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Abstract 

This dissertation develops a conceptual data model that can efficiently handle 

huge volumes of data containing uncertainty and are subject to frequent changes. This 

model can be used to build Decision Support Systems to improve decision-making 

process. Business intelligence and decision-making in today’s business world require 

extensive use of huge volumes of data. Real world data contain uncertainty and change 

over time. Business leaders should have access to Decision Support Systems that can 

efficiently handle voluminous data, uncertainty, and modifications to uncertain data. 

Database product vendors provide several extensions and features to support these 

requirements; however, these extensions lack support of standard conceptual models. 

Standardization generally creates more competition and leads to lower prices and 

improved standards of living. Results from this study could become a data model 

standard in the area of applied decisions sciences. 

The conceptual data model developed in this dissertation uses a mathematical 

concept based on set theory, probability axioms, and the Bayesian framework. 

Conceptual data model, algebra to manipulate data, a framework and an algorithm to 

modify the data are presented. The data modification algorithm is analyzed for time and 

space efficiency. Formal mathematical proof is provided to support identified properties 

of model, algebra, and the modification framework. Decision-making ability of this 

model was investigated using sample data. Advantages of this model and improvements 

in inventory management through its application are described. Comparison and contrast 

between this model and Bayesian belief networks are presented. Finally, scope and topics 

for further research are described. 
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CHAPTER 1 
 

INTRODUCTION 
 

Decision Science focuses on the study of decision theory and its applications in 

areas such as management, economics, social science, and behavioral science. Decision 

theory is divided into two areas: normative or prescriptive theory and descriptive or 

positive theory. Studying the applicability of decision theory includes development of 

techniques, systems, and decision analysis. Decision Support Systems are an important 

area of application of decision theory. Decision Support Systems assist in decision-

making process. There are five categories of Decision Support Systems: data-driven, 

communications-driven, document-driven, knowledge-driven, and model-driven. Many 

Decision Support Systems in use today are a combination of these types. Data-driven 

Decision Support Systems assist decision makers in analysis of large volumes of data 

(Turban & Aronson, 2001).  

Business intelligence and decision-making in today’s business world require 

extensive use of huge volumes of real-world data, which contain uncertainty and change 

over time. Many enterprises use Decision Support Systems to enhance managerial 

decisions. These systems should be able to handle efficiently large amounts of data, as 

well as uncertainty, and modifications to uncertain data. Relational database product 

vendors have provided several extensions and features to support these requirements, but 

these extensions lack support of conceptual models, which impedes growth of the 

software products market. Limited availability of Decision Support Systems to business 

could result in inconsistent and sub-optimal decisions. 
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Data Warehouse (DW) and On-Line Analytical Processing (OLAP) are two 

emerging technologies that enable business enterprises to handle extremely large amounts 

of data efficiently (Chaudhuri & Dayal, 1997; Chen, Hsu, & Dayal, 2000; Codd, Codd, & 

Sally, 1993). These technologies are used extensively in several industries such as 

telecommunications, financial services, retail sales, and general business intelligence 

gathering. Several vendors have developed DW and OLAP products; however, most of 

these commercial products lack a standard conceptual data model, a defined operational 

model (Thomas & Datta, 2001), or mechanisms to handle uncertainty (Moole, 2003). 

Conceptual models for data provide a mathematical model and associated 

operations without reference to implementation details (Date, 2003). Standard conceptual 

models such as relational algebra and relational calculus proposed in 1970s facilitated 

product development companies contributing to and developing today’s Relational 

Database Management Systems (RDBMS), languages such as SQL (Codd, 1971; 

Kimball, Reeves, Ross, & Thornthwaite, 1998; Thomas & Datta, 2001), and numerous 

related tools. The lack of conceptual models for DW and OLAP is impeding growth of 

the industry (Agarwal, Gupta, & Sarawagi, 1997; Vassiliadis & Sellis, 1999), which is a 

significant problem because it is preventing a $4 billion market from achieving its 

potential (Pendse, 2003). This problem needs attention because timely research into 

conceptual data models may benefit the product development market, leading to an 

enhanced managerial decision-making process (Codd et al., 1993; Moole, 2003; Thomas 

& Datta, 2001). 

Growth in semi-conductor technology has resulted in cheaper computers, enabling 

their widespread use in business and the accumulation of huge volumes of data. The 
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1990s gave rise to requirements for DW and OLAP (Codd et al., 1993; Moole, 2003; 

Thomas & Datta, 2001). As the ancient Greek philosopher Plato said, “Necessity is the 

mother of Invention” (as quoted in E. D. Hirsch, Joseph F. Kett, Trefil, & Trefil, 2002). 

In the late 1990s, researchers in computer science began reporting data models to address 

the requirements of DW and OLAP. This dissertation research may have been less useful 

before 1990s due to the state of technology, which had not evolved to the point where 

data models were needed. 

Background 

Businesses today are recording volumes of data reaching terabytes in size. 

Millions of transactions among retail chains, utility companies, banks, and insurance 

companies take place each day. Representative financial transactions of the International 

Technology Group (ITG) report indicate that a telecommunications company receives 

over 80 million transactions a month, or approximately 2.6 million transactions per day 

(ITG, 2000). It would be humanly impossible to interpret these transactions to find, for 

example, which class of customers makes more long distance calls. Similarly, a 

representative retail chain with 63 supermarkets selling 19,000 products can record a 

staggering 3.6 million transactions per day (SUN-Microsystems, 1999). Even a small 

percentage of waste or fraud will result in a loss of millions of dollars and, consequently, 

higher prices to customers. At the same time, manual inspection of these data is not 

possible, as they are imprecise and change continuously. 

Decision Support Systems (DSS) are used to support managerial decisions. 

Usually DSS involves analyzing many units of data in heuristic fashion (Inmon, 1990). 

To make optimal decisions using large volumes of data, managers of large enterprises 
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need Decision Support Systems that interpret huge volumes of uncertain data as well as 

handle data modifications. For example, a manager assigned to maintaining inventory for 

a given product category finds that demand for products changes continuously based on 

variables such as popularity, price, discount, advertising, and competition. Many of these 

variables cannot be measured precisely. In addition, these variables by themselves do not 

identify required quantities of a product precisely, although historical information 

gathered weekly may be used to forecast demand. DSS are shown to improve managerial 

decision-making in such scenarios (Foote & Krishnamurthi, 2001). 

Any forecast is subject to uncertainty; however, a database storing weekly 

forecasts may be generated and compared to actual sales data after the fact. When this 

process is applied continuously, the result is a dynamic database accumulating uncertain 

data. Once such a database is generated, managers may use OLAP and data mining 

techniques to make better decisions. 

 
Role of DSS in Business Management 

Many organizations recognize the effects of unsatisfactory forecasting. 

Forecasting based on uncertain information requires fairly subjective assessments of 

domain dependencies and relationship strengths, and tends to be inconsistent. In the 

words of Foote & Krishnamurthi (2001): 

It can be said that even today forecasting process is generally fairly subjective, 

driven by intuition of so called “experts” who are company executives, sales 

force, and industry analysts whose prognostications have been far from 
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satisfactory. As a result, companies can miss the boat on achieving profitability, 

reliability, and competitive advantage in their industries (p. 1). 

Information Systems research has focused on developing systems that can 

enhance the decision-making process and profitability, which have been improved with 

Data Warehouse/DSS at Wal-Mart (Foote & Krishnamurthi, 2001). Improved business 

management, profitability, and decision-making at Wal-Mart have been attributed to DSS 

use. 

OLAP, Data Warehouses, and Decision Support Systems 

Because managers are faced with making decisions under conditions of 

uncertainty and huge volumes of data they need Decision Support Systems to make 

optimal decisions (Inmon, 1990). Decision Support Systems that cannot handle large 

volumes of data containing uncertainty are less useful for decision-making. Data 

representation and uncertainty representation are crucial parts of these Decision Support 

Systems (Moole, 2003). Products that enable organizations to represent and manipulate 

huge volumes of data are referred to as data warehouse, OLAP, business intelligence, and 

decision support systems products by various vendors. These terms are used 

interchangeably in this study. Currently, these products lack a standard conceptual data 

model for supporting data representation and operations. They also lack a framework to 

represent uncertainty, modify uncertain data, and perform imprecise queries. Conceptual 

models and frameworks supported by theories founded in mathematics enable users of 

product to understand better the claims of product manufacturers (Codd et al., 1993). 

They also enable researchers to contribute independently to technology (Agarwal et al., 

1997; Thomas & Datta, 2001). 



  6 

 

The relational data model uses a Table, a two-dimensional data structure, as its 

primary data structure (Date, 2003). Traditional relational database management systems 

technology is unsuitable for OLAP because of queries involved (aggregate, summary, 

grouping, etc.). According to industry reports, OLAP product sales reached $9 billion in 

1997 (Pendse, 2003). The market for these technologies is growing rapidly. Current 

commercial products offering some features of DW and OLAP include Red Brick from 

Red Brick Systems, EssBase from Hyperion, Express from Oracle, and IQ from Sybase. 

These systems do not have standard conceptual data models; they are ad hoc extensions 

of RDBMS technology (Thomas & Datta, 2001). Because of this, extension to products 

and development of tools is limited to each proprietary product, inhibiting growth of this 

segment of the market, and requiring use of multidimensional data models (Codd et al., 

1993; Thomas & Datta, 2001). 

Multidimensional Data Models 

Researchers have proposed several data models based on multiple dimensions, 

referred to as multidimensional data models. Most of them are based on a concept called 

data cube (Codd et al., 1993). Data cubes are primary data structures in OLAP and DW 

products. Thomas and Datta (2001) proposed one such conceptual multidimensional data 

model. Advantages of this model include its theoretical framework and associated 

algebra, which is relationally complete, consistent, and closed. Moole (2003) proposed 

several enhancements to this model. This enhanced model is referred to as Probabilistic 

Multidimensional Data Model (PMDDM), with its most important enhancement being 

the addition of a framework based on probability theory to handle uncertainty—an 

important category of OLAP functionality requirements (Moole, 2003). Other 
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enhancements include uncertainty-related algebraic operations. The model did not 

provide much required data modification framework or any analysis of its efficiencies. 

This represented an important area for further research on PMDDM (Moole, 2003). 

Problem Statement 

Many of today’s business leaders make decisions by extensive use of huge 

volumes of real-world data, which contain uncertainty and change over time. Any 

decision support system utilized by enterprises should be able to handle efficiently large 

amounts of data, as well as uncertainty and modifications to uncertain data. RDBMS 

product vendors provide several extensions and features to support these requirements, 

but these extensions lack the support of conceptual models, impeding growth of software 

product market and increasing cost of DSS solutions to business. Recently, researchers 

focused on this problem, and Moole (2003) proposed a probabilistic multidimensional 

data model; however, this model lacks the framework for probabilistic data modification. 

Lack of a framework to modify data diminishes importance of data models and their 

usefulness (Dey & Sarkar, 2000; Moole, 2003). The purpose of this study was to develop 

a framework for probabilistic data modification to enhance importance and usefulness of 

probabilistic multidimensional data model. 

Research Question 

The data modification framework enhances the underlying model (Dey & Sarkar, 

2000). In order to provide maximum benefit and acceptance, it should be closed, 

complete, and consistent with the underlying model (Date, 2000; Dey & Sarkar, 2000; 

Klir & Wierman, 1998; Pearl, 1988). Therefore, the research question for this study is: 

Given the probabilistic multidimensional data model, what data modification framework 
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and algorithm can update uncertain data consistent with the model (consistent), resulting 

in valid data (closed) and being reliable in all possible update scenarios (complete)? 

Consistency, completeness, and closure properties of a framework or an algorithm 

are important. They show that the framework or algorithm can be used for a data model 

without resulting in unusable data: (a) The consistency property for PMDDM assures that 

axioms of probability theory are satisfied; (b) the completeness property ensures that the 

algorithm can be used in all possible modification scenarios; and (c) the closure property 

means that the algorithm produces only valid objects (as defined in model definition) for 

this model. 

Significance of the Study 

The solution sought by the investigator is significant for several reasons: 

1. First of all, a $4 billion market is not achieving its potential (Pendse, 

2003); 

2. The solution will contribute to data models research and the knowledge 

base and may result in better DSS tools for business;  

3. The solution may help standardize multidimensional database products 

and related tools;  

4. Such standardization can facilitate widespread adoption of these products 

and tools by business as happened in case of relational databases (Date, 

2000); and  

5. Utilization of multidimensional databases can enhance the decision-

making process of managers. 
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Social Change 

This research may help standardize the OLAP/Data Warehousing software 

products. Standardized products are easier to understand than custom-built and 

proprietary products. Product standardization also leads to cheaper products, which leads 

to higher utilization of the products (Thomas & Datta, 2001). DSS products developed as 

a result of this research may reduce overall cost of ownership of DSS products to 

business. Utilization of products based on this research may lead to efficiency of 

operations due to enhanced decision-making, leading to cheaper products and services to 

the customers. Reduced prices of goods and services for consumers improve the standard 

of living and enhance the quality of life (Gairdner, 2000). 

Purpose of the Research 

The current probabilistic multidimensional data model lacks a framework to 

update uncertain data (Moole, 2003). Modification of data should be consistent (satisfies 

probability axioms and new beliefs), complete (covers all possible modification 

situations), and closed (use of update mechanism results in valid cubes). The purpose of 

this research was to develop an uncertain data modification framework that is provably 

consistent, complete, and closed to modify existing probabilistic multidimensional data. 

Proposed Research 

This study enhances the probabilistic multidimensional data model (Moole, 

2003), providing all required algebraic operations as well as a framework for updating 

probabilistic data. The investigator developed algorithms to update data, analyzed time 

and space complexity of update algorithms, described an application of this conceptual 

data model in managerial decision-making, and compared and contrasted it with Bayesian 
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belief networks. These research activities have not previously been performed, to the best 

of the investigator's knowledge. This research contributes to both Decision Support 

Systems research and research conducted in uncertainty in artificial intelligence (UAI), 

which focuses mostly on Bayesian belief networks. The solution is significant in that it 

removes a major impediment to developing products (Thomas & Datta, 2001; Vassiliadis 

& Sellis, 1999). 

Scope of Research and Delimitations 

The following fall within the scope of this research: 

1. Integrating the multidimensional data model (MDD) and probabilistic data model 

and providing all required algebraic operations for the probabilistic MDD model. 

2. Providing a comprehensive (complete, consistent, and closed) framework to 

update probabilistic data. 

3. Developing algorithms to update data. 

4. Analyzing time and space complexity of updated algorithms. 

5. Identifying an application of this conceptual data model in managerial decision-

making. 

6. Comparing and contrasting this conceptual data model with Bayesian belief 

networks. 

This study will not address the physical data model, implementation of any part of 

the model, implementation issues, comparison with, or discussion of, proprietary non-

published products, or any other aspects not listed in this section. 
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Assumptions 

The most important general assumption is that the probability stamp pS is the 

joint probability of a set of mutually independent variables. Without this assumption, 

applicability of some formulas would be questionable. Semantics of probability are 

assumed to conform to Bayesian probability theory. Data modification framework is 

devised with the assumption that Jeffrey’s rule of probability kinematics is applicable to  

probability distributions in the domains of application. Any additional assumptions 

specific to a formula will be stated with that formula. 

Barriers 

The need for multidimensional data models arose when businesses began to 

accumulate terabytes of data (Kimball et al., 1998). Researchers started addressing 

functionality requirements demanded by business, looking for a solution that would 

satisfy four categories of functionality requirements (Moole, 2003). This research may 

not have been useful a decade ago due to the state of technology at that time, which could 

not store huge volumes of data economically (Inmon, 1990). Current market conditions 

show demand for OLAP and DW products (ITG, 2000). This research presents few 

apparent barriers for researchers with extensive training and experience in the DW and 

OLAP fields. This research does not require collection of data, as in quantitative studies, 

nor does it require interviews with other people, as in qualitative studies. There were no 

apparent barriers for the investigator to complete the research as described in the scope 

section of this paper. 
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Limitations 

This study is analytical in nature and hence limitations are generally due to 

interpretations, logical errors, and semantics. Substantiating claims by being thorough in 

developing formulas and by adhering to well-established conceptual frameworks can 

minimize the impact of these limitations on results. The limitations on applicability of the 

research results to industry will be due mainly to lack of availability of the results to the 

public. This may be overcome by publishing the results in peer reviewed journals and at 

conferences related to the area of research. 

Definitions 

For the purpose of this study the following operational definitions will be used. 

These definitions are used throughout this dissertation. Terms such as technology, 

products, and tools are used in their general sense as they relate to the software industry. 

Chapter 2 presents definitions of additional terms used in that chapter. 

Algorithm: A sequence of instructions in solving a problem or achieving a goal. 

Closure: Use of an algorithm that produces valid results. 

Completeness: An algorithm that handles all possible update scenarios correctly. 

Consistency: An algorithm that satisfies all probability axioms. 

Efficiency: Algorithms measured by their time complexity and space complexity. 

Framework: An abstract solution to a number of related problems, which specifies 

abstract boundary conditions consisting of concepts, assumptions, values, and practices, 

within which all solutions lie. 

Methodology: “A set or system of methods, principles, and rules used in a given 

discipline” (Steinmetz, 1997, p. 203). 
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Model: A set of mathematical equations describing domains, constraints, and 

axioms. 

Time complexity: A measure of efficiency that specifies how many units of 

computational cycles are required to execute steps in algorithm. 

Space complexity: A measure of efficiency that specifies how many units of 

storage are required to execute steps in algorithm. 

Summary 

In Chapter 1, data warehousing, OLAP, and data models were discussed. The 

problems faced by business today, due to the large amounts of data generated, were also 

discussed. The research problem, scope of research, barriers, and limitations were 

presented. 

In Chapter 2, the research work done in this area and a brief description of the 

basis for current research will be presented. The investigator reviews prior research on 

uncertainty, data models, multidimensional data models, and probabilistic 

multidimensional data models, connects prior research to the problem statement, and 

briefly describes the proposed solution. 

In Chapter 3, the research methodology used in prior research, a framework for 

selection of research methodology for this study, and justification for its selection will be 

presented. Finally, advantages and disadvantages of selected research methodology and 

ways to mitigate impact of its disadvantages will be discussed.  

In Chapter 4, modifications to probabilistic multidimensional data model 

definition, additional required algebraic operations, a data modification framework based 

on Bayesian framework, a data modification algorithm, and time and space complexity 
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analysis are presented. A solution using probabilistic multidimensional data model for a 

business management problem is also described. 

In Chapter 5, research activities performed by the investigator are summarized. 

Summarization of analytical methodology and mitigation of its disadvantages, 

summarization of research results, and areas for further research are also presented in 

Chapter 5. 
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CHAPTER 2 
 

LITERATURE REVIEW 
 

The purpose of this study was to develop a framework for probabilistic data 

modification to enhance importance and usefulness of the probabilistic multidimensional 

data model of Moole (2003). The investigator reviewed literature addressing uncertainty, 

multidimensional data models, and probabilistic multidimensional data models. A data 

modification framework based on earlier research is also presented in this chapter. Also 

included is research in uncertainty and a review of multidimensional data and 

probabilistic multidimensional conceptual data models. The review of literature is mainly 

focused on peer-reviewed journals (for example IEEE, ACM, and INFORMS Database), 

peer reviewed conference proceedings (such as IEEE Conferences and ACM SIG 

Conferences), University of Maryland Digital Dissertations Database, and, to some 

extent, business journals and Internet web sites. 

Uncertainty Representation 

Uncertainty is pervasive. An effective probabilistic multidimensional data model 

must take into account modification of uncertain data. In this section, a review literature 

on uncertainty will be presented. 

There are three types of basic methods representing uncertainty (Turban & 

Aronson, 2001): 

1. Numeric methods represent uncertainty using a scale with two extreme 

numbers. For example, complete certainty could be represented as 100 
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while complete uncertainty is represented as 0. Probability is another 

example of numeric methods. 

2. Graphical methods represent uncertainty as a continuum on a scale. 

3. Symbolic methods generally represent uncertainty as a rank, fuzzy logic 

being a special method of symbolic logic combined with numbers. 

There are various frameworks to represent uncertainty (Klir & Wierman, 1998). 

They are: Classical set theory, fuzzy set theory, evidence theory, possibility theory, and 

probability theory. In the probabilistic multidimensional data model probability measures 

are used to represent uncertainty. 

Classic Set Theory 

In classical set theory sets are basic building blocks. There is no precise definition 

of set, but Klir & Wierman’s (1998) definition: a “set is a collection of objects chosen 

from Universe” generally suffices (p. 14). Examples of sets are natural numbers, integers, 

carnivores, and empty sets. Uncertainty is expressed by specifying membership in a set. 

Each set is inherently non-specific. Specificity decreases as number of members in set 

increases. Only when set contains one alternative is full specificity achieved. Classical set 

theory imposes several limitations compared to probability theory, discussed in detail by 

Klir & Wierman. 

Fuzzy Set Theory 

Sets in classical set theory are also called crisp sets. An element is either a 

member of a set or it is not, although the fuzzy set theory developed by Zadeh (1965) 

specifies degree of membership, as opposed to being a member or non-member. Later 

developments of fuzzy set theory resulted in fuzzy logic, which formalized information 
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representation (Zadeh, 1965). Representing the degree of membership provides a richer 

mechanism to represent uncertainty. Fuzzy logic is a relatively recent development 

compared to probability theory. 

Evidence Theory 

Originally published in 1976 by Glenn Shafer, evidence theory, popularly known 

as Dempster-Shafer theory (DST), uses belief functions to represent uncertainty (Shafer, 

1990). In this theory, which is sometimes also referred to as mathematical theory of 

evidence (MTE), probability is a belief function. This theory is a generalization of 

Bayesian theory. DST is compatible with probability theory (Dezert, 2002). 

Possibility Theory 

Possibility theory is related to fuzzy set theory and probability theory. A 

possibility distribution is a fuzzy set. This theory can also represent nonspecificity as a 

measure, and is similar to entropy in probability theory (Dubois & Prade, 1988). 

According to this theory, degree of possibility is independent of human beliefs, and exists 

in physical world. On the other hand, degrees of belief are subjective-personal opinions 

and result from the limitation of the human knowledge.  

Probability Theory 

Probability theory is of particular interest, as it is the most frequently used 

framework to represent, model, and manipulate uncertainty arising in day-to-day business 

decision-making. Probabilistic analysis of data to derive expected results is employed in 

several Decision Support Systems. This kind of probabilistic analysis is better than 

ignoring or avoiding uncertainty (Turban & Aronson, 2001). 
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Among all frameworks developed to handle uncertainty, probability theory is 

most developed, well understood, and the most accepted theory (Rao, 1973). In fact, it is 

the oldest theory to represent uncertainty and is a part of daily conversations. Probability 

theory uses numbers between 0 and 1 to represent uncertainty. Complete certainty is 

represented by 1 and complete uncertainty by 0 (Rao, 1973). Bayesian probabilistic 

theory extends theoretical underpinnings of probability. Causality and decision-making 

processes described by Pearl (2001) are based on this theory. Due to its strengths in terms 

of conceptual clarity and acceptance, the investigator used probability theory to handle 

uncertainty. 

Multidimensional Data Models 

Data representation frameworks have evolved from two-dimensional structures 

based on relational data model (Codd, 1971) to multidimensional data models of today. 

This study is concerned with handling huge volumes of data, for which multidimensional 

data models are well suited. The earliest attempt at providing a conceptual model for 

multidimensional data was made by Li and Wang (1996). In 1997, Agarwal, Gupta, and 

Sarawagi (1997) provided one model for multidimensional data and Gyssens and 

Lakshmanan (1997) provided another. All of these models placed several restrictions on 

dimensions, attributes, or types of queries. Thomas and Datta (2001) eliminated most of 

these restrictions and made their model more generic; however, this model lacked  the 

capacity to represent, manipulate, and update uncertainty. The probabilistic 

multidimensional data model proposed by Moole (2003) is an enhancement to the 

Thomas and Datta (2001) model. 
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Probabilistic Multidimensional Data Model 

Probabilistic multidimensional data models handle uncertainty in addition to large 

volumes of data. They are developed to meet the functionality requirements of 

DW/OLAP. The functionality requirements of DW/OLAP models are divided into the 

following four categories (Moole, 2003):  

Data Cube Operations 

In this category, slice, dice, roll-up, drill-down, and pivot operations are the most 

important.  

1. Slicing is operation of selecting dimensions used to view the cube. It is 

analogous to selection operation in relational algebra.  

2. Dicing is operation of selecting actual positions or values on a dimension. 

It is analogous to projection operation in relational algebra.  

3. Roll-up is operation of increasing granularity along one or more 

dimensions. For example, an analyst with access to sales in a city may 

want to see sales for an entire state or region to view the city in proper 

perspective. That is, the roll-up operation allows analysis across a 

hierarchy of dimension.  

4. Drill-down is converse operation, decreasing granularity. An analyst with 

access to regional sales data may want to see more detailed data for a state 

and then for a city. It is traversing dimensional hierarchy in decreasing 

level of granularity.  
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5. Pivot refers to aggregation of two or more dimensions to produce a new 

multidimensional view having an attribute for each grouping dimension 

and additional attributes for aggregated measure. 

Aggregation 

The second category of functionality requirements is aggregation. In addition to 

standard SQL aggregate operators (e.g. MIN, MAX, SUM, AVG, COUNT), an OLAP 

system needs to support operators such as ranking, percentiles, comparisons of 

aggregates, attribute-based grouping, trends, and time-dimension based aggregate 

comparisons. 

Transformations 

The third category of functional requirements is transformations. Force operator 

converts a dimension to a measure and extract operator converts a measure into a 

dimension. 

Uncertain Data 

The fourth category is related to handling of uncertain data. This category 

includes a well-defined mechanism for representing, modifying, and transforming 

uncertain data consistently within the model as well as in associated operations. Without 

supporting uncertainty, usefulness of OLAP systems will be limited to the point of being 

unacceptable for many real world business tasks. 

Moole (2003) proposed also a probabilistic multidimensional data model which 

captured uncertainty using probability measures. This model was based on set theory, and 

had a solid theoretical basis for representing uncertainty: Its algebra was closed, it was at 

least as expressive as the relational model, and it was relationally complete. This model 
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did not provide any mechanism for updating uncertain data. The following discussion 

provides a summary of the probabilistic multidimensional data model followed by 

discussion of enhancements proposed by this dissertation research. 

In the probabilistic multidimensional data model, each cell in the cube is stamped 

with a probability measure, as shown in Figure 1. This probability stamp pS represents 

strength of belief that there exists a real world object with given cell values. It can 

represent also probability derived from forecasting methods or empirical experimentation 

or it can be considered belief strength for conceptual clarity and wider applicability. 

Since the investigator is using probability as the measure of strength of belief, its domain 

is [0,1]. When pS is 0, it is certain that the real world object does not exist and when it is 

1, it is certain that it does exist. When it is 0, the cell values are not represented for that 

object. When it is 1, the investigator will not write pS explicitly in cube cell. Content for 

this section is adopted verbatim from Moole (2003), with only essential parts reproduced. 

Moole (2003) uses the sales cube shown in Figure 1 as a running example throughout.  
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Figure 1. Cube example. 

The following text is verbatim from the paper: 

Definition 1 Cube: A cube is a logical structure comprising of a six-tuple 〈C, A, f, 

d, O, L〉 where: 

•  C is a set of m characteristics {c1, c2, …, cm} where each ci is a 

characteristic having domain (dom) C, one of which may be BELIEF. If BELIEF is 

not a characteristic, then the cube is deterministic. 

•  A is a set of t attributes {a1, a2, …, am} where each ai is an attribute name 

having domain dom A, one of which may be a probability stamp pS. dom(pS) is (0,1]. 

We assume that there exists an arbitrary total order on A, ≤A. Thus, the attributes in A 

(and any subset of A) can be listed according to ≤A. Moreover we say that each ai ∈  A 

is recognizable to the cube C. 
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•  ƒ is a one-to-one mapping, ƒ: C → 2A, which maps a set of attributes to 

each characteristic. The mapping is such that 

o ∀ i , j, i ≠ j, ƒ(ci) ∩ ƒ(cj) = ∅   i.e. pairwise disjoint attribute 

sets 

o ∀ x, x ∈  A, ∃ c, c ∈  C, x ∈  ƒ(c)  i.e. all attributes are 

mapped 

o ƒ(BELIEF) → {pS}, iff  BELIEF ∈   C i.e. BELIEF is always 

mapped to pS 

Hence, ƒ partitions the set of attributes among the characteristics. ƒ(c) is 

referred to as the schema of c. 

•  d is a boolean-valued function that partitions C into a set of dimensions D 

and a set of measures M. Thus, C = D U M where D ∩ M = ∅ . The function d is 

defined as: 

 

 

•  O is a set of partial orders such that each oi ∈  O is a partial order defined 

on ƒ(ci) and |O| = |C|. In other words, the schema for each characteristic ci, has a 

partial order oi associated with it. 

•  L is a set of cube cells. A cube cell is represented as an 〈address, content〉 

pair. 

o The address in this pair is an n-tuple, 〈α1, α2, …, αn〉, where n is 

the number of dimensional attributes in the cube, i.e. n = |Ad|, where Ad 
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represents set of all dimensional attributes; i.e., Ad = Udi∈ D ƒ(di). Each 

address component, αi, represents a position along the “axis” of a dimensional 

attribute in A based on ≤A (e.g., the third component of the address, α3, 

corresponds to the third dimensional attribute in A in ≤A-order). One of these 

components may be pS. 

o The content of a cube cell is a k-tuple, 〈χ1, χ2, …, χk〉, where k is 

the number of metric attributes in the cube, i.e., k = |Am|, where Am represents 

the set of all metric attributes; i.e. Am = Umi∈ M ƒ(mi). Each content 

component, χi, represents the element of the content that corresponds to a 

particular metric attribute. χi corresponds to the ith metric attribute in A in  

≤A-order. One of these components may be pS. 

o The total probability of all the cells having the same address 

component must be no more than one. i.e.  

 

 

o Two cells i and j are said to be value-equivalent iff the address 

component of i is identical to the address component of j and the content 

component of i without pS is identical to the content component of j without 

pS, when d(BELIEF)=0. Value-equivalence is denoted by ≅ . That is (see 

below for the notation), 
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Value-equivalent cells are not allowed and must be coalesced using the 

coalescence operations defined in the next section. 

The following notations are used: 

•  g: A → C, such that g(a) = c iff a ∈  ƒ(c) 

•  structural address component of L is denoted as L.AC 

•  structural address component of cell l is denoted as l.AC 

•  ith address component of cell l is denoted as l.AC[i] 

•  address component of a cell corresponding to an attribute name 

aname is denoted as l.AC(aname) 

•  structural content component of L is denoted as L.CC 

•  structural content component of cell l is denoted as l.CC 

•  ith content value component of cell l is denoted as l.CC[i] 

•  content component of a cell corresponding to an attribute name 

aname is denoted as l.CC(aname) 

•  class of L is defined as {Ad U Am} 

•  object is a set of domain values corresponding to the set of 

attributes {Ad U Am – pS} (all the attribute values of a cell without their joint 

probability). A subset of these attributes is called as partial object. An object 

is an instance of a class of L. 
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Example for the Probabilistic Multidimensional Data Model 

To clarify the above definition of the probabilistic multidimensional data model, 

Moole used the data cube example shown in Figure 1. Note that multiple content 

components are written into a single box for convenience and separating them each into 

their individual cells does not affect as long as their address components are properly 

represented. This Sales cube represents the data collected by our fictitious Koke company 

for the sales of fictitious competitor Bepsi’s products. Since it is not possible to get the 

exact sales information, Koke’s agents are allowed to report a guess based on empty cans 

being recycled and attach a probability measure to each report. 

The sales cube has: 

•  The characteristic set C = {TIME, PRODUCT, LOCATION, 

SALES, BELIEF}, (m = 5) 

•  The attribute set A = {day, week, month, year, product_name, size, 

store_name, city, state, region, amount, quantity, pS}, (t = 14) 

•  schema of C: 

o ƒ(TIME) = {day, week, month, year} 

o ƒ(PRODUCT) = {product_name, size} 

o ƒ(LOCATION) = {store_name, city, state, region} 

o ƒ(SALES) = {amount, quantity} 

o ƒ(BELIEF) = {pS} 

•  dimension function d: 

o d (TIME) = 1   i.e., TIME is a dimension 
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o d (PRODUCT) =  1  i.e., PRODUCT is a 

dimension 

o d (LOCATION) = 1  i.e., LOCATION is a 

dimension 

o d (SALES) = 0  i.e., SALES is a measure 

o d (BELIEF) = 0  i.e., BELIEF is a measure 

•  A sample partial order on the Sales cube is as follows: 

o OTIME = {〈day, week〉, 〈day, month〉, 〈day, year〉, 〈week, 

month〉, 〈month, year〉} 

o OPRODUCT = {〈product_name, size>} 

o OLOCATION = {〈store_name, city〉, 〈city, state〉, 〈state, 

region〉} 

o OSALES = {} 

o OBELIEF = {} 

•  An example of L is as follows: 

o Let us assume the following domains for the attributes 

� A = {year, product_name, city, amount, quantity, 

pS} 

� dom year = {1993, 1994, 1995} 

� dom product_name = {P1, P2, P3} 

� dom city = {Boston, Dallas, Seattle, Chicago} 

� dom amount = {0, 1, 2, …} 

� dom quantity = {0, 1, 2, …} 
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� dom pS = {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 

0.9, 1} 

o With the above assumptions, an example set of cells is 

shown below. 

l = 〈l.AC, l.CC〉 

l.AC = 〈1993, P1, Boston〉 corresponding to 〈year, product_name, city〉 

l.CC = 〈100, 10, 0.5〉 corresponding to 〈amount, quantity, pS〉 

Therefore, 

l = 〈〈1993, P1, Boston〉, 〈100, 10, 0.5〉〉 

This cell represents the Probability of “Sales of P1 by Bepsi in Boston 

for 1993 are 10 shipments with a revenue of 100k” is 0.5. 

Similarly, the values shown in box one of the Figure 1 can be written 

as: 

{ 〈〈1993, P1, Boston〉, 〈100, 10, 0.5〉〉, 

〈〈1993, P1, Boston〉, 〈125, 10, 0.2〉〉, 

〈〈1993, P1, Boston〉, 〈150, 15, 0.1〉〉 } 

In the next section, an operational model is provided for the above data model. 

Algebra for Probabilistic Multidimensional Data Model 

The content of this section is adopted verbatim from the paper (Moole, 2003). As 

was mentioned in the Cube definition in the previous section, value-equivalent cells must 

be coalesced. There are two types of coalescence operations defined on the value-

equivalent cube cells. Both these coalescence operators can be applied recursively on any 

number of value-equivalent cells. 
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coalescence-PLUS (⊕⊕⊕⊕ ): This operator is used in the definition of the projection 

operation and is defined on two value-equivalent cells x and y as: 

z = x ⊕  y ⇔ (x ≅  y) ∧  (z ≅  x) ∧  (z.CC(pS) = min{1, x.CC(pS) + y.CC(pS)}) 

Intuitively, when two value-equivalent cells are combined using projection 

operation (i.e. we believe in both of the cells) their individual probability is summed 

together. If the result is greater than 1, then existence of the object is certain and is 

assigned a probability of 1. Recursive application is denoted as: 
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coalescence-MAX (����): This operator is used in the definition of the union 

operation and is defined on two value-equivalent cells x and y as: 

z = x � y ⇔ (x ≅  y) ∧  (z ≅  x) ∧  (z.CC(pS) = max{x.CC(pS), y.CC(pS)}) 

Intuitively, when two value-equivalent cells are combined using union operation 

(i.e., we believe in only one of the cells, the one with higher strength of belief), maximum 

probability of these cells is the probability for the result cell. Recursive application is 

denoted as: 

m 

� xi = (((…(x1 � x2) � x3)…�xm-1) � xm 

i=1 

To denote coalescence performed on cells with value-equivalence defined over an 

attribute subset S, we write “⊕  over S” or “� over S”.  
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We will proceed to define our algebra operators after providing two more 

definitions. 

Predicate P: A predicate is a well-formed formula in first-order predicate logic. 

•  An atomic predicate is a restriction on the domain of a single 

attribute or characteristic. e.g. (year = 1994) 

•  A compound predicate is a logical expression of atomic predicates. 

The logical operators are ∧  (and), ∨  (or), ¬  (not), → (implies), and ↔ (equivalent 

to). It is of the form: P = p1 〈op〉 p2 〈op〉 … 〈op〉 pn. e.g. (year = 1994) ∧  ((quantity 

< 15) ∨  (amount > 100)) 

 

l satisfies P: l, an instance of L, with the structure <address, content> satisfies 

predicate P if and only if: 

Case 1: if an element of l is a dimension, then l.AC satisfies P, otherwise l.CC 

satisfies P, if P is atomic and the truth-value is TRUE. 

 

 

 

e.g. Upper left most corner cell in the cube of Figure 1 satisfies P=(year=1993) 

Case 2: if P is a compound predicate, l satisfies P, when all the truth-values 

evaluated together with the connecting operators results in TRUE. 
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e.g. Upper left most corner cell in the cube of Figure 1 satisfies 

P=(year=1993)∧ (city=”Boston”)∧ (product_name=”P1”) 
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Fuzzy membership functions: We can also define a fuzzy membership function for 

BELIEF characteristic, which maps between natural language sentences and probability. 

For example, concepts like probably, likely, most likely, certainly, etc. can be mapped to 

the probability numbers between 0 and 1 using the fuzzy membership functions. These 

functions can also be used to map probability to all natural language words describing the 

uncertainty. The process of fuzzification and defuzzification is performed to convert 

human terminology of uncertainty into a crisp probability measure and vice-versa. Such a 

function is strictly a helper function and is not part of the model or algebra, as our model 

for uncertainty is based on probabilities. This function is generally applied for restricting 

the cells with a desired strength of belief to appear in the output. As an example, let us 

assume that the query is “Select most likely maximum sales from Sales cube”. Let us also 

assume a fuzzy membership function defined for this cube maps fuzzy sets “certain”, 

“most likely”, “very likely”, “likely”, “unlikely”, and “very unlikely” to crisp sets 1.00, 

0.99-0.70, 0.75-0.55, 0.60-0.40, 0.45-0.25, and 0.30-0.00. Of course, these are graded 

memberships, so a formal definition of these fuzzy sets will elaborate the membership 

gradation very clearly using alpha-cuts, height, plimth and other properties for fuzzy sets. 

Using this mapping we determine that “most likely” is described with a strength of belief 

between 0.99 – 0.75. Therefore, our selection predicate can be formed to include “pS >= 

0.75 and pS < 1.00”. This selects cells with probability greater than 0.75. Among the 

resultant cells, we can select the cell with maximum quantity. 

Similarly, we can combine the probability distributions for each object with 

probability distributions of other objects when calculating aggregate values and assign a 

probability distribution to the result. By doing this, instead of answering a query like 
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“what is the mean sales for Chicago?” with a pointed answer like “25”, we can answer 

using a confidence-interval statement like “The mean sales for Chicago is 95% certain to 

be between 23 and 27”. A comprehensive treatment of the probabilistic data can be found 

in Klir and Wierman (1998) and Pearl (1988). These are some simple examples to 

demonstrate the power of probabilistic multi-dimensional data. 

Now, we define algebra operations for the probabilistic data cube. Each operator 

is presented in the format used by Thomas and Datta, as follows: the operator name, 

symbol, a textual description, input, output, mathematical notation, and a simple example 

of the operator. All the examples use the Sales cube shown in Figure 1. 

 

Restriction (∑∑∑∑): The restriction operator restricts the values on one or more 

attributes based on specified conditions, where a given condition is in the form of a 

predicate. This is similar to the selection operator in relational algebra. Only cells that 

satisfy the predicate are retrieved into the result cube. If there are no cells that satisfy P, 

the result is an empty cube. Note that pS may also be restricted in the predicate, thus 

selecting cells representing only real world objects that have satisfied the belief 

constraints. This operator can be applied multiple times. The order of application is not 

significant. 

The algebra of restriction operator is defined as follows: 

Input: A cube CI = 〈C, A, ƒ, d, O, L〉 and a predicate P 

Output: A cube CO = 〈C,A,ƒ ,d, O, LO〉 where LO  ⊆  L and LO={l | (l∈ L)∧ (l 

satisfies P)}. 

Mathematical Notation: ∑P(CI)=CO 
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A Simple Example: If we want to know the sales for P1 in Boston during the year 

1993, then we use ∑(year=1993 ∧  product_name=’P1’ ∧  city=’Boston’)(Sales) = CRestrict =  

{ 〈〈1993, P1, Boston〉, 〈100, 10, 0.5〉〉, 

〈〈1993, P1, Boston〉, 〈125, 10, 0.2〉〉, 

〈〈1993, P1, Boston〉, 〈150, 15, 0.1〉〉 } 

 

Metric Projection (∏∏∏∏M): The metric projection operator restricts the output of a 

cube to include only a subset of the original set of measures. This is similar to the 

projection operator in the relational algebra. Let S be a set of project metric attributes 

such that S ⊆  Am. Then the output of the resulting cube includes only those measures in 

S. Since our cell represents a joint distribution of the attributes and this operation results 

in a subset of the original attributes, we need to marginalize the probabilities. We use the 

coalescence-PLUS (⊕ ) operator for this. Note that the value-equivalence is over the set of 

attributes S and projecting out the pS itself  (i.e. pS ∉  S) may yield meaningless result. 

The algebra of metric projection is defined as follows: 

Input: A cube CI = 〈C, A, ƒ, d, O, L〉 and a set of projection attributes S 

Output: A cube CO =  〈C, AO, ƒO, d, O, LO〉 where, 

AO = S U Ad, 

ƒO: C → 2A
O | ƒO(c) = ƒ(c) ∩ AO, 

LO = {lO |  ∃  l ∈  L, 

lO.AC = l.AC, 

lO.CC = 〈l.CC[s1], l.CC[s2], …, l.CC[s3]〉 
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where {s1, s2, …, s3}=S and 

⊕  over S 

l∈ L 

Mathematical Notation: ∏ =M

S OI CC )(  

A Simple Example: If we are interested in selecting only the quantity from the 

previous Restriction operator output above, we use oject
M

quantity strict CC PrRe )( =∏  =  

{ 〈〈1993, P1, Boston〉, 〈10, 0.7〉〉, 

〈〈1993, P1, Boston〉, 〈15, 0.1〉〉 } 

Note that the result contains only one cell with coalesced pS for the quantity=10 

because there are two cells for that and they become value-equivalent when amount is 

projected out. Also, note that eliminating pS through this operation for this example 

would result in cells with identical address components, but different quantities (with 

belief strength implicitly 1), which is meaningless data. 

 

Rename (Λ): The rename operator renames a set of elements. It is similar to the 

rename operator in relational algebra. Let SI be some set of elements {s11, s12, …, sIn}. 

Then, ΛS (SI) = {S.s11, S.s12, …, S.sIn}. This operator can be used to eliminate duplicate 

names in the results of binary operations. For example, Renaming the attributes 

corresponding to the TIME dimension of the Sales cube can be expressed as follows: 

ΛSales (A) = {Sales.day, Sales.week, Sales.month, Sales.year} 

 

Cubic Product (����): The Cubic Product operator is a binary operator. It is used to 

relate two cubes. This operator joins the attributes of two cubes together. This operator is 
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similar to the Cartesian Product operator in the relational algebra. The probability of the 

result is obtained by multiplying the probabilities of joined cells. By noting that the 

probability of each cell is the joint probability for that set of attributes, we can see that the 

result set is union of both tuples and the result cell’s probability must be a joint 

probability of all the attributes together. We can also see that the resulting probability is 

meaningful only when all the attributes are mutually independent. The Cubic Product is 

defined as follows: 

Input: A cube C1 = 〈C1, A1, ƒ1, d1, O1, L1〉 and A cube C2 = 〈C2, A2, ƒ2, d2, O2, L2〉. 

Output: A cube CO = 〈CO, AO, FO, dO, OO, LO〉, where (•  denotes concatenation) 

CO = ΛC1(C1) U ΛC2(C2), 

AO = ΛA1(A1) U ΛA2(A2), 

LO = {lO | ∃  l1, ∃  l2, l1 ∈  L1, l2 ∈  L2, lO.AC = l1.AC . l2.AC, 

lO.CC = l1.CC-{l1.CC(pS)} •  l2.CC-{l2.CC(pS)}, 

lO.CC(pS) = {l1.CC(pS) * l2.CC(pS)} 

In addition, 

∀ ci ∈  (C1 U C2), 

ƒO =  ƒ1 when applied to ci ∈  C1.ci, ƒ2 when applied to cj ∈  C2.cj, 

∀ ci ∈  (C1 U C2), 

dO = d1 when applied to ci ∈  C1.ci, d2 when applied to cj ∈  C2.cj 

∀ ai ∈  (ƒ(C1) U ƒ(C2)), 

OO = O1 when applied to ai ∈  ƒ(C1), O2 when applied to aj ∈  ƒ(C2) 

Mathematical Notation: C1 � C2 = CO 
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A Simple Example: Suppose we have another cube, Discount, containing discount 

amounts for various combinations of product and city. The definition of Discount cube is 

characteristics C = {PRODUCT, LOCATION, DISCOUNT, BELIEF}, attributes A = 

{product_name, city_ID, amount, pS}, dimensions D = {PRODUCT, LOCATION}, 

measures M = {DISCOUNT, BELIEF}, ƒ(PRODUCT)={product_name}, 

ƒ(LOCATION)={city_ID}, ƒ(DISCOUNT)={amount}, and ƒ(BELIEF)={pS}. If we 

want to assess how knowing Discount amounts will change the probability of Sales 

amounts, we can first use Cubic Product operation to the Sales and Discount cubes as 

follows: Sales � Discount = Cresult. This will result in the superset of the desired 

information. By using the Restriction and Metric Projection, we can extract the required 

answers. The Cubic Product operation does not place any restrictions on the domains of 

the attributes. 

 

Join (ΘΘΘΘP): The join operator relates two cubes having one or more dimensions in 

common, and having identical mappings from common dimensions to the respective 

attribute sets of these dimensions. This operation can be expressed using Cubic Product 

operation. Therefore, this is not a basic operator in our algebra. The description of this 

operator is as follows: two cubes C1 = 〈C1, A2, ƒ1, d1, O1, L1〉 and C2 = 〈C2, A2, ƒ2, d2, O2, 

L2〉 are join-compatible if D1 ∩ D2 ≠ ∅ , and ∀ ci ∈  D1 U D2, ƒ1(ci) = ƒ2(ci). Furthermore, 

let cd = D1 ∩ D2 = {cd1, cd2, …, cdm} and Acd = {acd1, acd2, …, acdm} denote the set of 

dimensions and corresponding dimensional attributes respectively. Hence, Acd = U∀ cdi∈ cd 

ƒ(cdi) and Acd ⊆  Ad. The algebra of join can be represented in terms of Cubic Product as: 
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C1 ΘP C2 = ∑P(C1�C2) where P is a predicate of the form [(C1.acd1 = C2.acd1) ∧  (C1.acd2 = 

C2.acd2) ∧  … ∧  (C1.acdm = C2.acdm)]. 

A Simple Example: Consider the query in the Cubic Product example. It can be 

answered by joining the Sales and Discount cubes as follows: Sales ΘΘΘΘP Discount = 

CResult. 

 

Union-Compatible Cubes: Two cubes are union-compatible if they have the same 

structure. i.e. C1 = 〈C1, A1, ƒ1, d1, O1, L1〉 and C2 = 〈C2, A2, ƒ2, d2, O2, L2〉 are union-

compatible if C1=C2, A1=A2, ƒ1=ƒ2, d1=d2, and O1=O2. 

 

Union (U): The union operator is a binary operator that finds the union of two 

union-compatible cubes. When union of two cubes is performed, value-equivalent cells 

must be coalesced using the coalescence-MAX (�) operator. This is because when we 

have two statements with varying degrees of belief, we pick the one with higher degree of 

belief (or more certain about). The algebra of the union operator is defined as follows: 

Input: A cube C1 = 〈C1, A1, ƒ1, d1, O1, L1〉 and another cube C2 = 〈C2, A2, ƒ2, d2, 

O2, L2〉 which is union-compatible with C1. 

Output: A cube CO = 〈CO, AO, FO, dO, OO, LO〉, where CO = C1 = C2; AO = A1 = 

A2; ƒO = ƒ1 = ƒ2; dO = d1 = d2; OO = O1 = O2; 

l ∈  LO ⇔ { ((l ∈  L1 ∨  l ∈  L2) ∧  ((∀ k ∈  L1  – {l}, ¬ (k ≅  l)) ∧  (∀ j ∈  L2 – {l}, ¬ (j ≅  

l)) 

  ∨  ((j ∈  L1) ∧  (k ∈  L2) ∧  (l ≅  j ≅  k) ∧  (l = j � k)) } 
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Mathematical Notation: C1 U C2 = CO 

A Simple Example: Consider two cubes, Sales_South and Sales_North, both 

having the same cube structure. Suppose that Sales_South represents the sales in the 

southern region and Sales_North represents the sales in the northern region. We want to 

know the sales for the entire north-south region. Then we can accomplish this by using 

the union operator as follows: Sales_South U Sales_North = Sales_North_South. The 

value-equivalent cells (in this example, those belonging to both the regions reported to 

have different probability measures with all the other attributes being identical) being 

coalesced. 

 

Belief Difference (θ): The belief difference operator is a binary operator that finds 

the difference of belief measures for two union-compatible cubes. This operator can be 

used to find how a reporter of information differs with another in terms of belief strengths 

for the same object. This operator is non-commutative. Suppose we have two cubes: 

Cube1 and Cube2. It is only possible to find how much more confidence is represented 

by Cube1 compared to Cube2. By reversing the operands it is possible to find how much 

more confidence is represented by Cube2 compared to Cube1. Repetitive application of 

this operator will result in finding the objects for which both cubes have the same 

confidence as well. When belief difference operation is performed, the probability of 

value-equivalent cells in the result is calculated to reflect the difference in strengths of 

belief. If the difference between the probabilities of two value-equivalent cells is positive, 

then the cell assumes the new probability in the result. If not, it is not included in the 

result. The algebra of the belief difference operator is defined as follows: 
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Input: A cube C1 = 〈C1, A1, ƒ1, d1, O1, L1〉 and another cube C2 = 〈C2, A2, ƒ2, d2, 

O2, L2〉 which is union-compatible with C1. 

Output: A cube CO = 〈CO, AO, FO, dO, OO, LO〉, where CO = C1 = C2; AO = A1 = 

A2; ƒO = ƒ1 = ƒ2; dO = d1 = d2; OO = O1 = O2; 

l ∈  LO ⇔  ((j ∈  L1) 

∧  (k ∈  L2) 

∧  (l ≅  j ≅  k) 

∧  (j.CC(pS) > k.CC(pS)) 

∧  (l.CC(pS) = j.CC(pS) – k.CC(pS))) 

Mathematical Notation: C1 θ C2 = CO 

A Simple Example: Consider two cubes, Sales_Report_By_John and 

Sales_Report_By_Jill, both having the same cube structure, representing the competitor’s 

sales as reported by John and Jill respectively. We want to know how they differ in their 

beliefs for the competitor’s sales. We can accomplish this by using the belief difference 

operator as follows: Sales_Report_By_John θ Sales_Report_By_Jill = 

Difference_Btwn_John_Jill. We also note that we can find the difference of belief 

strengths only when there are value-equivalent cells. 

 

Cubic Difference (–): The cubic difference operator is a binary operator that finds 

the difference of two union-compatible cubes ignoring the probability measures. When 

cubic difference operation is performed, the value-equivalent cells with second cube are 

eliminated from the first cube. The algebra of the cubic difference operator is defined as 

follows: 
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Input: A cube C1 = 〈C1, A1, ƒ1, d1, O1, L1〉 and another cube C2 = 〈C2, A2, ƒ2, d2, 

O2, L2〉 which is union-compatible with C1. 

Output: A cube CO = 〈CO, AO, FO, dO, OO, LO〉, where CO = C1 = C2; AO = A1 = 

A2; ƒO = ƒ1 = ƒ2; dO = d1 = d2; OO = O1 = O2; l ∈  LO ⇔ { ((l ∈  L1) ∧  (∀ j ∈  L2, ¬ (j ≅  l))) } 

Mathematical Notation: C1 – C2 = CO 

A Simple Example: Consider two cubes, Sales_South and Sales_Dallas, both 

having the same cube structure. Suppose that Sales_South represents the sales in the 

southern region and Sales_Dallas represents the sales in the Dallas city. We want to know 

the sales for the entire southern region except the Dallas city. Then we can accomplish 

this by using the cubic difference operator as follows: Sales_South – Sales_Dallas = 

Sales_South_without_Dallas. 

The cubic intersection operator can be defined using the cubic difference operator. 

It is expressed as C1 – (C1 – C2) = CO. Intersection is not a fundamental operator since it 

can be expressed in terms of other operators. 

The cubic difference and belief difference operators can be used to find several 

interesting features of the data such as regions where different agents reported different 

belief strengths. They also can be used to sanitize the data where conflicting reports are 

not allowed. By judiciously applying Cubic Difference and Belief Difference operators in 

combination with other cubic operators defined earlier, it is possible to find the difference 

in strengths of beliefs for cubes that are union-compatible within a subset of their 

characteristics. 
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Aggregation (ΓΓΓΓ): The aggregation operator performs aggregation (MIN, MAX, 

SUM, AVG, COUNT, RANK, PERCENTILE, etc.) on one or more dimensional 

attributes. This operator in combination with fuzzy membership functions defined for pS 

can be used to answer queries such as “What is the most likely average sales?”, “What is 

confidence level for average sales to be 25?”, etc. The queries that do not contain 

uncertainty in their formulation may have an answer with uncertainty in it. For example, 

“What are the maximum sales?” can be answered by selecting the cell with maximum 

sales reported which may have strength of belief of 0.01 (or very unlikely). 

 

Let µ be a metric attribute to aggregate where µ ∈  Am and G be a set of grouping 

attributes such that G ∈  Ad. Let F be an aggregate function having the mapping 

∏∀
∈

gi
gidomGF 2: � domagg , where agg represents a user-specified attribute name given to 

the result, which is extracted from the domain dom agg. F is assumed to be a first-order 

definable function including the standard arithmetic functions + (addition), − 

(subtraction), ∗  (multiplication), and / (division), the standard SQL aggregate functions, 

and a RANK function. The RANK function takes a group of cells as input and returns an 

attribute agg corresponding to the ordinal number of the cell. The aggregation operator is 

defined as follows: 

Input: A cube CI = 〈C, A, ƒ, d, O, L〉, a set of grouping attributes G, a metric 

attribute µ, and an aggregate function F. 

Output: A cube CO = 〈CO, AO, FO, dO, OO, LO〉, 

WHERE 
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co = { c | c ∈  C, ∃ x, x ∈  ƒ(c) ∪  {AGG} and {AGG} is a new characteristic 

name defined specifically for the aggregated metrics, 

AO = G ∪  {agg} and {agg} represents the computed aggregate 

attribute, 

LO = {l | ∃ l ∈  L, lo.AC = 〈l.AC[g1], l.AC[g2], …, l.AC[gn]〉, 

lo.CC = 〈l.CC[agg]〉}, 

fO = 

 

 

 

Mathematical Notation: ΓF,G,µ (CI) = CO. 

A Simple Example: Consider the Sales cube. Suppose the user wants to see the 

total annual sales for each product. Then, F = SUM, G = {product_name, year}, and µ = 

amount. Therefore, the query to get the total annual sales for each product is written as 

Γ[SUM,{product_name,year},amount] (Sales) = CResult. 

Note that prior to applying the aggregation operator, the Sales cube can be 

operated upon by various operations depending on what strengths of probabilities need to 

remain. If we want annual sales corresponding to the highest confidence level objects, we 

first apply MAX(pS) aggregation operator to the Sales cube and then apply aggregation 

operator for SUM. Applying aggregation operators without first applying a meaningful 

transformation on the pS may result in meaningless data. In this example, if we apply 





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SUM on all the objects, then the result contains sum of several amounts for the same 

PRODUCT, TIME, and LOCATION, which is not a meaningful total. Instead, we could 

have applied a transformation that picks object with maximum pS or a more complex 

operation that combines all objects with differing pS but have the address component to 

obtain a probability distribution for that object and then selects an attribute value with say 

95% confidence level. We can even ask for object attribute value that lies between σ and 

-σ, thus utilizing all the concepts of statistical distributions. 

 

Furthermore, Force and Extract operations are defined for this probabilistic 

multidimensional data model. However, applying these operations on pS results in pS 

losing its special meaning and BELIEF becoming a regular characteristic. 

 

Force (ψψψψ): The force operator converts dimensions to measures. Let at be a 

dimensional attribute to transform such that g(at) ∈  D. Let ct be the corresponding 

characteristic name for at such that ct ∉  D and either ct ∈  M or ct is a new characteristic 

name. The force operator is defined as follows: 

Input: A cube CI = 〈C, A, ƒ, d, O, L〉, a dimensional attribute to transform at, and a 

corresponding characteristic name ct. 

Output: A cube CO = 〈CO, AO, FO, dO, OO, LO〉 

Where 

CO = C ∪  {ct}, 

fO = f – f(g(at)) + [g(at) � f(g(at) – at)] + [ct � at], 
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OO = Oprev ∪  Onew where Oprev is obtained by removing ordered pairs 

containing at from O and Onew represents a user specified set of ordering relations 

between at and the elements of f(ct) if ct ∈  M, 

LO = {lO | ∃ l ∈  L, lO.AC = l.AC - 〈l.AC[at]〉, lO.CC = l.CC •  〈l.AC[at]〉}, 

 

 

 

Mathematical Notation: ψat,ct(CI) = CO 

A Simple Example: Converting store_name from dimension to a measure in the 

Sales cube. This can be expressed as: ψstore_name, sales(Sales) = CResult 

 

Extract (ΦΦΦΦ): The extract operator converts measures to dimensions. Since we 

assigned a special meaning for the BELIEF characteristic and made it a measure, it 

cannot be extracted to a dimension without losing its special meaning. Even forcing it 

back to a measure after extracting pS may not restore its meaning after certain operations. 

Let at be a metric attribute to transform such that g(at) ∈  M. Let ct be the corresponding 

characteristic name for at such that ct ∉  M and either ct ∈  D or ct is a new characteristic 

name. The extract operator is defined as follows: 

Input: A cube CI = 〈C, A, ƒ, d, O, L〉, a metric attribute to transform at, and a 

corresponding characteristic name ct. 

Output: A cube CO = 〈CO, AO, FO, dO, OO, LO〉 

Where 
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CO = C ∪  {ct}, 

fO = f – f(g(at)) + [g(at) � f(g(at) – at)] + [ct � at], 

OO = Oprev ∪  Onew where Oprev is obtained by removing ordered pairs 

containing at from O and Onew represents a user specified set of ordering relations 

between at and the elements of f(ct) if ct ∈  D, 

LO = {lO | ∃ l ∈  L, lO.AC = l.AC •  〈l.AC[at]〉, lO.CC = l.CC - 〈l.AC[at]〉}, 

 

 

 

 

Mathematical Notation: ΦΦΦΦat,ct(CI) = CO 

A Simple Example: Converting store_name from a measure to a dimension in the 

Sales cube. This can be expressed as: ΦΦΦΦstore_name, sales(Sales) = CResult 

 
Properties of the Model 

When BELIEF is not a characteristic of the cube, this model is reduced to the 

deterministic model. In this section, a proof is presented that the algebra defined for the 

model is closed, at least as expressive as relational model, and relationally complete. The 

following proof starts by showing that the data model is reducible to relational model and 

content-wise equivalent using the following definitions on the way. The following 

content is adopted from (Moole, 2003). 

Data Equivalence (≅≅≅≅ ℜℜℜℜ ): A relation instance (a row in a table) is a set of n-tuples. 

Each tuple can correspond to an individual cell in the cube (in fact, our example of cells 
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in the Sales cube are shown as tuples of dimensional attributes and metric attributes). 

When there are no tuples in the relational instance it is equivalent to an empty cube. A 

formal definition of Data Equivalence between relational instance r and a cube C is as 

follows: 

An instance r of a relation R and cube C are data equivalent, denoted r ≅ ℜ  c,  

iff C = 〈C, A, ƒ, d, O, L〉 such that 

C = {M}, where M is an arbitrary characteristic 

A = R, i.e., the relation and the cube have the same set of attributes 

f = {{M, A}}, i.e., f maps all attributes to the arbitrary characteristic M 

d = {{M, 0}}, i.e., characteristic M is a measure 

O = ∅ , i.e., no partial ordering is present 

L = {l | ∃ t ∈  r, l.CC = t, l.AC = ∅ }, i.e., for every tuple t in r, there exists a 

single cell l in C which has the tuple as its content component and no address 

component. 

THEOREM 1: Our algebra is closed. 

To prove this theorem, we must show that all the basic operations defined in our 

algebra result in Cube as defined in the model. The Cube must satisfy the following three 

criteria: (1) the values of cells must come from an appropriate domain, (2) no two cells in 

result cube are value-equivalent, and (3) The result cube is finite collection of cells. 

Considering the definitions of operators, every basic operator produces a result Cube. The 

domain of cells other than pS are defined to be the same as those in the original cube. The 

pS has the domain of (0, 1]. To prove that domain of pS will be (0, 1] after the application 

of basic operators, we examine each operator except Cubic Difference and find they all 
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result in pS greater than zero. The coalescence operators, which are part of Union, Metric 

Projection, etc., also explicitly prevent the value of pS to be greater than 1. Therefore, we 

conclude that (1) is satisfied. Noting that coalescence operators always coalesce value-

equivalent cells and produce a single cell trivially proves second criterion. The 

coalescence operators always produce the same number cells as there are in the input or 

less. We can also see that the number of cells in the result can be at most |C1| x |C2| for 

Cubic Product operation C1 � C2. All the other operators result in less number of cells 

than Cubic Product. Since an empty cube also satisfies the definition, the operators 

resulting in empty cube are still closed. 

 

THEOREM 2: Our algebra is at least as expressive as the relational algebra. 

We show that all five basic relational algebra operators (Restriction, Projection, 

Union, Difference, Product) can be expressed in our algebra. Consequently, it follows 

that other derived operators can be expressed as well. 

Restriction: Given a relation instance r and a cube C such that r ≅ ℜ  C. Suppose we 

have a selection predicate P. Since σP(r) returns relation instance r′ containing tuples of r 

that satisfy P and ∑P(C) returns cube C′ containing cells of C that satisfy P, we conclude 

that σP(r) ≅ ℜ  ∑P(C). 

This line of argument can also be used to substantiate the claims made below. 

Metric Projection: Given relation instance r and a cube C such that r ≅ ℜ  C, 

πS(r) ≅ ℜ  M
S∏ (C) 

Union: Given relation instances r1 and r2 and cubes C1 and C2 such that r1 ≅ ℜ  C1 

and r2 ≅ ℜ  C2, r1 ∪  r2 ≅ ℜ  C1 ∪  C2. 
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Difference: Given relation instances r1 and r2 and cubes C1 and C2 such that r1 ≅ ℜ  

C1 and r2 ≅ ℜ  C2, r1 − r2 ≅ ℜ  C1 − C2. 

Cubic Product: Given relation instances r1 and r2 and cubes C1 and C2 such that r1 

≅ ℜ  C1 and r2 ≅ ℜ  C2, r1 X r2 ≅ ℜ  C1⊗  C2. This holds since (a) r1 X r2 returns a relation r 

having |r1| x |r2| number of tuples representing all possible combinations of both 

relational instances and (b) C1⊗  C2 returns a cube C having all characteristics and 

attributes of both C1 and C2 and cells representing all possible combinations of the cells 

of both cubes. 

By showing that every relational algebra operator can be expressed in our algebra, 

we conclude that our algebra is at least as expressive as relational algebra and possibly 

more expressive since we can perform several additional operations in our algebra. 

Intuitively this algebra is relationally complete. The preceding text was reproduced from 

Moole (2003). 

Modification of Uncertain Data 

Since pS is represented as joint probability of a set of mutually independent 

variables, Bayesian methods can be applied to update this probability when new 

information is obtained. Similar applications have been reported earlier for various types 

of uncertain data (Dey & Sarkar, 2000). Real world data change over time and need 

corresponding modifications to affected objects. Change can be a result of adding new 

information, deleting existing information, or modifying existing information. In each of 

these instances underlying beliefs need to be revised. Bayesian Framework provides a 

solid basis for revision of belief. Bayes Conditionalization Formula (Pearl, 1988) to 

calculate new probability is given as: 
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prob(A|e) = ∑
=

n

i 1

prob(A|Bi, e) prob(Bi|e) 

A simplified version of this formula (Jeffrey, 1983), known as Jeffrey’s Rule of 

Probability Kinematics, calculates new probability using: 

PROB(A) = ∑
=

n

i 1

prob(A|Bi) PROB(Bi) 

In data modification frameworks, this latter formula provides computational 

advantages and hence it is used. 

As can be seen from the above related research review, prior research is 

completely analytical in nature. The analytical research method is best suited to an 

extension of research in this area (Martin, 2004). 

The above discussion reviewed most recent and relevant related research 

concerning probabilistic multidimensional data model, and literature survey indicated that 

enhancements have not yet been reported. The research conducted so far does not address 

topics of additional required operators, a data modification framework, data modification 

algorithm(s), and applicability of the probabilistic multidimensional data model to 

business management problems.  

Summary 

In this chapter, the investigator reviewed research on uncertainty and conceptual 

data models. The importance of conceptual data models in the development of products, 

history of the relational data model, and the impact of conceptual data models on product 

development were discussed as well as multidimensional data models and their 

shortcomings. Research related to enhancement of multidimensional data models and 

probabilistic relational data models was presented along with required enhancements to 
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the probabilistic multidimensional data model. The relationship of current research to 

required enhancements was also presented. 

In Chapter 3, research methodology used for this study, justification for selecting 

methodology, and advantages and disadvantages of that methodology will be discussed. 
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CHAPTER 3 
 

METHODOLOGY 

 

This study is aimed at addressing data modification framework and algorithms. 

The investigator performed the following tasks: (a) Enhanced the probabilistic 

multidimensional data model (Moole, 2003), (b) provided all required algebraic 

operations, (c) provided a framework to update probabilistic data, (d) developed 

algorithm(s) to update probabilistic data, and (e) analyzed the time and space complexity 

of update algorithm(s). Additionally, a fictitious business management application was 

used to help understand the model and appreciate its usefulness. 

According Buckley, Buckley, and Chiang, there are multiple methods of 

conducting scientific research (Martin, 2004); suitable research methods depend on the 

subject being researched. This chapter includes a framework for selecting research. 

Justification for the selected method, its advantages, and its disadvantages are presented. 

A strategy to mitigate disadvantages is discussed. 

Analytical methods of research required the researcher’s internal logic in analysis, 

synthesis, and construction of theories. Results are generally reported as mathematical 

formulas, often accompanied by proofs. This method is suitable for mathematics 

research. 

The research problem was identified by reviewing prior research (Moole, 2003; 

Thomas & Datta, 2001). The analytical method is best suited to solving this research 

problem because of the need for an analysis of set theoretical mathematical concepts and 

probability theory axioms without reference to any empirical data. Mathematical proof of 
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correctness of the new formulas was provided. Other methods (quantitative, qualitative, 

experimental, case studies, etc.) are deemed unsuitable for this problem because of its 

mathematical nature (Martin, 2004). Use of deductive logic on set theory and probability 

axioms was the predominant analytical method, starting with general theories of sets and 

probability and deriving specific theories applicable to probabilistic multidimensional 

data. The probabilistic multidimensional data were compared and contrasted to Bayesian 

belief networks to elicit their relative strengths and weaknesses. Unlike other methods, 

such as quantitative and qualitative methods, which consist mainly of data collection and 

interviews, the analytical method uses step-by-step derivation of new formulas from 

proven set theory and probability axioms. The new formulas derived were 

mathematically proven to establish correctness. Properties of the model and the 

modification algorithm were also mathematically proven. 

The investigator performed the following steps during this research, applying 

analytical method: 

1. Investigated conceptual models for DW and OLAP; 

2. Synthesized a probabilistic multidimensional data model;  

3. Developed an uncertain data modification framework; 

4. Developed data modification algorithms; and 

5. Analyzed time and space complexities of algorithms. 

Justification for Selecting the Analytical Method 

This research problem is derived from a deductive syllogistic work whereby the  

investigator used internal logic to perform mathematical analysis of the subject. The 

analysis presented in chapter 2 is based on mathematical modeling of the probabilistic 
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data. It logically followed that current research to extend that preliminary work be 

performed using the same method. Figure 2 below, adapted from Martin (2004), presents 

a framework for selecting the methodology, which can be applied to the underlying 

model as well as to the current research work. 

 

 

Figure 2. Framework to select a research methodology. Adapted from Martin (2004) with 

permission from author.  

The analytical method based on internal logic of the authors has several 

advantages and disadvantages. The following excerpt from Martin (2004) describes 

advantages in the first column and disadvantages in the second. 
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Table 1. 

Advantages and Disadvantages of the Analytical Method. 

 

Advantages Disadvantages 
There is no need to search for additional 

data and analytic research is not limited by 

existing data. It provides the broadest scope 

for imagination and creativity. Best 

suited for use of logic, philosophy, and 

operation research techniques. 

The most abused strategy and most 

difficult to criticize. Requires a first rate 

mental ability that is rare. Can more readily 

be used to mislead. Often sloppy. It is 

subject to logical errors, problems of 

semantics, etc. Temptation to focus on 

trivial and irrelevant problems.  

Note: Adapted from (Martin, 2004) with permission from the author 

As Table 1 indicates, creativity and imagination are not limited in the analytical 

method as may be the case in empirical (qualitative and quantitative) studies, which fix 

frameworks for data collection and contain limits on collectable data, and in which results 

may be generalized from inappropriate sample sizes. These all limit scope and impact of 

results and their benefits. 

One might misuse the analytical method. Therefore, the investigator paid close 

attention to detail and the logical flow of research results. Logical errors are difficult to 

identify; however, the investigator conducted previous research using the analytical 

method and found that it is possible not only to identify logical errors published by 

eminent researchers but also to prove claims which are mathematically beyond doubt or 
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disagreement (Moole & Valtorta, 2003). Problems related to semantics will be avoided 

by using semantics established by reputable researchers. 

The investigator performed mathematical derivation of equations and validated 

them using mathematical proof of correctness. Algorithms were analyzed using methods 

established in the field of computer science (Knuth, 1973). The algorithmic analysis 

focused mainly on space and time complexities. 

Additionally, the following fictitious application of a multidimensional data 

model to a business management problem was described in detail: Consider the situation 

of a typical category manager in a retail food store. The general process to assess 

inventory starts with the manager walking through aisles and scanning bar code labels on 

shelves or products using a handheld device (Symbol, 2004). At the end of the process 

the manager connects the handheld device to a computer to transmit orders for items 

scanned. The manager generally forecasts the number of items to order. An inaccurate 

forecast could result in empty or overstocked shelves. If the shelves are empty customer 

dissatisfaction leads to business loss. Overstocked items cost in terms of money and shelf 

space leading to losses. Accuracy of forecast depends on the manager’s experience (PCG, 

1998). In this situation, even though theoretically it is possible to forecast demand based 

on past sales data, due to the volume of sales transactions, it would be unrealistic to do so 

without using Decision Support Systems that can handle large volumes of uncertain data. 

Using DSS could result in optimal inventory management. This also helps in 

collaborative planning with manufacturers and distributors. Decision Support Systems 

based on the probabilistic multidimensional data model could provide several benefits in 

this situation, which are described in Chapter 4. This application is fictitious, and is 
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meant to enhance readers’ understanding of the formulas and aid them in the 

interpretation of results. 

Summary 

In this chapter, reasons for choosing the analytic research method were presented. 

Advantages and disadvantages of the analytical method were discussed. Elaboration of 

equations, their validity, proof of correctness, and analysis of the algorithms were 

included. In Chapter 4, research results and required mathematical proofs for formulas 

are presented.  
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CHAPTER 4 
 

RESULTS 

 

In this chapter, all results of this dissertation research are described. Results 

contain required operators on PMDDM, uncertain data modification framework, 

uncertain data modification algorithm, proof of correctness of the modification algorithm, 

and an analysis of time and space complexities. In addition, the investigator discusses a 

fictitious business management application to illustrate the data model and its application. 

Finally, the investigator compared and contrasted the PMDDM with the Bayesian belief 

network framework. 

Operators on PMDDM 

Following are additional definitions and operators required to perform 

modification of the data.  

Predicate P: A predicate is a well-formed formula in first-order predicate logic. 

An atomic predicate is a restriction on the domain of a single attribute or 

characteristic, e.g. (year = 1994). 

A compound predicate is a logical expression of atomic predicates. Logical 

operators are ∧  (and), ∨  (or), ¬  (not), → (implies), and ↔ (equivalent to). It is of form: P 

= p1 〈op〉 p2 〈op〉 … 〈op〉 pn. e.g. (year = 1994) ∧  ((quantity < 15) ∨  (amount > 100)) 

l satisfies P: l, an instance of L, with structure <address, content> satisfies 

predicate P if and only if: 

Case 1: If an element of l is a dimension, then l.AC satisfies P, otherwise l.CC 

satisfies P, if P is atomic and truth-value is TRUE. 
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e.g. Upper left most corner cell in cube of Figure 1 satisfies P=(year=1993) 

Case 2: If P is a compound predicate, l satisfies P, when all truth-values evaluated 

together with connecting operators results in TRUE. 

 

 

e.g. Upper left most corner cell in cube of figure 1 satisfies 

P=(year=1993)∧ (city=”Boston”)∧ (product_name=”P1”) 

Cardinality of Predicate (ηP): Cardinality, denoted by η, of a predicate is 

defined as number of unique attributes appearing in predicate. An atomic predicate has 

cardinality of 1. Cardinality of a compound predicate is ≥1 (a compound predicate may 

be constructed using a single attribute, hence η=1). 

Selectivity of Predicate P on a cube C (δ[P,C]): Selectivity of a predicate P, 

denoted by δ, for a given cube C, is size of subset of cube cells in L of C that satisfy P. 

Cardinality and selectivity are useful in ordering and identifying cube cells. The 

update algorithm uses this ordering capability to ensure correct handling of marginal 

probability specifications. 

Framework for Modification of Uncertain Data 

This section includes a description of the modification of probabilistic data. Since 

the model is representing probability for each object as joint distribution of all attributes 
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of that object, modifying the probability represents change in belief about that object. 

This change can be a result of adding new information, deleting existing information, or 

modifying existing information. In each of these instances there is a need to revise 

beliefs. The framework is similar to Bayesian Framework proposed for probabilistic 

relational models by Dey and Sarkar (Dey & Sarkar, 2000), but a different algorithm is 

used in order to handle marginal probability specifications. Bayesian Framework 

provides a solid basis for belief revision. A summary of Pearl’s (Pearl, 1988) discussion 

of Bayesian belief revision follows. 

Bayes conditionalization formula: Let prob(A|e) is belief in proposition A after 

evidence e is observed. If prob(A|Bi, e) represents conditional probability of A given Bi 

and e (after evidence e), prob(A|Bi) represents the conditional probability of A given Bi 

(before evidence e), and prob(Bi|e) represents the conditional probability of Bi given e 

(after evidence e), then prob(A|e) can be computed from prob(A|Bi,e) and prob(Bi|e), if A 

and e are conditionally independent given Bi using the following formula: 

prob(A|e) = ∑
=

n

i 1

prob(A|Bi, e) prob(Bi|e) 

This formula requires knowledge of conditional probability of proposition A 

given B changes when e is observed. This is often not possible. Jeffrey (Jeffrey, 1983) 

proposed a simplification of this formula known as Jeffrey’s Rule of Probability 

Kinematics. 

Jeffrey’s Rule: Let PROB denote the new degree of belief and prob denote prior 

belief. If belief in proposition A does not directly depend on new evidence e, but changes 

degree of belief in Bi. Since A is conditionally dependent on Bi, new evidence e effects a 

change in degree of belief in A. If one assumes PROB(A|Bi) = prob(A|Bi), i.e. conditional 
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probability of A given Bi does not change when e is observed, then above 

conditionalization formula reduces to: 

PROB(A) = ∑
=

n

i 1

prob(A|Bi) PROB(Bi) 

The advantage with this formula is that one already knows prob(A|Bi) prior to 

evidence e, which will not change due to e (since A is not directly dependent on e), and 

one can assess PROB(Bi) easily after e. 

This simplification provides a great computational advantage and practical 

applicability. A more involved discussion of semantics and philosophical underpinnings 

of these two formulas with examples can be found in Pearl (1988). 

New information is presented in the form of a cube. This new information can 

result in modification of existing information in multiple ways. The effects of and method 

of handling new information can be divided into two categories. The first category is new 

information containing different schema, different domain for attributes, different partial 

orders, a dimension as a measure, or a measure as a dimension. The second category is 

new information containing different objects, but the cube structure and definition remain 

identical with existing information. 

New information in the first category can be merged with existing information as 

follows:  

1. Schema change case (different C, A, or f) can be handled by applying the 

cubic product operator. If there are additional attributes, they expand 

attributes of joint probability distribution.  

2. The case of different domains for attributes can be handled by applying a 

combination of algebraic operations, under the assumption that existing 
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data hold true with new probability distributions. Only dimensional 

attributes with different domains need special handling. Measure attributes 

with different domains can be handled by considering them as belonging 

to the second category. Each dimensional attribute with a different domain 

compared to the existing dimensional attribute domain can be handled 

independently. The resulting domain will be the union of new domain and 

existing domain. Then objects in both new information and existing 

information can be considered as partial objects in the result, and handled 

by considering them as second category objects.  

3. The case of different partial orders can be handled by defining a new 

partial order for the result. This is because partial orders have semantics 

associated with them and may not be useful if one disregards semantics.  

4. If a dimensional attribute became a measure or a measure changed to a 

dimension, a decision could be made on what this attribute would become 

as a result. Then a force or extract operator could be used to convert the 

dimension to measure or vice-versa. The first category information could 

be regarded as a structural change of the cube. 

New information in the second category will have identical structure as existing 

information. New information may require the addition of a new object, deletion of an 

existing object, or modification of degree of belief in an existing object, or it may specify 

joint probability of a subset of attributes of an existing object. In all these cases, 

modification of existing data should: (a) be consistent with new information and, (b) 
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result in assigning probabilities to unspecified realizations of stochastic variables in a 

manner consistent with existing data. 

Let one denote the class of L c of a Cube CI as a set of attributes AXY ∪  {pS} or 

{A, X, Y, pS}, where A is the address component, X and Y are mutually exclusive 

subsets of the set {{Ad ∪  Am} – {A ∪  pS}}, one of which may be empty. An object of 

this class is denoted as {A=a, X=x, Y=y, pS=q}. In this representation, A corresponds to 

L.AC and X and Y are subsets of remaining attributes in the class of L without including 

pS. For example, if one has the cube of figure 1, then A = L.AC = {year, product, city}, 

X may be {amount} and Y may be {quantity}. This can also be represented as the union 

of all these attributes {year, product, city, amount, quantity, pS} in which pS represents 

joint probability of the remaining attributes. Let one suppose receipt of new information 

consisting of objects representing new beliefs. Assume that new information is specified 

as a cube Cnew with the same structure as the existing cube Cold. In following sections, 

one says ”the new set of objects matches the existing set of objects” to indicate a 

selection predicate P constructed on {X ∪  Y} evaluating to true for both sets. When there 

is no match, there does not exist a selection predicate that satisfies both sets of objects. A 

special case is when all attributes of an object are unknown, i.e. 〈A=a, X=*, Y=*, pS=q〉. 

In this case, there are an infinite number of predicates that match. This is considered as 

not matching. The resulting cube after applying the updates described in each of the 

following cases is denoted by Cupdated. 

Case 1: There exists a set of objects 〈a, x, y, q〉 ∈  Cnew that specifies complete 

joint probability distribution for A=a, i.e. )(
][,, ∏ ∑ =

Γ M

pS aA newCPpSSUM = 1. In this case, 

all existing objects must be replaced with the new set of objects. The remaining cases 
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assume the new probability distribution specified is incomplete, It should be noted that 

partial distributions can be made complete distributions by assigning unspecified 

probability to unknown values. 

Case 2: There exists an object 〈a, x, y, q〉 ∈  Cnew that does not match with any 

object in existing data. In this case one has to create a new object. When a new object 

with an address component “a” is created, one has to adjust strength of belief in other 

objects with the same address component. An extremity is when the new object has q = 1, 

in which case it replaces all existing objects, because the data model restricts the sum of 

beliefs for an address not to exceed 1 (this is handled by case 1). Cases 3 and 4 handle 

allocation of residual probability when q < 1. 

Case 3:  There exists an object 〈a, x, y, q〉 ∈  Cold, for some q ∈  (0, 1], such that x 

= xi, for some i ∈  {1, 2, …, m}. This is a case where an existing object matches an object 

in the new information on attributes A and X. It is possible for an existing object to match 

new information based on more than one predicate. In such cases, the predicate selection 

is made by maximizing η and minimizing δ. The rationale behind this is that when η is 

maximum, there are a greater number of attributes in a predicate which indicates a more 

precise match of objects (less marginalization) and a minimal δ indicates less number of 

objects matched (an exact match will have δ=1). This is essential in order to handle 

marginal probability specifications. 

In this case, the new probability Q for the matching object is calculated, using 

Jeffrey’s Rule, as follows: 

Q   = PROB[A = a, X = xi, Y = y]  

      = prob[Y = y | A = a, X = xi]*PROB[A = a, X = xi] 
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      = (prob[A = a, X = xi, Y = y] / prob[A = a, X = xi]) * PROB[A = a, X = xi] 

      =  → Equation (I) 

 

where pi is PROB[A = a, X = xi] for i = 1, 2, …, m. 

Then object 〈a, x, y, q〉 should be replaced with 〈a, x, y, Q〉. 

Case 4: There exists an object 〈a, x, y, q〉 ∈  Cold, for some q ∈  (0, 1], such that x ≠ 

xi, for all i ∈  {1, 2, …, m}. In this case, an existing object does not have a matching 

object in the new information. The object 〈a, *, *, q〉 also has no match, therefore it will 

be handled by this case. 

In this case, new probability for objects without a match is calculated by 

proportionately distributing the difference between old residual probability and new 

residual probability after resolving the objects of above cases, if any. The old residual 

probability PoldRes of objects with A = a and X≠xi before applying cases 1, 2, and 3 is 

calculated by: 

 

PoldRes  = prob[A=a, X=x] = 1 −  )(
],[Re,, ∏ ∑ ≠=

Γ M

pS xiXaA oldsold CPpSSUM  

 

The new residual probability after previous cases PnewRes of objects with A=a and 

X≠xi is calculated by: 

PnewRes  = PROB[A=a, X=x] =  1 − 

One proportionately distributes 

residual probability PoldRes – PnewRes based on old probabilities. This distribution has to be 

to objects other than xi, i = 1, 2, …, m. 

)(
],[Re,, ∏ ∑ ≠=

Γ M

pS xiXaA updatedsnew CPpSSUM
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With this, one can now calculate new probability Q associated with 〈a, x, y, q〉 as 

below: 

Q  = PROB[A = a, X = x, Y =y] 

     = prob[Y = y | A = a, X = x] * PROB[A = a, X = x] 

     = (prob[A = a, X = x, Y = y] / prob[A = a, X = x]) * PROB[A = a, X = x] 

      = (q / PoldRes) * PnewRes → Equation (II) 

Then object 〈a, x, y, q〉 should be replaced with 〈a, x, y, Q〉. 

The following example illustrates all of the above cases, 

{ 〈〈1993, P1, Boston〉, 〈100, 10, 0.5〉〉, 

〈〈1993, P1, Boston〉, 〈125, 10, 0.2〉〉, 

〈〈1993, P1, Boston〉, 〈150, 15, 0.1〉〉, 

〈〈1993, P1, Boston〉, 〈140, 15, 0.1〉〉, 

〈〈1993, P1, Boston〉, 〈160, 20, 0.01〉〉 } 

and new information with three objects 

{ 〈〈1993, P1, Boston〉, 〈170, 25, 0.01〉〉, 

〈〈1993, P1, Boston〉, 〈160, 20, 0.02〉〉, 

〈〈1993, P1, Boston〉, 〈*, 15, 0.1〉〉 } 

This new information specifies a partial distribution (total probability of the new 

objects is 0.13, hence one assumes a partial distribution. If this were a complete 

distribution, then it should contain another object 〈〈1993, P1, Boston〉, 〈*, *, 0.87〉〉). 

Case 1 is not applicable. The new object 〈〈1993, P1, Boston〉, 〈170, 25, 0.01〉〉 falls 

under case 2. One creates this new object in the updated cube. The remaining new objects 

fall under case 3. The object 〈〈1993, P1, Boston〉, 〈160, 20, 0.02〉〉 modifies the existing 
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object’s probability. The object 〈〈1993, P1, Boston〉, 〈*, 15, 0.1〉〉 matches on predicate 

P=(amount=*)∧ (quantity=15) with two existing objects 〈〈1993, P1, Boston〉, 〈150, 15, 

0.1〉〉 and 〈〈1993, P1, Boston〉, 〈140, 15, 0.1〉〉. Their new probabilities can be calculated 

using case 3. The remaining existing objects are: 

{     〈〈1993, P1, Boston〉, 〈100, 10, 0.5〉〉, 

〈〈1993, P1, Boston〉, 〈125, 10, 0.2〉〉} 

These two existing objects fall under case 4. In this case, PoldRes = 0.79 and PnewRes 

= 0.87. Using equation II above, one will have following final cube. 

{     〈〈1993, P1, Boston〉, 〈100, 10, 0.55〉〉, 

〈〈1993, P1, Boston〉, 〈125, 10, 0.22〉〉, 

〈〈1993, P1, Boston〉, 〈150, 15, 0.05〉〉, 

〈〈1993, P1, Boston〉, 〈140, 15, 0.05〉〉, 

〈〈1993, P1, Boston〉, 〈160, 20, 0.02〉〉, 

〈〈1993, P1, Boston〉, 〈170, 25, 0.01〉〉 } 

These four cases illustrate modification of existing probabilistic data when new 

information is obtained. The following sections describe an algorithm to revise belief 

strengths of probabilistic multidimensional data and its proof of correctness. 

Algorithm for Modification of Uncertain Data 
 

1 Input: Cold, Cnew 

2 Output: Cupdated 

3 BEGIN 

3.1 for each A=a do 

3.2 begin 
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3.2.1 pold := )(
][,, ∏ ∑ =

Γ M

pS aA oldCPpSSUM  

3.2.2 pnew := )(
][,, ∏ ∑ =

Γ M

pS aA newCPpSSUM   

3.2.3 mnew := | ∑ = ][ aA newC  | 

3.2.4 if (pnew = 1) then      { Case 1 } 

3.2.4.1 begin 

3.2.4.1.1 Cupdated := Cupdated U ∑ = ][ aA newC  

3.2.4.2 end 

3.2.5 else 

3.2.6 begin 

3.2.6.1 for each object ok of ∑ = ][ aA newC  without a match do   { Case2 } 

3.2.6.2 begin 

3.2.6.2.1 Cupdated := Cupdated U ok 

3.2.6.2.2 Cnew := Cnew – ok 

3.2.6.3 end 

3.2.6.4 for each object oj = 〈a, x, y, q〉 of Cold  with a match do 

3.2.6.5 begin 

3.2.6.5.1 construct a set of predicates SP from {x ∪  y} 

3.2.6.5.2 sort them first by max(η) and then by min(δ) 

3.2.6.6 end 

3.2.6.7 for each object oj = 〈a, x, y, q〉 of Cold  

3.2.6.8 with a  match based on the set SP do  { Case 3 } 

3.2.6.9 begin 

3.2.6.9.1 calculate Q from case 3 [Equation I] 

3.2.6.9.2 Cupdated := Cupdated ∪  oj 

3.2.6.10 end 
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3.2.6.11 for each object oj = 〈a, x, y, q〉 of Cold without a match  { Case 4 } 

3.2.6.12 begin 

3.2.6.12.1 calculate Q from case 4 [Equation II] 

3.2.6.12.2 Cupdated := Cupdated ∪  oj 

3.2.6.13 end 

3.2.7 end 

3.3 end 

4 END 

Proof of Correctness of the Algorithm 

Investigator proves the correctness by showing the belief revision algorithm is (1) 

Complete (it covers all possible modification situations), (2) Consistent (satisfies the 

axioms of probability theory) and (3) Closed (only valid objects will result). Assume the 

new information provided is a valid cube. 

Completeness: Any object 〈a, x, y, q〉 ∈  Cnew will either have a match in the Cold 

or it does not. This is because a predicate P constructed from {X ∪  Y} will evaluate to 

TRUE or FALSE on Cnew and Cold resulting in ‘match’ or ‘no match’.  The algorithm 

adds all the unmatched objects of new information to the result {Case 2}. The remaining 

objects have a match in Cold. All the objects with a match in Cold are handled by {Case 3}. 

The Equation (I) incorporates all the matching objects of Cnew into the updating of 

existing probabilities for X=xi, i=1, 2, 3, …,m. This shows that algorithm is complete. 

Consistency: This algorithm does not violate the axioms of probability. To prove 

this one needs to show that (i) The new probabilities are >= 0, (ii) sum of the 

probabilities assigned to the set of objects with the same address component is <=1, and 
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(iii) the total probability assigned to two disjoint sets of objects is the sum of the 

probability masses in those two sets. 

To show that first axiom holds, one shows that each case satisfies this axiom. The 

Case 1 replaces all the existing objects with new objects. The Case 2 adds unmatched 

new objects to the result. If new information is valid it should satisfy the first axiom, 

hence the updated information in these two cases. The Case 3 uses Equation (I) to update 

the probabilities. By noting the three terms in that equation are all nonnegative numbers, 

one concludes Case 3 satisfies first axiom. The Case 4 uses Equation (II) to update the 

probabilities. The PoldRes and PnewRes should both be nonnegative numbers because sum of 

probabilities assigned to an address component cannot be > 1.  All the terms used in 

Equation (II) are nonnegative, hence the result of this equation as well. This shows that 

all the probabilities in the result are nonnegative. 

Let us suppose Qt is the sum of probabilities of all the new objects. Since Cnew is 

valid, Qt ≥ 0 and Qt ≤ 1. If Qn is the sum of probabilities for unmatched objects and Qm 

for matching objects, then Qn + Qm = Qt. One observes that the sum of old probabilities q 

for [A=a,X=xi] for i=1,2,…,m (matched objects) is equivalent to the denominator in 

Equation (I). Therefore, summation of all the updated probabilities, ΣQ, will become, 

which is equal to Qm. The cases 2 and 3 assign the entire new probability to the 

existing objects. The remaining probability is (1-Qt). One also observes that the sum of 

old probabilities q for [A=a,X≠xi] for i=1,2,…,m (unmatched objects) is equivalent to the 

denominator in Equation (II). Therefore, summation of all the updated probabilities, ΣQ, 

is equal to the PnewRes. One notes that PnewRes = (1-Qt). Therefore, the total probability 

assigned to the existing objects by cases 2, 3, and 4 is equal Qt + PnewRes = Qt + (1-Qt) = 1 
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(Note that unmatched existing objects include <a, *, *, q>, which collects all the 

unassigned residual probability, hence the total probability is 1).  This shows the 

algorithm satisfies the second axiom. The preceding argument also shows us that disjoint 

sets of objects (for example, as partitioned by Cases 2 and 3) contain the total probability 

assigned to them (because the total of the numerators will become equal to the 

denominator and hence evaluating to 1, leaving the remaining term). The Equations (I) 

and (II) are applicable to any disjoint subsets. This shows the algorithm satisfies the third 

axiom. 

Closure: To show the algorithm results in only valid objects, one has to simply 

observe that updated objects do not have nonnegative probabilities and the sum of all the 

probabilities is not more than 1. The proofs for completeness and consistency assure us 

this. Both existing set of objects and new set of objects do not contain value-equivalent 

objects. Only objects newly created in the result are the new objects that did not have any 

match with existing objects. If the result contains value-equivalent objects, then these 

newly created objects should have a match on at least one predicate. This contradiction 

proves there are no value-equivalent objects in the result. Therefore, one concludes this 

algorithm always results in valid objects. 

Time and Space Complexities of the Algorithm 

An analysis of time and space complexities is presented below. The analysis is 

made on each step in the algorithm separately (please refer to the line numbers in the 

algorithm), followed by an analysis of overall algorithm. This analysis follows the 

conventions and uses the results of Knuth (1973). Only the worst case time and space 
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complexities are shown with Big O notation. Where it is not obvious, an average case 

analysis is also shown. 

1. Let us denote So as the number of cells in the input cube Cold, and Sn as the 

number of cells in the input cube Cnew. The input cubes Cold and Cnew are union 

compatible. Space complexity is O(So). 

2. Let us denote Su as the number of cells in the output cube Cupdated. Space 

complexity is O(Su). 

3.1. The class of L c of input cubes is denoted as AXY U pS. Therefore, the lower 

limit on |A| is 0 and the upper limit is max(So, Sn). The outer for loop will be executed 

worst case max(So, Sn) times and on average max(So, Sn)/2 times. 

3.2.1. The calculation of pold can be performed by adding up the number of 

operations required to compute the individual segments of the equation. Restriction 

operation requires So comparisons for non-indexed cubes. Metric Projection operation on 

the results of Restriction operation requires the same number of operations, hence it is So 

operations. The aggregation (SUM) operation on these results also requires the same 

number of operations, hence it is So operations. Therefore, this step requires a total of 

3*So operations. Two temporary cubes result in a space complexity of O(So). Time 

complexity of for this step is O(So). 

3.2.2. This step is similar to 3.2.1 with space complexity of O(Sn) and time 

complexity of O(Sn). 

3.2.3. This restriction operation requires Sn comparisons for non-indexed cubes, 

therefore the time complexity is O(Sn). Space complexity is O(1). 
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3.2.4. This requires one comparison operation and hence the time complexity is 

O(1). 

3.2.4.1.1. The union operation combines two separate cubes into one. Therefore, 

this step has time complexity of O(Su+Sn) and space complexity of O(Su+Sn). 

3.2.4.1. This block (3.2.4.1 to 3.2.4.2) has only one step, 3.2.4.1.1, hence the 

complexities are same for this step. 

3.2.4. If the condition is true, then this step will have the same complexity as that 

of 3.2.4.1.1., therefore, it has time complexity of O(Su+Sn) and space complexity of 

O(Su+Sn). 

3.2.6.1. The lower limit for the restriction operator is 0 and the upper limit is Sn. 

Therefore, this loop will be executed worst case Sn times, and average case Sn/2. 

3.2.6.2.1. This union operator requires Su+1 units of space. Its space complexity is 

O(Su). It adds one object to the existing cube. Therefore, its time complexity is O(1).  

3.2.6.2.2. This step deletes one object from new input cube, therefore its space 

complexity is O(Sn) and time complexity is O(1). 

3.2.6.2. Space complexity for this block is O(Su+Sn) and time complexity is O(1). 

3.2.6.1. This loop gets executed Sn times on a block with O(Su+Sn), therefore, its 

time complexity is O(SuSn + Sn
2). Space complexity is O(Sn). 

3.2.6.4. This for loop can be executed as many as So times on worst case and So/2 

on average case. 

3.2.6.5.1. Construction of predicates for {x ∪  y} of Cold requires on worst case So 

operations. This operation has time complexity of O(So) and space complexity of O(So). 
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3.2.6.5.2. Sort operation using Quick Sort algorithm on a list of predicates of size 

O(So) takes O(So
2). Average case time complexity for this step is O(So * log2So). Space 

complexity is O(So). 

3.2.6.5. This block has worst case time complexity of O(So
2) and space 

complexity of O(So). 

3.2.6.4. This for loop has a time complexity of O(So * So
2) = O(So

3) and a space 

complexity of O(So). 

3.2.6.7. This for loop gets executes as many times as the number of objects in 

Cold, which is So. It also requires a search for each object within SP. Using binary search 

requires time complexity of O(log2So). 

3.2.6.9.1. This operation requires constant time and stores one number, therefore 

its time complexity is O(1) and space complexity of  O(1). 

3.2.6.9.2. This union operator requires Su+1 units of space. Its space complexity is 

O(Su). It adds one object to the existing cube. Therefore, its time complexity is O(1).  

3.2.6.9. This block requires worst case time complexity of O(log2So) and worst 

case space complexity of O(Su). 

3.2.6.7. The worst case time complexity for this loop is O(log2So * log2So) = 

O((log2So)2) and space complexity of O(Su). 

3.2.6.11. This for loop gets executes as many times as the number of objects in 

Cold, which is So. It also requires a search for each object within SP. Using binary search 

requires time complexity of O(log2So). 

3.2.6.12.1. This operation requires constant time and stores one number, therefore 

its time complexity is O(1) and space complexity of  O(1). 
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3.2.6.12.2. This union operator requires Su+1 units of space. Its space complexity 

is O(Su). It adds one object to the existing cube. Therefore, its time complexity is O(1).  

3.2.6.12. This block requires worst case time complexity of O(log2So) and worst 

case space complexity of O(Su). 

3.2.6.11. The worst case time complexity for this loop is O(log2So * log2So) = 

O((log2So)2) and space complexity of O(Su). 

3.2.6. The for loop of 3.2.6.1 gets executed worst case Sn times, and average case 

Sn/2. The blocks 3.2.6.2., 3.2.6.4., 3.2.6.7., and 3.2.6.11. have worst case time complexity 

of O(Su+Sn), O(So
3), O((log2So)2), and O((log2So)2) respectively. Therefore, overall time 

complexity for this block is O(Sn * ( Su+ Sn + So
3 + (log2So)2 + (log2So)2 )) = O(SnSu + Sn

2 

+ Sn*So
3 + Sn*(log2So)2). Sn*So

3 is greater than SnSu, and SnSu is greater than Sn
2. 

Therefore, this reduces to O(SnSu + Sn*(log2So)2). This step has space complexity of 

O(So)+O(Su). Since, Su is greater than or equal to So, one can consider this as O(Su). 

3.2. This step is composed of functional steps 3.2.1., 3.2.2., 3.2.3., 3.2.4., and 

3.2.6. They have time complexities of O(So), O(Sn), O(Sn), O(Su+Sn), and O(SnSu + 

Sn*(log2So)2) respectively. The time complexity for this step is O(So) + O(Sn) + O(Sn) + 

O(Su+Sn) + O(SnSu + Sn*(log2So)2), which can be simplified to O(SnSu + Sn*(log2So)2) by 

ignoring the smaller terms. The space complexity for this block is same as that of 3.2.6., 

with O(Su). 

3.1. The worst case time complexity for this step is calculated by multiplying the 

loop count, max(So,Sn) with worst case time complexity for the body, 3.2. Therefore, it 

is max(So,Sn) * O(SnSu + Sn*(log2So)2). If one assumes So is larger then, it is O(SoSnSu + 

SoSn*(log2So)2). Otherwise, it is O(SuSn
2 + Sn

2*(log2So)2). The worst case space 
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complexity is same as 3.2., which is O(Su). By recalling that Su is the number of objects 

in the updated result cube, intuitively, this algorithm requires enough space to store the 

updated cube. This step is the only higher level step in the outer most block of the 

algorithm, therefore same worst case time and space complexities apply to the whole 

algorithm. 

The above complexity analysis is for update algorithm only. This complexity 

analysis shows that the update of probabilistic multidimensional data can be performed in 

a finite amount of time using the least amount of space to store results. However, it is 

possible to rewrite most algorithms to improve either time or space complexity by 

compensating one with the other. 

Application of Model in Business Management 

In this section, a fictitious business management application is used to describe 

the abstract mathematical model better. Even though this is a fictitious application, it is 

described with detail as close to general market conditions as possible. This application is 

for a fictitious grocery retail chain, which has several retail stores throughout the nation. 

General grocery store inventory management is done by category, referred to as category 

management. Category management involves dividing an entire store inventory into 

different categories such as fresh foods, soft drinks, cereals, and snacks. The rationale 

behind this is that consumers are more interested in a category of groceries than in a 

particular brand name product. For example, consider a consumer shopping for a party. 

Consumer may be more interested in buying soft drinks than in Coke, Pepsi, or any other 

brand name product in particular. A primary advantage of this method of inventory 

management is that it does not require forecasting based on individual products within 
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the category, therefore eliminating the requirement to capture and process data for 

individual products. Categorization of inventory simplifies data collection, storage, and 

analysis, and demand forecasting (Mantrala & Raman, 1999; Symbol, 2004). However, 

this simplification also results in loss of forecast accuracy and prevents inclusion of 

product specific promotion and competition information in forecasting process. 

The most common process for inventory management, according to Symbol 

(2004) is as follows: 

The most common reordering process in use today relies entirely on human 

estimations. Using a handheld mobile computer with integrated bar code scanner, 

the department or night crew manager walks the store isles scanning bar code 

labels on shelves or products. Most systems enter an order for a single case of 

each item scanned unless a larger order quantity is manually entered. When all 

needed products have been ordered, the mobile computer is connected to a phone 

line and the order is sent to the store's distribution center. The entire process can 

take 3-4 hours if done correctly. Normally, orders completed and sent to the 

distribution center by nine o'clock in the morning arrive at the store by seven 

o'clock in the evening so the night crew can restock the shelves (p.1). 

This method of reordering heavily relies on the experience and educated guess of 

a single person. It could lead to inaccurate demand forecasts resulting in either overstocks 

or out-of-stocks (OOS). Overstocking costs money in terms of capital investment and 

shelf space. OOSs result in dissatisfied customers, leading them to competitors. Demand 

is dependent on several parameters such as category, price, promotion, competition, 

historic sales, new products, and even weather. Different demand forecast methods use 
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different sets of these parameters in forecasting. Researchers found that forecast based on 

even primitive analysis of historical data (e.g. forecast based on average for previous 

week), is generally better than a pure guess (Foote & Krishnamurthi, 2001; Lancaster & 

Lomas, 1986; Symbol, 2004). Thus, ability to store and analyze historical sales data is a 

critical component of all these forecasting methods. 

Consider using a decision support system for inventory management, which can 

store and analyze large amounts of data. Due to this capability to store large amounts of 

data, historical sales data for each individual product can be maintained. This facilitates 

data analysis and demand forecast by product instead of category. The actual category 

inventory itself simply becomes an aggregation of individual product inventory. 

Forecasting by individual product also facilitates incorporation of product specific 

promotion information. For example, if a superbowl promotion advertisement for Diet 

Coke is running, it is possible to use this information in forecasting sales for Diet Coke. 

Even though overall soft drinks category sales may not increase, it can be assumed that 

Diet Coke sales will be higher due to the promotion. This information can be used also to 

adjust the sales forecast for other products in the soft drinks category (Lancaster & 

Lomas, 1986). 

Forecast method 

The forecast method used for this fictitious business application uses historical 

data, product promotion data, and competition data. For the purpose of this application, 

forecast for demand is considered forecast for sales, and these two phrases are used 

interchangeably. The forecast method utilizes heuristic rules specified below to forecast 

demand for each product in the category for the next day. 
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1. Average sales for the previous week (seven days): Demand is directly 

proportional to average sales M. 

2. Promotion data for the previous week: Promotional factor, P, multiplies M. P 

is derived by incorporating total number of promotions. 

3. Competition data (from other retailers in area as reported by agents) for the 

previous week: Competition, C, decreases sales. 

4. Category sales forecast information: Final category demand, Tf, is equal to 

average category demand within the previous four weeks, Ta. This means, if 

tentative category demand, Tt (calculated by aggregating individual product 

demand in that category), is different from Ta, then the individual product 

demand has to be adjusted to make Tt equal to Ta. 

To forecast demand using the above forecast method, the following information is 

needed: 

1. Sales data for the previous week for the category; 

2. Product promotion data for the previous week; 

3. Competitor sales information for the previous week, as reported by agents; 

and 

4. Daily category sales forecasts for the previous week. 

 

Assume that this fictitious grocery retail store chain has 40 stores selling 19,000 

products averaging 87,000 transactions per day in each store. That is approximately 3.5 

million transactions per day and 97.5 million transactions every four weeks, throughout 

the chain. Assume sales data captured contains product, time, location, price, and amount 



  79 

 

(These attributes are similar to the example cube schema attributes used in Chapter 1). If 

64 bytes are required to store each of these attributes, the total amount of space required 

to store the data is 215 MB per day or 6 GB for four weeks. Researchers and practitioners 

recommend storing data for at least 65 weeks (Foote & Krishnamurthi, 2001), which 

would require a capacity of about 100 GB to store sales data. Using similar assumptions 

and requirements for promotion data and competition data, this fictitious retail chain 

would require about 605 MB per day or 18 GB to store data for 4 weeks or 300 GB to 

store data for 65 weeks. Due to the large size of these data, only a tiny sample of them 

will be used to demonstrate usefulness of the PMDDM model. 

Sales Data 

The sales data cube CSales is defined as: 

•  The characteristic set C = {TIME, PRODUCT, LOCATION, SALES, BELIEF}, 

(m = 5) 

•  The attribute set A = {day, month, year, product_name, city, state, price, quantity, 

pS}, (t = 9) 

•  schema of C: 

o ƒ(TIME) = {day, month, year} 

o ƒ(PRODUCT) = {product_name} 

o ƒ(LOCATION) = {city, state} 

o ƒ(SALES) = {price, quantity} 

o ƒ(BELIEF) = {pS} 

•  dimension function d: 

o d (TIME) = 1   i.e., TIME is a dimension 
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o d (PRODUCT) =  1  i.e., PRODUCT is a dimension 

o d (LOCATION) = 1  i.e., LOCATION is a dimension 

o d (SALES) = 0  i.e., SALES is a measure 

o d (BELIEF) = 0  i.e., BELIEF is a measure 

•  A partial order on the Sales cube is as follows: 

o OTIME = {〈day, month〉, 〈day, year〉, 〈month, year〉} 

o OPRODUCT = {} 

o OLOCATION = {〈city, state〉} 

o OSALES = {} 

o OBELIEF = {} 

•  L is as follows: 

o Let us assume the following domains for the attributes 

� A = {year, month, day, product_name, city, state, price, quantity, 

pS} 

� dom year = {2004, 2003, 2002, 2001} 

� dom product_name = {DIET PEPSI, PEPSI, COKE} 

� dom city = {Boston, New York, Dallas, San Francisco, Chicago} 

� dom state = {MA, NY, TX, CA, IL} 

� dom price = {0, 1, 2, …} 

� dom quantity = {0, 1, 2, …} 

� pS = 1 (Belief strength of all the cells represented is true, making 

this a deterministic cube) 
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Sales data for the last 7 days for DIET PEPSI is specified as follows. 

CSales = {〈〈2004,01,01, DIET PEPSI, Boston, MA〉, 〈100, 10〉〉, 

〈〈2004,01,02, DIET PEPSI, Boston, MA〉, 〈125, 10〉〉, 

〈〈2004,01,03, DIET PEPSI, Boston, MA〉, 〈150, 15〉〉, 

〈〈2004,01,04, DIET PEPSI, Boston, MA〉, 〈110, 15〉〉, 

〈〈2004,01,05, DIET PEPSI, Boston, MA〉, 〈160, 20〉〉, 

〈〈2004,01,06, DIET PEPSI, Boston, MA〉, 〈130, 15〉〉, 

〈〈2004,01,07, DIET PEPSI, Boston, MA〉, 〈180, 30〉〉, 

〈〈2004,01,01, DIET PEPSI, New York, NY〉, 〈105, 10〉〉, 

〈〈2004,01,02, DIET PEPSI, New York, NY〉, 〈125, 10〉〉, 

〈〈2004,01,03, DIET PEPSI, New York, NY〉, 〈105, 20〉〉, 

〈〈2004,01,04, DIET PEPSI, New York, NY〉, 〈140, 5〉〉, 

〈〈2004,01,05, DIET PEPSI, New York, NY〉, 〈110, 20〉〉, 

〈〈2004,01,06, DIET PEPSI, New York, NY〉, 〈120, 15〉〉, 

〈〈2004,01,07, DIET PEPSI, New York, NY〉, 〈110, 10〉〉, 

〈〈2004,01,01, DIET PEPSI, Chicago, IL〉, 〈200, 10〉〉, 

〈〈2004,01,02, DIET PEPSI, Chicago, IL〉, 〈105, 10〉〉, 

〈〈2004,01,03, DIET PEPSI, Chicago, IL〉, 〈110, 25〉〉, 

〈〈2004,01,04, DIET PEPSI, Chicago, IL〉, 〈150, 10〉〉, 

〈〈2004,01,05, DIET PEPSI, Chicago, IL〉, 〈100, 20〉〉, 

〈〈2004,01,06, DIET PEPSI, Chicago, IL〉, 〈100, 15〉〉, 

〈〈2004,01,07, DIET PEPSI, Chicago, IL〉, 〈130, 30〉〉, 

〈〈2004,01,01, DIET PEPSI, San Francisco, CA〉, 〈190, 10〉〉, 
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〈〈2004,01,02, DIET PEPSI, San Francisco, CA〉, 〈165, 10〉〉, 

〈〈2004,01,03, DIET PEPSI, San Francisco, CA〉, 〈155, 25〉〉, 

〈〈2004,01,04, DIET PEPSI, San Francisco, CA〉, 〈145, 15〉〉, 

〈〈2004,01,05, DIET PEPSI, San Francisco, CA〉, 〈130, 20〉〉, 

〈〈2004,01,06, DIET PEPSI, San Francisco, CA〉, 〈115, 25〉〉, 

〈〈2004,01,07, DIET PEPSI, San Francisco, CA〉, 〈135, 25〉〉, 

〈〈2004,01,01, DIET PEPSI, Dallas, TX〉, 〈100, 10〉〉, 

〈〈2004,01,02, DIET PEPSI, Dallas, TX〉, 〈125, 10〉〉, 

〈〈2004,01,03, DIET PEPSI, Dallas, TX〉, 〈100, 15〉〉, 

〈〈2004,01,04, DIET PEPSI, Dallas, TX〉, 〈140, 5〉〉, 

〈〈2004,01,05, DIET PEPSI, Dallas, TX〉, 〈110, 10〉〉, 

〈〈2004,01,06, DIET PEPSI, Dallas, TX〉, 〈130, 15〉〉, 

〈〈2004,01,07, DIET PEPSI, Dallas, TX〉, 〈120, 10〉〉} 

Similarly, the sales data for other individual products in this category is specified. 

Since the forecast method needs the average sales information, the Cube operations can 

be used to calculate this. 

1. Average Price of DIET PEPSI in Boston, MA for the duration 2004/01/01-

2004/01/07 

 = Γ[AVG,{product_name,city,state },price] (∑(year=2004 ∧  month=01 ∧  day≥01 ∧  day≤01 ∧  

product_name=’DIET PEPSI’ ∧  state=’MA’ ∧  city=’Boston’)(CSales)) 

= 136.43 

Average quantity of DIET PEPSI sold in Boston, MA for the duration 

2004/01/01-2004/01/07 
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 = Γ[AVG,{product_name,city,state },quantity] (∑(year=2004 ∧  month=01 ∧  day≥01 ∧  day≤01 ∧  

product_name=’DIET PEPSI’ ∧  state=’MA’ ∧  city=’Boston’)(CSales)) 

= 16.43 

 

2. Average Price of DIET PEPSI in New York, NY for the duration 2004/01/01-

2004/01/07 

 = Γ[AVG,{product_name,city,state },price] (∑(year=2004 ∧  month=01 ∧  day≥01 ∧  day≤01 ∧  

product_name=’DIET PEPSI’ ∧  state=’NY’ ∧  city=’New York’)(CSales)) 

= 116.43 

Average quantity of DIET PEPSI sold in New York, NY for the duration 

2004/01/01-2004/01/07 

 = Γ[AVG,{product_name,city,state },quantity] (∑(year=2004 ∧  month=01 ∧  day≥01 ∧  day≤01 ∧  

product_name=’DIET PEPSI’ ∧  state=’NY’ ∧  city=’New York’)(CSales)) 

= 12.86 

 

3. Average Price of DIET PEPSI in Chicago, IL for the duration 2004/01/01-

2004/01/07 

 = Γ[AVG,{product_name,city,state },price] (∑(year=2004 ∧  month=01 ∧  day≥01 ∧  day≤01 ∧  

product_name=’DIET PEPSI’ ∧  state=’IL’ ∧  city=’Chicago’)(CSales)) 

= 127.86 

Average quantity of DIET PEPSI sold in Chicago, IL for the duration 2004/01/01-

2004/01/07 
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 = Γ[AVG,{product_name,city,state },quantity] (∑(year=2004 ∧  month=01 ∧  day≥01 ∧  day≤01 ∧  

product_name=’DIET PEPSI’ ∧  state=’IL’ ∧  city=’Chicago’)(CSales)) 

= 17.14 

 

4. Average Price of DIET PEPSI in San Francisco, CA for the duration 

2004/01/01-2004/01/07 

 = Γ[AVG,{product_name,city,state },price] (∑(year=2004 ∧  month=01 ∧  day≥01 ∧  day≤01 ∧  

product_name=’DIET PEPSI’ ∧  state=’CA’ ∧  city=’San Francisco’)(CSales)) 

= 147.86 

Average quantity of DIET PEPSI sold in San Francisco, CA for the duration 

2004/01/01-2004/01/07 

 = Γ[AVG,{product_name,city,state },quantity] (∑(year=2004 ∧  month=01 ∧  day≥01 ∧  day≤01 ∧  

product_name=’DIET PEPSI’ ∧  state=’CA’ ∧  city=’San Francisco’)(CSales)) 

= 18.57 

 

5. Average Price of DIET PEPSI in Dallas, TX for the duration 2004/01/01-

2004/01/07 

 = Γ[AVG,{product_name,city,state },price] (∑(year=2004 ∧  month=01 ∧  day≥01 ∧  day≤01 ∧  

product_name=’DIET PEPSI’ ∧  state=’TX’ ∧  city=’Dallas’)(CSales)) 

= 117.86 

Average quantity of DIET PEPSI sold in Dallas, TX for the duration 2004/01/01-

2004/01/07 
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 = Γ[AVG,{product_name,city,state },quantity] (∑(year=2004 ∧  month=01 ∧  day≥01 ∧  day≤01 ∧  

product_name=’DIET PEPSI’ ∧  state=’TX’ ∧  city=’Dallas’)(CSales)) 

= 10.71 

 

The result of these aggregation operations to calculate average price and quantity 

can be organized in cube format with cell structure 〈〈product_name, city, state〉, 

〈Average_Price, Average_Quantity〉〉 as follows: 

CAverageSales = {〈〈DIET PEPSI, Boston, MA〉, 〈136.43, 16.43〉〉, 

〈〈DIET PEPSI, New York, NY〉, 〈116.43, 12.86〉〉, 

〈〈DIET PEPSI, Chicago, IL〉, 〈127.86, 17.14〉〉, 

〈〈DIET PEPSI, San Francisco, CA〉, 〈147.86, 18.57〉〉, 

〈〈DIET PEPSI, Dallas, TX〉, 〈117.86, 10.71〉〉} 

 

Promotion Data 

The Promotion data cube CPromo is defined as: 

•  The characteristic set C = {TIME, PRODUCT, LOCATION, PROMOTION, 

BELIEF}, (m = 5) 

•  The attribute set A = {day, month, year, product_name, city, state, 

promotion_type, number, pS}, (t = 9) 

•  schema of C: 

o ƒ(TIME) = {day, month, year} 

o ƒ(PRODUCT) = {product_name} 

o ƒ(LOCATION) = {city, state} 
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o ƒ(PROMOTION) = {promotion_type, number} 

o ƒ(BELIEF) = {pS} 

•  dimension function d: 

o d (TIME) = 1   i.e., TIME is a dimension 

o d (PRODUCT) =  1  i.e., PRODUCT is a dimension 

o d (LOCATION) = 1  i.e., LOCATION is a dimension 

o d (PROMOTION) = 0  i.e., PROMOTION is a measure 

o d (BELIEF) = 0  i.e., BELIEF is a measure 

•  A partial order on the Promotion cube is as follows: 

o OTIME = {〈day, month〉, 〈day, year〉, 〈month, year〉} 

o OPRODUCT = {} 

o OLOCATION = {〈city, state〉} 

o OPROMOTION = {} 

o OBELIEF = {} 

•  L is as follows: 

o Let us assume the following domains for the attributes 

� A = {year, month, day, product_name, city, state, promotion_type, 

number, pS} 

� dom year = {2004,2003,2002,2001} 

� dom product_name = {DIET PEPSI, PEPSI, COKE} 

� dom city = {Boston, New York, Dallas, San Francisco, Chicago} 

� dom state = {MA, NY, TX, CA, IL} 
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� dom promotion_type = {1=Aisle_Display, 2=Front_Display, 

3=Discount_Coupon, 4=SuperBowl_Ad} 

� dom number = {0, 1, 2, …} 

� pS = 1 (Belief strength of all the cells represented is true, making 

this a deterministic cube) 

 

Promotion data for the last 7 days for DIET PEPSI is specified as follows. 

CPromo = {〈〈2004,01,01, DIET PEPSI, Boston, MA〉, 〈1, 10〉〉, 

〈〈2004,01,02, DIET PEPSI, Boston, MA 〉, 〈2, 10〉〉, 

〈〈2004,01,03, DIET PEPSI, Boston, MA 〉, 〈1, 15〉〉, 

〈〈2004,01,04, DIET PEPSI, Boston, MA 〉, 〈3, 15〉〉, 

〈〈2004,01,05, DIET PEPSI, Boston, MA 〉, 〈2, 10〉〉, 

〈〈2004,01,06, DIET PEPSI, Boston, MA 〉, 〈4, 1〉〉, 

〈〈2004,01,07, DIET PEPSI, Boston, MA 〉, 〈4, 1〉〉, 

〈〈2004,01,01, DIET PEPSI, New York, NY〉, 〈1, 10〉〉, 

〈〈2004,01,02, DIET PEPSI, New York, NY 〉, 〈2, 10〉〉, 

〈〈2004,01,03, DIET PEPSI, New York, NY 〉, 〈1, 20〉〉, 

〈〈2004,01,04, DIET PEPSI, New York, NY 〉, 〈3, 5〉〉, 

〈〈2004,01,05, DIET PEPSI, New York, NY 〉, 〈3, 20〉〉, 

〈〈2004,01,06, DIET PEPSI, New York, NY 〉, 〈4, 1〉〉, 

〈〈2004,01,07, DIET PEPSI, New York, NY 〉, 〈4, 1〉〉, 

〈〈2004,01,01, DIET PEPSI, Chicago, IL〉, 〈2, 10〉〉, 

〈〈2004,01,02, DIET PEPSI, Chicago, IL 〉, 〈1, 10〉〉, 
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〈〈2004,01,03, DIET PEPSI, Chicago, IL 〉, 〈1, 25〉〉, 

〈〈2004,01,04, DIET PEPSI, Chicago, IL 〉, 〈1, 10〉〉, 

〈〈2004,01,05, DIET PEPSI, Chicago, IL 〉, 〈3, 20〉〉, 

〈〈2004,01,06, DIET PEPSI, Chicago, IL 〉, 〈4, 1〉〉, 

〈〈2004,01,07, DIET PEPSI, Chicago, IL 〉, 〈4, 1〉〉, 

〈〈2004,01,01, DIET PEPSI, San Francisco, CA〉, 〈1, 10〉〉, 

〈〈2004,01,02, DIET PEPSI, San Francisco, CA 〉, 〈2, 10〉〉, 

〈〈2004,01,03, DIET PEPSI, San Francisco, CA 〉, 〈3, 25〉〉, 

〈〈2004,01,04, DIET PEPSI, San Francisco, CA 〉, 〈2, 15〉〉, 

〈〈2004,01,05, DIET PEPSI, San Francisco, CA 〉, 〈1, 20〉〉, 

〈〈2004,01,06, DIET PEPSI, San Francisco, CA 〉, 〈4, 1〉〉, 

〈〈2004,01,07, DIET PEPSI, San Francisco, CA 〉, 〈4, 1〉〉, 

〈〈2004,01,01, DIET PEPSI, Dallas, TX〉, 〈1, 10〉〉, 

〈〈2004,01,02, DIET PEPSI, Dallas, TX 〉, 〈1, 10〉〉, 

〈〈2004,01,03, DIET PEPSI, Dallas, TX 〉, 〈2, 15〉〉, 

〈〈2004,01,04, DIET PEPSI, Dallas, TX 〉, 〈3, 5〉〉, 

〈〈2004,01,05, DIET PEPSI, Dallas, TX 〉, 〈2, 10〉〉, 

〈〈2004,01,06, DIET PEPSI, Dallas, TX 〉, 〈4, 1〉〉, 

〈〈2004,01,07, DIET PEPSI, Dallas, TX 〉, 〈4, 1〉〉} 

Similarly, the promotion data for other individual products in this category is 

specified. The following calculation of the promotional factors for all the cities for each 

product shows the versatility of the cube operations by retrieving all the values in a cube 

format. 
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CPromoFactors = Γ[PromoFactorFunction,{product_name,city,state},PF] (CPromo) 

where, 

PF is the Promotional Factor, and 

PromoFactorFunction is the aggregate function defined to calculate the 

promotional factor PF for each grouping on temporary cube CPF. For this fictitious 

application, promotional factor function is defined as follows: 

Predicate P is constructed from the grouping attributes. 

Ctemp =  

 

CPF = Γ[PROMO_FORMULA=(1+((promo_type*10)+number)/100),{promo_type,number},PF] (Ctemp) 

 PromotionFactorFunction = ∏∑
M

PF PFC )(  

 

Using this aggregate function definition for Boston city with Predicate 

P=(product_name=’DIET PEPSI’^city=’Boston’^state=’MA’) results in a promotional 

factor of 2.32. Similarly, it will result in 2.47 for New York, 2.37 for Chicago, 2.52 for 

San Francisco, and 2.22 for Dallas. The actual result of the aggregation operation to 

calculate promotional factors in cube format will be: 

CPromoFactors = {〈〈DIET PEPSI, Boston, MA〉, 〈2.32〉〉, 

〈〈DIET PEPSI, San Francisco, CA〉, 〈2.52〉〉, 

〈〈DIET PEPSI, New York, NY〉, 〈2.47〉〉, 

〈〈DIET PEPSI, Chicago, IL〉, 〈2.37〉〉, 

〈〈DIET PEPSI, Dallas, TX〉, 〈2.22〉〉} 

 

∏ ∑ ====

M

numbertypepromo citystatenameproductP omoC
,_ ?)?^?^_( Pr )(
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Competition Data 

The competition analysis for a product can be very challenging in real world 

situations. This is because the competition is multi-faceted for an individual product. All 

the products with similar utility value compete. At the same time brand names try to add 

value to the individual product within their brand. In addition, general competition comes 

from other sellers of the same product. Because of the complexity involved in 

competition analysis, only the competition from other retailers is used for this fictitious 

application. To calculate the final demand, the sales of other retailers are guessed and 

deducted from the preliminary estimates calculated from historical sales data and 

promotion data. The agents are allowed to guess the competitors’ sales and to associate 

strength of belief with each guess. The Probabilistic Multidimensional Data Model is 

capable of storing the data containing uncertainty. To store the competition data, the 

‘Competition cube’ is defined as: 

•  The characteristic set C = {TIME, PRODUCT, LOCATION, SALES, BELIEF}, 

(m = 5) 

•  The attribute set A = {day, month, year, product_name, city, state, quantity, 

amount, pS}, (t = 9) 

•  schema of C: 

o ƒ(TIME) = {day, month, year} 

o ƒ(PRODUCT) = {product_name} 

o ƒ(LOCATION) = {city, state} 

o ƒ(SALES) = {quantity, amount} 

o ƒ(BELIEF) = {pS} 
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•  dimension function d: 

o d (TIME) = 1   i.e., TIME is a dimension 

o d (PRODUCT) =  1  i.e., PRODUCT is a dimension 

o d (LOCATION) = 1  i.e., LOCATION is a dimension 

o d (SALES) = 0  i.e., SALES is a measure 

o d (BELIEF) = 0  i.e., BELIEF is a measure 

•  A partial order on the Competition cube is as follows: 

o OTIME = {〈day, month〉, 〈day, year〉, 〈month, year〉} 

o OPRODUCT = {} 

o OLOCATION = {〈city, state〉} 

o OSALES = {〈quantity, amount〉} 

o OBELIEF = {All partial orders defined on real numbers} 

•  L is as follows: 

o Let us assume the following domains for the attributes 

� A = {year, month, day, product_name, city, state, quantity, 

amount, pS} 

� dom year = {2004,2003,2002,2001} 

� dom product_name = {DIET PEPSI, PEPSI, COKE} 

� dom city = {Boston, New York, Dallas, San Francisco, Chicago} 

� dom quantity = {0, 1, 2, …} 

� dom amount = {0, 1, 2, …} 

� dom pS = {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1} 
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Competition data for the previous seven days are required to calculate final 

demand. However, due to the large size of these data, only one day’s data for DIET 

PEPSI are specified below. Appendix X contains data for the previous seven days. These 

data are collected from reports agents prepared based on their guesswork, and contain 

strength of belief for each statement or guess. These data are formulated as cube, with the 

above definition. For each cell, total belief strength is less than or equal to 1. 

CCompetition = {〈〈2004,01,01, DIET PEPSI, Boston, MA〉, 〈110, 10, 0.2〉〉, 

〈〈2004,01,01, DIET PEPSI, Boston, MA 〉, 〈110, 5, 0.1〉〉, 

〈〈2004,01,01, DIET PEPSI, Boston, MA 〉, 〈110, 15, 0.1〉〉, 

〈〈2004,01,01, DIET PEPSI, Boston, MA 〉, 〈120, 10, 0.1〉〉, 

〈〈2004,01,01, DIET PEPSI, Boston, MA 〉, 〈120, 5, 0.1〉〉, 

〈〈2004,01,01, DIET PEPSI, Boston, MA 〉, 〈120, 15, 0.1〉〉, 

〈〈2004,01,01, DIET PEPSI, Boston, MA 〉, 〈130, 10, 0.1〉〉, 

〈〈2004,01,01, DIET PEPSI, Boston, MA 〉, 〈130, 5, 0.1〉〉, 

〈〈2004,01,01, DIET PEPSI, Boston, MA 〉, 〈130, 15, 0.1〉〉, 

〈〈2004,01,02, DIET PEPSI, Boston, MA 〉, 〈125, 10, 0.1〉〉, 

〈〈2004,01,02, DIET PEPSI, Boston, MA 〉, 〈110, 5, 0.1〉〉, 

〈〈2004,01,02, DIET PEPSI, Boston, MA 〉, 〈110, 15, 0.1〉〉, 

〈〈2004,01,02, DIET PEPSI, Boston, MA 〉, 〈120, 10, 0.1〉〉, 

〈〈2004,01,02, DIET PEPSI, Boston, MA 〉, 〈120, 5, 0.1〉〉, 

〈〈2004,01,02, DIET PEPSI, Boston, MA 〉, 〈120, 15, 0.1〉〉, 

〈〈2004,01,02, DIET PEPSI, Boston, MA 〉, 〈130, 10, 0.1〉〉, 

〈〈2004,01,02, DIET PEPSI, Boston, MA 〉, 〈130, 5, 0.1〉〉, 
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〈〈2004,01,02, DIET PEPSI, Boston, MA 〉, 〈130, 15, 0.2〉〉, 

〈〈2004,01,03, DIET PEPSI, Boston, MA 〉, 〈110, 5, 0.1〉〉, 

〈〈2004,01,03, DIET PEPSI, Boston, MA 〉, 〈110, 15, 0.1〉〉, 

〈〈2004,01,03, DIET PEPSI, Boston, MA 〉, 〈120, 10, 0.1〉〉, 

〈〈2004,01,03, DIET PEPSI, Boston, MA 〉, 〈120, 5, 0.1〉〉, 

〈〈2004,01,03, DIET PEPSI, Boston, MA 〉, 〈120, 15, 0.1〉〉, 

〈〈2004,01,03, DIET PEPSI, Boston, MA 〉, 〈130, 10, 0.1〉〉, 

〈〈2004,01,03, DIET PEPSI, Boston, MA 〉, 〈130, 5, 0.1〉〉, 

〈〈2004,01,03, DIET PEPSI, Boston, MA 〉, 〈130, 15, 0.2〉〉, 

〈〈2004,01,03, DIET PEPSI, Boston, MA 〉, 〈150, 15, 0.1〉〉, 

〈〈2004,01,04, DIET PEPSI, Boston, MA 〉, 〈110, 15, 0.7〉〉, 

〈〈2004,01,04, DIET PEPSI, Boston, MA 〉, 〈110, 5, 0.01〉〉, 

〈〈2004,01,04, DIET PEPSI, Boston, MA 〉, 〈110, 15, 0.01〉〉, 

〈〈2004,01,04, DIET PEPSI, Boston, MA 〉, 〈120, 10, 0.01〉〉, 

〈〈2004,01,04, DIET PEPSI, Boston, MA 〉, 〈120, 5, 0.05〉〉, 

〈〈2004,01,04, DIET PEPSI, Boston, MA 〉, 〈120, 15, 0.01〉〉, 

〈〈2004,01,04, DIET PEPSI, Boston, MA 〉, 〈130, 10, 0.01〉〉, 

〈〈2004,01,04, DIET PEPSI, Boston, MA 〉, 〈130, 5, 0.1〉〉, 

〈〈2004,01,04, DIET PEPSI, Boston, MA 〉, 〈130, 15, 0.1〉〉, 

〈〈2004,01,05, DIET PEPSI, Boston, MA 〉, 〈160, 20, 0.3〉〉, 

〈〈2004,01,05, DIET PEPSI, Boston, MA 〉, 〈110, 15, 0.2〉〉, 

〈〈2004,01,05, DIET PEPSI, Boston, MA 〉, 〈110, 5, 0.1〉〉, 

〈〈2004,01,05, DIET PEPSI, Boston, MA 〉, 〈110, 15, 0.01〉〉, 
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〈〈2004,01,05, DIET PEPSI, Boston, MA 〉, 〈190, 10, 0.01〉〉, 

〈〈2004,01,05, DIET PEPSI, Boston, MA 〉, 〈120, 5, 0.05〉〉, 

〈〈2004,01,05, DIET PEPSI, Boston, MA 〉, 〈120, 15, 0.01〉〉, 

〈〈2004,01,05, DIET PEPSI, Boston, MA 〉, 〈130, 10, 0.01〉〉, 

〈〈2004,01,05, DIET PEPSI, Boston, MA 〉, 〈130, 5, 0.01〉〉, 

〈〈2004,01,05, DIET PEPSI, Boston, MA 〉, 〈130, 15, 0.2〉〉, 

〈〈2004,01,06, DIET PEPSI, Boston, MA 〉, 〈130, 15, 0.01〉〉, 

〈〈2004,01,06, DIET PEPSI, Boston, MA 〉, 〈110, 15, 0.01〉〉, 

〈〈2004,01,06, DIET PEPSI, Boston, MA 〉, 〈110, 5, 0.01〉〉, 

〈〈2004,01,06, DIET PEPSI, Boston, MA 〉, 〈120, 10, 0.01〉〉, 

〈〈2004,01,06, DIET PEPSI, Boston, MA 〉, 〈120, 5, 0.02〉〉, 

〈〈2004,01,06, DIET PEPSI, Boston, MA 〉, 〈120, 15, 0.01〉〉, 

〈〈2004,01,06, DIET PEPSI, Boston, MA 〉, 〈130, 10, 0.01〉〉, 

〈〈2004,01,06, DIET PEPSI, Boston, MA 〉, 〈130, 5, 0.01〉〉, 

〈〈2004,01,06, DIET PEPSI, Boston, MA 〉, 〈130, 15, 0.01〉〉, 

〈〈2004,01,06, DIET PEPSI, Boston, MA 〉, 〈140, 10, 0.9〉〉, 

〈〈2004,01,07, DIET PEPSI, Boston, MA 〉, 〈180, 30, 0.8〉〉, 

〈〈2004,01,07, DIET PEPSI, Boston, MA 〉, 〈110, 10, 0.02〉〉, 

〈〈2004,01,07, DIET PEPSI, Boston, MA 〉, 〈110, 5, 0.02〉〉, 

〈〈2004,01,07, DIET PEPSI, Boston, MA 〉, 〈110, 15, 0.06〉〉, 

〈〈2004,01,07, DIET PEPSI, Boston, MA 〉, 〈120, 10, 0.1〉〉} 

Similarly, competition data for other individual products in this category is 

specified. 
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The above data cannot be represented using a deterministic data model. Users of 

these data will be able to formulate queries using PMDDM operations. For example, a 

query can be formulated to get maximum sales, while another can be used to attract sales 

with highest confidence. This ability to query data provides flexibility in their use. 

To forecast demand using both method and data, the preliminary demand forecast 

has to be calculated using historical and promotion data. According to the forecast 

method, demand is directly proportional to the previous week’s average sales multiplied 

by the promotional factors. Therefore, preliminary demand forecast cube, CPreForecast, is 

given by sequence of operations below: 

1. C1 = CAverageSales ΘP CPromoFactors 

Where P is the join predicate made of product_name, city, and state 

C1 = {〈〈DIET PEPSI, Boston, MA〉, 〈136.43, 16.43, 2.32〉〉, 

〈〈DIET PEPSI, New York, NY〉, 〈116.43, 12.86, 2.47〉〉, 

〈〈DIET PEPSI, Chicago, IL〉, 〈127.86, 17.14, 2.37〉〉, 

〈〈DIET PEPSI, San Francisco, CA〉, 〈147.86, 18.57, 2.52〉〉, 

〈〈DIET PEPSI, Dallas, TX〉, 〈117.86, 10.71, 2.22〉〉} 

2. C2 = 

Γ[PRE_FORECAST1=(average_price*promo_factor),{average_price,promo_factor},PRE_PRICE](C1) 

= {〈〈DIET PEPSI, Boston, MA〉, 〈316.52〉〉, 

〈〈DIET PEPSI, New York, NY〉, 〈287.58〉〉, 

〈〈DIET PEPSI, Chicago, IL〉, 〈303.03〉〉, 

〈〈DIET PEPSI, San Francisco, CA〉, 〈372.61〉〉, 

〈〈DIET PEPSI, Dallas, TX〉, 〈261.65〉〉} 
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3. C3 = 

Γ[PRE_FORECAST2=(average_quantity*promo_factor),{average_quantity,promo_factor},PRE_QUANT](C1)  

= {〈〈DIET PEPSI, Boston, MA〉, 〈38.12〉〉, 

〈〈DIET PEPSI, New York, NY〉, 〈31.76〉〉, 

〈〈DIET PEPSI, Chicago, IL〉, 〈40.62〉〉, 

〈〈DIET PEPSI, San Francisco, CA〉, 〈46.80〉〉, 

〈〈DIET PEPSI, Dallas, TX〉, 〈23.78〉〉} 

 

4. C4 = C2 ΘP C3 

= {〈〈DIET PEPSI, Boston, MA〉, 〈316.52, 38.12〉〉, 

〈〈DIET PEPSI, New York, NY〉, 〈287.58, 31.76〉〉, 

〈〈DIET PEPSI, Chicago, IL〉, 〈303.03, 40.62〉〉, 

〈〈DIET PEPSI, San Francisco, CA〉, 〈372.61, 46.80〉〉, 

〈〈DIET PEPSI, Dallas, TX〉, 〈261.65, 23.78〉〉} 

 

5. CPRE_FORECAST = ΛPRE_FORECAST(C4) - This renaming operation just 

changes the attribute names to PRE_FORECAST references without any data 

changes to the result obtained in step 4 above. 

 

This preliminary demand forecast is based on the previous week’s average sales 

and promotional data and needs to be adjusted by deducting competitors’ sales. Since 

competition data are uncertain, there are several choices available. For this fictitious 
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application, highest most likely sales and maximum sales will be used separately to derive 

two different forecasts. The first forecast uses the highest most likely sales and the 

second forecast uses maximum sales. 

First Forecast: Most likely sales are retrieved using a query like “Select most 

likely sales from Competition cube.” This requires a fuzzy membership function defined 

for this cube mapping fuzzy sets certain,  most likely,  very likely,  likely,  unlikely, and  

very unlikely to crisp sets 1.00, 0.99-0.70, 0.75-0.55, 0.60-0.40, 0.45-0.25, and 0.30-0.00. 

Using this mapping  most likely  is described with a strength of belief between 0.99 – 

0.75. Therefore, the selection predicate to get most likely sales will be “pS >= 0.75 and 

pS < 1.00”. This selects cells with probability greater than 0.75. Among resultant cells, 

one can select the cell with the highest quantity to get the highest most likely sales. For 

the city of Boston, this operation on the competition cube will be.  

CCOMP_QUANT = Γ[MAX,{product_name,city,state},quantity](∑(P=(pS >= 0.75 ∧  pS < 

1.00))(CCompetition)) 

= Γ[MAX,{product_name,city,state,quantity},quantity]{〈〈DIET PEPSI, Boston, MA〉, 〈180, 

30, 0.8〉〉, 〈〈DIET PEPSI, Boston, MA〉, 〈140, 10, 0.9〉〉} 

= {〈〈DIET PEPSI, Boston, MA〉, 〈180〉〉} 

Similar operations for other cities on the data presented in Appendix B result in 

the following highest most likely sales: 

CCOMP_QUANT = ΛCOMP_QUANT {〈〈DIET PEPSI, Boston, MA〉, 〈180〉〉, 

〈〈DIET PEPSI, New York, NY〉, 〈160〉〉, 

〈〈DIET PEPSI, Chicago, IL〉, 〈120〉〉, 

〈〈DIET PEPSI, San Francisco, CA〉, 〈130〉〉, 
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〈〈DIET PEPSI, Dallas, TX〉, 〈110〉〉} 

To get the demand forecast, CCOMP_QUANT quantities need to be subtracted from 

CPRE_FORECAST quantities, using the operation below: 

CFINAL_FORECAST = Γ[FIN_FORECAST=(PRE_FORECAST.quantity - 

COMP_QUANT.quantity),{product_name,city,state},quantity]( CPRE_FORECAST ΘP CCOMP_QUANT) 

= {〈〈DIET PEPSI, Boston, MA〉, 〈136.52, 38.12〉〉, 

〈〈DIET PEPSI, New York, NY〉, 〈127.58, 31.76〉〉, 

〈〈DIET PEPSI, Chicago, IL〉, 〈183.03, 40.62〉〉, 

〈〈DIET PEPSI, San Francisco, CA〉, 〈242.61, 46.80〉〉, 

〈〈DIET PEPSI, Dallas, TX〉, 〈151.65, 23.78〉〉} 

 

Second Forecast: This forecast uses the maximum sales quantity estimates for the 

competitors. To calculate the maximum sales, the following operation on the Competition 

cube can be used:  

CCOMP_QUANT = Γ[MAX,{product_name,city,state},quantity](CCompetition) 

= {〈〈DIET PEPSI, Boston, MA〉, 〈190, 10, 0.01〉〉} 

Note that the maximum sales estimate of 190 for Boston city has very little 

likelihood. Similar operations for other cities on the data presented in Appendix B result 

in the following highest most likely sales: 

CCOMP_QUANT = ΛCOMP_QUANT {〈〈DIET PEPSI, Boston, MA〉, 〈190〉〉, 

〈〈DIET PEPSI, New York, NY〉, 〈170〉〉, 

〈〈DIET PEPSI, Chicago, IL〉, 〈145〉〉, 

〈〈DIET PEPSI, San Francisco, CA〉, 〈140〉〉, 
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〈〈DIET PEPSI, Dallas, TX〉, 〈140〉〉} 

To get the demand forecast, CCOMP_QUANT quantities need to be subtracted from 

CPRE_FORECAST quantities, using the operation below: 

CFINAL_FORECAST = Γ[FIN_FORECAST=(PRE_FORECAST.quantity - 

COMP_QUANT.quantity),{product_name,city,state},quantity](CPRE_FORECAST ΘP CCOMP_QUANT) 

= {〈〈DIET PEPSI, Boston, MA〉, 〈126.52, 38.12〉〉, 

〈〈DIET PEPSI, New York, NY〉, 〈117.58, 31.76〉〉, 

〈〈DIET PEPSI, Chicago, IL〉, 〈158.03, 40.62〉〉, 

〈〈DIET PEPSI, San Francisco, CA〉, 〈232.61, 46.80〉〉, 

〈〈DIET PEPSI, Dallas, TX〉, 〈121.65, 23.78〉〉} 

 

The above result can be used as the final forecast for demand. The above fictitious 

application described methods of using PMDDM to store different kinds of data, 

exercising various algebraic operations, and results of these operations. PMDDM is at 

least as expressive as the relational data model, and hence flexibility provided by it is at 

least as much as the relational data model provides. This can be seen also from operations 

on cubes of the above fictitious application. 

Bayesian Belief Networks and PMDDM 

In this section, a brief description of conditional independence and a formal 

definition of Bayesian Belief Networks (BBNs) and their properties are presented. 

Comparison and contrast of PMDDM and BBNs is also presented in this section. 
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Conditional Independence 

In probability theory, the likelihood of a statement holding true or an event taking 

place is represented as a number between 0 and 1. A 0 represents impossibility and a 1 

represents complete certainty. Probability is also expressed as percentage. Probability is 

generally used to represent uncertainty and frequency. For example, physicians make 

statements such as, “Smoking causes cancer with a probability of 0.7.” This statement 

reflects that cause effect relationship between smoking and cancer is not certain, but more 

likely to be true. Similarly, “There is 80% chance of rain today” or equivalently “The 

probability of raining today is 0.8” reflects that event is very likely, but not certain. 

Humans deal with this kind of uncertain information effectively. Probability numbers 

assigned to these statements and events may be obtained using various methods. 

Empiricists interpret probabilities as frequencies, while rationalists interpret them as 

belief strengths (Pearl, 1988). The probability of an event or a set of events, A, is 

represented as P(A). The probability assignment must satisfy the following four basic 

axioms of probability theory: 

1. 0 ≥ P(A) ≤ 1 

2. P(FALSE) = 0 & P(TRUE) = 1 

3. P(A and B) = 0 & P(A or B) = P(A) + P(B), where A and B are mutually 

exclusive events 

4. If {E1, E2, E3, …, En} is a mutually exclusive and exhaustive set of events, 

then ∑ =
=

n

i iEP
1

1)(  

The first axiom indicates that probability is a number between 0 and 1. The second 

axiom states that probability of an impossible event is 0 while that of a certain event is 1. 
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The third and fourth axioms are based on sets of events. A set of mutually exclusive 

events {A,B} implies that A and B do not occur together, hence (from axiom 2), the 

probability for them to occur is 0. The probability of either one of the events A or B is the 

sum of their individual probabilities. The fourth axiom restricts the sum of probabilities 

of all possible events to 1. 

The probability of an event may not always be useful or meaningful. Events may 

not be independent in some circumstances. Suppose one assumes that the chances of 

pavement being wet are 20%, i.e. P(Pavement being wet)=0.20. Then it is learned that it 

rained. Now belief in the pavement being wet increases. Bayesian formalism considers 

this new probability of “pavement being wet” after learning “it rained” as probability of 

the conditional event, “pavement being wet given that it rained.” It is written as 

P(Pavement being wet | It rained). If P(A|B) = P(A), then A and B are said to be 

independent. For example, consider P(Pavement being wet | Gas bill is high). Assessment 

of this probability would be the same as P(Pavement being wet). That is, the fact that the 

“gas bill is high” has no impact on the chances of “pavement being wet,” therefore these 

two events are independent. Similarly, if P(A|B AND C) = P(A|C), then A and B are 

conditionally independent given C. For example, consider P(Pavement being wet | 

Weather forecast called for rain and It rained). Assessment of this probability would be 

the same as P(Pavement being wet | It rained), because the fact that “weather forecast 

called for rain” does not matter once it is known that “it rained.” Therefore, “pavement 

being wet” is conditionally independent of “weather forecast called for rain” given “it 

rained.” P(A|B AND C) is also written as P(A|B,C). This information can be represented 
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graphically in several ways. Graph in Figure 3 is an example of graphical representation 

using directed edges for dependency. 

 

Figure 3. Graphical Representation of Pavement Example. 

 As can be seen from Figure 3, “It rained” blocks the path between “weather 

forecast called for rain” and “pavement being wet.” The Bayesian belief networks 

framework formalizes this concept of graphical representation. The following definitions 

from Pearl (1988) formally define the Bayesian belief networks framework. In the 

following definitions, ‘variable’, ‘event’, and ‘node’ are used interchangeably. 

Independence Statement: U is Universe of events. An event ei is statistically 

independent of another event ej if P(ei | ej) = P(ei). Similarly, ej is statistically 
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independent of ei if P(ej | ei) = P(ej). If both are true, then P(eiej) = P(ei)P(ej), which 

implies ej and ei are mutually statistically independent. Similarly, if P(ei,ej | S) = P(ei | 

S)P(ej | S) when P(S) ≠ 0, then ei and ej are statistically independent given S, where S is 

any subset of U that does not contain ei and ej. This is also written as I(ei, S, ej) and called 

an Independence Statement. 

Dependency Model, Graph Isomorphism, and DAG Isomorphism: A 

Dependency Model is a list M of independence statements of the form I(X,Z,Y), also 

written as I(X,Z,Y)M.. M is graph isomorphic if all independencies in M and no 

independencies outside M can be represented using an undirected graph G. Similarly, M 

is DAG isomorphic if it can be represented in this manner using a Directed Acyclic Graph 

(DAG). 

Converging Arrows and Diverging Arrows: If a, b, and c are three nodes in a 

DAG D, structure a�b�c has converging arrows and a�b�c has diverging arrows.  

d-separation: If X, Y, and Z are three disjoint subsets of nodes in a DAG D, then Z is said 

to d-separate X from Y, denoted <X|Z|Y>D, if along every path between a node in X and a 

node in Y there is node w satisfying one of the following two conditions: (1) w has 

converging arrows and none of w or its descendants are in Z, or (2) w does not have 

converging arrows and w is in Z. 

I-map and Minimal I-map: A DAG D is said to be I-map of a dependency 

model M if every d-separation condition displayed in D corresponds to a valid 

conditional independence relationship in M, i.e. if for every three disjoint sets of vertices 

X, Y, and Z we have <X|Z|Y>D ⇒ I(X,Z,Y)M. A DAG is a minimal I-map of M if none of its 

arrows can be deleted without destroying its I-mapness. 
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Bayesian belief network: Given a probability distribution P on a set of variables 

V, a DAG D=(V,E) where E is an ordered pair of variables (each of which corresponds to 

a vertex in graphical representation) of V is called a Bayesian belief network of P if and 

only if D is a minimal I-map of P. 

Comparison and Contrast between Bayesian Belief Networks and PMDDM 

Bayesian belief networks have been researched since early 1980s. There is a 

wealth of research conducted on a variety of topics related to Bayesian belief networks. 

This research includes general introduction (Charniak, 1991; Geiger & Heckerman, 1991; 

Jaynes & Bretthorst, 2003; Jeffrey, 1983; Jensen, 2001; Kemp, 2003; Pearl, 1988; Power, 

2003; Rao, 1973),  classification (Breiman, Friedman, Olshen, & Stone, 1984; Chow & 

Liu, 1968; Rao, 1973; Rebane & Pearl, 1987), construction/recovery (Charniak, 1991; 

Cooper & Herskovits, 1991, 1992; Fung & Crawford, 1990; Geiger & Heckerman, 1991; 

Geiger, Paz, & Pearl, 1990; Jensen, 2001; Lee, Barua, & Whinston, 1997; Lilford & 

Braunholtz, 2003; Mechling, 1992; Mechling & Valtorta, 1994; Moole & Valtorta, 2002; 

Moole, 1997; Moole & Valtorta, 2003; Neapolitan, 2004; Pearl, 1988; Pearl & Verma, 

1991; Rebane & Pearl, 1987; Spirtes & Glymour, 1991; Verma & Pearl, 1992), reasoning 

and inference (Ambrosio, 1990; Chang & Fung, 1991; Geiger & Heckerman, 1991; 

Meek, 1995; Moole, 1997; Moole & Valtorta, 2003; Pearl, 1988; Pearl & Verma, 1991), 

complexity analysis (Cooper, 1990; Lam & Segre, 2002; Moole, 1997; Neapolitan, 2004; 

Valtorta & Loveland, 1989, 1992), and applications (Charniak, 1991; Geiger & 

Heckerman, 1991; Huyn, 2001; Jensen, 2001; Motro & Smets, 1997; Rao, 1973; 

Sreenivasan, 2003; Turban & Aronson, 2001).  Salient features of BBNs are described 

below, while comparing and contrasting them with PMDDM. 
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Independence Assumptions 

Both BBNs and PMDDM represent the probability distribution of an event set. 

BBNs contain implicit independence assumptions, while PMDDM does not. d-separation 

condition identifies dependency relationships among random variables in BBNs. More 

specifically, random variables that are not relevant in calculating probability of an event 

are all assumed d-separated from event of interest. An advantage of this assumption is 

that the specification of probabilities for each event becomes simpler. All conditional 

probabilities for the sets of irrelevant variables become unnecessary. This results in 

significant storage space savings and also facilitates automated inference. A disadvantage 

of this approach is that the underlying probability distribution for a set of events may not 

satisfy independence assumptions. In contrast, PMDDM is capable of storing and 

manipulating large amounts of uncertain data or probability distributions. 

Graphical Representation 

Graphical representation of dependency relationships among variables is a 

prominent characteristic of BBNs. In contrast, PMDDM does not have a graphical 

representation, even though a multidimensional concept called Cube is defined. 

Probability distributions that can be represented by graphical models are depicted in 

Figure 4 below. 
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Figure 4. Graphical representation of probability distributions. Adapted from Pearl (1988) 

with permission from author. 

As can be seen from Figure 4, only a portion of all probability distributions can be 

represented using graphical models. Only the DAG Isomorphic class of probability 

distributions can be represented using BBNs. In contrast, PMDDM has no limitation on 

the class of probability distributions. 

Expressiveness 

BBNs are able to represent probability distributions that are DAG isomorphic. In 

addition, they express dependency models with the following characteristics (Pearl, 

1988): 

1. Symmetry: I(X,Z,Y) ⇔ (Y,Z,X) 

2. Composition/Decomposition: I(X,Z,Y ∪  W) ⇔ I(X,Z,Y) & I(X,Z,W) 

3. Intersection: I(X, Z ∪  W, Y) & I(X, Z ∪  Y, W) ⇒ I(X, Z, Y ∪  W) 

4. Weak Union: I(X, Z, Y ∪  W) ⇒ I(X, Z ∪  W, Z) 

5. Contraction: I(X, Z ∪  Y, W) & I(X,Y,Z) ⇒ I(X, Z, Y ∪  W) 
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6. Weak Transitivity: I(X,Z,Y) & I(X, Z ∪  γ, Y) ⇒ I(X, Z, γ) or I(γ, Z, Y) 

7. Chordality: I(α, γ ∪  δ, β) & I(γ, α ∪  β, δ) ⇒ I(α, γ, β) or I(α, δ, β) 

In addition to these characteristics, d-separation operation is weakly transitive. 

These characteristics of BBNs are amenable to causal interpretation and are more 

intuitive for knowledge representation (Neapolitan, 2004; Pearl, 1988). However, 

expressive power of BBNs is limited to DAG isomorphic probability distributions. In 

contrast, PMDDM has at least the expressive power of the relational model. This means it 

is not only able to express general probability distributions that cannot be expressed by 

BBNs, but also general relational restrictions on sets. 

Data Views 

The data represented in BBNs is DAG isomorphic and can be represented 

graphically. In contrast, PMDDM is multi-dimensional data. A graphical view of the data 

is more useful to inference and reasoning tasks, while a multi-dimensional view is more 

useful to interpretation of the data. This is reflected also in operations defined on the 

BBNs and the PMDDM. The BBNs have operations to identify relevancy and 

dependency helping the user to infer consequences and reason on cause effect 

relationships. The PMDDM has operations to investigate data by querying, drilling down, 

and merging cubes. 

 Space 

Encoding an arbitrary joint probability distribution for n propositional variables 

requires 2n entries. For example, a domain with five variables requires 32 entries and one 

with 10 variables requires 1024 entries to represent complete joint probability 

distribution. This exponential growth in space is a major concern. BBNs capture only 
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conditional probabilities relevant to a given variable (relevancy as determined by the d-

separation condition). This results in storage space savings. In general, BBNs can be 

represented using polynomial space complexity (Cooper, 1990; Valtorta & Loveland, 

1989, 1992). Comparing this with PMDDM, which attempts to store entire joint 

probability distribution may seem a waste of space. But, as described in the Application 

of the Model in Business Management section above, the data captured may not have the 

entire joint probability distribution in most applications. Even when data are available, it 

is possible to reduce space requirements by not storing propositions whose probability is 

below a given threshold, for example 0.001, which represents a negligible chance of 

being true. In addition, PMDDM can handle the probability mass assigned to missing 

propositions or unknown propositions effectively.  

Time 

The time complexity of sequential algorithms to construct, infer, or update BBNs 

is in general polynomial or exponential (Cooper, 1990; Valtorta & Loveland, 1992). 

Since most algorithms examine all input, size of the data stored naturally increases the 

time to perform operations on it. An exception is approximate algorithms, which may not 

consider all input and/or all possible operations on the data. The reduced size of data 

input to the BBN algorithms results in savings of computational time as well. In contrast, 

PMDDM does not have such privilege to reduce size of input, as their primary purpose is 

to store large amounts of uncertain data. As shown in Time and Space Complexities of the 

Algorithm section above, operations on PMDDM are of exponential time complexity. 

This observation should lead to the practicality of PMDDM for a particular problem, 
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which should be determined based on number of variables in the domain as well as 

computational resources available. 

Parallelism 

The period of time from 1975 to 1990 witnessed a rapid advancement of parallel 

architectures. The relative lull of 1990s was followed by massive parallelization (cluster 

computing, symmetric multi processing (SMP), grid computing). Current trends point to 

an expansive use of parallelization. Research on BBNs has been keeping up with this 

trend and several algorithms have been parallelized effectively (Lam & Segre, 2002; 

Mechling & Valtorta, 1994; Moole & Valtorta, 2003). These researchers pointed out 

inherent parallelism in operations on graphical models and probability distributions. 

Operations on PMDDM may benefit by researching parallelization. This is because 

operations are exponential and parallelization reduces time required to compute, making 

PMDDM more attractive. 

Summary of Similarities Between BBNs and PMDDM 

There are several similarities between BBNs and PMDDM. They are: 

1. Both represent probability distributions (i.e. uncertain information); 

2. Both can represent data visually, BBNs using graphs and PMDDM using 

cubes; 

3. Both can be used for Decision Support Systems; and 

4. Both have inherent parallelism. 
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Table 2. 
Summary of Differences Between BBNs and PMDDM 

 BBNs PMDDM 

1 Only DAG isomorphic 

probability distributions can be 

represented. 

Any probability distribution as 

well as relational data can be 

represented. 

2 Suitable to represent causal 

relationships. 

Suitable to represent hierarchical 

and relational concepts. 

3 More useful for inference and 

reasoning. 

More useful for data analysis. 

4 Requires polynomial time and 

space. 

Requires exponential time and 

space. 

5 Well-established concept. Relatively recent advancement. 

 

Summary 

In this chapter, algebraic operations on PMDDM, a Bayesian Framework for 

modification of probabilistic multidimensional data, and comparison and contrast 

between PMDDM and BBNs are presented. An algorithm for data modification is 

presented along with proof of correctness. Space and time complexities of this algorithm 

were analyzed. In Chapter 5, a summary of research results and conclusions is presented. 
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CHAPTER 5 
 

SUMMARY, CONCLUSIONS, AND FURTHER RESEARCH 

 

Decision sciences focus on improving managerial decision-making process. 

Decision Support Systems is an important area of study in decision sciences. Business 

intelligence and decision-making in today’s business world require extensive use of huge 

volumes of real-world data, which contain uncertainty and change over time. 

Organizations need to handle uncertain information. Ignoring it is not a good option. 

Many organizations use Decision Support Systems to enhance managerial decisions. 

These systems should be able to handle efficiently large amounts of data, as well as 

uncertainty, and modifications to uncertain data. Relational database product vendors 

have provided several extensions and features to support these requirements, but these 

extensions lack support of conceptual models, which impedes growth of the software 

product market. Limited availability of Decision Support Systems to business could result 

in inconsistent and sub-optimal decisions. 

Decision Support Systems that cannot handle large volumes of data containing 

uncertainty are less useful for decision-making. Data representation and uncertainty 

representation are crucial parts of these Decision Support Systems (Moole, 2003). 

Currently, Decision Support Systems products lack a standard conceptual data model for 

supporting data representation and operations. They also lack a framework to represent 

uncertainty, modify uncertain data, and perform imprecise queries. Conceptual models 

and frameworks supported by theories founded in mathematics enable users of product to 

understand better the claims of product manufacturers (Codd et al., 1993). They also 
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enable researchers to contribute independently to technology (Agarwal et al., 1997; 

Thomas & Datta, 2001). Recently, researchers focused on this problem, and Moole 

(2003) proposed a probabilistic multidimensional data model; however, this model lacked 

the framework for probabilistic data modification. Lack of a framework to modify data 

diminishes importance of data models and their usefulness (Dey & Sarkar, 2000; Moole, 

2003). This dissertation research was aimed at providing such enhanced data model to 

enable Decision Support Systems product development. 

This study developed a framework and an algorithm for probabilistic data 

modification to enhance importance and usefulness of probabilistic multidimensional 

data model of Moole. This framework and algorithm can update uncertain data consistent 

with the model (consistent), resulting in valid data (closed), and is reliable in all possible 

update scenarios (complete). 

The solution developed by the investigator is significant because a $4 billion 

software products development market is not achieving its potential (Pendse, 2003). This 

solution will contribute to data models research and the knowledge base and may result in 

better DSS tools for business. This solution may help standardize multidimensional 

database products and related tools. Such standardization can facilitate widespread 

adoption of these products and tools by business as happened in case of relational 

databases (Date, 2000). Standardized products are easier to understand and generally 

cheaper than custom-built and proprietary products (Thomas & Datta, 2001). DSS 

products developed as a result of this research may reduce overall cost of ownership of 

DSS products to business. Reduced prices of goods and services for consumers due to 
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enhanced decision-making improve the standard of living (Gairdner, 2000). The 

investigator performed research activities summarized below. 

Probabilistic multidimensional data model enhancements 

Investigator integrated the multidimensional data model (MDD) and probabilistic 

data model and provided additional required algebraic operations for the Probabilistic 

MDD Model. The probabilistic multidimensional data model definition and its algebra 

were enhanced to include the following definitions and operators: 

Predicate P: A predicate is a well-formed formula in first-order predicate logic. 

An atomic predicate is a restriction on the domain of a single attribute or 

characteristic, e.g. (year = 1994). 

A compound predicate is a logical expression of atomic predicates. Logical 

operators are ∧  (and), ∨  (or), ¬  (not), → (implies), and ↔ (equivalent to). It is of form: P 

= p1 〈op〉 p2 〈op〉 … 〈op〉 pn. e.g. (year = 1994) ∧  ((quantity < 15) ∨  (amount > 100)) 

l satisfies P: l, an instance of L, with structure <address, content> satisfies 

predicate P if and only if: 

Case 1: If an element of l is a dimension, then l.AC satisfies P, otherwise l.CC 

satisfies P, if P is atomic and truth-value is TRUE. 

 

 

 

 

e.g. Upper left most corner cell in cube of Figure 1 satisfies P=(year=1993) 
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Case 2: If P is a compound predicate, l satisfies P, when all truth-values evaluated 

together with connecting operators results in TRUE. 

 

 

e.g. Upper left most corner cell in cube of figure 1 satisfies 

P=(year=1993)∧ (city=”Boston”)∧ (product_name=”P1”) 

Cardinality of Predicate (ηP): Cardinality, denoted by η, of a predicate is 

defined as number of unique attributes appearing in predicate. An atomic predicate has 

cardinality of 1. Cardinality of a compound predicate is ≥1 (a compound predicate may 

be constructed using a single attribute, hence η=1). 

Selectivity of Predicate P on a cube C (δ[P,C]): Selectivity of a predicate P, 

denoted by δ, for a given cube C, is size of subset of cube cells in L of C that satisfy P. 

Cardinality and selectivity are useful in ordering and identifying cube cells. The 

update algorithm uses this ordering capability to ensure correct handling of marginal 

probability specifications. 

Data modification framework 

Provided a comprehensive (complete, consistent, and closed) framework to update 

probabilistic data. This framework is based on Bayesian framework. This data 

modification framework described four possible cases of data modification, summarized 

below. 

Let one denote the class of L c of a Cube CI as a set of attributes AXY ∪  {pS} or 

{A, X, Y, pS}, where A is the address component, X and Y are mutually exclusive 

subsets of the set {{Ad ∪  Am} – {A ∪  pS}}, one of which may be empty. An object of 
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this class is denoted as {A=a, X=x, Y=y, pS=q}. In this representation, A corresponds to 

L.AC and X and Y are subsets of remaining attributes in the class of L without including 

pS. For example, if one has the cube of figure 1, then A = L.AC = {year, product, city}, 

X may be {amount} and Y may be {quantity}. This can also be represented as the union 

of all these attributes {year, product, city, amount, quantity, pS} in which pS represents 

joint probability of the remaining attributes. Let one suppose receipt of new information 

consisting of objects representing new beliefs. Assume that new information is specified 

as a cube Cnew with the same structure as the existing cube Cold. In following sections, 

one says ”the new set of objects matches the existing set of objects” to indicate a 

selection predicate P constructed on {X ∪  Y} evaluating to true for both sets. When there 

is no match, there does not exist a selection predicate that satisfies both sets of objects. A 

special case is when all attributes of an object are unknown, i.e. 〈A=a, X=*, Y=*, pS=q〉. 

In this case, there are an infinite number of predicates that match. This is considered as 

not matching. The resulting cube after applying the updates described in each of the 

following cases is denoted by Cupdated. 

Case 1: There exists a set of objects 〈a, x, y, q〉 ∈  Cnew that specifies complete 

joint probability distribution for A=a, i.e. )(
][,, ∏ ∑ =

Γ M

pS aA newCPpSSUM = 1. In this case, 

all existing objects must be replaced with the new set of objects. The remaining cases 

assume the new probability distribution specified is incomplete, It should be noted that 

partial distributions can be made complete distributions by assigning unspecified 

probability to unknown values. 

Case 2: There exists an object 〈a, x, y, q〉 ∈  Cnew that does not match with any 

object in existing data. In this case one has to create a new object. When a new object 
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with an address component “a” is created, one has to adjust strength of belief in other 

objects with the same address component. An extremity is when the new object has q = 1, 

in which case it replaces all existing objects, because the data model restricts the sum of 

beliefs for an address not to exceed 1 (this is handled by case 1). Cases 3 and 4 handle 

allocation of residual probability when q < 1. 

Case 3:  There exists an object 〈a, x, y, q〉 ∈  Cold, for some q ∈  (0, 1], such that x 

= xi, for some i ∈  {1, 2, …, m}. This is a case where an existing object matches an object 

in the new information on attributes A and X. It is possible for an existing object to match 

new information based on more than one predicate. In such cases, the predicate selection 

is made by maximizing η and minimizing δ. The rationale behind this is that when η is 

maximum, there is a greater number of attributes in a predicate, which indicates a more 

precise match of objects (less marginalization) and a minimal δ indicates less number of 

objects matched (an exact match will have δ=1). This is essential in order to handle 

marginal probability specifications. 

In this case, the new probability Q for the matching object is calculated, using 

Jeffrey’s Rule, as follows: 

Q   = PROB[A = a, X = xi, Y = y]  

      = prob[Y = y | A = a, X = xi]*PROB[A = a, X = xi] 

      = (prob[A = a, X = xi, Y = y] / prob[A = a, X = xi]) * PROB[A = a, X = xi] 

      =  → Equation (I) 

 

where pi is PROB[A = a, X = xi] for i = 1, 2, …, m. 

Then object 〈a, x, y, q〉 should be replaced with 〈a, x, y, Q〉. 
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Case 4: There exists an object 〈a, x, y, q〉 ∈  Cold, for some q ∈  (0, 1], such that x ≠ 

xi, for all i ∈  {1, 2, …, m}. In this case, an existing object does not have a matching 

object in the new information. The object 〈a, *, *, q〉 also has no match, therefore it will 

be handled by this case. 

In this case, new probability for objects without a match is calculated by 

proportionately distributing the difference between old residual probability and new 

residual probability after resolving the objects of above cases, if any. The old residual 

probability PoldRes of objects with A = a and X≠xi before applying cases 1, 2, and 3 is 

calculated by: 

PoldRes  = prob[A=a, X=x] = 1 −  )(
],[Re,, ∏ ∑ ≠=

Γ M

pS xiXaA oldsold CPpSSUM  

 

The new residual probability after previous cases PnewRes of objects with A=a and 

X≠xi is calculated by: 

PnewRes  = PROB[A=a, X=x] =  1 − 

 

One proportionately distributes residual probability PoldRes – PnewRes based on old 

probabilities. This distribution has to be to objects other than xi, i = 1, 2, …, m. 

With this, one can now calculate new probability Q associated with 〈a, x, y, q〉 as 

below: 

Q  = PROB[A = a, X = x, Y =y] 

     = prob[Y = y | A = a, X = x] * PROB[A = a, X = x] 

     = (prob[A = a, X = x, Y = y] / prob[A = a, X = x]) * PROB[A = a, X = x] 

      = (q / PoldRes) * PnewRes → Equation (II) 

)(
],[Re,, ∏ ∑ ≠=

Γ M

pS xiXaA updatedsnew CPpSSUM
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Then object 〈a, x, y, q〉 should be replaced with 〈a, x, y, Q〉. 

 Data modification algorithm 

Investigator developed an algorithm to modify the data. This algorithm conforms 

to the data modification framework described above. It can perform data modifications in 

all four possible cases described in the data modification framework. This algorithm 

accepts an old cube and a new cube to produce an updated cube as the output. The 

algorithm was proved to be correct, by proving it is: consistent (with PMDDM), complete 

(handles all possible cases of data modification), and closed (results only in valid 

objects). Time and space complexity analysis was performed. The worst case time 

complexity was determined to be max(So,Sn) * O(SnSu + Sn*(log2So)2) and the worst case 

space complexity was O(Su), where So, Sn and Su are number of objects in old cube, new 

cube, and the updated cube respectively. 

Application of the Model in Business Management 

Probabilistic multidimensional data model was applied to solve a business 

management problem. Forecasting demand for grocery products was described for a 

fictitious retail chain. Forecast method used for this business application uses historical 

data, product promotion data, and competition data. The forecast method utilizes heuristic 

rules specified below to forecast demand for each product in the category for the next 

day. 

1. Average sales for the previous week (seven days): Demand is directly 

proportional to average sales M. 

2. Promotion data for the previous week: Promotional factor, P, multiplies 

M. P is derived by incorporating total number of promotions. 
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3. Competition data (from other retailers in area as reported by agents) for 

the previous week: Competition, C, decreases sales. 

4. Category sales forecast information: Final category demand, Tf, is equal to 

average category demand within the previous four weeks, Ta. This means, 

if tentative category demand, Tt (calculated by aggregating individual 

product demand in that category), is different from Ta, then the individual 

product demand has to be adjusted to make Tt equal to Ta. 

To forecast demand using the above forecast method, the following data are 

needed: 

1. Sales data for the previous week for the category; 

2. Product promotion data for the previous week; 

3. Competitor sales information for the previous week, as reported by agents; 

and 

4. Daily category sales forecasts for the previous week. 

Probabilistic multidimensional data model was shown capable of storing, 

manipulating, and retrieving the above data. Usage of model and the algebraic operators 

to handle above data types was described using sample data. 

Comparison and Contrast with Bayesian Belief Networks 

PMDDM was compared and contrasted with Bayesian belief networks. This 

analysis identified several similarities between BBNs and PMDDM. They are: 

1. Both represent probability distributions (i.e. uncertain information); 

2. Both can represent data visually, BBNs using graphs and PMDDM using 

cubes; 
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3. Both can be used for Decision Support Systems; and 

4. Both have inherent parallelism. 

Differences summarized in the following table were identified. 

Table 3. 
Differences Between BBNs and PMDDM 

 BBNs PMDDM 

1 Only DAG isomorphic 

probability distributions can be 

represented. 

Any probability distribution as 

well as relational data can be 

represented. 

2 Suitable to represent causal 

relationships. 

Suitable to represent hierarchical 

and relational concepts. 

3 More useful for inference and 

reasoning. 

More useful for data analysis. 

4 Requires polynomial time and 

space. 

Requires exponential time and 

space. 

5 Well-established concept. Relatively recent advancement. 

 

In conclusion, this research achieved all intended results as specified in scope of 

this research. Analytical method was identified as the appropriate method and was used 

for these research activities. Advantages of analytical method were found to be helpful. 

Disadvantages of analytical method include logical errors, problems of semantics, and 

possibility to focus on trivial and irrelevant problems. Paying close attention to the 
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derivation of formulas eliminated logical errors. Problems of semantics were reduced by 

using the semantics established by reputed researchers such as Chow & Liu (1968), Codd 

(1971), Dubois (Dubois & Prade, 1988), Jeffrey (1983), Knuth (1973), Pearl (Pearl, 1988, 

2001; Pearl, Geiger, & Verma, 1990; Pearl & Verma, 1991), and Shafer (1990). Parts of 

the research results were published in the proceedings of IEEE SoutheastCon 2004, 

Greensboro, North Carolina, USA, in refereed section (Moole & Korrapati, 2004a), 

which also received Walden University Presentation Honorarium. An application of 

PMDDM in managerial decision-making is described in another paper published in IEEE 

SoutheastCon 2005 (Moole & Korrapati, 2005).IEEE SoutheastCon refereed section 

papers are blind peer-reviewed for technical accuracy, relevancy, significance, and 

contribution to state-of-the-art. This reduced the possibility of these results being trivial 

or irrelevant. In addition, parts of these results were also presented at Allied Academics 

National Conference (Moole & Korrapati, 2004b). 

Further Research 

Probabilistic multidimensional data models is relatively a recent development 

compared to the research in relational data models that dates back to the early 1970s. This 

dissertation research is only a step into the complete definition of probabilistic 

multidimensional data model. There is plenty of scope to research futher, only limited by 

the imagination. To list a few topics for further research in this area, current PMDDM 

can be extended to include parallelization of algebraic operations, implementation issues, 

applicability in various fields, and feasibility studies. Alternative data modification 

algorithms can be devised using algebraic operations. These topics are complex and are 

beyond the scope of this research. 
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APPENDIX B 
 

COMPETITION DATA 

The complete competition data is specified as follows: 

{〈〈2004,01,01, DIET PEPSI, Boston〉, 〈110, 10, 0.2〉〉, 

〈〈2004,01,01, DIET PEPSI, Boston〉, 〈110, 5, 0.1〉〉, 

〈〈2004,01,01, DIET PEPSI, Boston〉, 〈110, 15, 0.1〉〉, 

〈〈2004,01,01, DIET PEPSI, Boston〉, 〈120, 10, 0.1〉〉, 

〈〈2004,01,01, DIET PEPSI, Boston〉, 〈120, 5, 0.1〉〉, 

〈〈2004,01,01, DIET PEPSI, Boston〉, 〈120, 15, 0.1〉〉, 

〈〈2004,01,01, DIET PEPSI, Boston〉, 〈130, 10, 0.1〉〉, 

〈〈2004,01,01, DIET PEPSI, Boston〉, 〈130, 5, 0.1〉〉, 

〈〈2004,01,01, DIET PEPSI, Boston〉, 〈130, 15, 0.1〉〉, 

〈〈2004,01,02, DIET PEPSI, Boston〉, 〈125, 10, 0.1〉〉, 

〈〈2004,01,02, DIET PEPSI, Boston〉, 〈110, 5, 0.1〉〉, 

〈〈2004,01,02, DIET PEPSI, Boston〉, 〈110, 15, 0.1〉〉, 

〈〈2004,01,02, DIET PEPSI, Boston〉, 〈120, 10, 0.1〉〉, 

〈〈2004,01,02, DIET PEPSI, Boston〉, 〈120, 5, 0.1〉〉, 

〈〈2004,01,02, DIET PEPSI, Boston〉, 〈120, 15, 0.1〉〉, 

〈〈2004,01,02, DIET PEPSI, Boston〉, 〈130, 10, 0.1〉〉, 

〈〈2004,01,02, DIET PEPSI, Boston〉, 〈130, 5, 0.1〉〉, 

〈〈2004,01,02, DIET PEPSI, Boston〉, 〈130, 15, 0.2〉〉, 

〈〈2004,01,03, DIET PEPSI, Boston〉, 〈110, 5, 0.1〉〉, 

〈〈2004,01,03, DIET PEPSI, Boston〉, 〈110, 15, 0.1〉〉, 
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〈〈2004,01,03, DIET PEPSI, Boston〉, 〈120, 10, 0.1〉〉, 

〈〈2004,01,03, DIET PEPSI, Boston〉, 〈120, 5, 0.1〉〉, 

〈〈2004,01,03, DIET PEPSI, Boston〉, 〈120, 15, 0.1〉〉, 

〈〈2004,01,03, DIET PEPSI, Boston〉, 〈130, 10, 0.1〉〉, 

〈〈2004,01,03, DIET PEPSI, Boston〉, 〈130, 5, 0.1〉〉, 

〈〈2004,01,03, DIET PEPSI, Boston〉, 〈130, 15, 0.2〉〉, 

〈〈2004,01,03, DIET PEPSI, Boston〉, 〈150, 15, 0.1〉〉, 

〈〈2004,01,04, DIET PEPSI, Boston〉, 〈110, 15, 0.7〉〉, 

〈〈2004,01,04, DIET PEPSI, Boston〉, 〈110, 5, 0.01〉〉, 

〈〈2004,01,04, DIET PEPSI, Boston〉, 〈110, 15, 0.01〉〉, 

〈〈2004,01,04, DIET PEPSI, Boston〉, 〈120, 10, 0.01〉〉, 

〈〈2004,01,04, DIET PEPSI, Boston〉, 〈120, 5, 0.05〉〉, 

〈〈2004,01,04, DIET PEPSI, Boston〉, 〈120, 15, 0.01〉〉, 

〈〈2004,01,04, DIET PEPSI, Boston〉, 〈130, 10, 0.01〉〉, 

〈〈2004,01,04, DIET PEPSI, Boston〉, 〈130, 5, 0.1〉〉, 

〈〈2004,01,04, DIET PEPSI, Boston〉, 〈130, 15, 0.1〉〉, 

〈〈2004,01,05, DIET PEPSI, Boston〉, 〈160, 20, 0.3〉〉, 

〈〈2004,01,05, DIET PEPSI, Boston〉, 〈110, 15, 0.2〉〉, 

〈〈2004,01,05, DIET PEPSI, Boston〉, 〈110, 5, 0.1〉〉, 

〈〈2004,01,05, DIET PEPSI, Boston〉, 〈110, 15, 0.01〉〉, 

〈〈2004,01,05, DIET PEPSI, Boston〉, 〈120, 10, 0.01〉〉, 

〈〈2004,01,05, DIET PEPSI, Boston〉, 〈120, 5, 0.05〉〉, 

〈〈2004,01,05, DIET PEPSI, Boston〉, 〈120, 15, 0.01〉〉, 
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〈〈2004,01,05, DIET PEPSI, Boston〉, 〈130, 10, 0.01〉〉, 

〈〈2004,01,05, DIET PEPSI, Boston〉, 〈130, 5, 0.01〉〉, 

〈〈2004,01,05, DIET PEPSI, Boston〉, 〈130, 15, 0.2〉〉, 

〈〈2004,01,06, DIET PEPSI, Boston〉, 〈130, 15, 0.1〉〉, 

〈〈2004,01,06, DIET PEPSI, Boston〉, 〈110, 15, 0.1〉〉, 

〈〈2004,01,06, DIET PEPSI, Boston〉, 〈110, 5, 0.1〉〉, 

〈〈2004,01,06, DIET PEPSI, Boston〉, 〈120, 10, 0.01〉〉, 

〈〈2004,01,06, DIET PEPSI, Boston〉, 〈120, 5, 0.05〉〉, 

〈〈2004,01,06, DIET PEPSI, Boston〉, 〈120, 15, 0.02〉〉, 

〈〈2004,01,06, DIET PEPSI, Boston〉, 〈130, 10, 0.01〉〉, 

〈〈2004,01,06, DIET PEPSI, Boston〉, 〈130, 5, 0.01〉〉, 

〈〈2004,01,06, DIET PEPSI, Boston〉, 〈130, 15, 0.2〉〉, 

〈〈2004,01,06, DIET PEPSI, Boston〉, 〈140, 10, 0.4〉〉, 

〈〈2004,01,07, DIET PEPSI, Boston〉, 〈180, 30, 0.3〉〉, 

〈〈2004,01,07, DIET PEPSI, Boston〉, 〈110, 10, 0.2〉〉, 

〈〈2004,01,07, DIET PEPSI, Boston〉, 〈110, 5, 0.2〉〉, 

〈〈2004,01,07, DIET PEPSI, Boston〉, 〈110, 15, 0.2〉〉, 

〈〈2004,01,07, DIET PEPSI, Boston〉, 〈120, 10, 0.1〉〉, 

〈〈2004,01,01, DIET PEPSI, New York〉, 〈105, 10, 0.3〉〉, 

〈〈2004,01,02, DIET PEPSI, New York〉, 〈125, 10, 0.5〉〉, 

〈〈2004,01,03, DIET PEPSI, New York〉, 〈105, 20, 0.7〉〉, 

〈〈2004,01,04, DIET PEPSI, New York〉, 〈140, 5, 0.4〉〉, 

〈〈2004,01,05, DIET PEPSI, New York〉, 〈110, 20, 0.6〉〉, 
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〈〈2004,01,06, DIET PEPSI, New York〉, 〈120, 15, 0.1〉〉, 

〈〈2004,01,07, DIET PEPSI, New York〉, 〈110, 10, 0.3〉〉, 

〈〈2004,01,01, DIET PEPSI, Chicago〉, 〈200, 10, 0.3〉〉, 

〈〈2004,01,02, DIET PEPSI, Chicago〉, 〈105, 10, 0.3〉〉, 

〈〈2004,01,03, DIET PEPSI, Chicago〉, 〈110, 25, 0.4〉〉, 

〈〈2004,01,04, DIET PEPSI, Chicago〉, 〈150, 10, 0.3〉〉, 

〈〈2004,01,05, DIET PEPSI, Chicago〉, 〈100, 20, 0.4〉〉, 

〈〈2004,01,06, DIET PEPSI, Chicago〉, 〈100, 15, 0.4〉〉, 

〈〈2004,01,07, DIET PEPSI, Chicago〉, 〈130, 30, 0.3〉〉, 

〈〈2004,01,01, DIET PEPSI, San Francisco〉, 〈190, 10, 0.2〉〉, 

〈〈2004,01,02, DIET PEPSI, San Francisco〉, 〈165, 10, 0.3〉〉, 

〈〈2004,01,03, DIET PEPSI, San Francisco〉, 〈155, 25, 0.4〉〉, 

〈〈2004,01,04, DIET PEPSI, San Francisco〉, 〈145, 15, 0.5〉〉, 

〈〈2004,01,05, DIET PEPSI, San Francisco〉, 〈130, 20, 0.6〉〉, 

〈〈2004,01,06, DIET PEPSI, San Francisco〉, 〈115, 25, 0.7〉〉, 

〈〈2004,01,07, DIET PEPSI, San Francisco〉, 〈135, 25, 0.8〉〉, 

〈〈2004,01,01, DIET PEPSI, Dallas〉, 〈100, 10, 0.2〉〉, 

〈〈2004,01,02, DIET PEPSI, Dallas〉, 〈125, 10, 0.3〉〉, 

〈〈2004,01,03, DIET PEPSI, Dallas〉, 〈100, 15, 0.1〉〉, 

〈〈2004,01,04, DIET PEPSI, Dallas〉, 〈140, 5, 0.2〉〉, 

〈〈2004,01,05, DIET PEPSI, Dallas〉, 〈110, 10, 0.4〉〉, 

〈〈2004,01,06, DIET PEPSI, Dallas〉, 〈130, 15, 0.5〉〉, 
 
〈〈2004,01,07, DIET PEPSI, Dallas〉, 〈120, 10, 0.3〉〉} 
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APPENDIX C 
 

GLOSSARY 

OLAP (On-Line Analytical Processing): It is a term used to describe the nature of 

data processing using the queries to analyze data online, as opposed to offline or batch 

processing. 

Multi-Dimensional Data View: A view of data that involves multiple dimensions 

or attributes. Relational data is organized in two-dimensional tables, which is inadequate 

for OLAP applications. 

DSS (Decision Support Systems): DSS are used to assist human decision makers 

in complex decision-making scenarios. 

DAG (Directed Acyclic Graph): A data structure containing nodes and directed 

edges that contains no cycles. 
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