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Development of Dual-Frequency Injection-Locked

Continuous-Wave Ti: Sapphire Laser And

Its Applications to Nonlinear Optical-Phenomena

Abstract: This thesis describes the development of dual-frequency injection-locked (DFIL)

continuous-wave titanium-sapphire laser and its applications in the study of cavity based

stimulated Raman scattering and also in the generation of phase locked harmonics by op-

tical frequency division technology to demonstrate the continuous wave based arbitrary

optical wave form synthesis. At first, the DFIL laser fundamental properties such as single

longitudinal mode profile, single transverse mode, and practical power stability were char-

acterized.The DFIL laser delivers a maximum of 2.8 W total output power at a 10 W pump

power. As the advanced abilities, desirable two frequency separation (1 THz to 10 THz)

and well controlled relative output power ratios as a function of injection seed powers over

a wide dynamic range were demonstrated.

As an application of the DFIL laser, CW laser based stimulated Raman scattering in the

para- H2 gas medium was studied. For this purpose, Ti: sapphire laser output was coupled

to the high finesse optical cavity and observed multiple Stokes and anti-Stokes rotational

Raman components of the para-H2 J=0 to J=2 rotational transition. Efficient anti-Stokes

generation through four wave mixing process was obtained by controlling the gas density

for a fixed mirror dispersion which was introduced from its dielectric coating.

The output of the Ti: sapphire laser was coupled to an array of periodically poled lithium

niobate (PPLN) wave guides, together with another IR frequency and generated phase

locked five harmonics with a frequency spacing of 125 THz by the optical division technology.

These phase locked harmonics were synthesized to obtain the arbitrary optical wave form

by utilizing the novel technique of the freely controlled optical phases and amplitudes by

controlling the thickness of the transparent dispersive media in the optical path. In this

way, an ultrashort pulse train with a repetition rate of 125 THz and a pulse duration of 1.6

fs was obtained.
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CHAPTER 1

Introduction

1.1 Literature and overview

Since the first demonstration of the laser in 1960 by Theodore Harold Maiman, there

have been significant advances in the laser light sources. Development of the laser

light sources along with the optical technology, not only enhances the progress of

the optical science, but also brings the revolutionary changes in the industry. In

the past 50 years there were developed many extreme laser light sources such as

single frequency laser, ultra high intense laser, ultra-short pulsed laser, ultra fast

laser, and short wavelength laser. Development of the single frequency laser source

enabled the study of the high resolution precision spectroscopy, laser cooling [1],

Bose-Einstein condensation and also it plays an important role in the demonstration

of the highly standardize optical clocks [2] and in the detection of the gravitational

waves [3]. Development of the ultra-short pulsed lasers with a time scale of a few

femto-seconds (10−15) [4] to atto-seconds (10−18) shows the way to observe the ultra-

fast processes in the nature such as the motion of the electrons and fast chemical

reactions. Another extreme laser source is the short wavelength laser, such as vacuum

1
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ultraviolet, extreme ultraviolet and coherent X-ray laser sources. These laser sources

have strong applications in the industry as well as in the optical science such as in

the lithography ( development of the ultra-small structures such as micro electronics).

Also, these lasers have good number of applications in the biology (in the study

of proteins) and in the medicine (ophthalmology). Another extreme laser source

is the ultrahigh power lasers, which enables the laser based particle accelerators,

high harmonic generation and laser plasma. Such a huge area of optical science

is established in the past 50 years, because of the continuous progress in the laser

technology. Laser light sources and some of their applications are shown in figure 1.

Laser

  Single 

frequency 

    laser

  High

intensity

   laser

     Short

 wavelength

       laser

Ultrashort 

   pulsed

     laser

Ultrafast

    laser

         Metrology,

Precision spectroscopy,

      Laser cooling

     Ultrafast

       optical

communication

         Laser plasma,

     High harmonic

        generation, 

     Laser machining

       Medicine,

Ultrahigh resolution 

      spectroscopy

Ultrafast science 

 and technology, 

Chemical reaction 

         control

Figure 1.1: Extreme laser light sources and their applications

Here, we have developed the conceptual design of an injection-locked dual-frequency

laser for the first time and realized the dual frequency laser oscillation. The advan-

tages with this laser are good spatial overlap between the two frequency beams,

controllable relative powers and arbitrary separation of the frequency pairs. These

features are crucial for many nonlinear optical phenomena when there is need of two

or more frequencies. Development of such a laser source makes the experiments easy

2
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in terms of optical alignments such as spatial overlap of the multiple frequency beams.

The dual-frequency laser source is realized with the aid of injection locking technique.

So far, single frequency injection locked operation in various kinds of laser systems

such as YAG lasers and Ti:sapphire lasers etc., have been reported [5–9]. Few of the

dual-frequency lasers were reported, in the diode lasers by two longitudinal mode op-

eration [10], in the Nd:YAG by injection seeded [11], and in the Ti:sapphire lasers by

self seeding technique and through intra-cavity wavelength selective elements [12,13]

etc., There are few reports on the two frequency injection locked laser operation in the

nano-second pulsed regime [14–17]. There are no reports on dual-frequency injection-

locked operation of continuous wave lasers. We proposed a method to demonstrate the

stable two frequency laser oscillation from a single laser cavity. The key techniques

are injection seeding and locking the cavity length for simultaneous two frequency

resonance. For this, we choose the Ti: sapphire power oscillator, because of its wide

frequency bandwidth from 700-1100 nm [18], and good optical to optical conversion

efficiency.

Multiple frequency lasers with arbitrary frequency separation and narrow line

width have good number of applications in the study of various optical phenomena

such as, nonlinear optical processes in isolated atomic or molecular systems [19–21],

four wave mixing process [22], THz generation [23, 24], atom interferometry, simul-

taneous cooling and trapping of multiple atomic spices [25], atmospheric science,

precision spectroscopy and differential absorption LIDAR [26–28]. All these studies

are required more than one frequency with high spectral purity.

Although the dual frequency laser system is a little complex, it has many ad-

vantages apart from its compact size, like spatial overlap of the multiple frequency

beams, similar divergence pattern and controllable output powers of the two fre-

quencies. These features are crucial for the many nonlinear optical experiments and

difficult to realize by simply combining the two independent laser beams in the free

3



1.2. THESIS OVERVIEW 4

space. Injection locked lasers have many advantages compared with other laser sys-

tems such as master oscillator power amplifier (MOPA) laser systems. MOPA lasers

are simple in nature but it includes the distorted beam profile from the mode mis-

match between the master laser and amplifier, and thermally induced birefringence,

which causes for the depolarization. Also, the output of the MOPA lasers includes

the amplified spontaneous emission which is not acceptable for many optical experi-

ments. Even though it has a simple operation, because of these drawbacks one can

not use, if these parameters effect the physical measurements. Injection locked lasers

over come these draw backs and enhance the applications.

1.2 Thesis overview

This thesis mainly deals with development of a dual frequency injection locked laser

and its applications in the study of Raman based molecular modulator by using para-

H2 gas and cavity enhancement technique. It also presents an application of the

injection locked single frequency laser in the generation of the continuous wave laser

based phase locked harmonics by using the optical frequency division technique to

realize the 125 THz repetition rate ultrafast optical pulse train by manipulating the

relative phases and amplitudes of the phase locked harmonic frequencies.

Chapter2 provides the full details of the dual-frequency injection locked laser

(DFIL) system. The main components of the DFIL laser such as master cavity, seed

lasers system, Pound-Drever-Hall locking system and bow-tie ring cavity power oscil-

lator are described in this chapter.

Chapter3 describes the performance of the DFIL laser system. The laser funda-

mental features like single frequency, single transverse mode profiles are characterized

by analyzing with the scanning Fabry-Perot cavity and by measuring the M2 factors

and the results are discussed. Also, we present the laser practical power stability in

4
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the short time scale and relatively long time scales. DFIL laser free-running power

suppression as a function of injection seed power is presented. As the advanced fea-

tures, arbitrary frequency separation of the two frequencies from 1THz to 10THz are

presented with the injection locking technique. Also, we present the controllabilty

of the relative output power ratios of the injected frequencies as a function of the

injection seed powers.

In chapter4, an application of the dual-frequency injection-locked laser in the

study of the continuous wave laser based molecular modulator is described. Gen-

eration of the coherent Raman sidebands in the para-H2 gas medium by utilizing

the optical cavity enhancement technique is studied. We present the multiple Stokes

generation by driving the para-H2 medium with a single frequency laser correspond-

ing to the rotational transition J=0 to J=2 . We discuss the requirements and their

possibilities to generate broad band coherent stokes and anti-stokes through cavity

enhancement technique.

In chapter5, an application of the single frequency injection locked laser in the

generation of phase locked harmonics is described. Importance of the high power

master laser in the generation of the phase locked high harmonics using the optical

frequency division technique is narrated. Also we report the arbitrary manipulation

of the relative phases and amplitudes of the harmonic frequencies by simply placing

the dispersive elements in the optical path and by controlling their thicknesses. Real-

ization 125 THz ultrafast optical pulse train based on the continuous wave harmonic

frequencies is described

In chapter6, we summarize the main results of the thesis and discuss the future

prospects of this research work.

5
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CHAPTER 2

Dual-Frequency Laser System

2.1 Introduction

The goal of this work is to develop a dual-frequency laser with an excellent perfor-

mance in terms of the power, beam quality, power stability, frequency selectivity and

relative output power controllability. This chapter describes the main components

of the dual frequency injection-locked laser system that can fulfill the goal of this

research work. There are a few choices to realize the stable dual-frequency injection

locked laser, here we select a method in which the seed frequencies are locked to a

high finesse cavity and introduced into the power oscillator. Later, power oscillator is

locked at simultaneous dual-frequency resonance. In order to realize the simultaneous

resonance of the two frequencies with the power oscillator, we insert a pair of wedge

plates in the optical path of the power oscillator cavity. Although this method is a

bit complex compared to the other possible methods such as locking the frequency di-

rectly to the power oscillator cavity [1]. It has advantages in terms of laser linewidth,

which depends on the locking cavity finesse, in this case it is the master cavity finesse.

In the later case, it is limited by the power oscillator cavity finesse, which should not

9



2.2. INJECTION-LOCKING AND LOCKING RANGE 10

be increased to a high value.

2.2 Injection-locking and locking range

Injecting a weak laser frequency into a high power free-running oscillator can produce

a high power laser with the similar features of the injected weak signal [2]. Consider

a single frequency laser operating at a frequency ω0 with a free running output power

P0. Consider a ring cavity and a weak seed frequency ω1 with a power P1 is incident

on the cavity output coupler. Depending on the power and frequency of the incident

weak signal will amplify in the power oscillator. As shown in figure 2.1, the maximum

power produced at ω0, but there exists small gain at ω1.The regenerative gain for the

electric field of a weak beam reflecting from the output coupler can be written as

g(ω1) =
r2

1 −G(ω1)

r1(1−G(ω1))
(2.1)

where r1 is the output coupler reflection coefficient and G(ω1) represents the round

trip gain at ω1. The round trip gain can be written as G(ω1) = (reff )e
(−α0l0)e(αeff leff )

e−i(ω0−ω1)L/c Here reff is the reflection coefficients of the cavity mirrors except for

the output coupler, e(−α0l0) represents the absorption losses of the cavity, e(αeff leff )

represents the gain in the cavity, c is the velocity of the light and L is the cavity

round trip optical path length. Under the assumption of the ω1 ∼ ω0, the equation

2.1 can be written as

g(ω1) =
(1− r2)c/L

i(ω0 − ω1)
(2.2)

As shown in the figure 2.1, as the seed frequency approaches the ω0, the seed amplified

rapidly inside the power oscillator cavity, which is represented by the solid red curve.

When the seed frequency ω1 is sufficiently close to the free-running frequency ω0, the

free running power at ω0 is suppressed a lot and the most of the power oscillates at

the injected frequency ω1. This will happen from either side of the center frequency.

The points at which the injected signal oscillates with the maximum power or the

free-running power vanishes fully are called the locking points, which are represented

10



2.3. DFIL LASER SYSTEM 11

by A, B. The frequency spacing between these two points are called the full locking

range. The locking range can be defined by the following equation,

∆ωlock = 2(1− r2)
c

L

√
Pmaster
Pfreerun

(2.3)

According to this equation, the locking range depends on the ratio of the master

and free-running powers. Also it is understandable, to a fixed locking range, as the

free-running power increases, more seed power will be required. If we want to drive

a high power oscillator, it is necessary to inject more seed power, which is difficult in

the most of the cases.

Free-running 

oscillation power

 

ω0ω1

Locking range

Amplified signal

at seed frequency

ω

∆ω

A B

Figure 2.1: Illustration of the injection locking range; A modified version of the A.
E. Siegman, Lasers (1986)

2.3 DFIL laser system

The DFIL laser system can be mainly divided into three parts. 1. Master cavity, 2.

Seed lasers system, and 3. Power oscillator

11
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2.3.1 Master cavity

 

 

 

M₁ M!
Cavity body

PZT

Figure 2.2: Illustration of the master cavity. M1 and M2 are highly reflective cavity
mirros; PZT, piezoelectric transducer.

The master cavity is a high finesse optical cavity with an optical finesse of 6,500 and

cavity length 6cm. The corresponding free spectral range is 2.5 GHz and the allowed

linewidth (Full width at half maximum) of the cavity is 1.3 MHz. This cavity is

designed in the semi-confocal configuration with a flat mirror (R =∞) and a concave

mirror (R = 200 mm) as shown in the fig.2.2. Both the mirrors are highly reflective

over the wavelength range 700− 900 nm. The beam waist diameters at the flat and

curved mirrors are ∼ 300µm and 400µm respectively. As shown in figure 2.2, one of

the mirrors is fixed to a rigid hollow cylindrical body. The cavity body is made of

ultra low thermal expansion glass material to reduce the thermal fluctuations. The

PZT (Piezo electric-transducer) is fixed properly to the rigid body by utilizing the

drill inside the body. The remaining mirror is fixed to the rigid body through a PZT

to adjust and modulate the cavity length. The PZT has a groove with hole diameter

of 4mm, which is sufficiently greater than the mode profile at the mirrors. The same

master cavity can be used as a enhancement cavity to check the nonlinear optical

phenomenon of a gas medium. For this purpose this cavity is kept inside a chamber

12



2.3. DFIL LASER SYSTEM 13

which can be filled with a gas medium depending on the application.

2.3.2 Seed lasers system

ECDL1

ECDL2

 TA

EOM

TA

 

osos
PS

PSSA

SA

EOM

Towards power oscillator

L =6 cm

PD

Mix Mix

Iso

Iso
Iso

GL

LO LO

(ω")

(ω")

(M")

(M#)

Figure 2.3: Illustration of the seed lasers system. ECDL, external-cavity controlled
diode laser; Iso, inline isolator; TA, tapered amplifier; EOM, electro-optic modulator;
PD, photo-detector; GL, glan laser polarizer; PS, phase shifter; LO; local oscillator;
Mix, radio frequency mixer; SA, servo amplifier

Our seed lasers are home made external cavity diode lasers (ECDLs). Each ECDL

can deliver 20-30 mW output power at 100 mA operating currents (laser diodes

purchased from Eagleyard photonics). These ECDLs can be continuously tunable up

to a few GHz, using a PZT on which the grating was mounted.The diodes output

frequencies can be select with in the gain width of few 10s of nm. The estimated free

running frequency fluctuations are on the order of 1MHz. These ECDLs frequencies

are stabilized to the master cavity by using well known Pound-Drever-Hall (PDH)

frequency locking technique [3]. For this purpose, small fractions of the ECDLs

powers are phase modulated by using the Electro Optic Modulators (fiber based)

with different modulation frequencies (20 MHz and 32 MHz) and coupled to the

master cavity as shown in figure 2.3. The reflected lights from the master cavity are

detected by a single photo-detector (PD1). The PD1 signal split into two parts by

13
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R = 88%
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Ti:sapphire

prism        pair

PM

Figure 2.4: Illustration of the Ti:sapphire power oscillator. MML, mode matching
lens; M, mirror; PZT, piezoelectric transducer; R, reflectivity; PM, pico motor.

using a power divider and mix with the reference frequencies (20 MHZ and 32 MHz)

from the function generators and generate two independent error signals. These

error signals are feedbacked to ECDLs current controllers through servo amplifiers

(Vincent Photonics) to stabilize the frequencies. The stabilized frequencies are sent

to corresponding tapered amplifiers and amplified up to ∼100 mW each. These

amplified seed powers are mixed inside a fiber and coupled to the power oscillator

cavity using a suitable mode matching lens.The detailed system of the seed lasers is

shown in figure 2.3.

2.3.3 Power oscillator

The power oscillator was constructed in a bow tie ring cavity (round trip length

480mm, FSR 625 MHz) with a combination of four mirrors (two are flat and two

are curved), a gain medium and a pair of transparent wedges as illustrated in figure

2.4. The gain medium was a Brewster cut Ti: Sapphire crystal of length 20 mm

(0.25 % Ti3+ doped), mounted on a water cooled copper heat sink and fixed on a

rotational stage to adjust the crystal angle with respect to the incident beam. The

14



2.3. DFIL LASER SYSTEM 15

Figure 2.5: Photograph of Ti: sapphire bow-tie ring cavity power oscillator

whole component is placed between the two curved mirrors M1 and M2 (radii of

curvatures 100mm each) as shown in the photograph (figure 2.5). The mirror M2

was mounted on a translation stage to adjust the distance between the two curved

mirrors, which is crucial to obtaining good spatial beam profile and also it is sensitive

to lasing. One of the flat mirrors M3 was mounted on a piezoelectric transducer (PZT)

to adjust and modulate the cavity length. The resonance frequency of the PZT along

with the mirror is an important parameter to obtain stable locking. Due to this

reason we select the PZT (AE0203D04F, NEC/Tokin) and mirror (mass∼ 0.31g) for

a high resonance frequency of ∼ 200kHz. The remaining flat mirror M4 serves as

an output coupler with a reflectivity 88% at both of the seed wavelengths, whereas

all other mirrors have high reflectivity ( ∼99%) at these wavelengths. The pair of

transparent wedges were positioned between the two flat mirrors to adjust the optical

length of the power oscillator cavity (few nm to few mm range) without disturbing

the cavity confinement. Both the wedges have anti-reflection coatings (reflectivities

<0.25%) to reduce the internal losses of power oscillator cavity. The power oscillator
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2.3. DFIL LASER SYSTEM 16

was pumped by a 10W frequency doubled Nd: YVO4 laser (Coherent, Verdi-10). The

532 nm pump laser is introduced into the power oscillator cavity through the curved

mirror M1 with the help of a mode matching lens (MML f=100mm). The MML is

tilted slightly to obtain optimal spatial overlap between the pump laser and the bow

tie cavity spatial modes. The digital photo graph of the power oscillator cavity is

shown in figure 2.5, in which the mounting of optics, Ti: sapphire crystal and wedge

pair are shown clearly.

The total (DFIL) laser experimental system including with stabilization electronic

feedback loops are shown in figure 2.6. To stabilize the power oscillator cavity for

simultaneous two frequency oscillation, a small leakage power from the mirror M2

is taken and split into the individual frequencies with the help of an optical grating

element. These separated frequencies were detected by the photo detectors PD2 and

PD3. A part of these detected signals are used for feedback and remaining part of

these signals were used for monitoring.The power oscillator cavity PZT is set to the

17 kHz sinusoidal modulation around the simultaneous two frequency resonance po-

sition and the cavity length is locked to the one of these seed frequencies by feedback

the error signal to the PZT.

The output of the DFIL laser can be coupled to the master cavity depending on the

application. The dotted red line in figure 2.6 represents the optical path to couple

the DFIL laser to the high finesse cavity. With this technique, it is easy to couple

the multiple frequency beam to a high finesse cavity where the seed frequencies are

stabilized to the same high finesse cavity.
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Figure 2.6: Illustration of DFIL Ti:sapphire laser total experimental system. PD2
and PD3, photo-detector; SA, servo-amplifier; FG, function generator; GLP; Glan
laser polarizer

2.4 Conclusions

In this chapter we have proposed a method to realize the dual-frequency laser from

single laser cavity. The overall dual-frequency laser system has shown and also pre-

sented the importance of the each element. The operational procedure of the DFIL

laser and its characteristics will be discussed in the following chapter.
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CHAPTER 3

Dual-frequency laser characteristics

3.1 Introduction

In the previous chapter, the dual-frequency laser system and its components were

illustrated. In this chapter, the laser fundamental characteristics such as spectral

purity, spatial mode profile, output power stability and as the advanced features ar-

bitrary two frequency selection and controllable relative output powers are presented.

3.2 Seed frequencies stabilization

Stable seed frequencies are necessary to obtain stable dual frequency laser oscillation

through the injection locking technique. The ECDLs frequencies were stabilized to a

high finesse ( 6,500) reference cavity by using the PDH locking technique [1]. For this

purpose, the seed frequencies ω1 and ω2 were modulated using inline fiber EOMs. In

this case the reflected lights from reference cavity were detected with a single photo

detector. Different modulation frequencies (20MHz and 32 MHz) were applied to

distinguish the error signals. These modulation frequencies were sufficiently large

19



3.2. SEED FREQUENCIES STABILIZATION 20

and well outside the cavity allowed line width of 400 kHz, which was estimated from

the cavity FSR 2.5 GHz and finesse 6,500. The stabilized laser line widths were

much smaller than this cavity allowed line widths. The black curves in figure3.1a

and 3.1b are the error signals corresponding to the seed frequencies ω1 (784nm) and

ω2 (806nm), which were recorded by sweeping the seed laser frequencies around the

cavity resonance. The seed lasers frequencies were locked to the reference cavity using

the PDH locking technique and the stabilized error signals were shown in red curves.

These stabilized error signals were well suppressed under the locking state.The fre-

quency stabilities were estimated to be 40 kHz rms value under the locking condition

and it is possible to decrease the linewidth to a lower values by increasing the finesse

of the locking cavity and by preparing stable cavity length [2].

Frequency / MHz
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a) b)

Figure 3.1: (a) and (b) are the PDH error signals corresponding to the frequencies ω1

and ω2. The black curves are the error signals while sweeping the frequency around
the cavity resonance and the red curves are the error signals after the frequency
stabilization
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3.3 Stabilization of power oscillator for simultane-

ous two frequency resonance

The frequency stabilized seed lasers were injected through output coupler by using

a suitable mode matching lens. At first, we checked the seed frequencies (ω1 and

ω2) resonances with power oscillator cavity. For this purpose, Small leakage power

through the mirror M2 split into the individual frequencies with the help of an optical

grating element. These separated frequencies were detected by the photo detectors

PD2 and PD3. A part of these detected signals were used for feedback and remaining

part of these signals were used for monitoring. The bow tie ring cavity was modulated

with a 10 Hz frequency and the recorded longitudinal mode profiles of the the seed

frequencies ω1 and ω2 were shown in figure 3.2, black and red curves. From these mode

profiles the cavity finesse of the bow tie ring cavity power oscillator was estimated

to be 35, this value was close to the finesse of 37, which was derived from the

output coupler 88%, and round trip losses in the power oscillator cavity, 4%. Now by

monitoring these modes, the optical cavity length was adjusted to get simultaneously

two frequency resonance with the help of the the prism, which was mounted on

a pico-motor translational stage. The overlapped longitudinal modes of the power

oscillator corresponding to the seed frequencies are as shown in figure 3.2 (black and

red Lorentzian curves). The cavity PZT was set to the 17 kHz sinusoidal modulation

around the simultaneous two frequency resonance position and the cavity length was

locked to the one of these seed frequencies by fed back the PD signal to the PZT.

For the stabilized power oscillator cavity, the two seed frequencies transmissions were

maintained at their maximums, as shown in figure 3.2 (black and red curves).
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Figure 3.2: Simultaneous stabilization of the seed frequencies to the power oscillator
cavity. Black and red Lorentzian curves are the longitudinal modes of the power
oscillator cavity corresponds to the frequencies ω1 and ω2.

In this system the two frequency longitudinal mode overlap was crucial to obtain

simultaneous two frequency resonance. Depending on the selected frequency pair the

insertion length of the prism varies from few 10s of micro-meters to few millimeters.

In the case of 784 nm and 806 nm frequency pair, the cavity length was tuned by

20 FSRs approximately, when the longitudinal mode overlap was at its maximum

value. Which means the minimum required change in the optical length of the cavity

is close to 16 µm. To obtain perfect overlap between the longitudinal modes, we

need to repeat this process several times, this requires few 100s of µm. But, the

selected frequencies are much closer than the above mentioned frequency pair, the

required change in the optical length will be much greater than the above mentioned

values. The required thickness to obtain the simultaneous two frequency resonance

for various frequency pairs is shown in appendix A.
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3.4 Simultaneous two frequency laser oscillation
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Figure 3.3: Dual-frequency injection-locked oscillation. The red curves are the injec-
tion locked simultaneous dual-frequency oscillation, the gray curve is the free running
oscillation and the dotted blue curves represent the seed frequencies.

After realized the seed frequencies resonances with the power oscillator cavity, the

pump power of a maximum of 10 W was introduced into the power oscillator cav-

ity. Repeated the above mentioned process and obtained simultaneous two frequency

oscillation. The output spectrum of the injection locked dual frequency laser was

recorded with the optical multi-channel analyzer (OMA; Andor DU420-OE ) and

is shown in figure 3.3. The red curves in the figure represent simultaneous dual-

frequency injection locked state, the gray curve at 795 nm represents the free-running

oscillation and the dotted blue curves represent the seed frequencies that were injected

into the power oscillator. The dual frequency laser oscillations were coincide with the

injected seed frequencies. Under injection locking the free-run has suppressed greatly
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as shown in the figure (by > 30 dB). Even though in the spectrum the free-running

and the injection locked oscillations had similar line widths, it was because, the OMA

resolution was not sufficient in this case. In reality, injection locked frequencies have

narrow line widths compared to the free-running oscillation, which will be discussed

in the later sections. The higher noise level around 760 nm corresponds to the in-

strumental artifact, not because of the spectral broadening or any other frequency

oscillations.

3.4.1 Free run suppression and power spectrum
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Figure 3.4: Free-running suppression as a function of total injection seeded power.
The green circles and red triangles are the free-running suppression in the cases of
single and dual-frequency injection locking states respectively.

To know the minimum seed-power required for DFIL laser operation, we studied the

free-running suppression as a function of the total injected seed powers in the case of

dual-frequency injection locking as well as single-frequency injection locking state.The

results were shown in figure 3.4. The red triangles represented the free-running sup-

pression of the dual-frequency injection locked state and the red circles represented

24
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the free-running suppression of the single-frequency injection locked states.This sup-

pression behavior of the two frequencies was similar to that with a single-frequency

injection-locked oscillation. From the figure, it has shown that 20 mW seed powers

were sufficient to suppress the free-running oscillations below to 30dB. Obtaining such

low seed powers are easy and one can get it from diode lasers without any external

power amplifiers. The seed power required for stable DFIL oscillation can also be

derived by estimating the locking range [3], yielding a result of 10µW for a seed line-

width of 40 kHz. As observed here, in reality 20 mW was required to have sufficient

suppression of 30 dB, which is much larger than the above estimation. One of the

main factor that effects the required seed powers is the spatial overlap of the seed

mode profile and pump mode profile along with the cavity mode profile.

At the optimum cavity alignment, we measured the output powers as a function

of the pump powers and the results are as shown in figure 3. 5. The black squares

represent the total output power of the free-running oscillations. It was measured

simultaneously at the two outputs of the ring cavity by using two power meters. The

red circles represent the total output power of the injection locked dual-frequency

oscillation case. The lasing threshold was 2.0 W and the maximum obtained output

power was 2.8 W at 10 W pumping power, which was similar to that of the total

free-running power. The slope and energy-conversion efficiencies were 35% and 28%,

respectively. These specifications were nearly the same as those in single-frequency

operation. The blue and the light gray triangles represent the injection locked output

powers corresponding to the frequencies 784nm and 806 nm under similar injected

seed powers and these are measured by separating the frequencies using a dispersive

prism.
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Figure 3.5: Dual frequency output power as a function of the pump power. The black
squares and the red circles are the total output powers in the case of free running and
injection locked states respectively.

3.5 Fundamental features of the DFIL laser

The applications of a laser system mainly depends on its basic parameters such as

spectral purity, spatial beam profile and power stability. Here, we analyze these basic

features of the dual-frequency injection-locked laser, which will influence the quality

of the data in many optical science experiments.

3.5.1 Spectral purity

In order to check the spectral purity, a small fraction of the laser output power was

coupled to a optical spectrum analyzer (FSR: 2 GHz and finesse:100). The results

were shown in figure 3.6. The two longitudinal modes (red), corresponding to the two

seed frequencies, ω1 and ω2 , were clearly confirmed with an instrumental resolution
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of 20 MHz; no other modes were seen. Where as in the free-running case, the laser

oscillated in the multiple longitudinal modes as shown in the figure (gray curves).

We further evaluated spectral purity by creating a beat between the injection locked

laser output and seed frequency, where the seed frequency was shifted by 110 MHz

with an acoustic optical modulator and the results were shown in figure 3.7. The

curve with blue squares represent the RF beat spectrum of the seed frequency to the

frequency shifted seed frequency. The curve in the red circles represent the RF beat

spectrum corresponding to frequency shifted seed laser frequency and the injection

locked Ti:sapphire laser output frequency. Both the beat spectra have similar widths

and no apparent spectral broadening from the seed line-width was observed at a 1

kHz frequency resolution of the RF spectrum analyzer.
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Figure 3.6: Longitudinal mode analysis with a Fabry-Perot spectrum analyzer. The
red and the gray curves are the longitudinal modes in the case of injection locked and
free-running states respectively.
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Figure 3.7: Beat note between the injection locked output frequency and the frequency
shifted seed frequency

3.5.2 Spatial mode purity (M 2 measurement)

Another important parameter of a laser is the spatial mode purity. To check the spa-

tial purity of the DFIL laser, we measured the M2 parameter. The results were shown

in figure 3.8. In this measurement, we selected either of the two frequency beams by

using a band-pass filter and measured the beam profiles with the CCD camera as a

function of distance from the beam waist position. The solid red circles and the solid

black triangles represent the beam diameters in the X-direction and the open circles

and open triangles represents the beam diameters in the Y-direction. The solid and

dashed curves represent the fitted experimental data. For both the frequencies the

measured M2 factors were close to unity. Although a small astigmatism was included

mainly because of the bow-tie ring cavity configuration but it can be compensated

simply by using an appropriate cylindrical-lens pair, if required in an application.

The inset figure 3.8 shows the photo graphs of the injection locked laser outputs, the

left side figure represents the combined two frequency output beam, with clear mode

profile. It also tells us the good spatial overlap of the two frequency beams. Which is
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one of the important feature of the dual frequency injection locked laser. This kind of

spatially overlapped multiple frequency beams are useful in the study of the nonlinear

optical phenomena, where the spatial overlap of the frequency beams plays a crucial

role. In this case the output of the DFIL laser was able to couple to the single mode

fiber with a coupling efficiency more than 80%, which was confirmed the good spatial

mode profile of the injection locked laser. The right side of the inset figure represents

the digital photograph of the DFIL laser output after passing through a dispersive

prism. It showed the clear beam profiles of the two frequency beams.
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3.5.3 Output power stability

The power stability of a laser is an important parameter in the experiments. For this

purpose, a small fraction of the output was separated into its individual frequencies

using a grating element and detected by two independent photo-detectors. The re-

sults are shown in figure 3.9. The measured rms power fluctuations were 1% at ω1

(red) and 2% at ω2 (black) on a short time scale of 100 ms as shown in figure 3.9a.

The power fluctuations were similar even over a long time scale of 450 s, i.e., 1% at ω1

and 2% at ω2 as shown in the figure 3.9b . Here, we did not see any instability caused

by nonlinear processes such as competition between the two frequencies. The slightly

larger fluctuation at ω2 was due to the mechanism, whereby the power oscillator was

locked to the master reference cavity by the ω1 seed only. The power oscillator cavity

was not stabilized for the second frequency. In this case, the long time stability some

times interrupted by the reference cavity thermal fluctuations, to which the seed fre-

quencies were stabilized. The ECDL frequencies followed the reference cavity and

the power oscillator followed the seed frequencies, this means the power oscillator

followed the master cavity. The thermal drift in the cavity length causes the drift in

the frequencies which disturbs the simultaneous dual frequency resonance state. This

can be overcome by giving a second feedback to the power oscillator cavity, through

the wedge which was fixed on the pico-motor stage.

Up to this point, we have described the fundamental characteristics of the DFIL

laser such as, single longitudinal/transverse mode nature and practical power stability.

These characteristics imply that the DFIL laser is applicable to a variety of purposes.
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Figure 3.9: Output power stability of the DFIL laser a) short time duration power
stability observation and b) relatively long time duration power stability observation
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3.6 Advanced features of the DFIL laser

From the viewpoint of applications, especially when they include nonlinear optical

processes, selectivity of the wavelength combinations and precise controllability of

the output-power ratios at the two selected wavelengths will be key issues.Here, we

demonstrate these advanced abilities in this DFIL laser system.

3.6.1 Arbitrary frequency separation
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Figure 3.10: Arbitrarily separated frequency pairs.

Arbitrary separation of the frequency pairs is one of the advantages of the DFIL laser

in the study of nonlinear optical processes. We tested various frequency combinations

with frequency spacings from 500 GHz to 11 THz and several of them are shown in

figure 3.10. The frequency spacings of the selected wavelengths were as follows: 10.623

THz (783.8849 nm, 806.2823 nm), 7.731 THz (783.8853 nm, 800.0595 nm), 2.895 THz

(800.0590 nm, 806.2885 nm), and 0.867 THz (801.1395 nm, 803.0041 nm). For all

of these wavelength pairs, we obtained stable DFIL oscillations with performances
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equivalent to those reported in the previous sections. With this current system even

larger frequency spacing is possible. If we exchange the output coupler and seed

lasers appropriately, depending on the wavelength region, our DFIL laser can cover

the entire gain region of a Ti:sapphire laser, from 670 nm to 1050 nm [4]. Note that

the two frequencies can be selected continuously, although the power oscillator has

a discrete modes, it is possible by controlling the insertion thickness of the wedges

which were placed inside the power oscillator cavity. For any frequency combinations,

whereas their frequency spacing must be greater than 100 GHz. Because in the current

case the overlap of the arbitrary frequencies with a closer frequency spacing is limited

by the allowed optical cavity length changes. In our current case we can change the

optical cavity length to few mm to cm without disturbing the cavity confinement.

For closer frequency spacings the current change is not sufficient. In the current case,

we obtained a dual resonance condition by slightly adjusting the insertion thickness

of the wedge pair into the power oscillator.
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3.6.2 Relative power controllability
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Figure 3.11: Controllable relative power ratios as the function of the injected seed
powers

The relative power controllability of the output frequencies is an useful feature of the

DFIL laser. Arbitrary control of the output-power ratio as a function of injected seed

powers is shown in figure 3.11. In this case, the selected frequencies were 783.8849 nm

(ω1) and 806.2823 nm (ω1). The output-power ratios at the two frequencies, ω1 and ω2

, can be flexibly controlled over a wide dynamic range of greater than 1 order by simply

manipulating the seed-power ratios at the two frequencies. Some of the relative power

ratios are shown in figure 3.11. At any power ratio, stable DFIL oscillations were

observed with the same total output power, namely, 2.8 W; (ω1/W ;ω2/W ) = (2.30,

0.47), (1.95, 0.84), (1.66, 1.12), (1.38, 1.40), (1.14, 1.62), (0.55, 2.24). in this case, we

preserved total seed power at a constant to maintain good free-running suppression

of < 10−3. Note that the frequencies ω1 (λ1=783.8849nm)and ω2 (λ2 = 806.2823nm)
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employed here provided a calculated gain-to-loss product ratio close to unity; this

implies that the output power ratio varies almost linearly with the seed power ratio

[5]. This expectation also was confirmed, as seen here. When we employed other

frequency combinations, the output-power ratios followed different curves, whereas

the controllabilities were the same. In the case of homogeneously broadening gain

medium the total output power remains constant and it is shared between the two

seed frequencies, it allows us to predict the power controllability. Which may not be

possible to predict the out power in case of in-homogeneously broadened gain media.
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Figure 3.12: Arbitrary combinations of the output power

3.7 Conclusions

In this chapter, we have shown the realization of simultaneous two frequency oscilla-

tion from a single laser cavity. The DFIL laser basic features such as single frequency

nature by using the scanning Fabry-Perot cavity and the single transverse mode pro-
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file by measuring the M2 factor were characterized. The DFIL laser practical power

stability in short time scale and relatively long time scales were reported. DFIL

laser free run power suppression as a function of injection seed power was discussed

and also, compared with the single frequency injection locking case. Also, we have

checked the output power as a function of pump power and obtained a maximum

output power of 2.8 W. As the advanced features, desirable frequency separation of

the two frequencies from 1THz to 10THz have realized with this injection locking

technique. we have demonstrated the controllability of the relative output power

ratios of the injected frequencies as a function of the injection seed powers.

The desired features of the dual frequency laser were realized with a good per-

formance. Many of the optical science experiments needs the high frequency purity

and good spatial mode profile, where these parameters effect the quality of the data,

in such experiments it is very useful this kind of laser system. If we want to realize

the two frequency mode overlap in free space from the lasers that are independently

prepared is a difficult task. Also, it is difficult to combine the two or more closely

separated frequencies with out the power loss. This DFIL laser system reduce the

cost effect instead of using two laser systems, and makes it easy to deal with multiple

frequencies. The relative power controllability is one of the best feature that will

enhance the laser usage in the various optical science studies. If you compare with

the other high power lasers such as master amplifier power oscillator (MOPA), DIFL

laser has advantages such as high suppression of the spontaneous emission , good

beam quality and well maintained polarization state.
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CHAPTER 4

Study of Raman based molecular modulator

4.1 Introduction

As described and discussed in the previous chapter, the dual-frequency injection-

locked laser has many advantages such as the mutual fine overlap between the two

frequency beams, arbitrarily separated frequency pairs and controllable relative out-

put powers. These features enhanced the laser applications in the various fields of

optical science. In this chapter, one of the potential application of the dual-frequency

injection-locked laser is described. The candidate is the Raman based molecular mod-

ulator using the para-H2 gas as Raman medium, where strong two frequency laser

field is essential to efficiently drive the molecular system.

Stimulated Raman scattering in the far of resonance case has been studied by

using the femtosecond lasers in the impulsive regime [1] and by using the nanosec-

ond lasers in the adiabatic regime [2–5]. Raman components in a wide frequency

range spanning from IR to UV were generated using these techniques [6]. One of the

advantage of these coherently generated frequency components is that to synthesis
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ultra-short optical pulses in the time domain by coherent superposition of the opti-

cal fields. But the generation of broad band Raman components required high peak

powers on the order of MW or GW/cm2.

To reach such high peak powers with continuous wave lasers is a difficult task.

But, the advantage of mirror coating technology is made this power levels possible

with CW lasers by confining the laser frequencies to a high finesse optical cavity with

a finesse greater than 105 or even more. In the CW regime using the high finesse

cavities the first stokes laser was demonstrated by the Carlsten group [7], later the

quantum limited anti stokes laser was generated by Imasaka group in 2008 [8]. Fetah

Benabid et al., demonstrated the Raman generation in gas filled hollow core photonic

crystal fibers [9].

4.2 Theory of Raman based molecular modulator

|a>

|b>

~~
~

|j>

∆ j

ω
ω-1

0

ρ
ab

δ

Figure 4.1: Energy level diagram of far-off resonant three level system driven by two
strong laser fields.
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Consider a three level Λ system as shown in the figure 4.1 . The solid horizontal

lines represent the the energy levels of the molecule and the solid arrow lines repre-

sent the driving lasers ω0, ω−1. The states |a〉 and |b〉 are the ground and excited

ro-vibrational states of the molecule respectively and the |j〉 represents the higher

ro-vibrational and electronic states. The transition |a〉 to |b〉 is dipole forbidden and

transitions |a〉 ↔ |j〉 and |b〉 ↔ |j〉 are far off single photon resonance. The upper

gray dotted line represents the virtual state.

In the dipole approximation, the Hamiltonian of the system is given by

H = H0 +Hint (4.1)

where H0 and Hint are expressed as

H0 = ~ωaσaa + ~ωbσbb +
∑
j

~ωjσjj (4.2)

Hint = −
∑
j

E(µjaσja + µajσaj + µjbσjb + µbjσbj) (4.3)

Here σαβ=|α〉〈β| are the operators for level populations and transition amplitudes, E

is the electric field, and µja and µjb are the dipole moments of the transitions j ↔ a

and j ↔ b respectively. We assume that the driving and generated fields propagate in

the z direction where the local-time τ = t− z/c. The total electric field is expressed

in the form

E =
1

2

∑
q

(Eqe
−iωqτ + E∗q e

iωqτ ) (4.4)

where ωq can be expressed as follows

ωq = ω0 + (ωb − ωa − δ) = ω0 + qωm (4.5)

here q is an integer number and ωm is the modulation frequency. From the equation

4.5 the modulation frequency expressed as ωm = (ωb−ωa−δ) which is equivalent to the

difference frequency of the applied fields ω0 and ω−1. The detuning δ is the difference
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between the Raman transition frequency (ωb−ωa) and the modulation frequency ωm.

When the derivatives of the probability amplitudes of the upper states |j〉 are small

as compared to the detuning from these states, the system can be described by an

effective, distance-dependent, 2x2 Hamiltonian

Heff = −~

Ωaa Ωab

Ωba Ωbb − δ

 (4.6)

Where Ωaa and Ωbb are the Stark shifts and Ωab is the two-photon Rabi-frequency.

These quantities are expressed as

Ωaa =
1

2

∑
q

aq|Eq|2, (4.7a)

Ωbb =
1

2

∑
q

bq|Eq|2, (4.7b)

Ωab = Ω∗ba =
1

2

∑
q

dqEqE
∗
q+1 (4.7c)

aq, bq and dq are the dispersion and coupling constants and can be expressed as

follow

aq =
1

2~2

∑
j

(
|µja|2

ωj − ωa − ωq
+

|µja|2

ωj − ωa + ωq
) (4.8a)

bq =
1

2~2

∑
j

(
|µjb|2

ωj − ωb − ωq
+

|µjb|2

ωj − ωb + ωq
) (4.8b)

dq =
1

2~2

∑
j

(
µajµjb

ωj − ωb − ωq
+

µajµjb
ωj − ωb + ωq

) (4.8c)

The two level system is governed by the equations

∂ρaa
∂τ

= i(Ωabρ
∗
ab − Ω∗abρab) + γ||ρbb, (4.9a)

∂ρbb
∂τ

= −i(Ωabρ
∗
ab − Ω∗abρab)− γ||ρbb, (4.9b)

∂ρab
∂τ

= i(Ωaa − Ωbb + δ + iγ⊥)ρab + iΩab(ρbb − ρaa) (4.9c)
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The quantities ρij are the elements of the 2x2 density matrix and ρaa + ρbb = 1 and

the γ|| and γ⊥ are the population decay rate of the state |b〉 into the state |a〉 through

irradiative process and the decay rate of the coherence associated with the non-allowed

transition |b〉 ↔ |a〉, respectively. Under steady state condition the equations 4.9a

and 4.9b are reduced to a single equation.

Eq. 4.9a & 4.9b ⇒ i(Ωabρ
∗
ab − Ω∗abρab) + γ||ρbb, from this we can write

ρbb =
−i(Ωabρ

∗
ab − Ω∗abρab)

γ||
(4.10)

Under steady state condition from Eq. 4.9c, ρab can be expressed as follows

ρab =
−Ωab(ρbb − ρaa)

(Ωaa − Ωbb + δ + iγ⊥)
(4.11)

Substitute the Eq.4.11 into the Eq.4.10 and solve the equation for ρbb gives

ρbb =
|Ωab|2 2γ⊥

γ||

δ2
Ω + γ2

⊥ + |Ωab|2 2γ⊥
γ||

(4.12)

Substituting this value into the equation Eq. 4.11 and utilizing the ρaa + ρbb = 1, the

steady state coherence absolute value can be expressed as

|ρab| =
|Ωab|

√
δ2

Ω + γ2
⊥

4|Ωab|2 γ⊥γ|| + δ2
Ω + γ2

⊥
(4.13)

where δΩ = δ+ Ωaa−Ωbb. The state has the resonance nature, where the two photon

detunings are very small or even zero.

The decay rates can be neglected completely under the existence of the adiabatic

states which are given by |±〉 = cos θ(±)|a〉 + sin θ(±)e−iφ|b〉. The coherence of the

superposition of levels |a〉 and |b〉 in the dressed eigen states |±〉 can be expressed as

ρ±ab = ± Ωab√
(Ωaa − Ωbb + δ)2 + 4|Ωab|2

(4.14)
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The signs ± represents the phased and anti-phased states respectively, which can

be determined by the sign of the two photon detuning δ. In the phased state the

coherence ρab and the two-photon driving Ωab are in phase with each other where as

in the anti-phased state these are out of phase with other. The stark shifts of the

Raman states under large one-photon detunings are equal Ωaa ≈ Ωbb. Which will

simplify the Eq. 4.14 as ρ±ab = ± Ωab√
δ2+4|Ωab|2

. The coherence can reach its maximum

value 1
2

for |δ| << |Ωab|. This can be realized for small two photon detunings and

strong driving fields.

In the adiabatic case the maximum coherence is limited to a short time intervals.

Maintaining the high coherence for long time intervals is an attractive feature. On the

other hand, the steady state coherence reach its maximum value at the the detunings

δΩ = ±
√
|Ωab|2 γ⊥γ|| − γ

2
⊥. The maximum value of the steady state coherence is given

by

|ρsteadymax | =
1

4

√
γ||
γ⊥

(4.15)

which means the steady state maximal coherence strongly dependent on the ratio

of the effective population decay rate from the excited state |b〉 to the ground state

|a〉. In the reality this value is considerably high. Lets say, the ratio is 1/4 , which

will limit the maximum coherence to a value ∼ 1
8
. Even though the steady state

coherence is small compared to the adiabatic state coherence, it is sufficient for many

applications in the continuous wave regime.

4.3 Experimental system

There are few ways to generate stimulated Raman components with the CW lasers, 1.

High finesse optical cavity 2. Hollow core photonic crystal fibers with few micron core

diameters 3. Sub micron optical fibers 4. High finesse optical micro ring resonators.

All there techniques can enhance the driving lasers intensities to a values greater than

106W/cm2. Here, we select the high finesse optical cavity to generate Raman side

bands.
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The experimental system to study the Raman sideband generation is shown in figure

4.2. The driving laser system to generate Raman sidebands is similar with system

shown in chapter2. This system contains all the components of DFIL (Dual-frequency

injection-locked) laser system and apart from these , it contains a gas cell, an Ortho

to Para- H2 conversion system, and an optical multi channel analyzer (OMA- to

detect and monitor the signals). As shown in the figure the out put of the DFIL laser

system is coupled to the high finesse cavity by using suitable mode matching lens.

This cavity simultaneously acts as a reference cavity to the DFIL laser system, as well

as the enhancement cavity to generate CW Raman. The Raman driving laser fields

and the locking fields are orthogonal to each other, to avoid the locking instability.

The high finesse cavity is kept in side a gas cell and the cell is filled with the para-H2

gas medium. The gas cell and cavity are kept at the room temperatures.

R = 89%

N
d
:Y
V
O
4

L
a
se
r

PZT

MML

M1
M2

M3

M45
3
2
 n
m

, 
1
0
 W

Ti:sapphire

PM Seed

M₁ M�Dual-frequency injection locked Ti:sapphire laser

OMA

Para-H�

BS

Enhancement cavity 750 800 850 900

W W

Ortho to Para-H�

Conversion System

PDH locking line

Figure 4.2: Experimental system to study the Raman sideband generation. W, win-
dow; M1 and M2; cavity mirrors, BS; beam splitter, OMA; optical multi-channel
analyzer.

4.4 Dispersion effect on coherent Raman sidebands

generation

There are few requirements to generate multiple Stokes and anti-Stokes Raman; 1.

Stable confinement of the driving lasers with the high finesse cavity 2. Confinement

of the generated sideband frequencies with the high finesse cavity 3.The generation

process should satisfy the phase matching conditions. About 1st requirement, we will
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discuss in the later section. To fulfill 2nd and 3rd requirements, it is necessary to

mange the dispersion.

The dispersion mainly comes from two components, one is the Raman active medium,

which is the para- H2 gas. The second is the highly reflective cavity mirror coatings.

Because of these requirements, generation of multiple coherent Raman components

with CW lasers is a challenging problem. Generation of multiple Stokes components

(only) through cascading Raman process doesn’t need to satisfy the phase matching

condition. But, the generated components do not follow any phase relation among

them. For many applications, it is necessary to have a definite phase relationship,

such as arbitrary optical waveform generation etc., The anti-stokes components only

can generate through FWM process and it requires to satisfy the phase matching

condition. The wave vector mismatch is given by the equation, ∆k = 2k0 − k1 − k−1

where k0, k1, k−1 are the wave vectors corresponds to the pump, stokes and anti-stokes

frequencies respectively. The wave vector in a dispersive media is defined as, k(ω) =

2πn(ω)/λ, where n(ω) is the frequency dependent refractive index of the Raman active

medium. In the case of para-hydrogen gas, the wave vector mismatch involved in the

coherent stokes (830 nm) and anti-Stokes (784 nm) generation process corresponding

to a pump laser at 806 nm (rotational transition J = 0↔ J = 2 ) is estimated to be

∆k = −0.065m−1 at 1atm gas pressure (at room temperature). The corresponding

phase slip lengths are much larger than the cavity length of 6 cm. The Stokes and

anti-Stokes frequencies, which are generated with a fixed modulation frequency of the

molecular coherence should satisfy the cavity resonant conditions. But the existing

dispersion is made this system much complex. As mentioned previously, Raman

generation in the cavity is not only the dispersion of the gas medium but also the

dispersion introduced by the cavity mirror coatings. The resultant FSR of the cavity

in a dispersive media can be expressed by the following equation,

FSR(ω) =
c

2(Lng(ω) + cβmirror(ω))
(4.16)
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where, c is the speed of the light, ng is the group refractive index of the intra-cavity

medium, L is the length of the optical cavity,βmirror is the group delay given by the

one reflection of the cavity mirror.

ωω ωω
P2 aSP1

Ω Ω Ω

ωS

s aS

Ω
Ω

Figure 4.3: Effect of frequency dependent free spectral range (FSR) in the generation
of Stokes and anti-Stokes fields inside the Raman cavity

The frequency dependent FSR is made the stokes and anti-Stokes frequency modes

off resonant with the cavity. Which means the Stokes and anti-Stokes fields can not

be amplified inside the cavity. In the case of two frequency pumping case it can be

explained as shown in figure 4.3. The frequencies ωP1 and ωP2 are the driving laser

frequencies. Let’s assume these two frequencies are coupled to the optical cavity. Now

fill the cavity with the Raman active medium and it will introduce the dispersion,

which will effect the two photon Raman detuning (Ω). In this case, it is possible to

get a desired two photon detuning by adjusting the cavity length. Now, what will

happen for the generated sideband frequencies? Because of the frequency dependent

FSR, for a fixed two photon detuning (Ω), the modes of the Stokes and anti-Stokes are

deviated from the cavity resonances as shown in the figure. This deviation effect the

amplification of Stokes and anti-Stokes fields inside the Raman cavity, as a result no

Stokes and anti-Stokes are observed at the the output field. To realize the Stokes and

the anti-Stokes generation in the cavity, it is necessary to compensate the effective

dispersion. It is possible with the aid of the special cavity mirrors, in which the cavity

mirrors introduce a negative delay that can compensate the dispersion of the gas.
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4.5 Results and discussions

As mentioned in the previous section the first requirement to realize the Raman

based molecular modulator using an optical cavity is the strong confinement of the

two driving laser frequencies with the high finesse cavity. In the current study, the

DFIL laser output is coupled to the same enhancement (reference) cavity to which

the two driving laser frequencies were locked as shown in the laser system figure 2.6

and figure 4.2. The DFIL laser output frequencies are spatially overlapped with each

other and have similar divergence profiles. These features are made easy to deal

with the dual frequency beam, where as using the two independent laser systems to

realize the perfect spatial overlap is difficult. The DFIL laser is coupled to the high

finesse cavity using a suitable mode matching lens. In this way we have realized the

stable dual frequency coupling with a coupling efficiency ∼ 80%. In this case the

two photon detuning frequency can be adjusted by tuning the cavity length using the

PZT attached to the one of the cavity mirror. We have realized the triple resonant

condition that is the selected two frequencies are resonant with the Raman transition

frequency, resonant with the high finesse cavity and also resonant with the power

oscillator cavity simultaneously. Which means, the first requirement has fulfilled by

the stable coupling of the two driving laser frequencies to the high finesse cavity.

47



4.5. RESULTS AND DISCUSSIONS 48

0 1 2 3 4 5

 S
3

 S
2

 aS
1

 aS
2

0

20

10

30

40

- 3

0

-10

-20

-30

-40D
e

v
ia

ti
o

n
 f

ro
m

 c
a

v
it

y
 r

e
so

n
a

n
ce

/
 F

S
R

 X
1

0

Gas Pressure/atm

0

25

-25

-50

 50

 75

 -75

 100

 -100

D
e

v
ia

ti
o

n
 f

ro
m

 c
a

v
it

y
 r

e
so

n
a

n
ce

/
 M

H
z

Figure 4.4: Raman medium dispersion and offresonant of Stokes and anti-Stokes

Now the next requirement is the dispersion compensation at the pump and side-

band frequencies. For this purpose, at first, estimated the dispersion effect on the

resonances of the generated frequencies. The results are shown in figure 4.4. In this

case only the gas dispersion was considered [10], and mirrors are considered to be as

the ideal mirrors without any dispersion. At 2 atm gas pressure the deviation of the

second Stokes and first anti-Stokes are 6 MHz each (in this case pump and Stokes-1

are the driving lasers). This value is far from the cavity allowed line width of 170

kHz corresponds to the cavity finesse of ∼15,000. It is necessary to compensate the

dispersion introduced by the gas. Not only for the purpose of the resonances but

also for the compensation of the phase slips introduced by the dispersion of Raman

medium. For this purpose, we select the cavity mirrors with a negative group delays,

which will introduce the negative group delay that can cancel the dispersion intro-

duced by the Raman medium. In reality, it is difficult to get the mirrors with the

required precision for a fixed gas density. Because of this reason, the gas density was

varied from 0.1 to 4 atm.
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Figure 4.5: Multiple rotational Raman sideband generation by single frequency driv-
ing (784nm)

Raman generation with a single driving frequency was studied to understand dis-

persion effect on the phase matched anti-Stokes generation by changing the detun-

ings and gas density. In this process, the generated Stokes frequency can be selected

precisely by adjusting the cavity length with the help of PZT. It gives very fine ad-

justment of the two photon detuning, with a precision better than 10 MHz (relative

frequency). Now the high power injection locked Ti:sapphire laser was introduced

into the cavity and monitor the Raman frequency components, using the Optical-

Multichannel- Analyzer. At first, the Raman generation with 784 nm laser was stud-

ied. The side band components are monitored by changing the gas pressure on the

order of 0.1 atm. Multiple Stokes sidebands up to 4th order Stokes component are

observed at 784 nm driving laser. The optical spectrum was shown in figure 4.5. In

this case, no anti-Stokes components were observed. The number of Stokes compo-

nents are limited by the mirror coatings (both the mirrors have high reflectivities
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Figure 4.6: Density dependent Raman sideband generation by single frequency driving
(806 nm)

from 700nm-900nm, Appendix-B).

To find the best phase matching condition, the driving laser was changed to 806

nm laser. Now the high power injection locked 806 nm was coupled to the Raman cav-

ity and monitor the Raman sideband generation. The experiment started from 4 atm

para-H2 gas pressure (room temperature), at 4 atm multiple Stokes components were

observed but no considerable anti-Stokes signal was observed. Later the gas pressure

was changed in steps of 0.1 atm and monitored the Raman components. Around 3

atm considerable anti-Stokes signal was observed and it has improved further by re-

ducing the gas density. Strong anti-Stokes signal was observed at 1 atm gas pressure.

Few of the results are shown in figure 4.6. This signal is an indication of the dispersion

compensation of the gas medium with the negative mirror coatings. In this case the

number of anti-Stokes components are limited by the dispersion compensation region.

In the case of 806 nm driving laser, there has observed strong anti-Stokes emis-

sion at 784nm along with the multiple Stokes components. But in the case of 784
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Figure 4.7: Dispersion introduced by the para-H2 gas and cavity mirrors.

nm driving laser no anti-stokes signal was observed. The reason for this was the

resultant dispersion at the Stokes and anti-Stokes frequencies. The estimated disper-

sion of the mirrors (Data from the manufacturer is shown in appendix-C) and the

gas medium [10] at Stokes and anti-Stokes frequencies are shown in figure 4.7. In

the case of the pumping laser 806 nm, the dispersion introduced by the mirror coat-

ings were matched with the dispersion introduced by the gas medium at the Stokes

(830 nm) and anti-Stokes frequencies (784 nm), where as in the case of the 784 nm

driving laser, there is a considerable dispersion existed at the Stokes and anti-Stokes

frequencies. In reality, perfect compensation of the dispersion over a broad frequency

region is difficult. Predictable dispersion values with sub-femtosecond precision are

still difficult to achieve.
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Now we fix the parameters, where the efficient anti-Stokes sideband was gener-

ated. At this state, dual-frequency injection-locked laser was introduced. The results

are shown in figure 4.8. Pump1 (784 nm) and pump2 (806 nm) are the driving lasers

and the signal at 830 nm was the coherently generated Stokes component. In this

case, there wasn’t observed any anti-Stokes frequencies. The reason was similar to the

single frequency driving 784nm case. Where the group delays introduced by the gas

medium at the pump1, pump2 and first Stokes frequencies were compensated by the

cavity mirrors coatings, which was shown in figure 4.7. Later we checked the nature

of the generated Stokes frequency. For this, we cut the one of the driving frequency

(pump1) and observed that no Stokes frequency was generated. Which means the

Stokes frequency was generated through four wave mixing process (FWM), by utiliz-

ing the coherence created by the two driving laser frequencies.

From this study we understand, it is necessary to compensate the dispersion to a

wide optical region precisely (with subfemto-second effective group delays), to gener-

ate wide coherence spectrum.
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Figure 4.9: Temperature dependent population density of Para-H2 rotational energy
levels

All the above experiments were dealt with the J=0 to J=2 rotational transition.

But, at room temperature, the molecules are not only in the ground state also have

considerable probability distribution in the first excited state also. As shown in the

figure 4.9, at room temperature, the fist excited state have equally probability as

the ground state. To investigate the other possible transitions, we swept the Raman

cavity around the two photon resonance. The cavity sweeping frequency is set to

100 Hz and the sweeping range is 25 MHz around the pump resonance position. we

observed the Stokes components corresponding to the J=0 to J=2 and J=2 to J=4,

and the results were shown in figure 4.10. The Stokes frequencies S1(0), S2(0), S3(0),

S4(0) are the corresponding to J=0 to J=2 transition. The signal marked by P’ was

the Stokes corresponding to the transition J=2 to J=4 in the para hydrogen, which

was the consequence of the considerable steady state population in the first excited

state. Later this secondary Stokes acts as the pump and generated higher order Stokes

frequencies corresponding to the transition J=0 to J=2 matched with S1’ and S2’.

These unwanted components can be suppressed by cooling down the Para-H2 gas to

the liquid-N2 temperature. It can greatly enhances the effective generation process.
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4.6 Conclusions

In this chapter, we have shown the potential application of the dual frequency laser,

which played an important role in the realization of the molecular modulation phe-

nomena. We have discussed the requirements to realize the continuous wave based

coherent Raman sideband generation in the para-H2 gas medium using high finesse

optical cavity, such as stable confinement of the two driving laser frequencies and

the dispersion management at the generated sideband frequencies. The stable con-

finement of the two driving laser frequencies was realized with the aid of the dual-

frequency injection-locked laser. The dispersion was compensated by utilizing the

negative group delay mirrors and by controlling the gas densities. We observed strong

anti-Stokes generation through four wave mixing process. We have understand the re-

quired precision of the group delay (< 0.1 fs) to realize the broad band Raman comb,

which is essential to further study the broad band Raman generation with CW lasers.
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CHAPTER 5

Ultrafast optical pulse train at 125 THz repetition rate based

on the optical frequency division technology

5.1 Introduction

In the preceding chapter, a potential application of dual-frequency injection-locked

(DFIL) laser in the development of molecular modulator was described. The DFIL

laser system can be used as the multiple frequency laser source as well as the single

frequency laser source with similar basic laser features. In this chapter an applica-

tion of the single frequency injection-locked laser in the optical frequency division

is shown. Frequency division in the optical region has great interest because of its

advantage of coherently linking independent laser oscillators [1–4]. These frequencies

can be used as a broadband coherent laser light source in the frequency domain and

also, can be used as an ultra-fast pulse train in the time domain by controlling the

phases and amplitudes. By using this technique the pulse repetition rates as high as

100 THz can be realized.
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5.2 Concept of optical frequency division

Figure 5.1: Conceptual schematic of optical frequency division technique

The importance of optical frequency division is to generate phase locked harmonic

frequencies in a broad frequency region including the fundamental frequency. For this

purpose, two laser frequencies are selected as the master laser (ω) and the divider

laser (2
3
ω) as shown in figure 5.1. These frequencies are employed to a difference

frequency generation (DFG) to generate fundamental frequency (1
3
ω). Then the fun-

damental frequency (1
3
ω) employed to second harmonic process (SHG) to generate

2
3
ω1. Now, beat note is created between the 2

3
ω and 2

3
ω1 and this signal is used

as the error signal to feedback to the divider laser (2
3
ω) to obtain the three phase

locked frequencies with exact frequency ratios 1:2:3. Also, It is possible to generate

the other higher harmonic frequencies, such as 4th, 5th, and so on. These phase-locked

frequencies can be used as the broad band coherent laser source in the frequency do-

main and ultra-fast optical pulse train in time domain.

In the optical frequency division based phase locked high harmonics generation

process, the master laser power must be high enough, because this frequency later

converted into the other harmonic frequencies.
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5.3 Overview of amplitude and phase manipula-

tions
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Figure 5.2: Schematic of arbitrary manipulation of amplitude and phases of a discrete
frequencies

There are few ways to control the amplitudes and phases of a broad band discrete

frequency spectra [5] with the use of liquid crystal spatial modulators [6], line by line

controlling of spatially separated frequencies [7, 8] and by using the combination of

a uni-axial birefringent material and a polarizer [9]. Freely controllable phases and

amplitudes of a broad band spectrum of discrete frequencies is one of the technique to

obtain a arbitrary optical wave form in time domain. Figure 5.2 shows the schematic

of the arbitrary manipulation of amplitude and phase of a discrete spectra. The

system consists of two parts; one is amplitude manipulation part, it consists of a uni-
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axial birefringent material (acts as a wave plate) and a polarizer. The combination

of these two components act as an amplitude manipulation system. The working

principle can be explained by the given formula;

|Im| = |Ey
m|2 = 1− sin2 2θA sin2 (Γm/2) (5.1)

where Γm = [ns(ωm)− nf (ωm)]ωm
LA

c
. ns, nf , ωm, c, andLA are the refractive index at

slow axis, at fast axis, angular frequency, speed of light in vacuum and length of the

crystal respectively.The second part is phase manipulation system which consists of

a dispersive material (Fused silica). By changing the thickness of this material the

relative phases can be controlled, because of the different frequencies feel different

optical path lengths inside the dispersive material. The combination of amplitude

and phase control systems applying simultaneously on a broad band discrete spectra

will lead to controllable optical waveform in time domain which is called arbitrary

optical wave form.

5.4 Experimental system

As shown in figure 5.3, the experimental system consists of three parts 1) 2f and 3f

laser systems 2) Array of PPLN waveguides including phase locking system 3) Optical

pulse shaping system. The 2f laser is a 1201nm ECDL followed by a tapered ampli-

fier (Toptica). It can deliver maximum of 1W output power. The 3f laser is 801nm

injection locked Ti:sapphire laser , which is same as the DFIL laser experimental sys-

tem shown in the chapter2, except the laser is operated at single frequency injection

locking. It can deliver maximum of 3W output power at 801nm.The output of the

injection locked Ti:sapphire laser coupled to a single mode fiber and then introduced

into the PPLN1 wave guide together with the 1201nm (2f) laser to generate 2403nm

(1f) through difference frequency generation. Now, part of the 1f, 2f frequencies were

spatially separated and 2f beam was introduced to a frequency shift of -95 MHz with
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Figure 5.3: Illustration of phased locked harmonics generation system and optical
pulse train generation experimental system
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the help of a acoustic optical modulator (AOM) and recombined with the 1f and

introduced into the PPLN2. The PPLN2 was designed to generate second harmonic

(SHG) of 1f frequency (2f”). The beat signal between the 2f” and frequency shifted

2f (2f’) was detected by a photo detector and was used for the feedback to the 2f laser

diode through phase lock loop to obtain the phase locked three frequencies. More

detailed experimental system of phase locked harmonics generation is illustrated in

the ref. [10, 11]

The phase locked frequencies f1, f2, f3 are introduced into the PPLN3, PPLN4

wave guides to generate 4f (1f+3f) and 5f (2f+3f) frequency beams through the sum

frequency generation. Now the five phase locked harmonics are co-axially generated

after the PPLN4 wave guide as shown in the experimental system.

Now the co-axial beam of five harmonics are passing through a quartz prism pair

which acts as wave-plate. The combination of this wave-plate and the Glan-laser

polarizer acts as the amplitude manipulator. The fused silica prism pairs acts as the

phase manipulator.These amplitude and the phase manipulations of the phase locked

harmonic frequencies leads to the arbitrary optical wave form in the time domain.

Amplitudes of the harmonic frequencies are measured with the independent photo

detectors after dispersing into the individual frequencies with the help of dispersive

prism. To determine the phases of the harmonics, these frequencies are focused on a

beta barium borate (BBO) crystal and monitored the interference between possible

SFGs and SHGs with the help of photo multiplier tube.

5.5 Results and discussion

We started the experiment with a 1.6 W power of master laser (3f) and a 200 mW

power of divider laser (2f). The two frequencies are combined by using a dichroic

mirror and coupled to the PPLN1. After all the above mentioned optical processes,

we have obtained five phase locked frequency components spanning from 2403 nm to
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Figure 5.4: Harmonic powers before and after amplitude manipulation

480 nm. The total bandwidth of the optical spectrum is 500 THz. Each harmonic

frequency has high spectral purity and maintained constant phase relation. Now this

this broad optical frequency spectrum employed to amplitude and phase manipula-

tion to obtain ultra-fast pulse train. The results are as followed below.

The results obtained in the amplitude manipulation is shown in figure 5.4b. The

Black bars represent the power distribution before the AM quartz prism pair and the

power of the frequencies components were distributed randomly. But, it is necessary

a desired power distribution to obtain an arbitrary optical waveform or a short pulse.

To manipulate the amplitudes of the each frequency, we utilized the combination of

quartz crystal prism pair and the Glan-laser polarizer. By changing the insertion

length of the prism which was mounted on the motorized translation stage and moni-

tored the powers of the each harmonic individually by separating the frequencies using

a dispersive prism. The results are shown in figure 5.4 a, each harmonic frequency

power was sinusoidally varies as a function of the prism thickness. From this it was

understood that arbitrary power combinations of the harmonic frequencies were real-

ized for the few mm thickness change. The dotted vertical line represent the position
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of the target power distribution. The power distribution at the point is represent by

red bars in figure 5.4b. In this case, our desired flat profile was realized.

Now come to the phase manipulation of the harmonic frequencies. This was done by

simply controlling the optical pass lengths in the dispersive media. To get the relative

phase information of the harmonic frequencies, all the frequencies were focused on

a BBO crystal of thickness 10µm to obtain 6f and 7f frequencies through SFG and

SHG processes. The interference signals of the 6f frequencies and 7f frequencies were

selected by inserting a band pass filter and detected the signal with a photo-multiplier-

tube. The interference signal amplitudes as a function of the prism insertion lengths

were recorded with an oscilloscope and shown shown in figure 5.5a. The dotted black

vertical line represents the optimum position, where both the inference signals were

at their maxima. The corresponding phases of the harmonic frequencies are shown in

the figure 5.5b, where the red circles represent the phases after the phase manipula-

tion and the black triangles represent the phases before the manipulation. After the

amplitude manipulation all the phases have a flat profile and the deviations are with

in the phase fluctuations of the phase locking system. In this case our obtained phase

distribution was close to the ideal phase distribution of the flat phases, to obtain a

Fourier transform limited (FTL) short pulse in time domain.

Now from the obtained inform of the phases and amplitudes, we combined the

harmonic frequencies and estimated the pulse profile in time domain. The results are

shown in the figure 5.6. The dotted curves represents the shape of the wave form

before optimizing the amplitude and phases of the harmonics. The blue curves rep-

resents the theoretical Fourier transform limited pulses in the ideal case and the red

curves represents the estimated wave form from the experimentally measured phase

and amplitude information. The estimated wave form is close to the ideal case with

a pulse duration of 1.6 fs and a repetition rate of 125 THz. This is the first optical

wave form generation based on the phase-locked continuous wave laser harmonic fre-

quencies.
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5.6 Conclusions

In this chapter, we have shown the importance of high power master laser in the

phase locked high harmonics generation and in the synthesis of the arbitrary optical

waveform. We have described the generation of a broad band comb by employing

the injection locked Ti:sapphire laser operating at 801nm as the master laser. Five

phase locked harmonics spanning from 480 nm to 2400 nm were reported. We showed

the arbitrary controllable amplitudes and relative phases of the broad band frequency

spectrum. Later we showed that these phase locked harmonics are formed a ultra-fast

optical pulse train with a repetition of 125 THz.
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CHAPTER 6

Summary and future prospects

6.1 Summary

In this dissertation, we have discussed about the developed a new laser source and

its applications in the nonlinear optical science such as molecular modulation at 10.6

THz and in the Optical wave form synthesis.The detailed summary of this disserta-

tion is as follows.

we have demonstrated the simultaneous two frequency oscillation from a single

laser cavity. we have characterized the laser basic features such as single frequency

nature by using the scanning Fabry-Perot cavity and the single transverse mode pro-

file by measuring the M2 factor. We have reported the laser practical power stability

in short time scale and relatively long time scales. DFIL laser free run power sup-

pression as a function of injection seed power was discussed and compared with the

single frequency injection locking case. As an advanced features, desirable frequency

separation of the two frequencies from 10THz to 1THz have realized with this injec-

tion locking technique. Also, we have demonstrated the controllability of the relative
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output power ratios of the injected frequencies as a function of the injection seed

powers.

As the part of the injection locked high power laser applications in the nonlinear

optical phenomena, we have studied the below mentioned optical processes.

We have studied the continuous wave based coherent Raman sideband generation

in the para-H2 gas medium by utilizing the optical cavity enhancement technique.

Multiple stokes and anti-Stokes Raman generation by driving the rotational Raman

transition of the J=0 −− > J=2 level in the case of single frequency laser pumping

was reported. Enhancement of the coherent stokes emission in the case of Raman

resonant two frequency laser driving and compared with the single frequency pump-

ing case was reported. We have discussed the difficulties in the generation of broad

band coherent stokes and anti-stokes generation through cavity enhancement tech-

nique. We also report the effect of the Raman medium dispersion in the broad band

coherent Raman generation process.

We have discussed the importance of high power master laser in the phase locked

high harmonics generation and in the synthesis of the arbitrary optical waveform.

Single frequency injection locked Ti:sapphire laser operating at 801 nm was used as

the master laser in the division by three optical phase locked frequencies, and later

these frequency utilized to generate higher order harmonic frequencies using the array

of PPLN wave guides. In this way, five phase locked harmonics were generated in

the frequency span of 500THz. Freely controllable amplitudes and relative phases of

the harmonics have shown. Later we showed that these phase locked harmonics are

formed transform limited optical pulses in time domain. From the measured ampli-

tudes and phases of the harmonics the reconstructed wave form has a FWHM of 1.6

fs with a pulse reputation rate of 125 THz was realized.
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6.2 Future prospects

In the case of injection locked Ti:sapphire laser the current total output power is 3W.

Extending this powers to multiple digit power levels will be an attractive for many

optical science experiments and industry. We wants to extend this technique to a Hz

level frequency stabilities [1]. It is possible to increase this output powers to double

digit Watt level powers by introducing the high power pump lasers. For example, the

seed frequencies after tapered amplifier are easily obtainable up to 1W. In the current

case the seed to slave ratio is 1/140, which means 1W seed power easily drive the 10

W free run power. By locking the laser frequencies to a high finesse cavities with sta-

ble body with a robust feed back loops are made possible Hz level frequency stabilities.

The extend of the coherent Raman generation in the hollow core fibers can consid-

erably reduce the required peak powers to Watt level. Driving the Raman medium by

confining in the dispersion compensated few micron core hollow core photonic crystal

fibers can be a efficient Raman generators [2].

The synthesized few cycle femto-second pulse technique can applied to study the

optical phenomenon by confining the pulses to an optical enhancement cavity, even

though the initial peak powers of the pulses are considerably low.
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APPENDIX A

Simultaneous two frequency resonance of power oscillator cavity

To obtain stable dual frequency laser oscillation, it is necessary to stabilize the power

oscillator cavity to the two frequency resonances simultaneously. There are few ways

to realize the simultaneous two frequency resonance; here we select the tuning of t the

optical cavity length by inserting a pair of wedges in the optical path. Even though

the cavity has discrete resonances, it is possible to select frequency continuously. Fig-

ure A.1 shows the calculated longitudinal mode overlaps of the two frequencies as a

function of the inserted wedge thickness. Sub figures a), b) and c) represent the lon-

gitudinal modes miss-overlap of the selected frequency pairs (783.8849 nm, 806.2823

nm), (800.0590 nm, 806.2885 nm), (801.1395 nm, 803.0041 nm) respectively. In the

case of frequencies 783.8849 nm, 806.2823 nm the minimum required wedge insertion

length is 50µm, where as in the case of frequencies 801.1395 nm, 803.0041 nm is

0.7mm. The period of the closest resonance positions are depended on the separation

of the selected frequencies, as the separation between the frequencies decreases the

number of mode overlaps in a unit length decreases. It will limit the selection of the

arbitrary frequency combinations at sub nano-metre separations, where the required

wedge insertion thickness are more than a centimeter.
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Figure A.1: Deviation from simultaneous two frequency resonance of the power oscil-
lator cavity as function of the prism insertion length. a) , b) and c) are the resonance
measurements corresponding to the frequency pairs (783.8849 nm, 806.2823 nm),
(800.0590 nm, 806.2885 nm), (801.1395, 803.0041) respectively
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APPENDIX B

Cavity mirrors reflectivity:

To obtain high intra-cavity powers, it is necessary to have a highly reflective low

and loss cavity mirrors. Figure B. 1 represents the cavity mirror specifications that

were used to study the Raman based molecular modulator. The cavity mirrors were

manufactured by the Layertec company. Both the mirrors are highly reflective and

the reflectivities are greater than 99.9 % over a range 700-900 nm. The corresponding

cavity finesse was ∼15,000 at the both pump wavelengths (784 nm and 806 nm).
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Figure B.1: Raman cavity mirror refelectivities; specifications given by Layertec Ltd

77



APPENDIX C

Mirror coatings

To generate broad-band Raman through four wave mixing process inside an high-

finesse cavity, it is necessary a specially designed mirror coatings to compensate the

gas dispersion. Here we have selected a pair of cavity mirrors that can compensate

the dispersion introduced by the Raman active medium, in a finite frequency region.

Both the mirrors group delays are sufficiently smooth and low. Figure C.1 represents

the cavity mirrors group delay dispersion (GGD).
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