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Abstract 

Effective software performance testing is essential to the development and delivery of 

quality software products. Many software testing investigations have reported software 

performance testing improvements, but few have quantitatively validated measurable 

software testing performance improvements across an aggregate of studies. This study 

addressed that gap by conducting a meta-analysis to assess the relationship between 

applying Design of Experiments (DOE) techniques in the software testing process and the 

reported software performance testing improvements. Software performance testing 

theories and DOE techniques composed the theoretical framework for this study. 

Software testing studies (n = 96) were analyzed, where half had DOE techniques applied 

and the other half did not. Five research hypotheses were tested, where findings were 

measured in (a) the number of  detected defects, (b) the rate of defect detection, (c) the 

phase in which the defect was detected, (d) the total number of hours it took to complete 

the testing, and (e) an overall hypothesis which included all measurements for all 

findings. The data were analyzed by first computing standard difference in means effect 

sizes, then through the Z test, the Q test, and the t test in statistical comparisons. Results 

of the meta-analysis showed that applying DOE techniques in the software testing 

process improved software performance testing (p < 05). These results have social 

implications for the software testing industry and software testing professionals, 

providing another empirically-validated testing methodology. Software organizations can 

use this methodology to differentiate their software testing process, to create more quality 

products, and to benefit the consumer and society in general. 
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Chapter 1: Introduction to the Study 

This chapter begins with a discussion of the background for software and software 

testing to form the framework for the problem with software testing effectiveness. The 

problem statement and the purpose are followed by discussions of the research approach 

and this study’s implications for positive social change. 

Background 

The fast pace of technological changes driving the Internet, social networking, 

improved user interfaces, faster computer hardware, and more affordable computer 

hardware has resulted in more and more people in today’s society becoming computer 

literate. Desktop computers, laptop computers, and computer-based products are as 

common in homes as are televisions. Additionally, computers and computer software are 

at the center of almost anything, from household appliances to home security networks to 

cell phones to children’s toys to automobiles. Consequently, the demand for software and 

computer software products has grown and continues to grow. 

Software development organizations are no longer found only in businesses 

whose core competencies are based on computers or computer software. Software 

development organizations, in virtually every business domain in today’s society (for 

example, manufacturing, medical, defense industry, and services) are faced with 

satisfying this ever-increasing demand for more innovative software and software 

products. Moreover, the increase in the demand on software can be linked to hardware 

improvements, changes in computing architecture, and increases in memory and storage 

capacity, as stated by Gupta, Kapur, and Jha (2008). With this demand comes the 
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responsibility for these organizations to deliver highly reliable, quality software and 

software products. 

In an effort to meet this increasing demand for reliable software and software 

products of the highest quality, software organizations have begun to concentrate as 

much on software testing as on the design and development of the software. A couple 

reasons for this emphasis on software testing are life-affecting products controlled by 

software and efforts to prevent software defects from being discovered by customers. 

Lazić (2010) suggested that software defects discovered by the customer after product 

delivery incur the heaviest defect-removal costs. Hence, software quality managers 

constantly seek solutions to improve testing effectiveness, reduce testing costs, and 

reduce test time, according to Nirpal and Kale (2012). The entire software development 

life cycle is important to the generation of quality software and software products, but the 

fact that the software testing phase consumes a large portion of the software development 

budget makes it a particularly critical phase of the software development life cycle. 

Lazic and Velasevic (2004) estimated that 30% to 70% of a software development 

budget is typically spent on testing. This gives software testing a particularly crucial role 

in defining the final software product’s quality; hence, it is not unusual to dedicate at 

least 50% of project resources to this phase (Sagarna & Lozano, 2005). Similarly, Nirpal 

and Kale (2012) also suggested that testing costs often account for up to 50% of the total 

software development costs. Kadry and Kalakech (2011) further noted that software 

development companies spend more time on maintenance of existing software than on 

development of new software, basing their opinion on earlier studies showing software 



3 

 

 

 

maintenance accounts between 40–70% of the total life-cycle costs. Researchers posited 

that these assertions regarding software testing costs still hold and tended to agree that the 

proportional costs of the software testing phase have remained constant since the surveys 

conducted in the 1970s and 1980s (Lazić, 2010). If this has become the status quo for 

software testing, it is not surprising that software development organizations continue to 

place more and more emphasis on the testing phase.  

Traditionally, requirements-based test case design together with intuition-based 

test case selection approaches (i.e., based on the whims, background, and experience of 

the tester) have been the norm for software testing (Qin & Wang, 2009). Interestingly 

enough, the research efforts in the software testing community have focused on new 

technology and new software testing tools for  improving software performance testing. 

Two examples of such research efforts are projects conducted by the federal government 

agency, The National Institute of Standards and Technology (NIST): Automated 

Combinatorial Test for Software (ACTS) and Covering Arrays Research papers resulting 

from such projects by NIST scientists include Kuhn, Kacker, and Lei (2008) and Kuhn, 

Kacker, and Lei (2009). 

Considering the software testing results from these projects as evidenced by the 

published articles, the traditional requirements-focused testing approaches might not have 

been the best testing techniques for producing high quality software products. 

Unfortunately, testing professionals have encountered many problems using these 

traditional approaches. Some of the challenges facing test professionals using traditional 
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requirements-focused approaches, as cited by Rao and Sastri (2011), include the 

following: 

 Testers incorrectly interpreting the requirements.  

 Making unfounded assumptions while testing. 

 Testers lacking sufficient domain knowledge. 

 Testers being too dependent on the developers to understand the requirements. 

 Testers not directly involved with gathering customer requirements and often 

becoming involved later in the development cycle. 

These problems adversely impact software testing not only in terms of cost but 

also in terms of the accuracy of the test results, which ultimately affect cost. From this 

list, it can be seen that there are benefits to be gained from moving away from the 

commonly-practiced, intuition-based testing. Many of the problems Rao and Sastri 

(2011) observed could be addressed by adopting combinatorial testing approaches that 

are (a) less tester-focused, (b) powerful, (c) repeatable, and (d) focused on using 

appropriate test tool(s) selected from the considerable availability of user-friendly tools 

on the market. 

Seemingly, efforts to improve software performance testing may prove more 

fruitful if the test case design were based on a better understanding of the interactions of 

selected software test factors chosen to achieve the greatest testing coverage. 

Experimental design techniques support a methodology to achieve optimal testing 

coverage. This premise of understanding test factor interactions possibly leading to 
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software testing performance improvements formed the foundation for the question in 

this research. 

Design of experiments (DOE) refers to a systematic approach to planning an 

investigation so that the appropriate data are collected and statistically analyzed, 

according to Montgomery (2009). Montgomery purported DOE to be one of the most 

powerful tools available for the design, characterization, and improvement of products 

and services. Experimental designs have been used to plan, conduct, and analyze testing 

to obtain the optimal performance for a system or process using the minimum input data 

or process steps. DOE techniques offer a systematic approach to the investigation of a 

system or process by utilizing tests designed in such a manner that planned changes are 

made to the input variables to a process or system. The effects of these changes on a 

predefined output are then assessed. 

Additionally, Antony, Chou, and Ghosh (2003) posited that mathematically-based 

experimental designs allow for an objective conclusion based on the statistical 

significance of input variables, either acting alone or in combination with one another. 

The statistical, iterative approach of experimental designs gives the methodology an 

advantage over the one change at a time experimental methods, in which input variables 

interactions cannot be observed. With one change at a time to input variables, researchers 

run the risk of observing a seemingly significant result only to have the result nullified 

when variable interactions are observed. 

To apply the statistical approach to designing and analyzing experiments, 

Montgomery (2009, p. 14) recommended guidelines for the procedure as follows: 
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1. Recognize and clearly state the problem. 

2. Select the response variable. 

3. Choose the factors, factor levels, and ranges. 

4. Choose the experimental design. 

5. Perform the experiment. 

6. Statistically analyze the data. 

7. Derive conclusions and make recommendations. 

In experimental designs, changes are made to input variables so that the reasons for the 

changes in the output responses are observed and identified. The step where the 

experiment is actually performed is an iterative step. The preplanning steps are 

considered Steps 1 through 3. According to Montgomery, the success of this 

methodology hinges on how well the first three steps are performed. Starting 

experimental designs with proper planning and setup are important for ending up with 

repeatable, valid, and verifiable results. 

Theories have been offered that link effective software performance testing to the 

application of DOE techniques used to plan and design test cases. Prior investigative 

research efforts related to this area of inquiry, which are discussed in detail in the 

literature review presented in Chapter 2, have assessed the impact the application of DOE 

techniques has on software performance testing. Findings have shown evidence of testing 

performance improvements. For example, Raske (1994) showed that applying DOE 

methodology to a set of relevant software factors could result in the design of the test 

suite composed of the minimum amount of tests needed to assess software testing 
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performance effectiveness. Bandurek (2005) studied DOE techniques in product 

validations while Gupta and Jalote (2008) proposed a mathematical approach for 

experimentally evaluating software performance testing.  

Additionally, utilizing DOE techniques, a researcher can plan for all possible 

dependencies and then stipulate exactly what data are needed to assess whether the input 

variables alter the resulting response on their own, when combined in interactions with 

other variables, or whether there is a change at all (Montgomery, 2009). As shown in 

Table D1, I used experimental designs in this research to test the significance of the 

correlation between the DOE techniques applied in test case selection and the resulting 

effectiveness of the software performance testing. I used the research design 

methodology, meta-analysis, to investigate the same assertions as the group of original 

studies included in this research project. 

Statement of the Problem 

 In recent years, there has been an increase in research efforts investigating the 

hypothesis that the application of DOE techniques in test case design improves the 

efficiency and effectiveness of software performance testing. Individual, isolated single 

research efforts have reported findings to support such testing performance 

improvements. The current scholarly research literature of reported findings seemed to 

report only single research efforts. There is a gap in the current literature of reported 

findings for a group of such studies. There is a gap in the scholarly research literature of 

concerted, concentrated efforts quantitatively to validate measurable software testing 

performance improvements with objective statistical data across a group of selected 
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studies. The findings from isolated individual studies provide insufficient scientific 

evidence of a general conclusion in the body of knowledge regarding research studies 

that have proven that statistically significant gains in software performance testing result 

when DOE techniques are applied.  

Purpose of the Study 

Software testing not only affects the future of the businesses producing the 

software products, but also the businesses using the software as well as members of 

society in general. The purpose of this research was to evaluate the reported findings 

from the primary software performance testing studies against the findings from an 

aggregate of software performance testing studies and add to the current body of 

knowledge. This research allows an assessment of whether or not measurable 

improvements in the quality of software testing resulted from applying DOE techniques. 

This research expanded upon and exploited the sample of isolated studies to assess 

whether using statistical rigor generalized across a group of software testing studies that 

applying DOE improves software testing effectiveness and efficiency. 

It is important to note that while there was a lack of scholarly literature reporting 

findings showing positive improvements in software performance testing with DOE 

across a collective group of software testing studies, there were individual studies that 

reported positive improvements. Moreover, there were a sufficient number of such 

individual original studies to perform a meta-analysis to assess the DOE impact on 

software testing effectiveness on these studies as a group. For example, the rise in flu-like 

symptoms in a city would be newsworthy for the city to report an outbreak of the flu. 
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When there are many such reports in many cities and in many states, the news takes on 

even more import on a national level. Now the newsworthy outbreaks are deemed a flu 

epidemic. The diagnosis gained strength in the collective body of evidence as presented 

by all the cities in all the states. Such was the case with this study. With each city’s 

outbreak analogous to an individual study and the outbreaks throughout the country 

analogous to the studies synthesized in the meta-analysis, this study assessed the impact 

of DOE on software testing on a collection of software testing studies thus addressed the 

gap in the scholarly literature.  

Nature of the Study 

The nature of this study was investigative. The meta-analysis assessed statistically 

the reported findings from the selected primary software performance testing studies 

against the findings from an aggregate of software performance testing studies and adds 

to the current body of knowledge. The selected primary studies were composed of two 

subgroups, studies that applied experimental design techniques and studies that did not 

apply experimental design techniques. This research was based on the review of 

scholarly, quantitative research and subsequent findings for similar software performance 

testing research investigations. I analyzed statistically the sample population of 

quantitative research findings, which comprised the data for this research, using a meta-

analytic subgroup analysis research method to synthesize and assess, validate, and 

expand upon the original investigations’ findings.  

Quantitative study findings take on different forms for meta-analysis. Example 

forms of interest include difference between group means, correlations between variables, 
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and proportions of observations (Lipsey & Wilson, 2001). In this quantitative study, I 

used correlation as the quantitative analysis type to determine if there were an association 

between two variables of interest. For this research, the analysis assessed the relationship 

between DOE techniques and software performance testing effectiveness. The meta-

analysis synthesized the measure of the strength of the relationship or correlation between 

the variables of interest from the original included studies. This form of research finding 

represented covariation for two distinct variables to determine if there was a relationship 

between them. For this quantitative study, the variables of interest were the dependent 

and independent variables deemed important factors for improving software performance 

testing effectiveness. 

I selected appropriate effect size statistics to study predictive validity for testing 

performance improvement from a synthesis of findings across multiple studies. For 

purposes of this research, the independent input or manipulated variables were selected 

factors from the primary studies that were deemed to be important in designing test cases. 

The selected variables of interest were operationalized in numerical format as appropriate 

for data computation and statistical analysis. The dependent variables were the resulting 

number of software defects, rate of defect detection, phase detected, and the total testing 

hours which operationalized the best determination of the software performance testing 

effectiveness for the selected factors and factor interactions. 

Research Questions and Hypotheses 

For this quantitative study, the research questions related to improving software 

performance testing. I discuss the questions and hypotheses in the following paragraphs. 
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Research Questions 

This research focused on the efficiency and effectiveness of software performance 

testing. This quantitative study addressed the question of whether applying experimental 

design techniques to software testing improves testing efficiency and software 

performance testing effectiveness. The key research question for this research was as 

follows: 

 What is the relationship between the DOE techniques (independent variables) 

applied to test case design and the effectiveness of the software performance 

testing (dependent variables)? 

The investigation of this research question sought to measure, quantitatively, the 

effectiveness of applying DOE techniques, where software testing effectiveness was 

defined as follows: 

 Improved software quality as measured by more defects found in the overall 

testing process (i.e., sum total of all defects detected throughout all phases of 

the software development life cycle). 

 Increased test execution efficiency as assessed by the defect detection rate (for 

example, number of defects detected per hour).  

 Improved phase containment of defects, as measured by the number of defects 

detected in earlier phases in the software development life cycle. This 

translates into reduced cost, since it is cheaper to fix defects the earlier 

detected from both software correction and test time perspectives. 
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 Reduced total number of hours to execute all tests during the software testing 

process. 

Research Hypotheses 

Since the research method for this research was meta-analysis, the same 

hypotheses testing for the variables of interest from the primary studies included were the 

hypotheses addressed here. I tested five hypotheses for this research.  

The first hypothesis centered on the two subgroups that were central to this 

research. This overall focus was on all of the studies and any of the dependent variables 

of interests at the subgroup level. Each subgroup included 48 original studies, regardless 

of the dependent variable of interest.  

The focal point of Hypotheses 2 through 5 was a clustering of original studies per 

dependent variable, as indicated in Table 1. Each of these hypotheses tested the influence 

of the single dependent variable that was common to all of the included original studies. 

 

Table 1  

 

Hypothesis Makeup by Number of Original Studies 

 
Hypothesis Dependent Variable Number of Studies without 

DOE 

Number of Studies with 

DOE 

1 All four dependent variables 48 48 

2 Defects detected 20 10 

3 Defect detection rate 3 6 

4 Defects detected by phase 6 12 

5 Total testing hours 19 20 

 

The first hypothesis. 

H01: The application of DOE techniques in the software test case design does not 

increase the effectiveness of the software performance testing. 
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Ha1: The application of DOE techniques in the software test case design increases 

the effectiveness of the software performance testing. 

The second hypothesis. 

H02: The application of DOE techniques in the software test case design does not 

increase the effectiveness of the software performance testing, as measured by the sum 

total of all the valid number of defects detected during the software testing process.  

Ha2: The application of DOE techniques in the software test case design increases 

the effectiveness of the software performance testing, as measured by the sum total of all 

the valid number of defects detected during the software testing process. 

The third hypothesis. 

H03: The application of DOE techniques in the software test case design does not 

increase the effectiveness of the software performance testing, as measured by number of 

defects detected per hour during the software testing process. 

Ha3: The application of DOE techniques in the software test case design increases 

the effectiveness of the software performance testing, as measured number of defects 

detected per hour during the software testing process. 

The fourth hypothesis. 

H04: The application of DOE techniques in the software test case design does not 

increase the effectiveness of the software performance testing, as measured by the 

number of defects detected during the earlier phases of the software testing process.  
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Ha4: The application of DOE techniques in the software test case design increases 

the effectiveness of the software performance testing, as measured by the number of 

defects detected during the earlier phases of the software testing process. 

The fifth hypothesis. 

H05: The application of DOE techniques in the software test case design does not 

increase the effectiveness of the software performance testing, as measured by the 

reduction in total number of hours to complete test execution during the software testing 

process.  

Ha5: The application of DOE techniques in the software test case design increases 

the effectiveness of the software performance testing, as measured by the reduction in 

total number of hours to complete test execution during the software testing process. 

The meta-analytic process for this study included hypothesis testing. It was based 

on an appropriate, calculated sample size of selected findings from a population of 

original studies. A test significance level (α = 5%) was used in the hypothesis testing. A 

standard normal distribution was assumed, and a p value calculated and compared to α. If 

the p value is less than α, then the null hypothesis is rejected. A more detailed discussion 

of the hypotheses for this research follows in Chapter 3.                                                                                                                                                                             

Theoretical Bases for the Study 

Prior research related to this area of inquiry traced the application of DOE 

techniques to software performance testing studies and the review of associated articles 

by researchers such as Hoskins, Colburn, and Montgomery (2005); Montgomery (2009); 

Grinder, Offutt, and Nadler (2005); and Kuhn, Wallace, and Gallo (2004). DOE 
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applications, both classical and the Taguchi approach, by these and other software testing 

researchers in national research labs, space research, defense-related investigations, and 

federal agencies projects were evaluated. Factor covering arrays (pairwise and n-way 

combinational methods) were the DOE techniques utilized in the original studies 

included in this research. 

Sources for the meta-analysis process included Borenstein, Hedges, Higgins, and 

Rothstein (2009) and Lipsey and Wilson (2001). Both sources described the overall meta-

analytic process and addressed some of the criticisms and pitfalls to watch out for. 

Borenstein et al. examined the statistics of the procedure but from an introductory 

perspective. Lipsey and Wilson, on the other hand, provided a deeper perspective of 

meta-analysis from a practical research perspective. Chapter 3 provides a more detailed 

exploration of meta-analysis.                                                                                                                                                                                                                                                                                                  

Definitions of Terms and Acronyms 

I operationalized the definitions of technical terms, special words, and acronyms 

related to software testing, DOE, and meta-analysis used throughout this and the 

remaining chapters. Following are terms and acronyms used throughout this research 

study. 

Classical DOE techniques are powerful techniques developed by Fisher in the 

early 1920s at the Rothamsted Agricultural Field Research Station in London for 

reducing process variation while enhancing process effectiveness and process capability 

using two-level process parameters or factors (Antony et al., 2003). 
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Comprehensive Meta-analysis (CMA) software is a computer software package 

for performing a meta-analysis. 

Covering arrays are structures used to represent extremely large input spaces with 

factors and factor combinations to ensure the maximum testing coverage (Bryce & 

Colbourn, 2008).  

Defects are failures in a software program that are manifested by step or process 

errors, or an incorrect data definition (IEEE-Std 610.12, 1990). 

Dependent variables for this study were defects detected, defect detection rate, 

phase defect detected, and total testing hours. 

Design of experiments (DOE) is a systematic approach to the investigation of a 

system or process which allows the researcher to organize experiments, collect data, and 

statistically analyze those data to arrive at objective conclusions (Montgomery, 2009). 

For software testing, these experimental techniques are applied to significant relevant 

software testing factors to maximize the number of defects detected using the minimum 

number of test cases possible. 

Effectiveness measures the extent to which desired results are achieved. For this 

research, it focuses on the generation of the smallest set of test cases whose output results 

in the detection of the largest set of software defects during the testing process (Gupta & 

Jalote, 2008; Freedman, 1991). 

Effect size is the correlation between variables of interest that provides a 

standardized indication of the strength of an effect or relationship between the variables 

(Swanson & Holton, 2005). 
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Efficiency for software performance testing is measured by the extent to which the 

desired test results are achieved in the most economical fashion (time and effort) (Gupta 

& Jalote, 2008). 

Fixed effect model is a meta-analytical model having an effect size that is the 

same for all original studies in the analysis (Borenstein et al., 2007). 

Independent variables for this study were the DOE techniques manipulated by the 

researcher. 

Meta-analysis is a process composed of statistical research methods and 

techniques of quantitative research synthesis that focuses on the aggregation and 

comparison of conceptually comparable studies with similar statistical form (Lipsey & 

Wilson, 2001).  

Random effect model is a meta-analytical model in which the effect size 

represents an estimate of the mean of a distribution of effects from the effect sizes from 

each of the different included participant studies (Borenstein, 2007). 

Software development life cycle is the period that begins with the decision to 

develop software or a software product and continues through to its delivery (IEEE-Std 

610.12, 1990). 

Software development process is the process in which a customer’s requirements 

are translated into a software product. The process typically involves gathering user 

needs and translating them into software requirements, transforming the requirement into 

the software design, coding the design, and finally testing the code to ensure it meets with 
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the customer’s  needs. These activities are not necessarily linear but may overlap and are 

often iterative (IEEE-Std 610.12, 1990).  

Software performance testing is an activity in which a software program or 

software system is executed under specified conditions and the results are evaluated in 

order to verify the quality (IEEE-Std 610.12, 1990).  

Software product is the finished, complete software set composed of computer 

software programs, procedures, and the associated documentation and data or any one of 

these items (IEEE-Std 610.12, 1990). 

Software quality is the quality of a software program or system refers to the 

degree to which its design and development meet specified requirements and produce the 

desired results. 

Software tester is the person who conducts the software test suite or test cases 

execution task(s). 

Taguchi DOE approach was developed in the 1950s by a Japanese quality 

engineering Guru, Dr. G. Taguchi, and was introduced into the Unites States in the early 

1980s. This approach is based on a single large experiment where all the main effects and 

some important interactions are studied. It also uses linear graphs for assigning various 

factors for processes or parameters of three or more levels (Antony et al., 2003). 

Test case is a set of input values, pre-execution conditions, specified execution 

conditions, expected results, and post-execution conditions, whose objective is to 

exercise a software program or to verify compliance with a specific requirement and 

desired effect (IEEE-Std 610.12, 1990). 
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Assumptions, Limitations, Scope, and Delimitations 

The scope of this research was delimited by the quantitative findings of the 

primary studies included in this investigation.  

Assumptions  

The main assumption was that all of the researchers in the primary studies that 

applied DOE techniques were proficient in experimental design techniques and that the 

testing activities were conducted by experienced software testers. By their reporting in 

scholarly peer-reviewed literature, it was presumed that these studies represented valid 

research by competent researchers. Since these assumptions were not verified, they also 

pose potential limitations for this research.  

Limitations 

The statistical generalizability of this research is limited by the original software 

testing research studies composing the sample population. From this sample population 

of included original studies, generalizations for all software testing studies are concluded. 

An additional limitation was posed by the fact that the software testing environments, 

software implementation languages, and types of software systems varied. The 

generalizable concept as related to this research is explored in detail in the meta-analytic 

research methodology discussion in Chapter 3. 

Scope 

In spite of the many technological advances and the proliferation of software test 

tools, the fact remains that it is impossible to be certain that a software package or a 

software-based system will function flawlessly. Ironically, because of technological 
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advances, society’s level of expectation for safe software systems and software products 

has been heightened, and flawless functioning software is exactly the expectation. As 

software and software-controlled systems become more complex and thoroughly 

entwined in the everyday framework of our society, their potential for costly and even 

life-threatening failures continues to grow. The scope for this research was the same as 

those of the included recent primary studies covering the same software factors deemed 

important in effective software performance testing. It addressed software quality as 

measured by the effectiveness of the testing performed to decrease, to the extent possible, 

based on the number defects detected and the software development phase in which the 

defects are detected 

Delimitations  

This research study was bounded by the range of the investigations of the key 

questions of the included primary research efforts. An ultimate resolution or solution for 

software performance testing issues was not suggested, and neither was software testing 

reliability, the number of defects remaining in the software product after customer 

delivery, the mean time before failure, or the mean time between failures. 

Significance of the Study  

The most observable activity of software testing is the test case execution. 

However, to be effective and efficient, Iacob and Constantinescu (2008) asserted that the 

testing phase activities for planning the testing, designing the test cases, preparing for the 

test execution, and evaluating the test status should be equally visible. Since this research 

validated the assertion that incorporating design of experiments techniques in the 
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planning and test case design and test case selection improves the effectiveness of 

software performance testing, then perhaps more software test organizations in private 

industry will adopt this testing methodology in their software development process. 

Gap in Current Literature 

Currently, the literature reports single-event investigations for a particular 

software testing effort. This research addressed the gap in the current scholarly research 

literature of findings from software performance testing investigations which 

encompassed an assessment from a group perspective presenting an understanding 

derived across multiple research studies where each included primary study conceptually 

addressed the same software testing performance issues. The significance of this research 

was to see how the findings of individual studies compare to the results from the 

aggregate of all the studies in terms of the quantitative improvements in efficiency, 

effectiveness, and cost in software testing exercises which incorporated experimental 

design techniques. Testing improvements, for the purpose of this research, were 

measured by the total number of defects identified, with emphasis on the defect detection 

rate (especially those detected in the early phases in the software development life cycle),  

as well as the test execution time as it relates to testing cost. 

Professional Application 

The potential of this research for the software profession is as an approach to the 

software testing phase that elevates it to the same technical level with the front end 

phases of the software development process. Rather than an approach based on the whims 

of the software testers or a group of testers whose main goal is to break the system under 
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test, this research offers an alternative scientific approach for applying technical expertise 

to the software testing phase of the software development life cycle. Findings could boost 

the credibility of software testing, of the software testers, and ultimately the software 

testing profession. 

Implications for Positive Social Change 

The implications of this research are not confined to software development 

organization or the software testing profession. There are also potential positive 

implications for society in general. Software products are so commonplace that everyone 

in society is affected by the perception the products they are using are safer. For mission-

critical software, especially that which is used in products that support U.S. men and 

women in the armed services, better software performance testing provides a certain 

amount of assurance that engenders their confidence in the software and software 

products they use. Additionally, as the testing costs are reduced, the total cost for 

producing software products is lessened. The software end-users stand to profit from this 

cost reduction in the form of less expensive software products. Society then is able to 

enjoy more affordable software products upon which they have become increasingly 

dependent for purposes such as educational, medical, career, and entertainment, to name 

a few. 

Summary 

This chapter identified the gap in the current literature on quantifiable measures of 

improvements across multiple studies that have investigated the effectiveness of software 

performance testing for producing quality software. The theoretical bases for this 
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research are factors covering experimental design techniques and the meta-analysis 

research design. The purpose of this research was to assess the reported findings from the 

primary software performance testing studies against the findings from an aggregate of 

software performance testing studies. While addressing the current state of software 

testing, this study also added to the software testing body of scholarly knowledge by 

showing whether measurable improvements in the quality of software testing results from 

applying DOE techniques. The next chapter contains a review of the primary research 

studies from the peer-reviewed research literature and integrates the corresponding 

findings included in the analysis. Chapter 3 includes the methodology, Chapter 4 contains 

the results, and the conclusions and recommendations are contained in Chapter 5. 
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Chapter 2: Literature Review 

Introduction 

The focus of this chapter is the search strategy and review of primary research 

studies from the peer-reviewed literature on the effectiveness of software performance 

testing. This emphasis on the effectiveness of software testing was the common theme, 

and the main research criterion for the inclusion in this study was that it was peer-

reviewed, recently published literature. The problem addressed in this research was the 

gap in the scholarly research literature of concerted, concentrated efforts that have 

assessed software testing performance improvements with objective statistical data across 

a group of selected studies. The aim of this research was to assess the reported findings 

from the primary software performance testing studies against the findings across a group 

of such software performance testing studies. 

This chapter begins with a discussion of the general search criteria, strategy, and 

techniques used to research the literature for this study. The structure of this chapter 

follows a format progressing from a general discussion on the theoretical basis for the 

study and the research design to a specific focus on literature supporting the topic for this 

research. From a discussion of general theoretical concepts on software testing, 

experimental designs, and meta-analysis, the discussion flows to the relationship and 

effect of applying DOE techniques to software testing to the resulting software 

performance testing effectiveness. Once this framework for the review has been 

established, the emphasis of the discussion turns to the actual literature reviewed for this 

research study. This critical examination covered relevant quantitative findings from 
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original research studies that assessed performance improvements from applying 

experimental design to software testing. 

The exploration of literature in this chapter presents a critical comparison, 

contrast, and examination of the research findings reviewed. Specifically, this review 

describes what research was conducted already in this area and went further to show that 

the research conducted, with statistically significant results, seemingly was performed as 

isolated efforts. The lack of concerted, cohesive software testing research efforts has done 

little to validate these findings or address them in a manner to make any significant 

impact on industry testing practices or societal concerns with the effectiveness of 

software performance testing and the quality of software products. Finally, this chapter 

concludes with an examination of the reviewed literature from the perspective of the 

variables of interest germane to this study.  

Literature Search 

This section includes a discussion of the search strategy employed for finding 

prior research studies related to the general theoretical concepts (software testing an 

experimental design techniques) of this study and explains the review criteria used for 

including the original studies in this meta-analysis. I then examined and discussed the 

chosen original research in light of the gap that was the focus of this study. 

Search Strategy 

Once I defined the theoretical concepts and themes for this study, I devised a 

strategy for searching the peer-reviewed literature. For all types of literature (i.e., 
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academic journals, technical journals, and technical reports), the strategy included the 

following: 

 searching online databases, 

 creating keyword lists, 

 using bibliographies for references, and 

 using renowned researchers in the areas of interest as leads.  

Online databases. A typical first approach for researchers is to search common 

online databases using relevant keywords (Timulak, 2009). Searching online databases 

was how the research began. A significant advantage for using online databases is the 

feature to only search peer-reviewed literature. That was a major criterion for selecting 

literature with reports of the original research to be included in this research study. From 

the database searches, only peer-reviewed journals and reports were reviewed for fit and 

relevance. 

Keywords. Examples of keywords and key phrases in my literature search are 

testing, software testing, test design methodology, experimental design techniques, and 

DOE techniques. Using a relevant keyword literature search strategy allowed for being 

mindful of quality and study validity of the original research and for weeding out those 

studies that merely created new questions.  

Bibliographies. For those initial online database searches producing articles or 

reports that proved promising, I used the bibliographies in those studies to create a list of 

references and contributors who had also done research in the relevant areas. This list 

provided leads for additional literature searches. 
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Recognized researchers. The online database searches were also useful for 

revealing others who had done research in the areas of interest for the themes for this 

research. The names for these researchers proved to be useful for author keyword 

searches and for finding their works. For example, the NIST scientists, Kuhn, Kacher, 

and Lei (2008) have done extensive investigations in software testing with experimental 

design techniques, and Montgomery (2009) is an experimental design techniques expert. 

General Theortical Concepts  

Theories on software testing studies and experimental design techniques are cited 

in the research literature ranging from technical journals to reports from scientific studies 

conducted by government-sponsored organizations to academic research publications. 

Detailed discussions follow on software testing strategies, DOE techniques, and meta-

analysis.  

Software Testing 

 There is plenty of research being conducted in the software testing domain where 

experimental design techniques were used. This is evidenced by the number of original 

research investigations reported in the literature and those listed in the references section 

of this paper for inclusion in this research. For example, Sjoberg et al. (2005) published a 

survey of such engineering test pursuits. Lazic and Velasevic (2004) equated software 

testing effectiveness with the percentage of defects detected and the defect containment, 

while software efficiency was measured by the dollars and hours spent per detected 

defect. However, there was a gap in the scholarly research literature of concerted, 

concentrated efforts among such researchers quantitatively to validate measurable 
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software testing performance improvements with statistically significant data across a 

group of studies with comparable research designs.  

The software testing phase is to ensure that the developed software product meets 

customer requirements, is free of software defects (to the extent possible), is ready for 

customer delivery, and is safe for the customer’s use. In other words, the delivery of a 

quality software product is the ultimate goal. Early on, software testing researchers like 

Iacob and Constantinescu (2008) supported spending more time in the software 

development life cycle with up-front requirements analysis and design phases to lessen 

the time spent in the software testing phase, which tends to take up more than its share of 

the software development time. The software testing community has since found from 

recent research that the emphasis should be equally divided between upfront planning and 

analysis focused on the test phase to address the associated time and cost incurred during 

testing. Bryce and Colbourn (2006) would probably have concurred as they reported, 

based on NIST data, that more than $60 billion a year was spent on software defects due 

to expenses for test execution costs associated with software testing alone. 

A common testing misperception, according to Iacob and Constantinescu (2008) 

is that software testing is just running test cases or running the software programs. The 

reality is that the actual test execution is only part of testing phase of software 

development life cycle. Testing activities begin before executing test cases and continue 

even after the software testing is completed. Testing activities include test planning, 

selecting test conditions, designing and selecting test cases, determining expected results, 

assessing test results, evaluating the testing effort completion criteria, test status 
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reporting, and finalizing or closure of the test phase. Software testing activities also cover 

the creation and review of test documentation upfront, as well as static analysis of the test 

results. 

In recent years, researchers have come to understand that effective software 

testing is best achieved by using a structured and scientific methodology, rather than the 

historical break-it mentality (Iacob & Constantinescu, 2008). The goal of the software 

testing effort is for maximized effectiveness through the design and development of a 

more technical testing strategy, sound test methodologies and practices, and the use of 

software test tools and techniques. The total software testing performance effect, ideally, 

would be the delivery of a quality software product with corresponding lower cost. Such 

an occurrence would not only be beneficial to the software development life cycle costs 

but ultimately to the business. Since the main test execution process is one of the last 

software development life cycle stages, it must be both thorough and efficient in order to 

maximize effectiveness and add quality to the testing process. Historically, software 

testers did not have to have specialized knowledge in order to break the software system 

as noted by Iacob and Constantinescu. In the current testing industry, however, the 

prevailing thought seems to be that in order to have quality testing processes in place, the 

tester needs a deep level of understanding for how the software actually works.  

Coupling various coverage-based software testing criteria with an experimental 

design technique has proven most viable in addressing software testing effectiveness and 

efficiency when comparing defect detection abilities. Examples of code-based testing 

criteria include block coverage, branch coverage, and predicate coverage. Coverage-
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based testing assumes the researcher or experimenter has some knowledge of the 

software under test. Coverage criteria may be achieved by using covering arrays. 

Covering arrays are structures for representing extremely large input spaces often used to 

efficiently implement black box software testing. Additionally, technical proficiency and 

mathematical expertise have recently proven to be beneficial skills. Testers have 

developed several algorithms for generating software testing covering arrays 

(Cohen, Dalal, Fredman, & Patton, 1997). There are two rival aims for these algorithms, 

which are to minimize the time required to produce the test array and to minimize the 

number of rows in the test array (Forbes, Lawrence, Lei, Kacker, & Kuhn, 2008). In the 

case of either goal, reducing either the execution time or the resulting covering array size, 

there are potential improvements for software testing performance from a cost 

perspective. Pairwise testing and combinatorial testing are two such covering array 

strategies requiring technical expertise beyond software coding. 

Pairwise testing. To illustrate the use of pairwise testing coverage in the 

reduction of the test suite size for software testing, Cohen et al. (1997) explored the 

greedy algorithm. This illustration assumed a structure with t test factors where the ith 

parameter has li different values. It further assumed that r test cases have already been 

selected. The r + 1 test case was selected by first creating M different potential test cases 

and then selecting the test case with the best coverage. Each potential test case is selected 

as follows: 

1. Select a factor f along with l for f so that the selected factor shows up most 

often. 
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2. Let f1 = f. Then randomly select all the remaining factors for the t test factors 

f1 . . . ft. 

3.  Let the value chosen for fi be labeled vi, where 1 ≤   i ≤  j. For every fj+1, select 

a value vj+1, where vj+1 is one of the occurrences to appear most often in the 

resulting pairs.  

 In Step 3, each parameter value is considered only once for inclusion in a 

potential test case candidate. Also, when choosing the value for parameter fj+1, the 

possible values are compared with only the j values that had already been selected for 

parameters f1… fj. This algorithm can potentially reduce the number of generated test 

cases by 10% to 20%, resulting in smaller test suites. This trait was an important 

consideration for its inclusion in this research. Smaller test suites that cover more 

software functionality and complete execution in less time translate to reduced total 

testing time. Reduced test execution time accompanied by greater test functionality 

coverage is an indication of a measurable improvement in the testing activity. In the vein 

of continuous improvement efforts, reducing test suite sizes and reducing test execution 

time continue to be an ongoing research area of interest. 

Combinatorial testing strategy. For especially large software products, where 

complete or exhaustive testing is impractical, if not impossible, combinatorial testing 

techniques are very effective at uncovering software defects. This testing strategy based 

on combinatorial design is used to generate test cases that cover pairwise, triple, or n-way 

combinations of a system’s test parameters. Test cases are developed for each different 

combination of parameter values. For n-way combinations, the test cases for a fixed n 
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may grow logarithmically. According to Bryce and Colbourn (2007), such computational 

techniques can take a covering array through a number of transformations, first 

computing the cost of the change then accepting the change based on a predefined 

interaction acceptance test criterion. A common example for this testing strategy is called 

combinatorial interaction testing (CIT). 

A CIT testing strategy involves a mathematical construct called a covering array. 

Covering arrays are arrays derived from a set of symbols having the property that every 

generated subarray includes these same symbols at least once (Cohen, Dwyer, & Shi, 

2008). The in parameter order (IPO) greedy algorithm is an often-implemented CIT 

testing for n-way test coverage with large software products. The IPO algorithm 

generates n-sets for the first n factors and then incrementally expands the solution, both 

horizontally and vertically, until the solution is complete. By definition, combinatorial 

testing includes pairwise testing, but for purposes of this research study, combinatorial 

testing referred to n-way testing where n represents more than two test factors. Kuhn, 

Kacker, Lei, and Hunter (2009) recommended combinatorial testing as an efficient 

method for detecting hard-to-find software defects. 

DOE Strategies 

All research involves definite procedures or sets of procedures, observers, and 

experimenters. Research efforts confined to one experiment or test limit the validity of 

the findings. Replication is crucial to experimental design as it permits the researcher to 

address external validity and increase the generalizability of theories and hypotheses 

(Singleton & Straits, 2010). According to Montgomery (2009), it is important to 
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approach experimental design statistically because of the objective nature of statistical 

approaches. Montgomery further theorized that the application of experimental design 

techniques early in any process could substantially reduce cost and result in processes 

and products that perform better. Each of the original studies selected for inclusion in this 

research met the inclusion criteria of being a software testing investigation based on 

testing involving the interactions of two or more test factors. Montgomery defined 

factorial experimental designs as complete replications of all possible combinations of 

the levels of the factors investigated. For example, if there are a levels for factor x1, b 

levels of factor x2, c levels of factor x3, and so on, then there are a · b · c · … · n total 

combinations. The factor interactions terms become independent variables and are 

represented by x1x2, x1x3 … · x1xn and so on. Because of the iterative nature of 

experimental designs, these combinations of variables and interactions are repetitive for 

each combination in the course of an experiment. As these replications are investigated so 

are the interactions between these factors. For this quantitative study on software testing, 

the statistical analysis of the experiments for two factors and the interaction between the 

factors, the two way interactions were represented in an analysis of variance (ANOVA) 

regression model representation written as, 

y = β0 + β1X1 + β2X2 + β12X1X2 + є,                                                                     (1) 

where y is the response, the βs are the parameter values to be determined, X1 is a variable 

representing the first factor, X2 represents the second factor, and є denotes the random 

error. From the analysis, statistical data provide insight into how each factor and factor 

interaction impacts the resulting testing performance. 
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Experimental design techniques can be broken down into two major categories, 

classical and Taguchi. Those DOE techniques that are typically applied in hypothetical 

testing investigating potential parameter interactions are referred to as classical 

techniques. Researchers who prefer the Taguchi DOE approach generally prefer applying 

three or more levels of the process or design parameters to estimate nonlinear effects. The 

Taguchi approach is often thought of as parameter design according to Antony (2006). 

He, Staples, Ross, Court, and Hazzard (1997), however, submitted that this method is 

much more. It is system design, parameter design, and tolerance design, where the 

constraints provide for tolerance in case the desired results are not realized during system 

and parameter design. An additional distinction between the two approaches proposed by 

Antony is that classical DOE strategies support a sequential and adaptive approach to 

experimental design, whereas Taguchi’s approach typically exploits a single large 

experiment to study all possible main effects.  

Classical DOE techniques. Classical DOE was created by Fisher in the early 

1920s. Fisher and his coworkers made major breakthroughs in design and analysis of 

experiments and were among the primary contributors to the literature early on. 

Montgomery (2009) emerged as an expert on classical design and analysis of experiments 

in recent years. Researchers utilizing classical DOE techniques are driven by the fact that 

this approach permits the investigation of process factors for at least two levels so that 

critical process or design parameters can be identified early in an investigation.  

DOE techniques typically focus on various coverage criteria. This research, 

centered on the application of the design and analysis of experiments to software testing, 
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exploited this coverage criteria feature. The coverage criteria played a key role in 

experimental designs that assume that a model under test and test cases or test suites can 

be systematically generated by covering certain aspects of the experimental model (Gupta 

& Jalote, 2008).  

Taguchi DOE approach. Taguchi, a Japanese quality engineering guru, 

developed the Taguchi approach to DOE in the 1950s, and it was introduced to the 

United States in the early 1980s. Experimental designs following this approach are 

typically concerned with the optimization of a single quality trait or response. Taguchi’s 

approach to DOE concentrates on the robustness in the functional performance of a 

process or design. The researcher’s goal in the Taguchi approach is identifying the best 

level for a given process or design according to Antony (2006).  

Further, He et al. (1997) described traits for the Taguchi approach that make it 

perfectly suitable to software testing improvement research and for this research. These 

traits for Taguchi’s approach to DOE are summarized as follows: 

 Viewing processes as transformations and quality engineering as a 

transformation optimization method. 

 Defining product quality by the least amount of loss in the functionality after 

the product delivery. 

 Developing as an engineering experimentation technique. 

 Designing to minimize the number and iteration of experiments. 

 Helping engineers improve products and processes was a main goal. 
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Choosing the appropriate DOE strategy. Even with the clear division of camps 

for DOE techniques that researchers use, there is still an issue among researchers as to 

which DOE strategy to follow and when to employ the strategy. The choice of the 

appropriate DOE strategy, classical or Taguchi, depends on a number of factors. Such 

factors include the nature of the problem, the degree of optimization sought, time and 

costs constraints, the amount training needed on the DOE approach, and statistical 

validity and robustness desired. Antony (2006) proposed a simple strategy selection 

framework to address this issue of which DOE strategy to follow. This framework, 

presented in Table 2, has been validated by a number of DOE researchers. 
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Table 2  

   

A Framework for Choosing the Appropriate DOE Strategy 

 

Nature of the problem 

 

 

Taguchi  DOE 

 

Classical  DOE 

Experiments with strong interactions are 

anticipated by the experimenter 

 

x √ 

Rapid process understanding and quick 

response to management 

 

√ x 

To determine the optimal condition of the 

process 

 

x √ 

To achieve robustness and noise factors are 

identified as a source of variation in the process 

 

√ x 

To predict a target value for the process 

performance characteristic 

 

x √ 

Reduce variability around a specified target 

value and quantify the loss associated with it 

 

√ x 

To develop a mathematical model connecting 

the response (output) and a set of process 

parameters and their interactions  

 

x √ 

To set tolerances on the critical process/design 

parameters for achieving desired variability 

 

√ x 

 

Note. x – not recommended; √ - recommended 
  

Note. From “Taguchi or classical design of experiments: a perspective from a 

practitioner,” by J. Antony, 2006, Emerald Sensor Review, 26(3), p. 228. Reprinted with 

permission. 
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From the framework presented in Table 2, depending on the specific nature of the 

problem, the implementation of either DOE strategy seemingly would lead to 

improvements in a process or a resulting product. For this quantitative study, the 

experimental design techniques focused on the evaluation of software performance 

testing effectiveness and testing efficiency. On an initial review of this table, the classical 

DOE strategy appears to be the more appropriate strategy for this research study. This 

observation is supported by the listed recommendations presented, such as mathematical 

modeling, experiments observing strong interaction, and the search for optimal conditions 

for a process, which is the software testing process in this instance. 

Meta-Analysis 

Meta-analysis refers to the statistical synthesis of findings from a series of 

empirical research studies (usually quantitative), where each original study deals with the 

same contructs, the same relationships, and similar findings are represented in the same 

statistical form (Borenstein et al., 2009; Lipsey & Wilson, 2001; Singleton & Straits, 

2010). Meta-analysis is applied in many fields of research for various purposes, including 

validating findings from original studies, sythesizing available research data in order to 

set policy, and directing new research. Meta-analytic procedures provide a systematic 

analysis of findings from literature reports of prior quantitative studies for the purpose of 

integrating the findings. Many meta-analytic studies are performed to assess the 

reliability and generality of findings from prior research studies, to test new hypotheses, 

or to assess the relationship between an explanatory variable and a response variable.  
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A meta-analysis typically has one of three main goals: (a) to test whether the 

results for the included studies are homogeneous or the mean effect size represents the 

effects of all studies in a group, (b) to find an overall index for the effect size of the 

observed relationship, for a specified confidence interval, or (c) to determine if there is 

heterogeneity (variability in effect sizes) among studies (Fitzgerald & Rumrill, 2003; 

Lipsey & Wilson, 2001).   

Once the problem statement and the research questions have been well defined 

with the variables/relations of interest identified, the researcher follows the following 

basic steps to perform the meta-analytic procedure: 

 examine and review the literature to collect studies with findings of interest, 

 code selected studies to format the variables of interests and study 

characteristics into variables with measurable units, 

 calculate effect sizes and data computations, 

 analyze the data and interpret the results, and 

 report the findings. 

During the meta-analysis, these steps are performed to estimate the overall strength of the 

relationship between the independent and dependent variables of interest as well as the 

effects of any other variables from the included studies (DeCoster, 2009). Chapter 3 

presents a more detailed discussion of the steps for the meta-analysis research method.  

Lipsey and Wilson (2001) compared meta-analysis to survey research in the sense 

that for meta-analysis research literature is surveyed, whereas in survey research people 

are surveyed. It facilitates a systematic review of the peer-reviewed research literature. 
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While this alone offered a compelling argument in support of meta-analysis, the key 

characteristic for this research design was the statistical standardization provided. This 

standardization is in the form of an effect size statisitc which defines the quantitative 

findings of a set of research studies permitting meaningful statistical comparisons and 

analysis. This feature of the research methodology fits well with the goal for this research 

effort. Moreover, this inherent nature of the structured meta-analysis research 

methodology supports the research process, in general, and specifically in terms of the 

methodology’s literature search strategy  amd criteria for selecting the original studies. 

Although several different types of meta-analysis are used in the social sciences 

(for example, the cluster approach, the validity generalization approach, the “Glassian” 

approach), the approach advanced by Glass appears to be the most commonly utilized in 

the social science literature (Fitzgerald & Rumrill, 2003). A meta-analysis uses statistical 

techniques for combining data from primary studies into a weighted pooled estimate of 

effect sizes. The resulting weighted estimate is a summary estimate with a 95% 

confidence interval. There are three different methods used for combining the data, which 

are random effects, fixed effects, and mixed effects. The random effects and fixed effects 

frameworks are typically used more often. In both frameworks, the pooled weighted 

average is calculated from the statistical findings of the primary studies. In the fixed 

effect models, the data between the primary studies is assumed to be the same with any 

differences assumed to be because of random error. For random effect models, there is 

typically heterogeneity among the primary studies and the resulting weighted estimate is 

often more conservative than with fixed effect methods (Turlik, 2010). Singleton and 
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Straits (2010) declared that the main distinction between the random effects and fixed 

effects frameworks is that fixed-effects frameworks treat between-study variability as 

derivatives of sampling and other chance processes while the random effect model 

attributes such variability to differences in methods, conditions, and research settings. 

Effect size, as defined by Coe (2002), is a tool for quantifying, reporting, and 

interpreting the size and effectiveness of the difference between two groups. Coe further 

suggested that the strength of this tool is that it allows the researcher to move beyond the 

question of whether a variable or factor makes a difference to the far more meaningful 

question of how much of a difference the factor makes. According to Borenstein (2009), 

since it is often not possible to know the effect size for the original primary studies, the 

effect size is often estimated by the researcher. Moreover, Coe considered that placing 

the emphasis on the size of the effect (a measure of the significance of the difference) in a 

research effort promotes a more scientific approach to the accumulation and synthesis 

studies for adding to a body of knowledge in any research domain. An effect size is 

equivalent to a Z score (standardized score) of a standard normal distribution. Another 

interpretation of effect sizes is that they make use of equivalence between the 

standardized mean difference, d, and the correlation, r. Still another interpretation for 

effect sizes is as a comparison of them to other effect sizes of differences that are already 

known. A noted advantage of using effect sizes in research is that after an experiment has 

been replicated multiple times, the different effect size estimates can be combined and 

synthesis using meta-analysis to give an overall best estimate of a measured effect for the 

research. 
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Coe (2002) submitted that confidence in an estimated effect size can be increased 

if the statistical significance, which is usually calculated in the form of the p value (the 

probability that the difference of at least same size would result even if there were no 

difference in the original studies) is incorporated. This p value is typically calculated 

from a t test (a paired-observation comparison test). If the p value is less than 0.05, the 

effect size is generally considered large enough to be significant. In estimating effect 

size, Coe cautioned that it is most important that the margin of error is also reported. The 

margin of error is calculated using the same data contained in a significant test based on 

the concept of a confidence interval. A 95% confidence interval is equivalent to a 5% 

significant level. Borenstein et al. (2009) found that p values are often misinterpreted and 

should never be used in place of effect sizes. For example, a p value labeled significant 

could reflect a large effect size or it could also reflect a small effect size measured for a 

large study. Conversely, while a nonsignificant p value might suggest a small effect size, 

it could also reflect a large effect size measured for a small study. Hence, reporting the 

margin of error when p values are used is one way to prevent misinterpretations. Further, 

to avoid any potential for misinterpretation, Borenstein et al. advised working solely with 

effect sizes directly rather than just p values. In conducting meta-analyses, where the goal 

is to synthesis findings from multiple original studies, these researchers warned that the 

use of effect sizes is crucial in the research process. 

Calculating effect sizes and corresponding variances is relatively straightforward 

if the summary data such as the mean, standard deviation, and sample size for the original 

studies are available. In practice, however, it is often not possible to have full access to 
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such data, and neither is the effect size for the original primary studies known, so the 

effect size is often estimated. Three major considerations that should drive the choice of 

the effect size index according to Borenstein et al. (2009, p. 18) are:                                                                                                                                                                   

1. The effect sizes should be comparable in that they measure the same thing. 

2. The estimate of the effect sizes should not require a re-analysis of the data. 

3. The effect sizes should have defined technical properties so that the sampling 

distribution should be known so that variances and confidence intervals can be 

computed. 

Meta-analysis is more than simply producing a combined effect size. The primary 

studies are examined and analyzed for differences and an understanding of what factors 

drive those differences. Revealing characteristics and relationships between effect sizes 

in the context and design of the original studies are also important goals in conducting 

meta-analyses. Results from a meta-analysis across multiple original research studies 

tend to be highly statistically significant, thus increasing confidence in their 

generalizability (Coe, 2002). In addition to statistical significance, DeCoster (2009) 

insisted that the true value in performing meta-analyses is found in the theoretical 

interpretation and integration of findings showing how the original included studies are 

consistent or inconsistent in the issues studied. The original studies were empirical in 

nature, examined the same constructs and relationships, and had quantitative findings 

presented in comparable statistical format.  

In meta-analysis, the unit of analysis is each individual primary study. The meta-

analytic data analysis usually begins by defining the distribution for the set of effect sizes 
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for each of the primary studies, according to Lipsey and Wilson (2001). Then using tools 

like breakout table, ANOVA comparisons or multiple regression, the researcher examines 

the relationships between effect sizes and the study variables of interests. Before getting 

in to the heart of the statistical analysis, it is often necessary for the researcher to adjust 

the individual effect sizes from the primary studies for any bias. There are three most 

commonly used effect size statistics for correcting bias. These are the standardized mean 

difference, the correlation, and the odds ratio. The standardized mean difference is the 

index created by dividing the raw mean difference for each original study by its standard 

deviation. The correlation coefficient measures the linear relationship between two 

variables of interest. In meta-analysis, the correlation coefficient may function as the 

effect size index. Odds ratio is the ratio of two odds. This effect size statistic compares 

two groups in terms of the odds of an event or status occurrence and is applicable to 

research findings that use binary data, according to Lipsey and Wilson. The correlation 

coefficient and the odds-ratio are translated into formats more convenient for the actual 

statistical analysis and then converted back to their original format for reporting the meta-

analysis results (Borenstein et al., 2009).  

Sample size considerations. In research, the question of sample size is always 

one that has to be addressed. Ideally, the entire target population is the best because then 

there is less uncertainty to deal with. In practice, this is often impractical due to either 

budget constraints, time constraints, or some combination of the two. According to 

Timulak (2009), the key criterion for literature inclusion is whether the original study 

under review addressed the research questions for the meta-analytic research study. For 
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meta-analytic studies, as few as two studies may be included but at least a dozen is 

typical, as suggested by researchers Dieckmann, Malle, and Bodner (2009). Other 

researchers, such as Singleton and Straits (2010), felt that certain interrelated factors 

should be part of mathematical equations for calculating the sample size for a research 

study. The five factors are (a) the heterogeneity of the target research population, (b) the 

researcher’s desired resulting precision, (c) choice of sampling design, (d) available time 

and financial resources, and (e) complexity of planned data analysis. The quality and 

accuracy of research efforts and resulting findings can be directly linked to the 

appropriateness and adequacy of the sample sizes used. 

 Sample size determination is an integral step. In the original studies included in a 

meta-analysis, Borenstein et al. (2009) hypothesized that power analysis (analysis of the 

likelihood of a test giving a statistically significant result) was vital to the sample size 

determination. The power analysis is very similar for meta-analysis as for the original 

studies. For meta-analyses the statistical significance is strongly linked to the effect size. 

Rather than the dependency on sample size, the power in meta-analysis is dependent on 

the inclusion criteria as the sampling design for the choice of original studies to be 

included in the study. The reason for this stems from the fact that even for large samples 

in a meta-analysis, if the methodologies vary from study to study or the findings are 

inconsistent, then the validity of the research could be in question. Conversely, a meta-

analysis for a few select studies with carefully chosen inclusion criteria such that the 

same methodology was used and the findings were consistent from study to study could 

result in a precision study of high validity. 
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The size of the overall target population is unknown, which makes it difficult to 

know the shape of the studies population distribution. According to Aczel and 

Sounderpandian (2006), when this is the case the rule of thumb for sample size 

determination is that a sample of 30 or more elements is considered large enough for the 

application of the central limit theorem. For a sample size selection following this rule of 

thumb, the sampling distribution of X-bar is normal, the expected value of X-bar is μ 

(mean), and the standard deviation of X-bar is σ/√n. 

As far as a maximum number of articles or literature to include in a study of this 

type, these authors recommended that the number not exceed 100 primary research 

studies. Hence, I had to be content with determining a minimum sample size to satisfy 

some set precision requirements. In order to calculate the minimum required sample size 

for a research study, Aczel and Sounderpandian (2006) advised that the researcher 

answer the following three questions:  

1. How close should the sample size be to the true, unknown value? 

2. What should the confidence level be so that the distance between sample size 

and the unknown parameter is less than or equal to the answer for question 

number one? 

3. What is the standard deviation for the target population for the research effort? 

Depending upon the answers to these questions, the answers can be plugged into a 

formula to calculate the minimum required sample size. For example, 

    
    

  ,             (2)  
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where n is the minimum sample size, Z is a standard value which is 1.96 for a 95% 

confidence level, and σ is the sample standard deviation derived using the formula, 

 

    
             

   

   
,                                                      (3) 

 

where    is the sample mean, xi data points (where I = 1,2,…,n), and c is the confidence 

interval. While calculating the required sample size, the researcher is also trying to 

minimize the chances for errors. In statistical hypothesis testing, rejecting a null 

hypothesis is called a Type I error. Failing to reject the null hypothesis is called a Type II 

error. 

If both types of error are costly, the typical action for the researcher is to increase 

the sample size to ensure greater validity in the research results as suggested by Aczel 

and Sounderpandian (2006). There are instances, however, where this is not practical as 

in meta-analysis. In meta-analysis, the alternative to requiring a minimum sample size is 

to increase the reliability of the selected sample included in the study. According to 

Borenstein et al. (2009), the focus for meta-analysis is the inclusion of samples that meet 

predefined criteria and balancing the Type I and Type II errors, rather than sample size 

calculation. As for the number of original studies to include, the research discipline or 

domain seems to be a major consideration. Effect size calculations, on the other hand, are 

much more critical to the validity of the meta-analysis results. Specific sample size 

considerations and calculations are discussed in detail in Chapter 3. In addition to 

addressing the research questions, the included studies also focused on the significant 
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impact, clearly detail processes and steps that led to the significant impact, and examine 

the theory or methodological framework of this research.  

Study inclusion criteria. In meta-analysis, after a research topic has been chosen, 

the meta-analyst very specifically and very clearly defines the research domain for the 

literature of primary studies to include. Similarly for this research study, identifying the 

gap as a lack of scholarly research literature reporting statistically-significant research 

results validating measurable software testing performance improvements across a group 

of research studies was significant as key to identifying the relevant research domain. 

This domain was appropriate for this research study and for including in a meta-analysis. 

The research population consisted of the peer-reviewed literature reporting findings on 

the correlation between software performance testing results and testing practices where 

experimental design techniques were applied. In meta-analysis, Lipsey and Wilson (2001, 

pp. 17–18) suggested developing general categories for primary studies inclusion criteria. 

With their recommendations in mind, the primary studies inclusion criteria used in this 

research study were as follows: 

 The study investigated the effectiveness of software performance testing. 

 The study included the application of experimental design techniques. 

 The common key variables of interests for the original studies were the 

variables interest for this research. 

 The study utilized a quantitative research design. 

 The study was reported in a peer-reviewed technical journal or academic 

publication. 
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 For the studies that did not apply experimental design techniques, the study 

findings showed conclusive software performance testing improvement. 

Literature Examination and Analysis 

This section is a discussion of the research literature reviewed for this research. 

The literature review describes the use of testing methodologies, like pairwise and 

combinatorial test strategies, in software testing investigations. The different research 

findings and researchers points of view are compared and contrasted. Although the focus 

of the literature and research was recently published research studies, during the search 

there were studies conducted early on that had direct relevance and implications for 

many of the newer more recent studies. Several of these early studies discussed here 

showed the relationship between earlier works and the literature reviewed and included 

in this research.  

Early Prior Research  

Early research in this area included Dalal and Mallows (1998), who researched 

software defect reduction using two-factor or pairwise test covering techniques. 

Researchers Dunietz, Ehrlich, Szablak, Mallows, and Iannino (1997) studied software 

testing with emphasis on defects and execution times. Cohen et al. (1997) were also 

among the early experimenters to investigate test improvements from test suites sizes 

based on combinatorial interaction covering techniques. These earlier researchers had in 

common the fact that they used experimental design strategies. On the other hand, He et 

al. (1997) were successful in efforts showing performance testing improvements 

employing the Taguchi approach. These researchers were pioneers and their efforts paved 
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the way for the later research into applying experimental design to the software testing. 

These studies investigated pairwise and combinatorial testing strategies. These 

researchers paved the way, encouraging further study of ways to improve software testing 

effectiveness. Some of these subsequent research efforts were the focus of this literature 

review, showing the history of this problem area and the continued efforts to improve 

software testing effectiveness.  

Current Research 

The research findings reviewed covered studies on software performance testing, 

experimental design in software testing, meta-analytic process, and the studies to be 

included in the meta-analysis procedure for this study. The following discussion 

examines the findings and presents a comparative analysis of the reviewed research 

studies with regard to the common theme of this research, which is assessing whether the 

impact of applying experimental design techniques to the software testing process 

improves the effectiveness of the software performance testing.  

Experimental design techniques are essentially testing techniques. The 

experimenter develops the hypothesis then proceeds to set up an experiment to test said 

hypothesis. The setup and test activities are iterative until the researcher is convinced 

that an adequate number of experiments (tests) have been performed to objectively show 

that an observed cause-effect relationship or pattern exists. Seemingly, it is fitting to 

apply experimental design techniques to any situation where tests were performed to 

observe if there is a correlation between an action and some effect. Examples of  

researchers who did just that include Kuhn, Wallace, and Gallo (2004) of the National 
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Institute of Standards and Technology (NIST) for software testing; Montgomery (2009), 

an expert in experimental design techniques; Borenstein et al. (2009), experts in meta-

analysis; and  Fitzgerald and Rumrill (2003), who are also meta-analysis experts.  

Targeting test cases and test suite size reduction, others researchers investigated 

ways to improve software testing performance. Literature with this as the common 

research theme that applied pairwise software testing DOE strategies included Tai and 

Lie (2002) who conducted research involving a pairwise testing strategy. Bandurek 

(2005) investigated test cases selection by applying classical DOE strategies using 

covering arrays and Taguchi techniques based test execution times operationalized as the 

variable of interest. Berling and Runeson (2003) researched test cases selection by 

applying fractional factorial covering techniques. Briand, Labiche, and He (2009) applied 

classical design of experiment techniques to test suite generation. Bryce and Colbourn 

(2006; 2007; 2009) studied software defect data generated from testing employing a 

pairwise test covering strategy. Chandramouli (2002) investigated testing improvements 

with test suites and test execution times using classical experimentation techniques. 

Forbes, Lawrence, Lei, Kacker, and Kuhn (2008) like Cohen et al. (2008) investigated 

IPO strategy for constructing covering arrays. Hoskins, Colburn, and Montgomery (2005) 

investigated improvements in software performance testing using covering arrays. 

Wallace and Kuhn (2001) explored software defects in test software-based medical 

devices. What was common for all of these research efforts was the fact that their studies 

showed improvements in the testing efforts that incorporated experimental designs. What 

was lacking in these same efforts was the fact that there was not conclusive evidence for 
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main stream software testing that the techniques utilized would work in any software 

testing domain. 

Researchers (for examples, see Kuhn, Kacker, Lei, & Hunter, 2008; 2009) 

continue to look for greater improvements in software performance testing. In addition to 

just pairing factors for cause-effect relationships, the interactions between the factors 

were observed. It was shown that interactions among several factors by manipulating 

factor combinations using mathematical algorithms proved to be another way to assess 

software testing effectiveness. In this instance, testing effectiveness is measured by the 

number of defects discovered during the testing. This is the bases for combinatorial 

testing strategies and considered by many researchers as a step above or beyond pairwise 

testing strategies. As amazing as these results and techniques are, software testing 

professionals have not embraced them enough to give software users, or society in 

general, the peace of mind that one would think they engendered. Instead, these efforts 

continue to domain specific and seemingly isolated research efforts. 

Researchers who conducted experiments specifically on the interactions of 

specific test factors included Kuhn, Wallace, and Gallo (2004), Kuhn, Kacker, Lei, and 

Hunter (2008; 2009), and Lei, Carver, and Kuhn (2007). These research efforts and the 

researchers are all associated with NIST. These NIST researchers conducted experiments 

and produced empirical data showing that combinatorial testing strategies are very 

effective at detecting defects involving the interaction of up to six test factors. An 

interesting observation from these researchers was the discovery that the smallest test 

suite possible might not always produce the most effective results if the included test 
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cases do not include higher strength interactions. This finding qualifying the resulting 

smaller test suite is in contrast to that of Bryce and Colbourn (2007) who equated smaller 

test suite sizes with improved performance testing without any particular specification for 

the composition of the resulting test suite. The implication here highlights the importance 

of selecting significant test factors as variables of interest for observing interactions 

leading to the detection of defects. This suggests that even with test covering arrays that 

test the greatest functionality of the software, if the right interactions between the right 

factors are missing then the testing could be less than effective. This also makes a good 

case for additional studies across multiple original studies could either validate the 

findings of these researchers or weed out some of these research results by invalidating 

the results. 

Additionally, researchers such as Yilmaz, Cohen, and Porter (2006), Walker and 

Colbourn (2009) and Cohen, Dwyer, and Shi (2008) investigated software testing 

improvements by experimenting with test suites execution times and test execution costs 

based on combinatorial interaction test covering techniques. Bryce and Colbourn (2006) 

conducted interaction testing that differed from other interaction testing efforts in a 

couple of ways. First, they conducted interaction testing for pairwise test coverage. The 

interesting difference here is that many of the researchers conducting interaction testing, 

particularly Kuhn et al. (2008:2009) and other NIST researchers, interaction testing was 

conducted for some n-way combinatorial testing, where n is greater than two. A second 

distinction for the research of Bryce and Colbourn is that they adapted an interactive 

pairwise testing strategy where only one test was executed at a time. On the surface it 
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would not appear that much interaction could be observed executing only one test at a 

time. From their research, however, they found that pairing this strategy with other 

testing methods proved to be a very effective cost-benefit ratio for finding software 

defects. 

Other specific software testing experimental researchers included 

Giannakopoulou, Bushnell, Schumann, Erzberger, and Heere (2011), who conducted 

formal software testing research. Here formal indicated testing based on sophisticated 

greedy algorithms. Similarly, Grindal, Offutt, and Andler (2005) formulated sophisticated 

mathematical models in their research efforts. Lazić and Velašević (2004) combined 

simulations with classical DOE strategies in their work. They found that combining 

simulation with test array covering was very effective at finding software defects early in 

the software test phase. Hartman and Raskin (2003) also developed mathematical 

algorithms in their testing investigations. In fact, they were among the earlier researchers 

to take this scientific approach to software testing. While the common theme for these 

researchers was improving software performance testing, what differentiated their work 

compared to the other research in the literature reviewed was the emphasis on the 

mathematical algorithms and mathematical rigor.  

In recent year, as testing has become more technical in nature involving more 

and more mathematical algorithms and mathematical modeling, software testers are 

finding a good mathematical foundation is a good skill to possess. These continued 

efforts are an indication that testing problems still exist and that research is continuing to 

improve software testing effectiveness. The seeming niches for the research efforts is a 
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further indication of the gap that still exists in the literature for findings across multiple 

studies and domains that validate techniques that can be applied to improve software 

testing effectiveness. 

Variables of Interest  

The scope of the literature reviewed is further defined by the variables of interest 

for this study. Areas of interest impacting software performance testing were the focus of 

the original studies and among the criteria for inclusion in the meta-analysis. Test case 

design and testing execution times were both focus areas of the original studies reviewed. 

They were also the focus of this research study. It is much more cost effective to discover 

and fix software errors in an earlier stage rather than later stage of software testing. From 

a statistical perspective, the more testing performed the better the reliability delivered 

product. However, it could also be argued that more testing does not necessarily equate to 

a more reliable software product if the testing has not been performed adequately. 

Therefore, a better approach to testing is to identify techniques that detect more defects 

during the early testing stages. To accomplish this, careful attention should be given the 

selection of the variables of interest in the software testing process and designing test 

cases accordingly. 

Industry characterizes effective software testing as that which maximizes the 

number of defects detected with the minimum time, cost, number of tests, and test 

execution time expended. The variables of interest for improving testing performance 

were driven by these quality expectations. For this quantitative study, the research 

variables of interests, as those in the original primary studies, included test execution 
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times, test suite sizes, test costs. A variety of methods for generating test suites for 

pairwise coverage arise from a number of different objectives to be addressed by the 

study. The research variables of interest and software performance test criteria from the 

review literature (Kacker, Kuhn & Lei, 2009; Parsa & Khalilian, 2010) included the 

following: 

 The size of test suites. 

 The amount of execution time to generate test suites.  

 The consistency of test suites generated. 

 The amount of testing time to execute the generated test suites. 

 The accommodation of seeds and test constraints. 

Reducing software testing time which directly impacts testing cost was a primary 

and common goal for the original studies included in this research effort. The smallest 

possible test suite that covered all possible n-way interactions which yielded the best test 

performance was often desired as each additional test case increases the total cost of 

testing (Bryce & Colbourn, 2007). For effective software performance testing, a reduced 

execution time to generate test suites is as important to the testing cost as the time spent 

actually executing the test suite. The question for this research is whether DOE 

techniques applied to software testing increase the effectiveness of the testing 

performance. 

Summary 

In summary, the primary focus of this chapter is the literature search and review. 

After defining the scope for this research study as outlined in Chapter 1, Chapter 2 can be 
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viewed as the real beginning of the research activity. This chapter defined the literature 

inclusion criteria and explored the strategies for actually searching various sources for 

peer-reviewed literature based on those criteria. The chapter further detailed how the 

literature review would proceed once potential candidates for inclusion in the study were 

retrieved. Details were presented characterizing the literature review essay as a 

composition comparing and contrasting the various researchers, the experimental testing 

strategies utilized, and the resulting quantitative findings from the original primary 

research.  

Many best practices in the business world have their origin in university 

laboratories or government-funded research. As explored in this chapter, there have been 

research efforts that have reported empirical findings supporting improvements in 

software performance testing when experimental designs were utilized. Why then has this 

approach to software testing not caught on in the business community?  What is missing 

in these efforts is solid validation of the findings. All of these research efforts are isolated 

efforts that span various application domains. This has proven insufficient to garner the 

general acceptance of applying these proven techniques in real world applications. In 

industry, quality improvements in software performance testing are improvements that 

minimize the time and cost derived from the total amount of tests to be executed together 

with the amount of time to conduct the testing while maximizing the number of defects 

found, all of which engender user confidence in the reliability of the software. The 

current research efforts have not led to this level of confidence. The gap in the literature 

is reflected by the lack of reports for concerted research efforts spanning multiple efforts, 
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in multiple domains validating the efficiency and effectiveness to be gained in software 

performance testing when experimental designs are part of the testing process.  

This literature review provided the framework for the structure and design of this 

research to assess the impact of applying experimental design to software performance 

testing improvements. Key considerations in this literature review were the following: 

 Literature inclusion and search strategies. 

 Theoretical basis and meta-analysis. 

 Relevance of historical studies to the recent studies and to this meta-analytical 

study. 

The next chapter presents a detailed discussion on meta-analysis, the chosen research 

methodology. 
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Chapter 3: Methodology and Design 

Introduction 

The problem addressed in this research was the gap in the scholarly research 

literature of concerted, concentrated efforts quantitatively to validate measurable software 

testing performance improvements with objective statistical data across a group of 

selected studies. The literature reported studies where there were testing improvements. 

The findings, however, were from isolated individual studies. They provided insufficient 

scientific evidence of a general conclusion for the body of knowledge regarding research 

studies that have proven that statistically-significant gains in software performance 

testing result when DOE techniques are applied.   

 The purpose of this research was to assess the reported findings from the primary 

software performance testing studies against the findings from an aggregate of software 

performance testing studies and add to the current body of knowledge in the software 

testing community. This research has potential positive significance for the research 

community, the software testing profession, and society in general. For the research 

community, it is an addition to the body of knowledge, and for the software testing 

community, the technical aspect of the testing process adds an element of objectivity and 

respect to software testing profession. Finally, for society in general the potential for 

positive change is in the peace of mind for consumers and end-users regarding the quality 

of testing that their software products have undergone.  

This chapter describes the research design, the data collection process, and data 

analysis methods used to assess the relationship between software performance testing 
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results and the application of experimental design techniques to the software testing 

process. The main focus of this chapter is the steps I followed in conducting this research 

within the framework of the meta-analytic process. 

Meta-analysis was the research methodology in this research study. The 

framework in which meta-analyses are conducted is essentially the same as the research 

process. The procedural steps for both processes are so interconnected that the connection 

forms the basis for the organization of this chapter. This chapter is outlined according to 

the procedural steps for the research process, emphasizing the connection to the steps of 

meta-analysis process as appropriate. The discussion begins with defining the target 

population and explaining how the sampling process works, which for this research is 

equivalent to establishing inclusion criteria for the studies to be included in the meta-

analysis.  

Target Population 

The target population is that populace to which a researcher seeks to generalize 

resulting investigative findings. Singleton and Straits (2010) postulated that the 

significant decisive factors in defining the target population for a research project were 

the research topic and the type of unit for analysis. This research utilized the meta-

analytic procedure to combine and statistically analyze the results of an aggregate of 

original studies on software performance testing effectiveness. The unit of analysis for 

this research was each individual primary study included in the meta-analysis and also 

each subgroup treated as a unit. Hence the target population was defined as all studies 

covered in peer-reviewed literature that reported findings from investigations into the 
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effectiveness of software performance testing. The following paragraphs describe in 

detail the sample population used in this research. Discussed also are the sampling frame, 

the sample size, the original study inclusion criteria, and an exploration of the sample 

characteristics. Determining the eligibility criteria for including study findings for this 

research was an important step in the meta-analytic process as it is in the research 

process. This fact is just one of many reasons supporting the choice of the meta-analysis 

research method.  

Sampling Design 

Because of the number of studies and articles on improving software testing, it 

was not practical to conduct this research on the entire population of studies, so a smaller 

representation of the populace was selected for inclusion. Cleverly defining inclusion 

criteria not only made for more a reliable study based on valid and reliable data, but also 

factored in determining the sample size. For the research process, this activity equated to 

developing the sampling design. From the target population, the representative samples 

for this research were articles which described investigations in software performance 

testing where DOE techniques were applied. In the research process this phase is called 

the sampling design or sampling frame, where specific cases (original investigative 

studies, in this instance) were judged for sample selection based on the characteristics 

shared with the target population. The sampling frame was defined based on the 

operationalized definitions of the target population foundational to the original testing 

studies sample selected for inclusion. I followed the rules of meta-analysis selection 

criteria for the inclusion of primary studies in this research effort. Inherent in the meta-
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analytic procedure, and a very important step in the research process, is identifying 

inclusion criteria. These criteria are important for guiding the selection of original studies 

to include in the research study to include in the meta-analytic procedure.  

Sampling Eligibility Criteria 

For this quantitative study using the meta-analysis research design, the sampling 

design was intrinsic in the very nature of this research method. In other words, the 

sampling design for meta-analysis entailed defining the selection study criteria that made 

an original study eligible for inclusion in this research study. This research was on the 

effectiveness of software performance testing where experimental design techniques are 

applied. For a study to be included in this research effort, two main criteria had to be met. 

The first criterion was that the candidate study, whether or not experimental design 

techniques were applied, must have investigated software performance testing 

effectiveness and reported findings of performance improvements. The second eligibility 

criterion was that the dependent variable must have been operationalized in terms of the 

number of detected software defects. Once these two criteria were met then additional 

selection criteria regarding the variables could be investigated; for example, the research 

method, time frame, and publication type. 

Key variables for inclusion. The key variables of interest for this research 

included number of defects, phase in which defect was detected, defect detection rate, 

and testing hours. All of the primary studies for inclusion in this research involved the 

investigation of improvements in the effectiveness of software performance testing by 

applying DOE techniques. The improvements reported in the eligible study candidates 
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were operationalized in terms of the number of software defects found, phases in which 

the defects were detected, the rate of detection during testing, and the number of hours of 

actual test execution. The dependent variables of interest in the original studies are the 

same as the key dependent variables for this research. 

Quantitative research design. Since this research was quantitative in design, it 

was important that each original study also employed a quantitative research method, 

statistical data analysis, and reported quantitative findings. For inclusion, the potential 

studies had to have investigated any statistical correlation between the test suites derived 

from applying DOE techniques utilizing pairwise and combinatorial testing coverage 

strategies and the resulting number of software defects identified during the testing.  

Time frame of original studies. In an effort to include the latest research 

findings, recent studies published in peer-reviewed journals composed the prime 

considerations for inclusion in this research. However, earlier relevant published peer-

reviewed literature was also reviewed for an understanding of the relationship of earlier 

research and findings to the more recent and current research efforts. 

Publication type. To be a candidate for inclusion in this research, the findings 

had to be published in a peer-reviewed journal. The span of publication types ranged 

from the technical journals to technical reports to academic research publications.  

Sample characteristics. With the target population defined and the sampling 

framework defined, the next step in this research study was determining the study sample 

size. From the review of the peer-reviewed literature in Chapter 2 for this quantitative 

study, I determined that the research community has devoted much effort to investigating 
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software performance testing techniques. The reliability and validity of this research 

study hinged heavily upon the sampling frame and the operationalized inclusion criteria 

to ensure the reliability of any statistical significance detected between the variables of 

interests across the included original studies.   

Sample Size Calculation 

If the results of a quantitative study are to be generalized to an entire population, 

then a sample size needs to be computed. Aczel and Sounderpandian (2006) 

recommended the following algorithm for calculating the minimum acceptable sample 

size for conducting this study. I calculated the sample size for the number of studies to 

include in this research using an estimated standard deviation of 0.1 or 10% variance in 

the variables of interest in the target population. According to Bartlett, Higgins, and 

Kotrlik (2001), the estimation of the variance in variables of interests is a critical step in 

sample size calculation, especially since it is just that, an estimate, and the researcher has 

no direct control. Additionally, in meta-analysis, the term effect size represents the 

strength or impact of a study. By computing the effect size for each study, it could be 

gauged if there were consistency in means across the included studies. The estimated 

standard deviation used in the minimum sample size calculation was influenced by these 

facts. Using the following formula, the minimum sample size for this research was 96 

studies. 

n = 
    

  ,                (4) 

where    is the interpolated value for the 95% confidence level 
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   is a best guess for the population proportion. In this study, for the population of 

software testing efforts, p, is an estimate for the proportion for the possible number of 

those efforts that applied DOE. 

   is 1 – p (pq represents the population variance) 

   is the allowable margin of error  

Assumptions: 

 Population size unknown but assumed > 30. 

 Population is composed of categorical data (findings from software testing where 

DOE techniques were applied and those where they were not applied) but 

proportions are unknown. 

 95% confidence level. 

 α is 5%. 

 p = q = .5 

 Willing to accept  a margin of error D of 10% 

Using the minimum sample size algorithm above, 

n =  
               

      
,                (5) 

n =  
         

   
,                (6) 

n =  
    

   
,                 (7) 

n =   .                 (8) 

Therefore, the minimum number of original studies needed for this study was 96. An 

equal number of original studies where DOE techniques were applied to software 
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performance testing and of those original studies without the application of DOE 

techniques were included. To distinguish the two study types, the studies are listed in 

separate tables in Appendix C and Appendix D. Table C1 contains the list of studies 

without DOE techniques and the list of studies where DOE techniques were applied are 

listed in Table D1. 

Research Design and Method 

To restate the problem statement: There is a gap in the scholarly research 

literature of concerted, concentrated efforts quantitatively validating measurable software 

testing performance improvements with objective statistical data validating this assertion 

across a group of selected studies. The findings from isolated individual studies provide 

insufficient scientific evidence of a general conclusion in the body of knowledge 

regarding research studies that have proven that statistically significant gains in software 

performance testing result when DOE techniques are applied. To close this gap in the 

scholarly research, I used meta-analysis, statistically synthesizing results across multiple 

original software testing studies. The sequence of steps for conducting this meta-analysis, 

as suggested by DeCoster (2009, p. 4) is as follows. 

1. Determine the theoretical correlation (i.e. define the problem or research 

question(s)) to study. 

2. Gather original studies with findings relevant to the chosen correlation. 

3. Select and code effect size statistics for the original studies to be synthesized. 

4. Compute the effect size statistics and analyze the impact of the moderating 

variables of interest. 
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5. Understand and report the findings of the meta-analysis based on the data 

analyzed with attention to publication bias. 

The following describes in detail how each step of the meta-analytic process was 

accomplished. 

Variables of Interest Format Definitions 

Examining the same variables of interest in the meta-analysis as those examined 

in the primary studies is one way to ensure the validity of the findings. For purposes of 

this research, the independent input or manipulated variables to which DOE techniques 

were applied are selected factors from the primary studies that were studied for their 

impact on software testing effectiveness. Software testing independent variables that 

were operationalized included: 

 The experimental design techniques   

The two categories of experimental design techniques (Classical and Taguchi), as defined 

by Antony (2006), were represented in this research and included the following; 

 Classical   

 Factoring covering 

 Pairwise covering arrays 

 Combinatorial arrays 

 Orthogonal arrays 

 Other 

  Taguchi approach 
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The dependent variables were the findings from the original included software 

testing studies. These findings, which operationalized the software performance testing 

improvements, were reported using various measurements. For this research, the 

dependent variables were: 

 Defects detected 

 Defect detection rate 

 Phase defect detected 

 Testing hours 

 The formats for the dependent variables of interest included the following; 

 Number of defects 

 Variable: Ordinal 

 Defect detection rate 

 Variable: Ratio 

 Phase detected 

 Variable: Ordinal 

 Categories:        

1 – Prior to Coding 

2 – Unit level testing 

3 – Integration testing 

       4 – Final acceptance testing 

       5 – Regression testing 

 Total test hours 
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 Variable: Ordinal 

 Data Collection Procedure 

With the target population (published peer-reviewed articles that reported 

research findings for software testing effectiveness investigations) defined, the focus then 

moved to collecting the original studies. For meta-analysis, the best data collection 

approach, according to Singleton and Straits (2010), was to use multiple and 

complementary sources. In theory, though, this strategy could produce too many potential 

studies to be practical. However, this was not the case in this instance. For this research, 

recent peer-reviewed articles reporting findings from quantitative studies that 

investigated improvements in software performance testing effectiveness were the source 

of original studies for the meta-analysis. At this point in the research process, an 

application was submitted to the Institutional Review Board (IRB) to ensure ethical 

practices were observed in the collection and use of this data. 

 After the data (the original articles) were collected, the studies’ characteristics 

were parsed in a format for ease of grouping, and transformed into a format for statistical 

calculations and analysis. Another way to think of this research step is in terms of 

assigning numbers to the variables of interest and study characteristic based on the 

research question(s) for input to the chosen research computational model(s). This step in 

meta-analysis is called coding. The next paragraph describes the coding process and 

presents a sample of the information that was encoded. 
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Coding 

After the variables of interests were defined, the sample population of original 

studies for inclusion in this research study, and the strategy for collecting them 

developed, the characteristics and variables for the information from each of the original 

studies were encoded. The point of this step of the meta-analysis process was to format 

the data for each study to create a database in numeric format for computations and 

statistical analysis. The coded information included descriptive characteristics and effect 

sizes for each of the original studies.  

Each study was coded using the unique author/year, citation-like notation. Using 

this scheme, each original study in the meta-analysis was cross-referenced and then easily 

and uniquely identified in the references. Since the original studies in the references 

included both those where DOE techniques were applied and those where DOE 

techniques were not applied, the studies were further distinguished accordingly in 

separate tables. See Table 3 for a sample of the characteristics and effect size that were 

coded for each of the original software testing studies included in the meta-analysis. 

Table 4 depicts a notional example of coded information for a combinatorial software 

testing study. The sample size is 10 software projects and all 10 projects were tested 

manually and  tested using a software testing tool applying a pairwise testing technique. 

The encoded values or selected characteristics are in brackets. 
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Table 3  

 

Sample of Software Testing Studies Characteristics That Can Be Coded 
 

 

Sample Data to Code 

 

 

Study Identification  

  
Publication Type 

 

Sample Size 

Treatment group 

Control group 

 

Experimental design 

Pairwise covering arrays 

Combinatorial arrays 

Orthogonal arrays 

Taguchi approach 

 

 Effect Size 

Effect Size Data Type 

Mean and standard deviation 

Treatment mean 

 Control mean 

Treatment standard deviation 

Control standard deviation 

Significance Tests 

t value or F value 

p value 

 



72 

 

 

 

Table 4  

 

Software Testing Application Coding Sample 

 

Variable of Interest Coded Value 

Study Identification   Colburn, (2005) 

Sample Size 

Treatment group  

Control group 

10 

5 

5 

 

Experimental design 

Factor Covering 

Pairwise Covering 

Taguchi Approach 

Other 

 

X 

Effect Size 
.25 

Effect Size Data Type 

Mean and standard deviation 

Treatment mean 

 Control mean 

Treatment standard deviation 

Control standard deviation 

 

 

.30 

.18 

.01 

.02 

Significance Tests 

p value 

Number of Test Cases 

 

 

.05 

50 
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Effect Size and Data Computations 

With the included studies collected, first the reported findings were isolated. All 

of the included studies reported findings showing improvements in software performance 

testing. The CMA software package has a spreadsheet interface for data entry. The raw 

data of reported findings were entered for each study, as depicted in Appendix E and 

Appendix F. Point estimates were calculated for studies’ findings data entered into the 

CMA software package.  

 There are many effect size statistics used in meta-analytic procedures, as attested 

by Lipsey and Wilson (2001). The effect size statistics supported by the CMA software 

include the following: 

 Odds ratio 

 Log odds ratio 

 Peto odds ratio 

 Log Peto odds ratio 

 Risk ratio 

 Difference in means 

 Standardized difference in means 

 Hedges’ g 

 Correlation 

 Fisher’s Z 

However, in practice, only a few are often used. In this research, the Cohen’s d (the 

standardized mean difference) effect size statistic, as shown in Table 4, was used. From 
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the original studies’ data, the standardized mean difference was calculated for each study. 

The CMA software package computed the statistical calculations. A feature of the 

software package is customizing the effect size once an effect size statistic has been 

computed. For example, once the standardized mean difference effect size was 

calculated, the display could be customized to show the same effect size data as 

correlations. The formula used by the software package to convert from d to r format is 

shown in Appendix G. The formulas for computing r or d formatted data effect sizes 

manually are shown in the following paragraph. 

The data computation for the standardized mean difference, d, was computed by 

dividing the standard deviation into mean difference for each study. The formula for 

computing a population’s standardized mean difference is; 

    
      

 
                                                                          (9) 

 

where          are means and   is the standard deviation. The data computation for the 

correlation (r), which is the relationship between variables, utilizes the formula 

      
       

 
                                                                      (10) 

 

where n is the total original studies and x and y are variables with standardized measures 

zxi and zyi  for case i (Borenstein et al., 2009). For each of the included studies, the input 

data and data computations for d are shown in Appendix H. 

Variables and Hypotheses 

The hypothesis testing was carried out during this step in the meta-analytic 

process. The research question: What is the relationship between the DOE techniques 
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applied to test case design during testing and the effectiveness of the software 

performance testing? The details of the hypotheses and variables of interest for this 

research are discussed in the following paragraphs. 

Variables  

The variables of interests are the dependent variables and independent variables 

from the original studies. These dependent variables operationalize the resulting findings, 

in the form of improvements or effectiveness measures, for the original research testing. 

This effectiveness is measured in terms of defects and how long it takes to complete the 

testing. Thus, the defects detected, the rate of defect detection, the phase of defect 

defection, and the total number of test execution hours are variables to capture the 

measure of effectiveness. The coding for these variables is presented in Table 6. The 

independent variables, the DOE techniques, operationalize factors that might possibly 

influence a relationship between test case design and the measure of effectiveness in the 

software performance testing. To establish a framework for these variables of interest, 

software performance testing and software effectiveness were defined in terms of the 

dependent variables. 

Performance testing is concerned with the resulting focused testing performance 

and the test execution performance (Nirpal & Kale, 2011). For this type of software 

testing, soak testing for software endurance and stress testing are two examples of the 

focused testing. To capture performance testing productivity, Nirpal and Kale proposed 

the following algorithm. 

Software Performance Testing = 
                            

                      
     .                (11)   
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Similarly, Whyte and Mulder (2011) suggested the following formula to capture software 

testing effectiveness:  

Software Testing Effectiveness = 
                                      

                                  
      . (12) 

Note that the variables of interest are the same for both software testing definitions. 

While the definitions are similar, the authors focused on different aspects of software 

testing. Nirpal and Kale (2011) focused more on peak volume testing or break-it stress 

testing. Whyte and Mulder (2011), on the other hand, were more concerned with the 

same variables but tracking defects starting early and continued throughout the software 

development cycle. Both formulas relate to findings based on defects, central to 

operationalizing the dependent variables. The number of defects detected in the testing 

phase is a key element of software testing effectiveness, as shown by equation 12. The 

rate of defect detection is software testing effectiveness per some testing time frame or 

CPU time frame. The phase of defect defection is software testing effectiveness broken 

down by the development or testing cycle. Additionally, Whyte and Mulder were 

interested in other traits that software testing encompasses, such as the following 

characteristics: 

 The software testing is completed on schedule (all scheduled tests executed). 

 The software testing results in a high number of detected defects.  

 The software testing defect detection capacity in early phases of testing is high 

(i.e., high probability for early detection of the hard-to-find defects). 

 The software testing has an increased percentage for finding defects per hour 

of testing 
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 The software testing process is cost effective.  

While each variable of interest impacts test effectiveness, all of the following 

characteristics are covered in the hypotheses for this research. These characteristics are: 

 The resulting number of defects detected during the software testing process. 

 The defect detection rate as derived from the valid number of defects detected 

per hour of testing execution. 

 The testing phase in which the defect is detected.  

 The number of test cases in the test suite used in actual testing execution. 

 The number of hours to complete testing execution.  

The cost component of testing efficiency for both software performance testing 

and testing effectiveness can be useful metrics in the software testing industry. To 

evaluate test performance Nirpal and Kale (2011) submitted the following formula. 

Test Execution Performance = 
                    

                          
        ,                 (13)   

where test shifts are eight hours. The greatest cost saving is achieved when all scheduled 

test cases are executed in the shortest possible testing execution time. This formula 

provides the basis for the fourth dependent variable, total testing hours. A reduction in 

the number of test execution hours translates into increased testing effectiveness in terms 

of the test execution performance per equation 13. 

The correlation between the variables of interest and test effectiveness was 

represented in terms of the effect size in the meta-analytic process. The data for these 

variables of interest came from the original studies included in this research. The 

standardized mean difference, Cohen’s d, was calculated for each included study. (See 



78 

 

 

 

Table H1 and Table H2). The input data for the software package were Cohen’s d and the 

subgroup sample size for each study. The meta-analysis was based on subgroup analyses 

where one subgroup was composed of those studies that applied DOE techniques and the 

second subgroup was composed of those studies that did not apply DOE techniques. The 

effect size for one subgroup was then compared to the effect in the second subgroup. The 

p value was the test statistic used for calculating the effects for each study and the z test 

was the test statistic for comparing the subgroups. The details for the steps of this portion 

of the research are discussed in Chapter 4. 

The Hypotheses 

I developed five hypotheses for this study to address the research question. The 

first hypothesis tested the effect sizes for the two subgroups to determine the relationship 

between the effectiveness of software performance testing and applying DOE techniques 

at the subgroup level. This hypothesis test encompassed all of the 96 original studies and 

any of the four dependent variables included in this research, 48 studies per subgroup. 

The dependent variables for this hypothesis were the findings or effectiveness measures. 

The subgroup of studies was treated as a unit. Hence, the total of all the reported findings 

were treated as the single effectiveness measure for the subgroup. The effectiveness 

measures were not differentiated per dependent variable. The remaining four hypotheses 

tested for the relationship based on a cluster of studies with a particular effectiveness 

measure of the reported findings, one hypothesis per effectiveness measure. Thus, the 

number of original studies in each of these hypotheses tests was based on the number of 
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studies that reported findings in the particular effectiveness measure (dependent 

variable).  

Let P equal testing performance effectiveness without the application of DOE 

techniques, PD equal testing performance effectiveness with the application of DOE 

techniques, and PT equal software test execution performance effectiveness defined by 

equation 13.    

Overall effectiveness measure per subgroup. This hypothesis addressed the 

subgroup level. 

H01:  The application of DOE techniques in the software test case design does not 

increase the effectiveness of the software performance testing. 

Ha1:  The application of DOE techniques in the software test case design increases 

the effectiveness of the software performance testing. 

The corresponding mathematical notation for this hypothesis is as follows.  

H01:  PD ≤ P (application of DOE does not increase effectiveness) 

Ha1:  PD > P (application of DOE increases effectiveness)    

Examining the research question in terms of the effectiveness measures, the 

hypotheses for this study were as follows. 

Defects detected. This hypothesis addressed the dependent variable for the 

detected defects. 

H02:  The application of DOE techniques in the software test case design does not 

increase the effectiveness of the software performance testing, as measured by the total 
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valid number of defects detected during the software testing process to the total number 

of defects found. 

Ha2:  The application of DOE techniques in the software test case design increases 

the effectiveness of the software performance testing, as measured by the total valid 

number of defects detected during the software testing process. 

The corresponding mathematical notation for this hypothesis is as follows.  

H02:  PD ≤ P (application of DOE does not increase effectiveness) 

Ha2:  PD > P (application of DOE increases effectiveness)    

Defect detection rate. This hypothesis addressed the dependent variable for the 

rate of the detection of the defects. 

H03:  The application of DOE techniques in the software test case design does not 

increase the effectiveness of the software performance testing, as measured by number of 

defects detected per hour during the software testing process. 

Ha3:  The application of DOE techniques in the software test case design increases 

the effectiveness of the software performance testing, as measured number of defects 

detected per hour during the software testing process. 

The corresponding mathematical notation for this hypothesis is as follows.  

H03:  PD / hour ≤ P / hour (application of DOE does not increase effectiveness) 

Ha3:  PD / hour > P / hour (application of DOE increases effectiveness) 

Phase detected. This hypothesis addressed the dependent variable for the 

software testing phase in which the defects were detected. 
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H04:  The application of DOE techniques in the software test case design does not 

increase the effectiveness of the software performance testing, as measured by the 

number of defects detected during the earlier phases of the software testing process.  

H04:  The application of DOE techniques in the software test case design increases 

the effectiveness of the software performance testing, as measured by the number of 

defects detected during the earlier phases of the software testing process. 

The corresponding mathematical notation for this hypothesis is as follows.  

H04:  (PD)n ≤ Pn   (application of DOE does not increase effectiveness) 

H04:  (PD)n > Pn   (application of DOE increases effectiveness), 

where n = 1 to n (1 = development phase prior to coding, 2 = unit testing, 3 = integration 

testing, …, and n = system testing phase) denotes the testing phase for the reported study 

findings. 

Testing hours. This hypothesis addressed the dependent variable for the total test 

execution hours. 

H05:  The application of DOE techniques in the software test case design does not 

increase the effectiveness of the software performance testing, as measured by the 

reduction in total number of hours to complete test execution during the software testing 

process.  

H05:  The application of DOE techniques in the software test case design increases 

the effectiveness of the software performance testing, as measured by the reduction in 

total number of hours to complete test execution during the software testing process  

The corresponding mathematical notation for this hypothesis is as follows.  



82 

 

 

 

H05:  PTD  ≤  PT (application of DOE does not increase effectiveness) 

H05:  PTD  > PT (application of DOE increases effectiveness) 

Testing the Hypotheses 

For the first hypothesis, H01, I ran a z test to test the overall relationship between 

the application of DOE techniques and the effectiveness of software performance testing 

at the subgroup level, based on a combination of all the studies and all the dependent 

variables. For each of the subsequent hypotheses, H02 through H05, I conducted a t test to 

compare the effect size data of the subgroup that had DOE techniques applied versus the 

subgroup that did not apply DOE techniques on each of the effectiveness measures. See 

Appendix I for the data. Also note, from the statistical data presented in the figures of 

Appendix I, that the Z value, p value, and confidence interval are part of the analysis of 

the software package and were used in testing the hypothesis. 

The Z value was used to test the null hypothesis assuming a true effect (mean) of 

zero. The statistical testing compared the effect of the two subgroups to determine if 

either is more effective than the other at improving software performance testing. The Z 

value in meta-analysis indicates the statistical significance of the effects between studies. 

This value was used in assessing the influence of the independent variables in improving 

software effectiveness. 

A second statistic, Q, was part of the computational analysis of the software 

package test for heterogeneity. The analysis tested the subgroups as single units and 

computed the Q value. The Q value, a chi-square statistic, takes the number of studies 

and the degrees of freedom to assess the variance within studies and between studies. The 
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Q value together with the p value determined the variance between effect sizes for the 

subgroups to establish which was more effective in performance software testing. 

Both the Z value and Q value shown in Appendix I resulted from two-tailed 

testing with a 95% confidence interval and the p value. Borenstein et al. (2009) suggested 

that there is a perfect relationship between the p value and the confidence interval. A p 

value > 0.05 indicated the lack of statistical significance against the null hypothesis. A 

failure to reject the null hypothesis then indicated that there was not sufficient evidence to 

support the claim that applying experimental design techniques to software performance 

testing improves software testing effectiveness. Conversely, a p value ≤ 0.05 was cause to 

reject the null hypothesis. The actual statistical calculations for this research were 

performed using the CMA software package. See Appendix A for a statement of the 

quality of this software package. 

Data Analysis 

Subgroup analysis was the meta-analytic approach used to statistically analyze the 

data for this research. One subgroup was composed of the original studies where DOE 

techniques were applied and the second subgroup was composed of the original studies 

that did not apply DOE techniques. Using the CMA software, the effect size (Cohen’s d 

format; see Table 4) and effect size variance for each of the included studies was 

computed. The effect size statistic is strategic to determining the impact of the 

relationship of the variables of interest for each of the subgroups and ultimately this 

research. The software allows the use of a spreadsheet interface to enter the data (for 

example, number of defects detected, number of test cases, and number of hours of 
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testing) for effect size calculation. With the different types of software tested and 

different software domains for the included original studies, the computational features of 

the CMA software was fully utilized to run analyses to show each included study’s 

impact on the combined effect from the set of multiple studies. The software package 

facilitated repeated runs and the ease for evaluating the impact of each study on the total 

effect of the group of studies. Adding one study at a time in the runs made possible a 

cumulative analysis. Conversely, starting with all of the included software studies and 

removing one study at a time facilitated the sensitivity analysis portion of this research 

for both the fixed effect and random effect meta-analysis models. 

Fixed Effects Versus Random Effects 

The CMA version 2 software package supported both the fixed effects model and 

the random effect model in meta-analysis. The models are based on different 

assumptions. The fixed effect model assumes the population effect size is the same in all 

studies. Any variability is attributed to the sampling design. The random effect models, 

on the other hand, considers heterogeneous factors and allows for variations in the effect 

sizes of the included studied (Borenstein et al. 2009). The results generated from the two 

models may differ. Based on this consideration, either the random effect model or the 

fixed effect model could have been the way to proceed. This research study utilized the 

fixed effect model to analyze the included studies. 

The effect size calculations were based on the data formats of the original studies. 

There were two subgroups, with the difference being one had DOE techniques applied to 
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software testing studies and is the designated treatment group whereas the second group 

of software testing studies that did not apply DOE techniques.  

Statistical Analysis 

The meta-analysis data computations and computational analyses were performed 

by the CMA meta-analysis tool. See Appendix A for an idea for the validation conducted 

for the CMA meta-analysis software package. Appendix B provides testimonials from 

users in academia and industry who have used the tool.    

Effects were computed by combining data across comparisons and treating these 

studies and the corresponding effect sizes as if independent. If studies yield data for two 

or more comparisons, the assumption of independence was unlikely correct. In such 

instances the standard error for the overall combined effect would likely be erroneously 

small, the confidence interval too narrow, and statistical significance tests likely to reject 

more often than the nominal significance level. For this research study, only one effect 

size per included study was assumed. Statistics were computed for the fixed effect model. 

The overall effect size was not assumed to be the same for both subgroups but computed 

by comparing the effect size data within each subgroup and between the subgroups. 

Presentation of Results 

The results of the meta-analytic procedure are one or more effect sizes which 

represent the average magnitude for the relationship studied. For this research study, the 

results may show the source of variation across the included original studies. 

Furthermore, the reporting of the meta-analysis assumes that no other meta-analyses (i.e. 

random or mixed effects) have been performed on these included studies for the 
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effectiveness of software performance testing where experimental design techniques have 

been applied. Following this assumption, the observed effect sizes were reported using 

guidelines established by Cohen as discussed by DeCoster (2009) and presented in Table 

5. 
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Table 5  

 

Effect Size Magnitude Rule of Thumb 

 

 

Size of Effects 

 

d (Cohen) 

 

r (correlation) 

Small .2 .1 

Medium .5 .3 

Large .8 .5 

   

Note.  From “Meta-analysis notes” by J. DeCoster , 2009, p.34. Adapted with permission. 

 

Upon completion of the data computation and analysis, I used the CMA software 

to generate graphics, charts, and plots to present the results and aid in interpreting. The 

software is capable of producing statistics, funnel plots, scattered plots, and detailed 

reports. The resulting report made use of the plotting capability to generate funnel plots. 

The generated funnel plots utilized symbols for the original studies, appropriate weights, 

and the combined effect size.  

The plots help to provide the statistics in context with weights included and 

anomalies highlighted. They allow the researcher to depict both effects sizes for the 

included primary studies and the summary effect for the meta-analysis. See Figure 1 for 

an example forest plot from the CMA software package using boxes to represent the 

effect size and relative weight. The confidence intervals track the precision of the effect 

sizes. The plot gives an immediate indication of the relative impact of each primary study 

on the meta-analysis by the width of the confidence interval and the boxes. Note that 

effect sizes, based on mean difference (g), are shown for the included studies and that the 

overall combined effect size for the meta-analysis is 0.419. The statistics are computed 

using the fixed effect model with a 95% confidence interval. Borenstein et al. (2009) 



88 

 

 

 

considered forest or funnel plots a must for the final report because they help ensure the 

validity of the statistics used in the meta-analysis and as well as help to prevent 

researcher bias. Features of the CMA software package were also used to assess 

publication bias. 

Publication Bias   

The findings of the meta-analysis are reported in a similar manner to those of the 

original studies. A potential problem with presenting results in the research community 

for those conducting meta-analyses is what Lipsey and Wilson (2001) called uneven 

reporting practices. This problem is manifested in resulting reports in the form of missing 

data or reports that are either too vague or too concise. The best way to address this bias, 

according to Borenstein et al. (2009) is to compare effect sizes in published studies to 

those in unpublished studies, if available. Since only published research was included, 

this option is not applicable for this research study. To gage the impact that bias might 

have on this research, the CMA software package sensitivity analysis feature was utilized 

to explore various options or scenarios. This analysis strategy helped with knowledge of 

issues that might occur if different decisions are made or if additional data are available. 

Forest or funnel plots, as depicted in Figure1, are also useful for quantifying the potential 

for publication bias. For example, if the studies plotted formed a symmetrical funnel 

shape about the point 0.50, it would indicate the absence of any potential publication 

bias.



89 

 

 
 Figure 1. Meta-analysis results showing funnel plots and computed statistics for a fixed-effect model. From Introduction  

to Comprehensive Meta-analysis, by M. Borenstein, L. Hedges, J. Higgins, & H. Rothstein,  2009,  West Sussex,  

UK: John Wiley and Sons, p. 7. Reprinted with permission
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Summary 

In summary, this chapter presented a detailed discussion of the meta-analysis 

research method in terms of the steps to conduct the procedure. This research 

methodology was described from the perspective of the focus of this research, 

synthesizing reported findings from original studies that presented evidence of 

improvements in software performance testing when experimental design was applied. In 

so describing the meta-analytic process, the target population, sampling, the data 

collection process, the data analysis process, and how the findings would then be reported 

are also discussed. Note that these steps are all steps the researcher went through in the 

research process. These same research steps are inherent in the meta-analytic process, a 

process that addresses the limitations in other studies and statistically assesses effect or 

correlations observed among multiple studies. Moreover, for the gap under investigation, 

the meta-analysis research method was a perfect fit for assessing original findings for 

generalizability to all software testing efforts that utilize experimental design techniques. 

The next chapter covers the actual performance of this dissertation project, to 

include the hypotheses testing, statistical computations and data analysis, and reporting of 

the findings. 

 

 



91 

 

 

 

Chapter 4: Research Results  

This chapter contains a discussion of the findings from the software performance 

testing investigation conducted for this study. It is structured around the research question 

and the hypotheses that formed the bases for the study. The chapter begins with a brief 

review of the purpose of this research study, the research question, and the hypotheses. 

This review is followed by a discussion of the data collection procedure detailing how the 

included articles of the original studies were gathered, the data extracted, and that data 

organized and prepared for the meta-analysis. I discuss the meta-analysis conducted for 

this study, including the data analysis and presentation of the results. The results 

presented are organized by research question and hypotheses. The chapter concludes with 

a discussion addressing the research question and the hypotheses tested.  

Introduction 

The focus of this research was the efficiency and effectiveness of software 

performance testing. To briefly restate the purpose introduced in Chapter 1, the aim of 

this research was to evaluate the reported findings from the primary software 

performance testing studies against the findings from an aggregate of software 

performance testing studies and add to the current body of knowledge. The ultimate 

objective of this study was an assessment as to whether or not measurable improvements 

in the quality of software testing result from applying DOE techniques.  
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The key research question investigated in this study was as follows: What is the 

relationship between the DOE techniques (independent variable) applied to test case 

design and the effectiveness of the software performance testing (dependent variables)? 

 The first of the five hypotheses addressing this research question tested at the 

subgroup level by including all the studies in the two groups (48 studies with DOE 

applied and 48 studies without DOE techniques applied), as indicated in Table 1. For the 

48 studies in the subgroup that did apply DOE techniques, not all of the four dependent 

variables were present in each individual study. However, for the DOE subgroup of 48 

studies, all four of the dependent variables (defects detected, defect detection rate, defect 

detection phase, and testing hours) are included in this hypothesis. 

H01:  The application of DOE techniques in the software test case design does not 

increase the effectiveness of the software performance testing. 

Ha1:  The application of DOE techniques in the software test case design increases 

the effectiveness of the software performance testing. 

Recall from Chapter 3, equation 11, Nirpal and Kale (2011) defined software 

performance testing using the following formula; 

Software Performance Testing = 
                            

                      
     .                (11)   

Also, software testing effectiveness was defined by Whyte and Mulder (2011) (equation 

12) as follows: 

Software Testing Effectiveness = 
                                      

                                  
      (12) 
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The research question was examined from the perspective of the hypotheses tested. The 

dependent variables (defects detected, defect detection rate, defect detection phase, and 

testing hours) were operationalized in this study to answer the research question. I sought 

to assess whether there were any relationship between the independent variables (DOE 

techniques applied) and dependent variables measuring software testing performance 

improvements. In this study, the effect size data from the two subgroups (without DOE 

techniques and with DOE techniques) were synthesized and analyzed for a link between 

the DOE subgroup computed effect size and improvements in software performance 

testing, where the improvements were manifested as follows: 

 Defects defected: Improved software quality as measured by more defects 

found in the overall testing process (i.e., sum total of all defects detected 

throughout all phases of the software development life cycle). 

 Defect detection rate: An increase in test execution efficiency as assessed by 

the defect detection rate (for example, number of defects detected per hour).  

 Defects detected by phase: Improved phase containment of defects, as 

measured by the number of defects detected in earlier phases in the software 

development life cycle. This translates into reduced cost, since it is cheaper to 

fix defects the earlier detected from both software correction and test time 

perspectives. 

 Testing hours: A reduction in the total number of hours to execute all tests 

during the software testing process. 



94 

 

 

 

The remaining four hypotheses tested for this study corresponded, one-to-one, to 

the four dependent variables. These hypotheses presumed improvement in software 

performance testing efficiency and effectiveness when DOE techniques are applied with 

regard to the following four aspects of software performance testing: 

1. H02:  The application of DOE techniques in the software test case design does not 

increase the effectiveness of the software performance testing, as measured by the 

sum total of all the valid number of defects detected during the software testing 

process.  

Ha2:  The application of DOE techniques in the software test case design increases 

the effectiveness of the software performance testing, as measured by the sum 

total of all the valid number of defects detected during the software testing 

process. 

2. H03:  The application of DOE techniques in the software test case design does not 

increase the effectiveness of the software performance testing, as measured by 

number of defects detected per hour during the software testing process. 

Ha3:  The application of DOE techniques in the software test case design increases 

the effectiveness of the software performance testing, as measured number of 

defects detected per hour during the software testing process. 

3. H04:  The application of DOE techniques in the software test case design does not 

increase the effectiveness of the software performance testing, as measured by the 
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number of defects detected during the earlier phases of the software testing 

process.  

Ha4:  The application of DOE techniques in the software test case design increases 

the effectiveness of the software performance testing, as measured by the number 

of defects detected during the earlier phases of the software testing process. 

4. H05:  The application of DOE techniques in the software test case design does not 

increase the effectiveness of the software performance testing, as measured by the 

reduction in total number of hours to complete test execution during the software 

testing process.  

Ha5:  The application of DOE techniques in the software test case design increases 

the effectiveness of the software performance testing, as measured by the 

reduction in total number of hours to complete test execution during the software 

testing process. 

The CMA version 2 software package computed the results for the meta-analysis 

using the analysis by subgroup feature. The analysis synthesized findings across all 96 

original studies, where 48 of the studies investigated the application of DOE techniques 

in software performance testing and the remaining 48 studies were software performance 

testing investigations that did not involve DOE techniques. With each of the 48 studies 

forming a subgroup, the software package treated each independent subgroup as the unit 

of analysis (study) in the meta-analysis. The software package computed an effect size 

for the subgroup of studies that had DOE techniques applied and an effect size for the 
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subgroup of studies where DOE techniques had not been applied. I performed a Z test on 

the subgroups effect size data to test the first hypothesis (H01) to determine which 

subgroup had the more significant software performance testing improvement.    

After computing the overall effect size for each subgroup and determining the 

statistical significance of the overall effect size for each subgroup, I used the software 

package to analyze the effect size data for the remaining four hypotheses. Each of these 

hypotheses was developed around one of the dependent variables. The dependent 

variables were operationalized as defects detected, defect detection rate, defect detection 

phase, or testing hours. The software package supports a function based on moderating 

variables. In meta-analysis, and this software package, moderating variables allow the 

grouping or categorizing of studies within a subgroup to see if the grouping influences 

the effect size of the subgroup. Assigning a variable label to a category of studies allows 

them to be entered into the software package as moderating variables. Moderating 

variables facilitate further subgroups comparisons by computing and comparing effect 

sizes based a defined category of studies in one subgroup to that same category of studies 

in a second subgroup. For this study, the moderating variables were categories defined by 

the dependent variables. The Q value was the key statistic used by the software package 

in the hypothesis testing, based on the moderating variables (dependent variables) in the 

hypotheses tested in this study.    
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Data Collection and Preparation 

The primary objective of the data collection phase in this study was collecting 

articles of original software testing studies that were published in peer-reviewed journals. 

The first task in this data collection effort consisted of gathering original articles that 

assessed techniques for improving software performance testing effectiveness. I reviewed 

the articles with the research question and variables of interest in mind. Once the data for 

the variables of interest were obtained, the next step in the meta-analytic procedure was 

coding the variables for calculating the effect sizes. Coding is an important step in 

preparing the moderating variable of the hypotheses for the data analysis of the meta-

analysis process. Before embarking on the actual meta-analysis, I analyzed the data to 

make sure they represented a thorough research of the literature articles for inclusion in 

an unbiased analysis. One of the key criteria I had for including a study was that it was 

peer-reviewed. A key criterion for meta-analyses, in general, was that they avoid 

publication bias. A couple of reasons for this criterion were (a) studies with statistically 

significant findings are more apt to be published and (b) most meta-analyses include 

published studies. Interestingly enough, these very reasons are cause for the concern that 

many in the research community have with the meta-analysis process. For some 

researchers, such as Borenstein et al. (2009), these reasons are thought to lead to 

publication bias. To address any potential publication bias, the analysis and preparation 

of the included data (original studies) for the meta-analysis, effect sizes were computed 

for each study and plots were generated. The plotted effect sizes for the studies provided 
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a visual means to determine whether the included studies had statistically significant 

findings. If the plotted studies appeared symmetrically dispersed about the mean then this 

was an indication that publication bias did not exist. This visual representation was a way 

to determine if some possibly needed studies were missing. This analysis was completed 

on all studies in both subgroups before proceeding with the data classification (see Figure 

4). 

Data Characterization 

The collected articles were organized and categorized in an effort to ensure a 

thorough collection of articles covering all phases of the software testing process from 

industry and academia over a suitable period of time. The age range for the original 

articles collected for this dissertation is depicted in Figure 2. It gives the historical frame 

of reference for the interest in software performance testing. There were 96 studies, 

published between 1980 and 2013, included in this research. As shown, there has been a 

sharp growth in the number of published studies in the last ten years. Of these 96 

included studies, 48 were studies involving the application of DOE in software 

performance testing. To continue the analysis, the original studies were categorized 

according to the software performance testing setting or the publication arena for the 

original studies. Figure 3 shows this breakdown of these included studies.  
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Figure 2. Year of publication for the included studies. 

 

 

Publication for these studies peer-reviewed journals and technical reports were 

from academia, industry, research labs, and some were the product of collaboration 

efforts among the three. Studies that were first published in technical conferences or 

workshop proceedings were also included.   
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Figure 3. Publication profiles of original studies according to study setting. Other 

includes collaborative efforts among researchers from academia, industry, and research 

labs. 

 

 

Publication Bias 

Even with developing very concise inclusion criteria for the original studies, the 

availability of electronic databases, and the thoroughness of the researcher, the possibility 

for publication bias was a very real issue to be addressed. The reason for this concern 

stemmed from the fact that if important studies were not included, there would be the 

potential for a wider confidence interval and less powerful tests. Hence, any publication 

bias in the sample data for this research study would have been carried forward into the 

meta-analysis.  
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As mentioned above, the effect sizes from the included studies were plotted to get 

a sense of any tendency toward publication bias, from a visual perspective. Forest plots 

provide a graphical means for ascertaining any publication bias in the included studies.  

The plots display the data using either the log risk or relative risk. Appendix E depicts the 

forest plot for those included studies with DOE techniques applied and Appendix F 

shows those studies without DOE techniques applied. In both plots, the original studies 

are shown with the larger studies toward the top and the smaller studies toward the 

bottom. In addition to the forest plots shown in Appendix E and Appendix F, the figures 

also present the effect sizes calculated for each of the individual original studies. These 

point estimate effects sizes were calculated based on the results from each study and the 

sample size for each of the two subgroups, those that applied DOE techniques and those 

that did not apply DOE techniques. These forest plots present a graphical sense of the 

relationship between sample size and the effect size. Funnel plots are also designed to 

highlight the sample size, effect size relationship. 

The funnel plots provided another visual means for assessing publication bias. 

According to Borenstein et al. (2009), the funnel plot highlights whether the effect sizes 

are consistent from study to study and indicates the precision (inverse of the standard 

error) for each study. The funnel plot in Figure 4 shows a vertical line at the summary 

effect. If the studies were shown clustered symmetrically about this line, it would be an 

indication that this study is publication bias free. Note, however, that the studies are 
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clustered slightly to the right of the vertical line. This asymmetry is an indication that 

there is a possibility of publication bias that needs to be addressed. 

 

 Figure 4. Funnel plot indicating the possibility of publication bias. 

 

 

From the visual assessment of the collected studies, Borenstein et al. (2009) 

recommended that the researcher ask and answer the following questions. 

 Is there evidence of publication bias? 

 Is it possible that the combine effect is an indication of publication bias? 

 How much of an impact would be imposed by any publication bias? 

One issue posed by publication bias in meta-analysis is that there are possibly 

studies available but just missing from this analysis. Borenstein et al. (2009) described 

missing data imputation methods to correct this potential problem in meta-analyses. Data 

imputation is a process which allows missing data to be replaced by statistical values. 
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Trim and fill is a method that allows the missing data to be assigned. With this method, 

first it had to be determined where the missing studies would fall in the grouped studies. 

After determining where the missing studies should be in the group of already included 

studies, the studies need to be added and then the combined effect re-calculated. During 

the trim and fill analysis, the asymmetric studies are trimmed from the right side then 

these studies are filled into the missing slots by re-inserting both the trimmed studies and 

their counterparts. The results of a trim and fill analysis are depicted in Figure 5.  

Trim and fill is just one of several methods for addressing missing data. Methods 

for imputing data range from assigning data based on an observed pattern from 

previously entered data values, to omitting the missing data, to very sophisticated 

statistical methods. The trim and fill analysis method discussed above is a feature 

implemented in the CMA software package to address publication bias. Figure 5 shows 

the same data as Figure 4 but it now includes the imputed data values.  

Revisiting the questions that were suggested should be answered in assessing 

publication bias: 

 Yes, there was a hint of the possibility for publication bias. 

 Yes, it was possible that the combined effect would indicate publication bias. 

 After reviewing the plot in Figure 4, together with the precision funnel plot in 

Figure 5, the inclusion of the imputed data appears to have minimal impact on 

the combined effect. 
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     Figure 5. Precision funnel plot with collected and imputed data. 

 

 

Once, the data for the variables of interest were collected, the data had to be 

prepared for the data computation and manipulation portion of the research. The findings 

from the original studies were examined for consistency in format and context for the 

variables of interest. The different study researchers used different measures for test 

effectiveness. This examination resulted in a coding scheme for the variables.  

Data Coding Scheme 

To continue the data preparation, the data had to be coded to ensure that all the 

variables of interest (dependent variables and independent variables) from all of the 

included original studies measured the same study characteristics and resulting findings. 

This coding is a very important step in the meta-analysis, since it centers on the collected 

data (variables of interest) from the original studies. Study variables of interest fall into 
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three categories, according to Lipsey and Wilson (2001):  (a) independent variables from 

the original studies, (b) moderating variables, which may influence the findings, and (c) 

bibliographic data. Coding, however, distinguishes between the study characteristics and 

the resulting findings. In other words, the study characteristics are the independent 

variables and the study findings are the dependent variables. In this step, I made sure that 

all variables of interest across the group of original studies were measuring the same data. 

This addressed the research community’s concern of synthesizing apples-to-oranges, 

which is another issue so often levied against the meta-analytic process. For this research 

the coding scheme devised is presented in Table 7. The hypotheses testing for the 

dependent variables was based on the variables of interests are shown in the Table 6. The 

Type shown is based on how the variables were used and reported in the original studies. 

In this study, the software testing performance improvements were operationalized in the 

variables of interest listed in Table 6. The independent variables are shown in Appendix 

E, Table E1. 

 

Table 6  

 

Variables of Interest 

Variable Type 

Number of defects ordinal 

Defect detection rate ratio 

Phase detected ordinal  

Number of Test hours ordinal 

 

Associating these variables with the performance improvement measures reported 

in the original studies' findings led to the coding scheme used in the meta-analysis for this 
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research study. The study descriptors for the variables coded for this research are shown 

in Table 7. For this study, the variables of interest were dependent variables or findings 

reported from the original studies. All of the original studies operationalized test 

effectiveness in terms of either the number of defects detected or the resulting number of 

hours to complete the execution of the test cases. The perspective for the number of 

defects data reported in the original studies, however, varied from the explicit integer 

number of defects detected, to the percentage increase in the reported defects, to the 

defects reported during the specific stage of development or testing. Software efficiency, 

on the other hand, was operationalized in the original studies in terms of the dollars and 

hours spent per detected defect (Lazic & Velasevic, 2004). This efficiency measure was 

derived from the length of time it took to complete the testing as a function of the number 

of test cases executed or the reduction in test suites size that accounted for the actual test 

execution time. To restate from Chapter 3, equation 13 captured a formula for deriving 

testing efficiency mathematically based on test execution. 

Test Execution Performance = 
                    

                          
         .                 (13)   

Because of the various ways software performance testing improvements were 

operationalized and measured across the original studies, scheme in Table 6 was devised 

to ensure that the original intent was preserved and all measures were represented.    
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Table 7  

 

Coding Scheme 

 

Features Descriptors 

DOE Techniques Classical 

    (Factor covering arrays, Pairwise covering arrays,  

     Combinatorial arrays, Orthogonal arrays, etc.) 

Taguchi Approach 

  

Effectiveness measures - Defects detected  

(measured in terms of the increase in defects detected or 

sum total of all defects detected throughout all phases of 

the software development life cycle) 

- Defect detection rate (as assessed by the defect detection 

rate, for example, per hour or per software build ) 

- Phase detected (measured by the identification of the 

phase in which defect is detected, emphasizing earlier 

phases in the software development life cycle) 

- Testing hours (measured by a reduction in the total 

number of test execution hours to test execute all tests 

during the testing process) 

  

Testing duration Short (< 8 hour)  

Intermediate (8 to 39 hours)  

Long (> 40 hours) 

  

Testing study setting Academia  

Lab 

Industry 

  

Testers Proficiency Low 

Intermediate 

High 

  

Time Study Publication Less than 5 years  

Greater than 5 years 

  

Testing Type/Phase Requirements / Unit / Integration / System 

  

Publication Type Peer-reviewed journal / Conference Workshop Proceeding 
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DOE Techniques 

The DOE techniques covered in the original studies were generally of two 

categories, Classical or Taguchi, as described by Antony (2006). The Classical 

techniques included the factorial design or factor covering arrays approach which 

considers interactions between factors. For example, the factorial techniques were shown 

to be effective at addressing defects by increasing test coverage (Ahmed & Zamli, 2011; 

Bandurek, 2005; Berling & Runeson, 2003; Bryce & Colbourn, 2006). Examples of test 

case reductions, achieving at least or better defect detection, were shown in studies by 

Cangussu, Cooper, and Wong (2009), in an earlier investigation by Dalal and Mallow 

(1998), and a more recent investigation by Parsa and Khalilian (2010). Taguchi 

approaches were applied in studies that addressed efficiency and time reduction. An 

example is a study by He, Staple, Ross, and Court (1997). See Appendix E, Table E1, for 

the included studies data characteristics that show which studies employed which DOE 

technique(s). 

Effectiveness Measures  

As observed when developing the coding scheme, researchers in the original 

studies used different variables to measure the software testing improvement in terms of 

effectiveness or efficiency. Some researchers reported improvements in terms of the total 

number of defects, a percentage increase in the number of defects detected, or the rate at 

which defects are detected. Other researchers reported defect improvements based on the 

phase in which the defects were detected during the various software development phases 



109 

 

 

 

including those phases before coding began. Still others categorized the defects per the 

stages within the software testing process (for example, unit testing, integration testing, 

system testing or regression testing). So, whether the original software testing study 

focused on the total number of defects detected, the phase of defects detection, especially 

in early phases of the software development, the number of defects detected per software 

build testing, or reducing the number of hours for execution of test cases, the ultimate 

goal was increasing the software performance testing efficiency and effectiveness. See 

Table E1 and Table F1 for the raw data showing how the findings were measured and 

reported. 

Testing Duration 

A real concern for software testers in many testing situations is that of knowing 

when to stop test execution. Does the testing stop when the scheduled time allotted has 

expired? Does testing stop when all of the test cases have been executed?  The issue of 

the testing execution time is directly correlated to the cost of testing. Several of the 

original studies addressed testing efficiency by targeting the testing execution time, 

especially for system testing that could range from hours to weeks (Devaraj, Kumar, Kavi 

Mallow, & Iannino,  2011; Forbes, Lawrence, Lei, Kacker & Khun, 2008; Ye, 2011). For 

studies where the testing was completed in less than 8 hours, the time duration was coded 

as a short test time. Any testing longer than 8 hours but less than 40 hours was deemed an 

intermediate test time while testing longer than 40 hours in duration was judged a long 

test time.   
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Software Testing Settings 

As depicted in Figure 3, some of the original studies were conducted in academic 

environments, in industry, and in research labs. By far, most of the original studies were 

conducted by academics. The importance of this descriptor in the coding scheme is that it 

indicates the types of software testing studies that are taking place. In academia, most of 

the studies were based on mathematical models or were web-based testing. Examples 

include Alsmadi (2012) in academia, Watkins (1982) from industry, and Kuhn (2004) 

from the research lab. 

Testers Proficiency 

There was a significant correlation between the testers’ proficiency and the study 

settings. Itkonwn, Mantyla, and Lassenius (2013) specifically addressed the improvement 

in software performance testing effectiveness that is realized due to the testers’ 

knowledge of the software testing process, as well as any knowledge of the system under 

test, or knowledge based on a relationship with the customers and users. This tendency 

was evident in the testing that occurred in industry. On the other hand, there were studies 

that showed effectiveness improvements were also gained when the testers were not 

overly proficient in the testing process, had no real knowledge of the unit under test, or 

the end-users. This was really evident in academic settings where in many instances of 

unit testing, the testers were the software developers, such as in the study reported by 

Baharom and Shukue (2008). 



111 

 

 

 

Publication Timeline 

Figure 2 presents the timeline for the included original studies. Of significance 

here is the fact that more than half of these studies were conducted in the last five years. 

This timeline can be seen as a reflection of society’s increased dependence on technology 

and software base products. This dependence has caused an increased concern for the 

reliability and quality of software and software-based products. Also of interest is the fact 

that research into applying DOE techniques to software performance testing is not new, 

but has been occurring since the late 1990s, such as the research of Dalal and Mallows 

(1998). 

Testing Phase 

A fair representation of the original studies outlined findings where software 

testing performance improvements were realized when defects were detected early in the 

development process. In these instances, there was a resultant increase in the total 

number detected because the testers could vary their approach as they learned more about 

the system under test based on the number and types of defects detected. Such studies 

were categorized in the literature as adaptive testing studies. Original study examples 

included Hu, Jiang, and Cai (2009) and Kuhn et al. (2008). 

Publication Type 

The article by Ahmad, Khan, and Rafi (2010) was the only study that at the time 

of this study had only been published in a conference proceeding publication. The 

remaining 95 were all published in peer-reviewed literature, as was my intent. 
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Data Analysis     

The analysis process covered several steps. As discussed in Chapter 3, using the 

CMA Version 2 software packages, the data analysis proceeded as follows.  

 The first step was entering the study findings (raw data) as reported in the 

original studies. The data was entered as event and sample size. This step 

resulted in the funnel plots in Figure 4 and Figure 5 as well as the forest plots 

depicted in Figure E1 for the studies that had DOE techniques applied and 

Figure E2 for studies that did not apply DOE techniques.    

 A cumulative analysis was run on the data to check for publication bias.  

Funnel plots of the data are shown in Figure 4 and Figure 5. 

 The applicable effect size statistics to use in a meta-analysis depend on the 

nature of the study findings being synthesized as well as the research 

question(s) and hypothes(es) being tested. In this study, the research question 

and hypotheses were about the relationship between the improvement in 

software performance testing and applying DOE techniques. The original 

studies, however, did not report correlation data. Using correlation effect size 

statistics, r, for such studies is preferable to standardized mean difference, d, 

effect size statistics, according to Lipsey and Wilson (2001), for a couple 

reasons. For one thing, d, has a tendency to weaken the strength of the 

observed relationship. For another, r, is a standardized index for a meta-

analysis statistic and it is easy to convert between the two effect size statistics. 
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So I made the decision to work with correlation effect sizes as this measure 

better lent itself to the research question under study. I started by computing d, 

using the data in the original studies. Using a feature of the software package, 

the computational analysis computed and reported the effect sizes in r.     

 In this research neither d nor r was reported in the included studies, but I was 

able to calculate d from the information in the studies and then use the 

software package to convert d to r. The first step of the computational analysis 

of the meta-analysis began with the calculation of the Cohen’s d (standardized 

mean difference) effect size for each original study. A derivative of equation 

9, (d = (           was used to calculate d. Since the subgroups are 

independent groups, the standard deviation had to be a within-group standard 

deviation calculated across subgroups. The formula used to calculate the 

within-group standard deviation, Swithin, is 

Swithin  =  
         

               
    

        
                                                      (14) 

where n1 and n2 are sample sizes from two independent data sets and S1 and S2 

are the corresponding standard deviations. A derivative of equation 9, (d = 

(           was used to calculate d. Since the subgroups are independent 

groups, the standard deviation had to be a within-group standard deviation 

calculated across subgroups. 

 d =        
       

 ,                 (15) 
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where     and     are the sample means. See Appendix H, Tables H1 and H2 

for the raw data. The data are taken from the original included studies. 

 Next, the computed effect sizes for the original were entered into the CMA 

software package for subgroup analysis. The data were entered for two group 

comparison; post data only meaning the two groups did not contain pre-test 

data and post-test data but were independent. Also entered were data for the 

sample size for each subgroup and the flag set to automatically determine the 

direction of the effect size (i.e., positive, negative, etc.). 

 I performed the meta-analysis in the CMA software package based on the 

entered data with the following computational options:  

o Grouped by subgroup (no DOE techniques applied and DOE techniques 

applied) and set to perform an analysis across the studies within subgroup. 

o Set the computational option to generate correlation, r, (effect size 

statistic) for comparing the two subgroups. (The software package can 

convert from one effect size measure to another. In this study, from 

Cohen’s d to correlation, r)    

o Used the effectiveness measures (total defects, defect detection rate, 

defects by phase, and total testing hours) as moderating categories. 

 The computational analysis returned the correlation effect size, confidence 

interval, Q value, Z value, and p value for each study, per effectiveness 

measure, per subgroup. The software package generated the correlation effect 
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sizes for each study within each subgroup based on the original data, then 

synthesized the effect sizes for each study across each subgroup. The resulting 

synthesized effect size for the subgroup without DOE technique applied was 

then correlated with the synthesized effect size for the subgroup with DOE 

technique applied to come up with the overall correlation effect size between 

the subgroups.     

 These correlation effect sizes were also plotted to show graphically which 

subgroup had the more statistically significant effect size in the analysis.    

Assessing The Hypotheses 

The Z test was performed on the two subgroups of all the included studies to test 

the statistical significance of applying DOE techniques at the subgroup level. The results 

showed that the subgroup comprised of studies that did have DOE techniques applied in 

software performance testing were more effective in software performance testing than 

the subgroup of studies that did not have DOE techniques applied. Table 8 shows the Z 

distribution test statistics from all 96 studies grouped by whether or not DOE techniques 

were applied (48 studies with DOE and 48 studies without DOE) to the software testing 

studies. Table 1 depicts all five hypotheses by dependent variable and the number of 

studies in each subgroup. For the first of the five hypotheses, the outcome of the Z test 

resulted in the rejection of the null hypothesis.  
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Table 8   

Fixed effect model:  Overall Results 

Model SubGroup 

Effect 

Size 

Standard 

Error 

Lower 

Limit 

Upper 

Limit Z value p value 

Fixed DOE 0.540 0.032 0.521 0.559 44.27 0.000 

 NoDOE -0.064 0.032 -0.091 -0.037 -4.66 0.000 

 

Testing the first hypothesis at the subgroup level, inserting the effect size results 

from the Z test, 

H01:  PD ≤ P.  

Ha1:  PD > P.  

Based on this test, I rejected the null hypothesis that the application of DOE techniques 

does not increase testing effectiveness. Additionally, as shown in Table 8, Z = 44.27 for 

the DOE subgroup and -4.66 for the NoDOE subgroup indicates that applying DOE 

techniques has more impact on improving software performance testing than not applying 

DOE techniques. Moreover, the 95% confidence intervals for the two subgroups do not 

overlap. For the DOE subgroup, the computed confidence interval is (0.521, 0.559). For 

the subgroup of studies without DOE techniques, the computed confidence interval is  

(-0.091, -0.037). From these statistics, with a p value < 0.0001, the null hypothesis, H01, 

(which stated that the application of DOE does not increase effectiveness in software 

performance testing) is rejected. 

For each of the hypothesis tests based on a single effectiveness measure for this 

study, the Z test, the Q test, and the t test were some of the test statistics generated by the 
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software package. The CMA tool analyzed the data using the effectiveness measures of 

defects detected, defect detection rate, phase in which the defect was detected, and total 

hours of test execution. The analysis treated each effectiveness measure as a moderating 

variable, testing its influence on the final result. 

Defects Detected 

For the number of detected defects, 30 of the original studies reported this 

moderating measure of effectiveness for the software performance testing improvement. 

See Appendix I, Figure I1 for the computed statistics generated from the meta-analysis in 

the software package. The computed summary statistics from the meta-analysis 

computational analysis (PD = 0.142, Z value = 4.717, confidence interval (0.084 to 

0.200), and p < 0.001 for both Z value and Q value) for the DOE subgroup and (P = -

0.170, Z value = -0.183, confidence interval (-0.210, -0.130), and p < 0.001 for both Z 

value and Q value) for the subgroup that did not apply DOE are reported in Table 9. The 

corresponding forest plot for these computed statistics is shown in Appendix I, Figure I2. 

The subgroup of studies where DOE techniques were applied is shown as group A and 

the subgroup of studies where DOE techniques were not applied is shown as group B. 

The meta-analysis computational analysis results, in the CMA software package, showed 

that the impact of the computed correlation effect size for subgroup A was more 

statistically significant than the computed correlation effect size for subgroup B.  

 Subgroup A is the subgroup of studies where DOE techniques were applied. Note 

that the overall result is shown on the very last line of the meta-analysis summary 
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statistics and denoted by the diamond in Appendix I, Figure I2. The strength of the 

testing performance effect size for the studies without the application of DOE, P, was 

weaker than the computed effect for the studies that did apply DOE techniques, PD.  

Testing the null hypothesis for the detected defects, inserting PD = 0.142 and P = -

0.170, the test resulted in PD > P. Given 

H02:  PD ≤ P (application of DOE does not increase effectiveness) 

Ha2:  PD > P (application of DOE increases effectiveness),    

the null hypothesis is rejected. The hypothesis testing showed that the application of DOE 

techniques in the software test case design did increase the defects detected during 

software performance testing process.             

Table 9 

 

Moderator Analysis: Defects Detected Summary Statistics 

 

SubGroup 

Number 

Studies 

Effect Size  

(Correlation) 

        95%  CI      

Lower         Upper     

Limit           Limit Z p Q 

DOE 10 0.142 0.084 0.200 4.717 0.000 391.678 

NoDOE 20 -0.170 -0.210 -0.130 -0.183 0.000 1456.410 

Overall 30 -0.070 -0.104 -0.036 -4.050 0.000 1920.887 

 

Taking the computed correlation effect sizes from Appendix I, Figure I1 

(Correlation column) and using as input data, the t test was conducted on the defects 

detected data statistics computed from the meta-analysis. Table 10 shows the resulting t 

test statistics. The sample size difference for the DOE subgroup in Table 9 and Table 10 

is the result of an outlier in the DOE data, as shown in Figure I1, which was omitted for 
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the t test. The outlier is a negative number, -0.836, while all of the other data points are 

positive. 

 

Table 10 

 

Statistics for t test on Defects Detected Data 

 
Assumed equal variances Assumed unequal variances 

 NoDOE DOE  NoDOE DOE 

Sample Size (n) 20 9 Sample Size (n) 20 9 

Mean (  ) -0.140 0.293 Mean (  ) -0.140 0.293 

Std. Deviation (s) 0.484 0.230 Std. Deviation (s) 0.484 0.230 

Test Statistic -2.535  Test Statistic -3.259  

df 27  df 26  

p value 0.0174  p value 0.0016  

95%  CI (-0.7824 , -0.0824) 95% CI (-0.7051 , -0.1597) 

 

Levene’s test verified if the variances are equal. Given, 

H0: Variances are equal 

Ha: Variances are unequal,  

the test resulted in the p value = 0.037.  Since the p value < 0.05, equal variances are not 

likely for the included studies.  The null hypothesis of equal variances is rejected, so 

unequal variances are assumed for the defects detected data. 

Assuming unequal variances, the computed t test statistics for the confidence 

interval (-0.7051, -0.1597) where test statistic t = -3.259, df = 26, and the p value = 

0.0016. From these results (p < 0.05) and a confidence interval that does not include zero, 

the null hypothesis, which stated that the application of DOE techniques in the software 

test case design did not increase the number of defects detected during software 
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performance testing process, is rejected. See Appendix I for the software package 

generated statistical data in Figure I1 for the defects detected data.  

Defects Detection Rate 

The computed statistics generated from the meta-analysis in the software package 

are shown in Appendix I, Figure I3. The summary statistics computed in the meta-

analysis for the original studies that reported software testing performance improvements 

when DOE techniques were applied grouped by the defect detection rate are shown in 

Table 11. The statistics computed for this moderating effectiveness measure in the DOE 

subgroup (PD = 0.235, Z value = 6.139, confidence interval (0.161, 0.306), Q value = 

213.975, and p < 0.001 for both Z value and Q value) and for the studies without DOE 

subgroup (P = 0.361 Z value = 7.312, confidence interval (0.270, 0.446), Q value = 

331.214, and p < 0.001 for both Z value and Q value). The corresponding software-

generated forest plot for these computed statistics is shown in Appendix I, Figure I4. The 

subgroup of studies where DOE techniques were applied is shown as group A and the 

subgroup of studies where DOE techniques were not applied is shown as group B. The 

meta-analysis computational analysis results, from the CMA software package, showed 

that the absolute value of the computed correlation effect size for subgroup B was more 

statistically significant than the computed correlation effect size for subgroup A. The 

overall result is shown on the very last line and denoted by the diamond. The result of the 

computational analysis is a summary effect size for group A and a summary effect size 

for group B. The two effect sizes are compared and synthesized resulting in the combined 
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or overall effect size. In Figure I4, note that the overall effect size is depicted on the right 

side of zero indicating group B, the subgroup of studies that did not have DOE techniques 

applied, had the greater statistically significant impact on the effectiveness of software 

performance testing. 

Table 11  
 

Moderator Analysis: Defect Detection Rate Summary Statistics 

 

SubGroup 

Number 

Studies 

Effect Size  

(Correlation) 

        95%  CI      

Lower         Upper     

Limit           Limit Z p Q 

DOE 6 0.235 0.161 0.306 6.139 0.000 213.975 

NoDOE 3 0.361 0.270 0.446 7.312 0.000 331.214 

Combined 9 0.282 0.225 0.337 9.303 0.000 549.791 

 

Testing the null hypothesis for defect detection rate for PD /hr  = 0.235 and P/hr 

0.361, the test resulted in PD /hr  ≤  P/hr for, 

H03:  PD / hr ≤ P / hr (application of DOE does not increase effectiveness) 

Ha3:  PD / hr > P / hr (application of DOE increases effectiveness) 

From the resulting effect size statistics, the null hypothesis, which stated that the 

application of DOE techniques in the software test case design did not increase the 

number of defects detected during software performance testing, could not be rejected. 

Table 12  

 

Statistics for t test on Defect Detection Rate Data 
   

Assumed equal variances Assumed unequal variances 

 NoDOE DOE  NoDOE DOE 

Sample Size (n) 3 6 Sample Size (n) 3 6 

Mean (  ) 0.091 0.129 Mean (  ) 0.091 0.129 

Std. Deviation (s) 0.758 0.495 Std. Deviation (s) 0.758 0.495 
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Test Statistic -0.092  Test Statistic -0.078  

df 7  df 2  

p value 0.929  p value 0.945  

95%  CI                         (-1.012, 0.936)  95%  CI                         (-2.112 , 2.037)  

The t test was computed for the defect detection rate data. Table 12 shows data 

where equal variances are assumed and data where unequal variances are assumed. 

Levene’s test verified if the variances are equal. Given hypotheses, 

H0: Variances are equal 

Ha: Variances are unequal, 

the test resulted in the p value =  0.38.  Since the p value > 0.05, equal variances are 

likely for the included studies.  The null hypothesis of equal variances is not rejected, so 

equal variances are assumed for the defect detection rate data. The computed test 

statistics, within a 95% confidence interval of (-1.012, 0.936), were t = -0.092, df = 7, 

and the p value = 0.929 are shown in Table 12. From these results (larger p value, i.e. > 

0.05), the null hypothesis,  indicating that the application of  DOE techniques in the 

software test case design did not increase the rate of  detecting defect during the software 

performance testing process, could not be rejected. See Appendix I, Figure I3, for the 

defect detection rate data.  

Phase Detected 

The computed statistics generated from the meta-analysis in the software package 

are shown in Appendix I, Figure I5. The summary statistics computed in the meta-

analysis for the original studies that reported software testing performance improvements 

when DOE techniques were applied grouped by the defects detected by phase 

effectiveness measure are shown in Table 13. The statistics computed for this moderating 
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effectiveness measure in the DOE subgroup (PD = 0.089, Z value = 3.067, confidence 

interval = 0.032 to 0.145, Q value = 57.533, and p < 0.002 for the Z value and 

approaching zero for the Q value) and for the studies without DOE subgroup (P = 0.542, 

Z value = 16.146, confidence interval (0.488, 0.592), Q value = 1204.324, and p < 0.001 

for both Z value and Q value). The meta-analysis in the software package demonstrated 

the subgroup that did not have DOE techniques applied to be more effective, statistically, 

in improving software performance testing. 

Table 13  
 

Moderator Analysis: Defects Detected By Phase Summary Statistics 

 

SubGroup 

Number 

Studies 

Effect Size  

(Correlation) 

        95%  CI      

Lower         Upper     

Limit           Limit Z p Q 

DOE 12 0.727 0.700 0.752 32.976 0.000 157.533 

NoDOE 6 0.542 0.488 0.592 16.146 0.000 1204.324 

Overall 18 0.670 0.645 0.694 36.096 0.000 549.791 

 

The forest plot for these defects detected by phase computed statistics from the 

meta-analysis is shown in Appendix I, Figure I6. The subgroup of studies where DOE 

techniques were applied is shown as group A and the subgroup of studies where DOE 

techniques were not applied is shown as group B. The software package analysis revealed 

B, the subgroup of studies where DOE techniques were not applied, had more impact on 

the effectiveness of software performance testing. The overall correlation effect size 

result is shown on the very last line and denoted by the diamond is 0.276 

Testing the null hypothesis for defects detected by phase using (PD)n = 0.727 and 

Pn = 0.542, 
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H04:  (PD)n  ≤  Pn   (application of DOE does not increase effectiveness) 

Ha4:  (PD)n  >  Pn   (application of DOE increases effectiveness), 

resulted in (PD)n  >  Pn. Since 0.727 ˃ 0.542, the null hypothesis is rejected applying the 

fourth hypothesis, DOE is more effective.  The confidence intervals, (0.700, 0.752) for 

the DOE subgroup and (0.488, 0.592) for the subgroup where DOE techniques were not 

applied do not overlap. There is a statistical significance indicating that the DOE 

subgroup is better than the No DOE subgroup at improving software performance testing.   

The t test was computed for the defects detected by phase data from Figure I5 in 

Appendix I. (See Table 14 for the input statistics). Levene’s test verified if the variances 

are equal. Given, 

H0: Variances are equal 

Ha: Variances are unequal,  

 the test resulted in the p value = 0.14.  Since the p value > 0.05, equal variances are 

likely for the included studies.  The null hypothesis of equal variances is not rejected, so 

equal variances are assumed for the defects detected by phase data. 

Table 14   

 

Statistics for t test on Defects Detected By Phase Data 

 
Assumed equal variances Assumed unequal variances 

 NoDOE DOE  NoDOE DOE 

Sample Size (n) 6 12 Sample Size (n) 6 12 

Mean (  ) 0.057 0.153 Mean (  ) 0.057 0.153 

Std. Deviation (s) 0.572 0.340 Std. Deviation (s) 0.572 0.340 

Test Statistic -0.449  Test Statistic -0.377  

df 16  df 6  

p value 0.660  p value 0.719  

95%  CI (-0.548, 0.356) 95%  CI (-0.716, 0.525) 
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From the t test conducted within a 95% confidence interval of (-0.548, 0.356), the 

computed test statistic t = -0.449, df = 16, and the p value = 0.660. With p > 0.05 and 

overlapping confidence intervals, the null hypothesis cannot be rejected, indicating that 

the application of DOE techniques in the software test case design did not increase the 

number of defects detected by phase during the software performance testing process. 

However, applying the fourth hypothesis, (PD )n  >  Pn,, which indicates that the null 

hypothesis can be rejected. Conflicting indicators warranted further investigation. 

Utilizing the t test table for critical values of the t distribution, the critical t value for df = 

16 and a 95% confidence interval is 1.746. Since the computed test statistic t = -0.449 is 

less than the t test table value, the results indicate that there is no statistical difference 

between the means of DOE and the NoDOE subgroups. See Appendix I, Figure I5, for 

the statistical data for the defects detected by phase.  

Testing hours 

From the testing hours resulting meta-analysis statistics in Appendix I, Figure I7 

and the summary statistics from Table 15, PTD = 0.632, Z value = 36.146, confidence 

interval (0.607, 0.656), Q value = 57.533, and p < 0.001 for both Z value and the Q value 

and for the studies without DOE subgroup, PT = -0.258, Z value = 1141.988, confidence 

interval = -0.298 to -0.216, Q value = 352.92, and p < 0.001 for both Z value and Q 

value). The forest plot (See Figure I8) shows a graphical representation of the meta-

analysis results. The computed correlation effect size results show that the effect size for 
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subgroup B was more statistically significant that the effect size for subgroup A. The 

computational results of the meta-analysis illustrated that the effect size of the subgroup 

of studies where DOE techniques were applied was more statistically significant than the 

effect size of the subgroup that did not have DOE techniques applied. 

Applying the computed correlation effect sizes, PTD = 0.632 and PT = -0.258 to 

test the null hypothesis for this study, for 

H05:  PTD ≤  PT (application of DOE does not increase effectiveness) 

Ha5:  PTD > PT (application of DOE increases effectiveness), 

 resulted in 0.632 > -0.258. Hence, the null hypothesis was rejected for this test and the 

alternative hypothesis, which stated that the application of DOE techniques did increase 

software performance testing effectiveness when the improvement was reported in terms 

of the total hours for testing execution, resulted in a more statistically significant effect 

size. 

Table 15  

 

Moderator Analysis: Testing Hours Summary Statistics 

 

SubGroup 

Number 

Studies 

Effect Size  

(Correlation) 

        95%  CI      

Lower         Upper     

Limit           Limit Z p Q 

DOE 20 0.632 0.607 0.656 36.146 0.000 1141.988 

NoDOE 19 -0.258 -0.298 -0.216 -11.719 0.000 352.920 

Combined 39 0.277 0.249 0.304 18.725 0.000 2588.119 

 

Table 15 depicts the results for the t test computed from the testing hours data 

shown in Figure I7. Verifying the equality of variances using Levene’s test, 

H0: Variances are equal 
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Ha: Variances are unequal, 

 the test resulted in the p value < 0.0001.  Since the p value < 0.05, equal variances are 

not likely for the included studies.  The null hypothesis of equal variances is rejected, so 

unequal variances are assumed for the testing hours data. 

Table 16 
 

Statistics for t test on Testing Hours Data 

 
Assumed equal variances  Assumed unequal variances 

 NoDOE DOE  NoDOE DOE 

Sample Size (n) 19 20 Sample Size (n) 19 20 

Mean (  ) -0.391 0.408 Mean (  ) -0.391 0.408 

Std. Deviation (s) 1.040 0.360 Std. Deviation (s) 1.040 0.360 

Test Statistic -3.238  Test Statistic -3.172  

df 37  df 22  

p value 0.0013  p value 0.0022  

95%  CI (-1.299 , -0.299) 95%  CI (-1.321, -0.276) 

 

From the assumed unequal variance results in Table 15, note that the computed 

test statistic t = -3.172, df = 22, and the p value = 0.0022 with a confidence interval of    

(-1.321, -0.277). The t test resulted in P < .05 and a confidence interval that did not 

include zero, which indicated that the null hypothesis should be rejected. Hence, showing 

the application of DOE techniques in the software test case design did reduce the total 

number of hours to complete test execution during the software performance testing 

process. See Appendix I for the statistical data by effectiveness measure and Figure I7 for 

the data for the testing execution hours.  

Key Findings 

 The meta-analysis statistics shown in Table 8 summarize the key findings by 

subgroup. The forest plots generated in the meta-analysis for this study are crucial in 
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understanding the research findings. The forest plots provide a good pictorial 

representation that aids in understanding and presenting the research results. All of the 

forest plots are graphed on a scale from -1.0 to +1.0. In this research study, 0 indicates no 

effect on software performance effectiveness. In the hypothesis testing, if 95% 

confidence interval of the difference in means included 0, then the confidence intervals of 

the means overlapped. Conversely, if the 95% confidence interval did not include 0, then 

the results were statistically significant. I summarized the study findings following these 

guidelines, as shown in Table 17. 

The effectiveness measures for the software performance testing improvements 

were the moderating variables in the subgroup analysis. Table 18 shows a summary of 

the study findings based on the effectiveness measures. The findings are illustrated in the 

forest plots shown in Appendix I. The four moderating variables (the dependent variables 

of interest) assessed in the meta-analysis were: 

 Total  Defects   .................................. Results Shown in Forest plot in Figure I2 

 Defect Detection Rate  ...................... Results Shown in Forest plot in Figure I4 

 Defects By Phase  ............................. Results Shown in Forest plot in Figure I6 

 Total Testing Hours  ......................... Results Shown in Forest plot in Figure I8 

Figure I2 in Appendix I is a graphical representation of the meta-analysis results 

for the total defects effectiveness measure. In this forest plot, A denotes the subgroup of 

studies where DOE techniques were applied and B denotes the subgroup that did not have 

DOE techniques applied. The scale for the plot is -1.00 to +1.00 with 0.00 evenly 
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dividing the two subgroups. Those studies on, or closest to 0.00, had little or no effect or 

impact on software performance testing. The farther away from the 0.00 midpoint, the 

more statistically significant the effect size was in support of studies in either subgroup A 

or subgroup B. The overall effect size for the subgroup A studies were compared to the 

overall effect size for the subgroup B studies and the end result is distinguished on the 

plot by a diamond shape. Note that the diamond is to the left of 0.00 indicating that the 

meta-analysis pointed to the subgroup A, studies that had DOE techniques applied, to be 

more effective in software performance testing. 

In Appendix I, Figure I4, the meta-analysis results for the defect detection rate 

measure are shown. In this Forest plot, A denotes the subgroup of studies where DOE 

techniques were applied and B denotes the subgroup that did not have DOE techniques 

applied. The scale of the graph is -1.00 to +1.00 with 0.00 evenly dividing the two 

subgroups. In the plot in Figure I4, the final meta-analytic result of analyzing the two 

subgroups of studies is denoted by the diamond shape. The diamond is to the right of 0.00 

indicating that the meta-analysis resulted in subgroup B, studies that did not have DOE 

techniques applied, were more effective in software performance testing. 

In Figure I6, in Appendix I, the defects by phase effectiveness measure meta-

analytic results are depicted. In this Forest plot, A denotes the subgroup of studies where 

DOE techniques were applied and B denotes the subgroup that did not have DOE 

techniques applied. The scale of the graph is -1.00 to +1.00 with 0.00 evenly dividing the 

two subgroups. In the plot in Figure I6, the final meta-analytic result from the 
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computational analysis for the two subgroups of studies is denoted by the diamond shape 

to the right of 0.00 which indicates that the meta-analysis demonstrated the subgroup of 

studies that did not have DOE techniques applied as being more statistically effective in 

software performance testing. 

In Appendix I, Figure I8, the meta-analysis results for the effectiveness measure, 

total testing hours, are shown. As in the previous forest plot labels, A denotes the 

subgroup of studies where DOE techniques were applied and B denotes the subgroup that 

did not have DOE techniques applied. The final meta-analytic result of analyzing the two 

subgroups of studies is denoted by the diamond shape. The diamond to the right of the 

0.00 midpoint points to the subgroup B of studies that did not have DOE techniques 

applied as being more effective in software performance testing. 

The research findings for the meta-analysis are summarized in Table 17. This 

table summarizes the meta-analysis results by subgroup per effectiveness measure. The 

corresponding graphical results are presented in Appendix Figure I2, Figure I4, Figure I6, 

and Figure I8 in Appendix I.  
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Table 17  

 

Summary of Study Findings for Effectiveness Measures 

 
Effectiveness Measure Which side of 0 does 

the label “Favors A” 

(DOE) lie? 

Which side of 0 does 

the effect size and the 

95% confidence interval 

lie? 

Meta-analysis results 

Defects Detected Left Left 

Rejected null hypothesis. 

DOE Subgroup (A) is 

more effective in 

software performance 

testing increases testing.  

    

Defect Detection Rate Left Right 

Failed to reject null 

hypothesis.  

DOE Subgroup (A)   

does not increase testing 

effectiveness on software 

performance testing.  

    

Defects Detected by 

Phase 
Left Right 

Failed to reject null 

hypothesis. Effect size 

for both DOE Subgroup 

(A) and NoDOE 

Subgroup (B) are right of 

0. Results indicated that 

there is no statistical 

difference in means for 

the subgroups. 

    

Testing Hours Left Left 

Rejected null hypothesis. 

DOE Subgroup (A) is 

more effective in 

software performance 

testing increases testing. 

Note.  The term, Favors, is used in meta-analysis by Borenstein et al., (2009) to indicate 

the direction of the results. 

 

The key finding for this research study, at the dependent variable level, was that 

for the Detected Defects and Testing Hours effectiveness measures it was clearly shown 

that there was a statistical significance for the impact applying DOE techniques has on 

improvements in software performance testing effectiveness. In meta-analysis, the effect 
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size measures, which measure impact, are absolute. In Table 17, the group representing 

the null hypothesis is to the right of the 0 and labeled Favors B in the plots in the 

appendixes. For the defect detection rate, the null hypothesis was not rejected. In Figure 

I4, the final overall effect size (represented by the diamond on the plots) is to the right of 

the ‘0’ and in the section denoted Favors B. Similarly, for defects detected, the overall 

effect size is left of the zero and denoted in the section of the plot labeled Favors A or the 

subgroup with DOE techniques applied. For testing hours, in Figure I8, note the diamond 

is to the right of the ‘0’, in the Favors B portion of the plot.  However, the confidence 

interval for subgroup B (NoDOE) is to the left of 0 and the overall effect size is to the left 

of the combined effect size for subgroup A (DOE). Thus, the interpretation for this 

effectiveness measure is that it shows statistical significance for improvements from 

applying DOE techniques in software performance testing. 
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Summary 

This chapter detailed the results from the meta-analysis conducted for this study. 

The research question as to whether there was a relationship between applying DOE 

techniques to test case design and the effectiveness of software performance testing was 

addressed with meta-analysis. The meta-analysis was performed using studies that 

applied DOE techniques and studies that did not apply DOE techniques. The findings for 

the research answered the question and proved that the effectiveness of software 

performance testing is improved when DOE techniques are applied. The study findings 

showed this at the subgroup level. Drilling down to the studies within the DOE subgroup, 

the findings also showed which of the effectiveness measures examined were influential 

in this testing improvement. These research findings validated the results of the isolated 

original studies included in this study. The results for this research study are summarized 

in Table 18.  
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Table 18 

 

Research Results Summary 

 

 CMA V2 Software  

Meta-analysis Results 

Hypothesis Testing 

Results 

p value Confidence 

Interval 

Overall 

DOE subgroup is 

more effective in 

software performance 

testing 

Rejected null 

hypothesis (Z test). 
< 0.0001 

(0.433 , 0.559)  

(-0.370 , -0.244) 

     

Defects 

Detected 

DOE subgroup is 

more effective in 

software performance 

testing  

Rejected null 

hypothesis (t test). 
0.0016 (-0.7051 , -0.1597) 

     

Defect 

Detection Rate 

DOE subgroup is not 

more effective in 

software performance 

testing 

Did not reject null 

hypothesis (t test). 
0.929 (-1.012, 0.936) 

     

Defects 

Detected by 

Phase 

DOE subgroup is 

more effective in 

software performance 

testing 

Results suggested no 

statistical difference 

between the means for 

the subgroups.  

 -0.449 (-0.548 , 0.356) 

     

Testing Hours 

DOE subgroup is 

more effective in 

software performance 

testing 

Rejected null 

hypothesis (t test). 
0.0022 (-1.321 , -0.277) 

 

In summary, the key finding of this study is that applying DOE techniques in the 

test case design of software testing has a positive effect on the software performance 

testing effectiveness. The hypotheses testing and the meta-analysis computational 

analysis showed that the statistical strength of that impact depended on the effectiveness 

measurement used in reporting the data in the findings.  
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The results from this study were significant enough to warrant recommending 

further study on applying DOE in software performance testing. Chapter 5 presents a 

detailed discussion of the research experience and the interpretation of the findings. 
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Chapter 5: Discussion, Conclusions, and Recommendations 

Overview 

The discussion in Chapter 1 through Chapter 3 set the framework for this research 

study by detailing the problem, exploring the literature, and defining the research 

methodology. I presented the data collection procedure, the data preparation, and research 

results in Chapter 4. In this chapter, the discussion focuses on the study findings and 

interpretations. Also, this chapter covers the limitations of the research conducted and the 

possible threats to the validity of the findings, along with recommendations for future 

research. In this research, I highlighted positive implications for social change. Finally, 

the chapter ends with the conclusions derived from conducting this research. 

As discussed in Chapter 1, the fast pace of technological advances and society’s 

reliance on that technology have caused a heightened awareness for the quality of 

software and for software-based products. This awareness of quality has, in turn, 

heightened and increased society’s demand for reliable software products delivered after 

effective software performance testing. In the spirit of continuous improvements, 

consumer safety, and success in the business world, software performance improvement 

studies are occurring continually. Reviewing the research literature, I noted many 

instances of such research efforts, as evidenced by the range of studies discussed in 

Chapter 2. The problem, though, was that these studies seemed to be isolated efforts in 

the research community. The settings for the original investigations ranged from research 

labs in the business world, to research labs in the education arena of universities, to 
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efforts from the software testing industry practitioner, to joint efforts by some 

combination of these. For example, Bandurek (2005) asserted that applying DOE 

techniques to software performance testing identifies unwanted interactions between 

factors, something which will almost always be missed by the traditional testing methods. 

Bandurek went on to declare that DOE techniques not only improve efficiency and 

effectiveness in testing, but they can also reveal problems in the process, as well as the 

resulting software-based products.  

The question of whether the findings from these original, seemingly isolated study 

instances really are valid remained open. The results of this study proved that they were 

valid. Noticeably missing in the literature was software performance testing improvement 

investigations where the focus was a collective group of various software performance 

testing studies validating software performance testing effectiveness. Therefore, the 

purpose of this research was to evaluate the reported findings from the included primary 

software performance testing studies synthesized as the findings from the aggregate of 

those studies, and add to the current testing body of knowledge. 

The nature of this study was that it was an investigation across a group of original 

individual software performance testing studies, where each individual study reported 

findings showing statistically significant evidence for improvements in software 

performance testing effectiveness and efficiency. The research question centered on the 

examination of the relationship between applying DOE techniques in the test case design 

and software testing performance improvements. The research question was: What is the 
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relationship between the DOE techniques applied to test case design during testing and 

the effectiveness of the software performance testing?  The study answered the question. 

Applying DOE techniques to test case design during software performance testing 

improves software performance testing effectiveness. 

As discussed in Chapter 3, meta-analysis was the research method utilized in this 

study. The major criteria for including the original studies were that the findings 

indicated software testing performance improvements and the findings were reported in a 

peer-reviewed journal.  

Chapter 4 contains the meta-analysis results, which answered the research 

question. Not only did the findings show that there is a relationship between applying 

DOE techniques and software performance testing effectiveness, the findings also 

validated the findings of the original studies included in this research. 

Interpretation of Findings 

When tested at the subgroup level, the findings of the first hypothesis 

demonstrated that the subgroup that had DOE techniques applied in the software 

performance testing had more impact on testing effectiveness. Hence, the conclusion is 

that applying DOE techniques in the test case design during software testing has a more 

positive impact on the resulting software performance effectiveness.  The first hypothesis 

included any of four dependent variables in an included study. However, the results for 

each of the dependent variables in the four subsequent hypotheses, revealed how each of 

the four dependent variables contributed to the overall finding. The effectiveness 
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measures, detected defects and testing hours, proved to be influencers for testing 

improvements in software performance testing. On the other hand, for the defect 

detection rate and defects detected by phase, effectiveness measures had different results. 

The subgroup of studies that reported effectiveness in terms of defect detection rate and 

did not have DOE techniques applied proved better than the subgroup that did apply DOE 

techniques. Lastly, the defects detected by phase effectiveness measure showed that there 

was no statistical significance between the two subgroups. 

The findings related to the number of detected defects underscores the fact that 

managers in the business world understand defects, all software testers understand 

defects, and all customers or end-users of software and software products understand 

defects. For software developers, software testers, and customers, the real test of the 

quality of the software or software product comes down to the software defects. This is a 

metric understood by all of these parties. All of the original studies published findings on 

software performance testing improvements. The DOE techniques in my research study 

dealt with factor covering, two-way interactions, factor combinations, and the Taguchi 

approach. All of the DOE techniques served to guarantee a wider and deeper coverage of 

the code. With more branches and code covered in the test cases designed applying such 

techniques, it is not surprising that the software testing performance is more effective.  

The DOE techniques only augmented the performance of what is already a long-

established method for measuring the effectiveness of the software testing process. 

Hence, for defects, in meta-analysis terminology, the reporting of all the findings was 
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apples-to-apples. With the subgroup of studies where DOE techniques were applied 

having the greater effect size, the meta-analysis results served to validate this measure 

(total defects) for reporting software performance testing effectiveness. In software 

testing, reporting defects has long been the practice for measuring performance testing 

effectiveness. This research has shown that defects are still useful for measuring software 

testing effectiveness when DOE techniques are applied. 

As shown in Table 1, each of the three hypotheses where the null hypothesis was 

rejected had a sample size of at least 30.  The two null hypotheses that were not rejected 

had sample sizes of only 9 and 18. The minimum number of original studies needed for 

this research was calculated to be 96. Note that hypothesis one, where all 96 studies were 

included, met this requirement and the finding was conclusive in showing the DOE 

subgroup to be more effective in software performance testing. The other four hypotheses 

that focused on some subset of these studies had mixed results. Hence, these results 

indicated that sample size had a significant impact on the study findings.  

As for the study findings measured in terms of defect detection rate and phase 

defects detected, two other factors might have influenced the outcome in this study. First, 

the test methodology might not have been the best fit for this research. For example, for 

the studies reporting findings measured by phase in which defects were detected, the 

phases varied. Some studies reported defects from the requirements phase through 

acceptance testing, others reported findings for unit testing, and still others systems 

integration. While all studies in this category, defects detected by phase, did report 
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findings, the findings were not for a single testing phase. The findings covered some 

combination of testing phases (for example, unit, integration, or system testing). For this 

reason, the synthesis of the meta-analysis was based on findings that could be categorized 

as apples-to-oranges. Similarly, for the studies reporting total test time, findings were 

reported in nanoseconds, seconds, hours, and days. Thus, for defect detection rate, phase 

defects detected, and total test execution time, the commonly voiced meta-analysis 

concern of apple-to-oranges possibly affected this study’s findings.  

Second, the measures for reporting the findings were possibly a mismatch for the 

DOE techniques applied. Collecting data in the same manner and using a different metric 

for reporting it has the potential to skew the metrics or in this research, the findings. An 

analogy here is an organization that collects the right data but imposes the wrong 

measures for metrics reporting. In such instances, was the wrong data collected or are the 

wrong metrics being reported?  The intent of the data collected for this research was 

assessing software performance testing effectiveness. The measures defect detection rate, 

phase defects detected, and total test execution time all spoke to process, which impacted 

cost. So the improvements would be in process by reducing bottlenecks to increase the 

rate of defect detection, defects detected earlier, and reducing the time spent executing 

tests. Looking at the data (the studies) and reviewing the factors in Table 1 for when to 

use Classical DOE techniques or the Taguchi approach, perhaps more of the studies 

reporting these findings in these measures should have utilized the Taguchi approach, 

which is better at addressing process issues. 
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Limitations of the Research Study 

This research study utilized the meta-analysis research method. The research 

method itself is viewed by many in the research community as a limitation on the study 

(Borenstein et al., 2009). While Appendix B is a testament to the large number of 

professionals in the research community who have not only embraced this research 

methodology but also the software package used in this study, there are perhaps just as 

many who have not embraced it. Not only have many in the research community not 

embraced meta-analysis, but have also been very vocal in their criticisms of the research 

method. As these criticisms are levied against the methodology used in this study, they 

can be viewed as limitations of the study. Several of these criticisms are discussed here. 

Threats to Validity  

Meta-analysis is most noteworthy as a disciplined technique for aggregating and 

synthesizing research findings (Lipsey and Wilson, 2001). Moreover, a prime reason for 

a researcher to conduct a meta-analytic procedure is to validate prior research findings. 

The criticism against the meta-analytic procedure threatens the procedure’s validity. This 

threat in turn poses a threat against the findings of any study employing the methodology.  

Threats to Generalizability 

The criticism of the meta-analytic procedure, notwithstanding even for those in 

the research community who have embraced the methodology, the possible reluctance of 

industry software testing practitioners to embrace the technical methodology poses a 

limitation. While the application of DOE has been shown to improve the software 
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performance testing effectiveness, it is less common in many software testing industries. 

As seen in the settings of original software testing studies, most were conducted in the 

academic arena. For many organizations in the business world, software testing is steeped 

in the traditional methodologies (for example, break-it testing or stress testing). For other 

organizations, the use of software tools in the design and generation of test cases is seen 

as being on the leading edge in the use technology to improve software performance 

testing. This possible threat to the generalizability of this research can be summed up in 

thoughts by Bandurek (2005), who attributed the rigorous mathematical methods and 

statistical tools inherent in the DOE methodology as deterrents to the mainstream 

software testing communities’ reluctance to embrace it. He also hinted that many 

industries would not apply the methodology due to certain industry regulation 

requirements from their customers, which encourages validation methods that are more 

traditional in nature, or could pass standard audit requirements, or standard certification 

processes. 

One Number Summarization of a Research Study   

Reducing research findings to a single number is another criticism offered by 

some in the research community. The research critics who use this as an argument against 

meta-analysis focus on the fact that the procedure reduces an analysis to single summary 

effect size statistic. They submit that doing so ignores the fact that effect size statistics 

may vary from research study to research study.  
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File Drawer Problem   

In meta-analysis, availability bias or the file-drawer problem (the realization that 

possibly relevant literature might be yet unpublished and to discount such literature could 

introduce a bias in the findings) is another noted criticism. This criticism, also known by 

many in the research community as publication bias, refers to possibly missing important 

data. The fact that there could possibly be unpublished studies gave rise to the file drawer 

problem label. Note that this criticism is not just true for meta-analysis but could apply to 

any research. However, because of its association with meta-analysis, the file drawer 

problem poses a limitation for the validity of this study. 

Mixing Apples and Oranges  

The main argument for this criticism is that when researchers combine original 

studies, important differences could be ignored. Additionally, synthesizing studies with 

different characteristics that could be so totally opposite is a real concern. Combining 

such studies might result in a combination that invalidates the research findings. Meta-

analysis brings together original studies with different characteristics. Thus, this mixing 

of different characteristics poses a limitation for this study.  

Recommendations for Future Research 

The analysis revealed several areas to address in future research. In some 

instances questions were raised and in others instances some facets of software 

performance testing could have been given more attention.  As a result, several 

recommendations come to mind. First, any future research should make an effort for 
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more studies from the business world, maybe more technical papers from high 

technology companies to balance the world of academia. This would address any 

appearance of publication bias. Second, the original researchers operationalized 

improvements in software performance testing in a variety of ways. The validity of 

futures studies would benefit by sticking to a single effectiveness measure and a single 

testing phases. Future research should be especially mindful of the apples to oranges 

criticism so often made in the research community, regardless of the research method. 

Third, this analysis revealed little emphasis focused on the software testers. Regardless of 

the testing being performed, the software tester is integral to the process. More emphasis 

should be given to the software tester in any future research. 

Software Testing Publication Bias 

Publication bias is a common issue for most meta-analyses. The funnel plots 

generated for this meta-analysis proved that there was no difference with this one. The 

plots hinted at missing data. The literature reviewed for Chapter 2 was evidence that there 

is quite a bit of literature on findings from software performance testing studies. Future 

software performance testing research should make more of an effort to include a more 

even distribution of studies from academia, industry, and the research labs. On the other 

hand, restricting the meta-analysis to software performance testing studies conducted in 

the same test setting or arena might prevent availability bias. Hence the recommendation 

in this area is to select a particular community of researchers (for example, Agile 

Software Testing) and solicit papers from those researchers. Opening up to include 
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studies presented at conferences, workshops, and published by technical employees in 

businesses would be a way to address publication bias or file drawer syndrome. The best 

recommendation to address publication bias is to select a research method other than 

meta-analysis. 

Software Testing Effectiveness Measurement 

In this meta-analysis, the researchers in the original studies operationalized and 

reported testing performance testing effectiveness in several different ways. It made 

coding for this meta-analysis cumbersome, as predicted by Lipsey and Wilson (2001). 

While all original studies ultimately addressed the cost associated with software 

performance testing, with some researcher measuring effectiveness in terms of the total 

number of the defects detected, others were measuring effectiveness in terms of the 

number of test cases, and still others measuring effectiveness in terms of the total test 

time, the comparison of the effect sizes in the analysis can be difficult. In future research, 

every effort should be made to include only studies that use the same measurement for 

reporting software performance testing effectiveness. 

Software Testers 

The analysis revealed that, depending on the type of software testing, the 

proficiency of the software tester could be very valuable to the software testing results. 

The vast majority of the original investigation in this research meta-analysis focused on 

the design methodology of the test cases and test suites. The software testers, if included 

at all, seemed incidental. Upon closer analysis, the same trend was observed in the 
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studies discussed in Chapter 2. Future research should address this gap with emphasis on 

the proficiency of tester in areas such as knowledge of DOE techniques, software testing 

tools, and testing techniques. For example, future research could assess any trade-offs 

between applying a design methodology where there is rigorous mathematical or 

statistical framework and the benefits to be had from software testers with vast 

knowledge of the system under test or a long standing relationship and understanding of 

the customer.  

Depending on the phase or type of testing, a software tester’s lack of testing or 

software development knowledge could be more of an advantage than a hindrance. There 

was a noticeable gap in the number of the software performance testing investigation 

where the software tester was sufficiently considered. Could the same be said for 

software testers applying DOE techniques when there is not a proficiency in experimental 

design techniques? Any gain to be obtained from applying DOE techniques could easily 

be overshadowed by the time consumed with the upfront test case design and preparation 

activities. Future research could focus on investigating factors that might be constraining 

the effectiveness of the software tester in the software performance testing process. 

Implications for Social Change 

The potential impact of this research study is far-reaching, from society in 

general, to policy and regulations governing software performance testing, to business 

organizations in the software industry, to the software testing professional. 
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Potential Societal Impact 

With today’s increasing dependence on technology and the fast pace of 

technological change, society is more and more invested in the quality and reliability of 

software performance testing. From the automobiles driven, to children toys, to the 

mission critical software embedded in our national defense systems, society is impacted. 

Individuals, families, and organizations depend on automobiles. Our national defense and 

national policy are directly affected by performance testing effectiveness and efficiency. 

The original studies for this research covered academia, research labs, and private 

industry. Covering a cross-section of society with the original included studies showed 

that this research clearly impacts society. Moreover, based on the literature and my 

research, it is clear that improvements in software performance testing impact society at 

all levels. 

Potential Impact for the Software Testing Industry 

Software testing, as discussed throughout this research, is costly (Nirpal & Kale, 

2012; Lazic & Velasevic, 2004; Nirpal & Kale, (2012). The impact of this research is 

significant for the software testing industry in that it provides a methodology that 

addresses testing costs. Reducing the size of the test suite by reducing the number of test 

cases that need to be executed by increasing the coverage of existing test cases, directly 

corresponded to the amount of time needed for the software testing process. The 

measurable reduction in testing time translates performance improvements into lower 

software testing cost, which directly impacts an organization’s bottom line.  
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Potential Impact for the Software Testing Professionals 

 The potential impact for the software testing professional is the application of 

scientific methodology to the design of test cases. This removes some of the subjectivity 

that might enter test case selection, making the process much more repeatable. In the 

competitiveness of industry, organizations are always looking for ways to differentiate 

themselves to gain customers and market share. Software testing professionals with the 

skills to apply DOE techniques would certainly fit the bill.  

On the other hand, this study revealed instances where the subjectivity of the 

tester can be an advantage in the testing process. The tester’s relationship with the 

customer and familiarity with how the system is used in the customer’s organization can 

be invaluable to the test case design and test suite selection. So, while the application of a 

technical methodology in the software testing process can be a differentiator, it does not 

diminish the importance of the software tester, as suggested by Sirathienchai, 

Sophatsathit, and Dechawatanapaisal (2012). The use of experimental design techniques 

should become more pervasive among software testers. Proficiency in the application of 

experimental design techniques could prove, I think after this research, an invaluable skill 

set for software test professionals, and thus increase the effectiveness of software 

performance testing. 

Conclusion 

While most of the research efforts since 1980 into the improvements of software 

testing occurred in a university setting (Watkins, 1982), there were a few studies 
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performed outside of academia. Some of these early studies were taking place in the 

business community. Though these efforts were typically research and development 

projects and among the first to see a reduction in funding during economic downturns, 

these studies were significant in many ways. They paved the way and were foundational 

for other research efforts. The recent rise in the research literature serves to underscore 

the importance of these early studies. The cost of software testing is still the focus of 

many of these investigations, whether in the form of reduced test execution time (Li & 

Song, 2008) or detecting defects as early as possible in the testing process (Baharom & 

Shukur, 2008). These software performance testing efforts, both those discussed in 

Chapter 2 and those included in the meta-analysis, described the use of testing scientific 

methodologies, like pairwise and combinatorial test strategies. Many of the studies 

referenced not only the early studies on software testing, but each other’s works and 

soon certain researchers’ names were recognizable in particular areas of software 

performance  testing improvements investigations.  

All of the original studies included in my meta-analysis were shown to positively 

impact software performance testing. Did the DOE techniques produce more statistical 

significance? The findings, as depicted in Table 18, showed that applying DOE 

techniques was more statically significant than those not employing DOE. The study 

proved this finding at the overall subgroup level, directly comparing the effectiveness of 

the subgroup of studies with DOE applied to the subgroup of studies where DOE was not 

applied. Moreover, the meta-analysis allowed the research to drill down to show exactly 
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which categories of effectiveness measures within the DOE subgroup were more 

influential in improving software performance effectiveness. Particularly, the greater 

statistical significance in the synthesis across all of the original software testing studies 

that applied DOE techniques was shown to be influenced by effectiveness measures 

detected defects and testing hours. 

In conclusion, the findings of this study provide incentive for further study in this 

area. The message from this study is that there is a positive impact on software 

performance testing from applying DOE techniques. Applying DOE techniques improves 

software performance testing effectiveness. The software testing community, the 

software industry, and software test professionals should take note. There should 

continue to be more investigations in this area. For the sake of continuous improvement 

in software testing, studies need to continue so that more benchmarks are conducted and 

more companies adopt best testing practices that incorporate DOE techniques. 
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Appendix A: Statement to the Validation of CMA Version 2 

The Comprehensive Meta-Analysis, version 2 , computer software for meta-

analysis was developed by a team of  experts from the United States and the United 

Kingdom. The following is an email testament as to the quality of the software package 

from one of the developers. 

From: Michael Borenstein [biostat100@gmail.com] 

Sent: Tuesday, October 02, 2012 4:04 PM 

To: gloria.johnson@waldenu.edu 

Subject:  Comprehensive meta-analysis 

 

The program was tested extensively against Revman and the stata macros, which 

 had been seen as the gold standard. 

  

The validation data were sent to NIH as part of the reports, since the program  

development was funded by NIH. 

 

This is the most widely used program in the world for meta-analysis with over  

10,000 users in 50+ countries. 

 

The algorithms are discussed in the book Introduction to Meta-Analysis  

(Borenstein et al) . 

 

There are some 200 publications listed in PubMed that are based on this  

program.  

 

Hope this helps 

Michael 
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Appendix B: Comprehensive Meta-Analysis Version 2 Testimonials 

"Thank you very much for the wonderful workshop at Kent State University. I 

really enjoyed it. I particularly like the way you organize the course, starting with the 

concept, then applications and examples, and finally common mistakes." Jingzhen 

(Ginger) Yang, PhD, MPH, Associate Professor, Department of Social and Behavioral 

Sciences, College of Public Health, Kent State University.  

"The meta-analysis seminar was extremely clear, informative, and helpful. We 

were especially pleased that it was at an appropriate level for the faculty and researchers 

who were from various areas of specialization in health and medical sciences at our 

University of Medicine and Dentistry of New Jersey. Thank you." Syed S. Haque, Ph. D., 

Professor and Chairman, Department of Health Informatics, Director of Graduate 

Programs in Biomedical Informatics.  

 “We perform a variety of meta-analyses for academic, regulatory, and 

international clients. Each presents a different set of challenges regarding study design 

and outcome measurement. We have found CMA to be invaluable in this work. The 

ability of the software to capture a variety of data elements (study design, multiple 

outcomes, covariates/confounders) and present details of computations is important in the 

credibility of our work. The ease of use and ability to produce graphics in a variety of 

formats aids in preparation of the report. In many instances, we are required to replicate 

the results of CMA in another package (for example, SAS). We have always found the 

support staff at CMA very helpful in these replications and the results of CMA have been 
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replicated in every instance. CMA is a great tool in the scientific credibility of our meta-

analytic studies. “ Donna F. Stroup, PhD, MSc, Data for Solutions, Inc. 

“Comprehensive Meta-Analysis is an indispensable tool for efficient problem 

solving in meta-analyses. Regardless of whether or not you are a statistician, the software 

leads you to the world of meta-analysis quickly. Comprehensive Meta-Analysis is 

extremely easy to use and understand and it is a terrific product. “Dr. Takeharu 

Yamanaka, Cancer Biostatistics Laboratory, National Kyushu Cancer Center, Japan 

“I have been using Comprehensive Meta-Analysis for more than 3 years and have 

finished a dozen meta-analysis with this software. The biggest advantage is easy to 

perform and manage the analysis. Studies can be added or removed from the analysis 

without modifying the data. There are a variety of effect size measures, including 

treatment difference, odds ratios, rate differences, correlations, etc. The diagnosis and 

transformation of the effect size is just one click away. The high-quality forest plot and 

comprehensive meta-regression distinguished this software from others. “  Rong Zhou, 

PhD, Senior Biostatistician, Medpace. Cincinnati, Ohio 
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Appendix C: Included Original Studies Without DOE Techniques 

Table C1 

References Without Design of Experiments 

 

No. Reference 

1 Ahmad, N. N., Khan, M. M., & Rafi, L. S. (2010). Software reliability modeling incorporating log-logistic testing-effort 

with imperfect debugging. AIP Conference Proceedings, 1298(1), 651-657. doi:10.1063/1.3516395 

2 Alalfi, M. H., Cordy, J. R., & Dean, T. R. (2009). Modelling methods for web application verification and testing: state of 

the art. Software Testing: Verification & Reliability, 19(4), 265-296. doi:10.1002/stvr.401 

3 Alsmadi, I. (2012). Using test case mutation to evaluate the model of the user interface. Computer Science Journal Of 

Moldova, 20(1), 82-106.  

4 Andrews, J. H., Menzies, T., & Li, F. H. (2011). Genetic algorithms for randomized unit testing. IEEE Transactions On 

Software Engineering, 37(1), 80-94. doi:10.1109/TSE.2010.46 

5 
Askarunisa, A., Prameela, P., & Ramraj, N. (2009). A proposed agent based framework for testing data-centric 

applications. International Journal of Computational Intelligence Research, 5(4), 429–452. Retrieved from Computers & 

Applied Sciences Complete database. 

6 Baharom, S., & Shukur, Z. (2008). The conceptual design of module documentation based testing tool. Journal Of 

Computer Science, 4(6), 454-462.  

7 Briand, L.C., Labiche, Y., & He, S. (2009). Automating regression test selection based on UML designs. Information and 

Software Technology Journal, 51, 16–30. doi:10.1016/j.infsof.2008.09.010 

8 Bryce, R. C., Memon, A. M., & Sampath, S. (2011). Developing a single model and test prioritization strategies for event-

driven software. IEEE Transactions On Software Engineering, 37(1), 48-64. doi:10.1109/TSE.2010.12 
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No. Reference 

9 Chen, T. T., Lau, M. M., Sim, K. K., & Sun, C. C. (2009). On detecting faults for Boolean expressions. Software Quality 

Journal, 17(3), 245-261. doi:10.1007/s11219-008-9064-5 

10 Chen, Z., Duan, Y., Zhao, Z., Xu, B., & Qian, J. (2011). Using program slicing to improve the efficiency and effectiveness 

of cluster test selection. International Journal Of Software Engineering & Knowledge Engineering, 21(6), 759-777.  

11 Ciupa, I. I., Pretschner, A. A., Oriol, M. M., Leitner, A. A., & Meyer, B. B. (2011). On the number and nature of faults 

found by random testing. Software Testing: Verification & Reliability, 21(1), 3-28. doi:10.1002/stvr.415 

12 Clarke, P. J., Power, J. F., Babich, D., & King, T. M. (2012). A testing strategy for abstract classes. Software Testing: 

Verification & Reliability, 22(3), 147-169. doi:10.1002/stvr.429 

13 Foster, G. (2005). User dyads in software testing: bypassing the need for expert observers. British Journal Of Educational 

Technology, 36(2), 205-216. doi:10.1111/j.1467-8535.2005.00453.x 

14 Fraser, G., & Arcuri, A. (2013). Whole test suite generation. IEEE Transactions On Software Engineering, 39(2), 276-291. 

doi:10.1109/TSE.2012.14 

15 Goel, A. A., Gupta, S. C., & Wasan, S. K. (2008). COTT -- A testability framework for object-oriented software testing. 

International Journal Of Computer Science, 3(1), 44-51.  

16 Goel, N., & Gupta, M. (2012). Testability estimation of framework based applications. Journal Of Software Engineering & 

Applications, 5(11), 841-849. doi:10.4236/jsea.2012.511097 

17 Halfond, W. J., Choudhary, S., & Orso, A. (2011). Improving penetration testing through static and dynamic analysis. 

Software Testing: Verification & Reliability, 21(3), 195-214. doi:10.1002/stvr.450 

18 Hu, H., Jiang, C., & Cai, K. (2009). An improved approach to adaptive testing. International Journal Of Software 

Engineering & Knowledge Engineering, 19(5), 679-705.  

19 Itkonen, J., Mäntylä, M. V., & Lassenius, C. (2013). The role of the tester's knowledge in exploratory software testing. 

IEEE Transactions On Software Engineering, 39(5), 707-724. doi:10.1109/TSE.2012.55 
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No. Reference 

20 Just, R., & Schweiggert, F. (2011). Automating unit and integration testing with partial oracles. Software Quality Journal, 

19(4), 753-769. doi:10.1007/s11219-011-9151-x 

21 Kaminski, G., & Ammann, P. (2011). Reducing logic test set size while preserving fault detection. Software Testing: 

Verification & Reliability, 21(3), 155-193. doi:10.1002/stvr.442 

22 Khan, M. (2010). Different forms of software testing techniques for finding errors. International Journal of Computer 

Science Issues (IJCSI), 7(3), 11-16. Retrieved from Computers & Applied Sciences Complete database. 

23 Khoshgoftaar, T. M., & Szabo, R. M. (2006). Dynamic models for testing based on time series analysis. International 

Journal Of Reliability, Quality & Safety Engineering, 13(6), 581-597.  

24 Kumar, M., Sharma, A., & Kumar, R. (2011). Towards multi-faceted test cases optimization. Journal Of Software 

Engineering & Applications, 4(9), 550-557. doi:10.4236/jsea.2011.49064 

25 Kundu, D., Sarma, M., Samanta, D., & Mall, R. (2009). System testing for object-oriented systems with test case 

prioritization. Software Testing: Verification & Reliability, 19(4), 297-333. doi:10.1002/stvr.407 

26 Li, Y., & Song, Y. (2008). An adaptive and trustworthy software testing framework on the grid. Journal Of 

Supercomputing, 46(2), 124-138. doi:10.1007/s11227-007-0160-2 

27 Maheswari, B., & Valli, S. S. (2011). Algorithms for the detection of defects in GUI applications. Journal Of Computer 

Science, 7(9), 1343-1352.  

28 
Marchetto, A., Ricca, F., & Tonella, P. (2008). A case study-based comparison of web testing techniques applied to AJAX 

web applications. International Journal On Software Tools For Technology Transfer, 10(6), 477-492. doi:10.1007/s10009-

008-0086-x 

29 Marinescu, P. D., & Candea, G. (2011). Efficient testing of recovery code using fault Injection. ACM Transactions On 

Computer Systems, 29(4), 1-38. doi:10.1145/2063509.2063511 
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30 Mei, H., Hao, D., Zhang, L., Zhang, L., Zhou, J., & Rothermel, G. (2012). A static approach to prioritizing JUnit test 

cases. IEEE Transactions On Software Engineering, 38(6), 1258-1275. doi:10.1109/TSE.2011.106 

31 Misirli, A., Bener, A., & Turhan, B. (2011). An industrial case study of classifier ensembles for locating software defects. 

Software Quality Journal, 19(3), 515-536. doi:10.1007/s11219-010-9128-1 

32 
Poon, P., Tse, T. T., Tang, S., & Kuo, F. (2011). Contributions of tester experience and a checklist guideline to the 

identification of categories and choices for software testing. Software Quality Journal, 19(1), 141-163. 

doi:10.1007/s11219-010-9109-4 

33 Poulding, S., & Clark, J. A. (2010). Efficient software verification: statistical testing using automated search. IEEE 

Transactions On Software Engineering, 36(6), 763-777. doi:10.1109/TSE.2010.24 

34 
Prakash, V. V., SenthilAnand, N. N., & Bhavani, R. R. (2012). Agile-Fall process flow model - A right candidate for 

implementation in software development and testing processes for software organizations. International Journal of 

Computer Science Issues (IJCSI), 9(3), 457–461. Retrieved from Computers & Applied Sciences Complete database. 

35 
Rao, K., & Sastri, A. (2011). Overcoming testing challenges in project life cycle using risk based validation approach. 

International Journal on Computer Science & Engineering, 3(3), 1232–1239. Retrieved from Computers & Applied 

Sciences Complete database. 

36 Robinson, B., & White, L. (2012). On the testing of user-configurable software systems using firewalls. Software Testing: 

Verification & Reliability, 22(1), 3-31. doi:10.1002/stvr.428 

37 Shahbazi, A., Tappenden, A. F., & Miller, J. (2013). Centroidal voronoi tessellations—A new approach to random testing. 

IEEE Transactions On Software Engineering, 39(2), 163-183. doi:10.1109/TSE.2012.18 

38 

Sirathienchai, J., Sophatsathit, P., & Dechawatanapaisal, D. (2012). Simulation-based evaluation for the impact of 

personnel capability on software testing performance. Journal Of Software Engineering & Applications, 5(8), 545-559. 

doi:10.4236/jsea.2012.58063 

(table continues) 



 

 

179 

No. Reference 

39 
Sirathienchai, J., Sophatsathit, P., & Dechawatanapaisal, D. (2012). Using test employee capability maturity model for 

supporting gaps bridging in software testing. Journal Of Software Engineering & Applications, 5(6), 417-428. 

doi:10.4236/jsea.2012.56048 

40 Teasley, B. E., Leventhal, L., Mynatt, C. R., & Rohlman, D. S. (1994). Why software testing is sometimes ineffective: 

Two applied studies of positive test strategy. Journal Of Applied Psychology, 79(1), 142-154.  

41 Watkins, M. L. (1982). A technique for testing command and control software. Communications Of The ACM, 25(4), 228-

232.  

42 Yang, L., Dang, Z., & Fischer, T. (2011). Information gain of black-box testing. Formal Aspects Of Computing, 23(4), 

513-539. doi:10.1007/s00165-011-0175-6 

43 Ye, D. (2011). Automated testing framework for ODBC driver. Journal Of Software Engineering & Applications, 4(12), 

688-699. doi:10.4236/jsea.2011.412081 

44 Yoon, H., & Choi, B. (2011). A test case prioritization based on degree of risk exposure and its empirical study. 

International Journal Of Software Engineering & Knowledge Engineering, 21(2), 191-209.  

45 Yoon, M., Lee, E., Song, M., & Choi, B. (2012). A test case prioritization through correlation of requirement and risk. 

Journal Of Software Engineering & Applications, 5(10), 823-835. doi:10.4236/jsea.2012.510095 

46 Yuan, X., Cohen, M. B., & Memon, A. M. (2011). GUI interaction testing: Incorporating event context. IEEE 

Transactions On Software Engineering, 37(4), 559-574. doi:10.1109/TSE.2010.50 

47 Zhang, Z., & Zhou, Y. (2007). A fuzzy logic based approach for software testing. International Journal Of Pattern 

Recognition & Artificial Intelligence, 21(4), 709-722.  

48 Zielińska, A. (2012). Framework for Extensible Application Testing. Journal Of Software Engineering & Applications, 
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Appendix D: Included Studies With DOE Techniques 

Table D1 

 

References With Design of Experiments 

No. Reference 

1 

Ahmed, B. S., & Zamli, K. Z. (2011). A review of covering arrays and their application to software testing. 

Journal Of Computer Science, 7(9), 1375-1385. Retrieved from Computers & Applied Sciences Complete 

database. 

2 Alshraideh, M., Mahafzah, B. A., & Al-Sharaeh, S. (2011). A multiple-population genetic algorithm for branch 

coverage test data generation. Software Quality Journal, 19(3), 489-513. doi:10.1007/s11219-010-9117-4 

3 Baier, C., Haverkort, B. R., Hermanns, H., & Katoen, J. (2010). Performance evaluation and model checking 

join forces. Communications of The ACM, 53(9), 76-85. doi:10.1145/1810891.1810912 

4 

Baluda, M., Braione, P., Denaro, G., & Pezzè, M. (2011). Enhancing structural software coverage by 

incrementally computing branch executability. Software Quality Journal, 19(4), 725-751. doi:10.1007/s11219-

011-9150-y 

5 Bandurek, G. R. (2005). Using design of experiments in validation. Biopharm International, 18(5), 40–42, 44, 

46–48, 50, 52. doi:845094131 

6 Belli, F., Budnik, C., & White, L. (2006). Event-based modeling, analysis and testing of user interactions: 

approach and case study. Software Testing: Verification & Reliability, 16(1), 3–32. doi:10.1002/stvr.335 

7 Berling, T., & Runeson, P. (2003). Efficient evaluation of multifactor dependent system performance using 

fractional factorial design. IEEE Transactions on Software Engineering, 29(9), 769–781. doi:431853251 

8 Bida, A. S. (2009). Software testing improvement: Factors for success. Journal of The Quality Assurance 

Institute, 23(4), 4-7. Retrieved from Computers & Applied Sciences Complete database. 
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Sciences Complete database. 
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Engineering, 19(4), 481-505. Retrieved from Computers & Applied Sciences Complete database. 
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(table continues) 

 

 



 

 

182 

No. Reference 
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Appendix E: Cumulative Statistics for Studies where DOE was applied. 

Table E1 

Data Characteristics Raw Data for Studies That Applied DOE Techniques 

 

Studies Findings 

Sample 

Size 

Reporting 

Measure DOE Techniques 

Ahmed, B. S., &   Zamli, K. Z. (2011)  70 48 Defects Covering arrays 

Alshraideh, M., Mahafzah, B. A., & Al-Sharaeh, S. (2011)  40% more 48 Defects/hour Factor covering 

Baier, C., Haverkort, B. R., Hermanns, H., & Katoen, J. (2010) 25 48 Defects 

Combination DOE 

strategy 

Baluda, M., Braione, P., Denaro, G., & Pezzè, M. (2011)  8 48 Defects/hour Covering arrays 

Bandurek, G. R. (2005) 49 48 Defects Factor covering 

Belli, F., Budnik, C., & White, L. (2006) 24% less 48 Test Time Taguchi Approach 

Berling, T., & Runeson, P. (2003)  45 48 

Phase 

Detection Fractional Factorial design 

Bida, A. S. (2009) 50% 48 Defects Taguchi Approach 

Bryce, R., & Colbourn, C. J. (2006) 95% 48 Test Time Factor coverage  

Bryce, R., & Colbourn, C. J. (2007)  90%  less 48 Test Time Pairwise interaction  

Bryce, R. C., & Colbourn, C. J. (2009)  26.9 % less 48 Test Time Covering arrays 

Cai, K., Zhao, D., Liu, K., & Bai, C. (2007)  45 % less 48 Test Time Taguchi Approach 

Cangussu, J. W., Cooper, K., & Wong, W. (2009)  47 48 Defects Taguchi Approach 

Cohen, D., Dalal, S., Fredman, M., & Patton, G. (1997)  20 % less 48 Test Time Combinatorial 
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Studies Findings 

Sample 

Size 

Reporting 

Measure DOE Techniques 

Cohen, M., Dwyer, M., &  Shi, J. (2008) 20 % less 48 Test Time Combinatorial 

Dalal, S.R., &  Mallows, C.L. (1998) 43 48 

Phase 

Detection Factor covering 

Devaraj, E. E., Kumar, S. S., Kavi, T. T., & Rajani Kanth, K. K. (2011)  40% less 48 Test Time Factor covering 

Hartman, A., & Raskin, L. (2003) 5 48 Defects/hour Covering arrays 

He, Z., Staples, G., Ross, M., Court, I., & Hazzard, K. (1997) 33% less 48 Test Time Taguchi Approach 

Hoskins, D.S, Colburn, C.J., & Montgomery, D.C. (2005)  38% 48 Test Time Covering arrays 

Inoue, S., & Yamada, S. (2011) 34 48 Defects Taguchi Approach 

Kadry, S. (2011)  50 48 

Phase 

Detection Covering arrays 

Kadry, S., & Kalakech, A. (2011) 50 48 Defects/hour Covering arrays 

 Kim, J., Sung, D. & Hong, J. (2011) 10 48 Defects/hour Taguchi Approach 

Klaib, M., Muthuraman, S., Ahmad, N., & Sidek, R. (2010)  12% less 48 Test Time Pairwise testing 

Kuhn, R., Wallace, D., & Gallo, A. (2004)  30% less 48 Test Time Combinatorial 

Kuhn, R., Kacker, R., Lei, Y., & Hunter, J. (2009)  923 48 Defects Pairwise interaction  

Kuhn, R., Kacker, R., & Lei, Y. (2008)  100 48 

Phase 

Detection Combinatorial 

Kuhn, R., Lei, Y., & Kacker, R. (2008)  93 48 

Phase 

Detection Combinatorial 

Kuhn, R., Kacker, R., & Lei, Y. (2009)  90 48 

Phase 

Detection 2-way combinations 

    

(table continues) 
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Studies Findings 

Sample 

Size 

Reporting 

Measure DOE Techniques 

Nirpal, P. B., & Kale, K. V. (2012) 50% less 48 Test Time Taguchi 

Parsa, S., & Khalilian, A. (2010)  27% less 48 Test Time Taguchi 

Sagarna, R., & Lozano, J. (2005) 15% less 48 Test Time Taguchi 

Zheng Q., & Dan-ping, W. (2009)  34% less 48 Test Time Factor covering 
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Figure E1. Forest plot of original included studies that had DOE techniques applied. 
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Appendix F: Cumulative Statistics for Studies where DOE was not applied. 

Table F1 

 

Data Characteristics for Studies That Did Not Apply DOE Techniques 

Studies Findings 

Sample 

Size Reporting Measure 

Ahmad, N. N., Khan, M. M., & Rafi, L. S. (2010)  5% more 48 Defects 

Alalfi, M. H., Cordy, J. R., & Dean, T. R. (2009)  24 48 Defects 

Alsmadi, I. (2012) 84% more 48 Defects 

Andrews, J. H., Menzies, T., & Li, F. H. (2011)  90%more 48 Defects 

Askarunisa, A., Prameela, P., & Ramraj, N. (2009)  15 48 Defects 

Baharom, S., & Shukur, Z. (2008) 20 48 Phase Detection (requirements) 

Briand, L.C., Labiche, Y., & He, S. (2009) 20% less 48 Test Time 

Bryce, R. C., Sampath, S., & Memon, A. M. (2011)  95% more 48 Defects 

Chen, T. T., Lau, M. M., Sim, K. K., & Sun, C. C. (2009)  93% more 48 Defects 

Chen, Z., Duan, Y., Zhao, Z., Xu, B., & Qian, J. (2011)  29 48 Defects 

Ciupa, I. I., Pretschner, A. A., Oriol, M. M., Leitner, A. A., & Meyer, 

B. B. (2011)  66% less 48 Test Time 

Clarke, P. J., Power, J. F., Babich, D., & King, T. M. (2012).  55% more 48 

Phase Detection 

(unit/integration) 

Foster, G. (2005) 99% less 48 Test Time 

Fraser, G., & Arcuri, A. (2013)  62% less 48 Test Time 

Goel, A. A., Gupta, S. C., & Wasan, S. K. (2008)  100% 48 Phase Detection (integration) 

   
(table continues) 
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Studies Findings 

Sample 

Size Reporting Measure 

Goel, N., & Gupta, M. (2012)  50% more 48 

Phase Detection 

(unit/integration) 

Halfond, W. J., Choudhary, S., & Orso, A. (2011) 10 hr less 48 Test Time 

Hu, H., Jiang, C., & Cai, K. (2009) 36 48 Phase Detection (regression) 

Itkonen, J., Mäntylä, M. V., & Lassenius, C. (2013)  18%  less 48 Test Time 

Just, R., & Schweiggert, F. (2011)  95 % more 48 Defects 

Poon, P., Tse, T. T., Tang, S., & Kuo, F. (2011)  40% less 48 Test Time 

Poulding, S., & Clark, J. A. (2010) 5% more 48 Defects 

Prakash, V. V., SenthilAnand, N. N., & Bhavani, R. R. (2012)  14% less 48 Test Time 

Rao, K., & Sastri, A. (2011)  40% more 48 Defects 

Robinson, B., & White, L. (2012)  29% more 48 Defects 

Shahbazi, A., Tappenden, A. F., & Miller, J. (2013)  100% more 48 Defects/hour 

Sirathienchai, J., Sophatsathit, P., & Dechawatanapaisal, D. (2012)  90% more 48 Defects/hour 

Sirathienchai, J., Sophatsathit, P., & Dechawatanapaisal, D. (2012a) 62% less 48 Test Time 

Teasley, B. E., Leventhal, L., Mynatt, C. R., & Rohlman, D. S. (1994)  90% more 48 Defects 

Watkins, M. L. (1982)  45% more 48 Defects 

Yang, L., Dang, Z., & Fischer, T. (2011)  50% more 48 Defects 

Ye, D. (2011)  20% less 48 Test Time 

Yoon, H., & Choi, B. (2011)  41% less 48 Test Time 

Zhang, Z., & Zhou, Y. (2007)       30% less         48     Test Time 

Zielinska, A. (2012)     94% more         48      Defects 
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Figure F1. Forest plot of original included studies that did not have DOE techniques applied.
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Appendix G: Formulas Used in the CMA Package Computations 

The formulas used in the CMA software package for the calculations include the 

following:  

Odds ratio = 
                                  

                                  
     

 
LogOddsRatio = ln(OddsRatio)       

 

d = StdDiff =    * 
            

  
       

StdDiffSE =  
              

     
        

StdDiffVar =                     
 

To compute mean differences (g), the program computes a correction factor J, 
 

J =1 – (
 

         
)        

 
Borenstein et al. (2009) g is 

g = d * J         

stdErr(g) = StdErr(d) * J       

Variance(g) =              

To convert standardized mean difference to correlation, r, 

r  = 
 

        
   

where a is the correction factor for instances where n1 ≠ n2, 

  a =  
        

 

    
 

For the Z distribution, 

  Z = 
           

              
  

To compute a 95% confidence interval, 
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Lower Limit = Effect Size – 1.96 (Standard Error) 

Upper Limit = Effect Size + 1.96 (Standard Error) 
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Appendix H: Raw Data 

Table H1  
 

Studies Without Design of Experiments Raw Data Calculations 

 

No. Reference         S1 S2  n1 n2 d 

1 
Ahmad, N. N., Khan, M. M., & Rafi, L. 

S. (2010)  
0.027 0.048 0.215 0.0208 2 2 -0.972 

2 
Alalfi, M. H., Cordy, J. R., & Dean, T. 

R. (2009)  
0.500 0.400 0.530 0.520 8 8 0.1905 

3 Alsmadi, I. (2012) 0.785 0.798 0.070 0.050 4 4 -0.2138 

4 
Andrews, J. H., Menzies, T., & Li, F. H. 

(2011)  
0.844 0.842 0.260 0.257 16 16 0.0077 

5 
Askarunisa, A., Prameela, P., & Ramraj, 

N. (2009)  
29.500 12.500 7.600 3.000 3 3 4.9658 

6 Baharom, S., & Shukur, Z. (2008) 2.750 4.000 1.300 3.200 4 4 -0.511 

7 
Briand, L.C., Labiche, Y., & He, S. 

(2009) 
36.250 35.750 28.700 27.900 4 4 0.0177 

8 
Bryce, R. C., Sampath, S., & Memon, 

A. M. (2011)  
84.000 95.000 14.300 2.600 13 13 -1.0703 

9 
Chen, T. T., Lau, M. M., Sim, K. K., & 

Sun, C. C. (2009)  
402.00

0 
385.000 213.400 206.100 10 10 0.0811 

10 
Chen, Z., Duan, Y., Zhao, Z., Xu, B., & 

Qian, J. (2011)  
0.250 0.210 0.260 0.270 30 30 0.1509 

11 

Ciupa, I. I., Pretschner, A. A., Oriol, M. 

M., Leitner, A. A., & Meyer, B. B. 

(2011)  

14.000 82.500 5.600 28.900 2 2 -3.2908 

      
(table continues) 
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No. Reference         S1 S2  n1 n2 d 

12 
Clarke, P. J., Power, J. F., Babich, D., & 

King, T. M. (2012).  
208.75

0 
0.708 300.700 0.160 16 16 14.7761 

13 Foster, G. (2005) 6.310 8.770 2.990 0.600 13 13 -1.1194 

14 Fraser, G., & Arcuri, A. (2013)  37.650 33.400 42.260 36.980 20 20 0.107 

15 
Goel, A. A., Gupta, S. C., & Wasan, S. 

K. (2008)  
3.540 6.940 1.400 1.300 4 4 -1.497 

16 Goel, N., & Gupta, M. (2012)  1.000 2.000 1.000 1.000 3 3 -0.5 

17 
Halfond, W. J., Choudhary, S., & Orso, 

A. (2011) 
24.330 989.200 25.340 696.190 9 9 -0.6354 

18 Hu, H., Jiang, C., & Cai, K. (2009) -5.600 -16.400 11.600 10.200 5 5 0.9888 

19 
Itkonen, J., Mäntylä, M. V., & 

Lassenius, C. (2013)  
13.600 16.000 7.100 16.700 5 8 -0.187 

20 Just, R., & Schweiggert, F. (2011)  86.710 56.990 3.900 15.300 5 5 2.662 

21 Kaminski, G., & Ammann, P. (2011)  82.200 99.100 18.800 1.600 5 5 -1.2667 

22 Khan, M. (2010)  0.500 1.000 0.600 0.000 5 5 -1.1784 

23 
Khoshgoftaar, T. M., & Szabo, R. M. 

(2006)  
1.200 0.590 3.200 0.800 40 40 0.0002 

24 
Kumar, M., Sharma, A., & Kumar, R. 

(2011) 
1.000 1.000 0.000 0.000 6 9 0 

25 
Kundu, D., Sarma, M., Samanta, D., & 

Mall, R. (2009)  
58.700 59.900 28.200 28.500 7 7 -0.0423 

26 Li, Y., & Song, Y. (2008)  50.500 94.130 36.930 58.340 8 8 -0.8936 

27 Maheswari, B., & Valli, S. S. (2011)  50.000 75.000 53.500 26.700 8 8 -0.5913 

28 
Marchetto, A., Ricca, F., & Tonella, P. 

(2008)  
30.500 55.300 6.140 17.370 4 4 -1.9037 

29 Marinescu, P. D., & Candea, G. (2011)  70.000 71.000 12.400 12.600 2 2 -0.08 

      
(table continues) 
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No. Reference         S1 S2  n1 n2 d 

30 
Mei, H., Hao, D., Zhang, L., Zhang, L., 

Zhou, J., & Rothermel, G. (2012)  
-4.120 -12.300 3.290 28.990 4 4 -3.3048 

31 
Misirli, A., Bener, A., & Turhan, B. 

(2011)  
0.818 0.742 0.050 0.180 5 5 0.5753 

32 
Poon, P., Tse, T. T., Tang, S., & Kuo, F. 

(2011)  
1.430 0.800 1.550 0.350 5 5 0.4895 

33 Poulding, S., & Clark, J. A. (2010) 0.730 0.760 0.190 0.240 5 5 -0.1389 

34 
Prakash, V. V., SenthilAnand, N. N., & 

Bhavani, R. R. (2012)  
1.300 2.700 0.580 0.580 5 5 -1.9084 

35 Rao, K., & Sastri, A. (2011)  0.250 1.000 0.260 0.000 14 14 -4.0805 

36 Robinson, B., & White, L. (2012)  1.000 0.700 0.630 0.820 6 6 0.4103 

37 
Shahbazi, A., Tappenden, A. F., & 

Miller, J. (2013)  
1.014 1.014 0.00044 0.00041 4 4 0 

38 
Sirathienchai, J., Sophatsathit, P., & 

Dechawatanapaisal, D. (2012)  
79.088 78.397 44.966 24.921 9 9 3.918 

39 
Sirathienchai, J., Sophatsathit, P., & 

Dechawatanapaisal, D. (2012)  
49.900 53.300 21.700 7.700 9 9 -0.2088 

40 
Teasley, B. E., Leventhal, L., Mynatt, C. 

R., & Rohlman, D. S. (1994)  
5.710 5.300 2.600 3.200 17 10 0.1413 

41 Watkins, M. L. (1982)  
-

3831.4

00 

-3831.800 2864.980 2872.260 10 10 0.0001 

42 Yang, L., Dang, Z., & Fischer, T. (2011)  0.630 0.670 0.140 0.190 6 6 -0.2395 

43 Ye, D. (2011)  2.500 4.500 2.100 2.100 2 2 -0.9524 

44 Yoon, H., & Choi, B. (2011)  
153.50

0 
159.500 170.700 95.200 10 10 -0.0302 

45 
Yoon, M., Lee, E., Song, M., & Choi, B. 

(2012)  
70.300 94.900 21.800 4.100 8 8 -1.5684 

      
(table continues) 
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No. Reference         S1 S2  n1 n2 d 

46 
Yuan, X., Cohen, M. B., & Memon, A. 

M. (2011)  
0.770 0.920 0.740 0.690 6 6 -0.2097 

47 Zhang, Z., & Zhou, Y. (2007)  0.880 0.750 0.200 0.280 12 12 0.5343 

48 Zielińska, A. (2012)  40.000 140.000 28.300 56.600 2 2 -2.2348 

 

  



 

 

199 

Table H2  

 

Studies With Design of Experiments Raw Data Calculations 
 

No. Reference         S1 S2  n1 n2 d 

1 Ahmed, B. S., &   Zamli, K. Z. (2011)  0.025 5.000 0.700 0.000 2 2 0.2470 

2 
Alshraideh, M., Mahafzah, B. A., & Al-Sharaeh, S. 

(2011)  
347.500 155.600 158.400 69.700 8 8 1.5740 

3 
Baier, C., Haverkort, B. R., Hermanns, H., & Katoen, 

J. (2010) 
299.000 457.600 401.000 520.500 4 5 1.0847 

4 
Baluda, M., Braione, P., Denaro, G., & Pezzè, M. 

(2011) 
36.600 107.200 22.200 6.500 20 20 -1.0320 

5 Bandurek, G. R. (2005)  15.800 4.000 7.500 0.000 5 5 2.2250 

6 Belli, F., Budnik, C., & White, L. (2006) 26.000 30.000 6.600 5.600 3 3 0.6570 

7 Berling, T., & Runeson, P. (2003) 9.000 10.000 10.600 12.500 16 16 -0.1130 

8 Bida, A. S. (2009) 1.000 0.600 0.000 0.550 5 5 1.0285 

9 Bryce, R., & Colbourn, C. J. (2006) 0.900 0.750 0.110 0.010 3 3 1.9200 

10 Bryce, R., & Colbourn, C. J. (2007)  88.600 79.800 1.610 1.170 5 5 7.0230 

11 Bryce, R. C., & Colbourn, C. J. (2009) 159.800 160.000 43.900 43.200 6 6 0.0045 

12 Cai, K., Zhao, D., Liu, K., & Bai, C. (2007) 37.500 3.300 21.800 2.400 4 4 2.2053 

13 Cangussu, J. W., Cooper, K., & Wong, W. (2009) 13.600 11.600 8.080 7.230 3 3 0.2608 

14 Cohen, D., Dalal, S., Fredman, M., & Patton, G. (1997) 54.000 75.000 13.000 19.000 4 4 1.2900 

15 Cohen, M., Dwyer, M., &  Shi, J. (2008) 149.000 169.000 71.900 74.900 5 5 0.2791 

     
(table continues) 
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No. Reference         S1 S2  n1 n2 d 

16 Dalal, S.R., &   Mallows, C.L. (1998)  0.905 0.686 0.940 0.180 27 27 0.4803 

17 
Devaraj, E. E., Kumar, S. S., Kavi, T. T., & Rajani 

Kanth, K. K. (2011)  
4.490 1.234 0.990 1.910 8 8 4.6300 

18 
Dunietz, I.S., Ehrlich, W.K., Szablak, B.D., Mallows, 

C.L., & Iannino, A. (1997)  
12.170 9.000 7.500 9.900 6 6 0.3610 

19 
Forbes, M., Lawrence, J., Lei, Y., Kacker, R., & Kuhn, 

R. (2008)  
256.000 217.000 130.800 101.700 7 7 0.3329 

20 Grindal, M., Offutt, J. & Andler, S.F. (2005)  58.200 37.700 18.910 13.040 4 4 1.2623 

21 Gupta, M., Gupta, R., & Tripathi, A. (2009) 144.800 115.800 269.000 208.000 5 5 0.1208 

22 Gupta, A., & Jalote, P. (2008) 0.710 2.070 0.182 0.605 5 5 -3.0430 

23 Gupta, A., Kapur, R., & Jha, P. C. (2008) 54.310 15.400 11.420 1.750 2 16 7.1900 

24 Hartman, A., & Raskin, L. (2003)  54.600 43.400 71.180 45.920 3 3 0.1870 

25 
He, Z., Staples, G., Ross, M., Court, I., & Hazzard, 

K. (1997) 
1.000 1.000 1.000 0.000 3 3 0.0000 

26 
Hoskins, D.S, Colburn, C.J., & Montgomery, D.C. 

(2005).  
58.300 41.600 21.460 7.960 66 3 1.0370 

27 Inoue, S., & Yamada, S. (2011)  19.200 16.900 11.300 11.900 6 6 0.1983 

28 Kadry, S. (2011)  24.500 27.000 14.850 32.530 2 7 -0.0988 

29 Kadry, S., & Kalakech, A. (2011)  32.500 27.000 38.890 32.530 2 2 0.1534 

30 Kim, J., Sung, D. & Hong, J. (2011)  2169.230 1502.390 399.500 358.200 7 7 2.4840 

31 
Klaib, M., Muthuraman, S., Ahmad, N., & Sidek, R. 

(2010)  
45.000 19.000 50.900 18.400 2 2 0.7002 

     
(table continues) 
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No. Reference         S1 S2  n1 n2 d 

32 Kuhn, R., Wallace, D., & Gallo, A. (2004)  82.170 89.750 22.400 14.800 6 4 -0.3811 

33 Kuhn, R., Kacker, R., Lei, Y., & Hunter, J. (2009)  93.170 80.330 13.900 20.100 6 6 0.7431 

34 Kuhn, R., Kacker, R., & Lei, Y. (2008)  1.000 1.000 0.900 0.900 9 9 0.0000 

35 Kuhn, R., Lei, Y., & Kacker, R. (2008)  93.200 82.500 13.110 22.250 6 6 0.5847 

36 Kuhn, R., Kacker, R., & Lei, Y. (2009)  5.300 4.600 7.600 4.900 3 3 0.1094 

37 Kuhn, D.R., & Reilly, M.J. (2002)  16.700 16.700 18.800 16.200 6 6 0.0000 

38 Lazic, L. (2010)  15.600 12.200 7.500 9.200 6 8 295.4000 

39 Lazic, L., & Velašević, D. D. (2004) 7.700 6.600 3.500 3.100 9 9 0.3330 

40 Lei, Y., Carver, R., & Kung, D. (2007)  1093 235084 2293 523785 5 5 -0.7060 

41 Lun, L., Chi, X., & Ding, X. (2012)  47.400 55.100 0.800 12.400 5 5 -0.8750 

42 Mala, D., Mohan, V. V., & Kamalapriya, M. M. (2010)  181.500 127.500 144.000 85.000 10 10 0.4576 

43 
Montanez, C., Kuhn, D.R., Brady, M., Rivello, R., 

Reyes, J., & Powers, M.K., (2011)  
77.000 61.800 31.700 42.400 6 6 0.4064 

44 
Mouchawrab, S., Briand, L. C., Labiche, Y., & Di 

Penta, M. (2011)  
67.000 77.000 11.400 8.600 9 9 0.9903 

45 Nirpal, P. B., & Kale, K. V. (2012)  1000.000 550.000 0.000 158.000 10 10 12.1600 

46 Parsa, S., & Khalilian, A. (2010)  76.100 75.700 13.300 13.400 6 6 0.1199 

47 Sagarna, R., & Lozano, J. (2005)  19.600 17.400 3.300 2.100 7 7 0.7857 

48 Zheng Q., & Dan-ping, W. (2009)  0.500 0.900 0.150 0.030 5 5 0.0571 
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Appendix I: Effectiveness Measures Statistical Data 

 

Figure I1. Computed statistical data for studies reporting findings as detected defects.   
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Figure I2. Forest plot studies reporting findings as detected defects.  

 (Note. A is the DOE subgroup and B is the NoDOE subgroup.)
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Figure I3. Computed statistical data for studies that reported defect detection rate.   
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Figure I4. Forest plot for studies reporting findings as defect detection rate.  

(Note. A is the DOE subgroup and B is the NoDOE subgroup.)
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Figure I5. Computed statistical data for studies that reported defects by phase detected. 
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Figure I6. Forest plot for studies that reported defects by phase detected. 

(Note. A is the DOE subgroup and B is the NoDOE subgroup.)
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Figure I7. Computed statistical data for studies that reported total testing hours.
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Figure I8. Forest plot for studies that reported total testing hours. 

(Note. A is the DOE subgroup and B is the NoDOE subgroup.) 
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