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量子ドット太陽電池とペロブスカイト太陽電池に

おける界面修飾と界面電荷ダイナミクス 

和文要旨 

現在エネルギーと環境問題はますます深刻になってきたため、無尽蔵で安

全なエネルギー源である太陽光の活用が強く望まれている。しかし、太陽エ

ネルギーは大きな可能性があるにも関わらず、現在ごくわずかしか利用され

ていない。その原因は、太陽電池の作製コストが高く、かつ変換効率が十分

には高くないことにある。最近、コロイド量子ドット太陽電池とペロブスカ

イト太陽電池は安価な溶液法で作製可能であることと理論変換効率は高いた

め、次世代太陽電池として注目されている。しかし、これらの次世代太陽電

池を実用化させるためには、さらなる高効率化と安定化の実現とそのメカニ

ズムの解明に関する基礎研究は不可欠である。特にこれらの太陽電池の各界

面における電荷分離と再結合過程の解明、これらの界面電荷ダイナミクスと

太陽電池の光電変換特性および安定化との関連を明らかにすることは鍵とな

る。 

 そこで本研究では、PbSe、PbS コロイド量子ドット太陽電池とペロブス

カイト太陽電池を作製し、各界面に対して様々な有機分子と無機分子による

界面修飾を行うことにより、太陽電池の変換効率の向上と安定化の向上に成

功した。さらに、過渡吸収分光法と開放電圧の過渡応答測定法などを用いて、

界面電荷分離と再結合ダイナミクスを解明し、界面修飾によるこれらの界面

電荷移動ダイナミクスの変化と効率向上および安定化向上との関連性を明ら

かにした。具体的に以下の 3つの内容である。 

 （１）PbSe量子ドット太陽電池の界面修飾と界面電荷分離・再結合ダイ

ナミクスについて研究を行った。まず、新しい方法を提案し安定な PbSe量子

ドット溶液の作製に成功した。次に、異なる 4種類のリガンド分子（2種類の
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有機分子と 2種類の無機分子）を PbSe量子ドットの表面パッシベーションに

適用し、PbSe 量子ドット薄膜を形成した。これらのリガンドの違いによる

PbSe 量子ドット膜の空気中での安定性の変化、 PbSe 量子ドット膜のエネル

ギー準位の変化、PbSe量子ドット太陽電池の光電変換特性の変化について詳

しく調べた。さらに、過渡吸収分光法により量子ドット界面での電荷移動速

度定数のリガンド長さ依存性とそのメカニズムを検討した。また開放電圧の

過渡応答測定により PbSe 量子ドットにおける光励起キャリアの寿命と再結

合過程のリガンド分子依存性を明らかにした。これらの結果により、適切な

量子ドット界面修飾方法を確立できれば、空気中で安定でありさらなる高効

率化である PbSe量子ドット太陽電池の構築ができることが判明した。 

（２）PbS 量子ドット太陽電池の界面修飾と界面電荷再結合の抑制につい

て研究を行った。従来の PbS 量子ドットヘテロ接合型太陽電池のデバイス構

造の中に、PbS 量子ドット層と Au電極との界面に BTPA-4という新しい有機

小分子層をホール選択層として導入することをはじめて提案した。これによ

り、PbS 量子ドット太陽電池の開放電圧の向上に成功した。そのメカニズム

を解明するために、開放電圧の時間応答と交流インピーダンスの測定を行っ

た。その結果より、BTPA-4ホール選択層の導入により、PbS 量子ドット層と

Au 電極の界面での再結合を著しく抑制できたため、、PbS 量子ドット太陽電

池における光励起キャリアの寿命が長くなり、開放電圧が向上できたことが

明らかになった。さらに、この有機小分子 BTPA-4 を導入した PbS 量子ドッ

ト太陽電池は空気中で 100 日以上保存しても安定であることを実証した。こ

の結果より、ご提案した BTPA-4 ホール選択層は従来の有機ホール選択層よ

り安定であり、量子ドット太陽電池に応用できることが判明した。  

（３）ペロブスカイト太陽電池の新しいホール輸送層の導入と界面電荷再

結合の抑制について研究を行った。ペロブスカイト太陽電池は最近の 5 年間

で大変盛んに研究されている。従来ペロブスカイト太陽電池では、Spiro-

OMeTAD をホール輸送層としてほとんど使われているが、Spiro-OMeTAD の
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コストが高いことは大きな課題であり、新しいホール安価な輸送層の開発が

強く望まれている。そこで本研究では、Spiro-OMeTADより安く合成できる３

種類の異なる分子構造の新しいホール輸送層（BTPA-4, BTPA-5 と BTPA-6）

をペロブスカイト太陽電池に導入し、界面電荷再結合と光電変換特性への影

響について検討した。その結果、ペロブスカイト層とホール輸送層の界面に

おける電荷再結合と光電変換特性はホール輸送層の分子構造に強く依存する

ことを見出した。その中で、BTPA-6を用いた場合では、ペロブスカイト太陽

電池の変換効率は 14.4％に達成し、従来の Spiro-OMeTAD を用いた場合の変

換効率（15.0％）とほぼ同レベルであった。さらに、BTPA-6を用いた場合の

ペロブスカイト太陽電池の安定性は Spiro-OMeTAD を用いた場合のペロブス

カイト太陽電池の安定性よりいい結果が得られた。BTPA-6は有望なホール輸

送材としてペロブスカイト太陽電池に応用できることが判明した。 

以上の３つの研究内容の結果より、今後量子ドット太陽電池とペロブスカ

イト太陽電池のさらなる高効率化と安定化の実現に重要な知見を与えること

が明らかになった。 
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Interface Modification and Interfacial Charge 

Dynamics in Quantum Dot Solar Cells and 

Perovskite Solar Cells 

Abstract 

The present globalization of energy shortage and environmental pollution issues 

have posed a grave menace to human survival and development. Finding a viable 

supply of clean, renewable energy is one of the most daunting challenges facing the 

world. Solar cells as devices that convert solar energy into electricity is the focus of 

the whole society. However, conventional solar cells have had limited impact in 

meeting this challenge because of their high pollution, high cost and low power 

conversion efficiencies. Recently, colloid quantum dot solar cells (CQDSCs) and 

perovskite solar cells (PSCs) as new generation solar cells have been attracting 

immense attention owing to their inexpensive solution-based techniques and high 

theoretical power conversion efficiency. However, stability is still a big problem for 

CQDSCs and PSCs, and charge dynamics in those solar cells are not clear. To obtain 

stable CQDSCs and PSCs through interface modification, and reveal the charge 

dynamics in those solar cells are the central aim of this thesis. 

This thesis investigated the surface ligand dependent charge carrier dissociation, 

charge carrier transmission and recombination of CQDSCs, and used novel hole 

transport materials to modify the interface of CQDSCs and PSCs to reduce the 

interfacial recombination in CQDSCs and PSCs.  

In this thesis, I explore a method to obtain air stable PbSe CQDs and surface ligand 

dependent exciton dissociation, recombination, photovoltaic property, and stability of 

PbSe solid films and CQDSCs. I select four short ligands, that is, two organic ligands 

1,2-ethanedithiol (EDT) and 3-mercaptopropionic acid (MPA); two inorganic ligand 

cetyltrimethylammonium bromide (CTAB) and tetrabutylammonium iodide (TBAI) to 

investigate the ligand-dependent air stability, energy level shift, the exciton 

dissociation, and photovoltaic properties of PbSe CQDSCs. In addition, the charge 

transfer rate, recombination processes and carrier lifetimes in these CQDSCs were also 
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revealed through ultrafast transient absorption (TA) spectra, and open-circuit transient 

voltage (Voc) decay measurements.  

We also explore a method to suppress the interfacial recombination at QDs/Au 

electrode in CQDSCs by using organic small molecule. We develop a novel donor-π-

donor (D-π-D) organic small molecule bis-triphenylamine with spiro(fluorene-9,9’-

xanthene) as the conjugated system, named BTPA-4, as a hole selective layer (HSL) 

in the PbS CQDSCs. We found that the introduction of BTPA-4 as HSL can enhance 

the open-circuit voltage (Voc), prolong the effective carrier lifetime, reduce the 

interfacial recombination at PbS QDs/Au interface, and hence improve the device 

performance. Furthermore, the PbS CQDSCs with BTPA-4 possessed a noticeably 

stable property for over 100 days of storage under ambient atmosphere that has been 

the Achilles' heel of other organic HSL for CQDSCs.  

We also focus on hole transport materials and the interfacial recombination in PSCs. 

Three triphenylamine-based hole-transport materials (HTMs), named BTPA-4, BTPA-

5 and BTPA-6, were used into PSCs. BTPA-6 with four substituted triphenylamine 

units exhibited a better solar cell performance than BTPA-4 and BTPA-5 which contain 

two substituted triphenylamine units. BTPA-6 achieved a PCE of 14.4% which nearly 

matches Spiro-OMeTAD (15.0%). The order of the recombination resistance was 

found to be in the order of BTPA-4 < BTPA-5 < BTPA-6 < Spiro-OMeTAD, indicating 

that the electron blocking capability of the HTM is in this order. This trend agrees with 

the Voc trend of their corresponding solar cells. In addition, BTPA-6 based devices 

showed better long-term stability than that with Spiro-OMeTAD, which can partially 

be attributed to the hydrophobicity of BTPA-6 is better than that of Spiro-OMeTAD. 

The goal of above experiments is to gain a more complete understanding of charge 

carrier dynamics in CQDSCs and PSCs, so that more efficient materials and 

architecture for solar cells can be designed in the future. 
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Chapter 1: Introduction and Background 

1.1 The Energy and Environmental Crisis 

With the development of economy, human consumes more and more energy and 

resources. Simultaneously, the heavy using of traditional fuels makes great damage to 

the environment. Exploiting and utilizing low cost, low-carbon emission, renewable 

energy sources becomes particularly urgent. Recently, we rely on fossil fuels, nuclear 

energy and renewable energies of our energy supply. In Japan, their contributions were 

82%, 11% and 7% in 2010, and 93%, 0%, 7% in 2014, respectively. Around the global, 

their contributions were 82%, 5% and 14% in 2012. Those data show that fossil fuels 

take over 80 % part both in Japan and the world. What’ more, after the Fukushima Dai-

ichi nuclear accident, the nuclear energy supply for Japan has been absolutely replaced 

by fossil fuels.[1] Thus, we have now come to expect on the low cost, high efficiency, 

and easy promotion renewable energy sources. 

 

Figure 1-1. U. S. energy consumption by energy source in 2015. [2] 

Different from fossil fuels, renewable energy is energy supplied by inexhaustible 

source. There are some commonly used renewable energy sources: wind, biomass, 

hydropower and solar. Among them, solar is the most important renewable energy 

sources. Solar is a powerful source of energy from the sun. Recently, the most 
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commonly ways to use solar energy for our daily life are solar water heating and 

convert sunlight directly into electricity by solar cells.  

1.2 Solar Cells 

Solar cells can convert sunlight energy to electrical energy based on the principles 

of the photovoltaic effect of semiconductor materials. Sunlight is made up of photons 

if the absorbed photons has larger energy than the bandgap energy of semiconductor, 

electrons will be excited from semiconductor’s valence band up to its conduction band, 

and leaving holes in the valence band. Once the electron and hole are separated 

successfully, the photogenerated electron and hole are driven by the built-in electric 

field to the edges of the depletion region. The electrons and holes which in quasi-

neutral region, should be diffused through the quasi-neutral region to flow through an 

external circuit and supply power to appliances.[3]  

 

Figure 1-2. Working schematic diagram of classic p-n junction. qVoc is the difference 

between quasi-Fermi level of electrons (EF-n) in the n-type semiconductor and quasi-

Fermi level of (EF-p)in the p-type semiconductor on sunlight.[3] 

Performance of solar cells can usually be evaluated through two main indexes: 

power conversion efficiency (PCE) and stability. The PCE of solar cell can be 

calculated by following equation: 
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𝑃𝐶𝐸 =  
𝐽sc × 𝑉oc × 𝐹𝐹

𝑃𝑖𝑛
× 100%          (1 − 1) 

 

where Voc is open circuit photovoltage, Jsc is the short circuit current density, FF is the 

fill factor (the maximum power divided by the product of Jsc and Voc), and Pin is the 

incident light intensity. For one sun illumination, Pin is 100 mW/cm-2. Figure 1-3 shows 

the current density-voltage (J-V) curves of a perovskite solar cell. 

 

 

Figure 1-3. J-V curves of a perovskite solar cell under dark and under one sun 

illumination. 

For solar cells, Voc is determined by the difference of the quasi Fermi level of n-type 

material (EF-n) and that of p-type material (EF-p), divided by q, the equation is: 

 

𝑉oc =
𝐸Fn − 𝐸Fp

𝑞
          (1 − 2) 

 

And Jsc is the largest value of photocurrent that can be supplied by a solar cell per unit 

area. It mainly depends on light power, the absorption spectrometry, absorbance of 
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light absorbing layer, and the charge recombination in the solar cells. There exists a 

relationship between Jsc and Voc: 

 

𝑉oc =
𝑘𝑇

𝑞
𝑙𝑛

𝐽0 + 𝐽sc

𝐽0
≈

𝑘𝑇

𝑞
ln

𝐽sc

𝐽0
          (1 − 3) 

 

Besides Jsc, Voc and FF, the series resistance (Rs) and shunt resistance (Rsh) are also 

very important parameters for solar cells. The following equations describe the J-V 

characteristics of a solar cell: 

 

𝐼sc = 𝐼sc
′ − 𝐼0 [exp (

𝑞𝐼sc𝑅s

𝑛0𝑘𝑇
) − 1] −

𝐼sc𝑅s

𝑅sh
          (1 − 4) [4] 

 

𝑉oc

𝑅sh
= 𝐼sc

′ − 𝐼0 [exp (
𝑞𝑉oc

𝑛0𝑘𝑇
) − 1]          (1 − 5) [4] 

 

where I′sc is the short circuit current when Rs is zero and Rsh is infinite; n0 is the diode 

ideality factor. From equation 1-4 and 1-5, it can be seen that series resistance Rs 

reduces Jsc but has no effect on Voc. In contrast, the shunt resistance Rsh has no effect 

on Jsc but can reduce the Voc. Rs is mainly associated with charge transport resistance, 

while Rsh is associated with charge recombination resistance. In addition, FF is mainly 

dependent on both of Rs and Rsh: the lower the Rs, the larger the Rsh, leads to the larger 

the FF. All in all, minimized Rs and maximized Rsh are beneficial for Jsc, Voc and FF 

and hence the PCE.[3] 

Like other devices, environment temperature also affects the performance of solar 

cells. The band gap (Eg) of semiconductor has relationship with temperature: 

 

𝐸g(𝑇) = 𝐸g(0) −
𝛼𝑇2

𝑇 + 𝛽
          (1 − 6) 
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where α and β are intrinsic constants of semiconductor, T is environmental temperature 

and Eg(0) is the band gap at 0 K. With environmental temperature increasing, the band 

gap of semiconductor becomes narrowing, and the decrease of band gap can be 

regarded as increasing the energy of the electrons. The band gap of semiconductor also 

depends on the bond energy of atoms. Thus, with environmental temperature 

increasing, band gap of semiconductor reduced, in turning to affecting most material 

parameters of semiconductor. The temperature dependency Voc for solar cell is 

approximated by the following equation[5]:  

 

d𝑉oc

d𝑇
= −

𝐸g(0)

𝑞 − 𝑉oc + 𝜁
𝑘𝑇
𝑞

𝑇
          (1 − 7) 

 

The Jsc of solar cell, increases slightly with temperature, due to the band gap of 

semiconductor was narrowed and absorbs more light to create e-h pairs. As I have 

introduced in above, Jsc of solar cell depends on incident light energy. Another 

important parameter, quantum efficiency (QE), can characterize the relationship 

between Jsc and incident light. The QE is the percentage of the absorbed photons that 

are converted to electric current in solar cell. The QE spectrum ideally has the square 

shape, and for most solar cells is reduced due to surface and interfacial recombination 

in solar cells. There are two common expressions of QE: external quantum efficiency 

(EQE) and internal quantum efficiency (IQE). EQE is defined to be the probability of 

suppling one electron to the external circuit by single incident wavelength (λ) light. 

The equation is: 

 

EQE(λ) =
𝐼sc(𝜆)

𝑞𝐴𝑄(𝜆)
          (1 − 8) 

 

A is the active area of solar cell, Q (λ) is the incident photon flux density on solar cell. 
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The EQE of a solar cell depends on the incident light (included transmission and 

reflection light). IQE is defined to be the probability of suppling one electron to the 

external circuit by absorbing single wavelength (λ) light. The IQE of a solar cell 

depends on its absorbed light. By measuring the percentage of light transmission and 

reflection of a solar cell, IQE can be calculated from EQE curve. The equation is: 

 

IQE (λ) =
𝐸𝑄𝐸(𝜆)

1 − 𝑅(𝜆) − 𝑇(𝜆)
          (1 − 9) 

 

R(λ) and T(λ) are hemispherical directional reflectance and hemispherical 

transmission of the solar cell, respectively. If the solar cell is thick enough, T(λ)=0. 

1.3 Types of Solar Cells 

Solar cell can be categorized into various classes basis on the types of materials 

applied for solar cells and the structure of solar cell as shown in Figure 1-4. 

 

Figure 1-4. The research solar cells record efficiencies chart.[6] 

1.3.1 First Generation Solar Cells-Silicon Wafer Based 

The first-generation solar cells are based on silicon wafers. It is the oldest and the 
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most widely used type of solar cell due to its stable and high performance. The silicon 

wafer based solar cell can further be subdivided into two distinct classifications: 

single-crystalline silicon solar cell and multi-crystalline silicon solar cell. Single-

crystalline solar cell, as the name indicates, is manufactured from single crystals of 

silicon. In order to obtain requirement quality single crystals of silicon, multi process 

and a lot of energy are needed, so the price of single-crystalline silicon solar cell is 

expensive. The new efficiency record of single-crystalline silicon solar is 26.3%.[7] 

Multi-crystalline silicon solar cells are generally composed of several different crystals, 

coupled to one another in a single cell. The processing of multi-crystalline silicon solar 

cells are more economical and most popular solar cells. They are slightly cheaper to 

fabricate compared to single-crystalline silicon solar cells. Now the most widely used 

solar cells is multi-crystalline silicon solar cells with efficiencies ranging between 

18%-19.9%.[7] Due to the low absorption coefficient of silicon, the silicon solar cell 

devices are required to over hundreds of microns thickness in order to absorb more 

incident light. The devices made with so thick layers require high pure crystalline 

silicon to ensure efficient extraction of carriers. Through the first-generation solar cells 

need expensive processing requirements, these devices, with high efficiency and stable 

performance and decreasing costs, occupy the highest percentage of market today.[8] 

1.3.2 Second-Generation Solar Cells-Thin Film Solar Cells 

CdTe, CuInxGa(1-x)Se2 (CIGS) and a-Si, etc. thin film solar cells are considered to 

second generation solar cells, and are more economical than the first-generation solar 

cells. The light absorbing layers of the first-generation solar cells are up to 350 μm 

thick, while thin film solar cells have about several microns thickness thin light 

absorbing layers.[9] The thin films technologies use methods such as spray pyrolysis, 

sputter coating or vapor deposition (PVD or CVD) and allow simultaneously assemble 

constructions of entire modules. Some thin film solar cells with enough thin film can 

be deposited on flexible substrates or through solution processing, these technologies 

can further expand the application fields and reduce the costs of solar cells. Recently, 

the PCE of the lab scale thin film solar cells has reached about 22% (in Figure 1-4), 

but their module’s PCEs are still ~17%.[7] Moreover, most of the thin films 

technologies should use rare earth metals, which could restrict their large-scale 
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application in the future. However, because of their low cost, the market share of thin 

film solar cells is continually increasing. 

1.3.3 Third-Generation Solar Cells 

Third-generation solar cells take advantage of promising technologies to promote 

solar cell efficiency to overcome the Shockley-Queisser limit of 33%.[10] The 

Shockley-Queisser limit proves that semiconductor with a bandgap of 1.4 eV have a 

largest theoretical efficiency of 33%. It mainly due to semiconductor’s incomplete 

absorption of the solar spectrum, heat relaxation of excess energy and thermodynamic 

losses.[8] Emerging solar cells include: copper zinc tin sulfide solar cell (CZTS), 

organic solar cells (OPV), dye-sensitized solar cells (DSSCs), quantum dot solar cells 

(QDSCs) and perovskite solar cell (PSCs). The following will emphases upon the 

introduction of quantum dot solar cells and perovskite solar cells. 

1.4 Quantum Dot Solar Cells (QDSCs) 

1.4.1 Quantum Dots (QDs) 

Quantum structures are nanocrystals composed of a few thousand atoms or less that 

experience quantum confinement in at least one dimension. it means that a quantum 

confined nanostructure approaches and then becomes smaller than its exciton Bohr 

radius, a natural length scale that characterizes the average separation between 

electrons and holes in the bulk. Quantum dots (QDs) are several nanometers 

small nanoparticles. The optical and electronic properties of QDs are different with 

their bulk materials. QDs will emit specific frequencies lights when electricity or light 

is applied to them, and those lights can be precisely tuned by changing the sizes or 

shapes of QDs. In QDs, the electron-hole pairs can be generated by excited light cannot 

move as in bulk material since the discrete nature of their energy levels. When the 

electron and hole are confined within a zero dimension which approach to or smaller 

than QDs Bohr radius, the exciton receives enhancing confinement effects which 

drastically change the stayed energy levels and lead to increasingly discrete electronic 

structures. 
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1.4.2 Multiple Exciton Generation 

Multiple exciton generation (MEG) is the process by which one photon (hv > 2 Eg) 

can generate multi electron-hole pairs in a quantum confined material.[11] MEG effect 

can break the Shockley-Queisser limit in bulk material through a process similar to 

impact ionization. Impact ionization (one photon producing multi electron-hole pairs) 

was difficult to find in bulk materials because of the momentum and energy 

conservation, which means the energy threshold for impact ionization is often over 

three times the bandgap of the bulk material, requiring light well in the UV range 

(λ<400 nm) which take up only a narrow portion of solar spectrum.[12] The MEG 

process results in that the extra energy in a hot carrier can be used in a reverse Auger 

recombination process to create multi electron-hole pairs. During the Auger 

recombination process, an electron-hole pair at the band edge can transfer its energy 

to another electron-hole pair at the band edge through non-radiative transition. This 

process leads to fast hot carrier cooling due to the generated single high energy exciton 

is quickly cooling to the band edge.[13] Meanwhile, hot carrier Auger cooling process 

is where a high level excited electron transfers its extra energy to its associated hole 

therefore bypassing the hot phonon bottleneck because of the high density of hole 

states. These processes are considered to be increased in quantum confined systems 

due to the enhanced coulomb coupling and decreased in translational momentum 

conservation.[11, 14] Nozik, A. J. proposed that quantum confined materials can be 

more efficient for generating multi electron-hole pairs from a high energy single 

photon using fundamentally different physics than bulk materials.[15]  

In quantum dot solar cells, MEG phenomenon has great application value if multiple 

photogenerated excitons can be efficiently extract before they recombined. The high 

charge collection efficiency of multiple carriers has the potential to remarkably 

enhance the efficiency of solar cells, leading to an over 100% EQE at high energy 

wavelengths and finally obtains higher PCE. The further combination of MEG with 

solar concentration is expected to largely improve the efficiency to 75% at 500 nm 

based on theoretical calculations, much more efficient than the expected theoretical 

increase for conventional silicon-based solar cells.[16-17] QDs have the potential to 

largely improved Voc and Jsc of solar cells by extracting hot carriers and multiple 
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excitons, respectively. The efficient realization of these goals should faces a great 

challenge because of the fast charge carriers relaxation process in the solar cell cannot 

be underestimated.[17] 

 

 

Figure 1-5. Schematic of multiple exciton generation process in QDs. 

1.4.3 Quantum Confinement Effect 

Semiconductors can be characterized by two distinct distributions of allowed states 

called the conduction band (or lowest unoccupied molecular orbital, LUMO) and 

valence band (or highest occupied molecular orbital, HOMO) which separated by the 

bandgap (Eg) of the material (Figure 1-6). If individual atoms bind with each another, 

their atomic orbitals will split to form pairs of molecular orbitals. For numerous regular 

arrangement of atoms combing in a crystal lattice, the states form continuous energy 

bands are separated by energy gaps instead of isolated energy levels. The bandgap of 

material is defined as the amount of energy needed to move an electron in a perfect, 

infinite crystal lattice from the fully occupied valence band to the unoccupied 

conduction band, where the electron can freely move.[11] When the size of a 

semiconductor is reduced to a few hundred atoms (0 D), the density of states in the 

bands is replaced by a set of isolated energy levels, i.e S, P and D levels, which may 

have energy level spacing, e.g. Ep-Es. The reorganization of density of states in 
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quantum levels produce effect on the optical and electronic properties of the 

semiconductor.[18-19]  

 

Figure 1-6. Schematic of density of states in different confinement configurations: (a) 

bulk (3D); (b) sheet (2D); (c) wire (1D); (d) QD (0D).  

In QD, the electron-hole pairs are known as excitons are not free due to the isolate 

nature of the energy levels. Therefore, when the electron and hole are bound in a 

particle dimension that is approach to or smaller than its Bohr radius, electron and hole 

interact strongly with each another by Coulomb forces. With the size of the 

semiconductor is decreasing from bulk to QD dimension, the density of states is 

changing from continuous to isolate by the isolate energy levels. These isolate levels 

can be found by solving the Schrodinger equation for different particle dimensions.[20] 

For bulk semiconductor, wavefunction of electron is delocalized and electrons can 

freely move throughout the conduction band. So, we can use the wavefunction of free 

particle which without any confinement condition to compute the Schrodinger 

equation for finding possible energy values.[20] The energy of the electron in bulk 

semiconductor can be expressed as following: 

 

𝐸(𝑘) =
ℏ2(𝑘𝑥

2 + 𝑘𝑦
2 + 𝑘𝑧

2)

2𝑚𝑒
∗

          (1 − 10) 
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where k is wave vector, ℏ is Planck constant, and me* is electron effective mass. When 

the dimensions of the semiconductor reduced smaller than its exciton Bohr radius, the 

energy of the discrete states for QDs for spatial dimensions of Lx, Ly, and Lz can be 

expressed as following: [21] 
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2 are for a bound QD. 

In the same way, the energy eigen values for spherical QD can be defined as: 
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in above equations 𝛼𝑛𝑒ℓ𝑒
is the nth root of the ℓth order Bessel function for the electron 

while is the 𝛼𝑛ℎℓℎ
is the nth root of the ℓth order Bessel function for the hole. 

 



13 
 

 

Figure 1-7. Size dependent band gap of PbSe QDs. Absorption spectra of PbSe QDs 

spanning the range from 8.1 nm to 1.8 nm show strong quantum confined 1S1/2 exciton 

shifted absorption. when the size of semiconductor material is smaller than the exciton 

Bohr radius of bulk semiconductor, the exciton experiences increasingly strong 

confinement effects which significantly alter the allowed energy levels and result in a 

size dependent and increasingly discrete electronic structure. The intra-band transition 

energies increase, and their widths narrow, resulting in optical absorption spectra that 

reveal structure indicative of discrete transitions with gaps between transitions 

reaching several hundred meV.[22-23] 

In addition, according to equation 1-14, the effective band gap Eg of semiconductor 

increases with material decreasing size. The Figure 1-7 shows the increasing bandgap 

energy and intra-band spacing with the sizes of QDs. Semiconductor’s property such 

as electrical and optical properties are mainly dependent on the quantum size effects 

of semiconductor. The size of the structure limits the exciton-Bohr radius of the bound 

electron-hole pairs, leading to altered electronic and optical properties, and causes high 

surface energy, which alters the physical properties.[20, 24] The actual size of 

semiconductor is usually smaller than its theoretical exciton Bohr radius (αB). For the 

αB of Si is at 4.9 nm, and for PbSe is at 6.1 nm, defined to be: 
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𝛼𝐵 =
𝑒0ℏ2

𝑚𝑟𝑒2
          (1 − 15) 

 

where e0 is the dielectric constant of the QD (at low frequencies), ℏ is Planck 

constant, and mr is the reduced electron-hole mass. [24] 

1.4.4 Classes of QDSCs 

The most magnetic characteristic of quantum dot to solar cells or other devices is 

their tunable band gaps. Thanks to the quantum confinement effect, QDs’ bandgaps 

can easily change by adjusting QD sizes. The smaller the QD size, the larger the band 

gap. Thus, the optical and electronic properties of QDs can be handily tuned. One of 

the most straight forward benefits from this phenomenon is the extended absorption 

range to the near-infrared (NIR) by using NIR-absorbing QDs (e. g. PbS, PbSe, etc). 

The NIR region sunlight contains about half of the sun irradiation, absorbing NIR 

region photons represents a great opportunity to dramatically improve the PCE of solar 

cells. Among narrow band gap (e.g., ∼1.4−0.8 eV or even lower) QDs, such as PbS 

and PbSe have attracted great attention and have been extensively employed for thin-

film solar cells applications.  

Since QD-based solar cells were first reported in 1998, their PCE have been 

increased from below 1 to 13.4%.[6, 25] Although they have attracted extensive 

research interest, the improvement of the device performance was relatively steady 

and slow in the first 10 years or so. The past several years has be seen a rapid progress 

of this field, the highest ever certificated PCE of 13.4% was reported this year.[6] The 

impressive improvements have mainly been achieved via designing and improving 

device architectures and QD surface engineering. Diverse device architectures of QD-

based solar cells have been developed to improve the photon-to-electron conversion 

efficiency. Recently, there are about four classes of QDSCs. They are a QD-sensitized 

solar cell, Schottky junction solar cell, depleted heterojunction solar cell, and depleted 

bulk heterojunction solar cell.[26] Almost all of these solar cells favor the use of 

monodisperse, high-quality colloidal QDs (CQDs) to avoid possible charge carrier 

trapping and recombination in QDs. 
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Figure 1-8. Single-junction CQD solar cell architectures. (a) Schottky CQD solar cell. 

(b) Depleted heterojunction CQD solar cell. (c) Depleted bulk heterojunction CQD 

solar cell. (d) CQD-sensitized solar cell. Also shown are the electron band diagrams of 

each architecture as indicated. Note that the depleted heterojunction and depleted bulk 

heterojunction solar cells share the same band diagram, with the only difference being 

the larger volume of CQDs within the depletion region due to the interfacial higher 

surface area between the TiO2 and CQD film.[26] 

1.4.4.1 Schottky CQD Solar Cells 

The first Schottky CQD solar cell involving a thin and compact PbSe QDs film was 

reported by J. M. Luther in 2008.[27] This type of solar cells was once leading in the 

efficiency in all types of QD solar cells, with the highest reported efficiency reaching 

4.5% in 2011.[28] The structure is quite simple and is constructed by sandwiching the 

QD layer in between an Ohmic-contact transparent electrode (such as indium-doped 

tin oxide (ITO)) and a low work function metal electrode. In general, electron-hole 

pairs are photogenerated in the absorbing QDs layer and separated at the Schottky 

junction imposed in between the back-contact electrode and QDs layer. Although the 

Schottky junction architecture demonstrates functional simplicity and ease of 

fabrication, it suffers from some inherent problems of limited QD layer thickness and 

low Voc. The former constraint arises from the dilemma of poor diffusion of minority 
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carriers generated on the illumination side and the location of the Schottky contact at 

the back, while the latter limitation is set by Fermi level pinning, with the upper limit 

only being approximately half of the band gap of QDs.[17, 29-30] 

1.4.4.2 CQD-Sensitized Solar Cells 

CQD-sensitized solar cells represent one of the earliest configurations of QD solar 

cells, and emerged from the foundations of dye-sensitized solar cells (DSSCs).[31-32] 

The operative mechanism is the same as that of dye-sensitized solar cells, except for 

the dye sensitizer being replaced by CQDs. By substituting CQDs for the molecular 

dye, it is possible to extend the absorptive range beyond the cutoff wavelengths of 

molecular dyes. The cells are typically made up by coupling CQDs to other wider 

band-gap electron transport materials, such as ZnO or TiO2 with favorable band offset, 

to enable the charge separation at this interface. The presynthesized CQDs are usually 

coated by non-conductive long chain surface ligands (e.g. oleic acid, oleylamine, or 

trioctylphosphine), these long chain ligands should be removed from the surface of 

CQDs before used into solar cells. One way to achieve it is using bifunctional linker 

molecules. I. Robel, et al successfully linked CdSe CQDs with TiO2 by using 

mercaptopropionic acid (MPA) and observed a photon-to-charge carrier conversion 

efficiency of 12%.[32] High quality of CQDs with low defects can improve the PCE 

of solar cells. The highest efficiency for CQD sensitized solar cells which was obtained 

by X. H. Zhong’s group was further increased to 12.45% (with certified efficiency of 

12.07%) by utilizing Zn-Cu-In-Se CQDs as a sensitizer.[33] In order to reduce the 

electrolyte corrosion effect on QDs, Q, Shen, et al proposed a breakthrough technique: 

depositing a thin ZnS layer on the photoanode by a successive ionic layer adsorption 

and reaction (SILAR) method. With the thin ZnS layer, the stability of QDs is largely 

improved and the recombination in the solar cells is effectively suppressed.[34] 

1.4.4.3 Depleted Heterojunction Solar Cells 

CQD solar cells reached above 5% PCE for the first time with the advent of the 

depleted heterojunction architecture (Figure 1-8 b).[35-37] Depleted heterojunction 

solar cells coat a wide-band-gap semiconductor such as ZnO or TiO2 with CQDs. In 

contrast with CQD-sensitized solar cells, and in resemblance with Schottky CQD cells, 
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CQD depleted heterojunction solar cells exploit transport of electrons and holes 

through a many-layer CQD film. Now, this ambipolar transport occurs successfully 

over a distance equal to the sum of a depletion region and a minority carrier diffusion 

length; typically limiting the current contributing CQD layer thickness to 100~300 nm. 

While CQD layer can absorb nearly all visible wavelength light in a single pass 

through this thickness, near-infrared colors are only partially absorbed. This limitation 

may be termed an absorption versus extraction trade-off arising from electronic 

transport limits in CQD layers further detailed below.[26] 

1.4.4.4 Depleted Bulk Heterojunction Solar Cells 

CQD depleted bulk heterojunctions (Figure 1-8 c) provide an architecture solution 

to this present-day materials limitation: they employ a nanoporous architecture to 

extend the photon interaction length while maintaining a short exit route for electrons. 

Electrons, the current-limiting carrier in most CQD solar cells, are collected laterally 

into the nearest vertical instance of the nanoporous TiO2 (or ZnO）substrate.[26] In 

this design, QDs and TiO2 nanostructures are assembled in such a way to create a 

certain level of interpenetration. As such, the interfacial area is maximized, and the 

depletion region can spread in all three dimensions in the active QDs layer. Therefore, 

in principle, the active layer can be made thicker to absorb more light yet still enable 

efficient charge carrier collection. ZnO nanowires were also employed into the bulk 

heterojunction solar cells as an n-type semiconductor to improve the carrier 

collection.[38-39] For the vertically oriented ZnO nanowires grown by a simple 

hydrothermal process, J. Jean, et al observed a 35% efficiency enhancement over 

corresponding planar devices with a maximum efficiency of 4.9%.[17, 39] Six year 

before, the CQD solar cells usually use CQDs with short bifunctional organic 

molecules (such as EDT, MPA, BDT etc.) as surface ligand. But those CQDs and solar 

cells with short organic ligands are unstable when they were exposed in air. J. Tang, et 

al used halide anions to modify CQDs surface and change CQD’s surface ligand, 

obtained air stable CQDs and solar cells. They found that after halide anions treatment, 

the trap states in CQDs were reduced and electronic transport parameters in CQD films 

were enhanced. What’s more, the devices can be deposited at room temperature and 

under ambient atmosphere, rendering the process amenable to low-cost, roll-by-roll 
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fabrication, and the efficiency of solar cells can reach 6%.[40]  

By manipulating the QD’s surface ligand in such heterojunction cells, an improved 

ZnO/PbS-TBAI/PbS-EDT (1,2-ethanedithiol) n-i-p solar cell architecture has 

promoted the PCE of CQDSCs from 7.0% to 9.2%, which was found by Bawendi’s 

group.[41] The high PCE was achieved in TiO2 (or ZnO)/PbS QD solar cells by 

engineering the band alignment of PbS-I and PbS-EDT layers.[42-43] PbS-I layers 

served as the major light-absorbing layer while the PbS-EDT layer acted as a hole 

extraction layer. The large conduction band offset between those two layers provides 

an energy barrier to prevent photogenerated electrons from flowing toward the anode, 

and the large valence band offset offers an additional driving force for the flow of 

photogenerated holes toward the anode.[17] In those works, the active layer was 

deposited sequentially in a layer-by-layer process, consisting of 12 layers, each with 

one ligand-exchange treatment and two washing steps. This multi-step processing 

makes manufacturing complex, and, additionally, the material is wasted with each 

layer deposited and treated. Furthermore, the spin-coating and dip-coating techniques 

are typically only allowed for small-scale batch processing and are incompatible with 

roll-to-roll manufacturing schemes. Therefore, one step deposition process by using 

CQDs inks becomes inevitable.[44-46] In this technique, the original surface ligand 

oleic acid (OA) of CQDs can be replaced by halide precursor though solution state 

ligand exchange process, as shown in Figure 1-9. The obtain CQDs inks can be 

deposited on to TiO2 (or ZnO) substrate by spin-coating or spray-coating method as 

light absorbing layer of solar cells. Although those solar cells are stable, their PCE are 

still lower than 4%, which is mainly due to the limited thickness of absorbing layer 

and low densification.[46] 
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Figure 1-9. Solution state ligand exchange process of CQDs. (a) using PbI2 as the 

iodine processor and (b) using perovskite material CH3NH3PbI3 as iodine ligand 

processor. 

In summary, CQDs present high extinction coefficients (i. e. PbS thickness of 20 -

30 μm is sufficient to absorb more than 99% from the incident solar radiation)[47], 

and long wavelength absorption spectra which can be conveniently tuned by 

controlling their size. Specifically, the demonstration of the multiple exciton 

generation (MEG) phenomena in CQDs opens the possibility of obtaining quantum 

efficiencies higher than 100%. CQDSCs have moved forward at a rapid pace in recent 

years. The credit for these advances goes to synthetic and materials chemists, materials 

processing groups, and innovators in device architecture. However, CQDSCs also face 

some challenges such as low charge carrier mobility, high surface trap density, and 

incomplete mechanistic understanding of transport and recombination. Thus, I focus 

on the modification of the interface and investigation of the charge carrier dynamics 

of CQD films and CQDSCs. 

1.5 Perovskite Solar Cells (PSCs) 

1.5.1 Perovskite Materials and Structure 

Perovskite (PVK) was discovered in the Ural Mountains by German mineralogist 

Gustav Rose and named after Russian nobleman and mineralogist Lev Aleksevich von 
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Perovski in 1839.[48] The word “perovskite” refers to the mineral form of CaTiO3. It 

adopts a crystal structure consisting of corner-sharing TiO6 octahedra in three 

dimensions, with Ca occupying the cuboctahedral cavity in each unit cell. The same 

crystal structure is also found for a wide range of materials with ABX3 stoichiometry, 

with three notable cases being BaTiO3, SrTiO3, and NaNbO3. Examples of insulating, 

semiconducting and superconducting PVK structured materials are known. These 

materials are the archetypal systems for phases transitions with accessible cubic, 

tetragonal, orthorhombic, trigonal and monoclinic polymorphs depending on the tilting 

and rotation of the BX3 polyhedra in the lattice.[49] Reversible phase changes can be 

induced by a range of external stimuli including temperature, pressure and magnetic 

or electric fields.[50]  

The ideal cubic PVK structure is like a body-centered cubic structure, with 

additional anions positioned along the faces of the unit cell. The basic stoichiometry 

is ABX3, the A site is a cation usually occupied by Group I or Group II of the periodic 

table. The B site is a cation filled with transition metals, and the X sites are usually 

occupied by non-metal anions (halide or oxygen). As shown in Figure 1-10, the atoms 

on the corners of the unit cell are the A site, and the atom in the center of the body is 

the B site. The atoms on the faces of the unit cell are the X site. The cation B atoms 

form an octahedron with the six closest X anions, and the cation A atoms form a 

twelve-fold coordination with the X sites.[51-53] 

 

Figure 1-10. Schematic diagram of the ideal PVK structure: (a) the positions of the 

atoms, (b) the BX6 octahedron, and (c) the BX6 octahedron extending in three 

dimensions around atom A.[54] 

The symmetry elements of PVK structure depend on the atomic species that occupy 
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the A and B sites. Their crystallographic stability and probable structure can be 

deduced by considering a tolerance factor t and an octahedral factor μ. t and μ are 

defined as[55]: 

 

𝑡 =
𝑅A + 𝑅X

√2(𝑅B + 𝑅X)
          (1 − 16) 

 

𝜇 =
𝑅B

𝑅X
           (1 − 17) 

 

where RA, RB, and RX are the corresponding ionic radii of A, B, and X ions. The values 

of RA+RX and RB+RX are approximately the distances of A-X and B-X, respectively, 

and the √2 is due to geometric considerations.[54] The value of t is equal to 1 for the 

ideal cubic PVK structure. If the tolerance factor t > 1, the structure tends to distort 

towards a tetragonal structure, whereas if t <1, a buckling of the octahedron occurs.[56] 

For halide perovskites (X = F, Cl, Br, I), generally 0.81<t<1.11 and 0.44<μ<0.90. If t 

lies in the narrower range 0.89 to 1.0, the cubic structure of Figure 1-10 is likely, with 

lower t values giving less symmetric tetragonal or orthorhombic structures. Despite 

these constraints, transitions between such structures on heating are common for any 

given PVK, with the high-temperature phase generally being cubic.[51] 

 



22 
 

Figure 1-11. Calculated t and μ factors for 12 halide PVKs. The corresponding 

formamidinium (FA) based halides are expected to have intermediate values between 

those of the methylammonium (MA) and ethylammonium (EA) compounds 

shown.[50] 

For the organic–inorganic halide PVKs of present interest, the larger cation A is 

organic. It is generally methylammonium (MA) with RA = 0.18 nm,[57] 

ethylammonium (EA) with RA = 0.23 nm,[58] and formamidinium (FA) with RA has 

intermediate values between those of MA and EA, is estimated to lie in the range 0.19–

0.22 nm.[51] The anion X is a halogen, generally Cl, Br, and I with RX =0.181 nm, 

0.196 nm, and 0.220 nm, respectively. For efficient cells, cation B usually uses Pb with 

RB = 0.119 nm.[59] Calculated and estimated t and μ factors for a range of these PVKs 

are shown in Figure 1-11. 

1.5.2 The Components of PSCs 

Perovskite solar cells usually contains four parts: electron transport layer, perovskite 

light absorbing layer, hole transport material layer, and metal back contract electrode. 

The architecture diagram and cross section SEM image of PSCs, as shown in Figure 

1-12. 

 

Figure 1-12. Schematic diagram and SEM image of regular n-i-p structure PSCs.[60] 

1.5.2.1 The Electron Transport Layer 

Basically, electron transport layer (ETL) plays a vital role in PSCs for contact 

selectivity and in optimizing device performance. ETL works as electron selective 

contact that preferentially extracts electrons to one side of the device and blocks the 
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direct contact between transparent conductive oxide and hole transporting layer. 

Besides working as a hole blocking layer, ETL enhances the fill factor and the open 

circuit voltage of PSCs as the recombination rate is mitigated by electron selective 

contact between PVK and ETL. Additionally, ETL influences the PVK layer 

morphology and its loading and controls the quality of PVK/ETL interface and PVK 

layer itself since ETL provides the intervention in the full PVK transformation from 

the precursor.[61] For regular n-i-p structure PSCs, the TiO2 mesoporous layer which 

pores are filled with the PVK material, yield to a higher PCE, and is the most popular 

structure for PSCs. A thin TiO2 compact layer has also been used for the PSCs. 

Compared to TiO2, the ZnO nanostructure is second in popularity. ZnO is a wide band 

semiconductor with similar band gap structure to that of TiO2 but has higher electron 

mobility. Moreover, high crystalline ZnO films can be grown at low temperature 

without sintering processes. But due to the corrosion effect of PVK solution on ZnO, 

ZnO as ETL based PSCs usually using two-step method to prepare PVK layer. D. Liu, 

et al fabricated the MAPbI3-based solar cell on ZnO planar nanostructure, and got a 

PCE as high as 15.7% on ITO and 10.2% on a flexible substrate.[62] Park fabricated 

ZnO nanorod-based perovskite solar cell in the absence of a compact TiO2 blocking 

layer with a PCE of 11%.[63] For inverted structure (p-i-n structure) PSCs, an organic 

polymer 6,6-phenyl C61 butyric acid methyl ester (PCBM) also can work as ETL in 

the hybrid PSCs.[64] 

1.5.2.2 The Halide Perovskite Layer 

Halide PVK (ABX3) optical bandgap can be varied by changing the A cation, the B 

(metal) cation and the halide anion. For the small A cation, such as Cs+, MA+ or FA+, 

APbI3 prefer to form a three-dimensional framework with PbI6 network, and an 

increase in the cation size (R(Cs+) < R(MA+) < R(FA+)) results in a reduction in the 

band gap, since the values are 1.73 eV, 1.58 eV and 1.48 eV for the CsPbI3, MAPbI3 

and FAPbI3, respectively. Therefore, a higher efficiency is expected for the FAPbI3 

compound compared to MAPbI3.[65] For the influence of the B cation, taking the 

example of MABI3 (B=Sn, Pb), the band gap of MASnI3 (1.20 eV) is lower than 

MAPbI3 (1.58 eV).[66] People have investigated the influence of the halide anion, the 

band gap of this group follows the trend MAPbI3 (1.58 eV) < MAPbBr3 (2.2 eV), but 
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the efficiency depends on the ratio of I and Br in MAPbBrxI3-x.[66] The energy levels 

of normally used PVKs are shown in Figure 1-13.  

 

Figure 1-13. Schematic energy level diagram of different materials in PSCs.[67] 

The evolution of device efficiencies requires the continuously improving the film 

quality of crystalline PVK layers, to be uniform, smooth, and pin-hole free etc. There 

are several commonly used effective methodologies for the access of high quality PVK 

films as shown in Figure 1-14. Thanks to the sophisticated fabrication methods 

developed so far, the progress of device efficiencies is approaching its theoretical 

limitation in single junction PSCs with small area. To push PSCs into real application, 

the continuous efforts are needed to fabricate high quality crystalline perovskite film 

into large area with good reproducibility. 
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Figure 1-14. Schemes of perovskite deposition: (a) vapor deposition method; (b) anti-

solvents method; (c) two-step spin-coating method; (d) doctor-blade coating method; 

(e) vacuum flash-assisted solution process method; (f) complex-assisted gas quenching 

method; (g) soft-cover deposition method.[68] 

1.5.2.3 The Hole Transport Layer 

The hole transport material (HTM) is one of the key components in the solid state 

solar cells, which is used to transport holes away from the sensitized junction to the 

back contact of the solar cell. Various materials have been explored as HTM, ranging 

from low HOMO molecular, polymer, and inorganic component CuSCN, as shown in 

Figure 1-13. In typical PSCs, the most commonly used hole transport material is 

2,2’,7,7’-tetrakis-N,N-di(4-methoxyphenyl)amine-9,9’-spirobifluorene (Spiro-
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OMeTAD) which molecular structure is shown in Figure 1-14. Spiro-OMeTAD is an 

amorphous organic p-type semiconductor with a large bandgap and almost colorless 

when deposited from solution as a thin film on the substrate. The advantage of Spiro-

OMeTAD is its good ability to pore filling due to the high solubility in toluene and 

chlorobenzene organic solvent. Pristine Spiro-OMeTAD has high resistivity and needs 

to be partially oxidized to decrease the intrinsic charge-transport resistance of the bulk 

material. This has been achieved through the addition of chemical p-type dopants or 

through the facile oxidation of the material in the presence of oxygen and light. Besides 

Spiro-OMeTAD, other molecule HTM were synthesized and introduced in PSCs, their 

molecular structures are shown in Figure 1-15. 

 

Figure 1-15. Molecular structures of efficient HTM.[68] 

Due to the low conductivity of pristine Spiro-OMeTAD and other HTMs, they 

usually require additive doping for efficient hole extraction and transport. The 
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common additives are: 4-tert-butylpyridine (t-BP), bis(trifluoromethylsulfonyl)imide 

lithium salt (LiTFSI) attributed. Usually, the effect of the t-BP is believed to be an 

upward shift of the TiO2 (or ZnO) conduction band or reduce the electron-hole 

recombination rate, which leads to a high Voc.[69] In contrast, the effect of an addition 

of LiTFSI is a downwards shift of the metal oxide and accelerate the electron injection. 

The result is an increase in Jsc.[70] 

1.5.2.4 The Back Contact 

The back contact in the typical PSCs is high conductivity metal thin film formed by 

thermal evaporation method. The silver is more used than gold, which is due to a lower 

cost and a higher conductivity. Another benefit is the higher reflectivity induced to a 

higher Jsc.[71] Compared to the expensive gold and silver contacts, the low-cost carbon 

materials have attracted some attention especially with the layer preparation by screen 

printable deposition technique.[72] Moreover, the carbon layer can work as a water 

repellent layer to protect the cell from water, which is an important point for the 

stability of PSCs device.[73] 
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Table 1-1. Summary of the highest PCE of PSCs with different compositions.[68] 

Device structure PVK 
Jsc 

(mA/cm2) 

Voc 

(V) 
FF (%) 

PCE 

(%) 

ITO/PTAA/PVK/C60/BCP/Au MAPbI3 24.0 1.11 78.0 20.7 

FTO/bl-TiO2/mp-TiO2/PVK/PTAA/Au FAPbI3 24.7 1.06 77.5 20.2 

ITO/PTAA/PVK/ICBA/C60/BCP/Au MA0.6FA0.4PbI3 23.0 1.03 77.0 18.3 

FTO/SnO2/C60-SAM/PVK/Spiro-

OMeTAD/Au 
Cs0.2FA0.8PbI3 22.2 1.09 80.8 19.6 

FTO/bl-TiO2/mp-TiO2/PVK/Spiro-

OMeTAD/Au 
Cs0.15FA0.83Pb(I0.83Br0.17)3 22.8 1.153 76.0 20.0 

FTO/bl-TiO2/mp-TiO2/PVK/Spiro-

OMeTAD/Au 
FA0.81MA0.15Pb2.51Br0.45 24.6 1.16 73.0 20.8 

FTO/bl-TiO2/mp-TiO2/PVK/PTAA/Au Cs0.05(MA0.17FA0.83)0.95Pb(I0.83Br0.17)3 23.5 1.15 78.5 21.1 

FTO/bl-TiO2/mp-TiO2/PVK/Spiro-

OMeTAD/Au 

Rb0.05[Cs0.05(MA0.17FA0.83)0.95]0.95Pb(I

0.83Br0.17)3 
22.7 1.18 81.0 21.6 
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1.5.3 Advantages and Challenges of PSCs 

PVK has some outstanding advantages such as high absorption coefficients, high 

extinction coefficients, tunable band gap, direct band gap, high stability, and high 

carrier mobility. Moreover, PVK is not fabricated by expensive, complicated 

techniques; instead, easy, low temperature methods may be used, such as solution-

processing, thermal evaporation, or printer-based processes. Although the highest 

certified PCE of PSCs surpassed 22% in small areas,[6] the stability and the toxicity 

of lead remain big challenges. Chemical and structural instability of PVKs are the main 

culprit of the vulnerability for device operational stabilities. The compositional 

engineering of perovskites showed the encouraging progresses to address such issues. 

Although some materials are fairly stable within a few months, there is still a distance 

to make them and the related devices stable into decades under environmental stresses. 

Device approaches such as blocking layers and encapsulation are also needed to tackle 

these issues. With optimism minds, the stabilities for PSC may eventually allow 

reaching the prerequisites for practical application. Studies of lead-free perovskites 

implied the simple substitution of lead to other metal cations in new PVKs usually led 

to decline device efficiency. Although Sn-Pb based PVKs promises a fairly high 

efficiency,[74-75] Sn faces unstable issues and some reports indicate that Sn even has 

larger impact to human and environment than that of Pb.[76] Alternatively, Bi-based 

halide double perovskite would be worth to pay more attention with, because it has 3D 

structure with good stability, as well as Bi displays a similar electronic structure to 

Pb.[77-78] To address environmental issues of PSCs, attentions can also be involved 

to develop excellent capsulation and recycling of PSCs for avoiding the leakage of 

lead. To develop lead-free perovskite with high efficiency, there remain significant 

challenges. 

1.6 Thesis Focus 

This thesis will investigate the surface ligand dependent charge carrier dissociation, 

charge carrier transmission and recombination of CQDSCs, and use novel hole 

transport materials to modify the interface of CQDSCs and PSCs to reduce the 

interfacial recombination in CQDSCs and PSCs. The goal of all of these experiments 
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is to gain a more complete understanding of charge carrier dynamics in CQDSCs and 

PSCs, so that more efficient materials and architecture for solar cells can be designed 

in the future.  

The second chapter will provide an introduction of characterization equipment and 

technologies which were used in this thesis. 

The third chapter explores a method how to obtain air stable PbSe CQDs and surface 

ligand dependent exciton dissociation, recombination, photovoltaic property, and 

stability of PbSe solid film and CQDSCs. I select four short ligands, that is, two 

organic ligands 1,2-ethanedithiol (EDT) and 3-mercaptopropionic acid (MPA); two 

inorganic ligand cetyltrimethylammonium bromide (CTAB) and tetrabutylammonium 

iodide (TBAI) to investigate the ligand-dependent air stability, energy level shift, the 

exciton dissociation, and photovoltaic properties of PbSe CQDSCs. In addition, the 

charge transfer rate, recombination processes and carrier lifetimes in these CQDSCs 

were also revealed through ultrafast transient absorption (TA) spectra, and open-circuit 

transient voltage decay measurements. The originalities of this work are: (1) TBAI 

was used to exchange original surface ligand OA of PbSe QDs for the first time; (2) 

long-term air stable PbSe based QDSCs was obtained. Part of this chapter was 

published in The Journal of Physical Chemistry C, 2016, 120, 28509-28518. 

The fourth chapter explores a method to suppress the interfacial recombination in 

CQDSCs. we develop a novel donor-π-donor (D-π-D) organic small molecule bis-

triphenylamine with spiro(fluorene-9,9’-xanthene) as the conjugated system, named 

BTPA-4, as a hole transport layer in the PbS CQDSCs. We found that the introduction 

of BTPA-4 as hole transport layer can enhance the open-circuit voltage, prolong the 

effective carrier lifetime, reduce the interfacial recombination at PbS QDs/Au interface, 

and hence improve the device performance. Furthermore, the PbS CQDSCs with 

BTPA-4 possessed a noticeably stable property for over 100 days of storage under 

ambient atmosphere that has been the Achilles' heel of other organic hole transport 

layer for CQDSCs. The originalities of this work are: (1) novel hole transport 

material BTPA-4 was synthesized; (2) organic small molecule was used to suppress 

the interfacial recombination in QDSCs for the first time. Part of this chapter was 

published in The Journal of Physical Chemistry Letters, 2017, 8, 2163-2169. 
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The fifth chapter will focus on hole transport material and the interfacial 

recombination in PSCs. Three triphenylamine-based hole-transport materials (HTMs), 

named BTPA-4, BTPA-5 and BTPA-6, were used into PSCs. BTPA-6 with four 

substituted triphenylamine units exhibited a better solar cell performance than BTPA-

4 and BTPA-5 which contain two substituted triphenylamine units. The order of the 

recombination resistance was found to be in the order of BTPA-4 < BTPA-5 < BTPA-

6 < Spiro-OMeTAD, indicating that the electron blocking capability of the HTM is in 

this order. This trend agrees with the Voc trend of their corresponding solar cells. In 

addition, BTPA-6 based devices showed better long-term stability than that with Spiro-

OMeTAD, which can partially be attributed to the hydrophobicity of BTPA-6 is better 

than that of Spiro-OMeTAD. The originalities of this work are: (1) low cost hole 

transport materials BTPA-5 and BTPA-6 were synthesized; (2) BTPA-4, BTPA-5, and 

BTPA-6 were used to be as hole transport layer in perovskite solar cells for the first 

time. 

  The sixth chapter will summarize the problems existing in the research and give the 

future development prospects of QDSCs and PSCs. 
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Chapter 2: Characterization 

2.1 X-ray Power Diffraction 

X-ray powder diffraction, which is usually shorted for XRD, is a rapid analytical 

technique primarily used for phase identification of a crystalline material and can 

provide information on unit cell dimensions. The analyzed material is finely ground, 

homogenized, and average bulk composition is determined. In this thesis, an X-ray 

powder diffraction (TTR-III, Rigaku Corp., Japan) was used to identify the phase and 

crystallization of QDs. 

2.2 UV-Vis-NIR Spectroscopy 

Ultraviolet-Visible-Near Infrared (UV-Vis-NIR) Spectroscopy can present the 

absorption or reflectance spectra in the UV-Vis-NIR spectral region from 200 nm to 

2000 nm. The absorption or reflectance properties of the chemicals in the visible region 

directly affect the observed color of the chemicals involved. In this visible 

region, atoms or molecules undergo electronic transitions, which main that the 

molecules including non-bonding electrons (n-electrons) or π-electrons can absorb the 

energy of light with exciting these electrons to higher anti-bonding molecular orbitals. 

Thus, it can be concluded that the more easily excited the electrons (i.e. smaller Eg 

between the HOMO orbital and the LUMO orbital), the longer the wavelength of light 

it can absorb due to the inverse proportion of the energy and the wavelength. Besides, 

UV-Vis-NIR spectroscopy can also be well used in analytical chemistry for the 

quantitative analysis, such as the determination of molar extinction coefficient, 

thickness or optical properties of thin films. In this thesis, all the UV-vis-NIR 

absorption spectra were obtained by using a UV−Vis-NIR spectrophotometer (JASCO, 

V-670). 

2.3 Fluorescence Spectroscopy 

Fluorescence (FL) spectroscopy can present electromagnetic fluorescence 

information from a sample which has been excited by. Using a beam of light and the 
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causes itself to emit light. FL spectroscopy is greatly closed to the molecular electronic 

and vibrational states. Noticeably, there are various vibrational states in each electronic 

states including the electronic ground state and the electronic excited state. In detail, 

some molecules are firstly excited, by absorbing the photons from the ground 

electronic state with higher energy to one of the various vibrational states in the excited 

electronic state with higher energy. After that, collisions with other adjacent molecules 

cause the excited molecules to lose vibrational energy or transfer conversion of this 

vibrational energy to heat until it reaches the lowest vibrational state of the excited 

electronic state. The PL process can be subsequently generated after the molecule falls 

back to one of the various vibrational levels of the ground electronic state again. Thus 

different energies will be produced as molecules may fall back into any of several 

vibrational levels in the ground electronic state, and thus different frequencies. 

Interestingly, by investigating the different frequencies of light emitted in the 

fluorescent spectroscopy, as well as their relative intensities, the structure diagram of 

the different vibrational levels can be determined. In this thesis, the fluorescence 

spectroscopy measurement was conducted by using LabRAM HR-800 (HORIBA, 

Japan). 

2.4 Fourier Transform Infrared Spectroscopy 

Fourier transform infrared spectroscopy (FT-IR) can provide an infrared spectrum 

of a solid, liquid or gas by utilizing different wavelengths in near infrared region to 

investigate the molecular structure, which reveals the molecular vibrational and 

rotational energies. The components of FT-IR spectrometers commonly are IR sources, 

detectors, beam splitter, attenuated total reflectance (ATR) and fast Fourier transform 

(FFT) algorithm. FT-IR spectroscopy is used in geology, chemistry, materials and 

biology for and research fields. In this thesis, the FT-IR spectra (Thermo Scientific, 

Nicolet 6700, Japan) of the PbSe QDs films were measured to verify that the as-

synthesized ligand (OA) on PbSe QDs were successfully exchanged. 

2.5 Ultrafast Transient Absorption Spectra 

Ultrafast transient absorption (TA) spectroscopy, an example of non-linear 
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spectroscopy, monitors the change in the absorbance or transmittance in the sample. 

Here, the absorbance at a particular wavelength or range of wavelengths of a sample 

is measured as a function of time after excitation by a flash of light. In a typical 

experiment, both the light for pump and probe light are generated by a pulsed laser. If 

the process under study is slow, then the time resolution can be obtained with a 

continuous (i.e., not pulsed) probe beam and repeated conventional 

spectrophotometric techniques. TA spectroscopy relies on our ability to resolve two 

physical actions in real time. The shorter the detection time, the better the resolution. 

This leads to the idea that femto-second laser based spectroscopy offers better 

resolution than nano-second laser based spectroscopy. In this thesis, TA spectra were 

examined by using a fs-TA system. The laser source was a Ti/sapphire laser (CPA-

2010, Clark-MXR Inc.) with a wavelength of 775 nm, a pulse width of 150 fs, and a 

repetition rate of 1 kHz. 

2.6 X-ray Photoelectron Spectroscopy 

X-ray photoelectron spectroscopy (XPS) is a surface-sensitive quantitative 

spectroscopic technique that measures the elemental composition at the parts per 

thousand range, empirical formula, chemical state and electronic state of the elements 

that exist within a material. XPS spectra are obtained by irradiating a material with a 

beam of X-rays while simultaneously measuring the kinetic energy and number of 

electrons that escape from the top 0 to 10 nm of the material being analyzed. XPS can 

be used to analyze the surface chemistry of a material in its as-received state, or after 

some treatment. In this thesis, XPS measurement was conducted to identify the 

presence of short ligands within the PbSe QD films after ligand exchange. The 

measurement was carried on JEOL JPS-9200.  

2.7 Photoelectron Yield Spectroscopy 

The information on the electronic structures of semiconductors can be revealed by 

using photoelectron yield spectroscopy (PYS). In PYS, the quantum yield of 

photoelectron (Y), which stands for the number of emitted photoelectrons per photon 

absorbed, is detected as a function of incident photon energy. If incident photon energy 
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becomes greater than the threshold ionization energy of a semiconductor during 

incident photon scan, the value of Y starts to increase. Thus, by determining the 

threshold of the spectrum, the value of threshold ionization energy can be evaluated. 

In the case of metal sample, the work function of the sample can be deduced in similar 

way. Comparing with ultraviolet photoelectron spectroscopy (UPS), PYS is available 

not only in vacuum but also in air, and sample charging can be practically avoided.[79] 

In this thesis, the PYS of the PbSe and PbS films were obtained by employing a BIP-

KV205 Model ionization energy measurement system. 

2.8 Electron Microscope 

An electron microscope is generally used to reveal the morphology, size and the 

distribution of a wide range of biological and inorganic specimens by using a beam of 

accelerated electrons as a source of illumination. As the wavelength of an electron can 

be up to 100,000 times shorter than that of visible light photons, electron microscopes 

have a higher resolving power than light microscopes and can reveal the structure of 

smaller objects. In this thesis, the morphologies of solar cell were examined using a 

scanning electron microscope (SEM, JEOL, JSM-6340). The sizes of PbSe and PbS 

QDs, and distance between ligand treated PbSe QDs were determined by transmission 

electron microscope (TEM, JEOL, JEM-2100F). 

2.9 Characterization of Solar Cells’ Performance 

The current density−voltage (J−V) curves were carried out in the dark or under AM 

1.5 G irradiation (100 mW cm−2), with a Peccell solar simulator PEC-L10 by using a 

Keithley 2400 source meter. Incident photon to current conversion efficiency (IPCE) 

spectra of CQDSCs were measured by using a 300 W Xe arc lamp, which was 

equipped with a Nikon G250 monochromator. The transient Voc decay curves were 

obtained by using a pulsed YAG laser (wavelength 532 nm, repetition rate 4 Hz, pulse 

width 5 ns). The impedance spectroscopy (IS) measurements of CQDSCs were 

obtained by applying the bias from 0 to 0.45 V (amplitude 10 mV) with a frequency 

ranging from 1M Hz to 1 Hz on a SP-300 (BioLogic) impedance analyzer.  
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Chapter 3: Ligand Dependent Charge Dynamics in 

Air Stable PbSe Quantum Dot Films and Solar Cells 

3.1 Introduction 

Colloidal quantum dots (CQDs) have attracted immense attention in the past 

decades owing to their unique size-dependent properties and low-cost solution process 

ability.[80-84] This makes CQDs promising in various applications such as light 

emitting diodes (LEDs),[85-86] field effect transistors (FETs),[82, 87-89] 

biolabeling,[90-92] lasers[93-95] and solar cells[96-98]. Recently, colloidal quantum 

dot solar cells (CQDSCs), which are facile to prepare by simple spin-coating procedure 

with low fabrication cost, have attracted increasing scientific and industrial interests 

as a promising candidate for the next generation solar cells. Among them, CQDs 

present high extinction coefficients, and long wavelength absorption spectra which can 

be conveniently tuned by controlling their size. Specifically, the demonstration of the 

multiple exciton generation (MEG) phenomena in CQDs opens the possibility of 

obtaining quantum efficiencies higher than 100%, that is, more than one electron 

generated per absorbed photon at a broad wavelength range across the solar 

spectrum.[99-102] As predicted by Nozik and co-workers, the theoretical power 

conversion efficiency (PCE) of QDSCs can achieve as high as 44% due to MEG which 

is higher than the theoretical efficiency of single junction solar cells (Shockley 

Queisser limit).[103] Recently, PbS CQDSCs have been reported with certified PCE 

of 13.4% and Zn-Cu-In-Se QDs sensitized solar cells have achieved a certified PCE 

as high as 11.6%.[104-105] However, the efficiencies are still much smaller than the 

theoretical efficiency. Therefore, fundamental studies on the mechanism for improving 

the photovoltaic properties of CQDSCs are of great importance and necessary.  

Specifically, PbSe QDs have attracted attention because of their small bulk bandgap 

(0.26 eV),[106] high dielectric constant (εm = 23),[107] and large exciton Bohr radius 

(46 nm) which is two times higher than that of PbS (23 nm).[108-109] What’s more, 

it has been reported that PbSe QDs have more efficient MEG than PbS QDs due to 

their slower hot carrier cooling rate,[110] and PbSe CQDSCs have been confirmed 
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with a peak external quantum efficiency of 114%.[80] Unfortunately, PbSe CQDs are 

highly susceptible to oxidation which results in uncontrollable changes in their optical 

and electronic properties,[108, 111] thus making the performance of PbSe CQDSCs 

tend to quickly degrade after the solar cells exposed to air environment. Therefore, the 

fabrication process and the necessary measurements for PbSe CQDSCs must be in the 

air free environment as reported up to now.  

It is no doubt that air stability is a major constraint factor on the development of 

PbSe CQDSCs. Recently, halide treatments have been identified as a viable method to 

improve the air stability of PbSe CQDs colloidal solution and film.[108-109, 111-112] 

For PbSe CQDSCs, Asil et al. injected cadmium chloride (CdCl2) into PbSe reaction 

solution after PbSe CQDs growth period to form a PbCl2 surface passivation layer 

outside PbSe, and obtained air stable PbSe CQDs and solar cells. But their solar cells 

were encapsulated in the devices fabrication process, so these solar cells are not really 

exposed to air.[113] Beard’s group used Pb-halide precursors as the source of Pb2+ to 

get air stable halide ligand treated PbSe CQDs through complicated cation-exchange 

reactions.[114-116] The best PCE of the PbSe CQDSCs in his group was reached 6.47% 

and the solar cell had a 5.9% PCE after 50 days of storage in air.[115] But all of these 

solar cell devices were measured in an inert atmosphere not in air. So far, PbSe 

CQDSCs have not been implemented the whole process in ambient atmosphere: from 

PbSe CQDs washing step to solar cells fabrication, storage and measurements. In 

addition, charge transfer and recombination mechanism in PbSe CQDSCs are also not 

clear.  

In this chapter, I described an improved simple method for fabricating air stable 

PbSe heterojunction CQDSCs using rarely reported tetrabutylammonium iodide 

(TBAI) as ligand source in solid state ligand-exchange process. The solar cells with 

simple structure (TiO2 compact layer/PbSe/Au) and relatively larger active area (0.25 

cm2, a mask of 0.16 cm2 was used when measuring photovoltaic performance) 

compared to most of the reported PbSe CQDSCs (about 0.01-0.06 cm2) were 

fabricated by spin-coating method in ambient atmosphere.[101, 109, 115] The PCE of 

TBAI-treated PbSe CQDSCs was over 3.5% which measured in air, and the solar cells 

possessed a remarkable long term stability of more than 90 days of storage in ambient 
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atmosphere. We compared TBAI with the other three short ligands, i.e., 1,2-

ethanedithiol (EDT), 3-mercaptopropionic acid (MPA) and cetyltrimethylammonium 

bromide (CTAB), to investigate the ligand-dependent air stability, energy level shift, 

the exciton dissociation, and photovoltaic properties of PbSe CQDSCs. In addition, 

the charge transfer rate, recombination processes and carrier lifetimes in these 

CQDSCs were also revealed through ultra-fast transient absorption (TA) spectra, and 

open-circuit transient voltage decay measurements. 

3.2 Experimental Methods 

Materials. Lead(II) oxide (PbO, Wako, 99.5%), oleic acid (OA, Aldrich, 90%), 1-

octadecene (ODE, Aldrich, 90%), trioctylphosphine (TOP, Aldrich, technical grade 

90%), selenium (Se, Wako, 98%), cadmium chloride (CdCl2, Wako, 95%), 

tetradecylphosphonic acid (TDPA, Aldrich, 97%), oleylamine (OLA, Aldrich, 70%), 

Titanium diisopropoxide bis(acetylacetonate) (Aldrich, 75 wt.% in isopropanol), 1,2-

ethanedithiol (EDT, Aldrich, 98%), 3-mercaptopropionic acid (MPA, Aldrich, 99%), 

cetyltrimethylammonium bromide (CTAB, Wako, 98%), tetrabutylammonium iodide 

(TBAI, Wako, 98%), Tetrachloroethene (TCE, Wako, 99%). These materials were used 

as received from commercial sources without any purification.  

Synthesis of PbSe CQDs. PbSe CQDs were synthesized following a similar 

literature method,[113] but modified as a simple process in our paper. Briefly, 6 mmol 

PbO and 15 mmol OA were mixed with 30 mL ODE in a 100 mL three-neck flask. The 

mixture was stirred and degassed at room temperature for 0.5 h and then at 100°C for 

1 h. The solution was then heated to 130°C under nitrogen for another 2 h. 18 mL of 1 

M TOP-Se solution (Se powder dissolved in TOP) was then rapidly injected to the 

above lead oleate solution at 90°C. After 3 min, the heater was removed immediately 

while stirring of the solution was maintained. When the solution was cooled to 75°C, 

a CdCl2-TDPA-OLA solution containing 1 mmol CdCl2, 0.1 mmol TDPA, and 3 mL 

OLA was injected into the colloidal PbSe solution. After quickly cooling down to room 

temperature, the PbSe CQDs were isolated from the reaction solution by using 

acetone/methanol/hexane solvent system in air, and this purification process was 

repeated for three times. After purification, the obtained PbSe CQDs precipitate was 
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then dried by an air flow and dispersed in octane at a concentration of 50 mg/mL and 

stored in ambient atmosphere.  

PbSe QDs Film Fabrication. The PbSe CQDs were deposited on glass substrates 

by a typical layer-by-layer spin-coating method using a fully automatic spincoater.[117] 

Each cycle was consisted of three steps: PbSe deposition, ligand exchange, and solvent 

rinse. Generally, colloidal PbSe (100 μL) was dropped onto glass substrates and spun-

cast at 2500 rpm for 15 s. Then, the ligand solution (0.02% vol EDT in acetonitrile, 30 

mM MPA in methanol, 30 mM CTAB (as Br- source) in methanol, and 30 mM TBAI 

(as I- source) in methanol) was dropped onto the substrate and spun dry after a 60 s 

wait. The substrate was then rinsed three times with methanol (acetonitrile for EDT) 

to remove excess unbound ligands.  

Photovoltaic Device Fabrication. To fabricate PbSe CQDSCs, fluorine-doped tin 

oxide (FTO) patterned glass substrates were cleaned through sequential ultrasonic 

treatment with ethanol, acetone, isopropanol and deionized water. The washed FTO 

glass substrates were further cleaned with oxygen plasma for 15 min before use. 

FTO/TiO2 substrate was made by spinning 0.3 M Titanium diisopropoxide 

bis(acetylacetonate) in 1-butanol solution on FTO substrate. In other words, 200 L 

Ti4+ solution was dropped on FTO glass substrates (2.52.5 cm) and spin-coating at 

3000 rpm for 30 s, followed by annealing at 450°C for 30 min in air. The PbSe CQDs 

were deposited on FTO/TiO2 substrates by spin-coating method same as PbSe films 

fabrication. Finally, 100 nm Au top electrode was deposited onto the PbSe layer by 

thermal evaporation through a shadow mask to create four identical cells on each 

substrate, each solar cell with an active area of 0.25 cm2. 

3.3 Results and Discussion 

3.3.1 Different Sizes PbSe QDs 
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Figure 3-1. Normalized absorbance of PbSe QDs (a) and XRD patterns of PbSe QDs 

(b) synthesized at different temperature. 

Figure 3-1a shows the normalized absorbance of PbSe QDs synthesized under 

different injection temperatures. With the injection temperature increasing, the first 

exciton peak of PbSe QDs shifts from 858 nm (90 ºC) to 1241 nm (130 ºC). It indicated 

that the sizes of PbSe QDs are increased with the injection temperature. According the 

empirical formula between the sizes and first exciton peak position of PbSe, the sizes 

of PbSe QDs can be estimated.[118] The data was shown in Table 3-1. 

 

D =
λ − 143.75

281.25
          （3 − 1） 

 

Table 3-1. The first exciton peak positions and calculated sizes of PbSe QDs which 

were synthesized at different temperature. 

Synthesized temperature (ºC) 90 95 100 110 120 130 

First exciton peak (λ, nm) 858 892 943 1071 1199 1241 

Calculated size (D, nm) 2.54 2.66 2.84 3.30 3.75 3.90 

Figure 3-1b presents the XRD spectra of PbSe QDs which synthesized at different 

temperature. All the diffraction peaks are characteristic of cubic PbSe structure (space 

group Fm-3m, JCPDS 78-1903). With the synthesis temperature of PbSe increasing, 

the half-width of peaks becomes narrow which indicates that the crystallinity and sizes 

of PbSe QDs are increased.  
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3.3.2 Optical Properties, Stability and Assembly of PbSe QDs 

 

Figure 3-2. Transmission electron microscopy (TEM) image of PbSe CQDs (a). 

Absorption spectra of PbSe CQDs dispersed in TCE solution measured soon after 

preparation and after storing in air for 30 days (b). FT-IR spectra of PbSe QDs films 

capped with different ligands (c). 

PbSe CQDs with OA capping ligands synthesized by a simple method were shown 

in the experimental section. The average size of PbSe CQDs is approximately 2.9 nm 

in diameter, as shown in Figure 3-2a. Figure 3-2b shows optical absorption spectra of 

the monodisperse PbSe CQDs in TCE. The first exciton absorption peak of PbSe 

CQDs in TCE is about 910 nm, which corresponds to its band gap energy of 1.37 eV. 

After stored in air 30 days, there was not any significant change in the optical 

absorption spectra for PbSe CQDs TCE solution, indicating that CdCl2 surface 

passivation technique is an effective method to improve the stability of PbSe CQDs 

colloidal solution. FT-IR spectra of PbSe QDs films treated with different ligands on 

Au coated glass substrates which are fabricated by spin coating method are given in 

Figure 3-2c. FT-IR measurements demonstrated that the C-H absorption stretching 

peaks at 2961, 2929, and 2854 cm-1 for the films with short ligand treatments were 

significantly reduced. What’s more, the =C-H stretching peak at 3006 cm-1 belonged 

to OA disappeared, which suggested that OA ligands were successfully removed 

during ligand exchange process and replaced by short ligands. This is further 

confirmed by the XPS measurements. As shown in Figure 3-3, the clear peaks 

corresponding to sulfur, Br and I (S 2p, Br 3d and I 3d) could be observed, respectively. 

From what has been discussed above, we can draw the conclusion that PbSe QDs 

within the films were completely packed by short ligands after ligand exchange 
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process. 

 

Figure 3-3. High-resolution XPS spectra of S 2p, Br 3d and I 3d region of EDT, CTAB 

and TBAI treated PbSe QDs, respectively. 

 

Figure 3-4. Normalized absorption spectra of PbSe QDs thin films capped with 

difference ligands (a), and after stored in air and dark condition for 100 days (b-f). 

Figure 3-4a presents the normalized absorption spectra of PbSe QDs thin films 

capped with different ligands. The first exciton peak of PbSe-OA film was located at 
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1.36 eV which was similar to that of PbSe CQDs in TCE. Moreover, after ligand 

exchanging, the first exciton peak of MPA treated PbSe QDs film moved to 1.33 eV 

and PbSe QDs films treated with EDT, CTAB and TBAI exhibited their first exciton 

peak near at 1.32, 1.32, and 1.31 eV respectively. Compared with PbSe-OA film, the 

red shift of the first exciton peaks of PbSe QDs films treated with short ligands are 

caused by the narrowed distance among PbSe QDs[119], as shown in Figure 3-5 (the 

average QD-QD distances were calculated as 3 nm, 1 nm, 1 nm, 0.5 nm and 0.5 nm 

for OA, EDT, MPA, CTAB, and TBAI ligands, respectively), which leads to 

strengthened dipole-induced dipole interaction, enlarged wave function delocalization 

and increased dielectric constant of the surrounding medium, in turn results in 

enhanced packing densities and conductivities of the PbSe QDs films.[120-122] 
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Figure 3-5. TEM images of PbSe QDs capped with different ligands. (a) PbSe-OA, 

the scale bar represents 10 nm; (b) PbSe-OA, the scale bar represents 5 nm; (c) PbSe-

MPA, the scale bar represents 5 nm; (d) PbSe-EDT, the scale bar represents 10 nm; (e) 

PbSe-CTAB, the scale bar represents 5 nm; (f) PbSe-TBAI, the scale bar represents 5 

(a) (b) 

(c) (d) 

(e) (f) 
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nm. 

We examined the effect of air exposure on PbSe QDs thin films to investigate the 

stability of these thin films, which were stored in air and under dark condition after 

fabrication. It’s obvious that after 100 days the first exciton absorption peak of PbSe-

OA thin film was blue shifted together with slightly broad, as shown in Figure 3-4b. 

This observation may originate from the changes in the surfaces of PbSe QDs which 

were oxidized to be higher bandgap species, such as Pb-O, or PbOH, resulting in 

smaller effective size of PbSe QDs (Figure 3-6).[111, 113] It means that the surface 

atoms of PbSe QDs which uncapped by OA and CdCl2 are oxidized when they are 

exposed in air for a long time, thus the surface of PbSe-OA QDs needs for further 

passivation taking account of QDs’ stability. In contrary, as shown in Figure 3-4c and 

3-4d, the first exciton peak of PbSe-EDT film shows no significant change while that 

of PbSe-MPA film shows blue-shift. This indicates that PbSe-EDT film is more stable 

than PbSe-MPA film. EDT molecule with two thiol groups may effectively take more 

OA away from the PbSe CQDs surface and passivate more Pb ions on the surface of 

PbSe QDs than MPA molecule with only one thiol group. This is also confirmed by 

XPS result (Figure 3-6), in which, small peaks belonged to Pb(OH)2 are observed in 

Pb 4f region of PbSe-MPA film. Fortunately, there are no sizable peak shifts for PbSe-

CTAB and PbSe-TBAI films after storing in air for 100 days, as shown in Figure 3-4e 

and Figure 3-4f. Therefore, after CTAB and TBAI treatments, the air stabilities of PbSe 

QDs films are significantly improved. In Figure 3-6d and Figure 3-6e, the peaks 

belonged to Pb oxide species were not found. And the peaks of Pb 4f7/2 (or Pb 4f5/2) 

for both PbSe-CTAB and PbSe-TBAI films can fit with two components: one peak of 

Pb 4f7/2 at 137.5 eV corresponds to the binding energy of Pb-Se and the other peak of 

Pb 4f7/2 corresponds to Pb-X bond (X is halogen). For PbSe-CTAB, the latter peak at 

137.9 eV corresponds to Pb-Br bond, while for PbSe-TBAI, the latter peak at 137.8 

eV corresponds to Pb-I bond. We suppose the treatment of CTAB and TBAI can form 

strong protective layer (Pb-Br and Pb-I) on PbSe QDs surface, which can resist the 

oxidation of PbSe QDs, thereby improving the stability of PbSe QDs at ambient 

atmosphere. 
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Figure 3-6. High-resolution XPS spectrum of Pb 4f region of (a) OA, (b) EDT, (c) 

MPA, (d) CTAB, (e) TBAI capped PbSe films, respectively. 

3.3.3 Ligand Dependent Energy Levels of PbSe QDs 

 

Figure 3-7. Photoelectron yield spectra of PbSe QDs films treated with EDT (a), MPA 

(b), CTAB (c), TBAI (d). The threshold energy for the photoelectron emission was 

estimated on the basis of the third root of the photoelectron yield plotted against the 

incident photon energy. 
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Changing the identity of the chemical binding group and dipole moment of the 

ligand should also affect the strength of the QD-ligand surface dipole and shift the 

vacuum energy, in turn change the valence band (VB) and conduction band (CB) 

position of QD.[123] The valence band maximum (VBM) positions of PbSe QDs thin 

films treated with different ligands were measured by using photoelectron yield 

spectroscopy (PYS, OA ligand is too insulating to be employed in PYS). Because of 

the collective contributions of the QD-ligand interface dipole and the intrinsic dipole 

moment of the ligand molecule itself,[123] the VBM positions of PbSe QDs treated 

with organic ligands EDT and MPA upward shift to -4.86 eV and -4.92 eV in 

comparison with halide ligands CTAB (-5.2 eV) and TBAI (-5.2 eV), respectively, as 

shown in Figure 3-7. The energy level diagrams of PbSe QDs treated with ligands were 

estimated from the PYS and UV-vis-measurements as shown in Figure 3-8. These 

energy level shifts will significantly influence the charge injection efficiency and open-

circuit voltage of photovoltaic devices. 

 

Figure 3-8. Schematic energy level diagrams of PbSe QDs treated with short ligands 

(the first exciton peak position of the film is taken as the band gap). 

3.3.4 Ligand Dependent Exciton Dissociation in PbSe QDs film 

Surface ligands treatment not only can influence the distance between QDs (Figure 

3-5) and energy levels of QDs but also has effects on the QDs surface trap density and 

charge transfer between QDs.[124-125] In order to avoid formation of oxidation of 
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PbSe QDs, PL spectra of PbSe QDs thin films capped with different ligands were 

measured under vacuum at 77 K and 298 K with the excitation wavelength of 532 nm. 

It is known that the relaxation process of photoexcited carriers in QD solids usually 

includes radiative and non-radiative recombination.[126] The PL corresponds to the 

radiative recombination of excitons in the QDs. The PL quenching of QD solids is 

highly associated with non-radiative recombination. The non-radiative recombination 

of charge carriers in QDs solids are usually through four routes: carrier trapping by 

defects in QDs, charge transfer between QDs (i.e., the exciton dissociation), charge 

transfer from QDs to ligands which usually occurs when the ligand has conjugated 

structure, and energy transfer between QDs which usually occurs when the QDs have 

wide size distribution. In our work, all of the short ligands do not have conjugated 

group and PbSe QDs have a narrow size distribution. Thus, the PL quenching is 

considered to mainly depend on the trap density of PbSe QDs and the charge transfer 

between PbSe QDs. 

 

Figure 3-9. Steady state PL spectra measured at 77 K (a) and 298 K (b) for PbSe QDs 

films treated with ligands (the PL intensity of PbSe-OA, PbSe-EDT and PbSe-MPA 

films are shrunk 20 times, 5 times and 5 times than their original values, respectively). 

As shown in Figure 3-9, the PL emission peak of PbSe-OA is at 1.11 eV. For the 

short ligands treated PbSe QDs films, the emission peaks are red shifted to 1.09 eV, 

1.07 eV, 1.06 eV and 1.05 eV, respectively, the trends are consistent with the absorption 

spectra of the films. And the PL intensity decreased with the ligand length becoming 

shorter. Photoexcited carriers in PbSe-OA QDs with longest dielectric OA ligands 

between QDs are difficult to transfer to the adjacent QDs, which leads to the largest 
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PL emission. For short organic ligands EDT and MPA capped PbSe QDs, the PbSe 

inter-QD coupling is enhanced than that of PbSe-OA, so some photogenerated carriers 

can transfer to the adjacent QDs, some are trapped by surface or deep defects (we have 

observed surface oxidation by XPS for MPA treated PbSe QDs as mentioned earlier) 

and others are recombined through radiative recombination way. What’s more, larger 

PL quenching is found in the CTAB and TBAI treated PbSe QDs solid films (high 

packing density) compared with PbSe-EDT and PbSe-MPA films. This phenomenon 

can also be observed at 298k (Figure 3-9b). As we discussed above, the short ligands 

can reduce the surface trap density of PbSe QDs, in turn improve the stability of PbSe 

QDs, especially for PbSe-CTAB and PbSe-TBAI. Therefore, the PL quenching of 

PbSe-CTAB and PbSe-TBAI films mainly depends on the charge transfer among PbSe 

QDs (the exciton dissociation). Thus, we can believe that the charge transfer from QD 

to QD (the exciton dissociation in QDs) in CTAB and TBAI treated PbSe QDs solid 

are faster and more unobstructed than those PbSe QDs solid treated with organic 

ligands. Next, we demonstrate this consideration by measuring the charge transfer rate 

from QD to QD (i.e., exciton dissociation rate) for different ligands treated PbSe QDs 

films using ultra-fast TA spectra measurement. 

 

Figure 3-10. Power dependent TA spectra of the PbSe-OA solid QD films. The solid 
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lines are fitting curves. When 48 J/cm2 pump fluence was applied, it can obviously 

find that the TA spectra contain two processes. The fast decay process which belongs 

to Auger recombination dominates the TA decay. When the pump fluence reduced to 

6 J/cm2, the signal of Auger recombination disappeared and the TA spectra can be 

well fitted by one exponential decay. 

In all of the TA measurements, the pump light wavelength was 500 nm and the 

probe light wavelength was 935 nm (the peak position of the optical absorption spectra 

of the PbSe QD films as shown in Figure 3-4). Thus, the TA signal corresponded to 

the bleaching between LUMO and HOMO in the QDs. Then the TA signal intensity 

is proportional to the photoexcited exciton density in QDs.[127] Taking into the 

consideration of two-carrier and three-carrier recombination processes in the QDs, TA 

decay curves can be represented by the following equation:[128]  

 

𝑑𝑛 𝑑𝑡⁄ = 𝐴𝑛 + 𝐵𝑛2 + 𝐶𝑛3          (3 − 2) 

 

where the first term An represents single-carrier behaviour, the second term Bn2 

represents two-carrier (electron-hole) radiative recombination (i.e. PL emission), and 

the third term Cn3 represents the three-carrier Auger recombination process. In order 

to particularly evaluate the charge transfer process, i.e., the exciton dissociation (which 

is a single-carrier behaviour) in PbSe QD films, two-carrier and three-carrier 

recombination processes are needed to avoid which tend to take place under strong 

pump fluence, as shown in Figure 3-10. Therefore, a weak enough pump fluence of 6 

μJ/cm2 was applied here, under which condition the normalized TA decay can be fitted 

very well with one exponential decay, i.e., the first term of equation (3-2).  
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Figure 3-11. Comparison of the TA decays of PbSe QD films with different ligands. 

All samples were pumped by 500 nm laser pulse with the pump fluence of 6 μJ/cm2, 

and probed at 935 nm. The solid lines are fitting curves with one exponential equation. 

In Figure 3-11, for PbSe-OA film where QDs are separated by OA ligands, the TA 

signal is almost constant and no decay can be observed on the time scale of 1 ns. This 

result indicates that charge transfer between the QDs does not occur when the QD-QD 

distance is large enough (about 3 nm here, which can be confirmed in Figure 3-5a and 

Figure 3-5b). For short ligands treated PbSe films, the TA spectra can be well fitted by 

one exponential decay with a decay time τ. As shown in Figure 3-11, the values of τ in 

PbSe-EDT, PbSe-MPA, PbSe-CTAB and PbSe-TBAI are about 2.43 ns, 0.47 ns, 41.45 

ps and 50.82 ps, respectively. The corresponding charge transfer rates kct=1/τ (i.e., the 

exciton dissociation rate in PbSe QDs) of PbSe-EDT, PbSe-MPA, PbSe-CTAB and 

PbSe-TBAI are 4.11 x 108 s-1, 2.13 x 109 s-1, 2.41 x 1010 s-1, 1.97 x 1010 s-1, respectively. 

It means that kct in PbSe-CTAB and PbSe-TBAI solid QD films are 1-2 orders of 

magnitude larger than that in PbSe-EDT and PbSe-MPA, which is consistent with the 

PL quenching results. According to above experimental results, it can be concluded 

that the halide ligands capped PbSe QDs have faster exciton dissociation rate than 

those of short organic ligands capped. The reason can be considered as follows. The 
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exciton dissociation (charge transfer from QD to QD) in the ligand treated PbSe QDs 

films occurs through electronic tunnelling effect.[129-130] So the charge transfers rate 

kct exponentially decreased with the QD-QD distance. Thus, kct increased largely for 

the halide ligands capped PbSe QDs film because of the smallest QD-QD distance of 

about 0.5 nm. 

3.3.5 Ligand Dependent Photovoltaic Performance of PbSe CQDSCs 

As is well known, the above discussion of exciton dissociation and charge transport 

in QDs active layer are of great value for deeply understanding the performance of 

photovoltaic devices. Figure 3-12 shows the light and dark current density-voltage (J-

V) curves of PbSe CQDSCs. It is found that devices using EDT and MPA as surface 

ligands exhibit higher open-circuit voltage (Voc) than those using CTAB and TBAI as 

ligands. The reason is not very clear now. One possibility is considered as follows. It 

was reported that EDT and MPA treated PbSe and PbS QDs exhibited p-type behaviour 

and Br- and I- treated PbSe and PbS QDs with near n-type characteristics,[108, 115, 

119, 122, 130-133] so the difference between the Fermi energy level (EF) and VBM in 

PbSe-EDT and PbSe-MPA are smaller than those in PbSe-CTAB and PbSe-TBAI. 

Despite the energy levels of PbSe-EDT and PbSe-MPA are higher than PbSe-CTAB 

and PbSe-TBAI (as shown in Figure 3-8), the EF of PbSe-EDT and PbSe-MPA QDs 

may be lower than those of PbSe-CTAB and PbSe-TBAI.[114] So the EF differences 

of TiO2 and PbSe-organic ligand are larger than that of TiO2 and PbSe-halide ligand, 

which results in higher Voc of PbSe-EDT and PbSe-MPA CQDSCs. 
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Figure 3-12. (a) J-V curves of PbSe CQDSCs using different ligands (measured in air), 

(b) photograph and (c) SEM cross-section image of PbSe planar heterojunction 

CQDSCs. 

In contrary, the short-circuit current density (Jsc) of both of EDT and MPA treated 

devices are lower than that of devices treated with halide ligands. As we discussed 

above, the exciton dissociation rate, i.e., the charge transfer rate in the EDT and MPA 

treated QD films are 1-2 orders smaller compared to those in halide ligand treated the 

QD films. Larger PL intensity was observed for the former QD films. Therefore, one 

reason for the lower Jsc of PbSe-EDT and PbSe-MPA devices could be attributed to 

the relatively smaller exciton dissociation rate (charge transfer rate). It is worth noting 

that CTAB and TBAI exhibit huge distinct influence on the performance of PbSe 

CQDSCs. The PCE of PbSe-TBAI devices (3.50%) shows about 3.5 times value of 

PbSe-CTAB device (1.04%), which is mainly ascribed to the high Jsc and FF in PbSe-

TBAI device. We have known that the bonding energy between Pb2+ and I- is stronger 

than that between Pb2+ and Br-, which leads to less surface trap density on PbSe-TBAI 

QDs.[108, 134] Surface traps can capture the photoexciton carries and as the electron-
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hole recombination centres, which play a destructive impact on the charge collection 

efficiency and thus Jsc of CQDSCs. As we discussed earlier, the exciton dissociation 

rates are almost the same for PbSe-CTAB and PbSe-TBAI QDs films. Thus, the 

difference in the Jsc and FF in the two kinds of CQDSCs would be resulted from the 

difference in charge recombination and the charge collection efficiency. Moreover, 

Zhang et al investigated the hot carrier dynamics in PbSe-I and PbSe-Br QD films, 

they found that PbSe-I showed longer hot carrier thermalization time than PbSe-

Br.[134] So the relatively slow hot carrier cooling in PbSe-TBAI film has a possibility 

for some hot carrier injection which may result in an increase in the Jsc of device. 

Table 3-2. Performance details of PbSe CQDSCs using different ligand a 

Devices Jsc (mA/cm2) Voc (V) FF (%) PCE (%) 

PbSe-EDT fresh 
3.480.22 

(3.70) 

0.580.01 

(0.59) 

31.60.4 

(32.0) 

0.640.05 

(0.69) 

PbSe-EDT 3 days 
3.020.09 

(3.09) 

0.570.01 

(0.58) 

29.30.5 

(29.7) 

0.510.02 

(0.53) 

PbSe-MPA fresh 
4.641.95 

(6.59) 

0.530.01 

(0.54) 

16.40.2 

(16.6) 

0.410.18 

(0.59) 

PbSe-MPA 3 days 
2.460.75 

(3.20) 

0.520.01 

(0.52) 

15.90.4 

(16.2) 

0.200.07 

(0.27) 

PbSe-CTAB fresh 
7.610.55 

(7.06) 

0.400.01 

(0.40) 

33.84.6 

(38.4) 

1.040.05 

(1.09) 

PbSe-CTAB 3 days 
7.200.11 

(7.25) 

0.380.01 

(0.38) 

24.24.1 

(28.9) 

0.660.14 

(0.80) 

PbSe-TBAI fresh 
18.10.1 

(18.1) 

0.420.01 

(0.43) 

44.60.8 

(45.4) 

3.500.03 

(3.53) 

PbSe-TBAI 3 days 
18.30.1 

(18.3) 

0.420.01 

(0.42) 

44.90.5 

(45.4) 

3.490.03 

(3.52) 

a Numbers in parentheses represent the values obtained for the best-performing cell. 

To account for experimental errors, four devices of each type were measured to give 

the reported averages and deviations. All of the devices were stored and measured in 

air. 

In order to reveal the effects of different ligands on charge carrier recombination 

and charge carrier lifetime in PbSe CQDSCs, transient open-circuit photovoltage 

decay measurements were carried out. Figure 3-13a shows the transient photovoltage 
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decay curves of PbSe CQDSCs with different ligands. It evidences that the PbSe-TBAI 

device exhibits much slower decay processes than those devices treated with other 

ligands. To quantitatively analyse the photovoltage decay processes, the decay curves 

can be fitted by using a dual exponential decay according to the following equation: 

 

y(t) = 𝐴1𝑒−𝑡 𝜏1⁄ + 𝐴2𝑒−𝑡 𝜏2⁄           (3 − 3) 

 

where A1 and A2 are proportionality constants, 1 and 2 are time constants.[117] The 

fitted curves are shown in Figure 3-13a (solid lines) and the corresponding parameters 

are shown in Table 3-3. According to the fitting data, the voltages of the PbSe-EDT 

and PbSe-MPA devices decrease quickly than those of PbSe-CTAB and PbSe-TBAI. 

What’s more, the weight of fast voltage decay process (A1) in PbSe-EDT and PbSe-

MPA devices takes up a large proportion about 59.5% and 76.3%, respectively. The 

faster voltage decay of PbSe-EDT and PbSe-MPA devices is mainly ascribed to their 

larger defect density. 

 

Figure 3-13. (a) The open-circuit photovoltage decay curves for PbSe CQDSCs with 
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different ligands. (b) The effective carrier lifetime calculated from the voltage decay 

curves. (c) Schematic illustration of the energy level alignment in the PbSe CQDSCs 

under different conditions. The voltage decay process is mainly through two 

recombination paths: (i) intrinsic trapping-assisted recombination in the PbSe QDs 

layer, and (ii) interfacial recombination at the TiO2/PbSe interfaces and PbSe/Au 

interfaces. 

Table 3-3. Fitted proportionality constants and time constants obtained from the open-

circuit photovoltage decay curves of the PbSe CQDSCs. 

Devices A1 (A1/( A1+ A2)) 1 (ms) A2 (A2/( A1+ A2)) 2 (ms) 

PbSe-EDT 
0.2900.007  

(59.5%) 
0.160.01 

0.1970.003  

(40.5%) 
3.510.05 

PbSe-MPA 
0.3550.009  

(76.3%) 
0.110.01 

0.1100.002  

(23.7%) 
4.010.12 

PbSe-

CTAB 
0.1610.002 

 (43.9%) 
0.300.01 

0.2060.001  

(56.1%) 
5.220.04 

PbSe-TBAI 
0.1780.002  

(46.4%) 
0.750.02 

0.2060.002  

(53.6%) 
12.590.22 

To make sense of charge carrier recombination processes in CQDSCs, we evaluated 

the recombination process based on the effective carrier lifetime (τeff), which can be 

defined by the following equations: [117, 135] 

 

𝜏𝑒𝑓𝑓 = −(
𝑘𝑇

𝑞
)/(

𝑑𝑉𝑜𝑐

𝑑𝑡
) =

1

𝜏𝑛
−1 + 𝜏𝑝

−1
         (3 − 4) 

 

𝜏𝑛
−1 =

1

𝑛
∙

𝑑𝑛

𝑑𝑡
          (3 − 5) 

 

𝜏𝑝
−1 =

1

𝑝
∙

𝑑𝑝

𝑑𝑡
          (3 − 6) 

 

where k is the Boltzmann constant, T is the temperature, q is the elementary charge, n 

is the free electron density in the TiO2 film and p is the free hole density in the PbSe 
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QDs. τn and τp are the free electron lifetime in the TiO2 and the free hole lifetime in the 

PbSe QDs layer, respectively. According to the above equations, the open-circuit 

photovoltage decay is dependent on both the electron and hole lifetimes in PbSe 

CQDSCs. 

The τeff was calculated from the voltage decay curves (Figure 3-13a) which is shown 

in Figure 3-13b. The observed trend in τeff was TBAI > CTAB > EDT > MPA, which 

was consistent with the photovoltaic performances. The value of τeff in the PbSe-TBAI 

device is 1 or 2 orders of magnitude higher than those of other three devices, which 

confirms that the carrier lifetime in PbSe-TBAI device is longer than those of others. 

This corresponds to higher Jsc of PbSe-TBAI device due to larger charge collection 

efficiency. More interestingly, the photovoltage-dependent effective carrier lifetime 

curves can be separated into two sections, I and II, which correspond to two different 

recombination processes. It can obviously find that the voltage of devices mainly is 

influenced by the smaller τeff carriers in the solar cells. In the smaller τeff region (less 

than 0.7 ms, section I in Figure 3-13b), the values of τeff in different ligands treated 

PbSe CQDSCs exhibit a large difference when they get the same voltage. This 

confirms that the voltage decay process is dominated by the hole trapping mechanism 

in PbSe QDs layer (Figure 3-13c). The larger τeff region II (over 1 ms) is belonged to 

slow voltage decay process, in which the values of τeff in PbSe-EDT, PbSe-MPA and 

PbSe-CTAB devices are nearly the same (except PbSe-TBAI). This means that the 

slower recombination region II mostly due to electron recombination in TiO2 and/or 

TiO2/PbSe interfaces, and the ligands treatments have no obvious effect on this 

recombination process. More details about the effect of TBAI on the interfacial 

recombination will be investigated in future work. Based on the above results, it can 

conclude that the trap or defects state in PbSe layer have great impact on the Voc of 

CQDSCs, and QDs surface treatment with TBAI can significantly reduce the surface 

states and enhance the charge collection efficiency in PbSe QDs layer, thus enhancing 

the Jsc, Voc and PCE of PbSe CQDSCs. 
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3.3.6 The Stability of PbSe CQDSCs 

 

Figure 3-14. J-V curves of PbSe CQDSCs using different ligands after storing in air 

for 3 days. 

Besides efficiency, the stability is also a significant indicator for the overall 

evaluation of solar cells. As shown in Table 3-2 and Figure 3-14, PbSe-TBAI device 

is the most stable one after 3 days while PbSe-EDT, PbSe-MPA and PbSe-CTAB 

devices show more or less reduction. The PCE degradation of those devices is possibly 

due to there are more defects in those devices than PbSe-TBAI device. 

 

Figure 3-15. Stability evaluation of PbSe-TBAI CQDSCs. The solar cells were stored 
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and tested in an ambient atmosphere. 

Furthermore, we have evaluated the long-term stability of the PbSe-TBAI device. 

All the solar cells were kept and tested in air without the control of humidity. In Figure 

3-15, PbSe-TBAI CQDSCs exhibited the excellent stability for over 10 days and the 

efficiency still reaches over 75% of original after 90 days (>2000 h). What’s more, we 

also investigated the continuous illumination stability of PbSe-TBAI CQDSCs in air, 

as shown in Figure 3-16. Unfortunately, the Voc and FF of solar cell were gradually 

reduced along with the increase of illumination time, and the PCE of solar cell only 

keeps about 70% of the original after continuous illumination 3.5 hours (under 100 

mW/cm2, AM 1.5 G illumination). This result indicates that light irradiation in air may 

accelerate the degradation of the PbSe CQDSCs.  

 

Figure 3-16. J-V curves of PbSe-TBAI CQDSCs which measured under continuous 

illumination for 3.5 hours (in air). 

3.4 Conclusions 

In summary, long term air-stable and high efficiency PbSe CQDSCs were obtained 

by using TBAI as ligand in solid state ligand-exchange process, and it is realized that 

the whole processes: from PbSe QDs washing step to PbSe CQDSCs fabrication, 

storage and measurements are all in ambient atmosphere for the first time. In addition, 
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ligand-dependent performance of PbSe QD films and CQDSCs were systematically 

investigated in this work. By monitoring the absorption, PL and TA spectra of the 

samples, we confirmed that TBAI treatment can produce more air-stable and higher 

charge transfer rate PbSe QD films than mercapto organic short ligands (EDT and 

MPA). Due to less surface trap density and higher charge transfer rate in the solar cells, 

the PCE of TBAI treated large size PbSe CQDSCs is obtained as high as 3.53%. The 

mechanism behind this achievement was explored using open-circuit voltage decay. It 

was informed that the TBAI treatment significantly reduced the intrinsic hole trapping-

assisted recombination in PbSe layer and improved the effective carrier lifetime in the 

PbSe CQDSCs. The device stability was also evaluated, which showed excellent 

storage stability in air (the efficiency of CQDSCs still remained 77% of original value 

over 90 days). In a word, long term stability and high efficiency PbSe CQDSCs can 

be fabricated and tested in ambient atmosphere by using TBAI as ligands. This work 

would shed light on the investigation of other PbSe QDs based devices, such as FET. 

The originalities of this work are: (1) TBAI was used to exchange original surface 

ligand OA of PbSe QDs for the first time; (2) long-term air stable PbSe based QDSCs 

was obtained. 
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Chapter 4: Improvement of Photovoltaic 

Performance of Colloidal Quantum Dot Solar Cells 

Using Organic Small Molecule as Hole-Selective 

Layer 

4.1 Introduction 

In order to effectively enhance the photovoltaic performance, various interfacial 

modifications in CQDSCs are vital issues.[136-137] Considering the QDs layer in the 

first place, the surface defect states of QDs are the major constraints upon solar cell 

performance. Introducing the halide ligand, such as tetrabutylammonium iodide 

(TBAI) or PbI2 to modify the surface of QDs is an effective way to enhance the 

coupling effect between QDs and reduce surface defect states of QDs.[40, 44, 108, 

123, 138-141] Second, the use of appropriate charge selective contacts for both 

electrons and holes is a major issue in this kind of devices. For the photoanode/QDs 

interface, introducing an electron selecting layer between photoanode (ZnO or TiO2, 

which have been the most commonly used) and the QDs active layer,  and doping 

photoanode have been found to significantly reduce the trap density of photoanode and 

reduce the interfacial charge recombination at this interface.[117, 142-147] For 

QDs/Au interface, the notion of inserting a hole-selective layer (HSL) between them 

has been proposed to suppress the interfacial charge recombination at this interface.[41, 

148-152] Molybdenum trioxide (MoO3) has been introduced into PbS CQDSCs but 

those solar cells showed unstable properties due to the sensitivity of MoO3 to H2O and 

O2.[148, 150, 153] An improved ZnO/PbS-TBAI/PbS-EDT (1,2-ethanedithiol) p-i-n 

solar cell architecture has promoted the PCE of CQDSCs from 7.0% to 9.2%.[41] 

Unfortunately, the EDT ligand is easily desorbed from QDs surface when the device 

was exposed to humid air in short time, reducing the stability and PCE of 

CQDSCs.[122, 140, 154] Other hole transport materials such as poly(3-

hexylthiophene-2,5-diyl) (P3HT), 2,2’,7,7’-tetrakis(N,N-di-p-methoxyphenylamine)-

9,9’-spirobifluorene (Spiro-OMeTAD) and poly(bis(4-phenyl)(2,4,6-
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trimethylphenyl)amine) (PTAA) have also been introduced into CQDSCs as a hole-

selective/electron-blocking layer between QDs layer/Au electrode interface.[151, 155-

157] However, high synthesis cost, complex purification, and the replicability 

especially for polymers are the major constraints upon their wide application. Great 

challenge should be taken to develop novel HSL with low cost and superior device 

stability. 

Herein, we cooperated with Prof. Otsuki and Dr. Wu of Nihon University and 

develop a novel donor-π-donor (D-π-D) organic small molecule bis-triphenylamine 

with spiro(fluorene-9,9’-xanthene) as the conjugated system, named BTPA-4, as a 

HSL in the PbS CQDSCs. We found that the introduction of BTPA-4 as HSL can 

enhance the open-circuit voltage (Voc), prolong the effective carrier lifetime (τeff), 

reduce the recombination at PbS-QDs/Au interface, and hence improve the device 

performance. Furthermore, the PbS CQDSCs with BTPA-4 possessed a remarkable 

long-term stability for more than 100 days of storage in ambient atmosphere that has 

been the Achilles' heel of other organic HSL for CQDSCs. 

4.2 Experimental Methods 

Materials. Lead(II) oxide (PbO, Wako, 99.5%), oleic acid (OA, Aldrich, 90%), 1-

octadecene (ODE, Aldrich, 90%), hexamethyldisilathiane (TMS, Aldrich, synthesis 

grade), cadmium chloride (CdCl2, Wako, 95%), tetradecylphosphonic acid (TDPA, 

Aldrich, 97%), oleylamine (OLA, Aldrich, 70%), Zinc acetate dehydrate 

(Zn(OAc)2·2H2O, Wako, 99.9%), ethanolamine (Wako, 99.0%), 2-methoxyethanol 

(Wako, 99.0%), zinc nitrate hexahydrate (Zn(NO3)2·6H2O, Wako, 99.0%), 

hexamethylenetetramine (HMTA, Wako, 99.0%), 1,2-ethanedithiol (EDT, Aldrich, 

98%), cetyltrimethylammonium bromide (CTAB, Wako, 98%). These materials were 

used as received from commercial sources without any purification.  

Synthesis of PbS-QDs. The synthesis of colloidal PbS-QDs is carried out similarly 

to our previously reported method.[117] Briefly, 6 mmol PbO, 15 mmol oleic acid and 

50 mL 1-octadecene (ODE) was degassed at 80°C for 1 h. The obtained solution was 

heated to 85°C under nitrogen for another 2 h, followed by the injection of a 

hexamethyldisilathiane (TMS) solution (3 mmol TMS in10 mL of pre-degassed ODE). 
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When the obtained colloid solution was cooled to 70°C, a CdCl2-TDPA-oleylamine 

halide precursor was injected into the colloidal PbS solution. After cooling down to 

room temperature, PbS-QDs were isolated by adding acetone and centrifugation. The 

supernatant was discarded and the precipitate was purified by successive dispersion in 

toluene and precipitation with a mixture of acetone and methanol. The obtained PbS-

QDs precipitate was dried by an N2 flow and finally dispersed in octane at a 

concentration of 50 mg/mL. 

Synthesis of BTPA-4. A solution of N,N-bis(4-methoxyphenyl)-4-(4,4,5,5-

tetramethyl-1,3,2-dioxaborolan-2-yl)benzenamine (354 mg, 0.82 mmol), spiro-9-(2,7-

dibromofluorene)-9'-xanthene (200 mg, 0.41 mmol), Pd(PPh3)4 (40 mg, 0.04 mmol), 

and K2CO3 (2 M solution, 0.5 mL) in THF (15 mL) was stirred under nitrogen in the 

dark at 85°C for 48 h. After cooling to room temperature, the mixture was extracted 

with CHCl3 by adding aqueous NaHCO3 solution. Then the organic layer was dried 

over MgSO4 and concentrated under reduced pressure to give the crude product. 

Finally, the crude product was purified by silica gel column chromatography eluted 

with hexane/ethyl acetate (5/1) to give a yellow solid BTPA-4 (weight: 210 mg, mole: 

0.22 mmol, yield: 55%). 1H NMR (400 MHz, CDCl3): δ ppm: 7.82 (d, 2 H, J = 7.6 

Hz), 7.59 (d, 2 H, J = 9.6 Hz), 7.37 (s, 2 H), 7.33 (d, 4 H, J = 8.8 Hz), 7.25 (t, 2 H, J = 

6.8 Hz), 7.19 (t, 2 H, J = 7.6 Hz), 7.06 (m, 8 H), 6.93 (m, 4 H), 6.83 (d, 8 H, J = 9.2 

Hz), 6.78 (d, 2 H, J = 8.0 Hz), 6.55 (d, 2 H, J = 7.6 Hz), 3.79 (s, 12 H). 13C NMR (100 

MHz, CDCl3): δ ppm: 155.8, 155.7, 151.3, 148.0, 140.8, 140.7, 137.8, 132.7, 128.1, 

128.0, 127.3, 126.4, 126.1, 125.0, 123.5, 123.3, 120.6, 120.0, 116.6, 114.6, 55.4, 54.3. 

APCI-HRMS m/z ([M+H]+): calcd: 939.3798, Found: 939.4090. Anal. calcd for 

C65H50N2O5∙0.2 CHCl3: C, 81.32; N, 2.91; H, 5.25. Found: C, 81.18; N, 2.93; H, 5.17. 

 

Scheme 4-1. Synthetic route of BTPA-4. 



64 
 

Fabrication of solar cells. PbS-QDs-based bulk heterojunction solar cells were 

constructed by combining ZnO-nanowires (ZnO-NWs) arrays with PbS-QDs, whose 

first absorption peak was 910 nm. The ZnO-NWs arrays with 1.5 μm thickness were 

formed on ZnO compact layer (ZnO-CL) by a hydrothermal method. To prepare the 

sol–gel precursor for the ZnO compact layer, zinc acetate dehydrate and ethanolamine 

were dissolved in 2-methoxyethanol to obtain the 0.5 M zinc precursor (solution-1). 

Then, 300 μL of solution-1 was dropped onto cleaned FTO glasses and spun-cast at 

1000 rpm for 2 s plus 3500 rpm for 30 s, followed by baking at temperature 150°C for 

5 min in air. These spin-coat and annealing processes were repeated to generate a 

uniform ZnO compact seed layer with a thickness of around 100 nm. To grow ZnO-

NWs, the seed-coated FTO substrates were floated face down in Scott bottles 

containing the aqueous solution-2 (mixture of 25 mM zinc nitrate hexahydrate and 25 

mM HMTA), and heated at 90°C for 4 h. Then, the substrates were rinsed with pure 

water, dried with a nitrogen flow, and annealed at temperature 350°C for 30 min. 

PbS-QDs layers were deposited on ZnO-NWs arrays using a layer-by-layer method. 

For each layer, 120 μL of colloidal PbS-QDs was spin-cast onto the ZnO-NWs 

substrate at 2500 rpm for 15 s. Then, hexadecyltrimethylammonium bromide (CTAB) 

solution (30 mM in methanol) was dropped on the substrate and spun dry after a 1 min 

wait followed by rinsing three times with methanol. The PbS-EDT layers was covered 

on PbS-CTAB layer by 2.4 mM EDT (0.02% vol.) acetonitrile solution for 1 min 

before being spun at 2500 rpm for 15 s. The spinning substrate was washed by 400 μL 

of acetonitrile, followed by spinning for 20 s to dry the film. The above process was 

repeated to obtain two layers of PbS-EDT. The BTPA-4 layer was covered on the PbS-

QDs layer by spin-casting the mixture of 10 mM BTPA-4, 57.6 μL 4-tert-butylpyridine 

(TBP), 35 μL bis (trifluoromethane) sulfonimide lithium salt (LiTFSI, 520 mg/mL in 

acetonitrile), and 1 mL chlorobenzene at 4000 rpm for 30 s. The Spiro-OMeTAD layer 

was covered on the PbS-QDs layer by spin-casting the mixture of 75 mg Spiro-

OMeTAD, 28.8 μL TBP, 17.5 μL LiTFSI acetonitrile solution and 1 mL chlorobenzene 

at 4000 rpm for 30 s. Finally, 100 nm Au electrode was deposited onto the HSL by 

thermal evaporation through a shadow mask to create four identical cells on each 

substrate, each solar cell with an active area of 0.25 cm2. 
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4.3 Results and Discussion 

4.3.1 The Structure of PbS QD and BTPA-4 

 

Figure 4-1. (a) Optical absorption spectrum of PbS-QDs in octane. (b) TEM image of 

PbS-QDs, the scale bar represents 10 nm. (c) Photoelectron yield spectrum of PbS-

QDs film which was treated with hexadecyltrimethylammonium bromide (CTAB) (the 

threshold energy for the photoelectron emission was estimated on the basis of the third 

root of the photoelectron yield plotted against the incident photon energy). (d) 

Molecular structure of BTPA-4. (e) Optical absorption spectrum of BTPA-4 in 

dichloromethane (DCM). (f) Cyclic voltammogram in DCM, the potential values 

being obtained with ferrocene as the reference. 
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Figure 4-2. The 1H NMR spectrum of BTPA-4 in CDCl3. 

 

Figure 4-3. The 13C NMR spectrum of BTPA-4 in CDCl3. 
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Figure 4-4. The APCI–HRMS of BTPA-4. 

To clearly investigate the applicability of BTPA-4 in PbS CQDSCs, energy levels 

of PbS QDs and BTPA-4 were urgently needed. On one hand, PbS-QDs with oleic acid 

(OA) capping ligands were synthesized according to a previously reported 

method.[117] Figure 4-1a shows the optical absorption spectrum of the monodisperse 

PbS-QDs in octane. The first exciton absorption peak of PbS-QDs with the average 

size of PbS-QDs being approximately 2.7 nm in diameter, as shown in Figure 4-1b, is 

at 910 nm, which corresponds to its band gap energy of 1.36 eV. After solid state 

surface ligand exchange, the valence band maximum (VBM) position of the PbS-QDs 

film, which was treated by CTAB, was located at -5.32 eV as obtained by using 

photoelectron yield spectroscopy (Figure 4-1c). On the other hand, the molecular 

structure of BTPA-4 is depicted in Figure 4-1d, the 1H NMR, 13C NMR and HRMS 

spectra of BTPA-4 are shown in Figure 4-2, Figure 4-3 and Figure 4-4, respectively. 

The band gap (2.9 eV) of BTPA-4 can be calculated from the intersection of its 

absorption spectrum, which is shown in Figure 4-1e. The highest occupied molecular 

orbital (HOMO) energy level of BTPA-4 was determined from the following equation: 

EHOMO = -4.5-E°(S+/S) (eV), where E°(S+/S) is the first oxidation potential value vs 

SHE (standard hydrogen electrode),[158] which was obtained from cyclic 

voltammetry, Figure 4-1f, as 0.84 V. Thus, the HOMO energy level of BTPA-4 can be 

calculated approximately as -5.3 eV. 

4.3.2 The Performance of CQDSCs with BTPA-4 as Hole Selective Layer 

The cross-section SEM image of the fabricated PbS CQDSCs is presented in Figure 

4-5a, which confirms the p-i-n bulk heterojunction structure of the device as illustrated 
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in Figure 4-5b. It can be concluded that the thickness of the BTPA-4 layer is about 200 

nm. Especially the BTPA-4 layer well contacts both with the PbS-QDs layer and the 

Au electrode. Figure 4-5c shows the diagram of energy level alignment in ZnO 

nanowires (NWs)/PbS-QDs/BTPA-4/Au solar cells, where the energy levels of PbS-

QDs and BTPA-4 were estimated from the above discussion,[117, 159-160] while the 

energy levels of ZnO and Au were taken from literature.[117, 161] It is shown that the 

HOMO level energy of BTPA-4 matches well with that of PbS QDs, which can provide 

an energetically favorable path for the hole transport from PbS-QDs layer to Au 

electrode. In contrast, the lowest unoccupied molecular orbital (LUMO) energy of the 

BTPA-4 is higher than the LUMO level energy of PbS-QDs, which can set up a barrier 

for electron injection from PbS-QDs to Au electrode. It indicates that BTPA-4 has the 

potential as a hole-selective (or electron-blocking) layer to be used in the PbS CQDSCs. 

 

Figure 4-5. (a) Cross-section scanning electronic microscopy (SEM) image of the 

ZnO-NWs/PbS-QDs/BTPA-4/Au CQDSCs. (b) Schematic drawing of the p-i-n 

heterojunction PbS CQDSCs. (c) Energy level diagram of the ZnO, PbS-QDs, BTPA-

4, and Au. (d) Comparison of the photocurrent density-voltage (J-V) curves of PbS 

CQDSCs with or without BTPA-4 as hole-selective layer. 
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Figure 4-6. IPCE spectra and integrated Jsc of PbS CQDSCs with and without BTPA-

4. 

Figure 4-5d and Table 4-1 show the light and dark current density-voltage (J-V) 

curves and corresponding performance parameters of PbS CQDSCs with and without 

BTPA-4. The introduction of BTPA-4 layer strongly enhances the performance of PbS 

CQDSCs. The short-circuit photocurrent density (Jsc) of PbS CQDSCs shows no 

significant difference (the IPCE spectra of PbS CQDSCs with and without BTPA-4 

are less difference), see Figure 4-6. The addition of the HSL does not produce an 

increase of the series resistance (Rs) of the device as it has been analyzed by impedance 

spectroscopy (IS) in following discussion. However, the best PbS CQDSCs with 

BTPA-4 HSL shows a PCE of 5.55%, which is around 15% higher than that without 

BTPA-4 layer (4.84%), mainly due to an enhancement of the open circuit voltage (Voc).  

Table 4-1. Performance details of PbS CQDSCs with and without BTPA-4 layer. Light 

intensity for the measurement is AM1.5 G 100 mW/cm2 a 

Devices 
Jsc 

(mA/cm2) 
Voc (V) FF (%) PCE (%) 

Without BTPA-4 
26.80.3 

(26.6) 

0.3960.008 

(0.402) 

45.10.4 

(45.3) 

4.720.12 

(4.84) 

With BTPA-4 
27.20.3 

(27.0) 

0.4390.005 

(0.442) 

46.10.5 

(46.5) 

5.440.11 

(5.55) 

a Numbers in parentheses represent the values obtained for the best-performing cell. 

To account for experimental errors, eight devices of each type were measured to give 
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the reported averages and deviations. All of the devices were stored and measured in 

air. 

 

Figure 4-7. J-V curves of PbS CQDSCs using BTPA-4 and PbS-EDT as hole-selective 

layer. 

Table 4-2. Performance details of PbS CQDSCs with BTPA-4 and PbS-EDT as hole-

selective layer. 

Devices Jsc (mA/cm2) Voc (V) FF (%) PCE (%) 

With BTPA-4 23.5 0.422 43.6 4.32 

With PbS-EDT 25.2 0.451 36.2 4.12 

 

Although the Voc and Jsc of PbS CQDSCs with BTPA-4 HSL are slightly lower than 

those of PbS CQDSCs with PbS-EDT, see in Figure 4-7 and Table 4-2, the fill factor 

(FF) of PbS CQDSCs with BTPA-4 is larger than that of device with PbS-EDT, 

resulting in a higher PCE. BTPA-4 can also work as HSL for different sizes PbS-QDs 

based CQDSCs (see Figure 4-8 and Table 4-4), due to the fact that of the HOMO level 

of PbS-QDs presents little change with the sizes of PbS-QDs (Eg >1.2 eV).[154, 162] 
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Figure 4-8. J-V curves of different sizes PbS based CQDSCs with and without BTPA-

4 as hole-selective layer. (a) PbS-QDs with the first exciton peak at 855 nm. (b)PbS-

QDs with the first exciton peak at 943 nm. (c) PbS-QDs with the first exciton peak at 

970 nm. 

Table 4-4. Performance details of different sizes PbS-QDs based CQDSCs with and 

without BTPA-4 layer. Light intensity for the measurement is AM1.5 G 100 mW/cm2 

First exciton 

Peak 
BTPA-4 

Jsc 

(mA/cm2) 
Voc (V) FF (%) PCE (%) 

PbS-855 nm 

Without 19.7 0.425 32.9 2.75 

With 20.7 0.450 35.5 3.30 

PbS-943 nm 

Without 24.4 0.384 37.1 3.50 

With 23.0 0.422 44.6 4.33 

PbS-970 nm 
Without 25.8 0.357 44.8 4.14 

With 24.3 0.434 44.6 4.70 
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Figure 4-9. J-V curves of PbS CQDSCs using BTPA-4 and Spiro-OMeTAD as hole-

selective layer. 

Table 4-5. Performance details of PbS CQDSCs with BTPA-4 and Spiro-OMeTAD as 

hole-selective layer. 

Devices Jsc (mA/cm2) Voc (V) FF (%) PCE (%) 

Pristine 26.9 0.405 40.2 4.39 

With BTPA-4 26.5 0.451 43.2 5.16 

With Spiro-OMeTAD 26.7 0.436 41.3 4.80 

As a comparison to BTPA-4, a commonly used hole transport material Spiro-

OMeTAD, with “spiro” structure in common with BTPA-4, also was introduced into 

PbS CQDSCs. Analogous to the devices with BTPA-4, the Voc of PbS CQDSCs with 

Spiro-OMeTAD also were improved than that of the pristine devices, in Figure 4-9 

and Table 4-5. However, comparing with PbS CQDSCs with BTPA-4, the Voc for the 

devices based on Spiro-OMeTAD is lower. This may be due to the fact that Spiro-

OMeTAD (-5.2 eV) has a higher HOMO energy level than that of BTPA-4 (-5.3 

eV).[163-164]  

These results confirm that the incorporation of the BTPA-4 layer between the PbS-

QDs layer and Au electrode forming a p-i-n heterojunction structure, is feasibly 

successful. On one hand, this architecture avoids a Schottky barrier at the PbS-QDs 

layer/Au electrode interface,[152] resulting in devices with higher FF. On the other 

hand, BTPA-4 can block the electron injection from PbS-QDs to Au electrode, owing 

its high LUMO energy level (see Figure 4-5c). 

4.3.4 Voc Decay and Impedance Spectra of PbS CQDSCs with BTPA-4 as 

Hole Selective Layer 

In order to reveal the effect of BTPA-4 as HSL on charge carrier recombination, the 

transient open circuit photovoltage (Voc) decay measurements were carried out. Figure 

4-10a shows the transient open circuit photovoltage decay curves of PbS CQDSCs 

with and without the BTPA-4 layer. It can be clearly observed that samples with 

BTPA-4 exhibit a much slower decay, which provides a direct proof of the reduction 
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of charge recombination when BTPA-4 is used as a HSL. Generally, in our samples, 

three photovoltage decay paths are observed: (1) hole trapping in PbS-QDs and 

electron trapping in ZnO-NWs,[117] (2) charge recombination at ZnO-NWs/PbS-QDs 

interface, and (3) charge recombination at PbS-QDs/Au electrode interface. Thus, the 

decay curves can be roughly divided into three parts corresponding to these three 

charge recombination paths in the PbS CQDSCs. To quantitatively analyze the 

photovoltage decay processes, the decay curves can be fitted by a triple exponential 

decay according to the following equation: 

 

𝑦(𝑡) = 𝐴1𝑒−𝑡 𝜏1⁄ + 𝐴2𝑒−𝑡 𝜏2⁄ + 𝐴3𝑒−𝑡 𝜏3⁄           (4-1) 

 

where A1, A2 and A3 are proportionality constants and τ1, τ2 and τ3 are time 

constants.[165] The fitted curves are shown in Figure 4-9a (solid lines) and the 

corresponding parameters are shown in Table 4-5. According to the fitting data, for 

the fast voltage decay process, τ1 and τ2 are similar for samples with and without 

BTPA-4, which should belong to photovoltage decay path (1) and path (2), 

respectively. Interestingly, for the slow voltage decay process, τ3 of PbS CQDSCs with 

BTPA-4 is increased from 21.2 ms to 50.8 ms. This relatively slower voltage decay 

process of PbS CQDSCs with BTPA-4 may be attributed to the reduction of the 

interfacial recombination at PbS-QDs/Au electrode interface. 

 

Figure 4-10. (a) Transient open circuit photovoltage (Voc) decay curves for PbS 

CQDSCs with and without BTPA-4. The inset is an expanded scale of the short time 
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region of the decay showing the fast Voc decay process of PbS CQDSCs. (b) Effective 

carrier lifetime calculated from the voltage decay curves shown in (a). 

To further gain an insight into the charge recombination processes in PbS CQDSCs, 

we also evaluated the recombination process based on the effective carrier lifetime 

(τeff), which can be defined by the following equation:[135, 165-166]  

 

𝜏eff = − (
𝑘𝑇

𝑞
) (

𝑑𝑉oc

𝑑𝑡
)⁄         (4-2) 

 

where k is the Boltzmann constant, T is the temperature, q is the elementary charge. 

The τeff was calculated from the voltage decay curves (Figure 4-10a), which is shown 

in Figure 4-10b. Interestingly, the photovoltage-dependent effective carrier lifetime 

curves can be separated into two sections, I and II, see Figure 4-10b. In section I, the 

values of τeff for both PbS CQDSCs with and without BTPA-4 are close and below 3 

ms. It indicates that the BTPA-4 layer has a reduced effect on this recombination 

process. In section II, the value of τeff in PbS CQDSCs with BTPA-4 is about 5 times 

higher than that of the device without BTPA-4. This means that the slower 

recombination in section II is mostly dominated by interfacial recombination at the 

PbS-QDs/Au electrode interface. Based on the above results, it can be concluded that 

BTPA-4 as HSL can significantly diminish the interfacial recombination, thus 

enhancing the Voc and PCE of PbS CQDSCs. 

Table 4-6. Fitted proportionality constants and time constants obtained from the 

transient open-circuit photovoltage decay curves of the PbS CQDSCs. 

Device 

A1 

(A1/(A1+A2

+A3)) 

τ1 (μs) 

A2 

(A2/(A1+A2

+A3)) 

τ2 (ms) 

A3 

(A3/(A1+A2+

A3)) 

τ3 (ms) 

Without 

BTPA-4 
0.149 63.2±0.8 0.198 3.1±0.1 0.054 21.2±0.1 

With 

BTPA-4 
0.150 139±2 0.102 4.2±0.1 0.188 50.8±0.1 
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Figure 4-11. Nyquist plot of PbS CQDSCs with and without BTPA-4 HSL in dark 

with 0.3 V applied bias, (a) full spectra and (b) zoom of the high frequency region 

where series resistance, Rs, can be easily obtained from the crossing of the impedance 

spectra with the horizontal axis. Depending on the applied voltage two or three arc 

features are observed in the impedance spectra. These spectra have been fitted using 

the equivalent circuit plotted in (c) and (d) respectively. In addition to a Rs each arc 

feature is fitted by the RC circuit at high, intermediate and low frequencies (hf, if and 

lf respectively). 

Impedance spectroscopy provides a complementary characterization pointing also 

in this direction. Recombination resistance, Rrec, of both kinds of samples has been 

obtained from the fitting of the impedance spectra using the equivalent circuits plotted 

in Figure 4-11, based on the work of Wang et al.[167] Briefly, the sum of the low and 

intermediate frequency resistances, see Figure 4-11, are directly related with the Rrec 

of the system, allowing a qualitative interpretation of the recombination process. 

Figure 4-12 shows the Rrec obtained for samples with and without BTPA-4. As Rrec is 

inversely proportional to the recombination rate, impedance measurements confirm 

the lower recombination in the devices with the HSL as demonstrated by the lower 

dark currents and the transient open circuit photovoltage decay measurements, in 

Figure 4-5d and Figure 4-10a, respectively. 
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Figure 4-12. Recombination resistance (Rrec) of devices with and without BTPA-4 

obtained by impedance spectroscopy. 

4.3.5 The Stability of PbS CQDSCs with BTPA-4 

The stability is a very important issue for the performance evaluation of CQDSCs. 

Therefore, we also investigated the long-term stability of PbS CQDSCs with and 

without BTPA-4 layer, which were kept and tested in air without the control of 

humidity. As shown in Figure 4-13, both the PbS CQDSCs with and without BTPA-4 

exhibit excellent long-term storage stability for over 100 days and all of the 

photovoltaic parameters exhibited overall increase at the first 8 days. After 100 days, 

the PCE of PbS CQDSCs with BTPA-4 can maintain 5.14% which is a little decrease 

compared with its maximum value. The PCE value of PbS CQDSCs with BTPA-4 is 

still higher than that of PbS CQDSCs without BTPA-4 (4.3%), especially for Voc. This 

result indicates that BTPA-4 is stable enough for the application as a HSL of CQDSCs. 
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Figure 4-13. Stability evaluation of PbS CQDSCs with and without BTPA-4. The 

devices were stored and tested in an ambient atmosphere (room temperature: ~ 20°C, 

indoor relative humidity: 28% ~ 65%). 

4.4 Conclusions 

In summary, organic small molecule BTPA-4 which has a suitable energy level was 

used into PbS CQDSCs as a hole-selective layer between the PbS-QDs layer and Au 

electrode. The PCE of PbS CQDSCs was considerably improved by introducing the 

BTPA-4 layer. BTPA-4 as hole-selective layer can effectively reduce the interfacial 

charge recombination at PbS-QDs/Au electrode interface and lead to the enhanced Voc. 

The mechanism behind this achievement was explored using open-circuit voltage 

decay and impedance spectroscopy. It was observed that the BTPA-4 significantly 

reduced the interfacial charge recombination, increasing consequently the effective 

carrier lifetime in PbS CQDSCs. Due to the diminished interfacial recombination in 

the solar cells, the PCE of PbS CQDSCs with BTPA-4 is obtained as high as 5.55%, 

which is an increase by about 15% comparing with the cell without BTPA-4 and 

maintains it in the long-term period (over 100 days). The results demonstrate that 

BTPA-4 may have diverse applications in enhancing photovoltaic devices. 

The originalities of this work are: (1) novel hole transport material BTPA-4 was 

synthesized; (2) organic small molecule was used to suppress the interfacial 

recombination in QDSCs for the first time.  
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Chapter 5: Organic-Inorganic Hybrid Perovskite 

Solar Cells with Novel Hole Transport Materials 

5.1 Introduction 

In recent years, perovskite solar cells (PSCs) have attracted more and more world-

wide interest for practical applications due to their excellent absorption characteristics, 

superior charge transporting property, and high power conversion efficiencies 

(PCE).[168-171] Up to now, the PCE of over 20% has been reported.[172] Hole 

transport materials (HTMs), which also work as protection layer against humidity, are 

one of the most important components in PSCs. Small molecular HTMs, such as 

squaraine derivatives,[173] carbazole derivatives,[174-177] linear conjugated 

molecules,[178] Spiro-OMeTAD (2,2’,7,7’-tetrakis(N,N’-di-p-

methoxyphenylamine)-9,9’-spirobifluorene) derivatives,[179-180] oligothiophene 

derivatives,[181] butadiene derivatives,[182] a 1,3,4-oxadiazole derivative,[183] 

triphenylamine derivatives,[184-185] various thiophene derivatives,[181, 186-192] a 

tetrathiafulvalene derivative,[193] and silafluorene derivatives,[194] have been 

utilized in efficient PSCs owing to their excellent charge carrier transport property. 

Besides being used as the building blocks of π-conjugated polymers and 

oligomers,[195-196] spiro-type compounds have been successfully synthesized as the 

central bridge in small molecular HTMs to improve their good charge transporting 

property, inhibit aggregation on the perovskite surface, and suppress the charge 

recombination.[179, 191, 197-198] The Spiro-OMeTAD, which is a spirobifluorene 

(SBF) derivative with its unique steric hindrance effect, has been the main HTM 

studied in PSCs. However, high synthesis cost and complex purification along with 

the requirement of dopants are the major constraining factors in its commercial large 

scale applications of the solid-state PSCs. It is of great challenge to develop new spiro-

type molecules with convenient synthetic methods.  

Table 5-1. Comparison of estimated materials synthesis cost for the synthesis of 

studied HTMs and Spiro-OMeTAD.a 
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HTMs Steps 
Reagents(materials) 

cost ($/g) 

Workup 

cost ($/g) 

Total cost 

($/g) 

BTPA-4 3 13.72 17.13 30.85 

BTPA-5 3 12.29 15.96 28.25 

BTPA-6 3 17.65 17.67 35.32 

Spiro-

OMeTAD 
6 6.14 85.06 91.20 

a For every reaction step, the total cost of every reactant, catalyst, reagent and solvent 

was calculated to get 1 gram of the target HTM to be settled in US dollar. 

The synthesis of functionalized spiro(fluorene-9,9’-xanthene) (SFX) significantly 

decreases the production cost compared with that of SBF (see Table 5-1). The addition 

of oxygen atom from spiro-type SBF to SFX can not only provide the opportunity to 

improve both the solubility and processability, but also offer the ability to tune their 

optical properties. We have recently reported the synthesis of BTPA-4 (see Figure 5-

1 for structure) and employed it as a hole-selective layer (HSL) in heterojunction PbS 

colloidal quantum dot solar cells (CQDSCs).[199] The BTPA-4 HSL outperformed 

Spiro-OMeTAD HSL in CQDSCs, which suggested that the SFX unit in BTPA-4 is a 

promising structural unit in designing HTMs for PSCs as well.  

 

Figure 5-1. Molecular structures of three HTMs studied. 
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Herein, Dr. Wu of Nihon University synthesized SFX-bridged triphenylamine-based 

HTMs, BTPA-4 and two novel HTMs with a varied bridge structure (BTPA-5) and 

with different numbers (four) of the triphenylamine units (BTPA-6) as shown in Figure 

5-1. These materials can be prepared with costs about one third of that for the 

preparation of Spiro-OMeTAD (see Table 5-1). We cooperated with Prof. Otsuki and 

Dr. Wu investigated the perovskite solar cell performance of these three materials as 

the HTMs with Spiro-OMeTAD as a reference compound. 

5.2 Experimental Methods 

The synthetic route of BTPA-5, and BTPA-6 is shown in Scheme 5-1. All these 

three HTMs need only three reaction steps from the starting material 9-fluorenone, 

which is much more convenient compared with the synthesis of spiro-OMeTAD as 

shown in Table 5-1. 

 

Scheme 5-1. Synthetic route of BTPA-5 and BTPA-6. (a) naphthalen-1-ol for BTAP-

5, or 4-bromophenol for BTPA-6, methanesulfonic acid, 150 °C, 24 h; (b) N,N-bis(4-

methoxyphenyl)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzenamine, 

tetrohydrofuran (THF), Pd(PPh3)4, 85 °C, 48 h. 

Synthesis of BTPA-5. BTPA-5 was synthesized following a procedure similar to 

that we used for BTPA-4, [199] except that naphthalen-1-ol (400 mg, 0.68 mmol) was 

used instead of phenol. BTPA-5 was obtained as a yellow solid (408 mg, 0.39 mmol, 

58%). 1H NMR (400 MHz, CDCl3): δ ppm: 8.76 (d, 2 H, J = 8.4 Hz), 7.87 (d, 2 H, J = 

8.4 Hz), 7.74 (d, 2 H, J = 8.4 Hz), 7.69 (d, 2 H, J = 7.6 Hz), 7.61 (d, 2 H, J = 8.0 Hz), 

7.54 (t, 2 H, J = 7.2 Hz), 7.30 (s, 2 H), 7.25 (d, 2 H, J = 8.0 Hz), 7.24 (d, 4 H, J = 8.0 
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Hz), 6.96 (d, 8 H, J = 8.4 Hz), 6.82 (d, 4 H, J = 8.4 Hz), 6.74 (d, 8 H, J = 9.2 Hz), 6.51 

(d, 2 H, J = 8.8 Hz), 3.74 (s, 12 H). 13C NMR (100 MHz, CDCl3): δ ppm: 156.8, 155.6, 

147.9, 145.7, 140.8, 140.7, 138.0, 133.4, 132.6, 127.5, 127.3, 126.5, 126.2, 126.1, 

125.8, 124.5, 124.2, 123.0, 121.6, 120.8, 120.0, 118.2, 114.5, 55.3, 54.3. APCI-HRMS 

m/z ([M+H]+): calcd: 1039.4111, found: 1039.4110. Anal. calcd for C73H54N2O5∙0.2 

CHCl3: C, 82.70; H, 5.14; N, 2.64. Found: C, 82.82; H, 5.06; N, 2.58. 

Synthesis of BTPA-6. BTPA-6 was synthesized following a procedure similar to 

that we used for BTPA-4, except that 4-bromophenol (400 mg, 0.62 mmol) was used 

instead of phenol. BTPA-6 was obtained as a yellow solid (450 mg, 0.29 mmol, 47%). 

1H NMR (400 MHz, CDCl3): δ ppm: 7.79 (d, 2 H, J = 8.2 Hz), 7.57 (d, 2 H, J = 8.0 

Hz), 7.41~7.27 (m, 10 H), 7.04 (d, 12 H, J = 9.2 Hz), 6.99 (d, 8 H, J = 8.8 Hz), 6.91 

(d, 4 H, J = 8.4 Hz), 6.80 (m, 20 H), 6.68 (s, 2 H), 3.78 (s, 12 H), 3.77 (s, 12 H). 13C 

NMR (100 MHz, CDCl3): δ ppm: 156.0, 155.8, 150.6, 148.1, 147.7, 140.9, 140.7, 

138.1, 136.1, 132.9, 132.5, 127.6, 127.2, 125.9, 125.3, 123.5, 120.9, 120.8, 120.3, 

117.2, 114.7, 55.5, 54.7. APCI-HRMS m/z ([M+2H]2+): calcd: 1546.6394, found: 

1546.6373. Anal. calcd for C105H84N4O9∙0.2 CHCl3: C, 78.92; H, 5.30; N, 3.49. Found: 

C, 78.93; H, 5.27; N, 3.49. 

Fabrication of PSCs. First, a cleaned FTO-substrate was coated with a thickness 

of 60 nm TiO2 compact layer (TiO2-CL). Then a mesoporous TiO2 film was deposited 

on the TiO2-CL coated substrate by spin coating (3000 rpm, 30s) from an ethanol 

solution of diluted TiO2 paste (30 nm particle Dyesol-30NRD, Dyesol) with a mass 

ratio of 1:4 followed by drying at 120 °C for 5 min and sintered for 510 °C for 40 min 

in air. After annealing, the mesoporous TiO2 (mp-TiO2) substrates were quickly 

transferred to a N2 glovebox at high temperature (above 100 °C). Subsequently, a 1.25 

M CH3NH3PbI3 perovskite precursor dimethyl sulfoxide solution, which was stirred at 

70 °C for 1 h, was deposited on the 60 °C heat-treated mp-TiO2 substrate by two 

consecutive spin coating steps at 1000 rpm for 10 s followed by 5000 rpm for 30 s. 

After starting the second spin-coating stage, 400 μL of chlorobenzene was dropped 

onto the spinning substrate at last 10 s. Then the substrate was heat-treated at 100 °C 

for 30 min on a hotplate.  
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The HTM solutions were then deposited on the individual perovskite films by spin-

coating and these solutions were prepared by the following details. HTMs were each 

dissolved in 1 mL chlorobenzene (20 mM for BTPA-4, BTPA-5, and BTPA-6) or 

spiro-OMeTAD (60 mM) with 4-tert-butylpyridine (t-BP, 24 μL) and a certain amount 

of bis(trifluoromethylsulfonyl)imide lithium salt (LiTFSI). For BTPA-4, BTPA-5, and 

BTPA-6, 0.032 mM LiTFSI acetonitrile solution (17.5 μL) was used, while for Spiro-

OMeTAD, 0.043 mM LiTFSI acetonitrile solution (72 μL) was used. The spin-coating 

process was carried out at 4000 rpm for 30 s. All the hole conducting materials were 

spin-coated on CH3NH3PbI3/mp-TiO2/TiO2-CL/FTO. Finally, 100 nm thickness gold 

was deposited by thermal evaporation under vacuum to complete the fabrication of the 

solar cells. The active areas of all the cells were 0.35 cm2. 

5.3 Results and Discussion 

5.3.1 Optical Property 

 

Figure 5-2. UV−Vis absorption spectra of BTPA-4, BTPA-5, and BTPA-6 in CH2Cl2 

solution (2.0×10−5 mol L−1). Inset shows their normalized photoluminescence spectra 

in CH2Cl2 solution. 

The UV-Vis absorption spectra of BTPA-4, BTPA-5, and BTPA-6 in CH2Cl2 

solution along with their normalized photoluminescence (PL) spectra are shown in 
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Figure 5-2 and the relevant data are summarized in Table 5-2. The π-π* absorption 

bands for BTPA-4, BTPA-5, and BTPA-6 are observed at 384 nm, 385 nm, and 356 

nm, respectively. BTPA-5 with additional benzo groups, compared to BTPA-4, shows 

only slight changes in absorption wavelengths but exhibited a significant increase in 

the absorption coefficients. Although BTPA-6 shows a blue-shifted absorption peak 

compared to BTPA-4 and BTPA-5, there is another shoulder with lower molar 

extinction coefficient for BTPA-6 at the same peak position for BTPA-4 and BTPA-

5. These observations well agreed with the calculated results (TDDFT, B3LYP/6-31G), 

which showed that the excitation energies from the HOMO to the LUMO were 410 

nm for BTPA-4, 411 nm for BTPA-5, and 407 nm for BTPA-6, with the oscillator 

strengths about 1.5. Additionally, these three HTMs possess the similar absorption 

edges and PL spectra (478 nm for BTPA-4, 479 nm for BTPA-5, 473 nm for BTPA-

6), which implies small influences of the structural variations of the SFX core on the 

singlet excited state energy levels. 

Table 5-2. The photochemical and electrochemical properties of the three HTMs. 

a HOMO potential vs vacuum was obtained from HOMO = – 4.5 – Eox; 
b E0-0 was 

calculated from the intersection of the normalized absorption and florescence spectra; 

c LUMO potential was obtained from: LUMO = HOMO + E0-0; [159-160, 200] d 

Pristine HTM without doping. 

Materials 
EHOMO  

(eV vs vacuum) 
a 

E0-0 (eV) b 
ELUMO  

(eV vs vacuum) c 

Conductivity 

(S cm-1) d 

BTPA-4 -5.35 2.90 -2.45 1.49 × 10-4 

BTPA-5 -5.37 2.89 -2.48 6.42 × 10-5 

BTPA-6 -5.34 2.91 -2.43 5.60 × 10-5 
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5.3.2 Electrochemical Properties 

 

Figure 5-3. Energy levels of the HTMs. (a) Cyclic voltammograms of BTPA-4, 

BTPA-5, and BTPA-6 in CH2Cl2 containing 0.1 M TBAPF6; (b) Energy diagram of 

CH3NH3PbI3 perovskite solar cell with various HTMs. 

To investigate their redox property, cyclic voltammetry was carried out in CH2Cl2 

solution. The voltammetry curves are shown in Figure 5-3a and the relevant data are 

summarized in Table 5-2. The HOMO energy levels of these three HTMs were 

determined on the basis of the following equation: EHOMO = −4.5 − E°(S+/S) (eV),[158] 

where E°(S+/S) is the first oxidation potential value vs SHE (standard hydrogen 

electrode). Their E°(S+/S) are 0.85 V for BTPA-4, 0.87 V for BTPA-5, and 0.84 V for 

BTPA-6, respectively. All the three materials show rather similar HOMO energy 

levels to each other, with -5.35 eV, -5.37 eV, and -5.34 eV for BTPA-4, BTPA-5, and 

BTPA-6, respectively. Figure 3b shows the energy level diagram of all the components 

in PSCs. The HOMO energy levels of our three HTMs are located above the valence-

band level of the perovskite CH3NH3PbI3 (−5.44 eV [201]) as can be seen by the band 

alignment, and thus have matched energy levels for CH3NH3PbI3 PSCs with TiO2 as 

the electron transport layer. 

5.3.3 Water Contact Angle 
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Figure 5-4. Water contact angles of BTPA-4, BTPA-5, and BTPA-6 coated films on 

glass. 

It has been known that perovskite materials are easily decomposed by humidity due 

to the hygroscopic ammonium salts.[202-203] HTMs also play an important role of 

preventing water penetration into the surface of perovskite material and thus it is 

valuable to investigate water contact angles of HTMs. As shown in Figure 5-4, the 

water contact angles of the HTM-coated films were 76° for BTPA-4, 75° for BTPA-5, 

and 73° for BTPA-6. In comparison with reported 70° for Spiro-OMeTAD,[203] these 

three HTMs show gently higher hydrophobic properties, which may enhance their 

perovskite solar cell stabilities.  

5.3.4 Device Performance of PSCs 

 

Figure 5-5. Device performance of PSCs based on BTPA-4, BTPA-5, BTPA-6, and 

Spiro-OMeTAD in the forward scan (solid line) and in the reverse scan (dashed line 

for BTPA-6). (a) Current density-voltage curves, (b) IPCE curves 

Then we fabricated PSCs with BTPA-4, BTPA-5, or BTPA-6 and Spiro-OMeTAD 

for comparison as HTMs in the presence of dopants including LiTFSI and t-BP. The 

addition of these dopants has shown mixed effects on the overall performance of PSCs. 

Doping the HTMs with LiTFSI promote ingression of oxygen which eventually leads 

to better hole extraction due to their deliquescent behaviour.[193] However, to control 

the amount of oxidized Spiro-OMeTAD via addition of LiTFSI has yet remained as a 

challenge for consistent results.[204] Thereby we have used a low molar concentration 

of LiTFSI in our HTMs during the fabrication of PSCs. The corresponding 
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photovoltaic performances of PSCs measured under AM1.5, 100 mW cm-2 are 

collected in Table 5-3. Figure 5-5 showed the current density–voltage (J–V) 

characteristics obtained using these HTMs with the reverse or forward scans under 100 

mW cm-2 (AM1.5G) solar illumination. The device with BTPA-6 possesses a short-

circuit current density (Jsc) of 20.57 mA cm-2, an open-circuit voltage (Voc) of 978 mV, 

and a fill factor (FF) of 0.575, yielding PCE of 11.57% for the forward scan and 20.61 

mA cm-2, 1036 mV, 0.647, 13.81% in the reverse scan, respectively. Small differences 

were obtained between the forward and reverse scans in Jsc while a little larger 

difference was observed in Voc and FF values. The standard Spiro-OMeTAD-based 

PSC was fabricated in similar condition (without overnight storage in low humidity) 

showed a PCE of 13.25% with a Jsc of 19.50 mA cm-2, a Voc of 1007 mV, and FF of 

0.674. The incident photon-to-current conversion efficiency (IPCE) spectra of these 

solar cell devices as a function of wavelength are shown in Figure 5-5b. BTPA-4 based 

PSC showed IPCE of 80% over the visible region and >70% in the 400 nm-470nm 

range. BTPA-5 showed IPCE of 80% within 530nm to 800nm region. It is noticed that 

BTPA-6 exhibits the best IPCE value particularly in the 500–800 nm range, which was 

higher than the Spiro-OMeTAD based PSC in the same wavelength and in good 

accordance with the largest observed Jsc. 

Table 5-3. The PSC parameters of BTPA-4, BTPA-5, BTPA-6, and Spiro-OMeTAD. 

HTM 
Jsc  

(mA cm-2) 
Voc (V) FF PCE (%) 

Scan 

direction 

BTPA-4 18.91 0.946 0.515 9.21 forward 

BTPA-5 18.70 0.959 0.630 11.30 forward 

BTPA-6 

20.57 0.978 0.575 11.57 forward 

20.61 1.036 0.647 13.81 reverse 

Spiro-

OMeTAD 
19.50 1.007 0.674 13.25 forward 

 

The Nyquist plots for three PSC devices with one of BTPA-4, BTPA-5, and BTPA-

6 as the HTMs as well as the standard Spiro-OMeTAD PSC device under a bias 

potential ranging from 0 to 900 mV in the dark with the frequency range from 1 M Hz 
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to 1 Hz are given in Figures 5-6a–d. Approximately three interfacial processes with 

different time constants can be extracted from the EIS spectra. These processes are, in 

the order of increasing frequency ranges, a process which is associated with slow 

dynamics possibly related to the hysteresis behaviors in the perovskite,[205] the charge 

recombination at the TiO2/perovskite/HTM interface modeled by a recombination 

resistance (Rrec) in parallel with a chemical capacitance (Crec), and the charge transfer 

at the HTM/Au interface modeled by a resistance (RHTM) in parallel with a capacitance 

(CHTM).[206] We have fitted the latter two processes in addition to the series resistance 

Rs with the equivalent circuit shown in Figure 5-6g. The fitted Rs values were found to 

be in the order of BTPA-4 > BTPA-6 > BTPA-5 > Spiro-OMeTAD, which was in 

accord with the order of FF of the respective devices in the forward scan. As shown 

in Figures 5-6a–d), it is noticed that the arcs representing the slow processes at low 

frequency ranges and the recombination at medium frequency ranges markedly 

decrease with increasing bias from 0 V to 0.9 V due to the gradual elevation of the 

Fermi level of mesoscopic TiO2 and the enhancement of recombination. This trend is 

manifested in the decreasing Rrec with increasing bias voltages, as shown in Figure 5-

6e. At the same forward bias voltage, the order of the recombination resistance was 

found to be in the order of BTPA-4 < BTPA-5 < BTPA-6 < Spiro-OMeTAD, 

indicating that the electron blocking capability of the HTM is in this order. This is also 

apparent from the Nyquist plots of PSCs with different HTMs at the same 0.8 V bias. 

This trend is in good agreement with the Voc trend of their corresponding solar cells in 

the forward scan as shown in Table 5-3. 
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Figure 5-6. Electrochemical impedance spectroscopy for PSC devices with different 

HTMs measured at different bias potentials in dark conditions. Nyquist plots for PSCs 

with (a) BTPA-4, (b) BTPA-5, (c) BTPA-6, (d) Spiro-OMeTAD. (e) Dependence of 

the fitted charge transfer resistance (Rrec) on the bias potentials from 0 V to 0.9 V. (f) 

Comparison of different HTMs at the same bias potential of 800 mV; (g) Equivalent 

circuit model. 
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Figure 5-7. The long–term stability of the PSCs based on BTPA-4, BTAP-5, BTPA-

6, and Spiro-OMeTAD. Data were obtained by the reverse scan. 
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The long-term stability is also a vital issue for PSCs. We investigate the stability of 

the PSC devices based on BTPA-4, BTPA-5, BTPA-6, and the standard Spiro-

OMeTAD, which were kept in the dark with the humidity of 25%. The PSCs were 

measured over a period of 10 days to observe their performances in the long run. After 

one day, the solar cell efficiencies for these four HTMs were significantly increased 

and after that day, the device performances were declined as the aging time increased, 

which may be ascribed to the slow infiltration of water from air.[207] The highest 

PCEs in the reverse scan at the second day were 13.2% for BTPA-4, 14.1% for BTPA-

5, 14.4% for BTPA-6, and 15.0% for Spiro-OMeTAD, respectively. The respective 

PCEs became 10.7%, 12.4%, 10.3%, and 10.5%. It is remarkable that the PSC with 

BTPA-5 exhibited a better PCE than the cells with the other HTMs, even exceeding a 

cell with Spiro-OMeTAD by a margin as large as 2%. Furthermore, the cells with 

BTPA-4 and BTPA-6 showed comparable efficiencies with a cell with Spiro-

OMeTAD after 10 days. Here a conclusion can be made that BTPA-4, BTPA-5, and 

BTPA-6 based devices showed better long-term stability than Spiro-OMeTAD based 

one, which is in good agreement with the result of water contact angle test. 

5.4 Conclusions 

In conclusion, we have developed two novels small molecular HTMs, BTPA-5 and 

BTPA-6, by employing the SFX core as the central bridge in triarylamine-based 

materials. In addition, we have also applied analogous BTPA-4, which we have 

developed for CQDSCs, as a HTM in PSCs for the first time. These there HTMs 

exhibit characteristics of easy synthesis, low-cost, well-matched HOMO level 

alignment, and high solubility in commonly used organic solvents, which makes them 

suitable for CH3NH3PbI3-based PSCs. We have then investigated the effect of the 

molecular structural modification of these three HTMs on their optical properties, 

electrochemical properties, water contact angles as well as device performances in 

detail. Among them, the BTPA-6-based solar cell device yielded a PCE of 11.57% in 

the forward scan with the best Jsc and Voc values due to the highest IPCE value in the 

visible region and the largest recombination resistance, which was comparable to the 

cell fabricated with the standard Spiro-OMeTAD. Notably, the SFX derivatives 
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(BTPA-4, BTPA-5, and BTPA-6) based devices showed superior long-term stability 

than Spiro-OMeTAD based one. Particularly, the present results highlight BTPA-6 

with its low cost and facile synthesis as highly competitive a HTMs for future large-

scale application in PSCs. 

The originalities of this work are: (1) low cost hole transport materials BTPA-5 and 

BTPA-6 were synthesized; (2) BTPA-4, BTPA-5, and BTPA-6 were used to be as hole 

transport layer in perovskite for the first time. 
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Chapter 6: Summary and Prospective 

Long-term air-stable and high efficiency PbSe CQDSCs were obtained by using 

TBAI as ligand in solid state ligand-exchange process, and it is realized that the whole 

processes: from PbSe QDs washing step to PbSe CQDSCs fabrication, storage and 

measurements are all in ambient atmosphere. In addition, ligand-dependent 

performance of PbSe QD films and CQDSCs were systematically investigated. We 

confirmed that TBAI treatment can produce more air-stable and higher charge transfer 

rate PbSe QD films than mercapto organic short ligands (EDT and MPA). Due to less 

surface trap density and higher charge transfer rate in the solar cells, the PCE of TBAI 

treated large size PbSe CQDSCs is obtained as high as 3.53%. The mechanism behind 

this achievement was explored. It was informed that the TBAI treatment significantly 

reduced the intrinsic hole trapping-assisted recombination in PbSe layer and improved 

the effective carrier lifetime in the PbSe CQDSCs.  

BTPA-4 as hole-selective layer can effectively reduce the interfacial charge 

recombination at PbS-QDs/Au electrode interface and lead to the enhanced Voc. It was 

observed that the BTPA-4 significantly reduced the interfacial charge recombination, 

increasing consequently the effective carrier lifetime in PbS CQDSCs. Due to the 

diminished interfacial recombination in the solar cells, the PCE of PbS CQDSCs with 

BTPA-4 is obtained as high as 5.55%, which is an increase by about 15% comparing 

with the cell without BTPA-4 and maintains it in the long-term period (over 100 days).  

Three hole transport materials BTPA-4, BTPA-5 and BTPA-6, by employing the 

SFX core as the central bridge in triarylamine-based materials were introduced into 

PSCs. These three HTMs exhibit characteristics of easy synthesis, low-cost, well-

matched HOMO level alignment, and high solubility in commonly used organic 

solvents, which makes them suitable for CH3NH3PbI3-based PSCs. We have then 

investigated the effect of the molecular structural modification of these three HTMs 

on their optical properties, electrochemical properties, water contact angles as well as 

device performances in detail. Among them, the BTPA-6-based PSC device yielded a 

PCE of 11.57% in the forward scan with the best Jsc and Voc values due to the highest 

IPCE value in the visible region and the largest recombination resistance, which was 
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comparable to the cell fabricated with the standard Spiro-OMeTAD. 

For CQDSCs, reducing the surface defects of QDs and the interfacial recombination 

in solar cells are still the most effective way to get high performance CQDSCs. Finding 

a new efficient surface ligand, developing new QDs deposition technology and 

treatment method, effectively using the hot carrier of QD will become the future 

development direction. For PSCs, getting stable and less toxic devices are the most 

important issues. Developing inorganic perovskite materials and perovskite quantum 

dot will become the future development direction. Moreover, charge dynamics 

investigation of CQDSCs and PSCs will also take a large part and play an important 

role in the future development.  
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