower social responsiveness scores 

were associated with low prenatal maternal plasma folate levels at 13 weeks gestation.  

But maternal folate use after delivery was not associated with ASD in offspring, 

suggesting timing of folate exposure to fetal development was critical in the Dutch 

population study. Lyall, Schmidt, and Hertz-Picciottto (2014) suggest periconceptional 

folic acid supplementation illustrated evidence for the association of prenatal vitamin and 

nutrient supplements to offspring ASD risk. 

A literature review for the search terms pregnancy, nutrition, autism, or maternal 

protein intake and autism, prenatal diet and autism yielded papers which discussed 

environmental or chemical prenatal exposure, prenatal stress, and low birthweight 

outcomes and offspring of young anorexic women. Two additional papers discussed the 

potential risk of iodine deficiency on thyroid function in pregnant women. Several 

researchers have shown dietary DHA and EPA regulate fat and glucose metabolism 

through epigenetics, and were associated with protein intake, rather than fat intake 

(Novak & Innis, 2012). It is documented that several nutrients are exchanged through 

maternal placenta, so it was of interest to conduct a literature search related to placental 

nutrient transport affecting offspring. Human placental function involves both secretion 
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and absorption via one- or two-way nutrient transport (Pedersen et al., 2014; Sibley, 

2009).  

 Mechanisms. Sibley (2009) summarized recent human studies, and emerging 

topics and less understood aspects of placental transport. Sheep and rodent models are 

likely to show lower placental permeability and diffusion rates compared to human 

placental physiology across a wide range of nutrients including sugars, salts, amino acids, 

and sugar alcohols. Human placenta is a “two-way” transport system, sensing maternal 

metabolism changes, and responding to support fetal growth trajectories (Sibley) in a 

dynamic, responsive manner previously described as being similar to “fetal 

programming” (Pedersen et al., 2014). 

 Electrochemical gradients, and fixed pressure diffusion are the primary 

mechanisms of  nutrient placental transport. (Fowden, Ward, Wooding, Forhead, & 

Constancia 2006; Sibley 2009). The electric potential gradient of 8 to 10 millivolts, 

between fetus and mother is reduced over gestational trimesters to zero at term birth 

(Sibley, 2009). Fetal growth control appears to be regulated by sodium, calcium, 

potassium, and amino acid transport gradients (amino acids require transporter proteins). 

During fetal growth restriction, changes in activity of transporter proteins used  to 

exchange nturients such as carry  leucine, lysine, System A (alanine/glycine), taurine, 

glucose, ion minerals, and lipoprotein lipase have been reproducibly measured and 

validated  (Cleal & Lewis, 2008). In rat models, maternal testosterone levels induced fetal 

growth restriction and down regulated amino acid placental transport (Sathishkumar, 

Elkins, Chinnathambi, Gao, Hankins, & Yallampalli (2011). Preeclampsia, maternal 
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hypertension, low protein maternal diet and jaundice have also been associated with 

placental surface area reduction and fetal growth restriction (Aris et al., 2009; Jansson et 

al., 2006;  Myatt, 2010; Pedersen et al., 2014;  Tiedje et al., 2008). Placental surface area 

was decreased and the exchange barrier has been documented to physically thicken 

during fetal growth restriction (Pederson et al., 2014; Sibley, 2009; Myatt, 2010).   

Maternal nutrition and metabolic environment has also been shown to modulate 

human placental exchange as evidenced in studies of women with varying arm muscle 

area and body mass indices (Osmond, King, Brennecke, & Gude, 2001). Maternal leptin 

and insulin-like growth factors levels and function may be associated with fetal 

adaptation and epigenetic mechanisms affecting fetal growth trajectories (Sibley, 2009). 

Koletzko et al. (2007) studied placental transfer of long chain polyunsaturated fatty acids 

in humans using isotope labeling studies and reported an intake or dose-related gradient 

which correlated with fatty acid transport protein 4 (FATP 4) expression. However, no 

literature was identified which reported offspring gender-specific placental transport 

mechanisms, metabolomics or epigenetic traits in offspring. Research on placental 

transfer is an emerging research area, and the challenges associated with non-invasive 

biometrics of fetal development deserves more focus. Research to date suggested gene 

expression, allele forms, and methylation of genes within human placenta may affect 

epigenetic mechanisms associated with “fetal programming” and “multiliability 

threshold” concepts (Nijmeijer et al., 2010; Schmidt. et al., 2012; Wilhelm-Benartzi et 

al., 2012).  A hierarchical framework to integrate epigenetic factors of ASD is lacking. 
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Biomarkers. Genetic based marker research was increasingly abundant in the 

literature and studies published since 2004 have begun to suggest genetic alleles or gene 

expression may be gender based. Genetic variability or threshold phenotypic expression 

theories which may explain gender-differentials in autism diagnosis were recently 

reviewed (Rivet & Matson, 2011). Specific allele forms of genes related to liver function 

were found to be risk factors for autism among offspring via in utero exposure to 

medication (Connors et al., 2008; Croen, Grether, Yoshida, Odouli, & Hendrick, 2011).  

Medical hypotheses have speculated on the possible protective effect of estrogen against 

autism among infant girls (Baren-Cohen et al., 2011; Field 2014; Hu et al., 2009; Ober et 

al., 2008; Pastural et al., 2009) which may be associated with vitamin D receptor protein 

allele forms (Deng, 2003; Pihl et al., 2010) or cholesterol/steroid metabolism (Field, 

2014; Hu et al., 2009; King, 2011).  

 Human studies suggest an epigenetic interaction of endogenous prenatal 

metabolites, and hormone related biochemicals and autism risk (Dietert et al., 2011; 

Higashida et al., 2010; Hu et al., 2009; King, 2011; Lyall et al., 2014; McCanlies, et al., 

2009). Others reported neonatal environmental risks are genetic allele specific (Cheslack-

Postova et al., 2007; Nijmeijer et al., 2010) or reflect an interaction of gene allele and diet 

(Higashida et al., 2010; Lillycrop, 2011; Schmidt et al., 2012). Genetic profiles inform 

protein and metabolic pathways associated with ASD, which in turn are characterized by 

metabolites (Hu et al.). Therefore, well characterized familial genomics may provide 

complimentary information to study the effect of parental smoking, maternal nutrition, 
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preeclampsia, jaundice, lactation, and SIDS-like interrupted breathing patterns on ASD 

and the gender differential. 

Genetic Inheritance:  A Summary of AGRE Genetic Literature  

There is speculative and growing evidence for gender and genetic allele diversity 

related to vitamin B and D metabolism, CYP liver enzyme function, and methylation of 

placental tissue in response to maternal smoking and diet (Bolland et al., 2007; Habek & 

Kovacevic, 2011; Hagenau et al., 2009; Nijmeijer et al., 2010; Ostergard et al., 2011; 

Petersen et al., 2014; Pihl et al., 2010; Schmidt et al., 2011; Thomas-Moya et al., 2006; 

Wilhelm-Benartzi et al., 2012). Therefore, the study of proxy variables for parental age, 

maternal health, nutrition, placental exposures, infant traits and gender, within a 

hierarchical framwork,  for a well-characterized infant diet (i.e. lactation) within a well-

characterized genomic cohort may help to reduce study confounding and bias. 

Despite intensive genetic candidate identification and more than 20 genome-wide 

association studies for autism, few studies have identified reproducible gene markers for 

autism or assessed the clinical utility of genetic assessments (Carayol et al., 2011). A 

sample frame or population cohort of well characterized maternal/paternal/sibling genetic 

information as fixed or defined traits was chosen to represent a stable cohort with data 

registries which included standardized characterization of medical records, biomarkers, 

DNA, and genetic material.   

Autism Speaks’ AGRE is an open-source, nonprofit DNA repository and family 

registry database of genotypic and phenotypic information and medical records that are 

available to autism researchers worldwide (Lajonchere, 2012). The research consortium 
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program began in 1997 for families who have two or more children on the autism 

spectrum. AGRE was originally founded by the advocacy group, Cure Autism Now 

(CAN) in 1997, AGRE is currently funded by the National Institute of Mental Health 

(NIMH), National and Autism Speaks, which merged with CAN in 2006 (Lajonchere, 

2007). Referrals from clinical and medical professionals are the primary ascertainment 

method and there is no restriction to age, ethnicity, or socioeconomic status. As long as 

there are two affected family members, parity is not considered (Lajonchere 2010).  Prior 

to 2007, over 2,000 families had participated in the program representing the 50 United 

States. The majority of the sample (75%) was Caucasian and non-Hispanic and 37% of 

families were from the Western U.S. coastal states and autism affected offspring were all 

born since 1992 (Cantor et al., 2007). The use of artificial reproductive technology has 

also been documented within the registry (Lajonchere, 2012). 

 Most AGRE research articles understandably focused on genetic biomarker 

research. However, medical records are available for parental and family history, and 

child medical records. Of the more than 230 literature articles referenced on the AGRE 

website and available through other literature search engines, approximately ten percent 

of studies focused on gender-differentiated risk factors and genetic profiles (Hall, Huerta, 

McAuliffe, & Farber, 2012; Lajonchere, 2010). These studies may inform the gender 

differential of autism. AGRE literature on the effects of variables such as parental 

smoking, parental age, maternal diet, obstetric complications, and metabolomics of ASD 

were also reviewed to determine the relationship of genetic traits with phenotypic 

outcomes. Gender-specific traits associated with calcium expression genes were 
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reproduced in several for AGRE cohort studies. Effects of parental age, preeclampsia, 

maternal albuminurea, xenobiotic (CYP gene) metabolism, and ASD were reported to be 

associated with particular genomic traits within the AGRE registry cohort.  Hallmayer et 

al. (2011) reported that for monozygotic and dizygotic twin cohorts enrolled in a 

California cohort, 38% of ASD risk was associated with genetic heritability and 58% was 

associated with shared environmental factors in utero or early infancy, suggesting “fetal 

programming” is a plausible biomechanism of ASD. Hu et al. (2009) suggested 

cholesterol/steroid metabolism may be associated with gender differential risk of ASD, as 

a result of studying AGRE ASD cases and siblings. However, Hu et al. studied genome-

wide associations among cases and controls rather than particular chromosomes.  

Chromosome factors. Ten AGRE gender-stratified studies validated an 

association with autism for Chromosome 17 regions, particularly among males, with 

subsequent substantial evidence of gene mapping suggestive of gene markers associated 

with calcium expression or function. Chromosome 17 is associated with the location of 

sex hormone binding globulin, retinoic acid receptors, homeobox B gene cluster, and 

serotonin transporter genes (Gilbert, 1998). Yonan et al. (2003) suggested an association 

of autism with genetic markers on Chromosome 17 for a sibling-pair linkage study for 

345 multiplex AGRE families in which the researchers reported a logarithm of the odds 

(LOD) score of 2.8 for Chromosome 17. LOD scores indicate the gene proximity 

correlation among gene single nucleopeptide polymorphisms (SNPs). A high and positive 

LOD score implies cluster or block-inherited transmission during meiosis, across 

generations (Khoury, Bedrosian, Gwinn, Higgins, Ioannidis, & Little, 2010, p 23). When 
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the cohort sample was stratified to include only affected males, the linkage signal (LOD) 

increased to 4.3; whereas when stratified for affected females, the LOD decreased to 

zero. Cantor et al. (2005) replicated these AGRE results using an independent sample of 

109 affected AGRE sibling pairs and interpreted the results to suggest a sex-specific 

genetic pattern. Stone et al. (2004) reported sex-specific chromosome regions on 

chromosomes 17, 4q32 and 10q for subgroups (male only and female containing) sibling 

cohorts of autistic children but concluded significant group overlap in the DNA samples 

from 148 families in the AGRE family registry. Subsequent survey of the DNA region 

flanking the centromere on Chromosome 17 showed nominally significant single 

nucleotide polymorphisms (SNPs) associated with myosin (MYO1D, neuronal 

expression (ACCN1) and neuronal migration and proliferation (LASP1) among 

Caucasians for a sample of 333 AGRE parent/affected child trios (Stone, Merriman, 

Cantor, Geschwind, &  Nelson, 2007). Serajee and Mahbubul (2009) compared Y 

chromosome haplotypes among 146 AGRE autism-affected males and 102 controls of 

European-American descent and reported the two most frequent haplotypes were equally 

distributed among autistics and controls, but Monte Carlo tests with Clump® software 

showed a significantly different distribution of haplotypes after 100,000 simulations. 

These selected papers provided conclusive evidence of male-specific autism risks 

associated with Chromosome 17 genes.  

Strom (2010) utilized integrative genomic approaches to identify eleven 17q21 

candidate genes including calcium signaling and ubiquitin enzyme enriched in probands 

associated with autism. Strom et al. (2010) suggested a relationship within male-only 
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probands for a calcium channel gene (CACNA1G) and autism diagnosis in an AGRE 

cohort of 284 parent/affected male trios.  

Carayol et al. (2011) reported a sex-specific genetic score to identify at-risk 

cohort siblings using the population of Stone et al. (2004) for autism spectrum diagnosis 

based on ten candidate genes; three genes were common to both genders (PITX1, 

SLC25A12 and ATP2B2). Ten candidate genes were selected based on previous research 

suggesting PITX1,a key regulator of hormones with the pituitary-hypothalamic axis may 

be implicated (Phillippi et al., 2007), and genes EN2, SLC25A12 and ATP2B2 

demonstrated to have predictive ability in a genetic-score based model (Caroyol, 

Schellenberg, Tores, Hager, Ziegler, & Dawson 2010) and four other genes with 

statistical association replicated in at least one independent study (HOXA1, GRIK2, 

ITGB3, and CNTNAP2 as well as MARK1 and JARID2 gene; the latter of which was 

strongly associated with autism diagnosis for the Autism Genetic Resource Exchange 

(AGRE) repository. GRIK-2 encodes for a receptor of L-glutamate, CNTNAP2 contactin 

neurexin gene reportedly associated with regressive language skills in males (Alarcon, et 

al., 2008; Arking, et al., 2008). Subsequent research by Carayol et al. (2011) using 277 

AGRE families and a replication sample of 406 Italian families, replicated the importance 

of ATP2-B2 genetic allele variants as sex-specific risk factors. Allele transmission of the 

gene which codes calcium-transporting ATPase2 which in turn extrudes calcium from the 

cytosol into extracellular space showed recessive transmission patterns. Associations 

among three ATP2-B2 polymorphisms and autism were reported only for males. 
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The studies above suggested possible associations between particular genetic 

alleles within AGRE cohorts and subsequent autism diagnosis, but most researchers 

generally report the small number of representative females with autism as a study 

limitation. Study factors such as small effect size, possibilities of SNP interactions, gene-

environment interaction, and statistical confounding have lead researchers to adopt 

statistical methods to address these challenges. Multiple testing, multifactor 

dimensionality reduction and machine learning methods are general techniques adopted 

for the use of analyzing SNP data. Using the AGRE population data, Schwender, Bowers, 

Fallin, and Ruczinski (2011) modified ensemble learner methods such as LogicFS 

(logistic regression applied to bootstrap samples) for case-control designs to address 

case-parent trio data to study interactions of SNPs. Simulation studies for 461 case-parent 

trios indicated a three-way interaction for GLRX3 (glutaredoxin-3) gene on chromosome 

10.  Independent tests for 138 SNPs showed pair-wise significance with glutathione-

related genes showing the largest estimated marginal effect size. The researchers 

cautioned the approach was best suited for descriptive hypothesis generation rather than 

hypothesis testing; but concluded the statistical approach should be able to detect 

interactions with odds ratios much less than two. Lu and Cantor (2012) reported that the 

use of joint association tests of SNPs to account for interaction of gene and other risk 

factors increased statistical power in a case-pseudo-control design when gender was used 

as an independent risk factor for 990 AGRE families. The approach yielded two 

associations which exceeded genome wide significance; Ryadine Receptor-2, implicated 

in calcium channel defects, and a uridine phosphorylase-2 gene, associated with 
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glycogenesis or glycogenolysis. The latter gene was shown to be over-transmitted in both 

male-only and female-containing families within the AGRE population. 

Gender differentiated factors. Heritability estimates have been studied to 

summarize the resemblance of offspring and parents  by measuring phenotype variance 

attributable to genetic variance (Pan, Ober, & Abney, 2007). Estimated heritability allows 

partitioning observed variation in factors into unobserved genetic and environmental 

factors (Visscher et al., 2008).  Narrow sense heritability reflects additive variance of 

phenotypic variance; broad sense heritability measures the proportion of all genetic 

variance (ie. additive, dominance, and epistatic effects); but both types have generally 

assumed equal genetic variance by gender (Abney, McPeek, & Ober, 2001; Moskau, 

Golla, Grothe, Boes, Pohl, & Klockgether, 2005). 

No gender-stratified differences were reported for AGRE cohorts in studies 

related to obstetric variables and xenobiotic clearance associated genetic alleles. No 

gender differences were reported among 444 subjects from 228 AGRE families recruited 

for a study of the relationship of obstetric and psychiatric variables as predictors of 

autism severity using a nested linear mixed effect model (Wallace et al., 2008). The 

researchers reported maternal hypertension and edema were associated (p < 0.01) with 

higher ADI-R communication deficit and repetitive behavior scores. Preeclampsia was 

also associated (p = 0.02) with higher ADI-R communication deficit scores. Maternal 

albuminurea was associated (p= 0.039) with higher ADI-R repetitive scores as was 

parental depression (p = 0.005). Parental psychiatric variables of depression and anxiety 
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were also associated with higher ADI-R repetitive behavior scores, and lower 

communication composite scores.  

Serajee, Nabi, Zhong, and Huq (2004) reported generalized (non-gender specific) 

associations for xenobiotic metabolism-related CYP gene polymorphisms and autism 

diagnosis for 196 AGRE trios using family-based association analysis and chi-squared 

analysis. The researchers studied expected transmission patterns for a metal-regulatory 

transcription factor (MTF1), an organic anion transporter (ABCC1), divalent metal ion 

transporters (SLC11A2 and SLC11A3),  paraoxonase-1 (PON1), and glutathione S-

transferase (GSTP1).  Results showed deviations from expected patterns for SLC11A3 

and MTF1 among ASD-positive subjects; no gender-differentiated analysis was reported.  

The AGRE registry was established to focus on genetic inheritance factors of 

ASD.  Therefore, due to the recruitment and ascertainment methods used in the AGRE 

registry, and a focus on genome wide association tests, paternal age has typically not 

been a variable of focus. However, Cantor et al. (2007) utilized data from an external 

U.S. reference  group of  2.5 million non-twin births occurring between 1995-2000 to 

multiparious, Caucasian, nonHispanic, married mothers less than 36 years of age from all 

states (excluding California) to compare paternal age categories with autism diagnosis 

using chi-squared group statistics. The AGRE sample included 312 families, and paternal 

age groups of age 20-29, 30-39, and 40-49 years of age for mothers less than 36 years old 

at singleton first child birth. The researchers concluded the paternal age distribution of 

AGRE fathers differed significantly from the control sample and there was a shift toward 

higher paternal age in those with an ASD-affected first born child. The findings of Cantor 
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et al. (2007) regarding risk of increased paternal age associated with ASD were replicated 

by Anello et al. (2009) who used an AGRE cohort. The effect of birth order on ASD was 

described earlier (Lee et al., 2008: Maimburg et al., 2008). Such evidence has been 

replicated in the AGRE population (Martin & Horriat, 2012).    

Martin and Horriat (2012) studied ASD symptom severity across birth order in an 

AGRE cohort as an indication of shared environmental factors which may affect ASD 

etiology.  ASD severity was measured by verbal and non-verbal cognitive and repetitive 

behavior tests for 346 sibling-pairs. They reported first affected children had greater 

severity of ASD symptoms. Martin and Horriat replicated the findings of Durkin et al. 

(2008) who studied the CDC ADDM Network cohort which represents 18 states and 

metropolitan areas in the United States. 

Studies described in this section suggested  the AGRE registry may be 

representative of other U.S. cohorts of ASD children. Reproducibility of results with 

previous AGRE researchers was presumed to suggest adequate internal and external 

study validity (Carayol et al., 2011; Stone et al., 2004; Yonan et al., 2003).  

  AGRE demographic and socioeconomic characteristics associated with parental 

smoking and breastfeeding duration, for example represented the broader U.S. population 

prevalence for these behaviors (Gregory et al., 2013; Kalbrenner et al., 2012; Schultz et 

al., 2006; Shamberger, 2011). Thereefore it was assumed the AGRE registry was a 

representative source of archival ASD data. 

The use of AGRE medical records provided retrospective analysis of patient 

record histories, complimented by genetic inheritance, shared environmental, familial, 
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preconception, maternal, prenatal, and infant trait risk factors associated with ASD. 

Shared environmental factors such as parental age and household smoke exposure may 

increase external validity of the study design compared to birth record datasets. AGRE 

access to multiple variables of preconception health, obstetric, parental smoking, and 

maternal diet measures may increase study validity, and reproducibility; and allow for the 

identification and interpretation of variable interactions. Evidence of risk factors such as 

increasing parental age, perinatal maternal health, preeclampsia, calcium and xenobiotic 

metabolism dysfunction have been replicated within the AGRE sampling frame. 

Suggestive evidence for cholesterol/steroid and calcium-related metabolic differences in 

the AGRE registry has been identified using genomic association tests.  These potential 

metabolic differences may inform the gender differential of ASD. There was a need to 

revisit the AGRE data collection to determine whether clinical record data variables may 

inform the suggestive gender-differential trends identified by several AGRE genetics 

researchers. There was opportunity to conduct ASD etiology studies which include 

gender-stratification to inform weak associations among complex gene-environment 

interactions. The relationships of these temporal exposures informed plausible multi-

liability thresholds, placental transfer, or fetal programming which may explain ASD and 

the ASD gender differential. 

Relationship of Prior Literature to the Study Framework  

There are substantial gaps in the medical and epidemiological literature regarding 

mechanisms of ASD onset. The relative contribution of gender-associated prenatal and 

fetal exposure factors to autism diagnosis is unknown, despite decades of biochemical 
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epidemiologic research. The proposed conceptual framework, illustrated in Figure 2 

attempted to address temporality of risk factors which may be associated with genetic 

susceptibility, epigenetic mechanisms, multiliability threshold,  placental transport, or 

fetal programming mechanisms. Exposure-timing factors represented hypothetical 

preexisting genetic susceptibility (distal factors), direct placental exchange factors (main 

effect), and confounding genetic factors.  

Table 3 summarized key studies in the literature that were aligned with the 

hypothesized main effect factors, preconception distal factors, and confounding factors. 

This AGRE study presumed exposures during pregnancy were key, predictive factors. 

The focus of this section was to summarize the relative risk and magnitude of effect of 

the hypothesized, temporally clustered preconception, prenatal, maternal, and infant trait 

risk factors associated with ASD and the ASD gender-risk.  

Odds Ratio and Relative Risk Trends 

While specific criteria and approaches have been published for conducting formal 

meta-analysis of ASD case control studies (Brasic & Holland, 2007; Kolevzon et al., 

2007; Gardener et al., 2011; Guinchat et al., 2012), the purpose of Table 3 was to 

summarize overall effect measures for hypothesized main effect, distal, and confounding 

factors studied in the AGRE cohort. The main effect factors in Table 3 reflected an 

overall average effect estimate of 2.2 for maternal smoking, prenatal vitamin use, and 

lactation. The data for maternal smoking measured odds of ASD in offspring for mothers 

who smoked during pregnancy with an average OR= 1.76. Maternal vitamin use during 

pregnancy odds ratio associated with subsequent ASD risk ranged from nonsignificant to 



125 

 

significant values. Only one study reported odds of ASD risk among mothers who 

recalled breast or bottle feeding practice.   

 Quantitative measures of gender-based metabolites were included in the first page 

of Table 3 as references for the estimates of adequate sample size calculations to study 

ASD gender-risks. These quantified estimates were necessary to estimate power analysis 

for this dissertation. Some studies reported quantified parental smoke exposure effects 

(i.e. > 10 cigarettes/day) associated with SIDS risk (Habek & Kovacevic, 2011), but no 

literature was identified in the literature for the relationship of continuous smoke 

frequency to ASD. 

 Overall effect estimate of parental age, and preconception maternal health was 1.8 

for studies on the second page of Table 3 for ASD and PPD outcomes (Krakowiak et al., 

2012).  The average, adjusted effect estimate of parental age was 2.0 for the 17 study 

comparisons shown in Table 3. In these studies, parental age was often categorized in 5 

to 10 year increments. Overall effect estimate of hypothesized confounding variables of 

infant hypoxia, fetal distress and obstetric factors (excluding maternal fever and maternal 

drug use during pregnancy data) was 1.25. Obstetric health factors showed an average 

effect size of 1.4 whereas induced  labor and  hypoxia/fetal stress comparisons showed 

lower overall aggregate effect ratios (1.22, 1.1). Jaundice birth and cesarean-section 

delivery had higher OR ranges than induced labor. 
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Table 3   

Potential Epigenetic Risk Factors of ASD and the ASD Gender Differential 
Risk Variable Risk           Case count      Researcher and 
variable  value   metric  95% CI                                   study population 

 
Maternal  Binary response  RR=     3,315 PPD      Kalkbrenner et al., 2012 
Smoking  During pregnancy  1.26      [0.91 – 1.75]               633,989          United States 
                           During pregnancy          0.86      [0.79 – 0.93]   10,625 cases   Gregory et al., 2013 
                 United States/NC 
 
Maternal  Smoking 4.8 cig/day OR=   645 ASD        Grazuleiciene et al., 2009 
Health  Smoke & IUG-restricted    1.57      [0.45 – 5.55]         Lithuania 
  Smoke & GST allele  3.33      [0.60 – 18.4] 
 
Maternal  Binary Response  OR =     207 to 439      Nijmeijer et al., 2010 
Health  Smoking & LBW  ~ 1.0           Netherlands 
  Smoke & COMT 

& SLC6A4 alleles  ~ 5- 6 
 

Prenatal  3 mo, 1st trimester  OR=    429 cases       Schmidt et al., 2011 
Vitamin use Use (yes/no)  0.62       [0.40 - 0.93]             CHARGE study/CA    
  Use- yes and 
  Infant COMT allele  1.80       [0.99 - 3.50] 
  Use-yes and Maternal    

MTHFR & CBS allele     2.60       [1.20 - 5.40] 
 

Maternal  Vitamin D use in pregnancy    10 studies       DeRegil et al., 2012 
Diet  Binary Obstetric Outcomes 
     Preeclampsia           slightly suggestive effect on reducing preeclampsia risk 
     Birth weight    slightly suggestive effect on increasing birth weight 
  Single dose effect      inconclusive on still-birth, neonate death, nephritic symptom 
 
Maternal Diet Ecological WIC study    prevalence      Shamberger, 2011 
  Exclusively breastfed associated with lower thiamin, riboflavin, and Vitamin D 
 
Breastfeeding    None or Formula           OR =      861 cases       Schultz et al., 2006 
     None for 6 months 2.48      [1.42 -  4.58]         AIRS-Internet study 
     Formula (no DHA)  4.41      [1.24 - 15.7] 
  Initiation in hospital 1.20      [1.04 - 1.40]                924 cases       Dodds et al.,  2011 
                                                         Nova Scotia 
Child Plasma  Cases in Egypt     28.5 ng/ml plasma                  112 cases       Meguid et al., 2010 
Vitamin D Controls/Typical     40.1 ng/ml plasma 
Child Plasma Cases in US     20 ng/ml plasma                  89 cases        Molloy et al., 2010 
Vitamin D Controls/(healthy?)                    17 ng/ml plasma 
 
Gender effect Plasma leptin in girls mean = 2.11 ng/ml                  80 cases        Ashwood et al., 2008 
Leptin & ASD         Plasma leptin in boys     mean = 0.96 ng/ml          CHARGE study/CA 
  Leptin in ASD pos.                  mean = 1.19 ng/ml 
  Leptin in PPD pos.         mean = 0.88 ng/ml 
Gender effect 
Metabolites Females aspartic acid  >   10 nmol/l urine                  34 cases        Evans et al., 2008 
  Females glucose   > 500 nmol/l urine                         United States 
 
Gender effect ASD & Female cases  lower plasma DHA  153 cases      Wiest et al., 2009 
Fatty Acids  measured fish intake but not dietary supplements/fish oil         Wiest 2007, U.S. 
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________________________________________________________________________ 
Risk Variable                                 Risk             Case count          Researcher and 
variable                   value                                      metric     95% C I                            study  population 

 
Parental  Mom & Dad  OR=        164 cases          Lauritsen et al., 2005 
Age  Maternal 12-19 yrs   1.7   11,000 births    Sweden population 
  Maternal 25-29 yrs   1.1 
  Maternal > 30 yrs    1.2 
  Paternal  < 25 yrs   2.5 unadjusted., 1.9 after adjustment for zygosity and SES 
  Paternal > 50 yrs   3.2 unadjusted., 3.4 after adjustment for zygosity and SES 
 
   Maternal age (</> 35)   1.6       [1.32 - 1.95]                 64 studies        Gardener et al., 2011 

Paternal age (<30,>40)  3.1       [0.95 - 9.49]                    multiple cohorts 
  Paternal age(<30,>35)  1.3       [1.16 - 1.54]  
 

Maternal age delta        1.3  (26 vs 32 years)     10,625 cases     Gregory et al., 2013 
                  United States/NC 
 
Parental  Mom & Dad  OR =      23,311 PPD      Grether et al., 2009 
Age  Mom 10 yr incr.   1.38             United States/CA 
  Parental 10 yr incr.   1.3 
 
Parental  Mom & Dad                OR=                  1,251 cases       Durkin et al., 2008 
Age  Mom age >/< 35 yrs  1.3       [1.1 - 1.6]  in 326,785        US-CDC/ADDM 
  Dad age >/< 40 yrs   1.4       [1.1 - 1.8] 
 
Paternal Age 10 yr intervals. on ASD OR =    593 cases         Croen et. al., 2007 
  10 yr intervals. on Girls 1.55      [0.93 - 2.59]     in 132,844       United States/CA 
  10 yr intervals. on Boys       1.27      [1.01 - 1.60] 
 
ASD Gender Parental Age  OR=      393 cases         Anello et al., 2009 
Differential Dad age < 30 yrs   6.2             AGRE registry 
  Dad age 40-44 yrs   3.3 
 
Precon-  Aggregate Response OR=              Krakowiak et al., 2012 
ception Health    (Diabetes+ Obesity+)    1.61     [1.10 – 2.37]                 517 ASD        CHARGE study /CA 
     (Diabetes+Obesity+    2.35     [1.43 – 3.88]                 172 DD 
                                    & Hypertension+) 
 
Precon-  Pulmonary, heart,        1.25     [1.01 – 1.55]                 924 cases        Dodds et al. 2011 
ception Health         renal, anemia disease                         Nova Scotia 
 
Precon-  Diabetes         1.24    [1.08 – 1.42]                  10,625 cases   Gregory et al., 2013 
ception Health        Hypertension        0.94    [0.84 – 1.05]                           United States/NC 
 
 
Maternal   Binary Response  OR=                   691 cases         Mann et al., 2010 
Health  Prenatal Smoking (+) 1.02    [0.80 – 1.30]                           United States/SC 
  Preeclampsia (+)  1.85    [1.38 -  2.47] 
 
Maternal  Prepregnancy weight  1.58    [1.26 – 1.98]                 924 cases         Dodds et al. ,2011 
Health                  Nova Scotia 
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________________________________________________________________________ 
Risk Variable Risk     Case count       Researcher and 
variable  value   metric    95% C I                                  study population 

 
Infant     OR =     113 cases          Burstyn et al., 2011 
Hypoxia  Full term males  1.11        [1.0 –  1.6] 17,083 tested    Canada 
  Males tested at birth 1.13        [0.96 - 1.33]    in 218,890   
  Full term females  0.92        [0.60 - 1.42]   adjusted for birth year and SES 
  Females tested   0.93        [0.62 - 1.40] 
 
Delivery  Fetal stress              1.24        [1.08 - 1.42]      10,625 cases    Gregory et al., 2013 
Event                                                                                                                               United States/NC 
 
Delivery  Induced labor  1.22        [1.03 - 1.44] 924 cases          Dodds et al., 2011 
Event                  Nova Scotia 
 
Delivery  Induced labor   1.22        [1.01 - 1.46] 10,625 cases     Gregory et al.,2013 
Event                  United States/NC 
 
Obstetric  Intrauterine Growth  OR=   380          Wilhelm-Benartzi et al., 
Health  IUG restr & LBW  > 1.0              2012.  United States 
  Placental methylation  > 1.0     
  CpG analysis & LBW       > 1.0 with effect of maternal smoking/drinking 
 
Obstetric  At birthwt > 2500 g  OR =   13 studies         Amin et al., 2011 
Health  High bilirubin  1.43       [1.22 – 1.67] 30 cases each    multiple cohorts 
 
 
Obstetric   Adj. for confounders    OR=   1,721 PPD        Maimburg et al., 2010 
Health  Jaundice- binary (+/-) 1.56**   [1.05 – 2.30]      35,766 tested    Denmark 
  Jaundice- binary (+/-)   1.88       [1.17 – 2.71]    per 733,826 records 
        for parious (nonfirst birth) mothers 
 
 
Obstetric  Mixed Effect Modeling    1,179  ASD      Langridge et al., 2013 
Health     Elective C-section  1.44      [1.03 – 2.02] (451 ASD         Australia 
  Emergency C-section   1.47      [1.05 – 2.06]         without DD) 
      
Maternal                   OR =      538 cases       Zerbo et al., 2013 
Fever during Untreated  fever  2.55      [1.30 – 4.99]           CHARGE study 
Pregnancy Treated fever  1.30      [ 0.59 - 2.84]           United States/CA 
 
 
Maternal Health First trimester  OR =      298 cases       Croen et al.,2011 
during pregnancy    SSRI use   3.8         [1.8 – 7.8]            CHARGE STUDY 
                                                                                                                                                         United States/CA 
 
Note.  cig= cigarette; PPD = pervasive developmental disorders;  IUG = intra-uterine growth; GST = glutathione 
transferase;  COMT = catechol-O-methyltransferase; SLC6A4 = serotonergic neurotransmission gene;  
MTHFR = methylene-tetrahydrofolate reductase;  CBS = cysteine vitamin B-mediated sulfuration enzyme; DHA= 
decahexanoic acid; SES = socioeconomic status; , LBW =  low birth weight; Adj.= adjusted;  CpG = cytosine-
phosphodiester  guanine genomic regions; C-section = cesarean-section delivery;  
 DD= developmental disorders; SSR I= selective serotonin reuptake inhibitor. 
  
** Maimberg et al., 2010 odds estimate revised downward to 1.25 (Rosti, Lambertini, Stucchi, & Condo 2011) 
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Main effect variables. With regard to specific, independent variables and 

detailed comparison in Table 3, genetic factors appear to reflect larger effect estimates, or 

preexisting pregnancy complications. The data suggested odds ratios and relative risks 

tended to be greater than 2.0 for the risk variables mediated by particular genetic alleles, 

maternal untreated fever during pregnancy, prenatal serotonin regulation using SSRI 

medication, lack of breastfeeding, or infant formula use without docosahexaenoic acid 

(DHA) fortification, and increased paternal age. These particular factors may suggest a 

predominant effect of genetic variation or maternal infection or disease. The high odds 

ratio for breastfeeding in the Schultz et al. (2006) study may reflect the study sampling 

design (convenience, snowball, and internet solicitation). 

Prenatal maternal health as a risk factor associated with ASD was highest for 

maternal serotonin-regulation via anti-depressant use and untreated maternal fever during 

pregnancy as shown in Table 3.  However, several researchers suggest maternal diabetes; 

hypertension or pre-existing medical conditions were independent risk factors of ASD 

(Dodds et al., 2011; Gregory et al., 2013; Krakowiak et al., 2012). The prevalence of 

pregnant women with diagnosed diabetes or hypertension was less than 1.5%; but 

approximately 7.6% of pregnant women had gestational diabetes in a California cohort of 

women sampled from 1999 to 2005 (Lawrence et al., 2008). Maternal health status during 

pregnancy needed to be studied further in detail.  

The effect of prenatal smoking showed an average odds ratio of 1.2 for four 

studies illustrated in Table 3. Measurement and recall bias was known to be a particular 

concern among self-reported measures of maternal smoking (Dietz et al., 2011; 
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Kalkbrenner et al., 2012; Lee et al., 2012; Burstyn et al., 2012; Vinikoor et al., 2010; 

Zhang et al., 2010). Because of  risks of self-reported  bias and  rarity of self-reported 

prenatal smoking among mothers of autistic children, additional proxy variables 

suggestive of smoking behavior (i.e. paternal smoking, paternal and maternal age) and 

multiple proxy variables of maternal health  may be useful (Dodds et al., 2011). Self-

reported household smoke exposure may be a valid proxy variable; particularly for data 

collected separately, for both parents. 

Self-reported maternal smoking which may be confounded by socioeconomic 

factors, was shown to be associated with certain serotonin alleles, and adverse birth 

outcomes such as placental restriction, preeclampsia, infant hypoxia, and ASD 

(McDonald et al., 2006; Nijmiejer et al., 2010; Wilhelm-Benartzi et al., 2012). Smokers 

may have reduced peroxidase activity in which to offset tissue lipid oxidation (Wang-

Sattler et al., 2008). Transmission of cotinine has been documented in breast milk and 

infant’s first meconium (Onuki et al., 2003; Gray et al., 2010). Therefore, direct gas or 

fluid exchange mechanisms may significantly affect ASD risk. A large U.S. cross-

sectional study showed a trend toward inadequate infant nutritional status for infants 

who were exclusively breastfed (Shamberger, 2011). Infants with low DHA lipid intake 

may have higher risks of ASD (Schultz et al., 2006). Maternal dietary intake, smoking 

status, and breastfeeding duration were cited as main effect factors for ASD in at least 

three studies (Mann et al., 2010; Ronald et al, 2010; Schultz et al., 2006). There may be 

an ASD risk effect associated with gender-specific vitamin D mechanisms or fatty acid 

metabolism (Baker et al, 2010; Hu et al., 2009; Robinson et. al., 2010; Weist et al., 
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2009). Preeclampsia was shown to have a larger effect than smoking on ASD, but birth 

weight mediated the effect in one study  (Mann et al., 2010). Exposure-timing research 

of smoking and obstetric traits is needed. 

Distal variables. In Table 3, the odds ratio of preeclampsia, cesarean section 

delivery, jaundice birth associated with ASD diagnosis in offspring ranged from 1.25 to 

1.9.  There are likely multiple factors affecting obstetric complications, including 

preconception health. Placental health proxy variables such as preeclampsia, jaundice, 

and hypoxia may have a gender-specific effect on autism (Burstyn et al., 2011; 

Maimburg et al., 2010; Mann et al., 2010). The effect of these factors, stratified for 

assisted reproductive technology use on ASD risk, and the ASD gender differential are 

research gaps. And few ASD studies in the literature controlled for ART use. 

The relationship between infant health and ASD is often reportedly confounded 

by infant traits such as gestational age, birth weight, Apgar score, infant gender, birth 

order, obstetric complications, or child IQ (Amin et al., 2011; Dodds et al., 2011; 

Gardener et al., 2011; Langridge et al., 2013; Mann et al., 2010; Schnedel & Bhasin, 

2008; Wilhelm-Benartzi et al., 2012). There are likely interrelated effects of obstetric 

complications and neonatal infant traits such as breathing and sleeping patterns. Neonatal 

respiratory distress, weak or no crying after birth, oxygen treatment or resuscitation, 

infant fever, breathing; and feeding difficulties and infant anemia, respectively were 

among 13 of 60 obstetric risks associated with ASD (summary effect estimate, OR or 

RR= 1.7 – 1.85 for infant breathing and distress; 3.3 – 7.87 for feeding difficulties and 

anemia) in a meta-analysis of 46 global case-control studies (Gardener et al., 2011).    
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Dodds et al. (2011) explored several independent ASD risk factors; and discussed  

the strengths and weaknesses of using overall obstetric "optimality" indices versus 

individual obstetric and neonatal factors in a case-control study design to account for 

inter-related delivery and infant traits. In their sampling frame of 129,733 infants born 

between 1990 and 2002 in Nova Scotia, among 924 ASD cases, the effect of overall 

optimality indices and individual obstetric factors was non-significant in the association 

with ASD diagnosis. Among cases with low genetic susceptibility, the effect of infant 

gender, maternal pre-pregnancy weight, maternal health (pulmonary, heart disease, renal 

disease, and anemia), lack of delivery labor, and income support during birth year or first 

two years were shown to have an independent role in ASD etiology. The study 

publication did not discern whether maternal health conditions were diagnosed before or 

during pregnancy. But the study provided evidence that maternal health was an 

independent risk factor of ASD. Breastfeeding initiation during hospitalization was an 

additional independent risk factor, OR= 1.20, 95% CI [1.04 - 1.40] in the final 

multivariate model. Lactation capacity and duration is likely affected by maternal diet 

and health status. 

Dodds et al. (2011) did not discuss whether the use of preconception ART was 

controlled or stratified in the case-control study. Similarly, the Canadian population case-

control cohort results of Burstyn et al. (2011) and U.S. cohort case-control cohort studies 

of Mann et al. (2010), CHARGE studies shown in Table 3, and the study of  Gregory et 

al. ( 2013) did not discuss whether ART factors were considered. A recent assessment of 

U.S. ART prevalence based on federally mandated fertility clinic certification records, 
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vital statistics, and CDC pregnancy monitoring systems suggested the use of ART by 

women over the age of 40 was between 16.5% and 27.9%  in Florida, Utah, and 

Maryland  in 2004 (Barradas, Barfield, Wright, D’Angelo, Manning, & Schieve, 2012). 

In a case-control design within an ASD registry for Israeli participants enrolled from 

1995 to 2002, of participants diagnosed with ASD, 10.7% were conceived by ART, 

whereas the rate of ART pregnancies in the Israeli newborn cohort was 3.06% for infants 

born within the same period (Zachor & Itzchak, 2011). The study of ART on the 

association of pregnancy factors and ASD deserves attention. 

Confounding variables. The hypothesized main effect, independent risk factor 

effect estimates for ASD summarized in Table 3 suggest prenatal health (diabetes, heart, 

renal disease, anemia), parental smoking, and lactation appear to be statistically 

significant, despite mediating effects of distal and confounding factors. Distal factors 

such as parental age, and pre-existing maternal health conditions, and obstetric 

complications appear to mediate the effect of pregnancy-related factors on the 

relationship to ASD, and the ASD gender-differential. 

Table 3 illustrated substantial evidence that parental age affects ASD risk profiles, 

and the gender differential of ASD. It is hypothesized that parental age reflects a key 

genetic risk. Younger parental age appeared to reflect increased risk behavior such as 

smoking and alcohol intake whereas older parental age may have reflected chromosomal 

and cellular damage risks. Neonatal infant traits, such as infant sleeping and breathing  

patterns were theorized to reflect extraneous, or unique mechanisms such as respiratory 

infections, congenital heart defects, or side effects of psychotherapeutic medicines. 
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Common gender-associated profiles for hypoxia, other PPDS, sudden infant death and 

ASD have been reported. SIDS risk may also be congenital heart defect risk (American 

Academy of Pediatrics, 2011), an X-chromosome related risk (Baillard & Anderson, 

2009; Gioli-Perira et al., 2008) or associated with cosleeping (Vennemann et al., 2005).   

It was reasonable to hypothesize there may be an association for proxy 

measures of direct cellular, metabolic, gas or fluid exchange between a pregnant 

woman and a fetus (either through placental transfer and/or lactation ) and subsequent 

ASD onset. Thus, maternal diet proxy biomarkers for exposures during pregnancy such 

as boney fish intake, vitamin supplementation, maternal smoke exposure and lactation 

duration may be significantly associated with ASD ; with or without gender 

stratification (James, 2012; Kalkbrenner et al., 2012; Kocovska et al., 2012; Lee et al., 

2011; Shamberger, 2011; Wiest et al., 2009; Zhang et al., 2010).  Placental transfer was 

theorized to reflect ASD epigenetic mechanisms. 

There appeared to be an opportunity to assess genetically susceptible, maternal 

health risk factors which may be present before conception (i.e. anemia, vitamin 

deficiency, diabetes, hypertension, neural tube defect risk, and albuminurea) as unique 

and separate proxy measures. The contribution of assisted reproductive technology 

would likely be a distal factor, too. Preconception factors and ART were hypothesized 

to reflect genetic susceptibility; a different etiological pathway than pregnancy onset, 

and  maternal health factors associated with more direct placental exchange during 

pregnancy or biochemical transfer via lactation practice. However, a biologically 

plausible overall index of genetic susceptibility or preconception maternal health index 
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may improve statistical power of the study to assess the relationship of other proxy 

variables on the gender differential of autism. Infant gender was presumed to be a 

significant main effect factor associated with ASD given the body of evidence in the 

etiology literature.  However, infant gender is likely a confounder variable given the 

known ASD gender-risk. 

Few previous cross-sectional or case-control studies on maternal smoking, 

maternal health status or lactation duration adjusted for pre- or postnatal nutritional 

fortification. Most previous studies did not address the gender differential of ASD. 

Gender differences in ASD cases have been identified in leptin adipose tissue hormone, 

amino acid, and glucose urinary samples, and triglyceride profiles (Ashwood et al., 2008; 

Evans et al., 2008; Wiest et al., 2009). However, these studies did not ascertain the effect 

of maternal diet, maternal or child vitamin use,  placental health, obstetric complications, 

or lactation duration on childhood metabolic profiles. Most ASD related studies have not 

accounted for pharmacotherapy use by subjects. Temporal clustering of exposure-timing 

risk factors as genetically susceptible preconception factors, onset pregnancy with 

associated fetal exposures, and neonatal traits may provide insight into the relationship of 

indefinite windows of exposures and ASD, and the gender risk of ASD.   

Etiological Hierarchy Framework 

A hierarchical framework of ASD causal mechanisms may explain potential 

relationships among preconception, environmental exposures, affected epigenetic and 

biochemical pathways, and, metabolic processes in a fetus or infant. Biological 

plausibility was assumed in the proposed framework using antecedent exposures to 
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inform exposure-timing risks. Plausible mechanisms of fetal programming and placental 

transfer were assumed. Dodds et al. (2011) speculated leptin may play a role in placental 

transport dysfunction. However, Ashwood et al. (2008) reported leptin levels were 

highest among females regardless of ASD status (see Table 2). 

Vague hypotheses have attempted to explain the observation of trebled or 

quadrupled ASD prevalence ratio of prepubescent males to females (Faber, Zinn, Kern, 

& Kingston, 2009; Hu et al., 2009; Pastural et al., 2009). But few studies were able to 

achieve statistical power to study the gender-differential of ASD in a case-control design. 

AGRE genetic research has provided suggestive evidence genetic and epigenetic for the 

main effect risk factors of ASD, and gender-differential of autism. Independent AGRE 

cohort studies have supported published evidence in other ASD based population cohorts 

within the U.S., and within other population sampling frames. However, few AGRE 

studies focused on the etiological hypothesis of genetic versus epigenetic mechanisms, or 

temporal factors associated with preconception, fetal exposures or neonatal traits 

affecting ASD and the gender-differential of ASD. 

There was speculative comment in the literature that estrogen or growth hormone 

related mechanisms may provide protective effects against adverse health risks for 

females in the womb and at neonatal stage (Faber et al., 2009; Hu et al., 2009; Pastural et 

al., 2009).  It was difficult to identify research papers which proposed mechanisms and 

simultaneously quantified related biomarker associations for the gender-differential in 

autistic children. Few publications have definitively ascertained parental or childhood 

genetic profiles, hormonal or quantified metabolic profile differences for gender-stratified 
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cohorts due to the ethical considerations. Collection of biological tissue and repetitive 

testing conducted during pregnancy would be unacceptably invasive and may be 

unethical. Genetic gender embryo testing, and genetic screening tests are not 

recommended or promoted for predicting ASD onset. The rarity and broad-based 

spectrum of autism symptoms (particularly among girls), prolonged onset of ASD and 

PPD, and reversible nature of PPDs are other ethical considerations for ASD gender-

based testing. Limited clinical sample sizes, control of confounding variables, genomic 

variation, nonbiased sampling, and robust study designs constrained ASD gender 

differential research. Well-controlled studies within a specific genome and defined 

exposures were needed.  

The AGRE repository provided an open access database of enrollment records for 

a well-characterized genomic cohort. AGRE literature was representative of other U.S. 

cohort findings and reported suggestive evidence of biological plausibility with results of 

other ASD study cohorts. AGRE genomic profiling may inform future studies with 

regard to the mediating effect of genetic alleles on prenatal and infant exposure risks, and 

inform the ASD gender differential.  

 The tresearch questions in this study addressed the exposure-timing relationship 

of unique pregnancy factors to ASD outcome; and the effect modification (separately and 

in combination) of preconception and neonatal factors to ASD diagnosis, and the gender 

differential of ASD.  The study proposed sought to describe and study the relationship of 

maternal smoke exposure and diet status during pregnancy, and lactation (adjusted for 

covariates and neonatal traits) to subsequent autism diagnosis with and without infant 
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gender stratification. For simplicity, the overall logistic regression hypothesis among the 

nine independent variables can be described as: "What are the exposure-time 

relationships between levels of maternal smoke exposure and  maternal diet factors 

during pregnancy and lactation to ASD outcome when adjusted for preconception factors, 

including obstetric complications and confounding infant traits?" 

 The study aimed to replicate previous research on the relationship of parental 

age, smoking status, and infant gender to ASD. The study contributed to the limited body 

of research related to the proposed effect relationship of maternal smoke exposure and 

diet during pregnancy, and lactation to ASD and the ASD gender differential. The third 

study aim was to study the effect modification of preconception and neonatal factors on 

the pregnancy-ASD relationship. The study acknowledged effects of preconception 

health, ART use, and possible gender-specific exposure-timing relationships to ASD and 

the gender differential of ASD. 

 Family history records within the Autism Genetic Resource Exchange (AGRE) 

repository supplement coded individual, gender, parental, and familial characterization of 

genetic marker data. The archived parental and child record history files within the 

registry data set were collated and extracted to select variables to test the hypothesized 

conceptual framework presented in Figures 1 and 2. Standardized survey questionnaires 

were the source documents for data collection of variables defined in the conceptual 

framework of hypothesized main effect, distal correlates, and confounding fetal risks and 

risk exposures and the relationship to ASD risk.   
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Main effect variables of prior maternal smoke exposure and lactation were 

significantly associated with ASD, but results did not inform the concept of fetal 

programming or contribute evidence of plausible biological assault to support multi-

threshold liability mechanisms. However, the association between prior maternal 

smoking, dedicated lactation and ASD was strengthened when adjusted when infant 

respiratory distress at birth. This optimized associative relationship to ASD risk was not 

significantly modified by inclusion of  maternal age, preconception health status (i.e. 

maternal anemia, diabetes, high blood pressure, Vitamin B12 deficiency, neural tube 

defect risk, and albuminurea), and unique delivery risks such as preeclampsia or jaundice 

birth. Postdelivery infant traits such as infant sleep and breathing patterns did not 

confound the relationship of prior maternal smoking and lactation to ASD.  Therefore, 

AGRE results informed temporality, but not causality of exposures shown in Figure 2. 

 In this study, risk exposures were abstracted, coded and analyzed from 

standardized data collection records for an adequate sample size, with adherence to all 

stakeholder internal review board (IRB) policies. Exposure parameters were compared 

within several independent archived datasets available for familial and non-familial 

controls and data were stratified by gender.     

Research was needed to study the exposure-timing relationships of pregnancy 

factors, and ASD outcome, and the separate and combined effect modification of 

preconception, and neonatal factors among ASD cases and controls in an AGRE cohort. 

The relationship of pregnancy factors of  maternal smoke exposure, maternal fish and 

multivitamin use, and dediccated lactation practice was studied with and without gender 
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stratification. Neonatal infant breathing traits were analyzed separately and in 

combination to determine the potential confounding effect on the relationship of 

pregnancy risk factors and ASD. Covariation and effect modification of preconception 

parental age, preexisting maternal health risks, and obstetric complications, and infant 

breathing on the relationship of pregnancy risk factors and ASD and the ASD gender 

differential was studied. A descriptive and bivariate analysis of these relationships may 

partially inform biologically plausible mechanism(s) of ASD etiology.   

The details of the sampling strategy, statistical considerations, adequacy of 

sample size, and retrospective data abstraction, coding, and operationalization of survey 

items necessary to address the dissertation research questions will be described in 

Chapter 3. The hypothesized main effect relationship of pregnancy-related exposures to 

ASD outcome and the ASD differential was the initial data analysis focus. Study results 

contributed to the limited body of research related to the proposed effect relationship of 

maternal smoke exposure and diet during pregnancy, and lactation to ASD and the ASD 

gender differential. The hypothesized rationale for directionality of the relationship, 

impact of hypothesized confounding and covariate effects was described. Bivariate cross-

tabulations, odd ratio analysis, and variable recoding and manipulation to support as 

logistical regression for ASD outcome were discussed in Chapter 3.  

  



141 

 

Chapter 3: Research Method 

Introduction 

There is replicated, suggestive evidence of differences in nervous system 

development, inflammation, and cytoskeletal organization among children with ASD 

compared to typically developing children and siblings (Abrahams & Geschwind, 2009; 

Gabory et al., 2009, Hu et al., 2009).  However, the association between early life 

exposure proxy variables for these genetic, cellular, or metabolic processes, ASD, and 

gender within a well-characterized genetic cohort is lacking. The purpose of the study 

was to describe the exposure-timing relationship between pregnancy traits (maternal 

smoke exposure and diet during pregnancy and lactation) to ASD outcome, as mediated 

by genetically susceptible preconception parental age, maternal health, and obstetric 

complications, and as confounded by neonatal traits to the risk of ASD and the ASD 

gender differential. I aimed to contribute to the limited body of research on the 

hierarchical relationship of temporal factors, shared familial environmental risks, unique 

exposures and risk factors, and infant gender to the risk of ASD. Factors during 

pregnancy were assumed to be the main effect risk factors affecting ASD. Study 

questions and hypotheses presumed preconception factors were covariates or mediator 

variables, and neonatal traits confounded the relationship of independent or combined 

pregnancy factors to subsequent ASD.   

The variables related to maternal diet during pregnancy were categorized by fish 

type and duration and frequency, and intrapregnancy multivitamin use. Preconception 

maternal health variables included self-reported responses to medical history questions 
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related to maternal iron deficiency, vitamin B12 deficiency, neural tube/alpha fetal 

protein/triple screen (AGRE’s Medical History Survey, Section A, Question 55) and the 

temporal, binary response to medical questions related to maternal high blood pressure, 

anemia, diabetes, and albuminurea status (AGRE Medical History Section A, Questions 

37, 48, 49 and 58, respectively).  

The dependent or outcome variable was confirmed autism diagnosis as defined by 

DSM-IV or ICD-9 criteria. Categorical treatment of the dependent variable included the 

validated AGRE classification of  broad ASD, ADIR positive and OR ADOS positive 

criteria  used as a dichotomous outcome. Only ADIR criteria were used since ADOS 

score data were incomplete. 

In this chapter, I describe the case-control research design and rationale for the 

conceptual framework used to describe the hypothesis of the main effect relationships of 

pregnancy risk factors (maternal smoke exposure, diet, and lactation) to ASD outcome. 

Subsequently, the effect modifications of distal correlates and confounding variables 

were analyzed both independently and in combination of the relationship of pregnancy 

factors to ASD; then, the ASD gender differential was explored. Methodology for the use 

of archived datasets from the AGRE standardized survey instrument, with appropriate 

permissions, and the operationalization of survey items and coding of variables were also 

detailed. The a priori proposed use of ordinal indexes for variables to support 

multivariable regression is described. I conclude the chapter with a discussion of threats 

to study validity and ethical procedures necessary to implement the study in compliance 

with all related ethical, confidentiality, and stakeholder internal review board guidelines.  
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The proposed framework for the study was presented in Figure 2. Methodology, 

research design, and rationale for testing the hypotheses that three proxy variables of 

placental transfer mechanisms (maternal diet, smoke exposure before and during 

pregnancy, and lactation) were main effect variables in the relationship to ASD and 

gender differential of ASD and are described in detail. Statistical design and a priori 

treatment to address the confounding effect of neonatal traits on the pregnancy exposure-

ASD relationship are addressed. Thirdly, the proposed effect and statistical treatment of 

the covariate, distal effect of preconception health factors such as parental age, 

prepregnancy maternal health (high blood pressure, diabetes, anemia, vitamin B12 

deficiency, neural tube defect risk, and albuminurea) and two obstetric complications 

hypothesized to be genetically predetermined, on the relationship of maternal diet and 

smoke exposure during pregnancy and lactation to ASD were addressed.   

The goal of the proposed retrospective, case-control design was to articulate an 

exposure-timing relationship for ASD, with minimal uncertainty bias, measurement, and 

recall bias with regard to health behaviors such as dietary intake, maternal household 

smoke exposure, and health status and adjustment for unique obstetric risks that may 

confound the relationship of dominant risk factors of ASD and the ASD gender 

differential. A second design goal was to achieve adequate statistical power and effect 

size to study the gender differential of ASD within a cohort representing a  well-

characterized genomic sampling frame.   
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Research Design and Rationale  

The study design was a case-control design using retrospective datasets and pairs.  

Case-control design was appropriate for hypothesis testing, particularly among rare 

health outcomes. Case-control is a cost-effective design when health outcome etiology is 

unknown (Friis & Sellers, 2005). The design leveraged existing, archival, primary data 

sets that contained familial controls, well-matched nonfamilial controls, and repeated 

measures of temporal exposures. Although case-control designs often have the 

disadvantage of uncertainty of the exposure-outcome relationship, the hierarchical 

framework proposed to cluster temporal uncertainty of multiple exposures. Exposure-

timing relationships were the basis of the hypothesized framework and were analyzed 

using proportional odds ratio analysis.  

The source of cases and control groups was predetermined based on previous, 

independent AGRE researchers’ study protocols. However, the study design was subject 

to  risks of misclassification due to familial and nonfamilial sources of cases and controls 

(Friis & Sellers, 2005). The source of cases reflected possible recruitment and geographic 

bias as well as potential cohort effect related to access to medical treatment resources. 

However, as discussed in Chapter 2, the results of numerous AGRE studies were 

consistent with the risk factors and relative risk or prevalence rates identified in several 

cross-sectional studies within other U.S. and global cohort samples. 

This study case-control study designs for bivariate analysis and multiple 

regression analysis for case selection criteria of broad binary ASD outcome (ADIR scores 

of 1 or 0). The design of preconception, pregnancy exposures, and early life stage 
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leveraged existing etiological data and explored hierarchical relationships and the gender 

differential. Internal parental response consistency validity was attempted by using 

antecedent and redundant responses to independent main effect variables. Logistical 

regression analysis of  coded, ordinal values of independent variables was proposed and 

conducted after converting all variables to binary responses. Study results were reported 

as odds ratios with 95% (one tail) confidence intervals. 

Case-control design with the  broad ASD outcome (i.e., ADIR diagnosis only) 

was used in bivariate analysis. The use of archived retrospective data was expected to 

provide time and resource efficiency benefits, and the use of a familial registry 

minimized the constraint due to rarity of ASD sampling population accessibility. 

However, the reference group consisted of both nonfamilial and familial controls. 

Therefore, descriptive statistics for the diverse pooled control group were explored, as 

was additional posthoc statistical analysis.  

It is common practice to study the relationship of broad versus strict ASD 

diagnosis in autism etiology studies using cross-sectional study designs. (Amin et al., 

2011; Hallmayer et al., 2011; Kalkbrenner et al., 2012; Schultz et al., 2006; Wallace et 

al., 2008). But the ideal situation is to focus on a more narrow or restrictive case selection 

criteria in a case-control design (Friis & Sellers, 2005). In this study, the primary goal 

was to use the strict criteria and consistent exclusion criteria a priori.  However, ADOS 

criteria for the ASD definition were not widely available for the AGRE data sets. 

Exposure proportions, tests of association, test of trends, were used to describe the 

relationship of  main, covariate and confounding variables to binary ADIR outcome. 
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The proposed experimental design was a classic design used for rare disorders 

with less than five to ten percent population prevalence (Gerstman, 2008). The 

retrospective study design, with a binary outcome variable is a common design used to 

study ASD risk factors. The ability to cluster variables by temporal aspects of risk 

exposure, assumption of directionality of exposure risks, and the use of an archival 

registry chosen to provide adequate sample size to study the gender differential of ASD 

were other benefits for the choice of a case-control design. 

An adequately powered case-control design was with the objective of providing 

adequate statistical sensitivity to detect gender-differential risks of preconception, main 

effect or confounding infant traits associated with ASD among females in the AGRE 

population. Gender differential of ASD has not been well-characterized due to inadequate 

statistical power of  most previous studies identified in the literature (Adams et al., 2011; 

Evans et al., 2008; Hertz-Picciotto et. al., 2011). 

In this dissertation, it was assumed that a focus on the interrelated exposure-

timing of preconception, prenatal and early life exposures minimized biases published in 

many previous studies which attempted to identify potential biomarker variables. 

Previous biomarker studies  associated with ASD often did not consider the temporal 

aspects of exposures, exposure or dietary dosage or duration, nutrient uptake, or dietary 

interactions (Ratjczak, 2011; Zerbo et al., 2013). The relationship of lactation to ASD and 

the ASD gender differential remains unclear. 

Few previous cross-sectional or case-control studies on maternal smoking, 

maternal health status, or lactation duration adjusted for pre- or postnatal nutritional 
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fortification. This study proposed to investigate reported maternal intrapregnancy 

multivitamin use and weekly fish intake.  However the availability of maternal fish intake 

data was a study constraint.  

Another constraint of the case-control experimental design is the inability to 

address timing of exposures (Colditz, 2010; McDonald & Paul, 2010). Randomized 

controlled trials, and meta-regression studies are unable to address the exposure-disease 

relationship (Colditz, 2010). The application of a hierarchical framework to characterize 

timing and proxy ASD risk variables was proposed to understand the possible impact of 

timing of exposures among a well-characterized population. The plausibility of placental 

transfer mechanisms was of interest and was considered in the construction of the study 

and the first three research questions. Data for antecedent behavioral responses was used 

to validate subsequent behavior. Also, the proposed design and statistical power 

calculations had estimated the sample size and effect size required to explicitly study the 

gender differential of ASD. One study objective was to explore biologically plausible 

rationale for the gender differential of autism by studying temporal factors, potential 

placental transfer risks, and possible gender-specific neonatal traits. 

The comparability and confounding health status of control groups in several 

autism studies has been challenged and debated (Kocovska et al., 2012). In this study, the 

use of controls included nonaffected siblings, with similar shared household exposure 

variables and genetic inheritance even if not specifically age-matched. In addition, 

univariate analysis tested whether the AGRE sampling frame characteristics reflect 

typical U.S. prevalence rates of breastfeeding duration, multivitamin use, and smoke 
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tobacco use previously reported by U.S. demographic trends (D’Angelo et al., 2007; 

Kalkbrenner et al., 2012; Tong et al., 2011; Wiest, 2007). Several researchers have 

compared the AGRE population demographics to other autism sampling frames (Durkin 

et al., 2008) and reported no systematic biases (Cantor et al., 2007; Wallace et al., 2008).   

The use of data for unaffected siblings as controls may have mediated uncertainty 

and misclassification bias for variables associated with shared environment factors. The 

use of three AGRE data sources for prior smoking behavior minimized recall bias. 

However, no assumptions were made with regard to birth-specific smoking or lactation 

behavior. Most previous ASD etiology studies did not directly address the ASD gender 

differential as an effect modifier of other risk variables. Misclassification bias was 

minimized by the use of familial controls.  

Internal validity and risk of misclassification bias was addressed by the presumed 

framework of main effect, distal covariates, and potential confounding factors, which 

represented potentially overlapping maternal and fetal risk factors. However, it was 

hypothesized the temporal aspect of these factors varied, such that the variables do not 

likely represent repeated measures of the underlying risk factors. It was presumed in the 

AGRE study design that obstetric complications were predetermined risks that likely 

were associated with preconception maternal health status. 

The use of large, representative AGRE datasets and the use of ADIR outcome and 

"Unaffected Sib" records were used in attempt to reduce threats to internal validity. Data 

pooling of substudies among independent researchers of the AGRE registry was not 

available but was proposed to minimize matching biases, sampling, uncertainty, and 
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misclassification bias. Overall record count suggested an adequate sample size to study 

ASD gender-differentials; but many control records had  missing main variable values. 

     Methodology 

Study Population 

Autism Speaks’ AGRE is an open source, nonprofit DNA repository and family 

registry database of genotypic and phenotypic information that is available to autism 

researchers worldwide (Lajonchere, 2012). The research consortium program began in 

1997 for families who have two or more children on the autism spectrum (Lajonchere, 

2010). Referrals from clinical and medical professionals are the primary ascertainment 

method and there is no restriction to age, ethnicity, or socioeconomic status. As long as 

there are two affected family members, parity is not considered. Over 2,000 families have 

participated in the program representing the 50 United States. As of 2007, the majority of 

the sample (75%) was Caucasian and nonHispanic, and 37% of families were from the 

West Coast (Cantor et al., 2007; Lajonchere 2010).  Autism affected offspring in the 

AGRE were all born since 1992 (Cantor et al., 2007; Geschwind et al., 2001; Stone et al., 

2004). ASD criteria are limited to DSM-IV TR, ICD-9 codes for strict and broad ASD. 

As an approved, independent research applicant to the open access, AGRE 

research community, I obtained access to parental self-reported family records acquired 

through clinical care for recruited registry participants. AGRE registry datasets also 

contained information on sibling and nonsibling matched controls for children diagnosed 

with autism disorder. The complete registry contains over 3,000 families within the 

United States characterized by having at least one English-speaking parent (Lajonchere, 
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2012). I had access to 902 affected child records. Separate data files were obtained for 

mother's history, father's history, and childhood records. 

The open access autism registry based on AGRE and National Institute of Mental 

Health (NIMH) repositories was implemented with standardized autism diagnostic 

criteria with minimal sampling bias and has been extensively researched for genetic traits 

but with minimal (i.e., less than 10% of studies) performing gender-stratified analysis 

(Lajohnchere, 2010). Medical records reflect prospective and retrospective clinical data 

by physician interview whereas parental self-report surveys reflect retrospective 

behavioral data. During enrollment to the AGRE program, parents completed multiple 

self-reported questionnaires regarding dietary and social behaviors. These records were 

supplemented with medical records from referral and supplemental physician visits 

(Lajonchere, 2010). While the primary purpose of the AGRE registry has been to identify 

genome-wide association tests based on genetic and allele profiles, there is merit in 

exploring the extensive archived medical records for tests of associations based on the 

infant life cycle timing of exposures. Measures reported for antecedent exposure periods 

may improve data validity. 

Sampling Strategy  

Proposed sampling procedures were based on accessibility to databases used by 

previous autonomous research group sub data sets with the AGRE registry. The proposed 

a priori multistage clustering using the AGRE sampling frames included those of  

Carayol et al. (2011), Stone et al. (2004 and 2007), and Yonan et al. (2003) was not 

feasible. Rather, access to several  raw data files were used as described in Chapter 4, to 
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obtain an aggregated raw data set of records, and values for the proposed nine variables 

for AGRE cases and controls. Parental reported data for the abstracted variables were 

collected, merged, and cross-verified by parental history for cases and controls by ADIR 

status. Participant inclusion criterion was established a priori as families with at least one 

English speaking parent, with childhood cases born since 1992. Exclusion criteria 

systematically defined by prior researchers and the AGRE Steering Committee 

(Geschwind et al., 2001) were used in this study.  Typical exclusion criteria included as 

single-gene disorders, regressive ASD, and specific congenitial gene mutations such as 

Rett’s, Prader-Willis, Angelman’s syndrome, Timothy Syndrome, Fragile-X, 

phenylketonuria and tuberous sclerosis; and exclusion of subjects with Wescler’s 

Intelligence Quotient scores less than 70 (Carayol et al., 2011; Stone et al., 2004 and 

2007; Yonan et al., 2003).  

Sampling Power Analysis 

The effect size for many behavioral and social science variables is a study 

challenge (Lipsey & Wilson, 1993). In this study, the effect size of key variables of 

interest was summarized and described in Table 3. The results in Table 3 suggested the 

relationship between maternal diet, and in particular multivitamin use and ASD diagnosis 

in offspring was expected to be the most difficult effect to identify in this proposed study. 

Few studies described in Table 3 used continuous values for key variables which further 

complicated calculations and estimates of adequate sample size for optimal statistical 

power. The study presumed a standard Type I error value of p= 0.05, with evidence 

based justification for  one-tailed hypotheses assumptions. Therefore, directional one-
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tailed hypotheses were rationalized for the nine proposed variables. Risks of maternal 

smoking and, low fish and vitamin intake during pregnancy, adjusted for increased 

maternal age, smoking history, obstetric complications, and infant male gender, were 

suspected ASD risk factors. Lactation was expected to be a preventive measure against 

ASD diagnosis. It was hypothesized gender specific risk factors may include obstetric 

complications. 

The effect size between cases and controls, and the effect size for the gender-

differential were estimated using approximated Cohen’s d values (group mean 

differences divided by averaged standard error) for differences in fatty acids among cases 

and controls, and among females and males. Estimated Cohen’s d values were calculated 

for data in studies reporting quantitative group-differences in plasma levels of fatty acids 

in ASD cases and controls (Wiest, 2007; Wiest et al., 2009), plasma sphinogmyelins in 

males and females as indicated in Table 2 (Mittlestrass et al., 2011), and dietary 

estimation of fatty acid intake in pregnant and nonpregnant women, and adults and 

children adjusted for protein intake (Novak & Innis, 2012).    

Cohen’s d value estimates the gender differences in plasma DHA and arachidonic 

acid levels was roughly 2.0 to 4.0 among cases and controls (Weist et al., 2009). Weist 

(2007) suggested plasma EPA levels were elevated in 2 of 12 (16.7%) of cases which was 

likely associated with the self-reported use of krill or fish oil dietary supplements. 

However,  a normalized distribution of plasma EPA levels was reported for 15 of 238 

subjects who reportedly consumed fish at least once per week (Wiest, 2007). Cohen’s d 

value estimates for quantified levels, based on dietary recall of particular fatty acids 
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(DHA, and EPA) among pregnant and nonpregnant women, and children and adults in a 

cross-sectional study of the association of dietary fatty acids, protein and fat-energy 

intake were also estimated (Novak & Innis, 2012). Cohen’s d value estimates of 0.2 were 

calculated for dietary estimated levels of DPA and EPA levels among pregnant and non-

pregnant women; whereas the Cohen’s d value calculation by gender was much higher 

(0.7 and 1.3 for EPA and DHA, respectively). Given the assumption of a one-tailed test, 

and t-test for related samples as reflective of an assumption that sibling controls may be 

the predominant matching criteria in the AGRE cohort studies, the sample size was 

approximated from standard tables. For the assumption of a Cohen’s d value of 0.2, and 

1-β = 0.90, an estimated sample size of 133 cases and controls for related or matched 

samples. If the assumption were re-estimated using a Cohen’s d value of 0.3, the 

estimated sample size for adequate power would be 60 each for cases and controls for a 

one-tailed test. 

The sample size needed for minimum detectable difference estimates between 

cases and controls, or between genders of children with ASD were estimated by the 

equation below (Gerstman 2008, p 252):    

∆ = √[2 * σ²]/n * (Z1 –β + Z1 – α)  solving for “n” per treatment 

when  α = 0.05 (one-sided) and  

power = 0.80 and assuming independent group means. 

Assuming a mean difference of 0.2, standard deviation of three units (0.6) based on the 

Chebychev’s rule of normality and standard deviation variance (Gerstman 2008, p 81): 

N =  2(0.6)²* (0.76+ 1.96)² /0.2² = 133 each for cases and controls; or by gender.   
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An alternative method of estimating the total sample size needed for 80% 

statistical power  was estimated by the number of variables in the proposed study 

(Tabachnick & Fidell, 2000). A fatty acid marker, levels of plasma sphinogomyelin, was 

measured by gender in healthy adults (Mittlestraus et al., 2011). Gender-differentiated 

plasma sphingomyelin levels differed among healthy adult males and females with a 

correlation of 0.28 to 0.39 (Mittlestrass et al., 2011). Therefore, the estimated total 

number of subjects, given the number of proposed variables (nine) and conservatively 

assuming a correlation coefficient (R² of 0.13)  was calculated as follows (Tabachnick & 

Fidell, 2000):  N > (8/f²) + (m+1)   where f² =  R²/(1-R²) and where   

m= number of variables and let R² = 0.13 such that f = 0.02232 

therefore   N > 358 + (9-1)  or  N > 366 subjects total 

Thus, the ideal sample size required to provide 80% power and control Type 1 

error rates (p = 0.025) was expected to be at least 60 to 133 girls, among a sample cohort 

size of at least 120 to 265 subjects. A targeted ideal subsample size at least 265 female 

children, after exclusion criteria and data cleaning for missing variables was an initial 

study design objective.  Ideally, a final sample size of 175 girls and 400 children, may 

have accounted for a 20-30% rate of exclusion due to comorbidities or IQ scores less than 

70, or missing values, to reflect a final goal of  80%  power, 0.5 effect level and alpha 

(type I error rate) of 0.025 statistical test. The final sample size (n=733 records) reflected 

556 male children and 177 female offspring. Parental self-report data was not matched 

with physician collected AGRE data to minimize missing data. The target sample size 
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necessitated the use of pooled archival AGRE cohort populations used previously (Cantor 

et al., 2007; Carayol et al., 2011; Hallmayer et al., 2011). 

Archival Data Sources 

AGRE subjects and parents completed extensive self-report surveys on family, 

parental and child behavior, diet, and exposures which may be complimented with 

medical records from referral physicians (Lajonchere, 2010). Parental self-reported data 

system was collected in the Online System for Clinical Research (OSCR). Standardized 

evaluation OSCR survey tools existed for “AGRE Lifestyle” survey questions which 

included maternal and household smoking behavior, prepregnancy health status (See 

Appendix B), “AGRE Medical History- Child” which included maternal prenatal birth 

control and reproductive practice questions, pre-and postnatal vitamin supplementation, 

and neonatal delivery questions such as preeclampsia and jaundice birth (See Appendix 

C). OSCR standardized abstracted evaluation protocol for ”AGRE Metals and Mother’s 

Diet” was limited to questions about frequency, duration and types of fish. Data sets from 

five AGRE survey tools (see Figure 3) were used to extract variable values proposed in 

this study. The average age of children with ADIR and ADOS diagnosis within the 

AGRE cohort was  expected to be 6 to 8.68 years, for data representing a sample of 444 

children with a group gender ratio of 3.5:1 males to female (Wallace et al., 2008). Using 

ADIR  criteria, the average age of subjects ranged from 9.1 to 10.2 years in this study. 

Operationalized AGRE Survey Instrument   

Parents, with physician referral, were administered self-reported OSCR surveys to 

be completed retrospectively upon enrollment to AGRE (Cantor et al., 2007).  Table 4 
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describes proposed independent variables, archival AGRE survey items, scales and 

coding  to be extracted and defined as exposure-timing variables for preconception, 

pregnancy, and infant traits in this proposal. The first four variables listed vertically in the 

first column reflect pregnancy exposures to be individually analyzed in the relationship to 

ASD and the ASD gender differential. The next three variables in the first column 

(preconception parental age, preconception maternal health, and obstetric health) were be 

tested, separately and in combination for the covariation effect on the relationship of 

pregnancy factors to ASD outcome. Confounding effect of infant sleeping and breathing 

pattern, on the relationship of pregnancy factors to ASD were analyzed using the last two 

variables listed in the first column of  Table 4.  

Wording of the specific surveys and questions identified a priori in the third 

column of Table 4 are illustrated in Appendices A, B, C, D, and E. Similar AGRE survey 

behavioral or medical questions were often asked with reference to preconception, 

pregnancy, and neonatal periods. The responses for antecedent periods for a given 

question was expected to be used to verify internal validity of subsequent responses and 

to minimize missing variable values. For example, parental smoking for a multiple birth 

pregnancy was considered similar among all births in that pregnancy. Maternal and 

paternal self-reported smoking behavior were compared for "prior" or "ever" smoke 

periods. The degree lactation dedication (i.e., no bottle use) in the AGRE survey was 

used to validate responses to lactation duration. Supplemental specific AGRE questions 

related to artificial reproductive technology use were  used to further study the 

relationship of parental age and obstetric risk and ASD risk. The study assumed obstetric 
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complications were predetermined, directly through preconception factors associated 

with genetic susceptibility rather than neonatal traits. Actual data available varied 

somewhat from the variables listed in Table 4. Any discrepancies or differences from the 

a priori variable definition and final data definitions are explained in greater detail in 

Chapter 4. 
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Table 4 
 
Study Variables, AGRE Survey Items, and Proposed  Variable Definitions   
Independent  
variable 

Operationalized  
AGRE value scale 

AGRE survey and 
item/question (q) ID 

Proposed coding and possible 
indexing values 

 
Maternal Smoke 
Exposure During 
Three Trimesters  

 
Nonsmoking (ever) 
Cigarettes per day 
by pregnancy trimester 
 

 
Lifestyle Sec. A q 1-18: and 
Medical History-Child 
Sec. B, q 6/7  

 
Maternal, paternal, household 

smoking  
     (never, prior, <10, >10   
      cigs/day) 

   during pregnancy trimesters        
   (4 points maximum/parent) 
 

Maternal Diet 
During Pregnancy 
And Lactation 
 
 
Lactation  
 
 
 
 
 
 Infant Gender 
 
Parental Age at 
First Child Birth 

Fish intake < once/wk   
Fish intake > once/wk 
 for all 17 types of fish 
Prenatal vitamins use 
(yes/no) by trimester 
 
Unknown 
None 
Less than two months 
Two to six months 
More than six months 
 
Male or Female 
 
Father: 20-29,30-39, 
    40-49 : < 20 or > 49  
 Mother: < 36 years at 
singleton first child birth 

Metals and Mother 
Sec A, q 1-8 
Sec A., q 122/123 
Med. Hist Child, Sec. A 
q 121-124,  Sec. B q 10-12 
 
Medical History-Child 
Sec. B  q 1-7 
Sec. B  q 16-23 
 
 
 
Child Demographic Survey 
 
Medical History of Father 
Medical History of 
Mother/Child Demographic 
Survey 
Sec. B q 8-18 (ART use) 

Maternal diet (0 - 4 or 2x2 pts) 
   (two points for “yes” on  each  
    of fish & vitamin factors 
    present in last trimester) 
 
 
Lactation Index (0 -7 points) 
Lactation Duration 
    (0, 1, 2, 3, 4) score plus 
Non/Dedicated,  Bottle Use 
    (DK, Non/dedicated):  
    3 points 
 
Gender (2 points for male) 
 
Paternal age (< 20, 20-48, > 48)  
    at first birth (3 points max) 
Maternal age (< 36, > 36 yrs)  
     at first birth (2 points max)   
  

Preconception  

Maternal Heath 
Before Pregnancy 
 

High blood pressure 
Diabetes 
Low iron/Anemia 
Vitamin B12 deficiency 
Neural tube defect risk 
Diagnosed albuminurea 

Med. History-Mom  Sec. A,  
q 37,q 49, q 55 
Med. History-Child  
Sec. A, q 23/24, 48/49 
Sec. A. q  58/59 

Preconception Index (0-10 pts) 
   (two points for “yes” response    
   on each of 5 diagnosed factors   
   present before affected   
   pregnancy) 

 
Obstetric Health 

 
Preeclampsia  
Jaundice delivery 

 
Med. Hist.Child  Sec. A, 
 q 90, 166. Med. Hist. 
Child Sec. A, q 90-92 

 
Obstetric Index (0 - 4 points) 
   (two points for “yes” on each 
    factors present > third     
    trimester) 

Infant Sleep 
Pattern  

Regular?  Yes/No 
Onset/diagnosis 
   (0-11 mo, 1- 8, >8 yrs) 
Snoring- Yes/No, age 

Medical History-Child  
Sec. B  q 31-39,  
Sec. C q 31, 31-39,  
Sec, C, q 80 
 

IrregSleep/Snore  ( 0 -4 points) 
  (0,1,2): 2 points for each factor 
  If present at < 11 months age 

Infant Breathing 
Pattern 

Regular?- Yes/No 
 
Shortness of Breath-   
               Yes/No, age 

Medical History-Child 
Sec. B  q 31-39,  
Sec. C, q 32-39 

IrregBreathing  (0 - 4 points)  
  (0, 1,2): 2 points for each   
  factor if present at < 11 
  months age 

Note. Sec= Section; cigs= cigarettes; ART= artificial reproductive technology; DK= don't know. 
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For all univariate, bivariate and regression analysis, the dependent, dichotomous 

outcome variable was confirmed autism diagnosis as defined by DSM-IV or ICD-9 

criteria. Binary outcome responses for “broad” ASD case ascertainment (ADIR score) 

was used for data analysis. Binary categorical treatment of the dependent variable include 

the validated AGRE classification of broad ASD; “ADIR positive" criteria (American 

Psychiatric Association, 1994). Case ASD outcome exclusion criteria included child or 

parental Fragile X,  trisomy or quadrupled 15q11-13, trisomy 21 & Xp22.3, 

phenylketonuria (PKU),  Rett or Tourette's syndrome, Tuberous sclerosis, Angelman’s, 

Timothy Syndrome, Prader-Willis, mental retardation and Wechsler Intelligence Scale 

for Children score less than 70  as recorded on AGRE Child Medical History Survey, 

Section C, Question number 93 (See Appendix C).   

Within the original, available AGRE survey tool datasets, survey responses for 

variables were scaled and recorded as dichotomous (yes/no) responses, categorical 

duration (1-3 months before pregnancy, first, second, third trimester, and during lactation, 

number of cigarettes or smokes per day, dietary frequency intake per week and servings 

per day), or continuous variables (age, weight, time/duration and degree of lactation 

dedication, temporality and daily frequency of smoking, and/or dietary practices). 

Responses for “blanks” were primarily cross-checked with other survey items by child 

record. Responses for the previous temporal period were used to assess internal data 

validity of exposure-frequency for the particular period of interest. AGRE data was 

available for antecedent values of smoke exposure before or during pregnancy, maternal 

diet before or between pregnancies and neonatal traits by child age. Neonatal infant 
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sleeping or breathing responses for a given children  for the period of 1 to 8 years was 

compared to infant sleeping and breathing responses for the same child for the period at  

0 to 11 months. However, only neonatal breathing traits at birth or delivery were used in 

statistical analysis. Categorical treatment for parental and/or maternal smoking was 

replicated from previous recent studies on ADHD outcomes for AGRE and nonAGRE 

cohorts which used the typical categories of nonsmoking, mean of 10, or mean of 20 

cigarettes/day (D’Angelo et al., 2007; Habek & Kovacevic, 2011; Kalkbrenner et al., 

2012; Lindblad & Hjern, 2010). There was multimodality of the distribution of cigarette 

consumption variable within the AGRE datasets. As a contingency protocol, it was 

suggested a priori that ordinal recoding be defined as “never, prior, < 10 cigarettes/day". 

Due to data multimodality, the data range for prior maternal smoke exposure variable, the 

highest ordinal category was  defined as "greater than 10 cigarettes/day".  It was 

anticipated the maternal smoke exposure variable would be (as it was) collapsed to 

ordinal and/or dichotomous response to conduct multivariable regression analysis.  

Categorical treatment of maternal fish intake was expected to  reflect the total 

intake of 17 fish types (mackerel, tilefish, swordfish, shark, marlin, tuna, bass, catfish, 

cod, crab, lobster, salmon, trout, mahi mahi, pollock, other freshwater or farm-raised fish) 

described in the AGRE survey instrument. Total fish intake frequency was to be summed 

over three trimesters to define the fish intake during pregnancy variable. Antecedent 

values of fish intake and frequency for one to three months prior to affected conception 

was planned to be used to assess internal validity of fish intake during pregnancy and 

breastfeeding. Responses for fish intake during lactation were also be used to test internal 
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validity of lactation duration and exclusivity variables. However, availability of maternal 

fish intake data for subjects in this study was very limited. Therefore, the analysis of 

maternal fish intake was not included in bivariate results of maternal diet factors. 

Maternal multivitamin use was a dichotomous variable in this study and reflected 

the response for multivitamin use before, during pregnancy, and intrapregnancy periods. 

Dichotomous response to the question of maternal use of Vitamins D and E was not made  

available from the AGRE Metals and Mother Survey, Section B for preconception, 

pregnancy, and lactation periods. Fish oil supplementation was not described as specific 

form of dietary supplement in the survey, but was volunteered as a descriptive response 

for the category of “other”. Vitamin D, E, and fish oil data measured during 

preconception period was not made available for validation of maternal multivitamin use 

during pregnancy and neonatal period. 

The categorical treatment for lactation duration was documented within AGRE 

OSCR datasets and was expected to include the continuous variables of infant age of 

initiation and termination of lactation, smoking during lactation, vitamin and 

supplementation during lactation (See Appendix C, Section B, Questions 1-16) and 

degree dedication to lactation, as well as infant formula brand. Lactation practice did not 

address other fluid intake beyond "bottle-fed", or "breastfed" practice options. Responses 

to lactation duration were internally cross-verified using related questions about lactation 

practice and exclusivity. Very few studies have focused on the relationships of lactation 

duration and dedication, to ASD, or the gender differential of ASD. The AGRE lactation 

duration categories were collapsed to reproduce the five-category protocol of Schultz et 
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al. (2006) shown in Table 3; “unknown, none, less than 2 months, 2-6 months, more than 

6  months” who reported an inverse odds ratio relationship to ASD. 

After initial descriptive and bivariate statistical analysis of parental age data, the 

variable parental age at first birth was coded in ways similar to that conducted by 

previous AGRE researchers (Anello et al., 2009; Cantor et al., 2005; Cantor et al., 2007; 

Wallace et al., 2008).  For independent variables not previously identified or fully 

described in published AGRE literature, categorical treatment described in sentinel 

articles identified in this literature review was replicated in this study.  All variable 

manipulation protocols were proposed and described below; in keeping with a priori 

procedures and literature precedence. The use of parental age categorical ranges is a 

typical data manipulation approach. In this study, categorical treatment of the AGRE 

variable parental age was replicated as ordinal values as described by Cantor et al. (2007) 

to defined ordinal ranks including; paternal age 20-29, 30-39, 40-49 years and mothers 

age as less than or greater than 36 years at singleton first child birth. Parental age groups 

were  later collapsed to binary values using age cutoff of 36 years.  

Preconception maternal health before pregnancy was proposed to be defined as 

the total of dichotomous values for each mother, for absence or presence of high blood 

pressure, diabetes, low iron, vitamin B12 deficiency, neural tube defect, diagnosed 

anemia or albuminurea for the period one to three months before affected pregnancy. 

Wallace et al. (2008) reported anemia variables were not missing in more than 5% of 

subjects, but anemia prevalence was too infrequent to be included in mixed effect models 

for an AGRE cohort of 444 affected offspring.  In two other California cohorts, 



163 

 

preconception hypertension prevalence ranged from 3.5 to 3.7%  and maternal diabetes 

prevalence range was 9.3 to11.6% for moms with affected offspring born from 2003 to 

2010 (Krakowiak et al., 2012). Lawrence et al. (2008) reported preexisting diabetes 

prevalence was 1.3% and gestational diabetes prevalence was 7.6% for a southern 

California population cohort of pregnant women for the period 1999 to 2005. Dodds et al. 

(2011) reported preconception diabetes was 0.4 -0.8% for mothers of controls and cases 

respectively; but gestational diabetes was 2.7 and 3.5% for mothers of controls and ASD 

cases in the Canadian cohort of infants born between 1990 and 2002. It was therefore 

presumed in this study that comorbidity of conditions during the preconception period 

would adjust for unobserved but possible covariate, gestational diabetes. 

  AGRE categorical treatment of obstetric complications of preeclampsia, 

jaundice, and albuminurea, was replicated as described by Wallace et al. (2008).  The 

responses for eclampsia and preeclampsia were combined across trimesters to reflect a 

single variable. The AGRE researchers reported infrequent responses on Apgar score, 

resuscitation, and mechanical ventilation at delivery and more than five percent missing 

values for pregnancy infections. The researchers suggested an optimality index for 

obstetric factors was a viable approach used by other researchers. But it was reportedly 

not feasible in their study of 19 obstetric risk factors since an additional 16 obstetric 

health variables had high missing values. 

The characterization of infant sleeping and breathing patterns were incorporated 

as potential confounders that may reflect birth-specific comordid conditions such as 

asthma, congenital heart defects, pharmacotherapy use, allergies, or comorbid mental 
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disorders (Liu, Hubbard, Fabes, & Adam, 2006).  Few survey instruments or 

observational measures have been standardized to address sleep and breathing disorders; 

particularly among infants (Mahoney & Caterino 2011; Young et al., 2009). Response 

variables for infant breathing and sleep problems were collected in the AGRE Child 

Medical History survey (see Appendix C, Section B, Questions 32-39) as binary 

responses (irregular or regular sleep pattern) with a supplemental dichotomous question 

about snoring, and regular or irregular breathing, with a supplemental binary question 

about shortness of breath (for age in months and years). Categorical responses for infant 

sleep pattern were expected to be recoded and validate previous research related to risk of 

sudden infant death and hypoxia (Carolan & Bye, 2011); “0-2 months, 2-4 months, 4-9 

months, 9-12 months, > 12 months”. Due to missing and incomplete data, this AGRE 

study used dichotomous responses for infant respiratory distress at birth, and resuscitation 

required at delivery. It was shown that sleeping and breathing patterns for infants (0 to11 

months), validated by responses for subsequent age periods for the specific participant.  

Manipulation of Operationalized Data 

The framework proposed in Figure 2 was constructed to study the exposure-

timing relationships of pregnancy, preconception, and neonatal factors, both separately 

and in combination among ASD cases and controls; with fetal or infant gender 

stratification. Therefore, after initial bivariate analysis to determine the interaction, 

covariate and confounding relationships, aggregate indices of exposure-timing variables 

(preconception, pregnancy, and neonatal factors) were analyzed. Prior to collapsing 
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smoking frequency (cigarettes per day) and lactation duration (months) to ordinal values, 

frequency distributions were inspected. 

Supplemental ISAAC information was not available, and the frequency of 

missing values reduced statistical power, so each of the independent variables were  

recoded, as one-way, directional ordinal values as illustrated in the last column in Table 

4. After recoding, responses for “don’t know”, blank responses, or “not applicable” were 

excluded which resulted in 733 completed records extracted from 902 raw patient 

records. Independent variables were coded such that higher index score values reflected 

hypothesized adverse or higher ASD risk. An  aggregate risk index score for each of the 

covariate and confounding exposure-timing categories (preconception, and neonatal 

period) was initially proposed, but not needed.   

Given the proposed coding scheme in the last column of Table 4, which was 

created as a contingency plan in the event of inadequate statistical power, risk factors 

were initially proposed to be summed into one cumulative score. However, adequate 

statistical power was achieved in the study, and therefore, with the exception of posthoc 

analysis of obstetric risks, data variables reflected binary values for all study variables, 

and ordinal categories for lactation and smoking durations. Overall obstetric ‘optimality’ 

as related to PPDs has been used to weight each risk factor equally to provide overall 

pregnancy risk (Stein, Weizman, Ring, & Barak, 2006; Zwaigenbaum et. al., 2002). 

Overall obstetric risk index may be useful when risk factors are highly intercorrelated and 

difficult to evaluate independently, but may mask underlying confounding or interaction 

factors (Dodds et al., 2011). Dodds et al. reported the use of an aggregated optimality 
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index of prenatal, obstetric, and neonatal factors did not affect the relationship of 

individual risk factors to ASD diagnosis in a case-control study of 924 children with 

ASD.  Ordinal obstetric risk indices were proposed for use within AGRE cohorts as was 

previously reported for the AGRE sample frame (Wallace et al., 2008). 

Raw data for preconception risk factors obtained from AGRE medical records did 

not impact the relationship of pregnancy and lactation factors to ASD, and missing values 

were minimal. Therefore this information was treated as indexed ordinal variables to 

improve statistical power in multivariable regression analysis. An indexed overall 

preconception proxy risk variable was a viable approach to reduce Type II statistical 

error, and minimize known confounding of obstetric complications associated with birth 

order, gestational age, birth weight, and Apgar score on ASD outcome in the AGRE 

cohort  (Wallace et al., 2008). 

 For this dissertation, proposed composite scores were shown in the final column 

of  Table 4 and included obstetric index scale of 0, 1, or 2 points to reflect preeclampsia 

and jaundice.  After data coding, a proposed preconception health index of 0, 1, 2, 3, 4, or 

5 points for the separate medical history questions related to maternal high blood 

pressure, diabetes, low iron/anemia, vitamin B12 deficiency, neural tube defect risk, 

diagnosed anemia, and diagnosed albuminurea was calcuated as indicated in the last 

column of Table 4. Coded measures of obstetric and preconception risk covariates were 

analyzed as binary values, and as categorical values as explained in Chapter 4. 
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Data Management and Analysis 

 Burchinal and Neebe (2006) recommended NIH and FDA based data 

management guidelines that included using unique ID identifiers and a master file system 

that revalidated ID variables such as gender and birth date for each subfile and directory 

(Burchinal & Neebe, 2006).  AGRE is supported by the NIH repository system design, 

NDAR, and is assumed to include separate file retention for programs, AGRE also 

participated in a project to create global unique identifiers to link ASD clinical 

collections (Johnson, et al., 2010). Appendices A, B. C, D, and E indicate  the original 

codebook and data dictionaries for the archived AGRE instruments. Data source files 

were imported from AGRE’s On-line System for Clinical Research (OSCR) using 

Microsoft Excel, a SPSS-compatible file form.  Raw data, variable view, and data views 

within SPSS, statistical, syntax, and file documentation and print directories; with each 

updated version saved with a unique filename and date stamped for each thumb drive and 

hard drive directory per suggested protocol (Burchinal & Neebe, 2006).   

SPSS version 21.0, under annual license of Walden University, was used. Syntax, 

code book, and recoding was documented using descriptive and date-stamped file names. 

A journal binder, chronically organized and listing all required data forms and variables, 

data check code and cleaning (range checking) data was used with consistent labels used 

for variables across all software programs, data sets, metadata documentation, and print 

files. Lab notebook tracking systems were used to follow progress in data collection to 

document which data were missing and why for a particular date or time. Data subfiles 

and program subroutines were described in a lab notebook to ensure there was clear 
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documentation regarding any data manipulation of electronic files, codebooks or 

annotated survey forms (Burchinal & Neebe, 2006). Assumptions and description of files, 

and cell or record counts for the treatment of "missing data" were documented and 

arranged chronologically in laboratory journal and electronic file systems.   

Univariate descriptive analysis was used to check for data completeness, mean, 

median, standard deviations, outlier values, distributional assumptions, and external 

validity against broader U.S. population prevalence rates of smoking, lactation, maternal 

vitamin and supplement use, and obstetric complications. All data coding was dated and 

recorded in the journal. 

After conducting univariate descriptive analysis, subset pooling and adjustment for 

missing values was needed for some variables. Treatment of missing values did not 

require the use of the Estimation-Maximization algorithm protocol published by Burstyn 

et al. (2011). Those researchers assumed variable values were missing at random, but 

conditioned on covariates and the outcome variable of ASD diagnosis.    

Bayesian treatment of missing values for main effect variables may have been a 

more valid assumption (but not used), as evidence suggested reported maternal smoking 

behavior may have been “not-missing-at-random”. Paternal self-reported smoking 

behavior tended to overreport smoking compared to maternal reports of "ever" or "prior" 

smoking behavior. In attempt to minimize small sample, model dependent estimates, an 

assumption was theorized a priori that mothers may fail to report smoking, inconsistent 

use of multivitamins, and lactation prevalence rates similar to those reported in U.S. 
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cohorts (D’Angelo et al., 2007; Dietz et al., 2011; Hauk et al., 2011; Kalbrenner et al., 

2012; Lee et al., 2012; Tong et al., 2011; Wiest, 2007).    

Bivariate descriptive analysis was conducted between main effect variables of 

maternal vitamin use, maternal prior smoking practice, exclusive lactation practice, and 

infant gender. Covariate and collinearity analysis, and collinearity tests were conducted 

for hypothesized covariates (maternal age, preconception health, obstetric complications) 

and covariates identified posthoc (i.e., gravida, multiple birth pregnancies, infant 

respiratory distress at birth). 

The identification of mediator or distal correlate variables, which may affect the 

relationship of pregnancy and lactation exposures and ASD was also tested and 

controlled using the statistical technique of MacKinnon, Lockwood, Hoffman, West, and 

Sheets (2002).  Statistical confounding and interaction was tested  using the stratified 

bivariate analysis method (Gerstman, 2000). Statistical interactions were not identified in 

this study among independent variables. Thus, aggregate odds ratio analysis was 

appropriate. For prior smoke frequency (cigarettes per day), and exclusive lactation 

duration (months) strata-specific measures of association were reported for the bivariate 

analysis (Gerstman). An advantage of logit regression for data analysis was that exact 

probabilities are estimated, without the need for normal distribution of the diverse range 

of independent variables (Halpern & Visintainer, 2003). This was a study design 

advantage since several proposed independent variables for preconception health and 

obstetric complications were recoded as ordinal values or categories.   
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Research questions and hypotheses. The research questions addressed 

exposure-timing relationships of pregnancy and  ASD outcome, and ASD gender 

differential, as adjusted for hypothesized confounding neonatal factors and adjusted for 

theorized covariates of preconception risk. Based on the independent variables of 

maternal smoke exposure and diet during pregnancy, lactation, and gender and their 

combination, subhypotheses were proposed. The specific study question and hypotheses 

were stated below for ASD outcome, with theorized confounders and covariates 

described in detail. Presumed and posthoc identified covariate preconception factors, and 

confounding infant traits were also be analyzed independently, and in combination to 

inform the relationship to ASD and ASD gender risk. 

The initial research questions addressed: "What is the exposure-timing 

relationship between pregnancy factors, individually or in combination and ASD 

outcome within the AGRE sample cohort?" Secondly, it was of interest whether the 

relationship of pregnancy factors to ASD outcome is confounded by neonatal traits. The 

third series of questions tested whether preconception factors are effect modifiers of the 

relationship of pregnancy factors and ASD.  

The initial three research questions addressed whether there is a statistically 

significant association between pregnancy factors such as maternal multivitamin use, 

prior maternal smoke exposure, exclusive lactation practice and the outcome variable, 

broad ASD diagnosis. These questions presumed a primary, main effect relationship of 

pregnancy factors to ASD risk. 
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Research Question 1:  What is the relationship between maternal smoke exposure before 

or during pregnancy and ASD risk in offspring within the AGRE cohort?   

   Hо1:  There is no association between prior maternal smoke exposure and ASD.  

  Ha1:  There is a positive association between prior maternal smoke exposure and  

offspring ASD in the AGRE cohort.   

  Variables:  Maternal smoke exposure (0,  prior,  < 10 or > 10 cigarettes/day);                                  
      Prior maternal smoke exposure  
     ASD outcome:  broad definition of ASD (ADIR score). 
 

Research Question 2:  What is the relationship between maternal multivitamin intake 

during or between pregnancy and ASD risk in offspring within the AGRE cohort?   

  Hо2:  There is no association between maternal multivitamin intake and ASD.   

  Ha2:  There is an inverse association between maternal multivitamin intake and 

offspring ASD in the AGRE cohort.   

Variables: Maternal multivitamin intake (yes/no) during or between pregnancy, 
      ASD outcome: broad definition of ASD (ADIR score). 
 

Research Question 3:  What is the relationship between lactation and offspring ASD risk? 

  Hо3:  There is no association between lactation and offspring ASD risk.  

  Ha3:  There is an inverse association between lactation and offspring ASD risk. 

 Variables: Lactation duration (none, less than 2 months, 2-6 months, > 6 months), 
       Lactation exclusivity (nondedicated, dedicated), 
       ASD outcome:  broad definition of ASD (ADIR score). 

After exploring the hypothesized primary relationship of pregnancy related variables to 

ASD outcome, the most robust and significant relationship was carried forward for 

further study. The potential confounding of neonatal breathing traits and the effect 
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modification of preconception risk factors were tested in subsequent analysis, for the 

broad ASD outcome criteria (ADIR). 

 The fourth research question addressed whether neonatal sleeping or breathing 

traits confounded the relationship of pregnancy factors to offspring ASD outcome..   

Research Question 4. How is the exposure-timing relationship of pregnancy variables 

(maternal smoke exposure, diet, and lactation) to ASD confounded by neonatal infant 

sleeping or breathing traits within the AGRE cohort when analyzed separately or in 

combination?   

  Hо4:  The relationship between pregnancy exposures (maternal smoke exposure, 

diet, and lactation) and ASD risk is not confounded by infant sleeping or breathing traits. 

  Ha4:  The relationship between pregnancy exposures (maternal smoke exposure, 

diet, and, lactation) and ASD risk is confounded by infant sleeping or breathing traits.  

       Variables:  Prior maternal smoke exposure (yes/no), 

       Maternal multivitamin intake during or between pregnancy (yes/no), 

       Dedicated lactation (yes/no), 

       Infant respiratory distress at birth (yes/no) 

        ASD outcome:  broad definition of ASD (ADIR score). 

The fifth research question addressed whether infant gender mediated the effect of 

pregnancy related variables and ASD diagnosis among cases and controls in the cohort.  

Research Question 5: How does the exposure-timing relationship of pregnancy variables 

(maternal smoke exposure, diet, and lactation) to ASD outcome differ by infant gender?   
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  Hо5:  The relationship of maternal diet, prior smoke exposure, and lactation  to 

ASD outcome does not vary by infant gender. 

  Ha5:  The relationship of maternal diet, prior smoke exposure, and lactation to 

ASD outcome does vary by infant gender (i.e., higher in males).  

Variables:   Prior maternal smoke exposure (yes/no), 

       Maternal multivitamin intake during or between pregnancy (yes/no), 

       Dedicated lactation (yes/no), 

           Infant gender, 

         ASD outcome:  broad definition of ASD (ADIR score). 

The last three research questions addressed whether the relationship of pregnancy 

exposures (maternal smoke exposure and diet during pregnancy, and lactation) to ASD 

outcome varies by preconception parental age, preexisting maternal health, or obstetrics.   

Research Questions 6-8:  How does the exposure-timing relationships between pregnancy 

exposure-timing variables (maternal smoke exposure, diet, and lactation) and ASD vary 

by preconception parental age, preexisting maternal health conditions, and obstetric risk? 

  Hо6:  The relationship between pregnancy exposures (maternal smoke exposure, 

diet, and lactation) to ASD outcome does not vary by preconception parental age. 

  Ha6:  The relationship between pregnancy exposures (maternal smoke exposure, 

diet, and lactation) to ASD outcome does vary inversely by preconception parental age.  

Variables:   Prior maternal smoke exposure (yes/no),  

       Maternal multivitamin intake during or between pregnancy (yes/no), 

       Dedicated lactation (yes/no), 
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       Maternal age less than 36 years; or > 36 years at first birth. 

        ASD outcome:  broad definition of ASD (ADIR score). 

  Hо7:  The relationship between pregnancy exposures (maternal smoke exposure, 

diet, and lactation) to ASD outcome does not vary by preconception maternal health. 

  Ha7:  The relationship between pregnancy exposures (maternal smoke exposure, 

diet, and lactation) to ASD outcome varies positively with preconception maternal health. 

Variables:  Prior maternal smoke exposure (yes/no), 

       Maternal multivitamin intake during or between pregnancy (yes/no), 

       Dedicated lactation (yes/no), 

       A preconception risk factor (maternal high blood pressure, diabetes, 

low  iron/anemia, vitamin B deficiency/neural tube risk  

[low folate], albuminurea) (yes/no) 

       ASD outcome:  broad definition of ASD (ADIR score). 

  Hо8:  The relationship between pregnancy exposures (maternal smoke exposure, 

diet, and lactation) to ASD outcome does not vary by obstetric risks within the cohort. 

  Ha8:  The relationship between pregnancy exposures (maternal smoke exposure, 

diet, and lactation) to ASD outcome varies positively by obstetric risks within the cohort. 

Variables:  Prior maternal smoke exposure (yes/no) 

       Maternal multivitamin intake during or between pregnancy (yes/no), 

       Dedication lactation (yes/no), 

      An obstetric complication: (preeclampsia, jaundice delivery) (yes/no). 

        ASD outcome:  broad definition of ASD (ADIR score). 
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The purpose of this quantitative study was to describe the temporal, hierarchical 

relationship between pregnancy related exposure factors to ASD; the effect modification 

of preconception, and confounding neonatal traits that may be associated with ASD and 

the gender-based diagnosis of autism. Group comparisons between cases and controls, 

intraclass correlations between genders was conducted while testing for main effects, 

covariates, and interaction of study variables. Multivariable regression analysis included 

logistical regression.  

Statistical treatment. For each research question, frequency distributions, 

variable mean, median, and standard deviation were calculated, followed by calculation 

of difference estimates, bivariate analysis, odds ratio confidence intervals, and log 

regression multivariable analysis. Data on smoke frequency and breastfeeding duration 

were converted to ordinal data. 

For the first research hypotheses, (research questions one, two and three) logistic 

regression analysis was hypothetically described in the initial proposal by the following 

equation for main effect, or pregnancy exposure variables depicted in Figure 2: 

Y(ASD diagnosis) = ∫1.3(smoking) + 0.8(maternal diet) +  2(lack of lactation)  

The above series of hypotheses was tested for the broad ASD outcome definition 

(ADIR) for the 733 complete records within the AGRE data registry. The most robust 

regression analysis for relationship of pregnancy exposure to ASD outcome was carried 

forward to study the potential confounding effects of neonatal traits, and the covariate 

effect of preconception parental age, preexisting maternal health factors and obstetric 
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risks. The hypothesized a priori relationship for the overall relationship for exposure-

timing factors in Figure 2 was: 

Y(ASD diagnosis) = ∫1.3(smoking) + 0.8(maternal diet) + 

 2(lack of lactation) +  4(infant male gender) + 

Zi (parental age) + Zii (maternal preconception health) +  

Ziii (obstetric health) 

with adjustment for infant respiratory distress 

Stratified bivariate analysis was used to determine whether there were possible 

systemic error sources of confounding, or interaction effects among infant traits and the 

relationship of proposed main effect variables and ASD. Stratified bivariate analysis 

determined no systemic confounding effects of neonatal infant traits, including infant 

gender, shown in Figure 2.  

Subsequent logistic regression analysis was proposed to study the primary 

relationship of prior maternal smoking and multivitamin use, and lactation duration to 

ASD outcomes and determine the strength of associations via odds ratio analysis. The 

outcome of broad ASD status, as a binary variable was used to assess the relationship of 

prior maternal smoking and multivitamin use, and dedicated lactation practice as the 

main research questions associated with plausible placental transfer mechanisms. 

Subsequent logistic regression was proposed to assess the impact of proposed and post-

hoc identified covariates to the ADIR score outcome, and the gender differential of ADIR 

score. Prior cohort studies which reported offspring gender-stratified results in AGRE 

populations contained 60 to70 females among sample cohorts of 240 to 300 children 
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(Carayol et al., 2011; Lamb et al., 2005; Stone et al., 2004 and 2007; Yonan et al., 2003). 

Parental gender AGRE studies contained up to 993 families (Fradin et al., 2010) or as 

few as 312 subjects with 175 ASD cases (Cantor et al., 2007).  This study used 733 final 

child records. Data on  maternal diet and preconception variables for cohort sample sizes 

of 200 to 570 children, including 70 and 160 affected females was reportedly available 

(Eve Landa & Ryan Butler, AGRE liaisons, personal communications, August 22, 2013).   

Multiple statistical procedures. For the first hypothesis, bivariate case-control 

comparisons were used to test the proposed “main effect exposures” of prior maternal 

smoking and maternal multivitamin use, and exclusive lactation to ASD risk. Then, 

bivariate analysis between the “main effect” exposures individually or in combination, in 

Figure 2 and suspected confounding infant gender  was tested to adjust for the effect on 

the relationship of “X” to “Y” outcomes. Odds ratio intervals for ASD risk by main effect 

variable was reported by gender.  

For the second series of hypotheses, the effect of covariates or “Z” variables listed 

in Figure 2 was conducted to test the impact on the relationship of pregnancy and 

lactation exposure variables to ASD outcome. It was presumed that preconception 

parental age, preconception health, and specific obstetric complications mediate the effect 

of “X” variables on ASD.  The hypothesized exposure-timing framework in Figure 2 

assumed obstetric complications were predetermined during preconception period. It was 

plausible that obstetric complications and/or infant breathing traits, may be main-effect or 

covariates variables associated with the gender differential of autism. Bivariate analysis 

of hypothesized “W” confounders of infant breathing and sleeping pattern, with resultant 
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“main effect” variables was to test interactions of variables.The study examined the 

association between main effect pregnancy and lactation variables to one ASD diagnostic 

criteria (ADIR, broad definition), stratified by infant gender. Multivariate model 

predicting the ASD was constructed for the main effect exposures and potential 

confounders. A series of regression models were fitted to the data, using "enter" stepwise 

protocols for the resulting optimized main effect and covariate variables.   

Matching variables considered the diversity among and familial and nonfamilial 

control subgroups and the differences were detailed; but suspected and proved to be non-

significant. Values of independent variables were collapsed to indices to increase 

statistical analysis power with recognition that such a technique may have no clinical 

significance. Logistic regression was  used to summarize the odds ratio as a measure of 

the association between maternal prior smoking, multivitamin use, lactation practice, 

child gender, and ASD risk.  

Because archival, secondary data was used to conduct statistical analysis, 

approaches were taken to ascertain internal and external data validity. Although the 

proposed hierarchical framework was premised on temporal aspects of factors, as well a 

biological plausibility rationale related to placental transfer mechanisms for direct fluid, 

nutrient and gas exchange for main effect variables, the proposed study variables may not 

be completely independent variables. But because the variables were collected for general 

medical record purposes, primarily to supplement genome-wide association test research, 

it is presumed history and maturation bias is minimal or at least randomly distributed.  

Other data assumptions are detailed in Chapter 4. 
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     Threats to Validity 

 
The proposed experimental design was a classic design used for rare disorders 

with less than five to ten percent population prevalence (Gerstman, 2008). The 

retrospective study design, ability to collapse independent variables to categorical and 

binary responses, and the use of archival matched control samples were beneficial to 

efficient implementation of the data analysis. However, case-control designs are subject 

to sources of bias which affect the ability to generalize the findings to other sample 

populations (i.e., external validity), and the ability to conclude the relationship of 

independent variables are actually significant to predicting study outcome (i.e., internal 

validity). Threats to external validity may be related to the narrow characteristics of the 

AGRE population, which are predicated on referral by healthcare professionals for 

families who have two or more members with confirmed clinical diagnosis of autism. 

The geographical setting of the AGRE registry, in Southern California and the affiliation 

with nonprofit advocacy groups such as Autism Speaks may not have allowed 

generalization of conclusions to other U.S. cohorts or autism registries. In this 

dissertation, comparison of the AGRE sample cohort to U.S. population prevalence rates 

was conducted to estimate generalizability and external validity of the cohort. In addition, 

Table 2 describes findings of The M.I.N.D Institute’s CHARGE study on autism, which 

is an independent study population primarily based in Northern California (Ashwood et. 

al., 2008). The familial-based, genomic focus of the AGRE registry population also based 

in California is valuable in allowing case-control sampling while controlling for “shared 

environment” versus unique risk exposures. 
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Common internal validity limitations of previous studies based on case-control 

study designs were anticipated and addressed by the proposed methodological 

framework in this study. Uncertainty bias due to completeness of medical records, 

dietary recall, genetic diversity, and co morbid conditions are limitations of case-control 

designs. In this study, accuracy of exposure definitions was increased by using both 

maternal and paternal age and smoking factors, assessment of maternal anemia during 

preconception period by self-report as well as physician-diagnosed anemia. 

Measurement or recall bias of smoking behavior is known to be confounded by maternal 

education level, other socioeconomic variables, and mode of data collection (Burstyn et 

al., 2012; Dietz et al., 2011; Kalkbrenner et al., 2012; Lee et al., 2012; Vinikoor et al., 

2010;  Zhang et al., 2010). Nondisclosure of smoking tended to be higher for young 

women (age 20-24 years) in a U.S. cohort which quantified blood cotinine concentration 

to validate smoking status (Dietz et al., 2011).  Even when large sample sizes were used 

in previous studies, cross-sectional, case-cohort and case-control designs commonly did 

not addressed gender specific risks associated with maternal smoking and autism.  

Retrospective studies may threaten internal validity due to history threats and 

recall bias, as well as maturation threats (Issel, 2004, Chapter 10). History threats arising 

from the time passage from maternal pregnancy, to infant delivery and subsequent 

childhood autism diagnosis may introduce bias which may have affected maternal recall 

on self-reported survey instruments (Creswell, 2009). For these reasons, the nine study 

variables were proposed to be grouped and analyzed with regard to temporal aspects of 

preconception health, pregnancy and lactation period, and infant (0 to 12 months) traits 
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associated with lactation, sleeping and breathing. Validation of parental age at first birth, 

with responses for smoking, vitamin use, and obstetric complications was used to 

increase internal validation. Similarly, maturation bias, due to parental or maternal 

behavioral or attitudinal change may have occurred from initial enrollment in the AGRE 

registry (Crewsell, 2009). Maturation and testing bias may be particularly relevant since 

new or supplemental survey questions related to dietary behavior (i.e., maternal fish 

intake) were administered during the currently proposed study protocol (Creswell 2009). 

Whether using the archival data sets or supplemental survey data, the risk of information 

bias or defects in categorical measurements would be minimal if nondifferential 

misclassification occurred to the same extent in case and control subjects (Gerstman, 

2008). However, since many of the matches used in the AGRE sampling frame included 

familial controls, it is expected and assumed that differential information bias was 

minimized in the design. 

If a newly revised or supplemental survey tool were administered to collect 

additional or missing data on maternal dietary practices were proposed, this may 

introduce an interaction of history, and recall during AGRE recruitment with recruitment 

and participation for the proposed supplemental survey data. Estimation-maximization 

algorithms for ”missing at random”, and the more plausible Bayesian ”not-missing-at-

random” techniques were proposed for  missing values. However, despite several missing 

values, adequate statistical power was achieved (n=733). 

Statistical regression bias may occur if extreme response measurements were 

included in group comparison analysis. For these reasons, univariate descriptive analysis 
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and box plots analysis were used. The use of categorical data intervals used by other 

AGRE researchers and published in peer-reviewed articles for pervasive developmental 

disorders and ASD was used to minimize regression bias. The use of multiple logistic 

regression did not require normal distribution of the independent response measurements 

(Halpern & Visintainer, 2003). 

External validity related to selection was minimized by the use of archival, well-

characterized cohorts and blinded data abstraction techniques. But participation in AGRE 

sampling frame is voluntary and may be restricted to biological families who have two or 

family members diagnosed with autism spectrum per ADOS or ADIR diagnostic criteria 

(Lajonchere, 2010). In addition, referrals from clinical and medical professionals were 

the primary AGRE ascertainment method. Participant attrition bias for families who were 

referred but did not join AGRE sample cohort and registry is unknown but is assumed to 

reflect nondifferntial bias. 

Ethical Procedures  

Application to the archival AGRE research system required a Data Access 

Application, Researcher Distribution Agreement (RDA) and AGRE IRB approval 

documentation executed by the principal investigator to address legal responsibilities for 

data use, data sharing, researcher generated data requirements, confidentiality, access, 

data storage, participant withdrawal rights, and acknowledgement of use of AGRE 

proprietary, coded archival data. Annual notification to AGRE of researcher generated 

data, prepublication manuscripts and the like were required and addressed on December 

3, 2014 in compliance with the terms of the AGRE agreements.   



183 

 

The focus of this proposal was clinical research data collected by survey 

instrumentation. No DNA, blood cultures, or other biospecimens were requested from 

AGRE for this proposal. The scope of the research distribution agreement was for clinical 

data which excluded any personally identifying information about the family or its 

members. Clinical variables included age at time of testing, sex, ASD criteria, and family 

coding, and medical history variables. 

Participant and family names and contact information were not recorded or shared 

with the primary researcher. Unique identifiers were predetermined by AGRE data 

administrators (Lajonchere, 2010; Johnson et al., 2010).  No transcriber or translator 

services were anticipated or used. Medical records with the AGRE research registry are 

retained on the OSCR online platform for clinical research data management 

(Lajonchere, 2010). Data was exported and formatted to Microsoft Excel and/or Access 

files for descriptive and quantitative statistical analysis using SPSS version 21.0 and 

EpiInfo™ software without external support.   

 Results may be shared among AGRE administrators and AGRE registrants 

pursuant to the terms of AGRE IRB and ethics policies, Data Use Agreement, and AGRE 

Research Distribution Agreement requirements. Registry participant informed consent 

was not required for the use of retrospective, coded, blinded, clinical data sets available 

through AGRE research agreements. 

Protection of Private Health Information 

 Human research protections were partially addressed via existing Walden IRB 

approvals. AGRE’s RDA and IRB approval ensured patient privacy and protected health 
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information. All patient identifiers were precoded by AGRE’s OSCR internal data control 

system. Therefore I was fully ‘blinded’ to unique patient identifying information. No 

private health information was or will be published as part of the proposal, oral defense 

presentation, thesis or as part of any subsequently drafted scholarly publications. IRB 

approval number (# 11-14-13-0074350) for clinical research is provided to reference 

details of data privacy, secure data management procedures, confidentiality agreements, 

conflicts of interest, Letters of Cooperation, and Data Use Agreements with the Autism 

Genetics Resource Exchange (AGRE) partner.  

Treatment of Data 

Approved access to archived medical record datasets obtained from AGRE 

associated with pre-blinded or recoded patient identification numbers was obtained by the 

principal investigator on December 16, 2013. Precoded and cleaned patient information 

was received to protect anonymity of cases, controls, and families. No research assistants 

or statistical consultants were used, and data storage was limited to one primary desktop 

computer with a backup external hard drive. All record retention, data security and 

storage, and confidentiality of information was and will be maintained throughout data 

analysis, data summary, interpretation, presentation, and publication. Data access 

required secure, unique authenticated encrypted access to AGRE portal and data 

exchange systems. Separate computer passwords and hard disk media were not available 

to another household member. Ethernet computer was used for data exchange with 

AGRE. Data file formats, field and variable specifications within Microsoft Excel were 
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aligned as necessary to configure files for SPSS data analysis. Data presentation included 

aggregated measures to the extent individual patient records cannot be inferred by results. 

Summary 

The case-control study design, modeled after the hierarchical framework of 

Burstyn et al. (2011) reflected the current thinking about temporality of  risk factors of 

ASD, and the gender-differential of ASD. The proposed framework reflected temporality 

of exposures, genetic susceptibility, and placental transport theories. Methodology was 

proposed to describe the AGRE cohort sample and archived data. The sampling frame, 

matching protocols, and categorical treatment of variables were discussed and aimed to 

replicate approaches of prior ASD research, and AGRE research protocols. Data sources 

resulting from retrospective administration of standardized AGRE medical survey 

instruments were obtained through appropriate data access and IRB approvals. Data 

dictionaries, data coding and manipulation to binary values, indexed values for obstetric, 

preconception variables was considered, as was univariate, bivariate analysis, and 

methods to identify confounding and interaction terms.    

Hypothesized regression analysis equations were proposed to weigh the main 

effect variables of maternal prior smoke exposure, multivitamin use, and lactation to 

ASD. These relationships were analyzed as proposed for the broad ASD outcome (ADIR 

score). Data coding was conducted to reduce variables to binary values for logit 

regression analysis. Effect modification of gender, and preconception and obstetric health 

risk factors were proposed and analyzed as initially proposed. Threats to validity were 
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identified, and limitations of generalized conclusions based on a case-control design as a 

hypothesis testing approach were acknowledged.   

I explored the relationship of maternal diet and prior maternal smoke exposure 

and lactation as main pregnancy exposure factors of subsequent ASD diagnosis in 

offspring. However, it is understood that statistical correlation may or may not be related 

to causation. Three major reasons for this may be because; 1) underlying mechanisms are 

not linear functions, 2) the attributable variables are not continuous in nature, and/or 3) 

spurious and simultaneous monitoring of two continuous variables may be each described 

in linear functions without be associated or linked to each other (Gerstman, 2008). In 

addition, the relationship of the independent exposures may or may not be temporally 

related to each other, or to ASD risk.
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             Chapter 4: Results 

Introduction 

The purpose of the study was to use archival secondary AGRE data sets to 

describe the exposure-timing relationship between pregnancy traits (maternal smoke 

exposure and diet during pregnancy and lactation) and ASD outcome as mediated by 

preconception parental age, maternal health, and obstetric complications, and as 

confounded by neonatal traits. I aimed to contribute to the limited body of research on the 

hierarchical relationship of temporal factors, shared familial environmental risks, unique 

exposures and risk factors, and infant gender to the risk of ASD. Pregnancy factors 

theorized to represent preconception health and placental transfer mechanisms were 

assumed to be the main effect risk factors affecting ASD offspring.   

    Research Questions and Hypotheses 

The research questions addressed exposure-timing relationships of pregnancy and 

ASD outcome and ASD gender differential, as adjusted for hypothesized confounding 

neonatal factors and covariates of preconception risk. Based on the independent variables 

of maternal smoke exposure and multivitamin use, lactation, and gender and their 

combination, subhypotheses were proposed. Covariate preconception factors and 

confounding infant traits were analyzed independently to inform the relationship to ASD 

and ASD gender risk. 

The initial research questions addressed the following: What is the exposure-

timing relationship between pregnancy factors and ASD outcome within the AGRE 

cohort? Secondly, the question of whether the relationship of pregnancy factors to ASD 
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outcome is confounded by neonatal traits was explored. The third series of questions 

tested whether  preconception factors are effect modifiers of the relationship of 

pregnancy factors and ASD.  

The framework for the study was presented in Figure 2. Archived data 

discrepancies, variable definitions, and coding will be described in this chapter. Data 

access, data collection, and record collation from various AGRE databases also will be 

explained. Data transformations, statistical univariate and bivariate analysis, and 

comparative results with other AGRE cohort studies are included. Statistical power 

analysis will be discussed with regard to feasibility of regression analysis. Proportional 

differences and odds ratio analysis is also detailed. 

    Data Collection 

Access to the AGRE phenotypic data registry was obtained and copies of individual files 

("Affected Child, Unaffected Sib, Mother History, Father History, Metals and Mothers") 

were downloaded as Microsoft Excel files. Fragile X database (revision 030409 with 

1139 records), ADOS-G, Module 2 (2000 and earlier, with 588 records), and ADIR 

(2004b version with 3718 records) were used to cross-check columns in "Affected Child" 

and "Unaffected Sib" databases. An overview of AGRE survey instruments and 

associated record counts is shown in Figure 3. Raw Affected Child records (n = 732) 

were inspected and case exclusion criteria for Fragile X, Cystic fibrosis, Down’s 

syndrome, and Wescler’s Intelligence Quotient score less than 70 were applied, resulting 

in the exclusion of 20 records. The Affected Child file included offspring from 350 

families or AU-family codes and  included 16 control (ADIR = 0) families with 37 child 
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records (27 boys, 10 girls). Unaffected Sib records (n = 194) were inspected for exclusion 

criteria, and two records were excluded due to inability to test for ADIR.  After merging 

the Affected Child and Unaffected Sib files, there were 606 ASD cases, as defined by  

ADIR score of 1 (477 males, 129 females) and 296 controls (ADIR = 0).  

Mother  History

362 records

Father  History

345 records

Affected Child File

With  Child and

AU-Family code

739 records

Unaffected Sib File 

With Child and 

AU-Family Code

192 records20 Exclusions

Collated Source File by

Child and Family Code

902 records

Affected Child File

With  Child codes

719 records  with

106 control   Sibs

2 Exclusions

 
 
Figure 3.   AGRE databases, survey instruments, and record counts.   

 

The AGRE control group had 132 females and 164 male offspring.  Records for 

Unaffected Sib and other nonfamilial controls were often incomplete for the a priori 

predictor variables when orginally obtained. 

Separate survey instruments reflecting maternal and paternal health history  

("Mother History" and "Father History") were recorded at a similar enrollment period as 

the survey responses for Affected Child and Unaffected Sib surveys. Parental history file 

records were not specifically coded to an enrolled child record, but the affected child 

identifier could be deduced from the family code and age of parent at AGRE enrollment. 

Maternal and paternal history responses on "prior" and "ever" smoking practice were 
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used to cross-check maternal preconception risk and smoke exposure responses recorded 

in the Affected Child data file.     

Survey instruments had redundant or repeated questions regarding lactation 

duration, maternal smoke exposure, and maternal preconception and obstetric risk 

factors. In these instances, supporting databases, such as "Metals and Mothers," were 

used to test consistency of Affected Child records or supplement the Affected Child and 

Unaffected Sib child records. Lactation practice and duration data were supplemented for 

12 control records by cross-referencing data included in the Metals and Mothers dataset, 

which included lactation data. 

Discrepancies from the originally proposed data plan included ASD outcome 

definition criteria, at least 40% of records missing maternal variable values, and proxy 

survey items related to temporality and specificity of exposure of hypothesized main 

effect variables  (i.e., "prior, ever, current" smoking and  "any" or "dedicated" lactation) 

are described in this section. Baseline descriptive traits of the AGRE sample are also 

described in this section. Internal data consistency, data recoding, data transformation, 

treatment of missing values, tests of normal or nonparametric distributions, univariate 

analysis, and covariate adjustments are also described. 

Data Discrepancies and Proxy Variables   

 Case definition. The AGRE case definition of ASD within the Affected Child file 

was considered ASD “affected” for records in which either an ADIR (Autism Diagnostic 

Interview-Revised) or ADOS (Autism Diagnostic Observed Schedule) score was greater 

than 0 (Western Psychological Services, 2010). ADOS Module data were available for 
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Modules 1, 2, and 3 for young children, aged less than 12 years and verbal fluency for 

children older than 16 years, respectively (Western Psychological Services, 2010). Only 

30% of Affected Child and Unaffected Sib records contained both ADOS-3 and ADIR 

scores. Among those  records, 20 records were ADOS positive with ADIR scores of 0. 

Nine records were ADIR positive with ADOS score of 0. Because more than 70% of 

Affected Child records had no ADOS-3 score value, only ADIR criteria were used as 

case criteria. No Affected Child records had missing ADIR data. File matching with 

ADOS-G Module 1 database did not resolve the issue and contributed no additional 

records with the variables of interest in this study. ADIR scores of 0 (control or 

unaffected sibling) and ADIR score of 1 (ASD case positive) were used as the outcome 

variable in all statistical analysis of ASD status. 

 Exposure parameters. Variable definitions were largely available as proposed, 

but temporality and specificity of exposures were clarified during data coding and 

manipulation to closely approximate a priori variable definitions and align with the 

conceptual framework. Clarification of temporality of smoking frequency and lactation 

duration required recoding to binary responses to exclude overlapping exposure periods 

for questions in the Affected Child and parent history ("Mother History", "Father 

History") survey questionnaires. Figure 4 depicts temporal response data and coding used 

for smoking and lactation behavior to establish narrowed definitions of  prior 

(preconception or pregnancy) maternal direct inhalation smoking reported in parent 

history questionnaire, and dedicated lactation practice (not including casual breastfeeding 

or complimentary breast and bottle feeding). 
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 Maternal smoking was characterized by the responses to prior to enrollment 

maternal smoking behavior as reported by the mother or father in the Mother History or 

Father History survey instruments. Prior smoking was further refined to distinguish Prior 

Mother, Prior Father, or Prior Both (Parent) smoking exposure type. Maternal smoking 

data were further analyzed for prior direct smoke inhalation by mother versus father. In 

the case of twins or multiple births within the same pregnancy, maternal smoking 

behavior exposure was assumed to be similar for all births within the single pregnancy. 

Supplemental information on "ever" 

Mother

Parental Smoking

(cigarettes/day)

Prior Mom

Prior  Both         

Prior  Dad

Mother H is tory 

Questionnaire

Mother Prior 
Smoking

Father Prior 
Smoking

Mother 
Current 

Smoking

Father 
Current 

Smoking

Father H is tory 

Questionnaire

Mother Prior 
Smoking

Father Prior 
Smoking

Mother 
Current 

Smoking

Father 
Current 

Smoking

Affected Child 

Questionnaire

M o th e r Eve r 
Smo ke d ?

Fe e d in g 
Di fficu l ty?

Affected Child 

Questionnaire

Bre astfe d
On ly

B o ttle  On ly

B o th  (b re ast 
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Du ratio n - an y 
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b re astfe e d in g

Dedicated 
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Direct  

Inhalation 

Maternal 
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Figure 4.  Variable definition and recoding of data for smoking and lactation questions. 
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smoked was available from the Affected Child database but was not used as a primary 

data source for direct smoke inhalation measures of maternal smoking. Smoking 

frequency was recoded from continual, open-text response values to three a priori ranked 

categorical values. As the resulting categories exhibited multiple modalities, the three 

categories were expanded to five categories. 

 Maternal diet factors included data responses to items on the Affected Child 

database survey instrument for multivitamin use before or during pregnancy as the 

primary data source. Responses were inspected for completeness and validity with regard 

to a separate survey question about over the counter medicinal use by the mother before 

or during pregnancy recorded in the Affected Child database survey instrument. Very 

limited amount of data were available on fresh fish intake as indicated in the Metals and 

Mothers survey instrument. This database provided only supplemental information for a 

very limited number of records within the AGRE sample, and the data were collected 

approximately 10 years after child AGRE enrollment. Response values were retained as 

binary data for multivitamin use and fish intake. 

 Lactation questions within the Affected Child database survey questionnaire 

recorded responses to any lactation, combined breast and bottle feeding behavior, and 

dedicated lactation practice. Responses were checked for internal consistency and 

breastfeeding practice was redefined to quantify only dedicated and nondedicated 

lactation practice duration. Durations were reported as open-text field variable responses, 

typically in units of months. 
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Lactation data were checked against responses in the Metals and Mother survey 

instrument. Lactation data were recorded as similar for multiple birth pregnancies unless 

otherwise indicated by responses to questions in Affected Child or Unaffected Sib 

surveys. Lactation duration was recoded from open-text response values to four a priori 

ranked ordinal categories. Since the coded lactation data showed multiple modalities, the 

categorical data for lactation duration was expanded to five more representative ranked 

categorical values.  

Parental age was recorded in the Affected Child database as the age of mother or 

father at AGRE enrollment. When parental age was missing or blank in the Affected 

Child database, it was obtained from the Unaffected Sib database by deduction of other 

childrens' ages. Parental age was analyzed as a continuous variable and analyzed after log 

transformation. 

Preconception risk factors were previously defined for this study to include pre-

existing diabetes, high blood pressure, anemia, albuminurea, and low vitamin 

B/folate/neural tube risk. Preconception risk factors were recorded in response to survey 

questions asked within the Affected Child and Unaffected Sib databases. These values 

were cross-checked with Mother  History records, but the responses for Affected Child 

instrument were the primary data source. AGRE responses for maternal triple screen test 

were used as a proxy variable for exclusion criteria for Down's syndrome, risk of spina 

bifida, or low vitamin B/folate in instances where these diagnoses were recorded to be the 

outcome of triple screen abnormality. Total preconception risk was tallied for binary 

responses to the above five preconception risk factors. Preconception risk score was 
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assumed to be similar for multiple fetuses (twins, triplets) unless otherwise indicated by 

comments in the AGRE databases. 

 Obstetric complications were previously defined as preeclampsia and 

hyperbilirubin or jaundice by self-report within the Affected Child instrument. Binary 

responses for survey questions for these risk factors were obtained as proposed and 

required no adjustment or recoding. Obstetric risk was tallied for binary responses to the 

aforementioned risk factors. Obstetric risk factors were assumed to be child specific and 

not similar among multiple births. 

 Proposed covariates of infant breathing and sleeping disorders were defined by 

proxy variables. Respiratory distress and resuscitation at delivery were retained as 

separate variables. Due to the conceptual framework based on SIDS or hypoxia related 

risks associated with ASD, infant (0-11 month) breathing traits obtained from Affected 

Child and Unaffected Sib instruments were used as primary data source variables. Data 

for infant respiratory distress at birth and infant resuscitation at delivery by parental self-

report recorded as binary responses in the Affected Child and Unaffected Sib survey 

questionnaire items were analyzed posthoc. Infant respiratory distress and resuscitation 

was not assumed to be similar among multiple births. Responses for infant traits were 

retained a priori and analyzed as binary response variables. 

Maternal smoke exposure. Parental report of smoking prevalence within 

"Mother History" and "Father History" files were used as the primary data source for 

several reasons. These reasons included specific temporality, discrimination of prior/ 

maternal smoking behavior from indirect maternal smoke exposure, and more descriptive 
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responses from parental history records. Smoke exposure temporality and open-text 

responses for smoke frequency required recoding. However, there was good agreement 

for nonsmoking prevalence by questionnaire. 

“Current” and “prior” smoking behavior questions were asked in the parental 

survey instruments at date of AGRE enrollment, typically when the affected child 

average age was approximately nine years old (see Figure 4). Parental history comments 

about “prior” smoking often referred to tobacco smoking, during teenage or college 

years, or prior to the affected birth. “Prior maternal smoke exposed” was defined as prior 

tobacco use by the mother or both parents. For the Affected Child survey instrument, the 

question was phrased broadly as "ever" exposed for "maternal exposure to smoke". 

Approximately 52-54% of parents reported no prior smoking behavior among cases and 

controls. Response prevalence for non-smoking was similar regardless of survey 

instrument (i.e. Mother History, Father History or Affected Child surveys). 

Smoke behavior (binary data) tended to be more frequently reported, and smoking 

frequency (packs of cigarettes per day or week) responses were more frequently reported 

in each of the separate parental history files as compared to the Affected Child file (see 

Figure 5). Smoke frequency was recoded from raw units of packs per day or week, to 

cigarettes per day, with an assumption of 20 cigarettes per pack. The definition of 

smoking “like a chimney” was assumed to be equivalent to two packs per day, and 

“occasional” or “moderate” smoking was assumed to be five cigarettes per day 

(American Cancer Society, 2014). “Socially” smoking was assumed to be an estimated 

two cigarettes per day (American Lung Association, 2014).   
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Data were retained separately for maternal and paternal smoke behavior (binary 

variable), and smoke frequency for "current", or "prior" smoking behavior(s) for each 

parent; and for "ever" smoking was retained for each child record. Table 5 shows the raw 

data smoke responses by survey form. The Affected Child questionnaire data results may 

suggest under-reporting of smoke frequency (only 32 quantified exposure responses) 

relative to the reported quantified smoke frequencies reported in Mother History, and 

Father History files (86 and 112 prior smoke frequency data points, respectively). 

Therefore, 198 of 271 parents provided quantified smoke frequency results when asked 

about smoking behavior in the parental survey questionnaires, but only 32 reported  

quantified smoke frequency information when asked about smoking behavior in the 

Affected Child survey at enrollment. Self-reported smoking data were more robust within 

parental history files and justified the use of these databases as the primary data source. 

Smoking prevalence, temporality, and frequency information was available for 

over ninety-five percent of parents of case records, but was available for only half of 

parents of control records.  The lack of information among control records was likely 

associated with the fact that smoking behavior was not asked as part of the Unaffected 

Sib survey instrument.   
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Table 5  
 
 AGRE Surveys, Data Records and Coded Smoke Frequency and Means 

Questionnaire   
Affected Child  
survey results Mother History (MH1) with matched Father History (FH1) data  

 Smoke exposure 
temporality 

 
Maternal PRIOR  

   
                  Maternal PRIOR                   Maternal CURRENT 

MH1 File FH1 File MH1 File          FH1 File 
Number of 
Records 712               362 345  

       
 362                 345 

Family Codes 350 families                           350 pooled family codes                  350 pooled family codes 

Percent  Admitted 
Smokers 38.20% 

 N= 
712  

                    18.5% of 712  
                     child records 

            43% of 712  
           child records 

----  148 families had Prior AND Current  smoked ------- 

----   130 families had Prior maternal smoke exposure -- 

------  47 families had Prior OR Current smoked ---------- 

330 moms of Affected children  had "Ever" smoke data 

MH1 File FH1 File MH1 File       FH1 File 
Smoke Frequency for  
records,  n  n =32 

N=  
271                    86       112 39   55 

Aggregate Smoke Frequency  
(cigarettes/day) 

Mean 
 (S.D) 

12.6 
(7.8) 

         17.7  
        (14.1) 

   6.9 
(8.3) 

12.8  
(11.3) 

Median 5            10          20  10  20 
Note.  Data manipulation: CODED Prior Smoke Exposure defined as Mean of MH1 and FH1 PRIOR smoke per record 
CODED Ever Smoke Exposure  defined  as  Mean of  MH1 and  FH1 PRIOR  AND CURRENT exposure per record 

 

 A comparison of the "ever" and "prior" smoke frequency responses, by 

survey instrument is shown in Figure 5. The data reflected multimodalities. The overall 

average reported smoking frequency in Affected Child survey instrument was 7.5 

cigarettes/day, with a median value of 5 cigarettes/day.  Within the Mother's History file, 

the average and median reported "prior" smoke frequency was 12.6  and 10 cigarettes per 

day, respectively. Within the Father History file, the average and median "prior" smoke 

frequency was 17.7 and 20 cigarettes/day (see Figure 5). Fathers tended to report higher 

maternal smoking frequencies than mothers or responders to the Affected Child survey.  
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Parental history records were more complete than Affected Child frequency data, and 

allowed cross-checking of exposure parameters with other datasets, and provided the 

temporality of preconception risk that best fit the study's conceptual framework.  

 

 
 
Figure 5.  Average daily smoke frequency by AGRE questionnaire (cigarettes/day). 
Percent of 32 "ever",  86 maternal, and 112 paternal "prior"  smoke record results 

 

Maternal prior smoke frequency was not missing in case records, but was missing 

for 62 of 161 mothers in the control group who reported prior direct smoking behavior. 

Thus prior parental smoking responses were collected for 82.6% of the sample, but only 

73.3% of records had quantified smoke exposure frequency values associated with the 

prior smoking behavior.While not a key study variable, the quantified responses for 

"ever" was subsequently coded to reflect the average value of "current" and "prior" 

frequency as recorded in the Mother History or Father History file (see Table 5).  

Maternal ever smoking frequency were missing for 27 of 606 case records, and missing 

for 196 of 296 controls. Analysis for ever smoked frequency was not a study focus. 
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Comparative distributions for Affected Child, Mother and father History survey 

responses for maternal smoke exposure are shown in Figure 5 and show wide 

discrepancies. This variablility may be related to the question wording of "current" and 

"prior", response scale ambiguity (open-text fields), history and maturation bias, and/or 

recoding misclassification. 

The parent identifier code was retained to conduct additional analysis for mother 

direct inhalation (prior maternal) behavior or indirect smoke exposure (father only 

smoking). The final, more restricted definition of “maternal prior smoke exposed” for this 

study excluded prior father-only smoke exposure, since the proposed relationship was 

based on directly attributable placental transfer mechanisms. A maternal direct exposure 

definitional criteria was imposed in an attempt to minimize statistical type I error rate. 

Figures 6 and 7 illustrate the maternal smoke exposure frequency distributions for 

mothers who were previously exposed to smoke (prior smoking by mother, or both 

parents), or ever exposed to smoke exposure. Overall, prior smoke exposure profiles 

tended toward higher non-parametric mean and median values than ever smoke exposure 

smoke frequencies (cigarettes per day). No distribution had outlier values above the range 

of (Quartile 3 plus 1.5 times the interquartile range) by gender or ADIR status; but all 

distributions were multimodal. 

 Graphs in this section illustrate maternal smoke behavior and exposure frequency 

based on a standardized distribution of percent of the sample by ADIR  status. The 

duration scale is not linear in Figures 4 and 5, but reflected natural clusters in the data 

responses for the open-text response field. Parents commonly responded in terms of 
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fractions of cigarette packs which may reflect why raw data responses appeared to cluster 

by interval. Standardized coding of "social smoking", "a few", "moderate" may also have 

contributed to the apparent clustering of smoking frequency values. Analysis of smoke 

frequency was summarized by ordinal categories. 

 

 

Figure 6. Maternal prior direct smoke exposure in cigarettes per day  (n= 681;   
99 controls, 582 cases.  Non-smokers: 53% controls, 54% cases) 
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Figure 7.  Maternal ever smoke exposure frequency in cigarettes per day                  
(n=679; 100 controls, 579 cases.  Non-smokers: 53% controls, 54% cases ) 

 

Nonparametric smoke frequencies distributions were inspected to test the a priori 

assumptions for categorical treatment for smoke exposure (none, < 10  or > 10 cigarettes 

per day).   Data in Table 6 shows the distribution of maternal prior smoke exposure and 

maternal ever smoke exposure frequency for the entire sample. The results showed 

maternal prior direct smoke frequency had higher mean/medians than the ever smoked 

distributions. Table 6 results also suggest the a priori assumptions regarding categorical 

treatment of maternal smoke exposure may need to be more refined to distinguish effects 

of maternal smoke exposure for average frequencies beyond 10 cigarettes per day. No 

values were deemed statistically extreme.  
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 Table 6 

 Maternal Smoke Exposure Frequency in the AGRE Cohort               

Cigarettes/day  Less than five  Five to ten  Ten to twenty Twenty or more 
Ever smoke, %     9.7  37.8  41.4 11.1 
Prior smoke, % 1.3 34.2 43.7 20.8 
     
Note.  Sample size for Ever exposure was 679.  Sample size for Prior direct exposure was 681.  
Nonsmokers represented 53-54% of the AGRE samples as shown in Figures 6 and 7. 

 

Maternal vitamin use. Prenatal vitamin use data were obtained primarily from 

Affected Child responses. Limited data on fresh fish maternal intake was obtained from 

Metals and Mother survey responses. Prenatal vitamin use information was widely 

available whereas prenatal fresh fish intake was less than 4% complete. Questions about 

prenatal multivitamin use were asked during AGRE enrollment, whereas the subsample 

data of the AGRE cohort used to collect maternal fish consumption before and during 

lactation (Metals and Mother survey) was collected approximately eight to ten years later 

(in 2010 - 2011) using an overlapping but different sampling frame that that used for 

Affected Child and Unaffected Sib survey instruments. Therefore, the information 

available for prenatal fresh fish intake was found to be non-representative and was not 

used in subsequent statistical analysis. 

The AGRE data records collected at enrollment of Affected Child recorded 

maternal vitamin use by trimester, over multiple trimesters or “all of the above” duration 

periods.  The multivitamin duration value was missing in 54% of Affected Child records, 

but for recorded durations, the “all” periods was the most frequent response. 

Multivitamin use at any time was coded as a positive binary response. Less than five 
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percent of the sample had missing responses for prenatal vitamin use coded in this binary 

way, and maternal vitamin use was missing in only 6.4%  of control records. Dietary 

supplement use was asked as a separate open-text question in the Affected Child 

questionnaire. If the parent reported maternal multivitamin use to that question, the data 

was used as validation or complimentary information to the primary survey question 

about "multivitamin use". This protocol was used if the data file showed maternal 

supplementation was recorded in the comment section for the dietary supplement 

question. It was recorded for six records as a positive multivitamin use response. Prenatal 

maternal vitamin use data (yes/no) for 227 control and 606 case records were retained for 

regression analysis.  

Lactation factors. Lactation questions included survey items coded for binary 

responses about feeding practice, a non-mutually exclusive response to a question about 

breast, bottle feeding or complimentary breast and bottle feeding, and questions about the 

duration of coded "any" level of lactation as well as "dedicated" lactation duration; each 

as separate survey questions. Duration of  "any" lactation included responses for 

breastfed-only infants, mothers who used both breast and bottle feeding practice, and 

mothers who may have attempted or initiated lactation but transitioned to bottle feeding 

only. Feeding behavior variable or lactation practice was originally defined and recorded 

within AGRE data sets as “breastfed, bottle fed, or both” with less than 0.5% of case 

records missing values for lactation practice, but was missing in 151 of  296 control 

records. In instances of conflicting data on lactation practice, the primary data source was 

the Affected Child file response information, including open-text field comments in the 



205 

 

survey. After cross checking with lactation duration survey responses and converting the 

responses to the binary code to define a "dedicated" or nondedicated lactation practice, 

296 controls and 606 cases had information on dedication to lactation practice.    

Among all cases "bottle only" was reported for 24%  and "breast only" response 

was reported to be 56%. For control records, "bottle only" feeding practice was reported 

to be 30% whereas "breast only" was reported for 40% of mothers. The coded definition 

of  "dedicated lactation" extracted from all survey instruments was less restrictive than 

the WHO definition of exclusive breastfeeding which is defined as: 

no other food or drink, not even water, except breast milk (including milk 

expressed or from a wet nurse) for 6 months of life, but allows the infant to 

receive ORS, drops and syrups (vitamins, minerals and medicines). (WHO, 2001)   

Maternal AGRE self-reported lactation practice questions were in reference to bottle-fed 

infant formula, breastfed only, or both without consideration of other infant dietary 

offering or intakes. 

Duration of lactation was recorded for "dedicated " or "any" periods, using open-

text AGRE response fields. Therefore, 602 cases and 158 controls had information on 

lactation duration. Quantifiable lactation durations were asked as separate questions that 

could be related to lactation initiation, lactation duration, bottle feeding, or both breast 

and bottle feeding practice. Lactation capacity, use of weaning foods, or other beverages 

was not addressed. 

Lactation was recoded as “dedicated lactation" for “breast only” responses to the 

question of infant feeding practice for the variable labeled “breast_bottle_feed”. 
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Lactation  practice, degree of dedication, and duration by child record were tested for 

internal consistency and recoded if non-zero value lactation duration was recorded (in 

months) or self-report comments included “breast” or “bottle fed” comments within 

Metals and Mothers survey. The recoding and cross-checking resulted in 602 cases and 

151 controls having complete information for dedicated lactation practice, and dedicated 

lactation duration (in months).  

Overall, "any" lactation durations recorded for 744 records, skewed toward higher 

non-parametric values than "dedicated" lactation duration in months for 739 records. 

None of the combinations of any or dedicated lactation distributions had outlier values 

above the extreme range (Quartile 3 plus 1.5 times the interquartile range) by gender or 

case/control status.  All reported lactation duration distributions (any and dedicated) were 

multimodal.  

 For mothers who reported dedicated laction (n=402), the separate survey 

questions about any duration of lactation and dedicated lactation duration were redundant 

and were expected to provide similar results. A comparison by subgroup over 18 duration 

intervals showed an overall difference of 0.6 months for any lactation duration compared 

to dedicated lactation for mothers who breastfed only. This difference showed a random 

variation within the same 18 duration intervals used in Figure 8. Random variation was 

also shown between genders, cases and controls. Thus, the mean duration for each child 

record was used in instances when mothers reported no bottle use during lactation for 

both any and dedicated lactation practice. Data were graphed as percentages to better 

illustrate the distribution and duration ranges. 
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Figure 8. Any lactation duration distributions for AGRE sample (months)                  
(n=744; 138 controls, 606 cases. Bottle-fed: 30 % of controls, 24% cases) 

 
 
The profiles represent lactation duration among mothers of all 606 cases and 138 

controls (of  296 control records); and reflect data for 574 males and 170 females. The 

duration scale is not linear beyond twelve months duration but reflected natural clusters 

in the raw data responses for the open-text field of continuous response scale. It is 

possible that mothers reported lactation duration in terms of fractions of years (and 

specific temporal periods such as six-weeks maternity leave) which may reflect why raw 

data responses appeared to cluster by interval.  

A narrowed definition of dedicated lactation was proposed a priori and the binary 

coded data is shown in Figure 9; these data were available for 332 cases and 70 controls 

(317 males and 85 females). The data showed naturally clustered, nonlinear intervals of  
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dedicated lactation practice, similar to the interval categories seen in Figure 8 for the 

"any" lactation variable.  

 

 

Figure 9.  Dedicated lactation duration (months) (n=402; 332 cases, 70 controls.) 
 
 
Based on their non-normal distributions, both lactation duration variables (any 

and dedicated) were re-coded into ranked ordinal categories. The distributions were then 

inspected to test the a priori assumptions for categorical treatment of lactation duration 

(none, less than 2 months, 2-6 months, and greater than 6 months). Results in Table 7 

indicate the a priori assumptions regarding categorical treatment of lactation duration 

may need to be more refined to distinguish effects of lactation durations beyond 6 

months. Since none of the dedicated  lactation durations were statistically extreme (i.e. 
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higher than the value of  quartile 3 plus 1.5 times the interquartile range), all values used 

to create Table 7 were retained for analysis. 

Table 7 

Distribution of Lactation Duration in the AGRE Sample                 

Feeding practice 
and duration (months) 
 

 
Two or less  

  
Two to six 

  
     Six to  
     twelve 

  
  Twelve or  
      more 

Any lactation, % 
         n = 744  

 
13.9 

 
26.9 

 
41.8 

 
17.4 

Dedicated lactation, %  
         n = 402 

17.2 29.6 28.0 25.2 

Note.  Any lactation mean was 6.4 months. Dedicated lactation mean was 4.6 months. 
 

Parental age.  Parental age was recorded in the affected child database as the age 

of mother or father at the time of AGRE enrollment. When parental age was missing or 

blank in the Affected Child database, it was obtained from the Unaffected Sib database. 

A similar method was used by previous AGRE researchers (Annello et al., 2009) for 393 

matched sibling pairs. Paternal age was missing for 4 of 296 control records, and no ASD 

case records (n = 606).  Maternal age at parturition was not missing in any child records. 

 Maternal age was skewed above the mean values as shown in Figure 10 (mean= 

31.3 years, SD= 6.8).  Paternal age distribution was also skewed positively above the 

mean value and on average was higher than mean maternal age (mean= 33.6 years,  SD= 

8.3). Log transformation improved  normality of the parental age distributions for the full 

cohort  but subsequently such transformation did not affect regression analysis (data 

shown in Chapter 5). 
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Figure 10. Box plots of maternal age at parturition by gender for all birth types      

 
Preconception risk factors.  Preconception risk factors were previously defined 

for this study to include preexisting diabetes, high blood pressure, anemia, albuminurea, 

and low vitamin B/folate/neural tube risk. Preconception risk factors were cross-checked 

using Maternal History records. The survey questions for most of these risk factors were 

available as originally proposed and requested from AGRE databases. Therefore minimal 

recoding was necessary for preexisting diabetes, high blood pressure, anemia, and 

albuminurea. Separate AGRE survey question data was not available for low vitamin 

B/folate/neural tube risk, but the data results for maternal triple screen test, which tested 

for alpha-fetoprotein (AFP), human chorionic gonadotropin (hCG), and estriol (uE3) 

were available in the affected child database. This triple marker tests is a prenatal screen 

typically done at 15 to 20 weeks gestation to test for birth defects including Down’s 

syndrome, spina bifida, and anencephaly (American Pregnancy Association, 2006). 

Therefore, AGRE responses for maternal triple screen test were used as a proxy variable 
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for exclusion criteria for Down's syndrome,  risk of spina bifida or low vitamin B/folate 

in instances where these diagnoses were recorded to be the outcome of triple screen tests.  

Within the AGRE case records, binary values for “maternal triple screen test?” 

had no missing values. The follow-up question on whether the triple screen test result 

was abnormal for ASD cases also had no missing values. Therefore, abnormal triple 

screen was a proxy variable for low vitamin B/folate, and albuminurea if noted in the 

record. Among controls, binary values for "maternal triple screen test" and the follow-up 

question on triple screen abnormality were missing for 65% (192 of 296) controls 

records. Among controls, excluding missing values, 36.5% were triple screen tested and 

1% of records indicated abnormal triple screen tests. Among cases, 41.3% were triple 

screen tested and 2.6% indicated abnormal triple screen results.  

The most common comments for abnormal triple screen test (38 of 62 open-text-

field comments) mentioned kidney or albuminurea diagnosis. In these instances, if 

albuminurea was not indicated elsewhere in the record, an abnormal triple screen was 

used to indicate either albuminurea or low folate as a (one) positive response to the  

preconception risk factor index. Abnormal fetal testing results were presumed to indicate 

a positive preconception risk response, regardless of amniocentesis status, as less than 

one third of abnormal triple screens were reportedly followed up with amniocentesis 

testing. Diabetes and anemia were rarely reported. 

Crosstab descriptive frequencies indicated 78% of mothers had a score of  "0",  

16%  had a preconception risk score of  "1" and 6% had an overall preconception risk 

score of "2 "or " 3". Crosstab statistics by ADIR status indicated total maternal 
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preconception risk scores had fewer than five counts for the highest rank score category, 

so the preconception risk scale categories were recoded and collapsed to reflect an ranked 

ordinal score of  "0, 1, or > 1" (data not shown). 

 Obstetric risk factors. Obstetric complications were previously defined as 

preeclampsia and hyperbilirubin or jaundice by self-report. AGRE binary survey 

questions for these risk factors were obtained as proposed, and required no adjustment or 

recoding. Obstetric complication values for  case records had less than 2% missing values 

whereas control records had 65% (192 of 296) missing values for preeclampsia and 

jaundice. The 192 control records also lacked data for other obstetric risk factors.  Final 

record counts by gender and case/control status for obstetric variables were 104 controls, 

606 cases, and 558 males, 152 females. Preeclampsia and jaundice prevalence for the 

sample was 3% and 32%, respectively for the entire sample of 902 records. 

Crosstab descriptive frequencies indicated 63% of mothers had a total obstetric 

risk score of  "0", 35% had an obstetric risk score of  "1", and 2% had an obstetric risk 

score of  "2 ". Crosstab statistics by ADIR status indicated total obstetric risk scores had 

fewer than 5 counts for the highest rank score category, so the obstetric risk scale 

categories were collapsed to reflect a binary responses of "0" or " > 1" (data not shown). 

 Confounding factors. Infant breathing and sleeping patterns were presumed to be 

confounders, which may represent underlying congenital heart defects, asthma, allergies, 

symptoms of psychotherapy medication, comorbid mental health conditions, or ear 

infections (Hartshorne et al., 2009). These factors were hypothesized to be confounder 

variables in the relationship to ASD as shown in Figure 2.  
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 Similar or overlapping risk factor and biochemical disregulation mechanisms 

were documented for SIDS and ASD (Habek & Kovacevic, 2011; Kinney & Thatch, 

2009). Low birth weight, smoke exposure or parental smoking, apnea, previous episodes 

of interrupted breathing, and hypoxia are SIDS risk factors (American Academy of 

Pediatrics, 2011; Goldwater, 2011; Van Norstrand & Ackerman, 2010). SIDS-related risk 

factors appear to more adversely affect male infants than female infants independent of 

race/ethnicity (Kinney & Thatch, 2009). Burstyn et al. (2011) reported an excess risk of 

autism among males (O.R. 1.0 to 1.6) who were hypoxic at birth for premature and full-

term infants diagnosed with fetal hypoxia. Thus infant gender may be an effect modifier 

as initially proposed in Figure 2.  

Analysis was conducted on infant respiratory distress at birth and infant 

resuscitation at delivery by parental self-report for "Affected Child" and" Unaffected Sib" 

records. Infant respiratory distress at birth was reported as a binary variable with less than 

2.5% missing (n=23) values. Resuscitation data were available as binary variable with 

less than 6.3% missing (n=27) values. These variables were compared by gender for all 

birth types (children of singleton births or multiple birth events). Data was also available 

for these values for 771 singleton births (233 girls, 538 boys). Child gender did not 

significantly affect resuscitation required during delivery, but results showed a trend (p= 

0.15) toward  higher risk of respiratory distress at delivery for male infants. Multiple birth 

deliveries were associated with significantly higher risk of both respiratory distress and 

resuscitation required during delivery (p = 0.01). Multiple births reflected 14.5% of 

records; it was more frequent (13%) in nonfamilial than sib controls (9%).  
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In summary, the final merged AGRE data sets used ADIR case criteria for autism, 

and maternal smoke exposure parameters were recoded for temporality (prior, current, or 

ever) and for direct maternal smoke exposure which was assumed to accurately reflect 

placental transfer mechanisms proposed in the study framework. Lactation data was 

recoded to distinguish dedicated and casual lactation from bottle feeding, with the 

realization that AGRE surveys did not account for other infant beverages or foods, 

lactation competency or efficacy, or reflect the definition of exclusive breastfeeding 

established by WHO (WHO, 2001). Quantified maternal prior direct smoking and 

lactation frequencies showed multimodal distributions. Therefore, the a priori ordinal 

categorical response scales were used to recode smoke frequency and lactation duration 

variables. Maternal fish intake data was largely unavailable, and maternal multivitamin 

use was missing in approximately 40% of the data records. Parental age at first child 

birth, a priori preconception risk factors were used (including maternal triple screen 

results that explicitly referred to low maternal folate status), as were proposed obstetric 

complications (preeclampsia and jaundice delivery). Infant respiratory distress and 

resuscitation at birth variables were used as proposed confounders for infant breathing 

variables. These variables were used for cases and controls. Controls reflected familial 

and nonfamilial child records. 

AGRE Sample and Target Populations 

Case criteria. The data sample used in this study includes 712 case records for 

children diagnosed with ASD as defined by ADOS and/or ADIR criteria. The original 

proposal intended to define positive ASD case diagnosis as ADOS score above a standard 
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cutoff value and ADIR cutoff value (Norris et al., 2012; Zerbo et al., 2013). However, 

based on the number of missing ADOS-3 scores, the operational definition of an ASD 

case child was revised to reflect only positive ADIR scores. This was considered an 

acceptable revision because ADIR is considered a more strict ASD criteria (Martin & 

Horriat, 2012). The use of ADOS-1 (three word, spontaneous meaningful phrase speech 

criteria) ASD diagnosis did not improve data  completeness, outcome diagnosis validity, 

or increase statistical power of the study.   

The AGRE target population database was used to compare outcome (ASD) 

metrics for child records in the Affected Child (n = 719) and Unaffected Sib (n = 190) 

databases after exclusions. These outcome populations were shown previously to be 

statistically valid and accurate based on comparison with the Simons Foundation and 

Boston Autism Consortium registries (Wall, Dally, Luyster, Jung, &  DeLuca 2012). 

These researchers showed 7 of 93 ADIR survey items could predict ASD case diagnosis 

with 99% statistical accuracy using an AGRE sample of records from the affected and 

unaffected databases (n = 966).  

The ratio of affected boys to girls in the entire AGRE genetic biobank repository 

is 3.8:1 (Lajonchere, 2010). Within this study, after exclusions and using only ADIR 

outcome criteria for case definition, the ratio of boys to girls was 2.46:1, and even lower 

among sibling controls. Twenty records (including 15 males) had ADIR scores of zero, 

but ADOS-3 (observed behavior) was rated as case positive. Only three child records 

(two males, one female) showed ADIR and ADOS-3 scores to both be scored as zero. 

The exclusion criteria applied in this study is similar to that recommended by AGRE 
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Steering Committee (Geschwind et al., 2001) and directly aligned with the exclusion 

criteria used by previous AGRE researchers (Anello et al., 2009; Campbell et al., 

2009;Cantor et al., 2007;  Cheslack et al., 2007; Lee et al., 2008; Martin & Horriat, 2012;  

Norris et al., 2012; Wallace et al., 2008; Wang et al., 2011). 

 Controls and unaffected siblings. The small proportion of unaffected sibling 

records, and even fewer (n=37) nonfamilial "true controls" without an affected sibling in 

this study spurred interest to compare unaffected siblings to "true controls" within the 

AGRE sample population. Previous AGRE researchers reported sibling patterns which 

were affected by birth order, gravida, and parental socioeconomic factors (Lee et al., 

2008; Martin & Horriat, 2012). Since the purpose of the AGRE cohort is genetic 

research, the availability of matched controls based on preconception factors has been 

somewhat limited. Ideally, a case-control study has more than one control per case 

record.  For these reasons, it was worthwhile to compare the response distributions of 

Unaffected Sibs and "true controls" representing the reference cohort.  

 Collectively, the AGRE reference group was comprised of 106 complete control 

records and 190 partial control records as shown in Figure 3. Among the complete 

control records, 37 children, representing 16 families were identified as nonfamilial true 

controls, meaning the family code did not contain any siblings having an ADIR score of 

one within the accessed datasets. Parental ages, gravida, parity, birth type, reference child 

age, and gender were available for all AGRE reference records. As an aggregate 

reference group, the subgroup of 296 controls had a male:female ratio of 1.24 (164 males, 

132 females). Among nonfamilial true controls, the male:female ratio was 2.70:1. The 
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average gravida (number of prior pregnancies) was 2.65 among the reference group and 

2.69 for the true control group, excluding 5 blank responses. Parity or number of prior 

births who lived to at least 24 weeks averaged 2.27 for the aggregate reference group and 

averaged 1.70 for the true control group excluding four blank responses. Among the 

reference group, 13% of child records were multiple birth pregnancies. Among the 37 

true control records, only three children were multiple birth pregnancies.  

 A subgroup comparison of the proposed nine study variables is shown in Table 8 

for the complete records of  unaffected siblings and 37 nonfamilial 'true control' records.  

For vitamin use, 33% of nonfamilial control values and 20% of Unaffecting Sib records 

were missing or blank values; thus, valid percentages by sugroup of the reference cohort 

were used. Table 8 data suggests nonfamilial control group was demographically skewed 

to male offpsring, but child age and maternal smoke exposure (ever or prior temporal 

periods) were similar.   

 Nonfamilial controls were less likely to be bottle-fed only and had similar or 

longer  lactation duration depending on degree of exclusivity of lactation. Both parents 

tended to be older in the nonfamilial control subgroup, but with lower preconception and 

obstetric risk factors. Prevalence rates of infant respiratory distress and resuscitation 

required at delivery were skewed higher among nonfamilial controls compared to 

unaffected sibling controls.  
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Table 8 
 
 AGRE Reference Group  Statistics  
  
 
Variable and sample size 

 
Number  
or units 

 
Unaffected     

siblings 

(n= 259) 

 
Nonfamilial     

controls 

(n = 37) 

  
Total 

control 
group 

(n= 296) 
     
Multiple births (n=296) % 13 8 12 
Child gender ratio male: female 1.12 2.70 1.24 
Child age (n =296) mean  years 10.1 10.4 10.2 
Maternal smoke 
    Prior direct  (n=161) 
    Ever exposed (n=150) 

 
% 
% 

 
9.3 
25 

 
10 
30 

 
9.3 
25 

Prenatal vitamin use (n=227) %  42 30 40 
Bottle fed only (n=146)  % 36 14 30 
Breast fed only (n= 146) % 47 51 46 
Lactation duration (n=138) mean  months 5.9 5.0 5.7 
     Dedicated duration  (n=133) mean  months 3.9 7.3 4.2 
Maternal age at first birth (n=296) mean  years 31.0 32.8 31.0 
Paternal age at first birth  (n=293) mean  years 33.3 34.6 33.3 
     
 

Therefore, the composition of the AGRE reference cohort appeared to be a randomized, 

diverse subgroup of unaffected siblings which were skewed female, but also included a 

nonfamilial true control group which were skewed male. The overall prevalence of 

multiple birth records, lactation durations, and covariates (parental age, preconception 

risk, obstetric risks) and proposed confounding child traits (sleep traits, asthma, allergies, 

and respiratory problems) mirrored the ull AGRE sample. These results suggest the 

control group may be a suitable reference group despite a lower than ideal ratio of the 

overall number of cases to control records.  
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Data Collection Summary    

 For data manipulation and coding, several nonexclusive AGRE data sets were 

collated and merged, using redundant questions to test internal validity of parental self-

reported responses. Parental history files were the primary data source for smoke 

frequency data due to more complete records, and more specific temporality available in 

those questionnaires. Maternal fish intake data was very limited and was collected 

approximately 10 years after AGRE enrollment. Temporality of lactation and degree of 

dedication of  "breast"  versus "bottle-fed" practice, and smoking exposures were 

inspected and recoded using at least two AGRE databases. Affected Child survey 

responses were the primary data source for lactation initiation and duration, but 

consistency of responses was compared across AGRE instruments. Detailed univariate 

analysis of the control group (comprised of familial and nonfamilial controls) was 

conducted. Results for duration of lactation and maternal smoke frequency were 

converted to ranked ordinal scores to better reflect the non-parametric data as proposed. 

Proposed risk factors of parental age, prepregnancy maternal health (high blood 

pressure, diabetes, anemia, vitamin B12 deficiency, neural tube defect risk, and 

albuminurea) and indexed obstetric complications were described as potential covariates. 

Proposed confounding variables were described via proxy variables of interrupted infant 

sleep and breathing traits, with consideration by gender and birth type. Multiple birth 

deliveries were associated with higher resuscitation rates. Respiratory distress and 

resuscitation showed multicollinearity and was skewed higher among male offspring. 
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Bivariate analysis for the nine proposed variables hypothesized to be associated with 

ASD will be discussed in the next section.     

Results 

 Initial Descriptive Bivariate Analysis 

 

In this section, descriptive statistics by ADIR status are presented for all 902 child 

records. The incomplete child records were not subsequently used to address the research 

hypotheses, but are illustrated to fully charactererize the datasets. Initial analysis include 

AGRE results for birth type, maternal gravida (total number of pregnancies), and parity 

(number of pregnancies carried to at least 24 weeks gestation) which provided sample 

context. Initial descriptive statistics illustrate the lack of maternal fish intake data 

available, intrapregnancy maternal multivitamin use rates, and relative prevalence of 

specific types of obstetric and preconcpetion risk factors among the 902 records. After 

detailing cursory, initial descriptive results, the specific research questions and 

hypotheses are addressed in the subsequent section on proposed bivariate analysis results. 

 The initial AGRE demographic cohort traits are shown in Table 9 stratified by 

both case/control status and gender. Birth type and gravida was not identified a priori as 

covariates but may impact several study variables such child gender, lactation, smoking 

behavior, and infant traits. Statistically significant differences indicated in Table 9 are 

across all birth types (singleton and multiple births). Among controls, singleton births 

were 87.5% (n= 259), and singletons comprised 84.5% of cases (n=512). Among 

singleton births, gravida, including all non/spontaneous abortions, varied by ADIR status 

for all birth types (p = 0.01). For singleton births, control group mothers (n = 296) had  
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Table 9 
 
Demographic Characteristics of AGRE Cohort by Case Status and Gender   

Variable and  
sample size 

  N or  
units  

Total  
(N= 
902)  

Controls 
(n=296) 

Cases 
(n= 
606) 

Males 
(n=641) 

Females   
(n=261)   

Child age  (n=901)                     
Maternal smoke 
   Prior direct (n=767) 
   Ever exposed ( n=756)           
Prior smoke dose (n=681) 
   
Maternal prenatal vitamin 
use (n=883) 
 
Maternal weekly 
fresh fish eaten (n= 45) 
 
Lactation practice (n=902) 
Dedicated duration 
(n=402) 
Any duration  (n=763) 
Feeding difficulty (n=901) 
 
Maternal mean age 
(n=902) 
Paternal mean age (n=898) 

years 
 
%  
% 
cig/day 
 
% 
 
 
 
 
% 
mo 
mo 
% 
 
years 
years 

 9.5 
 
38 
19 
  7.1 
 
31 
 
 
  
 
 
45 
  4.6 
  6.4 
13.7 
 
31.2 
33.6 

10.2 
 
25* 
  9.3* 
  7.8 
 
40 
 
 
 
 
 
46* 
   4.2 
   5.7* 
   5.4* 
 
31.0 
33.3 

 9.1 
 
41* 
21* 
  7.1 
 
34 
 
 
 
 
 
55* 
  4.8 
  6.6* 
19.8* 
 
31.3 
33.7 

 9.3 
 
39 
19 
  6.8 
 
33 
 
 
 
 
 
48 
  4.8 
  6.5 
14.5 
 
31.1 
33.4 

 9.8 
 
36 
18 
 8.3 
 
26 
 
 
 
 
 
38 
  3.9 
  6.0 
11.9 
 
31.6 
33.9 

 Preconception  risk 
    Diabetes   (n=712) 
    Hypertension (n=711) 
    Anemia  (n=710) 
    Albuminurea+  (n=710) 
  
Obstetric risk  
    Preeclampsia  (n=710) 
    Hyperbilirubin (n=710) 
     
Infant breathing at delivery  
  Respiratory  
     distress(n=878) 
  Resuscitation   (n=874) 

 
% 
% 
% 
% 
 
 
 % 
 % 
  
 
% 
% 

 
  1.4 
   8.9 
   1.5 
   4.1 
 
 
   3.0 
 32.0 
 
 
   7.0 
   6.8 

 
  0.7 
  6.7 
  1.0 
  4.8 
 
 
  1.9 
31.7 
 
 
  6.1 
  8.8 

 
  1.5 
  9.2 
  2.0 
  4.0 
 
 
  3.1 
32.0 
 
 
  7.8 
  5.8 

 
  1.7 
  9.5 
  1.7 
  3.9 
 
 
  3.6 
32.6 
   
 
 7.8 
 6.1 

 
  0.8 
  6.5 
  1.0 
  4.6 
 
 
  0.7 
29.6 
   
 
  8.4 
  5.7 

       
Note.  Number of complete records study variables= 733 (556 males, 177 females)  
 + Abnormal triple screen comment.  
*  Significantly different by χ2 or binomial (p < 0.05). 
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2.5 previous pregnancies, 95% CI: [2.4, 2.7] and cases averaged 2.1 gravida, 95% CI 

[1.9, 2.2].  Parity, differed by gender for all birth types (p = 0.04); (data not shown).     

 Main effect variables. The first three research questions proposed a relationship 

between maternal smoke exposure, lactation, maternal diet, and fetal gender on the 

subsequent ASD diagnosis among offspring. Internal and external data prevalence is 

briefly summaried below. 

 Table 9 shows maternal ever and prior smoke exposure prevalence. Maternal 

prior direct maternal smoking prevalence was above 45% for the sample using parental 

self-report. Tong et al., (2011) reported 33% of younger parents, and 18% older parents 

reported smoking on birth records in a comparative enrollment period in the US (2004-

2008).  In this study, there were significant differences (p < 0.05) in prevalence rates for 

ever  and prior maternal exposure to smoke, among cases and controls. The AGRE 

control group reported lower (< 10%)  maternal prior smoking behavior regardless of 

child gender, as shown in Table 8 for the two subgroups (familial and nonfamilial) 

control records. Nonparametric, independent smoke frequency distributions and medians 

were analyzed by gender and case/control status using the Mann-Whitney test. Among 

the 681 responses for quantified exposure to smoke, there were no statistically significant 

differences between prior or ever maternal smoke dosage distributions or median values 

of dosage as a function of gender or case/control status (data not shown). While the 

maternal prior smoke frequency (cigarettes/day) data reflected multimodality, the overall 

distribution scores skewed higher for cases.   
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Limited data for the Metals and Mother survey instrument was used to summarize 

weekly cold-water and fresh water fish intake during pregnancy by trimester. Among 109 

matched ID data on maternal fish intake, response rates suggested 66% of mothers ate 

fish, and 33% of them ate fresh fish while breastfeeding.The prevalence of weekly 

reported fresh fish intake was higher than that previously reported (6%) for children 

(Wiest, 2007).  But only 45 records were available for quantified fresh fish intake for 

matched maternal ID codes. Therefore, the sample size for the maternal fish intake 

variable precluded additional statistical analysis.  

Vitamin use rates among the small subsample of maternal fresh fish intake 

records (30%)  appeared to be similar to overall sample vitamin use trends (31%). 

Maternal vitamin use prevalence rate within the cohort (30% ) was similar to other U.S. 

pregnant women cohort data; 35%  (D’Angello et al., 2007; and mothers of a younger 

birth cohort; 23 to 45% (Sullentrop et al., 2006) which suggested AGRE multivitamin use 

responses were likely missing at random. 

 Maternal vitamin use was not significantly different by child gender. Missing 

maternal vitamin use values were assumed to be similar for multiple birth pregnancies. If 

maternal intrapregnancy vitamin use was not indicated in older child records, it was 

assumed not to be used for missing values in subsequent offspring. These assumptions 

reduced missing vitamin use values in control and case records from 20% to 12% and 

from 12% to 9%, respectively. 

Aggregate lactation practice rates for the AGRE cohort were shown in Table 9. 

Approximately one-fourth of the AGRE cohort (25% of cases and 27% of control) 
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reported "bottle fed only" feeding practice responses. “Any" lactation initiation was 54% 

among cases and 25% of AGRE mothers reportedly used both lactation and bottle 

feeding practices. An aggregate average breastfeeding practice prevalence value of 50% 

across states within the U.S. was reported for births in 2003-2008 (Ahluwalia, 2012). 

Maternal self-reported AGRE lactation prevalence was higher than the estimate of 

Ahluwalia (2012). "Dedicated" lactation practice was reported for 24% cases and 30% of 

AGRE controls in this study.  

Table 9 also showed lactation duration, by case-control status and child gender. 

Lactation duration was significantly different and higher (p = 0.05) among AGRE cases. 

Mean values within data distributions of  dedicated and non-dedicated lactation duration 

were higher among cases than controls but both variable distributions showed multi-

modalities. Dedicated lactation duration  did not differ by child gender (see  Figure 11). 

There was suggestive evidence of higher reported incidence of feeding difficulties among 

male offspring and cases (data not shown but discussed in posthoc analysis section). 
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Figure 11. Dedicated lactation duration by gender and case/control status.                              
(n=  402; 70 controls, 332 cases; 85 females and  317 males) 
 

 Covariates. Average maternal age was slightly different (p = 0.11) by gender. 

Figure 10 box plot analysis indicated that the distribution was significantly skewed to 

higher maternal age for female offspring. Average paternal age differed slightly ( p= 

0.12) as shown in Table 9. 

Maternal age was recoded per a priori criteria with the assumption that "first 

born" children were registered as controls or cases within the AGRE registry. Therefore, 

the data were recoded as maternal age < 36 years at first pregnancy/birth, or greater than 

or equal to 36 years at first pregnancy/birth. Paternal age was originally defined as a cut-

off value of < 20 or >  20 years at first pregnancy/birth. However, only three AGRE 
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records were available for father's age < 20 years. Thus, paternal age data was recoded to 

binary ages similar to mother age coding.   

Maternal preconception health risk factors did not differ significantly by 

case/control status. There were few cases of maternal preconception diabetes and anemia, 

but these tended to show gender and ADIR status differences. While the overall maternal 

preconception diabetes prevalence as shown in Table 9 was less than 1.3% in the sample, 

preconception diabetes status was reported for 11 male offspring cases, and only 2 female 

controls. Overall maternal anemia prevalence was also likely low (< 1.5%) as shown in 

Table 9, but maternal anemia was reported for 11 cases (8 male offspring, 3 female 

offspring), and only 3 male controls. Similarly, maternal hypertension was slightly higher 

among cases and males as illustrated in Table 9.  

 Obstetric risk, (preeclampsia and jaundice) did not differ significantly by 

case/control status or gender. Overall, jaundice prevalence (32%) was higher than 

preeclampsia (< 3%).   

Prevalence rates for preconception risk factors of maternal diabetes, hypertension, 

and triple screen test positive results appear similar to that reported in other U.S. autism 

cohorts (Gregory et al., 2013; Krakowiak et al., 2012; Lawrence et al., 2008). In the 

AGRE cohort preexisting, diagnosed maternal diabetes was reported for only 13 of 902 

records (i.e., 1.3%) in the AGRE cohort as indicated in Table 9. Therefore, it was not 

possible to compare diabetes prevalence among AGRE cases or controls, or by gender. 

Hypertension prevalence was estimated to be 8.9% in the AGRE cohort, with slightly 

higher levels in mothers of cases and male offspring. Krakowiak et al. (2012) reported 
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preconception hypertension rates of 3.6% in the CHARGE study, whereas Gregory et al. 

(2013) reported 5 to 7% hypertension in a North Carolina cohort. Across birth type, 

gender, and among cases, for a given mother, the median difference between 

preconception and obstetric risk factors was stable and significant (p = 0.05).  This result 

may be an artifact of the greater sample power effect for males and cases to detect 

differences. As a function of increasing risk, preconception and obstetric risk (defined as  

preeclampsia and jaundice birth delivery) may covary in a positive direction as indicated 

in previous literature (Duckitt & Harrington, 2005). 

 Preconception and obstetric statistics, and missing value rate in the AGRE cohort 

corroborated the results of Wallace et al. (2008) who used similar AGRE data sets to 

study ADOS case criteria. Preeclampsia was previously defined and validated to include 

both eclampsia and preeclampsia during pregnancy. Preeclampsia prevalence rates in the 

AGRE cohort were lower than the 5.2% rate reported by Mann et al. (2010) for a South 

Carolina cohort of Medicaid recipients. Self-reported hyperbilirubin response rates were 

used in Table 9 results due to a high rate of missing values in physician-confirmed 

hyperbilirubin or jaundice. Parental report of jaundice birth rates were higher in the 

AGRE cohort (mean of 32%) than reported (20 - 21%) for jaundice defined by infant 

blood bilirubin defined as  > 10mg/dl in California insurance cohort (Croen et al. 2005). 

The differences in prevalence may be related to differences in the definitional criteria of  

jaundice or hyperbilirubin (Amin et al. 2011).  

Confounding variables. Binary infant respiratory distress and resuscitation 

required at delivery data at were compared by ADIR status and child gender. Infant males 
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and cases tended to have higher respiratory distress for both cases and controls (Tables 8 

and 9), but there were no significant differences by ADIR status. There was significant 

correlation between respiratory distress and resuscitation (p < 0.01) for the entire sample 

and by ADIR status. Multiple birth pregnancies were shown to have a three-fold odds 

risk infant resuscitation of singleton births, regardless of case/control status. Thus, 

respiratory distress and multiple birth pregnancy data were was retained for posthoc 

analysis of interaction and confounding effects.                   

Proposed Bivariate Analysis 

 Independent relationships of pregnancy (main effect) factors and an optimized 

relationship of pregnancy factors were analyzed per the study design. Proposed bivariate 

analysis, proportional risk rate results, chi-squared results and likelihood ratios among 

cases and controls, odds ratio and confidence intervals among cases and controls for main 

predictor variables are described in this section. Using 733 full, complete records, 

proposed research questions were studied, and main effect relationships to ASD status 

were optimized to prepare for binary logit regression analysis and to investigate theorized 

effect modifiers and confounders. Subsequently, preconception covariates, and 

confounding infant traits to ASD were analyzed for collinearity tests and log regression.  

Main effect analysis. The main effect research questions proposed a relationship 

between prior maternal smoke exposure, lactation, maternal diet and fetal gender on the 

subsequent ASD diagnosis among offspring. Due to low response rates for fish intake, 

only the data for maternal vitamin use was used in bivariate analysis to reflect maternal 

diet factors.  Proportional binary response prevalence for maternal prior smoking 
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behavior, prenatal vitamin use, dedicated lactation, and fetal gender by ADIR status were 

compared using Z-test approximation (Gerstman, 2008). Group differences were 

significant (p < 0.05) for prior maternal smoke exposure, dedicated lactation practice, 

and gender among cases and controls.  

 Null hypotheses and alternative hypotheses for main effect relationships are as 

follows. To increase statistical power directional (one-tail) alternative hypotheses were 

initially proposed and used in statistical analysis.  

Research Question 1:  What is the relationship between prior maternal smoke exposure 

and ASD risk in subsequent offpspring within the AGRE cohort? 

 Hо1:  There is no association between prior maternal smoke exposure and ASD.  

 Ha1:  There is a positive association between prior maternal smoke exposure and 

offspring ASD in the AGRE cohort.   

Research Question 2:  What is the relationship between maternal multivitamin intake 

during or between pregnancy and ASD risk in offspring within the AGRE cohort?   

 Hо2:  There is no association between maternal multivitamin intake and ASD.   

 Ha2:  There is an inverse association between maternal multivitamin intake and 

offspring ASD in the AGRE cohort.   

Research Question 3:  What is the relationship between lactation and offspring ASD risk? 

 Hо 3:  There is no association between lactation and offpsring ASD risk.  

 Ha 3:  There is an inverse association between lactation and offspring ASD risk. 

Research Question 5: How does the exposure-timing relationship of pregnancy variables 

(maternal smoke exposure, diet, and lactation) to ASD outcome differ by infant gender?   
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 Hо5:  The relationship of maternal diet, prior smoke exposure, and lactation to 

ASD outcome does not vary by infant gender. 

 Ha5:  The relationship of maternal diet, prior smoke exposure, and lactation to 

ASD outcome does vary by infant gender (i.e., higher in males).  

Pearson's chi-squared test of likelihood ratio for the probability of rejecting the 

null hypothesis were analyzed. Likelihood χ² ratios for the probability of rejecting the 

null hypothesis (i.e., there is no associative relationship between the main effect variable 

and ASD) showed  evidence (p < 0.05)  to reject the null hypotheses that there is no 

independent association between prior maternal smoking, dedicated lactation, and child 

gender and ASD risk. 

Odds ratio and 95% confidence intervals for one-tailed α = 0.05 were calculated 

for the directional magnitude of the association between main effect variables and 

case/control status as shown in Table 10. Variable reference events correspond to each set 

of particular hypotheses statements. Table 10 illustrates signficant evidence to reject the 

null hypotheses that there is no independent association beween prior maternal smoking, 

lactation practice, and child gender and  risk of offspring ASD. Specifically, prior 

maternal smoking, any lactation duration, dedicated lactation practice, and infant male 

gender were associated significantly (p < 0.05) with ASD risk.  The directional 

relationship of self-reported lactation practice and risk of ASD was unexpected. 
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 Table 10 
 
 Odds Ratio Confidence Intervals for Main Effect Variables by ADIR Status 
Variable Reference 

event 
Case 
count 

Control 
count 

Odds Ratio 95% CI 

Prior maternal 
smoking %   
    (n=767)   

No  273 40 2.48*  [2.30 - 2.57] 

Maternal multi-
vitamin use %  
    (n=883) 

Yes 400 166 1.30 [0.97 - 1.64] 

Any lactation % 
    (n=763) 

Bottle-fed 347 133 1.42* [1.00 - 1.97] 

Dedicated 
lactation % 
    (n=763) 

No 327   71 1.46* [1.08 - 2.13] 

Child gender 
    (n=902) 

Female 479 163 3.08* [2.28 - 4.16] 

Note.  CI= Confidence Interval; One-tailed test, α = 0.05,   * p < 0.05 for "enter" method 
 

The results showed that among the AGRE sample, mothers who reportedly 

previously smoked were significantly (2.5 times more likely) to have offspring with 

subsequent ASD risk than those who did not smoke. Lack of maternal vitamin use tended 

to be associated with higher (OR 1.3) odds of ASD risk in offspring, but the finding was 

not statistically significant. Children exposed to any lactation duration or dedicated 

lactation in the sample were 1.4 times more likely to be subsequently diagnosed with 

ASD. It was theorized lack of  lactation would be associated with increased ASD risk, so 

the finding that dedicated lactation was associated with increased ASD diagnosis in the 

sample was unexpected. As expected, male infants in the sample were three times more 

likely to be diagnosed with ASD than females. Therefore, there is at a minimum, 

suggestive evidence of significant, directional associations, for magnitudes of odds ratios 

greater than 1.0 for each of the main effect variables proposed in the AGRE study design.  
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As theorized, prior direct smoke inhalation and male child gender were independently 

associated with increased ASD risk. The relationship between maternal vitamin use and 

ASD risk was non-significant. Contrary to the a priori hypothesis, the binary coded data 

suggested maternal self-report of any or dedicated lactation practice was associated with 

increased ASD diagnosis. Temporality of exposures suggest maternal prior smoking was 

an antecedent ASD risk factor. 

To investigate the impact of exposure frequency or duration on ASD risk, the 

quantified data for prior maternal smoke exposure and dedicated lactation durations were 

analyzed. The Mantel-Haenszel chi-squared statistic was used to analyze the linear test of 

trends between ordinal levels for prior maternal smoke frequency and dedicated lactation 

duration (Gerstman 2008, p 468). Table 11 indicates there was no linear trend or 

independent summary effect by increased strata for prior maternal smoke frequency and 

ASD risk within the AGRE sample. Expansion of the a priori prior maternal smoke 

frequency categories resulted in a small cell count (i.e., one control record for prior 

maternal smoking level of < 5 cigarettes/day) which limited the utility of the Mantel-

Haenszel test of trends within smoke frequency groups. 

Table 11 
 
Strata Categories of Prior Maternal Smoke Frequency (cigarettes/day) 
Variable Reference 

event 
Case 
count 

Control  
count 

Odds 
Ratio 

95% CI 

Prior maternal 
smoking    

Nonsmoker  315 53   

   < 10 cigs/day    81 13 1.05 [0.99 - 1.11] 
   > 10 cigs/day  186 33 0.95 [0.90 - 1.00] 
Group count  582 99   
     Z = -0.06, α =0.05 
Note.  CI= Confidence Interval; One-tailed test, α = 0.05   
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 The results in Table 12 indicate there was no linear trend or independent summary 

effect by increased strata for exclusive lactation duration and ASD risk within the AGRE 

sample. Expansion of the a priori categories for values higher than 6 months did not 

improve the Mantel-Haenszel test of group trends for dedicated lactation duration groups 

and ASD risk association. 

Table 12 
 
Strata Categories for Dedicated Lactation Duration (months) 
Variable Reference 

event 
Case 
count 

Control  
count 

Odds 
Ratio 

95% CI 

Dedicated 
Lactation 
Duration 

Bottle-fed 83 19   

   < 2 months    49 10 1.12 [0.99 - 1.11] 
   2-6 months   79 19 0.95 [0.87 - 1.03] 
   > 6 months  121 22 1.26 [1.15 - 1.37] 
Group count  332 70   
     Z = -0.09, α =0.05 
Note.  CI= Confidence Interval; One-tailed test, α = 0.05   
 
 
Therefore, while proportional differences in prevalence rates for prior maternal smoke 

exposure and dedicated lactation practice (as binary variables) were significantly 

different (p < 0.05), the quantified exposure frequencies (recalled daily cigarette use and 

dedicated lactation duration) did not show a linear test of trend with subsequent ASD risk 

within the AGRE sample.  

In summary, bivariate analysis showed significant prevalence rate differences in 

prior direct maternal smoking, dedicated lactation, and child gender and ASD risk. 

Hypotheses testing suggested significant evidence (one tailed p < 0.05) to reject the null 

statement (i.e. prevalence differences = zero). Likelihood ratio analysis provided 
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significant evidence (p < 0.05) to reject the null hypothesis that there was no relationship 

between prior maternal smoking and ASD (p < 0.01), dedicated lactation practice and 

ASD (p = 0.05), and child gender and ASD risk (p < 0.01). Independent odds ratio 

analysis results indicated significantly higher risk of ASD for prior maternal smoking 

exposure, O.R.= 2.5, 95% CI [2.30-2.57], male gender, O.R=  3.1, 95% CI [2.28-4.16], 

and dedicated lactation, O.R= 1.4 95% CI [1.08 -2.13]. Lack of maternal vitamin use 

before or between pregnancy was not (p = 0.45) associated with higher risk of ASD, 

O.R.= 1.3,  95% CI [0.97- 1.64]. There were no significant, linear trends within reported 

quantified levels of smoke frequency or lactation duration and ASD status in the sample. 

Main Research Question Conclusions 

The hypothesized main effect exposure variables proposed to be associated with 

placental transfer or direct, biological exchange risk factors during pregnancy, and 

lactation and ASD diagnosis were analyzed using bivariate and odds ratio analysis. 

Proposed main effect independent variables were studied in their relationship to ASD 

diagnosis, which was later optimized to derive a logit regression equation for subsequent 

analysis for other variable effects. 

 The first research question was “What is the relationship between prior maternal 

smoke exposure and autism spectrum disorder, defined by ADIR (autism diagnostic 

interview-revised) score of one?” The results in Tables 9 indicated prior maternal smoke 

exposure was significantly different ( p < 0.05) and higher among cases than controls for 

all birth types. The prior smoke exposure prevalence difference was significantly higher 

among cases, with significant evidence to reject the null hypothesis that maternal prior 
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smoke prevalence did not differ. There was also significant evidence to reject the null 

hypothesis that there was no relationship between prior maternal smoke exposure and 

ASD risk based on likelihood ratio analysis. Prior maternal smoke behavior was 

associated with a 2-fold risk of ASD within the sample, O.R.= 2.5, 95% CI [2.30- 2.57].   

 While the sample sizes for quantified prior maternal smoke exposure were small 

and therefore  reduced statistical power, Figure 5 illustrated higher prior smoke frequency 

among cases (10 to15 average cigarettes per day of previous smoking by both parents, or 

mother) than smoke frequency of controls (9 to 10 cigarettes per day). Odds ratio analysis 

showed more than a 2-fold risk of offspring ASD diagnosis if the mom herself, smoked 

before pregnancy; and lower odds ratio (O.R. ~ 1.2) for contingency table analysis for 

maternal ever exposed to smoke (data not shown). Therefore, there is sufficient evidence 

to reject the first null research hypothesis statement regarding no relationship between 

maternal smoke exposure and ASD risk. 

 The second research question hypothesis stated there is no association between 

maternal fish and multivitamin intake during or between pregnancy and ASD outcome 

within the AGRE cohort. The archived data set for maternal fish intake was largely 

unavailable for the AGRE sample and was collected 8 to10 years after AGRE enrollment 

and completion of other survey instruments. Therefore, maternal fish intake data was not 

analyzed in bivariate analysis. 

 Maternal multivitamin use (without temporal qualification) responses were 

analyzed. Table 9 results indicated there were no significant prevalence rate differences 

in multivitamin use among mothers of cases and controls. Proportional prevalence rate 
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analysis confirmed those results. There was insufficient evidence to reject the null 

hypothesis that there is no association between multivitamin intake and ASD risk. It was 

postulated that maternal vitamin use would be inversely associated with ASD diagnosis 

in offspring. Results directionally but not significantly suggest lack of maternal vitamin 

may be associated with ASD diagnosis. Likelihood ratio analysis suggested a slight 

probability (p = 0.09) that lack of maternal vitamin use was associated with ASD.  Odds 

ratio analysis (n= 733 complete records) suggested no significant different odds of ASD 

for mothers who did not use multivitamins before or during pregnancies. 

 The third research question proposed an inverse relationship between lactation 

and ASD risk. The data in Table 9 for all birth types (n=744) showed average length of 

any duration of lactation was higher for cases than controls (p = 0.05). Proportional 

prevalence rate comparisons indicated dedicated lactation practice was significantly (p = 

0.05) more prevalent among AGRE cases. These results suggested a positive independent 

association between lactation and ASD risk; which was an unexpected result. Likelihood 

ratio analysis suggested sufficient evidence (p < 0.05) to reject the null hypothesis that 

were was no association between dedicated lactation and ASD. Odds ratio suggested a 

40% higher odds of ASD in offspring reportedly exposed to dedicated lactation, O.R = 

1.46, 95% CI [1.08 - 2.13].  

 While the sample sizes for quantified dedicated lactation duration were small and 

thus reduced statistical power, Table 9 illustrated a higher mean dedicated lactation 

duration among ASD cases. Figures 9 and 11 also illustrated a trend toward higher 

maternal self-reported lactation durations among cases. But among the relatively small 
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number of responses for binary coded dedicated  lactation duration (n= 402; 70 controls, 

85 females) the rank order scores for duration of dedicated lactation did not differ 

significantly (see Table 12). Therefore, there is sufficient evidence to only suggest a 

positive association between AGRE self-reported lactation practice in ASD risk. The 

evidence suggested the relationship between lactation and ASD is not inversely 

associated, as was initially hypothesized. However, the results were not verified by 

physician record(s), or adjusted for other liquids, foods, or infant feeding traits. 

Factors such as feeding difficulty, and maternal gravida were not identified a 

priori as potential AGRE study design factors associated with ASD risk. Feeding 

difficulty was significantly higher among cases and tended to be higher in male infants 

(see Table 9). Feeding difficulty comments reflected difficulties encountered in breast, 

bottle feeding, or dual feeding practice. Data on verified lactation practice, competence, 

adequacy, and the proportional use of lactation and bottle feeding was not available by 

gender (or case) status. However, feeding difficulties tended to vary by offspring gender 

as shown in Table 9.   

Gender effect on variables was anticipated in the original study design; wherein 

gender may be a main effect variable or covariate. A one-tailed alternative hypothesis 

was proposed. Research Question 5: How does the exposure-timing relationship of 

pregnancy variables (maternal smoke exposure, diet, and lactation) to ASD outcome 

differ by infant gender. 

 Hо 5:  The relationship of main effect variables to ASD does not vary by gender. 

 Ha 5:  The relationship of main effect variables to ASD does vary by male gender.   
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 Results in Table 9 showed no significant exposure factor prevalence differences 

by child gender (N= 902). ASD prevalence rate differences by gender were significant (p 

< 0.01) as shown in Table 9. Likelihood ratio analysis suggested significant (p = 0.01) 

probability that male children were more likely to be diagnosed with ASD. Odds ratio 

analysis showed male offspring were three times more likely to be diagnosed with ASD 

than were female children (n = 733). 

 It was not possible to study the causality of the child gender relationship to ASD 

risk. However, statistical interaction of AGRE child gender on ASD risk factors was of 

interest. Stratified analysis of proposed main effect variables (prior maternal smoking and 

exclusive lactation practice, and maternal vitamin use) by gender showed no statistical 

interaction. For male children, lower but overlapping odds ratio 95% confidence intervals 

compared to females were identified for the relationship of prior smoking and ASD.  

 The results in Table 13 indicated similar risk relationship direction and non-

significant differences in magnitudes of odds ratios by gender. The associtation of prior 

maternal smoking to offspring ASD diagnosis trended (p < 0.10) for both infant males 

and femailes, independently. However, the association of lactation practice, maternal 

vitamin use, multiple birth pregnancies, gravida and respiratory distress to ASD showed 

no signficant gender offspring differntial. Therefore, regarding the fifth research 

question, child gender did not affect the main effect relationships of prior maternal 

smoking, lactation, lack of maternal vitamin use before or during pregnancy to ASD risk. 
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  Table 13 
 
  Odds Ratio Confidence Intervals for Predictor Variables by Child Gender 

Predictor variable Reference  O.R. 95% C.I. Significance 
Prior maternal smoking    
                 Male child   
                 Female child 

Non-
smoker 

 

 
1.59 
2.86 

 
[0.92 - 2.76] 
[1.12 - 7.31] 

 
0.10 
0.03 

Lactation practice  
                 Male child 
                 Female child 

Bottle-fed  
1.50 
1.42 

 
[0.97 - 2.32] 
[0.74 - 2.71] 

 
0.07 
0.30 

Maternal vitamin use  
                  Male child 
                  Female child 

Yes   
1.49 
1.53 

 
[0.92 - 2.39] 
[0.76 - 3.11] 

 
0.10 
0.24 

Multiple pregnancy birth 
                  Male child 
                  Female child 

No  
1.27 
0.68 

 
[0.69 - 2.34] 
[0.25 - 1.84] 

 
0.45 
0.45 

Maternal gravida 
                  Male child 
                  Female child 

 One 
child 

 
0.88 
1.04 

 
[0.75 - 1.03] 
[0.84 - 1.30] 

 
0.12 
> 0.5 

Respiratory distress at birth 
                 Male child 
                 Female child 

No  
1.16 
1.62 

 
[0.37-1.99] 
[0.09-2.33] 

 

 
> 0.5 
 0.24 

Note. CI= Confidence Interval for "enter" method;  n= 556 male and  177 female children 

Logit Regression of Main Effect Variables 

 The proposed study design involved establishing the hypothesized main effect 

relationships to ASD risk, with subsequent analysis of proposed preconception covariates 

and infant trait confounders as shown in Figure 2. Logit regression modeling was used to 

optimize the predictive relationship of prior maternal smoking, lactation practice, 

maternal vitamin use, and child gender to ASD risk in the cohort sample for complete 

records (n =733). The "enter" and "backward likelihood ratio" regression methods were 

used to minimize suppressor effects of variables (Fields 2005). Table 14 shows the results 

of hypothesized predictors of ASD.   
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   Table 14 
 
   Binary Log Regression Predicting Likelihood of ASD Diagnosis  

Predictors of ASD risk B S.E. Exp B 95% CI  exp B 
Constant 
Prior maternal smoking 
 

1.27 
0.62 

0.10 
0.21 

3.55 
    1.85** 

 
[1.18 - 2.84] 

Constant 
Lack of maternal vitamin 
use 
 

 0.80 
- 0.07 

0.11 
0.15 

2.21 
0.94 

 
[0.68 - 1.18] 

Constant 
Lactation practice 
 

1.14 
0.37 

0.13 
0.16 

3.14 
   1.47* 

 
[1.05 - 2.08] 

Constant 
Gender 
 

2.17 
 -0.64 

0.24 
0.16 

8.77 
     2.90** 

 
[2.07 - 3.98] 

Constant 
Multiple pregnancy birth 
 

0.74 
0.13 

0.08 
0.26 

2.09 
 1.14  

 
[0.68 - 1.83] 

Constant 
Gravida  
 

1.05 
 -0.11 

0.16 
0.05 

2.85 
 0.90 

 
[0.81 - 1.04] 

Constant  
Respiratory distress at birth  

1.31 
0.41 

0.09 
0.40 

3.72 
1.51 

 
[0.70 - 3.28] 

 
   Note.  CI =Confidence Interval;  n = 733;    
  * p < 0.05    ** p < 0.01 for "enter" method. 
 
 
The independent effects of gravida and multiple birth pregnancies were regressed with 

ADIR. Gravida value (as a range of 1 to10), and as a cutoff value ( < 4) was not a 

significant risk factor. Multiple birth pregnancy was tested as a binary variable as 

possible main effect predictor as shown in Table 14. Given the model regressions shown 

in Table 14, the factor of prior maternal smoking correctly classified 80% of records 

whereas each other variables predicted only 68% of ASD scores. Further optimization of 

the regression using multiple predictor variables did not improve correct classification 

ratio above 80%, but did improve robustness or saturation as shown in Table 15. Field 
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(2014) reported breastfeeding was associated with maternal gravida. However, the ẞ-

coefficient was not improved by more than 10% by the inclusion of gravida or multiple 

pregnancy births. Therefore, the main effect regression equation shown in Table 15 may 

reflect the best unbiased estimate of the relationship of the a priori study factors to ASD.  

   Table 15 

   Binary Log Regression Optimization of ASD Diagnosis 
Predictors of ASD risk  B S.E. Exp B 95% CI exp B 
Constant 
Gender 
Prior maternal smoking 
Lactation practice 
Maternal vitamin use 

1.79 
-0.61 
0.69 
0.34 
-0.42 

0.36 
0.21 
0.22 
0.20 
0.20 

      5.96 
      1.89** 
      2.00** 
      1.47* 
      0.96* 

 
[1.28 - 2.92] 
[1.30 - 3.10] 
[1.08 - 2.08] 
[0.52 - 1.04] 

     
    Note. N = 733.  CI = Confidence Interval.   
   * p < 0.05,    ** p < 0.01 for "enter" method. 
  

 The optimized predictive relationship of main effect factors to risk of ASD in 

offspring was carried forward to test for covariation by preconception health factors of 

parental age, preconception risk (five health conditions), and obstetric risk (preeclampsia 

and jaundice). Null hypotheses and alternative hypotheses for proposed covariate 

relationships are as follows. To increase statistical power, directional, one-tail alternative 

hypotheses were initially proposed.Research Questions 6-8:  How does the exposure-

timing relationships between pregnancy exposure-timing variables (maternal smoke 

exposure, diet, and lactation) and ASD vary by parental age, preexisting maternal health 

conditions, and obstetric risks? 

 Hо6:  The relationship of pregnancy exposures (maternal smoke exposure, diet, 

and lactation) to ASD does not vary by parental age. 
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 Ha 6:  The relationship of pregnancy exposures (maternal smoke exposure, diet, 

and lactation) to ASD varies inversely by parental age.  

 Variable:   Parental age less than 36 years;  or > 36 years at first birth. 

 Hо7:  The relationship between pregnancy exposures to ASD outcome does not 

vary by preconception maternal health conditions. 

 Ha7:  The relationship between pregnancy exposures to ASD outcome varies 

positively with preconception maternal health factors. 

Variable:  A preconception risk (maternal high blood pressure, diabetes, low  

                  iron/anemia, vitamiin B deficiency/neural tube risk [low folate],   

      albuminurea). (yes/no) 

 Hо8:  The relationship between pregnancy exposures to ASD outcome does not 

vary by obstetric risks within the AGRE cohort. 

 Ha8:  The relationship between pregnancy exposures to ASD outcome varies 

positively by obstetric risks within the AGRE cohort. 

Variable:  An obstetric complication: (preeclampsia, jaundice delivery) (yes/no). 
 

 Covariate adjustments. Hypothesized covariates for the optimized relationship 

of preconception and lactation variables and ASD diagnosis were proposed to include 

parental age, maternal preconception health risk factors, and obstetric risks. Multiple 

births was not proposed as a covariate; but identified posthoc. The effect analysis of 

presumed covariates on the relationship of smoking, lactation practice, and gender to 

ASD will be described in this section.   
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  Parental age regardless of birth types (singleton and multiple births) was not 

significantly different between cases and controls or by offspring gender. Maternal age 

showed  significant difference by gender among singleton births (p = 0.03). Paternal age 

did not differ by ADIR status, gender or for birth type (singleton or multiple birth 

pregnancies). Binary responses for mother and father ages at first pregnancy (< 36 years 

or > 36 years) were used in odds ratio calculations of ASD risk. Odds ratio of ASD risk 

for mothers 36 years or older was 0.94, 95% CI [0.53 - 1.42]. Odds ratio of ASD risk for 

fathers 36 years or older was 0.92, 95% CI [0.71-1.33]. Inclusion of mothers age in 

regression analysis was used in subsequent modeling in keeping with the study construct 

in Figure 2 for preconception and reproductive health risks. 

 The AGRE study design presumed singleton birth records, and did not account for 

maternal gravida or multiple birth pregnancies. But these variables were available in the 

AGRE data set and analyzed posthoc in attempt to provide context and rationale for the 

unexpected negative relationship between lactation practice and ASD diagnosis. Maternal 

gravida and multiple birth pregnancies were identified in the descriptive analysis section 

of this chapter. Gravida was associated with proposed main effect variables of smoking 

behavior, lactation, and maternal age. Gravida was further explored in posthoc analysis. 

Initial regression was not improved using a gravida cutoff ( < 4) whereas multiple birth 

pregnancy data (yes/no) improved the fit of proxy variables for main effect variables with 

subsequent ASD in offspring. Multiple birth pregnancy data was collinear with maternal 

cutoff age, and respiratory distress. 
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 Risk of maternal preconception risk tended to skew to male cases, as defined a 

priori for the five criteria listed in Table 9. Odds ratio of ASD risk was only 0.84, 95% 

CI [0.47-1.49] for binary response (0, > 1) to preconception risk factor score. Odds ratio 

of ASD for obstetric risk (yes/no tally for either preeclampsia and/or hyperbilirubin birth) 

was 1.19, 95% CI [0.78-1.82}.  

Tests of collinearity between a priori and posthoc identified covariates were 

conducted for the 733 complete records. Prior literature suggested multiple birth 

pregnancy outcome may be highly collinear with maternal health covariates of 

preconception risk score, obstetric risk, and/or infant traits of respiratory distress or 

resuscitation at delivery (Amin et al., 2011; Froehlich-Santino et al., 2014; Gardener & 

Lyall, 2014; Gardener et al., 2011: Lyall et al., 2014). Using SPSS collinearity 

diagnostics, maternal age was shown to vary significantly (p < 0.01) with multiple birth 

delivery; 99% of variance was explained by maternal age. Collinearity was not 

significant for other proposed covariates or confounders (data not shown). One 

explanation for high collinearity between maternal age and multiple birth pregnancies 

may be associated with the significant use of fertility treatment (7.1%) in cases compared 

to controls (1.9%).  

To determine whether the variable maternal age or multiple birth delivery should 

be used due to high collinearity, regression and factor analysis was conducted. Collinear 

variables were tested for variance inflation factors and factor analysis was used to 

determine which variables should be retained for regression analysis based on the 

statistical results (Fields, 2005) and in keeping with the study framework (Figure 2). 
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 Confounders.  Infant traits, such as respiratory distress and resuscitation required 

at delivery were found to be collinear based on variance inflation factors of 1.0. Gender 

was also found to be collinear with resuscitation at delivery. Infant respiratory distress at 

delivery was very high among males regardless of case status (see Table 9). Among the 

733 complete records, child gender accounted for 97% of the variation in resuscitation 

response. Odds ratio of subsequent ASD among infants with  respiratory distress at 

delivery was 1.51, 95% CI [0.69 - 3.28]. Odds ratio of respiratory distress among 

children with obstetric risk (either preeclampsia or jaundice birth) was  2.17, 95% CI 

[1.23-3.84], p = 0.03. Multiple birth pregnancy was also collinear with infant respiratory 

distress; but the former had lower predictive relationship with ASD risk and lower odds 

ratio of ASD (OR 1.14) than did infant respiratory distress (OR 1.51).  In order to 

minimize redundant covariate variables, the variable infant respiratory distress was 

regressed with main effect predictors in log regression.   

 Infant sleeping and breathing pattern regularity was initially proposed as a 

confounder. Null hypothesis and alternative hypothesis for the proposed confounding 

effect are as follows.  To increase statistical power a one-tail alternative hypothesis 

statement was initially proposed. Research Question 4.  How is the exposure-timing 

relationship of pregnancy to ASD confounded by neonatal infant sleeping or breathing 

traits separately or in combination?   

 Hо4:  The relationship between pregnancy exposures and ASD outcome is not 

confounded by infant respiratory distress at birth.  



246 

 

 Ha4:  The relationship between pregnancy exposures and ASD outcome is 

confounded by infant respiratory distress at birth.   

 Table 16 shows optimized final log regression of main effect AGRE variables to 

ASD risk. The table results show infant respiratory distress at birth was a predictive 

covariate of ASD risk as it was partially correlated with gravida, multiple birth 

pregnancies, gender, obstetric risk, and maternal age. Independent odds ratio of ASD for 

infant respiratory distress showed higher mean but overlapping independent odds ratio 

confidence intervals with gravida and multiple birth pregnancy events as shown in Tables 

13 and 14. The use of binary infant respiratory distress response in logit regression 

analysis improved the predictive equation as shown in the final model of Table 16. 

However, it is worth noting obstetric risk was significantly associated with infant 

respiratory distress at birth; but was not significantly related to ASD risk. Infant 

respiratory distress at birth is likely an antecedent to infant resuscitation at delivery and 

also may be a conceptual fit with theorized effects of placental transport mechanisms.  
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   Table 16 

   Binary Log Regression Final Optimization of ASD Diagnosis 

Predictors of ASD risk  B S.E. Exp B 95% CI  exp B 
 
Constant 
Gender 
Prior maternal smoking 
Lactation  
Maternal vitamin use 
 

 
1.79 
-0.61 
0.69 
0.34 
-0.42 

 
0.36 
0.21 
0.22 
0.20 
0.20 

  
      5.96 
      1.89** 
      2.00** 
      1.47* 
      0.96* 

 
 

[1.28 - 2.92] 
[1.30 - 3.10] 
[1.08 - 2.08] 
[0.52 - 1.04] 

Constant 
Gender 
Prior maternal smoking 
Lactation 
Maternal vitamin use 
Multiple pregnancy birth 
 

1.67 
-0.61 
0.61 
0.36 
-0.07 
0.16 

0.31 
0.20 
0.24 
0.19 
0.30 
0.27 

      5.36 
      1.85** 

      1.84** 

      1.44 
      0.94 
      1.18 

 
[1.26 - 2.79] 
[1.13 - 2.95] 
[0.97 - 2.04] 
[0.52 - 1.70] 
[0.69 - 2.00] 

Constant 
Gender 
Prior maternal smoking 
Lactation 
Respiratory distress at birth 

1.81 
-0.63 
0.59 
0.37 
0.32 

0.30 
0.20 
0.24 
0.19 
0.40 

      6.12 
      1.89** 
      1.81** 
      1.44* 
      1.38 

 
[1.25 - 2.77] 
[1.15 - 2.92] 
[1.01 - 2.08] 
[0.63 - 3.01] 

     
   Note.  N = 733.  CI = Confidence Interval. 
  * p < 0.05,    ** p < 0.01 for "enter" method. 
  

 Posthoc analysis. The initial proposal suggested the use of data among singleton 

births only within the AGRE sample. Due to concerns over sample size, particularly 

among controls, the inclusion of all birth types (singletons and multiple births) were used 

for cases and controls.  Multiple birth pregnancies reflected 8% of 37 nonfamilial control 

records, 13% of all 296 control records, and 15% of 606 case records. Birth type as 

binary response to the question about multiple pregnancy birth was available for all 902 

records and used to study covariation. Mean prevalence (15.1%) for multiple pregnancy 

birth did not differ for the complete 733 records containing values for all nine variables 

versus the for the full sample (14.8%). 
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 The impact of family size, as estimated by maternal gravida was not proposed in 

the initial study design. Maternal gravida was available for all 902 records. The mean and 

median values of gravida (2.45, 2.0 respectively) did not differ for the 733 complete 

records and full sample. Gravida was shown to be associated with maternal age, smoking 

behavior, lactation practice and duration, and child gender within the full sample.  

  Several study variables as a function of gravida were analyzed. The results 

suggest prior maternal smoke exposure and daily prior smoking frequency (from 5 to 20 

cigarettes/day) was reported with increasing frequency for gravida values of 1 to 4 

pregnancies. At increasing maternal gravida values (all pregnancy levels), the combined 

use of breast and bottle feeding decreased, dedicated lactation practice increased, as did 

lactation duration longer than 6 months. Scott et al. (2008) reported less than 12% of 

mothers breastfed longer than 12 months; less than 10% of all AGRE mothers breastfed 

longer than 12 months (data not shown). Gravida analysis showed higher gravida may be 

related to higher prior maternal smoking duration, and longer lactation duration in the 

AGRE sample. Gravida as a function of child gender and ASD is shown in Table 17.  

Table 17 
 
 Maternal Gravida as a Function of Child Gender and Case/Control Status 

    
 --------------------- Gravida by AGRE mother  ---------------------  Sample  

  count Study variable response % 1 2 3 4 5       >  6 

Controls (ADIR = 0) 

       Male child record 28.2 25.2 22.7 10.4 9.2 4.3 163 

       Female child record 22.0 25.8 30.3 12.1 5.3 4.5 132 

Cases (ADIR = 1) 

       Male child record 26.4 38.6 18.2 11.1 2.5 2.7 477 

       Female child record 20.2 27.9 29.5 9.3 8.5 4.7 129 
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 Maternal preconception risk as initially defined (preexisting diabetes, 

hypertension, anemia, low folate/neural tube defect risk, and albuminurea as indicated by 

abnormal triple screen test result) did not show significant differences among cases and 

controls, or by gender, as illustrated in Table 9. However, the AGRE cohort population 

prevalence of preterm labor and pitocin use (a medication used to delay premature labor) 

had estimated means of 30 and 17% , respectively for the entire sample of  902 records.  

Pitocin use by mothers of females tended (p = 0.17) to be lower (12.5%) than pitocin use 

by mothers of males, among all records.    

 Obstetric risk was initially defined and hypothesized to include underlying 

preconception risks associated with preeclampsia and jaundice birth. Given the initial 

proposed definition of obstetric risk, these prevalence factors did not differ between cases 

and controls as evidenced in Table 9. The initial definitional criteria of obstetric risk 

excluded birth-specific physiological issues such as nuchal cord issues, cesarean section, 

gestational diabetes, or general edema.   

While not originally proposed as component criteria of obstetric risk within this 

study, there were other pregnancy and delivery factors identified which deserved 

mention. Specifically, gestational diabetes, general edema, nuchal cord issues, and 

preterm labor despite the use of pitocin treatment were prevalent within the AGRE 

database and may inform a more comprehensive perspective of obstetric risks which may 

mediate the relationship of hypothesized main effect variables with ASD diagnosis in 

AGRE offspring. However, most of these variables were missing, particularly from 

control records (192 missing records of 296).    
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 Within the AGRE sample, general edema was frequently (15%)  reported. Birth 

specific nuchal cord issues (a condition in which the umbilical cord is fully wrapped, 360 

degrees, around the neck of the fetus at time of delivery) were identified posthoc among 

the 902 records, as were self-reported responses to questions or comments about preterm 

labor, pitocin use, and gestational age of specific births. The prevalence of nuchal cord 

issues differed significantly (p = 0.05) among controls (2.9%, SD 0.33) and cases (8.6%, 

SD 0.34) for all birth records; and for the regression sample records (n=733); controls 

(3.9%, SD 0.33) and cases (9.8%, SD 0.33). Cohort cesarean section delivery averaged 

29%, but trended (p= 0.09) higher among cases (31%).  

Mothers of children of multiple birth pregnancies tended to have higher median 

obstetric risk index than the obstetric risk index for singleton births. Inclusion of 

generalized edema and gestational diabetes appeared to significantly increase the median 

obstetric risk index score for both birth types. The addition of additional obstetric criteria 

appeared to increase the median obstetric index for children of multiple birth pregnancies 

more so than the median obstetric index of singletons (data not shown). Inclusion of 

generalized edema and gestational diabetes appeared to significantly increase the median 

obstetric risk index score for both birth types. As concluded for the original definition of 

obstetric risk (preeclampsia and jaundice delivery), preconception factors did appear to 

covary with the original obstetric risk index. Inclusion of additional obstetric 

complications did not appear to improve the variable quality or validity.    

 As discussed previously, multiple birth delivery was highly collinear with 

maternal age. However, multiple birth delivery was not highly collinear with the initial 



251 

 

preconception score (diabetes, hypertension, anemia, low vitamin B/folate/neural tube 

risk, albuminurea), obstetric risk (preeclampsia or hyperbilirubin), or infant respiratory 

distress or resuscitation at birth.  

 To resolve which covariate factors were redundantly collinear, a broad, posthoc 

inclusive definition of preconception and/or obstetric risk (including the initial six criteria 

as well as nuchal cord issues, preterm delivery (< 38 weeks), gestational diabetes, or  

maternal edema was constructed. Factor regression analysis was conducted with the 

assumption that total broader preconception and obstetric risk outcome (diabetes, 

hypertension, anemia, albuminurea, preeclampsia, hyperbilirubin, preterm delivery, 

nuchal cord issues, maternal edema and/or gestational diabetes) may be associated with 

multiple birth pregnancies, maternal age, gravida, and/or fertility treatment by 

case/control status. The results showed statistical significance (p = 0.05) for the 

relationship for the broadly defined obstetric or preconception risk factor to fertility 

treatment, only for cases; and a statistical trend (p < 0.10) for the relationship of the 

broadly defined obstetric and preconception risk factor to gravida and multiple pregnancy 

for controls.  

Dimensional Factor Analysis  

A main effect log regression analysis was proposed to characterize risk of direct 

maternal smoke exposure and frequency, hypothesized preventive influence prenatal 

vitamin use, maternal fish intake, and lactation in relation to subsequent offspring ASD 

risk. The study design presumed the use of singleton birth records; which was not 
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feasible due to concerns about statistical power for gender analysis. All complete records 

(n=733) for all birth types was used. 

As theorized, direct maternal smoke exposure was associated with offspring ASD 

risk. Unexpectedly, the AGRE data results suggested lactation practice was positively 

associated with offspring ASD risk. AGRE data showed lack of maternal vitamin use and 

multiple birth pregnancies were also suggestively associated with ASD risk. Odds ratio 

confidence intervals for these hypothesized main risk factors did not differ by child sex.  

Several proposed and covariates identified in posthoc analysis showed 

collinearity. Maternal age was collinear with multiple birth pregnancy and explained 99% 

of the variance in the later. Infant resuscitation was highly collinear with antecedent 

infant respiratory distress at birth. Multiple birth pregnancy was collinear with infant 

respiratory distress. Infant respiratory distress was also significantly collinear with child 

gender and gravida.  

Therefore, factor analysis was used to minimize redundant effects of proposed 

covariates and confounders. Maternal age was redundant with multiple birth pregnancy, 

and infant resuscitation at delivery was redundant with respiratory distress. Collinearity 

was also tested for  preconception, and a priori and ad hoc obstetric factors. Inclusion of 

infant respiratory distress as a covariate improved risk modeling of ASD. Odds analysis 

of infant respiratory distress was significantly (p = 0.03) associated with overall obstetric 

risk (preeclampsia and jaundice birth) risks, OR= 2.17, 95% CI [1.23-3.84].  

 Posthoc analysis of covariates was conducted and initial logit regression modeling 

provided evidence of collinearity among other preconception, pregnancy, and obstetric 
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risk factors.  Factor analysis showed a broad, inclusive (10 point criterion) dimensional 

factor of preconcpetion diabetes, hypertension, anemia, albuminurea, gestational 

diabetes, maternal edema, preeclampsia, hyperbilirubin, preterm delivery, and nuchal 

cord issues was significantly (p < 0.01) associated with fertility treatment use among 

parents of  offpsring cases.  

 Odds ratio analysis showed infant respiratory distress had higher odds ratio (1.51) 

than multiple pregnancy births (1.14), or gravida (0.09) in the independent relationship to 

ASD risk as shown in Table 14. Infant respiratory distress fits the conceptual theory in 

Figure 2 and was retained in the final regression which improved ASD odds ratio values 

of main effect variables.  

 Based on the initial main effect research questions, the study results suggested 

prior maternal cigarette smoking as well as indirect smoke exposure was associated with 

increased ASD risk based on odds ratio analysis (OR 2.5 and 1.2, respectively). There 

was a significant and positive relationship between daily maternal smoke exposure and 

higher ASD risk in the AGRE sample. Directionally, lack of maternal vitamin use was 

suggestively positively associated with ASD risk with moderately higher odds ratio (OR= 

0.96, 95% CI [0.52-1.04]. The hypothesized positive relationship between AGRE 

lactation practice variables and lower ASD risk was not observed in the AGRE data.  

Maternal self-report of lactation practice (lactation without bottle use) was associated 

with increased risk of ASD diagnosis. Lactation practice was associated with higher 

subsequent ASD diagnosis, OR= 1.47, 95% [1.05 - 2.08] as an independent predictor and 
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was a significant (p = 0.05) predictor in regression analysis. Temporality of maternal 

prior smoking as a risk factor was antecedent to lactation practice. 

 Male infants had significantly higher respiratory distress and higher prevalence of  

resuscitation at delivery than female infants. Respiratory distress was higher among 

males, regardless of case status. Multiple birth pregnancies were shown to have a three 

fold odds risk infant resuscitation of singleton births, regardless of case/control status. 

For these reasons, birth type (singleton or multiple) was used in initial regression analysis 

to predict likelihood of ASD.  

 Table 16 illustrated the optimized, hypothesized proxy placental transfer variables 

which were associated with ASD for the AGRE data set (n = 733). The risk factors 

included in the optimized regression include the hypothesized proxy variables for 

placental transfer mechanism (prior maternal smoking, maternal vitamin use), and 

possible placental or nutritional transfer of lactation practice, and the well-known gender 

differential of ASD risk. The use of maternal vitamins before or during pregnancy were 

not a significant predictive factor to ASD risk in this study. Infant respiratory distress was 

theorized to be a confounder, but results indicated it was a covariate and a temporal 

antecedent to lactation practice. Likewise, prior maternal smoking would be a temporal 

antecedent risk factor to subsequent infant respiratory distress at birth. Inclusion of infant 

respiratory distress as a risk variable in the model improved statistical significance of 

lactation practice in the predictive equation of subsequent ofspring ASD  (see Table 16). 
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Summary of Results 

 

The goal of the proposed retrospective, case-control design was to articulate an 

exposure-timing relationship for ASD risk. Minimal uncertainty bias, measurement and 

recall bias with regard to preconception health behaviors, pregnancy and lactation data to 

investiagate gender differentiated ASD risk was a secondary goal. The author proposed 

risks hypothesized to be associated with placental transport mechanisms, with adjustment 

for unique obstetric risks and infant traits which may confound the relationship of 

dominant risk factors of ASD, and the ASD gender differential.  

After conducting cursory descriptive analysis, independent odds ratios associated 

with pregnancy factors and ASD were calculated to address the main effect research 

questions. The results showed there was sufficient evidence to reject the null hypotheses 

for the association of prior maternal smoking and risk of ASD. There was also sufficient 

statistical evidence (p < 0.05) to reject the null hypotheses for the association of lactation 

and risk of ASD: And to reject the null hypotheses for the association of infant gender to 

risk of ASD in the AGRE sample. The AGRE data analysis failed to reject the null 

hypotheses that there was no association betwen maternal intrapregnancy multivitamin 

intake and ASD risk. 

Predictive regression for complete records for all birth types (n=733) showed 

significant odds ratio for prior maternal smoking, OR= 2.00, 95% [1.30 - 3.10],  male 

infant gender, OR= 1.89, 95% [1.28 - 2.92], and lactation, OR= 1.47, 95% [1.08 - 2.08] 

associated wth ASD risk. Proposed covariates of maternal age, preconception risk factors, 

and obstetric risk did not improve the predictive regression equation.  
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Proposed and post-hoc identified covariates exhibited collinearity and infant 

respiratory distress was a covariate, rather than a confounder in the optimized predictive 

relationship of prior smoking, lacataion and infant gender and ASD risk. After 

conducting factor analysis to resolve variable collinearity, infant respiratory distress data 

was identified as a key covariate and improved the predictive relationship of ASD risk 

factors. The clinical and temporal significance of the statistically significant predictive 

regression equation will be described in the next chapter as will social change and 

research implications. 
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Chapter 5: Discussion, Conclusions, and Recommendations  

Introduction 

Study Purpose  

The goal of the retrospective case-control study was to describe the hierarchical 

and temporal relationship and odds risk between pregnancy related risk factors associated 

with plausible placental transfer mechanisms to ASD outcome and the ASD gender 

differential. The use of behavioral survey data collected as ancillary information for a 

AGRE was anticipated to provide data of minimal uncertainty, measurement, and recall 

bias. An autism registry sampling frame was used in attempt to gain adequate response 

rate for female children with ASD in order to study the elusive but persistent ASD gender 

risk differential. 

 The purpose of this study was to describe the relationship between direct maternal 

diet and tobacco smoke exposures during pregnancy and lactation, distal preconception 

risk exposures, confounding infant breathing traits and the risk of ASD, and gender 

differential of ASD per the initially proposed study framework in Figure 2. It was 

hypothesized that placental transport risk factors of prior maternal smoking, lack of 

maternal vitamin use, lack of breastfeeding, and male gender were associated with higher 

odds offspring ASD risk. There is little prior literature on the effect of maternal diet and 

lactation practice on ASD risk. There is also little published information for temporality 

data on preconception and pregnancy risk factors associated with the ASD gender 

differential, which has been shown to be consistently observed. 
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Archived AGRE data discrepancies, variable definitions, data validation, coding, 

and identification of 733 complete records among 902 raw records were described in 

Chapter 4. This data set was used to test the research questions associated with plausible 

placental transfer mechanisms as main effect variables in the relationship to ASD and 

gender differential of ASD.  The initial intent was to also prepare the AGRE dataset for 

logit regression analysis for the assumption of singleton birth children. However, due to 

concerns over statistical power, all birth types were used in bivariate and regression 

analysis (n = 733). Maternal gravida, or number of pregnancies, was not considered a 

priori but covaried positively with maternal age, prior smoking behavior and frequency, 

lactation practice, and dedicated lactation practice and duration.  Factor analysis 

identified  infant respiratory distress was as a key covariate and its inclusion in the 

predictive regression modeling improved the predictive risk equation for ASD.  

Key Learnings 

In the first research question, the null hypothesis was rejected, and the alternative 

hypothesis was accepted. There was a positive association between prior direct maternal 

smoke (binary) exposure and offspring ASD outcome. Independent odds ratio of ASD 

risk was estimated to be 2.48, 95% CI [2.39-2.57] among mothers who previously 

smoked compared to nonsmokers, with lower odds ratio (~ 1.2) for mother previously or 

ever indirectly exposed to smoke. 

For the second research question, maternal diet data for maternal fish intake was 

not available for analysis. Maternal multivitamin intake had an adequate response rate to 

be concluded in independent odds ratio analysis, but there was statistically insufficient 
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evidence to reject the null hypothesis. Odds ratio analysis was not statistically significant; 

odds of ASD diagnosis for mothers who did not report maternal vitamin use was 0.96, 

95% CI [0.52- 1.04].  There was a suggestive trend (p < 0.10) for an inverse association 

between multivitamin intake (before, during, and/or between pregnancies) and offspring 

ASD risk in the predictive modeling equation.  

There was sufficient evidence to reject the third null hypothesis (i.e., there was no 

association between lactation and ASD risk). However, the stated alternative hypothesis 

of an inverse association between lactation and ASD risk was also rejected. There was a 

signficant association between recalled, self-reported lactation, and ASD risk in the 

AGRE sample. However, dedicated lactation practice was positively to ASD risk. The 

odds risk of ASD was estimated to be 1.47, 95% CI [1.08 - 2.08] for AGRE mothers of 

children attempting dedicated lactation compared to those who were only bottle-fed.  

The fourth research null hypothesis stated the optimized relationship among 

placental transport proxy variables (maternal direct smoking, lactation, and multivitamin 

use) was not confounded by infant breathing traits. The data analysis showed infant 

respiratory distress at birth was a predictive covariate, rather than a confounding variable 

in the relationship of the main effect variables and offspring ASD risk. Therefore, there 

was insufficient evidence to reject the null hypothesis. Odds ratio of ASD diagnosis was 

estimated to be 1.51, 95% CI  [0.70 - 3.28] for AGRE children whose parents reported 

infant respiratory distress at birth. Inclusion of respiratory distress as a covariate 

improved the statistical significance of hypothesized, predictive main effect of prior 
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maternal smoking, lactation, and infant gender to ASD risk. Infant respiratory distress 

was also collinear with maternal age and binary obstetric risk data. 

The fifth research question addressed whether child gender mediated the effect of 

plausible placental transport mechanism proxy variables and offspring ASD diagnosis in 

the AGRE cohort. There was evidence to reject the null hypothesis (i.e., the relationship 

of maternal diet, prior smoke exposure, and lactation  to ASD outcome does not vary by 

infant gender). The relationship of prior maternal smoke exposure,  lactation, and 

maternal multivitamin use did not vary significantly by child gender as shown in Table 

13. Odds ratio confidence intervals overlapped but were directionally similar with regard 

to prior maternal smoke exposure, lactation practice, maternal multivitamin use before 

and during as well as for gravida and multiple pregnancy births. However, infant gender 

was a predictive main effect variable: Odds ratio of ASD was estimated to be 2.90, 95% 

CI [2.07 - 3.98] among male offspring in the AGRE sample.   

The sixth research question proposed the relationship of proxy variables of 

placental transport mechanism (maternal smoking, lactation, multivitamin use) varied 

inversely by increased parental age. Odds ratio for ASD risk was not significant for 

higher maternal and paternal age  at first pregnancy/birth (< 36 years and > 36 years). 

Odds ratio of ASD by parental age was 0.94, 95% CI [0.53-1.42] and 0.92, 95% CI [0.71-

1.33], respectively for mothers or fathers 36 years or older. Maternal age was collinear 

with respiratory distress and multiple pregnancy births. Inclusion of maternal age as a 

binary variable did not improve the statistical regression equation. Therefore, there was 

insufficient evidence to reject the null hypothesis; parental age did not affect the main 
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effect relationship between maternal smoking, dedicated lactation, maternal multivitamin 

use, and child gender to ASD risk in the AGRE sample.  

The seventh research question null hypothesis stated the relationship between 

pregnancy exposures did not vary preconception risk using five criteria. The results 

showed preconception risk (yes/no) did not statistically impact the significant relationship 

between prior maternal smoking, dedicated lactation, maternal vitamin use, and fetal 

gender and ASD risk in the AGRE cohort. Odds ratio of ASD was 0.84, 95% CI [0.47-

1.49] for preconception risk. Therefore, there was insufficient evidence to reject the null 

hypothesis. In addition, the predictive relationship of pregnancy, main effect factors and 

ASD did not vary by preconception risk status. 

The eighth null hypothesis stated the relationship between pregnancy exposures to 

ASD outcome does not vary by obstetric risk (defined by preeclampsia and/or 

hyperbilirubin delivery). Independent odds ratio of ASD in the AGRE sample for 

mothers who reported an obstetric risk was 1.19; 95% CI [0.78-1.82]. Obstetric risk was 

strongly associated with infant respiratory distress at delivery OR=  2.17, 95% CI [1.23-

3.84],  p = 0.03  but was not a significant covariate or confounder on the main effect 

relationship. Obstetric risk also was shown not be to significantly associated with ASD. 

Thus, there was insufficient evidence to reject the null hypothesis for obstetric risk. 

Inclusion of obstetric risk did not improve predictive models. 

In conclusion, the log regression predictive of ASD likelihood within the sample 

can be expressed as the following based on modeling shown in Table 16 for the sample: 



262 

 

 Y(ASD diagnosis) = ∫2.0(prior maternal smoking) + 1.4(dedicated   

     lactation)  + 1.9(infant male gender) +  

    1.0(lack of maternal vitamin use) 

The above equation did not adjust for the factor of infant respiratory distress at 

birth (yes/no). The inclusion of posthoc identified covariate of infant respiratory distress 

in the regression model shown in Table 16 resulted in the following predictive equation:  

 Y(ASD diagnosis) = ∫1.8(prior maternal smoking) +  

    1.4(dedicated lactation)  + 1.9(infant male gender) +  

    1.3(respiratory distress at birth) 

Interpretation of the Findings 

 

External validity. The bivariate analysis showed prior direct maternal smoke 

exposure prevalence was representative of other similar populations and higher among 

mothers of cases than controls. Measurement or recall bias of smoking behavior has been 

theorized to be strongly confounded by maternal education level, other socioeconomic 

variables, and mode of data collection (i.e., birth certificates versus medical records) in 

several studies (Dietz et al., 2011; Kalkbrenner et al., 2012; Lee et al., 2012; Burstyn et 

al., 2012; Vinikoor et al., 2010; Zhang et al., 2010).  

AGRE data for parental reported prior direct smoke inhalation by mothers showed 

mothers of ASD cases had significantly higher maternal prior smoke prevalence rates 

than mothers of controls. Maternal smoking during pregnancy is a common risk factor for 

fetal hypoxia, which may be associated with placental insufficiency based on ultrasound 

verification at 10 to 20 weeks gestation (Habek & Kovacevic, 2011). Among mothers 
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who smoked more than 10 to 20 cigarettes per day, risks of fetal hypoxia was much 

higher than nonsmoking mothers. In this study,  no significant differences were reported 

among parental-reported prior maternal smoking frequency (cigarettes per day) among 

mothers of cases and controls. This result may be related to the observation that smoking 

response rates and prevalence reported varied by AGRE survey instrument; therefore, 

response distributions were broadly nonparametric as shown in Figure 5.  Additionally, 

the use of an open-text AGRE questionnaire response scale may have led to clustering of 

data, based on fractions of cigarette packs rather than an assumed continuous scale.    

Odds ratio of ASD diagnosis was estimated to be 2.48, 95% CI [2.30-2.57] among 

mothers who previously smoked compared to nonsmokers, with lower odds ratio (~ 1.2) 

for mothers previously or ever indirectly exposed to smoke. The point estimate of odds 

ratio in this study was higher than odds ratio reported by Kalkbrenner et al. (2012) and 

Mann et al. (2010) for U.S. populations but similar to those reported by Grazuleiciene et 

al. (2009) for smoking during pregnancy. The higher odds ratio observed in this study 

may be due to the use of three sources of parental smoking AGRE data or temporality of 

smoking (before pregnancy). Overall, data illustrated a significant and positive 

relationship between direct maternal smoke exposure and ASD case diagnosis in 

offspring. Due to multimodality of prior maternal smoke frequencies in the sample, there 

was no significant trend in smoke frequency (cigarettes smoked per day) to ASD risk 

despite access to three AGRE questionnaire data sources.   

Key findings from the exploration of maternal diet factors of intrapregnancy 

vitamin use and fish intake during pregnancy and lactation showed lack of maternal 
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vitamin use tended to be associated with increased odds risk of ASD in offspring, but the 

finding was not statistically significant. Odds ratio analysis showed ASD diagnosis given 

lack of maternal vitamin use was not significant, OR= 0.94, 95% CI [0.68 - 1.18]). Odds 

ratio obtained in this study is similar to odds, OR= 0.6,  95% CI [ 0.4 - 0.9] reported by 

Schmidt et al. (2011) for first trimester maternal vitamin use (n = 429) in a California 

study. Periconception timing and prenatal vitamin and folic acid fortification was shown 

to be significant in the first trimester (Lyall et al., 2014; Steenweg-de Graaff et al., 2014). 

There was insufficient response rate available for statistical analysis of maternal 

fish intake. Thus, there was a lack of evidence to analyze or conclude the direction or 

magnitude of the relationship of maternal weekly fresh fish intake to subsequent ASD 

risk in offspring defined by ADIR score. The survey instrument data for fresh fish intake 

was also collected more than 8 years after initial AGRE family enrollment and used a 

different AGRE sample. There was concern dissimilar timing of data collection for other 

variables, and fish intake may contribute history or maturation bias risks. Thus, maternal 

fish intake bivariate results were not available. 

The results for the hypothesized inverse association of lactation practice and 

duration with ASD suggested the relationship was not accepted. The alternative 

hypothesis predicted a positive association between any or dedicated lactation practice 

and ASD. While complimentary breast and bottle practice was reported in many AGRE 

cases and control records, there was good internal data agreement for bottle-fed only 

prevalence and dedicated lactation practice as coded from the AGRE questionnaire. The 

independent odds risk of ASD was estimated to be 1.47, 95% CI [1.05 - 2.08] for AGRE 
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children whose mothers reported dedicated lactation compared to those who were 

exposed to bottle feeding. Lucas (2011) and Field (2014) concluded atypical infant 

latching, suck, swallow, and insatiable feeding among at-risk and ASD cases based on 

retrospective study designs. Parental psychopathology may confound the social, bonding, 

and nutritional benefits typically associated with breastfeeding practice (Field, 2014). It 

seems plausible maternal nutritonal status, abnormal fetal development, or breathing 

issues may affect ability of infants subsequently diagnosed with ASD to perform nutritive 

breastfeeding capacity. 

Lactation duration greater than 6 months tended to be associated with higher ASD 

risk in the AGRE sample. Again, these results were not consistent with the hypothesized 

relationship. Li et al. (2014) reported that infants (n = 1,281) exclusively breastfed by 

WHO definition beyond 6 months had lower odds of sinus, ear, nose, and throat 

infections at age 6, but breastfeeding practice had no effect on upper respiratory or lung 

infections. Infant records were not adjusted for respiratory distress at birth in that study. 

Shamberger (2011) reported breastfeeding practice was associated with higher 

ASD risk among children of WIC families--a federal grant program for supplemental 

foods, health care referrals, and nutrition education for low-income pregnant, 

breastfeeding, and nonbreastfeeding postpartum women, and to infants and children up to 

age 5 (FNS, 2012). In the Shamberger study, infants who were exclusively breastfed 

tended to have diets with lower thiamine, riboflavin, and vitamin D than U.S. minimum 

daily requirements for these nutrients. In this AGRE study, nutritional status of mothers 

was designed to be approximated by maternal vitamin use and weekly maternal fish 
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intake. However, maternal fish intake data was largely unavailable. Multivitamin use 

results were not signficantly related to ASD risk, and the cross-tabulation analysis of 

maternal multivitamin use and dedicated lactation practice was not significant. The 

AGRE study results were not comprehensive enough in scope to address whether 

lactation competence, feeding difficulties, and/or maternal nutritional status are 

associated with multivitamin intake and/or offspring nutritional status. In addition, 

external validity of the effect and relationship of lactation to subsequent ASD risks is 

difficult to access due to a lack of published literature on the duration, degree of 

dedication, and subsequent offspring ASD risk.  

Access to the AGRE phenotypic and behavioral trait datasets provided an 

opportunity to review several preconception risk factors associated with ASD. Because 

the nature of the AGRE repository is genetic research, the control group included 

unaffected siblings, but also contained nonfamilial true control records. The composition 

of the AGRE reference cohort appeared to be a randomized, diverse subgroup of 

unaffected siblings which were skewed female, but also included a nonfamilial true 

control group which were skewed male. The overall prevalence of multiple birth records, 

lactation durations and covariates (parental age, preconception risk, obstetric risks) and 

proposed confounding child traits (sleep traits, asthma, allergies, and respiratory 

problems) mirrored the full AGRE cohort. The results suggest the control group was a 

suitable reference group despite a lower than ideal ratio of the overall number of 

matching controls to case child records.  
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Results for maternal direct smoke exposure replicated previous published 

prevalence data for U.S. sample populations (PRAMS, 2004).  In this study parents more 

frequently admitted to higher prevalence and daily frequency of smoking in prior periods 

(prior to child enrollment in AGRE, including teen, young adult and preconception 

period) relative to current period (at AGRE enrollment when offspring age averaged 8 to 

9 years). The results were similar to other parents in the US for birth reports for 2002 to 

2008 (Tong et al., 2011). In this study, temporality of smoking, and access to three 

separately collected data sources may have minimized data bias. 

In this study, internal data validity was verified using multiple AGRE survey 

instruments (all administered during initial family enrollment). Odds ratio analysis 

indicated odds of ASD diagnosis was 2.5 for mothers who previously smoked, and OR 

was 1.2 for mothers previously or ever exposed to secondary smoke. The effect of 

smoking during pregnancy showed a summary effect or average odds ratio of 1.2 for four 

previous studies (Gregory et al., 2013; Kalkbrenner et al., 2012; Grazuleiciene et al., 

2009) as shown in Table 3. Tran et al. (2013) also reported an odds ratio of 1.2,  95% CI 

[1.0 - 1.5] maternal smoking throughout pregnancy and autism; and the increased odds 

persisted after controlling for maternal age, socioeconomic and psychiatric status, and 

infant's weight for gestational age. The AGRE data results suggested maternal gravida 

was positively associated with prior direct maternal smoking behavior and daily smoke 

frequency. But maternal smoke frequency and gravida tended to be higher for female 

offspring, and among female controls compared to male cases or male control offspring. 



268 

 

McDonald et al. (2006) reported maternal smoking elevated umbilical cord levels 

of adrenocorticotropin hormone among 104 infants delivered by elective caesarean 

section. The authors speculated cigarette smoking may be associated with hypoxia-

related events as a result of hypothalamic-pituitary-adrenal axis involvement in "fetal 

programming" responses resulting in increased carboxyhaemoglobin, reduced placental 

oxygenation and uterine vessel vasoconstriction. Pedersen et al. (2013) reported presence 

of DNA placental cord blood methylation adducts was associated wtih maternal direct or 

secondhand smoke exposure and associated with intrauterine growth restriction.  

Conceptual framework. The temporal conceptual framework for this study was 

adapted from Burstyn et al. (2011). The researchers concluded fetal hypoxia was an 

effect variable in the relationship to ASD after adjustment for socioeconomic status, birth 

year, and fetal gender.  

Plausible explanatory hypotheses for hypoxia-ASD relationship described in the 

Burstyn et al. (2011) study included prenatal dopamine (serotonin inhibitor) exposure, 

maladaptive stress responses and/or gender-specific placental physiology. Stewart and 

Klar (2013) reported that double branching of bronchi in the lower lung airways (as 

opposed to typical, single branching) was a unique feature among children with ASD 

patients referred to an Arizona childrens' hospital between 2009 and 2011. A total of 459 

children were tested; all 49 children with ASD were also shown to exhibit doubled-

branching bronchi via photographic inspection. Habek and Kovacevic (2011) reported 

children of mothers who smoked had a high rate of fetal hypoxia verified by  utero 

ultrasound, and bronchoconstrictive syndrome at birth.   
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 Infant breathing or sleeping patterns were not expected to be main effect variables 

in this study as they may reflect congenital heart defects, asthma, or allergies. Robust 

methodology and survey instruments for characterizing infant sleeping and sleep apnea 

traits have not been standardized (Mahoney & Caterino, 2011; Young et al., 2009).  

However, the AGRE datasets contained binary responses to infant respiratory distress at 

delivery, and resuscitation (yes/no) at delivery for each of 902 records in the sample.  

These data were used to test the hypothesized confounding effect of infant breathing 

traits on the relationship of maternal health to ASD risk. Infant respiratory distress and 

resuscitation at delivery, by gender and birth type was studied. More than 85% of child 

records were for singleton births, with 14.5% reflecting multiple births. The rate of 

multiple births did not differ significantly for the 733 records used in predictive logit 

regression analysis of ASD risk. 

In this study, odds of infant respiratory distress was higher among male infants, 

regardless of case status. There was significant correlation between antecedent infant 

respiratory distress and resuscitation (p < 0.01) for the entire sample and by ASD status, 

which is logical. Respiratory distress was shown to be collinear with gravida, maternal 

age, multiple birth pregnancies, and obstetric risks. Factor analysis showed infant 

respiratory distress to be a critical covariate in the relationship of maternal smoking, 

lactation, and gender to offspring ASD. Inclusion of the binary response to infant 

respiratory distress (yes/no) improved predictive regression modeling more so than 

inclusion of maternal age, gravida, or multiple birth pregnancy.  Froehlich-Santino et al. 

(2014) reported respiratory distress, OR= 2.29, 95% CI [1.12-4.67] and other markers of 
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hypoxia, OR= 1.99, 95% CI [1.04-3.80] were associated with increased ASD risk in 

males in a California cohort of 194 twin pairs studied at Stanford University and 

diagnosed using aligned Standard University and AGRE definition of ASD.  

Temporality. AGRE lactation results suggested cases tended to have higher 

lactation duration even when both breast and bottle feeding practice was used. Parental 

response to dedicated lactation practice was reported to be more prevalent among cases, 

and male offspring, despite higher reported feeding difficulties among male offspring and 

ASD cases in the AGRE sample. The result that dedicated lactation was associated with 

increased risk of ASD was surprising but prevalence ratios mirrored other studies. Prior 

maternal smoking would be an antecedent factor to subsequent respiratory distress at 

birth, and lactation practice. In this study, odds ratio analysis for dedicated lactation, 

given prior maternal smoking behavior was suggestive (p = 0.10) but insignificant, OR= 

1.33, 95% CI [0.94-1.9]. Therefore, there was no significant correlation between maternal 

prior smoking and lactation practice among mothers. Alternatively, it is possible and 

consistent with the proposed theoretical framework that maternal smoking affected 

placental sufficiency, brain development, and fetal hypoxia (Habek & Kovacevic, 2011). 

These factors in turn, may affect respiratory distress at delivery, and in turn, affect 

subsequent nutritive breastfeeding capacity. 

Field (2014) and Lucas (2011) reported children with development delays and 

ASD had more difficulty with the muscle and breathing coordination required for 

nutritive breastfeeding. Lucas (2011) reported that bottle-feeding may be less strenuous 

for newborns. Schultz et al. (2006) reported risk of ASD was higher among infants who 
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were not breastfed, or fed infant formula without DHA fortification. Further, in an 

ecological study of mother's enrolled in the Supplemental Nutritional Assistance Program 

(SNAP; previously named Women's Infant and Children or WIC) showed exclusive 

breastfeeding was associated with lower thiamin, riboflavin and Vitamin D status among 

infants (Shamberger, 2011). Periconception folate levels have been shown to be 

significant predictors of ASD risk in offspring (Braun et al., 2014b; Lyall et al., 2014;  

Neggers, 2014; Steenweg-de Graaff et al., 2014). Mothers who smoke (as evidenced by 

serum cotinine levels) reportely have reduced blood folate levels (Prasodjo et al., 2014).  

In the AGRE sample, increased maternal gravida was shown to be associated with 

dedicated lactation practice, and dedicated lactation duration longer than six months. 

Feeding difficulty was also higher among male infants, which tended to be skewed to 

ASD case status. Giglia et al. (2006) reported that for a 12 month longitudinal study in 

Perth, Australia, women who smoked during pregnancy had lower prevalence and shorter 

duration of breastfeeding (average of 28 weeks versus 11 weeks) than nonsmoking 

mothers even after adjustment for maternal age, education, income, father's smoking 

status, breastfeeding intention, birth weight or mother's country of origin. In this study, 

the odds ratio point estimate for dedicated lactation, given prior smoking behavior was 

suggestively (p = 0.10) positive, but insignificant OR= 1.33, 95% CI [0.94-1.9]. 

A possible explanation in the AGRE study sample for the association of dedicated  

lactation and ASD risk may be that dedicated lactation practice and duration was also 

associated with multiple birth pregnancies and higher maternal gravida. There was 

suggestive evidence that dedicated lactation practice may be related to lack of optimal 
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maternal health and/or feeding difficulties. Due to multimodality of AGRE dedicated 

lactation duration data, there was no significant linear trend in lactation duration to 

subsequent ASD risk. Multiple birth pregnancy events and gravida was shown to be 

positively associated with dedicated lactation practice. Due to archival data source 

limitations, lactation duration data were not adjusted for maternal health status, lactation 

verification by physician records, lactation capacity or efficacy.  

Schultz et al. (2006) reported that mothers who recalled using infant formula 

without docosahexanenoic acid and arachidonic (DHA) had more than 4-times the risk of 

ASD; and mothers who did not breastfeed for the first six months had more than 2-fold 

the risk of offspring ASD diagnosis in an internet convenience sampling of ASD cases (n 

= 861). Dodds et al. (2011) reported OR= 1.2, 95% [1.0 -1.4] of offspring ASD among 

mothers who initiated breastfeeding in Nova Scotia hospitals (n = 924). The inverse 

relationship and OR magnitude between lactation and ASD in the AGRE study are 

similar to results of Dodds et al., (2011). Therefore, the unexpected positive association 

of lactation and ASD may be coincidental or affected by infant respiratory distress, 

nutritive suck, maternal health status, gravida, or parity. 

Posthoc results. Covariate analysis was studied for the proposed effect 

modification of maternal preconception health, parental age, and obstetric complications 

associated with the pregnancy or delivery. Gravida was found to be a covariate for 

several study variables including maternal age, child gender, lactation duration, and 

smoking behavior. Paternal age did not differ by case/control status or gender, but 

maternal age was significantly higher among females, and among controls. Maternal 
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gravida also tended to be higher among female controls compared to male controls or 

male cases. However, these covariate were collinear with respiratory distress. 

Maternal preconception health factors of diabetes, hypertension, anemia, low 

folate/neural tube risk/low vitamin B, and albuminurea by abnormal triple screen test did 

not differ among cases or controls. There was a possible suggestive trend for increased 

preexisting diabetes, anemia, gestational diabetes, in male offspring but the sample 

counts were very low (less than 1.5% of 902 records in the population). Prevalence rates 

for preconception risk factors were similar to other researcher findings and geographic 

sample groups. It was of interest that despite diligent maternal triple screen testing 

prevalence in the AGRE sample, less than one third of abnormal triple screen results 

were reportedly followed up with amniocentesis testing based on parental information.  

 Obstetric risk of preeclampsia and hyberbilirubin also did not differ by 

case/control status or offspring gender. For each maternal-child record, paired median 

differences in preconception risk and obstetric was studied a priori and via post-hoc 

analysis. Baseline preconception and obstetric risk indices were higher among children of 

multiple births versus singleton birth types. Results showed the maternal preconception 

risk and obstetric risk median difference was significant among singleton births, males, 

and cases. The rank median difference differed significantly for male births and cases, 

but not female births or controls. This may suggest infant gender may mediate the 

relationship of preconception maternal health status and obstetric risk. A second possible 

interpretation may be that preconception health and obstetrics may independently relate 
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to ASD. Suggestive evidence for the latter interpretation included the finding that birth 

specific nuchal cord issues at delivery were more prevalent among ASD cases. 

 Nuchal cord issues (a condition in which the umbilical cord is fully wrapped, 360 

degrees, around the neck of the fetus at time of delivery) parental self-reported responses 

to questions or comments about preterm labor, pitocin use, and gestational age of specific 

births were analyzed posthoc. The prevalence of nuchal cord issues differed significantly 

(p= 0.05) among cases (2.4 - 2.9%) and controls (8.6 - 9.8%) for both singleton and 

multiple birth records. Cesarean section delivery averaged 29%, but trended (p= 0.09) 

higher among cases (31%).   

 The median difference between preconception risk and obstetric risk appeared to 

co vary for the initial criteria of obstetric risk (preeclampsia and jaundice birth) as well as 

supplemental obstetric criteria (gestational diabetes, edema, preterm labor despite pitocin 

therapy, and nuchal cord issues at infant delivery). This result is in agreement with  meta-

analysis results of 77 studies analyzed by Duckitt and Harrison (2005). They reported 

preeclampsia was associated with preexisting diabetes, twin pregnancy, null parity, 

hypertension, anti-phospholipid antibodies, and higher body mass index and maternal 

age. In this study, paired maternal median differences among preconception and obstetric 

risk indices including supplemental obstetric risk criteria did not improve, but appeared 

to maintain the multicollinearity of preconception risk factors and obstetric risk indices. 

In addition, gravida also showed collinearly with obstetric risk. 

Proposed confounding variables were studied using the proxy variables of infant 

respiratory distress at delivery, and the need for resuscitation during infant delivery. 
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These variables were proxy definitions for interrupted infant sleeping and breathing, 

hypothesized to reflect possible SIDS and hypoxia risk which had been previously 

associated with ASD risk (Burstyn et al., 2011). In this study, odds ratio for the risk of 

respiratory distress given male birth (either singleton birth or multiple birth delivery) was 

1.25 regardless of case/control status.   

Maternal gravida was shown to be higher among female controls as well as 

female case offspring suggesting the suggestive offspring gender effects of respiratory 

issues, asthmas, and smoke exposure, may not be solely associated with the number of 

previous pregnancies or maternal preconception health status. Feeding difficulties, 

whether during breast or bottle feeding practice, tended to be higher among cases and 

males but may also be affected by gravida. 

The proposed direction of hypothesized relationships was as expected for 

maternal smoke behavior, prenatal vitamin use, preconception risk factors and maternal 

age with subsequent ASD risk in offspring. The hypothesized positive association of 

lactation duration to mitigate the risk of ASD was not evident based on dedicated 

lactation practice information. The AGRE database results suggested the multiple birth 

pregnancies and total number of maternal pregnancies (i.e., gravida) were significant 

factors in the relationship of main effect, hypothesized placental transfer related 

exposures such as prior maternal smoking, and possibly lactation, to subsequent ASD risk 

in offspring. However, the data also indicated infant gender appeared to have a 

significant and independent effect on infant respiratory distress and resuscitation required 

at delivery and ASD diagnosis as measured by ADIR criteria in the study.  
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Average maternal age was did not differ by gender for the combined sample of all 

birth types (singleton and multiple births); or  singleton births. Further data analysis of 

maternal age variable indicated a distribution skew above mean for multiple male births 

among older mothers. Among singleton births, maternal age was significantly (p = 0.03) 

lower for controls versus cases (30.8 versus 31.1 years, respectively). Paternal age did not 

differ by ADIR status, gender or for birth type (singleton or multiple birth pregnancies). 

Box plot analysis indicated for all offspring birth types, the distribution was significantly 

skewed to higher maternal age for female offspring. Previous researchers found a 

moderate (OR= 1.1 - 1.6) and independent effect of parental age on the association to 

ASD (Gregory et al., 2013; Grether et al., 2009). Lauritesen et al. (2005) reported 

parental age had a reduced effect (OR= 1.1 - 1.7) after adjustment for zygosity and 

socioeconomic status. AGRE prevalence rates for preconception risk factors of maternal 

diabetes, hypertension, and triple screen test positive results appear similar to that 

reported in other U.S. autism cohorts (Gardener & Lyall, 2014; Gregory et al., 2013; 

Krakowiak et al., 2012; Lawrence et al., 2008). Preconception and obstetric statistics, and 

missing value rate in the AGRE cohort corroborated the results of Wallace et al. (2008) 

who used similar AGRE data sets to study ADOS case criteria. In the AGRE cohort, pre-

existing, diagnosed maternal diabetes was reported for only 13 of 902 records (i.e. 1.3%) 

but prevalence was skewed to cases and males. Hypertension prevalence was estimated to 

be 8.9% in the AGRE sample with slightly higher levels in mothers of cases and male 

offspring. Krakowiak et al. (2012) reported preconception hypertension rates of 3.6% in a 
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California cohort, whereas Gregory et al. (2013) reported 5 to 7% hypertension 

prevalence  in a North Carolina cohort.    

Covariation.  In this study, mothers of singleton births had lower median 

preconception risk factor indices, lower average maternal age, parity, gravida, and lower 

obstetric risk factors than children of multiple birth delivery events. But across birth type, 

gender, and among cases, the median difference between preconception and obstetric risk 

factors was stable and significant (p = 0.05). This result suggested preconception and 

obstetric risk (as originally defined and proposed to reflect preeclampsia and jaundice 

birth delivery)  may have covaried positively with each other, consistent with prior 

literature (Duckitt & Harrington, 2005). Paired median maternal differences in initially 

defined preconception and obstetric risk indices differed significantly for male births and 

cases, but not female births or controls in this study. This may be an artifact of sample 

size effect, or may suggest infant gender and/or gravida may mediate the relationship of 

preconception maternal health status and obstetric risk.  

Alternatively, preconception risk and obstetric risk may be independent factors 

which are mediated by fetal gender in the relationship to ASD risk. This study concluded 

obstetric risk was not a covariate in the relationship of pregnancy factors and ASD risk. 

However, obstetric risks (preeclampsia and/or  jaundice delivery) were associated with 

respiratory distress at delivery. Posthoc AGRE evidence identified a broad dimensional 

risk effect for preconception and obstetric risk for parents who may have used fertility 

treatment. Birth specific obstetric risks, such as the prevalence of nuchal cord issues 

differed significantly (p= 0.05) among cases (2.4-2.9%) and controls (8.6-9.8%) for both 
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singleton and multiple birth records. Cohort cesarean section delivery averaged 29%, but 

trended (p= 0.09) higher among cases (31%).  

Infant breathing and sleeping patterns were presumed to be study confounders, 

which may represent underlying congenital heart defects, asthma, allergies, symptoms of 

psychotherapy medication, comorbid mental health conditions, or ear infections 

(Hartshorne et al., 2009). Methodology and survey instruments for infant sleeping and 

sleep apnea traits are not well  standardized (Mahoney & Caterino, 2011; Young et al.,  

2009). In this study, sleep disorder onset and sleep traits (unadjusted for asthma, 

allergies, ear infections or psychotherapy medications) did not differ by case status. 

Froehlich-Santino et al. (2014) reported respiratory distress, OR= 2.29, 95% CI [1.12-

4.67] and other markers of hypoxia, OR= 1.99, 95% CI [1.04-3.80] were associated with 

increased ASD risk in males in a California cohort of 194 twin pairs.  

Fetal respiratory distress, and the need for resuscitation were studied as possible 

proxy variables for hypoxia related risk factors associated with ASD (Burstyn et al., 

2011). The AGRE data suggested odds ratio for these traits were higher among male 

children (OR= 1.25), regardless of case status. Respiratory distress was shown to be 

collinear with gravida, maternal age, multiple birth pregnancies, and obstetric risks. 

Factor analysis showed infant respiratory distress to be a critical covariate in the 

relationship of maternal smoking, lactation, gender to offspring ASD. However the 

causality and primal determinant for the covariate effect is unclear. 

Serotonin and dopamine dysregulation may be associated with hypoxia; a SIDS 

and ASD risk factor (Previc, 2007). Atypical bronchial airway development may be 
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another factor in the association of hypoxia, respiratory distress, and ASD risk (Stewart 

& Amar, 2014). Other California cohorts have conducted respiratory distress and hypoxia 

were significantly associated with ASD risk (Froehlich-Santino et al., 2014). In this study 

there was significant correlation between  antecedent infant respiratory distress and 

resuscitation (p < 0.01) for the entire sample and by ASD status, which is logical. In the 

AGRE cohort, male infant gender was associated with higher respiratory issues at birth, 

and in childhood years. Therefore the data may suggest a conceptual alignment with 

hypoxia related factors and SIDS as was reported by Burstyn et al. (2011) and Froehlich-

Santino et al. (2014).     

 Plausible mechanisms. The constructs of biological susceptibility, multi-factor 

liability threshold, and fetal programming were used to inform the theoretical study 

framework shown in Figure 2. While Tsia et al. (1981) described the theorized 

mechanism as more complex than the classic environmental exposure-dose-disease 

model, the concept did not address genetic variability or temporal factors of exposures or 

childhood developmental risk profiles that may be associated with autism. Glasson et al.  

(2004) discussed genetic susceptibility as the primary etiological role of subsequent ASD 

in offspring. Cohen et al. (2005) argued that epigenetic reactions between exposures and 

gene alleles and expression mediate potential genetic susceptibilities which may be 

associated with ASD. 

There has been no consensus on the definition of “genetic susceptibility” to ASD, 

and genomic studies have been inconclusive (Tjordman et al., 2014).  Dodds et al. (2011) 

used the term to represent an ASD case subject having an affected sibling, or mother with 
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a history of psychiatric or neurologic condition. The use of the AGRE familial registry 

which contained sibling controls, and nonfamilial controls was expected to control for 

potential "genetic susceptibility". However, there was inadequate statistical power to 

analyze only family-wise associations as was done previously using the AGRE cohort 

(Anello et al., 2009). 

The findings of this research suggest the hypothesized main effect variables, 

which represent periconception period (prior maternal smoking), prenatal exposures 

(maternal vitamin use), and early neonatal exchange (lactation) were main predictors in 

the relationship to offspring ASD. Temporality of exposure were presumed by variable 

definitions;  maternal smoking prior to pregnancy, intrapregnancy maternal multivitamin 

use and fish intake, and lactation duration. But the causative and primal mechanisms 

were not more readily discerned due to lack of specificity on the initial timing of 

maternal vitamin use, and lack of maternal fish intake data before and during pregnancy. 

Further, this study did not associate genetic allele forms to maternal or infant health 

status or address multiple birth pregnancies, or lactation capacity as a priori variables. 

Infant respiratory distress at birth was presumed to be a confounding variable, but the 

analysis showed it was a key covariate in the predictive final model. In addition, no direct 

biomarker data was available to address plausibility of placental transfer mechanisms as 

the primary etiologic pathway associated with subsequent ASD risk in offspring.  

The concept of fetal programming has been expanded to consider a dynamic 

interaction between fetal development and growth, and unique and fluctuating maternal 

health status (Finney-Brown, 2011; Lillycrop 2011; Pedersen et al., 2013). Recent 
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research in placental transport and physiology has provided evidence that fetal 

programming may provide an explanatory mechanistic framework for the trigger events 

and consequences which affect fetal development and ASD risk (Neggers, 2014; 

Pedersen et al., 2013; Salafia, 2011; Sibley, 2009).  

Within the AGRE cohort, several birth-specific obstetric risks were reported 

which may have contributed to the statistical significance of infant respiratory distress at 

birth in the finalized, predictive regression equation (see Table 16).  In this study infant 

respiratory distress was collinear with resuscitation at delivery (as expected), child 

gender, maternal age, multiple birth pregnancies, and obstetric risks. However, the study 

design could not discern whether infant respiratory distress was primarily independently 

associated with genetic susceptibility, periconception health, or child gender. Recent 

studies also report respiratory distress, hypoxia and bronchial anatomy are independent 

predictors of ASD risk (Froehlich-Santino et al., 2014; Stewart &  Klar, 2013). However, 

neonatal physiology may reflect periconception health (Habek & Kovacevic, 2011). The 

design of this dissertation helped to prioritize temporality of fetal and neonatal exposures 

which may be associated with subsequent ASD risk, but the study design could not 

inform ASD etiology mechanisms. 

It  was  of interest to characterize the impact of critical windows of environmental 

exposure affecting ASD risk in a well-characterized genome to determine baseline 

information as to whether these factors occur at random, contribute to some threshold 

level of ASD risk, or are attributed to placental transfer mechanisms. Prior maternal 

smoking was shown to be antecedent, and associated with higher odds ratio than lactation 
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practice in this study. Infant respiratory distress at delivery is likely an antecedent factor 

to lactation practice. Infant respiratory distress may reflect preconception, pregnancy 

risks, or birth specific obstetric risk. Increased understanding of preconception, prenatal, 

and neonatal health factors within a genetic cohort may inform ASD etiology. The 

investigation of relationshipsof these factors to the gender-risk differential in ASD 

remains unclear since prevailing theories of associated biological pathways dysfunctions 

associated with autism do not account for gender-related risk factors.  The 

interrelationships and hierarchy of shared and unique factors that influence the gender-

differential of ASD deserve further study. 

   Limitations of the Study 

The goal of the proposed retrospective, case-control design was to articulate an 

exposure-timing relationship for ASD, with minimal uncertainty bias, measurement, and 

recall bias with regard to health behaviors such as dietary intake, maternal household 

smoke exposure and health status; and adjustment for unique obstetric risks which may 

confound the relationship of dominant risk factors of ASD, and the ASD gender 

differential. Archival behavioral datasets were obtained in order to ensure adequate study 

sample size to study ASD gender differential. Due to the nature of the sampling frame, a 

genetics family-based registry for children diagnosed with autism spectrum disorders, the 

availability of matched controls was somewhat limited and may have affected findings. 

Increased preconception maternal health risk factors, as well as increasing maternal age 

and family size (gravida) were also directionally associated with higher ASD risk. 

Several distal covariates were identified a priori, but the AGRE datasets included 
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additional factors which were shown to be covariates, and exhibited multicollinearity 

with proposed preconception risk factors, maternal age, and obstetric risks. Other 

limitations of the AGRE study and research design are described in this section.   

ASD Case Definition 

 

The original proposal intended to define positive ASD case diagnosis as ADOS 

score above a standard cutoff value and ADIR cutoff value (Norris, Lecavalier, & 

Edwards, 2012; Zerbo et al. 2013). Norris et al. (2012) compared ADOS Modules 1 and 3 

among 1,409 AGRE subjects aged 3-18 years and found predictive modeling against 

DSM-IV criteria and the anticipated DSM-V model were affected by child age and 

functioning. ADOS Module 3 (fluent speech for children older than 12 years age) showed 

lower indices of fit and lower inter-factor correlations than Model 1 (lack of phrase 

speech, three word and spontaneous meaningful phrases) for an AGRE sample population 

of 80% male children and 20% Hispanic/Latino ethnicity. Less than 3% of AGRE 

recruited children represent African-American ethnicity (Hilton, et al., 2010).  

Since the average age of the enrolled children (enrolled from 2000 to 2004) 

ranged from 9 to 10.5 years old, ADOS-G, Module 2 which measured Phrase Speech 

competence for children younger than 12 years of age was initially proposed to be used 

as the case definition criteria. While AGRE catalogued data for ADOS- Modules 3 

(fluent speech for children older than 12 years of age, (n=1161 records) Module 3 did not 

appear appropriate for the Affected child cohort demographics because the median age of 

the sample cohort in this study was 9.5 years. Norris et al. 2012 showed ADOS-Module 3 

had lower correlation to DSM-IV and anticipated DSM-V criteria for the AGRE 
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population. Further, ADIR is considered a more strict ASD criteria (Martin & Horriat 

2012). In addition, factor analysis for predictive ASD is most commonly done using the 

formalized interview format used to construct ADIR scores (Norris et al., 2012) because 

ADIR is considered a more strict ASD criteria (Martin & Horriat). Therefore it is 

assumed ADIR was an adequate case criteria for the dependent variable. The use of a 

strict definition of ASD (ADOS and ADIR scores) to assess risk metrics may help to 

better understand contributions of temporal preconcpetion, pregnancy, and neonatal traits.   

Smoking Variables 

 

Direct and indirect smoke exposure was defined to minimize type I error. But the 

placental transport mechanism theory may also be valid for indirect (second hand) smoke 

exposure as well as direct maternal preconception smoking risk. The temporality and 

onset of smoking was vaguely defined as "prior" to AGRE enrollment versus "current". 

Figure 5 shows internal validity of prior smoke exposure may be suspect; conversion of 

data to ranked categorical results was conducted to reduce effects of misclassification 

bias for smoke frequency.  The validity of results of this study would be enhanced by the 

analysis of indirect maternal smoke exposure, and/or "ever" smoked exposure, should 

that data also show a signficant positive association with subsequent ASD among 

offspring in the AGRE cohort.  In addition, the conversion of the survey instrument 

response scale from an open-text field to a continuous or ordinal scale may improve data 

quality and minimize potential coding and misclassification bias. 
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Maternal Diet Variables 

The initial proposal intended to obtain information about preconception maternal 

diet adequacy through proxy variables for intrapregnancy multivitamin use, and the 

discernment of cold water and fresh fish intake on a weekly basis through dietary recall 

method. AGRE prevalence rate of maternal vitamin use (30% ) was similar to other U.S. 

pregnant women cohort data; 35% (D’Angello et al., 2007) or mothers of a younger birth 

cohort; 23-45% (Sullentrop et al., 2006). However, the data for vitamin use was initially 

missing in 45% of records, and the data available on cold or fresh water fish intake 

(which has higher comparative levels of DHA and EPA oils versus other protein sources) 

was not available. Multivitamin use behavior was assumed to be similar for multiple birth 

pregnancies and subsequent offspring in data recoding protocol for this study; which may 

have introduced misclassification bias of binary responses.  

The data availability on fresh fish intake was also severely limited, and the 

Mothers and Metals survey instrument was administered nearly a decade after families 

enrolled in AGRE and completed other survey instruments and data records used in this 

study. Therefore, there was insufficient evidence to address the proposed relationship of 

maternal diet adequacy with regard to lipid, protein and calcium status. Additional 

maternal nutritional health information including a dietary recall of dairy products, 

Vitamin D, and fish intake may have helped to inform the unexpected result that 

dedicated lactation practice at durations longer than six months was associated with 

increased child ASD risk in the AGRE study.  
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Lactation Practice 

Internal validity of lactation practice and duration was complicated since the 

results required separate analysis of the degree of dedication to lactation, as well as 

lactation duration.  Lactation practice and duration included responses from mothers who 

may have casually attempted breastfeeding, who used both breast and bottle feeding, and 

others who reported only dedicated lactation. However, internal validity of lactation 

practice by dedicated mothers showed good internal agreement for any duration and 

dedicated lactation duration values. 

 Multiple birth pregnancy events and gravida was shown to be positively 

associated with increased dedicated lactation practice. But the AGRE survey instruments 

and data did not discern the frequency or proportional use of lactation relative to bottle 

feeding, or ask about the age of transition from breastmilk or formula to solids foods.  In 

addition, in this study, there was no significant association between dedicated lactation 

practice and intrapregnancy maternal multivitamin use. Lactation efficacy, competence, 

and infant nutritional status was not analyzed.  

Feeding difficulty responses (binary, intervention type, and comment questions) 

were available for Affected Child and Unaffected Sibs with 86 or 9.5% missing values 

for all records within the AGRE cohort. Feeding difficulty data included only parental 

self-reported  responses. Feeding difficulty comments were defined and coded as 

“gavage/tube feeding, special nipples, thick formula, special formula or multiple 

interventions”. Therefore, most feeding difficulty comments appeared to reflect bottle or 

infant formula feeding practice. However, other comments described comments that may 
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be related to infant physiology rather than feeding practice. Open-text comments for 

feeding difficulty included “tube feeding, special nipples, or special formula” (n = 6 

counts each), “soy formula” (n= 4 counts , “colic .. GERD... [or] … reflux” (n =7 

counts).  "Colic, GERD [and] reflux" comments were mentioned in 7 records of mothers 

who reportedly breastfed infants. Lactation durations were not adjusted for feeding 

difficulty responses, since the original study design did not further qualify lactation 

efficacy.  AGRE survey instruments and available retrospective data files did not address 

questions related to lactation efficacy or perception of competence by lactating mothers. 

That result is not unexpected since the focus of the AGRE data repositories have 

historically been genetics research and biospecimen markers of autism spectrum 

diagnosis. Therefore, while there may be risk of recall or misclassification bias, and lack 

of information on lactation capacity, frequency or age of transition to infant formula, 

other beverages, or solid foods, the results suggested lactation practice was associated 

with multiple birth pregnancies, gravida, respiratory distress, and ASD. 

Unaffected Sibling Controls 

 No prior published AGRE phenotypic data has been identified with regard to 

studies of lactation practice and duration, parental or maternal smoke exposure or 

maternal diet factors associated with ASD outcome.  That finding was not surprising 

since the focus of AGRE research has been genetic biomarkers of ASD with biospecimen 

samples as primary data sources. The focus on genetic research has also constrained the 

opportunity for AGRE case-control studies based on phenotypic database sets. Therefore 

unaffected siblings were often used as  'controls' within the AGRE research community. 
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Unfortunately the archived data did not provide more than one control record per case 

record. This study did not attempt to associated particular genetic alleles associated with 

smoking behavior as published in the literature (Grazuleiciene et al., 2009; Nijmeijer et 

al., 2010; Schmidt et al., 2011; Wilhelm-Benartzi et al., 2012) 

In this study, despite a lower than ideal ratio of the overall number of cases to 

control records, analysis of nonfamilial controls and unaffected siblings which 

represented the control group illustrated adequate diversity and minimal selection bias. It 

was of interest to explore in this study, the impact of shared environmental exposures 

(familial members) on ASD case status.  However, the survey instrument and records for 

unaffected siblings were not as complete and the survey instrument used for parental self-

reports in the Unaffected Sibs database was not the same survey used for Affected Child 

questionnaire responses. And, because of a  lack of multiple non-familial controls per 

case, the study of covariation and tests of collinearity was complicated. Future research 

which allows for a higher case:control matching ratio, additional recruitment of non-

familial control particpants, and standardized, systematic administration of the Affected 

Child survey instrument to all participants may improve AGRE database robustness. 

Gravida  

Among AGRE singleton births, gravida, or number of total pregnancies, including 

all non/spontaneous abortions, varied by ADIR status for all birth types (p = 0.01). For 

singleton births, control group mothers (n = 296) had 2.5 previous pregnancies, 95% CI: 

[ 2.4, 2.7] and cases averaged 2.1 gravida, 95% C [1.9, 2.2]. Parity, or number of prior 

births who lived to at least 24 weeks, differed by gender for all birth types (p = 0.04). 
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Gravida was not an initially proposed covariate, but was indicated in this study to be 

positively associated with increasing prior smoke frequency and prevalence, dedicated 

lactation practice and duration, maternal age, female offspring, and control case status. 

Gravida and birth order were not identified a priori but could have been anticipated given 

the familial nature of the AGRE recruitment and registry. The use of assisted 

reproductive technology by parental age was also not controlled in this study.  

 Martin and Horriat (2012) studied ASD symptom severity across birth order in an 

AGRE cohort as an indication of shared environmental factors which may affect ASD 

etiology. ASD severity was measured by verbal and nonverbal cognitive and repetitive 

behavior tests for 346 sibling-pairs. They reported first affected children had greater 

severity of ASD symptoms particularly if girls were the first-born child. Declines in both 

verbal and nonverbal communication were demonstrated with second affected children 

within a given family. 

Previously in the AGRE cohort, Lee et al., (2008) reported a trend toward higher 

ASD among singletons and multiple births born in April, June, and October. ASD 

concordant multiple births were higher in March, May, and September. The authors 

concluded nonheritable factors during the pre or perinatal period influenced ASD risk and 

gender differential ASD risk. Confounding factors (beyond preconception health and two 

obstetric risks) were not adjusted for maternal age. 

AGRE parental age cohorts had been previously investigated in the relationship of 

offspring sex ratio and ASD (ADIR and ADOS criteria) using five-year maternal age 

cohort intervals (< 30, 30-34, 35-39, 40+) , and 393 affected children. Among 320 males 
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and 73 affected females, the affected child ratio of males to females was not associated 

with maternal or paternal age despite similar exclusion criteria used in this study. While, 

the researchers may not have adjusted for ADOS module, gravida (prior pregnancies 

including all abortions), multiple births, or parity (number of prior births surviving to at 

least 24 weeks age) in their study, the overall lack of evidence of a relationship of 

parental age and ASD mirrors the results of this study. Anello et al. (2009) investigated 

the relationship of offspring sex ratio and ASD using a generalized linear mixed model to 

control for sibship membership by treating all affected children from one family as a 

cluster and designating a random, family-wise coefficient (Anello et al.). Increasing 

paternal age was shown to reduce the AGRE cohort male:female ratio of offspring ASD 

diagnosis. The authors did not disclose whether the family-wise coefficient was adjusted 

for parity, gravida, or birth order. 

Cantor et al. (2007) earlier studied the relationship of AGRE paternal age in first-

born ASD cases as defined by ADIR scores for nonHispanic families for mothers less 

than 36 years old.  Among the 312 families and 137 children, none of the fathers were 

older than 50 years but the data suggested a trend toward higher risk of ASD with 

increasing paternal age. In this study, the AGRE sample of Affected Child and 

Unaffected Sib records contained 20 records of extreme paternal age and 5 records of 

extreme maternal age. These extreme records (Quartile 3+ 1.5 times interquartile range) 

were all associated with cases (children with ADIR scores of one). In this current study, 

extremely low maternal ages (n = 2) and paternal ages (n = 3) were also identified and 

associated with case records. However, the mean and median parental ages in this study's 
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AGRE sample matched that reported in Cantor, et al., (2007). In this study  parental age  

covariate was not adjusted for gravida, parity, or assisted reproductive technology use.   

Recommendations 

 The conceptual framework adapted for this study, shown in Figure 2 hypothesized 

the plausible mechanisms of placental transfer and multiliability thresholds, and fetal 

programming may be the main effect relationship to subsequent ASD risk in offspring. 

The assumed framework attempted to account for temporality of risk factors, in 

preconception, conception, and neonatal phase. Adequate sample size in the retrospective 

case-control design was obtained to study the gender effect of ASD and the ASD gender 

differential. However, this AGRE study did not control, fully address, or adjust for 

potential confounding variables or use the initially proposed "strict" definition of ASD 

(ADOS and ADIR score criteria). Internal validation, adequate matching among cases 

and controls, and  database robustness were other limitations identified which may 

provide additional insight into ASD risk profiles and autism etiology. 

 The key findings of this study showed prior (periconception and prenatal) 

maternal smoke exposure was significantly associated with high odds of subsequent 

offspring ASD diagnosis by ADIR score criteria. While this study used three estimates of 

maternal smoking, considerable variability was illustrated in daily smoke frequency 

responses (see Figure 5). The use of a continuous or ordinal response scale in subsequent 

studies may improve data quantification with regard to daily maternal smoke exposure 

risks. With specific relevance to the AGRE data collection, because of the significant 

relationships between prior maternal smoking behavior and offspring ASD, it may be of 
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interest to determine whether there is a relationship between particular genetic alleles 

previously associated with maternal smoking and offspring ASD (Grazuleiciene e al., 

2009; Nijmeijer et al., 2010; Wilhelm-Benartzi et al., 2012) as shown in Table 3. Among 

AGRE offspring whose mothers reported smoking, the association of genes levels and 

expression associated with gender-differentiated xenobiotic clearance in rodent models 

(i.e. PON1, CYP and GST genes) may be of future research interest to further investigate 

the ASD gender differential (bin Ali et al. 2003; Thomas-Moya et al., 2006).   

 AGRE data availability and quality of maternal diet factors (fish intake, nutrient 

adequacy, multivitamin use, dairy, Vitamin D, lipid and protein intake) was less than 

ideal. Fish intake data was collected 8 to10 years after initial enrollment, and collected 

for other research purposes (i.e., Metals and Mother survey instrument). Additional 

information regarding maternal health status before and during conception and pregnancy 

may improve the ability to discuss plausible mechanisms for placental transfer, 

multiliability threshold, and fetal programming. Within the AGRE data collection, the 

relationship between maternal multivitamin use and offspring ASD as affected by 

COMT, MTHFR and CBS genetic alleles may be studied to reproduce the results of 

Schmidt et al. (2011) who used a different but overlapping cohort.  

 The results showed unexpected results for the direction and magnitude of the 

relationship of maternal self-reports of dedicated lactation practice and duration and ASD 

risk. The unexpected result may be associated with recall bias, or scaling-effects due to 

the use of open-text field duration questions. Conversely, the unexpected positive 

association of lactation to ASD risk should be re-analyzed with adjustment of metrics for 
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lactation competency, other infant beverage and food intake, maternal infant status, and 

validation of lactation practice efficacy. 

 The use of the AGRE genetics database archival data provided an opportunity to 

explore behavioral traits which may supplement genetic and epigenetic studies using this 

population.  However the datasets were somewhat restricted in the ability to capture 

additional nonfamilial control sample data records. In addition survey instruments 

differed among case and control questionnaires, even for offspring from the same 

mother's history profile. This complicated data comparability among cases and controls. 

Therefore, while the target sample size of female case and control records were obtained, 

the extent of missing, incomplete and blank values for key variables, such as maternal 

health status and nutritional status factors, were widely unavailable. 

 Infant gender-stratified results showed a statistical trend (p = 0.10) for prior 

maternal smoking behavior and ASD for boy and girls when analyzed separately or in 

combination.  However, due to the small number of female children (n =177) in the 

AGRE sample, the ability to identify statistical significance for gender stratified analysis 

was limited (see Table 13). However, infant respiratory distress was found to be a key 

risk factor and covariate among male children, regardless of case/control status. 

Additional research with larger sample sizes is needed to better inform the ASD gender 

differential to provide insight into primary prevention strategies. 

 Respiratory distress at birth was a covariate, rather than a confounder in the 

relationship of pregnancy factors to ASD risk. Multiple birth deliveries, gravida, maternal 

age, and obstetric risk criteria illustrated colinearity with respiratory distress at birth. 
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These covariates also were associated with maternal smoking and dedicated lactation 

practice. Inclusion of respiratory distress improved predictive relationships of pregnancy 

factors to ASD.   

 There was insufficient AGRE evidence to determine whether infant respiratory 

distress was an antecedent proxy variable for ASD risk as previously proposed by 

Burstyn et al., (2011). There was also insufficient evidence to determine whether infant 

respiratory distress was a precedent outcome of maternal smoking during pregnancy. 

There was significant evidence (p = 0.03) respiratory distress was associated with birth 

specific obstetric complications of preeclampsia and jaundice. Future AGRE database 

studies should consider a priori sample size adjustment of proposed ASD risk factors for 

multiple birth deliveries, gravida, and parity. 

 Preconception health risk factors were defined in this study to include pre-existing 

diabetes, hypertension, anemia, low vitamin B, folate/neural tube risk, albuminurea. Data 

for preconception and health risk factors among records for affected children were fairly 

thorough.  With regard to preconception health and reproductive risk factors, the maternal 

self-reported data indicated fewer than one-third of abnormal triple screen result were 

followed up with amniocentesis testing during pregnancies. This finding, if substantiated 

by physician report, may suggest more intensive follow-up may improve pregnancy 

outcomes or risk diagnosis for obstetric complications. Posthoc analysis indicated 10 

broadly defined obstetric and preconception risk factors tended to be associated with 

fertility treatments for both cases and controls. Thus, adjustment of preconception factors 
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for assisted reproductive technology in future studies may improve predictive 

relationships of these and other factors to ASD risk.  

 Temporality of exposures associated with ASD showed maternal prior smoking 

was antecedent to infant respiratory distress at delivery. Respiratory distress at delivery 

was identified and defined as antecedent to dedicated lactation practice. These exposure 

relationships to ASD  may be linked to in utero fetal hypoxia and respiratory distress at 

birth, and/or multiple birth deliveries, gravida, and/or  perhaps prenatal maternal 

nutritional status.  

 Plausible relationships between maternal smoke exposure and offspring ASD, the 

potential association of infant respiratory distress and maternal smoke exposure, and the 

unexpected association between dedicated lactation and ASD risk suggests additional 

primary and secondary reproductive health interventions focused on optimal reproductive 

maternal health status before, during and after pregnancies would be helpful. Access to 

reproductive health education, smoking cessation, family planning, preconception health  

and maternal and child nutritional education programs as well as lactation education, 

awareness and competency building programs are additional public health implications 

associated with results of this study. 

Social Change Implications 

 The concepts of placental transfer and multiliability thresholds as plausible 

mechanisms which may explain the risk of ASD in offspring (Neggers, 2014; Pedersen et 

al., 2013; Salafia, 2011; Sibley, 2009)  have several implications for family planning, 

reproductive health education, medical and obstetric care and breastfeeding promotion. In 
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this AGRE study using phenotypic data for a family-based genetics registry, family size, 

multiple birth events, and male fetus appear to be related to high risk factors for infant 

respiratory distress and subsequent ASD diagnosis. Maternal smoking behavior prior to 

the pregnancy or fetal delivery, and dedicated lactation practice was also positively 

associated with ASD risk in the AGRE sample. These factors are controllable decisions 

related to behavior and education, rather than genetic risks. The temporality of these 

factors suggest primary reproductive health programs may influence the subsequent 

diagnosis of offspring ASD as primary, rather than teriary ASD mediation programs.   

Investment in maternal and child health may also have broader benefits beyond ASD risk 

and diagnostic ASD outcomes. 

 In 2002, between 23 to 34% of SIDS deaths among U.S. infants was attributed to 

prenatal smoking (CDC, 2013). Unfortunately, smoking prevalence before, during, and 

after pregnancy in the U.S. has not changed or been reduced over the period 2000 to 2010 

(CDC, 2013). Thus, reproductive health education programs must focus on smoking 

cessation. Prior periconception maternal smoking may affect fetal hypoxia risk and 

respiratory distress (Froehlich-Santino et al. 2014;  Habek & Kovacevic, 2011). Maternal 

nutritional and placental health may also likely be adversely affected by preconception 

maternal smoke exposure; via direct or indirect maternal smoke exposure. 

 Placental transfer and placental dysfunction, maternal diet, fatty acid, and fat 

soluble vitamin status (i.e. vitamin D)  research are active research areas associated with 

“fetal programming” hypotheses (Baker et al., 2010; Novak & Innis, 2012; Robinson et 

al., 2010; Saugstad, 2011). Low maternal vitamin D levels in the third trimester of 
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pregnancy have also been associated with risk of subsequent autism (Dietert et al., 2011). 

Therefore, maternal nutritional adequacy likely affects birth outcomes, fetal health, and 

subsequent risk of ASD diagnosis in offspring. 

  Optimized primary reproductive health may benefit from greater focus on family 

planning, birth spacing, risk-benefit analysis of assisted reproductive technologies, and 

preconception health status. In this study, abnormal triple screen follow-up consulation 

was reportedly less frequent for affected male fetuses (52.5%)  than affected female 

fetuses (58.5%), suggesting disciplined prenatal monitoring may be critical. In this study, 

infant males, regardless of case/control status appeared to be at risk for respiratory 

distress and resucitation at delivery. 

 Data for maternal triple screen test, which tested for alpha-fetoprotein (AFP), 

human chorionic gonadotropin (hCG), and estriol (uE3) were available in the Affected 

Child database. This triple marker tests is a prenatal screen, typically done at 15 to 20 

weeks gestation, to test for birth defects, including Down’s syndrome, spina bifida, and 

anencephaly (American Pregnancy Association, 2006). Positive maternal triple screen 

test may indicate Down's syndrome, risk of spina bifida or low vitamin B/folate, or 

abnormal  kidney or albuminurea diagnosis. Preconception health, increased maternal 

age, preeclampsia and jaundice birth were suggestively associated with higher ASD risk, 

as were birth-specific obstetric issues such as nuchal cord issues which may induce 

hypoxia or fetal respiratory distress. Therefore, comprehensive reproductive health, 

including fetal monitoring, and optimized delivery procedures, may mediate gender-

associated risks associated with subsequent ASD risk. 
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  Maternal prior smoking behavior, prental dietary status, and gravida may affect 

placental transfer of nutrients in utero, as well as postdelivery lactation efficacy. 

Lactation efficacy may also be associated with  ASD risk based on the AGRE responses 

to "feeding difficulties", particularly among male infants. Birth facilities that provide 

recommended nutritional and medical care and postdelivery instruction for lactating 

mothers, and worksite lactation support programs are also strongly encouraged by 

Healthy People 2020 goals (DHSS, 2014).   

Conclusions 

In this study, using retrospective, archived phenotypic datasets for a family-based 

genetics data registry, several behavioral related risk factors were associated with ASD 

risk in a case-control study design. These behavioral risk factors are currently and readily 

addressed in reproductive and maternal health education guidelines focused on primary 

prevention education. Additional behavioral risks identified in this study are addressed in 

pregnancy monitoring and medical follow-up procedures for obstetric and gynecologic 

health before and during pregnancy. Nutritional education, and healthy balanced dietary 

guidelines also reinforce behavioral risk factors identified in this study. It is anticipated 

that a refocus on these existing, well-established and current public policy practices may 

have additional advantages in enhancing fetal health. 

Prior maternal smoke exposure and infant respiratory distress at birth, and 

lactation was associated with subsequent risk of ASD diagnosis in offspring. Maternal 

and household smoke exposure is a controllable, health behavior which affects infant 

SIDS risk as well as ASD risk for children. More than one-fourth of infant deaths are 
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SIDS related, but the prevalence of smoking before, during and after pregnancy has not 

declined over the period of 2000 to 2010 (CDC, 2013). 

Multiliability threshold and/or placental transfer construct theories may explain 

plausible mechanisms associated with increased ASD risk in offspring for variables in 

this study.  Temporality of mechanisms may affect ASD risk development. It was shown 

prior maternal smoking was antecedent to infant respiratory distress. Respiratory distress 

at birth was identified as an antecedent to dedicated lactation which significantly related 

to subsequent ASD risk.     

A better understanding of the factors that affect ASD and the ASD gender 

differential may inform reproductive risk profiles and public health policy efforts aimed 

at women of childbearing age. In this study, the exposure-timing risk relationships were 

suggestively related in meaningful, plausible, temporal ways.  It is my hope study 

outcomes may reinforce the need for primary reproductive health are, and challenge the 

immoderate focus on tertiary care, mediation, and management of ASD symptomology 

toward primary preventive reproductive and prenatal health care. 
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Appendix A.  Diagnostic Criteria for Clinical Autism Spectrum Disorder 

 

Autistic Disorder— DSM-IV Diagnostic Criteria (diagnostic code 299.00) 

  A total of six (or more) items from A, B, and C, with at least two from A,  

  and one each from B and C:  

 

A. Qualitative impairment in social interaction, as manifested by at least two of the following:  

B. Qualitative impairments in communication as manifested by at least one of the following:  

 1. Marked impairment in the use of multiple nonverbal behaviors such as eye-to-eye 

     gaze, facial expression, body postures, and gestures to regulate social interaction  

 2. Failure to develop peer relationships appropriate to developmental level ** 

 3. A lack of spontaneous seeking to share enjoyment, interests, or achievements with  

     other people (e.g., by a lack of showing, bringing, or pointing out objects of interest)  

 4. Lack of social or emotional reciprocity  

 5. Delay in, or total lack of, the development of spoken language (not accompanied by  

     an attempt to compensate through alternative communication modes  

     such as gesture or mime)  

 6. In individuals with adequate speech, marked impairment in the ability to initiate or  

     sustain a conversation with others  

 7. Stereotyped and repetitive use of language or idiosyncratic language  

 8. Lack of varied, spontaneous make-believe play or social imitative play appropriate to 

     developmental level  

 9. Encompassing preoccupation with one or more stereotyped and restricted patterns of  

     interest that is abnormal either in intensity or focus  
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10. Apparently inflexible adherence to specific, nonfunctional routines or rituals 

11.Stereotyped and repetitive motor mannerisms (e.g., hand or finger flapping or twisting  

     or complex whole-body movements)  

12.Persistent preoccupation with parts of objects  

 

C.  Restricted repetitive and stereotyped patterns of behavior, interests, and activities, as 

     manifested by at least one of the following:  

 

Delays or abnormal functioning in at least one of the following areas, with onset prior to 

age three years: 1) social interaction, 2) language as used in social communication, or 3) 

symbolic or imaginative play 

 

Modified Checklist for Autism in Toddlers (M-CHAT) can be used by parental self-report as an 

initial screener, but is typically validated by formal ADI-R and ADOS clinical diagnosis meeting 

ICD-9 criteria. 

 

** It is expected that the DSM-V, planned to be finalized in 2013 will further modify the criteria and     
    broaden the scope and definition compared to DSM-IV  
    (American Psychiatric Association, 2012).   
 
    The revised DSM-V criteria are intended to reflect patient history rather than depending on  
    behaviors observed during clinical assessment.  
 
    Social behavioral domain crtieria will be altered from “…failure to develop peer relationships  
   and abnormal social play..” to include “… difficulties adjusting behavior to suit different social  
   contexts…”    (American Psychiatric Association, 2012).   

 



383 

 

Appendix B: AGRE Lifestyle Protocol Survey 

(selected abstracts of  questions referenced in Table 4) 

AGRE Lifestyle: Online System for Clinical Research (OSCR) 
Respondent Instructions: 

We are going to ask you some questions about your lifestyle. 
Section A: Tobacco 

1. Have you ever smoked cigarettes? 
□ No 
□ Yes 
□ Don’t Know 

INSTRUCTIONS: If you answered “YES” to question 1, go to question 2, otherwise, skip to 

question 10. 
2. Have you ever smoked regularly? By regularly, I mean one or more cigarettes per day on most 
days 
for at least six months. 
□ No 

□ Yes 
□ Don’t Know 

INSTRUCTIONS: If you answered “YES” to question 2, go to question 3, otherwise, skip to 
question 4. 
3. When did you first smoke regularly? 
______ yrs. ______ mos. 

□ Don’t Know 

4. During the three months before your pregnancy with temp test until now, did you smoke 
cigarettes? 
□ No 
□ Yes 

□ Don’t Know 

INSTRUCTIONS: If you answered “YES” to question 4, go to question 5, otherwise, skip to 
question 7. 
5. During which months, starting with three months before pregnancy and extending through 
birth (and breastfeeding, if applicable), did you smoke? 
□ 3 months before pregnancy 

□ 2 months before pregnancy 
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□ 1 month before pregnancy 
□ 1 month pregnant 
□ 2 months pregnant 

□ 3 months pregnant 
□ 4 months pregnant 
□ 5 months pregnant 
□ 6 months pregnant 
□ 7 months pregnant 
□ 8 months pregnant 

□ 9 months pregnant 
□ Breastfeeding 
□ Don’t Know 

6. During which years of the child’s life did you smoke?  
□ Less than 1 year old 

□ 1 year old 
□ 2 years old 
□ 3 years old 
□ 4 years old 
□ 5 years old or later 
□ DID NOT SMOKE AFTER CHILD’S BIRTH 

7. During the time in which you smoked, about how many cigarettes did you smoke a day? 
__________# cigarettes per day 
□ Don’t Know 

10. Have you ever at any time used other tobacco products such as a pipe, snuff, cigar, or have 
you ever used a 

nicotine patch? 
□ No 
□ Yes 
□ Don’t Know 

INSTRUCTIONS: If you answered “YES” to question 10, go to question 11, otherwise, skip to 
question 15. 

11. What did you use? _______________________ 
□ Don’t Know 

12. During the three months before your pregnancy with temp test and extending through birth 
(and breastfeeding, if applicable), did you use this product(s)? 
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□ No 
□ Yes 
□ Don’t Know 

INSTRUCTIONS: If you answered “YES” to question 12, go to question 13, otherwise, skip to 
question 15. 
13. During which months did you use the product 
□ 3 months before pregnancy 
□ 2 months before pregnancy 
□ 1 month before pregnancy 

□ 1 month pregnant 
□ 2 months pregnant 
□ 3 months pregnant 
□ 4 months pregnant 
□ 5 months pregnant 

□ 6 months pregnant 
□ 7 months pregnant 
□ 8 months pregnant 
□ 9 months pregnant 
□ Breastfeeding 
□ Don’t Know 

14. During the months in which you used the product, about how many times a day did you use 
it? __________# times a day 
15. During the index time until now, did you live with anyone who smoked cigarettes? 
□ No 
□ Yes 

□ Don’t Know 

INSTRUCTIONS: If you answered “YES” to question 15, go to question 16, otherwise, skip to 
question 
18. 
16. How many people living in your home smoked inside your home? 
__________# people 

□ Don’t Know 

17. During which months, starting with three months before pregnancy until now, did you live with 
that person (or those people - if more than one)? (Same categories as used in question 13) 
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Appendix C.  AGRE Medical History- Child Survey  Section  A, B, and C 

(selected abstracts of  questions referenced in Table 4) 

AGRE Medical History –CHILD: OSCR 
Respondent Instructions: 

We are going to be asking you about your child’s entire medical history, starting with his/her 
specific pregnancy. 
Please consult your medical records to help ensure accuracy. You might find it helpful to have 
these records in front of you while completing the survey. 
 
Section A: Medical History 
Prenatal History Section: 

23. Did the child’s mother have a blood test to check for neural tube defects (spinal bifida) or 
Down Syndrome (a.k.a. Alpha-fetoprotein or triple screen test)? (THIS IS A STANDARD 

SCREEN) 

□ No 
□ Yes 
□ Don’t Know 

INSTRUCTIONS: If you answered “YES” to question 23, go to question 24, 

otherwise, skip to question 25. 
24. Were the results abnormal? 
□ No 
□ Yes (Please describe: _________________________________) 
□ Don’t Know 

 At ANY time in this pregnancy, did the birth mother have any of the following health 
problems: 

48. Anemia (low iron in the blood) 
□ No 

□ Yes 
□ Don’t Know 

INSTRUCTIONS: If you answered “Yes” to question 48, go to question 49, 
otherwise, skip to question 50. 
49. In what trimester did this occur? (CHECK ALL THAT APPLY) 
□ 1st 

□ 2nd 

□ 3rd 

□ Don’t Know 
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58. Albuminuria 
□ No 
□ Yes 

□ DK 

INSTRUCTIONS: If you answered “Yes” to question 58, go to question 59, 
otherwise, skip to question 60. 
59. In what trimester did this occur? (CHECK ALL THAT APPLY) 
□ 1st 

□ 2nd 

□ 3rd 

□ Don’t Know 

 

90. Preeclampsia/eclampsia/toxemia 
□ No 
□ Yes 
□ Don’t Know 

INSTRUCTIONS: If you answered “Yes” to question 90, go to question 91, 

otherwise, skip to question 93. 
91. In what trimester did this occur? (CHECK ALL THAT APPLY) 
□ 1st 

□ 2nd 

□ 3rd 

□ Don’t Know 

92. Were any medications taken? 
□ No 
□ Yes 
□ Don’t Know 

 
Medications/Supplements during THIS pregnancy 

121. During THIS pregnancy did the birth mother take prenatal vitamins? 
□ No 
□ Yes 

□ Don’t Know 

INSTRUCTIONS: If you answered “Yes” to question 121, go to question 122, 
otherwise, skip to question 124. 
122. Did she take them continuously throughout the pregnancy? 
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□ No 
□ Yes 
□ Don’t Know 

123. In what trimester did she take them? 
□ 1st 

□ 2nd 

□ 3rd 

□ Don’t Know 

124. During THIS pregnancy did the birth mother take any other nutritional supplements 

continuously? 
□ No 
□ Yes 
□ Don’t Know 

INSTRUCTIONS: If you answered “No” to question 124, go to question 125, 

otherwise, skip to question 126. 
125. Supplement 

In which trimester(s) did this occur? 
(CHECK ALL THAT APPLY)_______________________________ 
□ 1st 

□ 2nd 

□ 3rd 

□ Don’t Know _______________________________ 

□ 1st 

□ 2nd 

□ 3rd 

□ Don’t Know 

 _______________________________ 

□ 1st 

□ 2nd 

□ 3rd 

□ Don’t Know 

________________________________  (Same categories as above)  
Now we are going to ask questions regarding labor, delivery and newborn information for 
the child: 

130. At the time that the child was born, how many weeks had the birth mother been pregnant 
(gestational age)? _________weeks 
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□ Don’t Know 

131. How did labor start? 
□ Spontaneous 

□ Induced by physician 
□ Never happened (Planned C-Section preceded labor) 
□ Don’t Know 

INSTRUCTIONS: If you answered “Induced by physician” to question 131, go to question 
132, otherwise, skip to question 135. 
132. Did the doctor put a gel type medication directly onto the cervix? 

□ No 
□ Yes 
□ Don’t Know 

133. Did the doctor give her a medication through an IV (like pitocin)? 
□ No 

□ Yes 
□ Don’t Know 

134. Why did the doctor need to do this? (CHECK ALL THAT APPLY) 
□ Water broke (membranes ruptured) prematurely (too early) 
□ Water broke and the contractions didn’t get started for more than 24 hours 
□ Baby was past its due date 

□ Convenience 
□ Other ________________ 
□ Don’t Know 

135. Did the doctor need to restart or speed up the birth mother’s labor with pitocin? 
□ No 

□ Yes 
□ Don’t Know 

INSTRUCTIONS: If you answered “No” to question 135, go to question 136, 
otherwise, skip to question 138. 
136. Why did the doctor need to do this? (CHECK ALL THAT APPLY) 
□ Contractions stopped 

□ Baby didn’t come down the birth canal 
□ Cervix didn’t dilate fast enough 
□ Other ___________ 
□ Don’t Know 
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137. Did the doctor break the mother’s water to induce or speed up the labor? 
□ No 
□ Yes 

□ Don’t Know 

158. Did this baby stay in a neonatal intensive care unit (NICU)? 
□ No 
□ Yes 
□ Don’t Know 

INSTRUCTIONS: If you answered “No” to question 158, go to question 159, 

otherwise, skip to question 162. 
159. For how long? 
__________ days OR ___________ hours 
□ Don’t Know 

160. Was the baby on a respirator (ventilator)? 

□ No 
□ Yes 
□ Don’t Know 

INSTRUCTIONS: If you answered “No” to question 160, go to question 161, 
otherwise, skip to question 162. 
161. For how long? 

________ hours OR ________ days 
□ Don’t Know 

164. How many days or hours TOTAL did this baby stay in the hospital? (after delivery up until 

discharge, including the neonatal ICU) 

________ days 
□ Don’t Know 

165. How many days did the birth mother stay in the hospital? 

_______ days 
□ Don’t Know 

166. Did the baby have any diagnosed medical problems in the newborn period? (0-30 days of 

life) 

□ No 
□ Yes 
□ Don’t Know 

INSTRUCTIONS: If you answered “Yes” to question 166, go to question 167, 
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otherwise, skip to Section B. 
167. What type? (CHECK ALL THAT APPLY) 
□ Head deformities 

□ Body deformities 
□ Limb deformities 
□ Heart deformities 
□ Kidney deformities 
□ Stomach/intestine problems 
□ Other deformities _________________________________ 

□ Sepsis (bacterial blood infection) 
□ Jaundice, hyper bilirubinemia, yellow skin 
INSTRUCTIONS: If “Yes”: 
168.What treatment was given? (CHECK ALL THAT APPLY) 
□ None 

□ Phototherapy (special lights) 
□ Exchange transfusion (blood transfusion) 
□ Don’t Know 

□ Anemia 
□ Seizures 
INSTRUCTIONS: If “Yes”: 

169. What type? 
□ Grand mal/Generalized tonic-clonic 
□ Petit mal/absence 
□ Infantile spasms 
□ Complex partial 

□ Multiple types 
□ Other __________________________ 
□ Don’t Know 

□ Meningitis 
□ High Fever (>38.5 C or 101.5 F) 
□ Other: _______________________________________________ 
 
Respondent Instructions: 

We are going to be asking you about your child’s entire medical history, starting with his/her 

specific pregnancy. 



392 

 

Please consult your medical records to help ensure accuracy. You might find it helpful to have 
these records in front of you while completing the survey. 
 
Section B: Early Development 
Now we are going to ask some questions regarding the child’s EARLY DEVELOPMENT 
(For the purposes of our survey please regard “early development” as the first 12 months of life) 

 
1. Did the birth mother breastfeed OR pump milk to the baby? 
□ No 

□ Yes 
□ Don’t Know 

INSTRUCTIONS: If you answered “Yes” to question 1, go to question 2, 
otherwise, skip to question 10. 
2. How long was breast milk the only source of the baby’s nutrition? (that is,without 

supplemental formula or solid food) 

______ months ______ weeks 
□ Don’t Know 

3. What was the baby’s age in months at the start of breast milk feeding? 
______ months ______ weeks 
□ Don’t Know 

4. How old was the child in months when s/he received the last/final breast milk feeding? 
______ months ______ weeks 

□ Don’t Know 

5. Did the child have any difficulty latching onto the breast? 
□ No 
□ Yes 
□ Don’t Know 

6. Did the birth mother ever smoke while the child was on breast milk? 

□ No 
□ Yes 
□ Don’t Know 

INSTRUCTIONS: If you answered “Yes” to question 6, go to question 7, 
otherwise, skip to question 8. 

7. How many packs were smoked per week? 
_____ packs 
□ Don’t Know 



393 

 

10. Did the birth mother ever use any medication (including over the counter, prescription or 
vitamin supplements) while the child was on breast milk? 
□ No 

□ Yes 
□ Don’t Know 

INSTRUCTIONS: If you answered “Yes” to question 10, go to question 11, 
otherwise, skip to question 16. 
11. Vitamins - please CHECK ALL THAT APPLY and specify how long it was taken (in 

months). 
Vitamin type How long (in months) it was used? 

□ Multivitamins 

_________ months 
□ Don’t Know 

□ Vitamin A 
_________ months 
□ Don’t Know 

□ Vitamin B6 
_________ months 
□ Don’t Know 

□ Vitamin B12 
_________ months 
□ Don’t Know 

□ Folic Acid 
_________ months 
□ Don’t Know 

□ Vitamin C 
_________ months 

□ Don’t Know 

□ Vitamin D 
_________ months 
□ Don’t Know 

□ Vitamin E 
_________ months 

□ Don’t Know 

□ Iron 
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_________ months 
□ Don’t Know 

□ Calcium 

_________ months 
□ Don’t Know 

□ Zinc 
_________ months 
□ Don’t Know 

12. Other supplements (e.g. Slim Fast, Instant Breakfast, protein powder, brewer’s yeast) 

Supplement    How long (in months) it was used? __________________ 
_________ months 
□ Don’t Know 

16. Was the child ever fed formula? 
□ No 

□ Yes 
□ Don’t Know 

INSTRUCTIONS: If you answered “Yes” to question 16, go to question 17, otherwise, 
skip to question 19. 
17. How long was formula the only source of the baby’s nutrition? (that is, without solid 

food) 

___ weeks 
□ Don’t Know 

18. What type of formula? 
□ Soy based (Enfamil Prosobee LIPIL, Isomil, Isomil Advance, Isomil DF, Good 

Start Supreme Soy) 

□ Cow’s milk (Enfamil LIPIL, Enfamil Gentlease LIPIL, Enfamil w Iron, Similac 

Advance, Similac w Iron, Good Start Supreme, Good Start Essentials and NA) 

□ Elemental formula (Nutramigen, Pregestamil , Alimentum) 

□ Lactose free formula (Lactofree, Similac Lactose free) 

□ Formula supplemented with DHA/ARA (Enfamil Lipil, Similac Advance, Nestle 

Good Start Supreme DHA ARA) 

□ Preemie formula (Enfacare LIPIL and Neosure Advance) 

□ Other (Please specify: __________________________________) 

□ Don’t Know 

19. Did you have any difficulty with feeding (breast or bottle)? 
□ No 
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□ Yes 
□ Don’t Know 

INSTRUCTIONS: If you answered “Yes” to question 19, go to question 20, 

otherwise, skip to question 24. 
20. Did the baby have poor suck? 
□ No 
□ Yes 
□ Don’t Know 

21. Did the baby require special feeds? 

□ No 
□ Yes 
□ Don’t Know 

INSTRUCTIONS: If you answered “Yes” to question 21, go to question 22, 
otherwise, skip to question 24. 

22. What interventions were used? (CHECK ALL THAT APPLY) 
□ Thickened liquid 
□ Special nipples 
□ Gavage (force feeding) 
□ Other ______________________________ 
□ Don’t Know 

23. When did this happen? 
From ____mos to _____mos 
□ Don’t Know 

31. How was the baby’s early temperament? 
□ Normal 

□ Difficult/Irregular 
□ Easy/Passive 
□ Don’t Know 

32. How was the baby’s early sleep pattern? 
□ Regular/Predictable 
□ Irregular/Unpredictable 

□ Don’t Know 

33. Did the child have any difficulties like colic or being difficult to sooth? 
□ No 
□ Yes 
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□ Don’t Know 

INSTRUCTIONS: If you answered “Yes” to question 33, go to question 34, 
otherwise, skip to question 36. 

34. What age did it start? _______months 
□ Don’t Know 

35. What age did it stop? _______ months 
□ Ongoing 

□ Don’t Know 

36. Was the child exceptionally floppy as an infant? 

□ No 
□ Yes 
□ Don’t Know 

37. Was the child exceptionally stiff as an infant? 
□ No 

□ Yes 
□ Don’t Know 

38. Was the child exceptionally irritable/inconsolable as an infant? 
□ No 
□ Yes 
□ Don’t Know 

39. Was the child exceptionally lethargic or overly sleepy as an infant? 
□ No 
□ Yes 
□ Don’t Know 

 
Respondent Instructions: 
Now we are going to ask you about the child’s physical development and medical history 
(FROM BIRTH TO NOW). For each category, first assess if there are any concerns in that 
general area, if so, please check all the appropriate diagnoses and/or symptoms listed 
below it. FOR ISSUES THAT WERE NOT PRESENT AT BIRTH YOU WILL BE ASKED TO 
SPECIFY AT WHAT AGE IT FIRST STARTED. 
 
Section C: Physical Development 
 

30. Nose/throat-Is there any known issue/abnormality in this area? 

□ No 
□ Yes 
□ Don’t Know 



397 

 

INSTRUCTIONS: If you answered “Yes” to question 30, go to question 31, 
otherwise, skip to question 32. 
□ Excessive snoring 

□ 0-11 months 
□ 1 year old 
□ 2 years old 
□ 3 years old 
□ 4 years old 
□ 5 years old 

□ 6 years old 
□ 7 years old 
□ 8 years old or 
older (Specify age: ______yrs) 
□ Don’t Know 

N/A 

□ Tonsillectomy    (Same categories as above) 

□ Adenoidectomy  
□ Edema (swelling caused by excess fluid) 
□ Stiffness  
38. Pulmonary-Is there any known issue/abnormality in this area? 

□ No 
□ Yes 

□ Don’t Know 

INSTRUCTIONS: If you answered “Yes” to question 38, go to question 39, 
otherwise, skip to question 40. 
39. Abnormality (CHECK ALL THAT APPLY) 
Age of Onset How long was this a regular issue? 

□ Shortness of breath □ 0-11 months 
□ 1 year old 

□ 2 years old 
□ 3 years old 
□ 4 years old 
□ 5 years old (cont.) 
□ 6 years old 
□ 7 years old 
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□ 8 years old or 
older (Specify age: ______yrs) 
□ Asthma  (Same categories as above)  

□ Recurrent pneumonias  
□ Chronic bronchitis  
40. Cardiovascular-Is there any known issue/abnormality in this area? 

□ No 
□ Yes 
□ Don’t Know 

INSTRUCTIONS: If you answered “Yes” to question 40, go to question 41, 
otherwise, skip to question 42. 
41. Abnormality (CHECK ALL THAT APPLY) 
Age of Onset How long was this a regular issue? 

□ Congenital heart disease □ 0-11 months 
□ 1 year old 
□ 2 years old 

□ 3 years old 
□ 4 years old 
□ 5 years old 
□ 6 years old 
□ 7 years old 
□ 8 years old or 

older (Specify age: ______yrs) 
□ Don’t Know 

□ 3 months or less 
□ 4 months to 1 year 
□ 1-2 years 

□ 3-4 years 
□ 5 years or longer 
□ Don’t Know 

□ Heart murmur (Same categories as above)  
 

□ Severe sleep disturbance 
IF YES � 

80. What type? (CHECK ALL THAT APPLY) 
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□ Difficulty falling asleep 
□ Nighttime awakenings 
□ Short amount of sleep (less than 6 hours) 

□ Other ________________ 
□ 0-11 months 
□ 1 year old 
□ 2 years old 
□ 3 years old 
□ 4 years old 

□ 5 years old 
□ 6 years old 
□ 7 years old 
□ 8 years old or 
older (Specify age: ______yrs) 

□ Don’t Know 

□ 3 months or less 
□ 4 months to 1 year 
□ 1-2 years 
□ 3-4 years 
□ 5 years or longer 

□ Don’t Know 

85. Psychiatric-Have you ever been worried about the child experiencing symptoms in this area? 

□ No 
□ Yes 
□ Don’t Know 

INSTRUCTIONS: If you answered “Yes” to question 85, go to question 86, 
otherwise, skip to question 92. 
86. Abnormality (CHECK ALL THAT APPLY) Age of Onset How long was this a 

regular issue? 

□ ADHD 
IF YES � 87. (CHECK ALL THAT APPLY) 
□ Diagnosed with ADHD 
□ Trouble with attention/concentration 

□ Excessively distractable 
□ Hyperactive 
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□ 0-11 months 
□ 1 year old 
□ 2 years old 

□ 3 years old 
□ 4 years old 
□ 5 years old 
□ 6 years old 
□ 7 years old 
□ 8 years old or 

older (Specify age: ______yrs) 
 

92. Genetic Syndromes-Is there any known issue/abnormality in this area of development? 

□ No 
□ Yes 
□ Don’t Know 

INSTRUCTIONS: If you answered “Yes” to question 92, go to question 93, 

otherwise, skip to question 94. 
93. CHECK ALL THAT APPLY 
□ Fragile X 
□ Tuberous sclerosis 
□ Down syndrome (trisomy 21) 
□ Neurofibromatosis (type 1 and 2) 

□ Rett syndrome 
□ Angelman syndrome 
□ Prader Willi syndrome 
□ Phenylketnuria 
□ Williams syndrome 

□ Other chromosomal abnormality, disorder, or syndrome__________ 
94. Does the child have any other diagnosed medical conditions not previously asked about? 
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Appendix D.   AGRE Metal and Mother’s Diet Survey 

 (selected abstracts of  questions referenced in Table 4) 
 
Metals and Mother’s Diet: OSCR 
Respondent Instructions: 

In this form, we are going to ask you about your diet, some products you may have used and 
dental work you may have had during the 3 months before your pregnancy with this child to the 
date of this child's birth. (Also we will include the period of breastfeeding.) 
 
Section A: Diet 
 
A.1 FISH 

1. Starting with three months before the pregnancy with the child and extending through birth 
(and breastfeeding, 
if applicable) did you ever eat any fish (including a tuna fish sandwich, fish sticks, or any other 
kind of fish)? 
□ No 

□ Yes 
□ Don’t know 
INSTRUCTIONS: If you answered “YES” to question 1, go to question 2, otherwise, skip 
to question 9. 
2. What kind(s) of fish has did you eat during THIS pregnancy? (CHECK ALL THAT APPLY) 
2a. Type of Fish 2b. Time period in which you ate this type of fish? 
2c. On average, how many servings per week did you eat?   (Same categories for all items) 

□ Mackerel □ 1-3 months before pregnancy 
□ 1st trimester 

□ 2nd trimester 
□ 3rd trimester 
□ Breastfeeding 
□ Don’t know 
□ Less than 1 
□ About 1 

□ More than 1 
□ Don’t know 
□ Tilefish □ 1-3 months before pregnancy 
□ Swordfish □ 1-3 months before pregnancy 
□ Shark □ 1-3 months before pregnancy 
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□ Red snapper □ 1-3 months before pregnancy 
□ Marlin □ 1-3 months before pregnancy 
□ Tuna (Canned) □ 1-3 months before pregnancy 

□ Tuna (Fresh) □ 1-3 months before pregnancy 
□ Bass □ 1-3 months before pregnancy 
□ Catfish □ 1-3 months before pregnancy 
□ Cod □ 1-3 months before pregnancy 
□ Crab □ 1-3 months before pregnancy 
□ Lobster □ 1-3 months before pregnancy 

□ Salmon □ 1-3 months before pregnancy (cont.) 
□ Trout □ 1-3 months before pregnancy 
□ Other ocean fish (e.g. 
Mahi Mahi, Pullock, etc.) 
Please specify:______________ 

□ Other fresh water fish (fish from lakes, ponds, rivers) 
Please specify:______________ 
3. Did you ever eat any fish that came from a fish farm (farmed fish) during  pregnancy with this 
child? 
□ No 
□ Yes 

□ Don’t know 
INSTRUCTIONS: If you answered “YES” to question 3, go to question 4, otherwise, skip 
to question 6. 
4.During which time period did you eat this? (CHECK ALL THAT APPLY) 
□ 1-3 months before pregnancy 

□ 1st trimester 
□ 2nd trimester 
□ 3rd trimester 
□ Breastfeeding 
□ Don’t know 
5. On average, how many servings per week did you eat? 

□ Less than 1 
□ About 1 
□ More than 1 
□ Don’t know 
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6. Did you ever eat fish that you caught or that someone else that you knew caught during your 
pregnancy with this child? 
□ No 

□ Yes 
□ Don’t know 
INSTRUCTIONS: If you answered “YES” to question 6 and  7, otherwise, skip to question 9. 
7.During which time period did you eat this? (CHECK ALL THAT APPLY) 
□ 1-3 months before pregnancy 
□ 1st trimester 

□ 2nd trimester 
□ 3rd trimester 
□ Breastfeeding 
□ Don’t know 
8. On average, how many servings per week did you eat? 

□ Less than 1 
□ About 1 
□ More than 1 
□ Don’t know 
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Appendix E.   AGRE Mother’s Medical History -  Section A and B 

(selected abstracts of  questions referenced in Table 4) 

Mother’s General Medical History: OSCR 
Respondent Instructions: 
Now we are going to ask you about your history of medical conditions/issues. 
Are there any known abnormality/issue in the following areas: 
Please read through all the choices in each area as things may be grouped in a manner you are 
unfamiliar with. Please remember: did these issues occur AT ANY TIME in your life? 

Section A: Medical History 

 
46. Respiratory=  Is there any known issue/abnormality in this area? 

INSTRUCTIONS: If you answered “YES” to question 46 & 47, otherwise,skip to question 48. 
49.Cardiovascular  What type? (CHECK ALL THAT APPLY) When did this develop? (Same 

categories per item) 

□ High Blood Pressure (HTN) □ Infancy (0-12 months) 

□ Toddler (13-24 months) 
□ Early childhood (25 months to 59 months) 
□ Childhood 5-12 years 
□ Teenage (13-19 years) 
□ 20-29 years 
□ 30-39 years 

□  additional cateogies... .. 
□ 90-99 years 
□ Don’t Know 

□ Heart Attack (Myocardial Infarction [MI]) 
□ Peripheral Vascular Disease (PVD) □ Infancy (0-12 months) 

□ Arrhythmias □ Infancy (0-12 months) 
□ Coronary Artery/Heart Disease □ Infancy (0-12 months) 
□ Other ____________________________  
55. Blood/Hematological - Is there any known issue/abnormality in this area? 

□ No 
□ Yes 

□ Don’t Know 
□□□□    B12 deficiencyB12 deficiencyB12 deficiencyB12 deficiency                                (Same categories for onset for all survey questions)(Same categories for onset for all survey questions)(Same categories for onset for all survey questions)(Same categories for onset for all survey questions)    
    □ Infancy (0-12 months)  
□ Toddler (13-24 months) 
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□ Early childhood (25 months to 59 months) 
□ Childhood 5-12 years 
□ Teenage (13-19 years) 

□ 20-29 years 
□ 30-39 years 
□  additional cateogies... .. 
□ 90-99 years 
□ Don’t Know 

□□□□    HemalyticHemalyticHemalyticHemalytic    

□ Other ____________________________ 
  
58. Other Medical issues we have not asked about - Is there any known issue/abnormality in this 

area? 

□ No 
□ Yes 
□ Don’t Know 

INSTRUCTIONS: If YES� list 
_____________________________________________________________________________ 
 
Section B: Reproductive System and Pregnancy History 
Respondent Instructions: 
Now we are going to ask you some general questions regarding your reproductive 
system and pregnancy history 
Reproductive History: 
 
Pregnancy history: 

7: How many times have you been pregnant? ________ # PREGNANCIES 

□ Don’t Know 

 
INSTRUCTIONS: 
Please count EVERY time you have been pregnant (include pregnancies that ended in live 
birth, still birth, abortion, miscarriage, tubal / ectopic, molar). This would include pregnancies 
from relationships other than your current one, and also if you are pregnant now 

Now we are going to ask you about each of your pregnancies (i.e. what the outcome was, and 

when did that outcome occur). For instance, if your first pregnancy was a miscarriage you would 
answer Preg #1 outcome =miscarriage and it occurred at 10 weeks. If your third pregnancy was a 
live birth that was delivered prematurely you would choose Preg #3 outcome=live birth and that it 
occurred at 32 
weeks 
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Note: If one pregnancy resulted in multiples (e.g., twins), please list them separately, by order 
of pregnancy outcome (e.g., list earliest first). For example, if twins, one miscarried and one 
live birth, the miscarried one would be listed first 
List #1 (Use for question 8 - 18) 
Outcomes of pregnancies. 

Code 1 – Live Birth 
Code 2 – Stillbirth 
Code 3 – Chose to terminate pregnancy 

Code 4 – Miscarriage 
Code 5 – Tubal pregnancy 
Code 6 – Molar pregnancy Define 
Code 7 – Current pregnancy 
 
Please note: (Answering in # of weeks is preferred, but if you are unsure please answer during which 

trimester) 

Pregnancy 1 

8. What was the outcome?_______ 
9. When did this outcome occur? (# weeks) ________ 
□ Unsure # weeks 

If UNSURE� 

What trimester? 
□ 1st 

□ 2nd 

□ 3rd 

□ Don’t Know 

Pregnancy 2 

10. What was the outcome?_______ 
□ N/A 
11. When did this outcome occur? (# weeks) ________ 
□ Unsure # weeks 

If UNSURE� 

What trimester? 

□ 1st 

□ 2nd 

□ 3rd 

□ Don’t Know 

 
Additional Pregnancys (Same questions and response categories as above items) 
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Section C: Family Medical History 
Respondent Instructions: 
Now we are going to ask you some questions about your extended families medical 
histories: 

1. Did either of your biological parents have any of the following health issues? 
Autism, Asperger’s, Pervasive Developmental Disorder, Rett Syndrome, Fragile X, Tuberous 
Sclerosis, Neurofibramatosis, Prader Willi or Angelman Syndrome, Down Syndrome, 

Phenylketonuria (PKU), Chromosomal abnormalities (deletions, duplications) or Other 
genetic syndrome (e.g. Sotos syndrome, Joubert syndrome, Williams syndrome)? 
□ No 
□ Yes 
□ Don’t Know 

2. Health Issue 

(CHECK ALL THAT APPLY)Was this person diagnosed? 

Was this person hospitalized for this issue? 

□ Autism □ Diagnosed □ Hospitalized 
□ Asperger’s □ Diagnosed □ Hospitalized 
□ Pervasive Developmental Disorder (PDD) 
□ Diagnosed □ Hospitalized 
□ Rett Syndrome □ Diagnosed □ Hospitalized 

□ Fragile X □ Diagnosed □ Hospitalized 
□ Tuberous Sclerosis □ Diagnosed □ Hospitalized 
□ Neurofibramatosis □ Diagnosed □ Hospitalized 
□ Prader Willi or Angelman Syndrome □ Diagnosed □ Hospitalized 
□ Down Syndrome □ Diagnosed □ Hospitalized 

□ Phenylketonuria (PKU) □ Diagnosed □ Hospitalized 
□ Chromosomal abnormalities (deletions, 
duplications) 
□ Diagnosed □ Hospitalized 
□ Other genetic syndrome (e.g. Sotos 

syndrome, Joubert syndrome, Williams 
syndrome) 

INSTRUCTIONS: If YES� specify: 
_________________ 
□ Diagnosed □ Hospitalized.  

□ Don’t Know 
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