CALCULATING COHEN'S KAPPA

A MEASURE OF INTER-RATER RELIABILITY

FOR QUALITATIVE RESEARCH INVOLVING NOMINAL CODING

WHAT IS COHEN'S KAPPA?

COHEN'S KAPPA IS A STATISTICAL MEASURE CREATED BY JACOB COHEN IN 1960 TO BE A MORE ACCURATE MEASURE OF RELIABILITY BETWEEN TWO RATERS MAKING DECISONS ABOUT HOW A PARTICULAR UNIT OF ANALYSIS SHOULD BE CATEGORIZED.

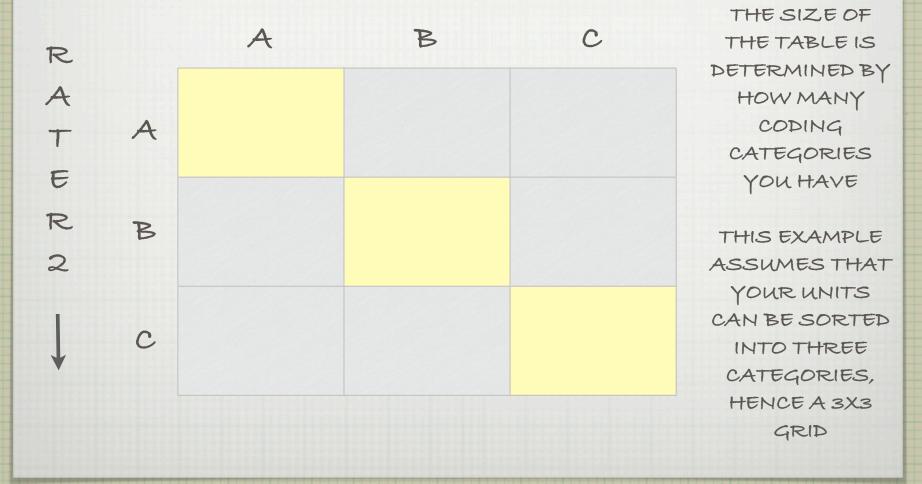
KAPPA MEASURES NOT ONLY THE % OF AGREEMENT BETWEEN TWO RATERS, IT ALSO CALCULATES THE DEGREE TO WHICH AGREEMENT CAN BE ATTRIBUTED TO CHANCE.

JACOB COHEN, A COEFFICIENT OF AGREEMENT FOR NOMINAL SCALES, *EDUCATIONAL AND PSYCHOLOGICAL MEASUREMENT* 20: 37–46, 1960.

THE EQUATION FOR K

THE FANCY "K" STANDS FOR KAPPA

 $\rightarrow \mathcal{K} = \Pr(a) - \Pr(e)$


N-Pr(e)

PR(A) = SIMPLE AGREEMENT AMONG RATERS

N = TOTAL NUMBER OF RATED ITEMS, ALSO CALLED "CASES" PR(E) = LIKLIHOOD THAT AGREEMENT IS ATTRIBUTABLE TO CHANCE

CALCULATING \mathcal{K} BY HAND USING A CONTINGENCY TABLE

RATER 1 \longrightarrow

CALCULATING \mathcal{K} by hand using a contingency table

		RATER	THE DIAGONAL		
R		A	B	C	HIGHLIGHTED HERE
4	A	# of agreements on A	disagreement	disagreement	REPRESENTS AGREEMENT (WHERE THE TWO RATERS
E R 2	В	disagreement	# of agreements on B	disagreement	BOTH MARK THE SAME THING)
Ļ	С	disagreement	disagreement	# of agreements on C	

USING A RANDOM NUMBER TABLE, I PULLED COMMENTS FROM ENGLISH LANGUAGE BLOGS ON BLOGGER.COM UNTIL I HAD A SAMPLE OF 10 COMMENTS

I ASKED REW COLLEAGUES TO RATE EACH COMMENT: "PLEASE CATEGORIZE EACH USING THE FOLLOWING CHOICES: RELEVANT, SPAM, OR OTHER."

WE CAN NOW CALCULATE AGREEMENT BETWEEN ANY TWO RATERS

DATA: RATERS 1-5

ltem #	I	2	3	4	5	6	7	8	9	10
Rater I	R	R	R	R	R	R	R	R	R	S
Rater 2	S	R	R	0	R	R	R	R	0	S
Rater 3	R	R	R	0	R	R	0	0	R	S
Rater 4	R	R	R	R	R	R	R	R	R	S
Rater 5	S	R	R	0	R	0	0	R	R	S

CALCULATING K FOR RATERS 1 & 2

RATER 1 \longrightarrow

R		R	S	0		ADD
						ROWSE
A	-	6	0	0	6	COLUMNS
Т	R	(ltem #2,3, 4-8)	0	Ū	0	SINCEWE
E						HAVE 10
R						ITEMS,
	S	(ltem #I)	(Item #10)	0	2	THE
2						TOTALS
						SHOULD
	0	2	0	0	2	ADDUP
+	0	(ltem # 4 & 9)	0	0	L	TO 10 FOR
						EACH
		9		0	10	

CALCULATING K COMPUTING SIMPLE AGREEMENT

		ADD VALUES			
R		R	S	0	OF DIAGONAL CELLS S DIVIDE BY
A T	R	6 (Item #2,3, 4-8)	0	0	TOTAL NUMBER OF CASES TO
E R 2	S	ا (ltem #1)	ا (Item #10)	0	COMPUTE SIMPLE AGREEMENT OR
Ļ	0	2 (Item #4 & 9)	0	0	"PR(A)"
					(6+1)/10

THE EQUATION FOR K: RATERS | & 2

WE CAN NOW ENTER THE VALUE OF PR(A)

 $\rightarrow \mathcal{K} = 7 - \Pr(e)$

10 -Pr(e)

WE ALSO SUBSTITUTE 10 AS THE VALUE OF N

RATERS 1 § 2 AGREED ON 70% OF THE CASES. BUT HOW MUCH OF THAT AGREEMENT WAS BY CHANCE? PR(A) = SIMPLE AGREEMENT AMONG RATERS

PR(E) = LIKLIHOOD THAT AGREEMENT IS ATTRIBUTABLE TO CHANCE

CALCULATING \mathcal{K} EXPECTED FREQUENCY OF CHANCE AGREEMENT

		RAT	ER 1 -	FOR EACH	
Ð		R	S	0	DIAGONAL
RATER2		6 (5.4) I (ltem #1)	0 (.2)	0 0	CELL, WE
	R				COMPUTE
					EXPECTED
	S				FREQUENCY OF
					CHANCE (EF)
~	0	2 (Item #4 & 9)	0	0 (0)	$\frac{\text{ROW TOTAL X COL TOTAL}}{\text{EF}} = \text{TOTAL # OF CASES}$

EF FOR "RELEVANT" = (6*9)/10 = 5.4

CALCULATING \mathcal{K} EXPECTED FREQUENCY OF CHANCE AGREEMENT

RATER 1 \longrightarrow

R		R	S	0
R A T	R	<mark>6</mark> (5.4)	0	0
E R	S	ا (ltem #۱)	 (.2)	0
2	0	2 (Item #4 & 9)	0	0 (0)

ADD ALL VALUES OF(EF)TO GET"PR(E)" PR(E) =5.4 + .2 + 0 = 5.6

THE EQUATION FOR K: RATERS I & 2

WE CAN NOW ENTER THE VALUE OF PR(E) & COMPUTE KAPPA

10 - 5.4

PR(A) = SIMPLE AGREEMENT AMONG RATERS

 $\mathcal{K} = .35$

THIS IS FAR BELOW THE ACCEPTABLE LEVEL OF AGREEMENT, WHICH SHOULD BE AT LEAST . 70

PR(E) = LIKLIHOOD THAT AGREEMENT IS ATTRIBUTABLE TO CHANCE