
A Study on Top-down Search

Algorithms for m-Closest Keywords

Queries Problem over Spatial Web

Yuan Qiu

THE UNIVERSITY OF ELECTRO-COMMUNICATIONS

March 2017



A Study on Top-down Search

Algorithms for m-Closest Keywords

Queries Problem over Spatial Web

Yuan Qiu

Submitted to the Graduate School of Information Systems in partial

fulfillment of the requirements for the degree of

Doctor of Engineering

THE UNIVERSITY OF ELECTRO-COMMUNICATIONS

March 2017





A Study on Top-down Search

Algorithms for m-Closest Keywords

Queries Problem over Spatial Web

APPROVED BY SUPERVISORY COMMITTEE:

CHAIRPERSON:PROF.Tadashi OHMORI

MEMBER:PROF.Yasuhiro MINAMI

MEMBER:PROF.Hiroyoshi MORITA

MEMBER:AP.Hisashi KOGA

MEMBER:AP.Yasuyuki TAHARA

MEMBER:AP.Takahiko SHINTANI





Copyright

By

Yuan Qiu

2017





Abstract

This thesis addresses the problem of m-closest keywords queries (mCK queries) over spatial

web objects that contain descriptive texts and spatial information. The mCK query is a

problem to find the optimal set of records in the sense that they are the spatially-closest

records that satisfy m user-given keywords in their texts. The mCK query can be widely

used in various applications to find the place of user’s interest.

Generally, top-down search techniques using tree-style data structures are appropriate

for finding optimal results of queries over spatial datasets. Thus in order to solve the mCK

query problem, a previous study of NUS group assumed a specialized R*-tree (called bR*-

tree) to store all records and proposed a top-down approach which uses an Apriori-based

node-set enumeration in top-down process. However this assumption of prepared bR*-tree

is not applicable to practical spatial web datasets, and the pruning ability of Apriori-based

enumeration is highly dependent on the data distribution.

In this thesis, we do not expect any prepared data-partitioning, but assume that we

create a grid partitioning from necessary data only when an mCK query is given. Under this

assumption, we propose a new search strategy termed Diameter Candidate Check (DCC),

which can find a smaller node-set at an earlier stage of search so that it can reduce search space

more efficiently. According to DCC search strategy, we firstly employ an implementation of

DCC strategy in a nested loop search algorithm (called DCC-NL). Next, we improve the

DCC-NL in a recursive way (called RDCC). RDCC can afford a more reasonable priority

order of node-set enumeration. We also uses a tight lower bound to improve pruning ability

in RDCC.

RDCC performs well in a wide variey of data distributions, but it has still deficiency when

one data-point has many query keywords and numerous node-sets are generated. Hence in

order to avoid the generation of node-sets which is an unstable factor of search efficiency,

we propose another different top-down search approach called Pairwise Expansion. Finally,

we discuss some optimization techniques to enhance Pairwise Expansion approach. We first

discuss the index structure in the Pairwise Expansion approach, and try to use an on-the-fly



kd-tree to reduce building cost in the query process. Also a new lower bound and an upper

bound are employed for more powerful pruning in Pairwise Expansion.

We evaluate these approaches by using both real datasets and synthetic datasets for dif-

ferent data distributions, including 1.6 million of Flickr photo data. The result shows that

DCC strategy can provide more stable search performance than the Apriori-based approach.

And the Pairwise Expansion approach enhanced with lower/upper bounds, has more advan-

tages over those algorithms having node-set generation, and is applicable for real spatial web

data.



Contents

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Description about mCK queries problem . . . . . . . . . . . . . . . . . . . . . 3

1.3 Objective of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Related Works and Problem Setting 7

2.1 Spatial web data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Spatial keyword queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Spatial indices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.1 R-tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.2 Grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.3 Specialized indices for spatial keyword queries . . . . . . . . . . . . . . 12

2.4 mCK queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4.2 Zhang’s Apriori-based top-down search strategy . . . . . . . . . . . . . 15

2.4.3 Guo’s approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.5 Our motivation based on top-down approach . . . . . . . . . . . . . . . . . . . 21

3 DCC-NL 23

3.1 Problem setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1.1 Objective of this chapter . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1.2 Zhang’s Apriori-based method on bR*-tree . . . . . . . . . . . . . . . . 23

i



ii CONTENTS

3.1.3 Our setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Diameter Candidate Check (DCC) . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.1 Basic idea of DCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.2 Technical terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2.3 DCC in a nested loop method . . . . . . . . . . . . . . . . . . . . . . . 30

3.3 Further pruning rules using MaxMindist . . . . . . . . . . . . . . . . . . . . . 34

3.4 Experimental evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4.1 Experimental set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4.2 Evaluation of Synthetic Datasets . . . . . . . . . . . . . . . . . . . . . 38

3.4.3 Evaluation of Flickr Datasets . . . . . . . . . . . . . . . . . . . . . . . 39

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4 Recursive DCC 43

4.1 Optimization of DCC-NL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.1.1 Objective of this chapter . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.1.2 Policy to optimize DCC-NL . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2 Review of DCC-NL search approach . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2.1 Description of DCC-NL . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2.2 The problems of DCC-NL . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3 Recursive DCC and tight lower bound . . . . . . . . . . . . . . . . . . . . . . 49

4.3.1 Priority Search Order of Recursive DCC . . . . . . . . . . . . . . . . . 49

4.3.2 Tight lower bound for pruning . . . . . . . . . . . . . . . . . . . . . . . 51

4.3.3 Object generation in leaf node-set . . . . . . . . . . . . . . . . . . . . . 52

4.4 Evaluation of RDCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5 Pairwise Expansion 57

5.1 New Top-down Search Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.1.1 Objective of this chapter . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.1.2 Basic idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.2 New setting of an On-the-fly quad-tree . . . . . . . . . . . . . . . . . . . . . . 58



CONTENTS iii

5.3 Pairwise Expansion method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.3.2 Stage1: Top-down Generation of Object-Pair . . . . . . . . . . . . . . . 60

5.3.3 Stage2: Check of Object-Pair . . . . . . . . . . . . . . . . . . . . . . . 64

5.4 Preliminary evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.4.1 Experimental Set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.4.2 Experimental evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.4.3 Further tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6 EnhancedPE 77

6.1 Remaining issues of the naive PE method . . . . . . . . . . . . . . . . . . . . 77

6.2 Discussion about data structure . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.2.1 Review of on-the-fly quad-tree . . . . . . . . . . . . . . . . . . . . . . . 78

6.2.2 Balance tree: on-the-fly kd-tree . . . . . . . . . . . . . . . . . . . . . . 82

6.3 Convex-hull as new lower/upper bounds in Pairwise Expansion . . . . . . . . . 88

6.3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.3.2 Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.3.3 New lower bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.3.4 New upper bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.4.1 Performance comparison between quad-tree and QSkd-tree . . . . . . . 95

6.4.2 Performance comparison between PE and EnhancedPE . . . . . . . . . 97

6.4.3 Memory consumption test . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7 Conclusions and Future Work 105





Chapter 1

Introduction

1.1 Background

Nowadays massive web data are attached with geographic location information such as Twit-

ter [14] and Flickr [15]. This type of web data associated with both textual and geographic

attributes is called a spatial web object (or a geo-textual web object). For example, Figure

1.1 shows a photo data from website of Flickr [15], which is an online photo-sharing service.

In this figure, we can see some other information beside the photo itself. There is a passage

of descriptive text about the photo in the box area. This can be regarded as the textual

attributes of this data. And it also contains a photographed location (displayed on the map)

in the ellipse area, which can be regarded as the geographic attributes of it. Thus this photo

data is a typical spatial web object.

To these spatial web objects, users are not only interested in the contents of them, but

also increasingly consider their spatial aspects. Therefore, retrieval of geographic information

by using spatial web objects (denoted as objects, in short) has been studied extensively in

recent years [1, 3, 18, 19, 20, 25, 22]. The common way of retrieval is called Spatial Keyword

Queries [23]. Spatial keyword queries usually allow users to enter several keywords, and then

return object(s) that best match these keywords from both textual and spatial perspectives.

As a simple example of spatial keyword queries, Google Map provides a service that

users can find the spatial web objects by typing in some keywords. Figure 1.2 shows a search

instance when we input ’coffee’ as a query keyword, then the objects which cover the user-

1



2 CHAPTER 1. INTRODUCTION

given keywords are returned and shown on the map based on their geographic information.

Figure 1.1: An example of Flickr data

Figure 1.2: Spatial keyword search on Google map



1.2. DESCRIPTION ABOUT MCK QUERIES PROBLEM 3

However, in some cases, there may be no single object that can cover all the user-given

keywords. In such circumstances, finding a group of objects to collectively match all query

keywords had been considered in some researches of spatial keyword queries [1, 3, 7, 36, 38].

In this thesis, we focus on a typical kind of such spatial keyword queries problem, called

m-Closest Keywords(mCK) Queries, which is proposed by Zhang et al [1] in 2009.

As an introductory example, consider a database D of spatial web objects, and suppose

that a user gives m keywords as a query Q. Then, an mCK query under Q, is a query to

find the ’optimal’ group of objects Oopt from D, in the meaning that:

(i) each keyword in Q is satisfied by textual attributes of some object in Oopt, and

(ii)the objects in Oopt are, among all groups of objects that satisfy the condition (i), posi-

tioned in the spatially-closest manner.

Intuitively, the ’optimal’ group of objects above is regarded as the best and smallest

spatial area that satisfy all keywords of Q.

Next section will describe the mCK query in details.

1.2 Description about mCK queries problem

In the description of [1], given m keywords , an mCK query aims at finding a group of the

spatially-closest objects that match these m keywords. The group of objects is called an

’object-set’.

Intuitively, the optimal object-set Oopt of an mCK query must satisfy two conditions

about both textuality and spatiality as follow:

Condition 1: All the user-given keywords must be contained in the text collection of Oopt.

Condition 2: Let S be the set of all the object-sets that satisfy the Condition 1. Then the

objects in Oopt must be placed together in the spatially closest positions, among all

cases of S.

Condition 2 must be rewritten formally. That is, in order to formally measure the closeness

of objects in an object-set O, Zhang et al proposed a diameter of O, which is defined as the



4 CHAPTER 1. INTRODUCTION

maximum distance between any two objects in O. If the diameter of O is small, then all the

objects in O are positioned more closely. Therefore, the Condition 2 is formalized by saying

that the diameter of Oopt must be the smallest among those of all object-sets in S.

We need to explain the above description by showing a typical example. As a specific

example of mCK query, suppose that there are 15 objects o1 to o15 in a dataset D. Figure

1.3 shows the spatial distributions of these objects on Google map. We can see these objects

are located near the Chofu station, and each object is associated with one of three keywords

: ”coffee” (6 objects), ”shopping” (5 objects) or ”convenience store” (4 objects). If an user

wants to find a place which contains these three keywords, then the user can use an mCK

query for D by issuing Q = {coffee, shopping, convenience store} as query keywords. There

are 6× 5× 4 = 120 combinational object-sets that can satisfy Q. And we can see the object-

set {o4, o7, o8} has the smallest diameter among all the 120 object-sets. Thus {o4, o7, o8} will

be returned to the user. The diameter of the object-set {o4, o7, o8} is the distance between

o4 and o8.

Typically, mCK queries can be used in various location-based services like recommenda-

tion of tourist attractions or real estate to match user’s interests. For instance, mCK query

can be applied to the photo data of Flickr. By means of mCK queries we can find a set

of photos about all keywords we are interested in, and the locations of these photos will be

gathered in a point or an small area, which can be used as recommended information for

tourist or others.

1.3 Objective of the thesis

To find the optimal solution of an mCK query, we need to compare all the object-sets. And

each object-set is a combination of some objects from a spatial web dataset. Thus suppose

there are N objects in the dataset. Then, the number of object-sets is up to O(Nm). Hence

the cost of comparison is expensive. Generally, a top-down search technique using tree-style

data structures is appropriate for finding optimal results of queries over spatial datasets, and

has been used in various spatial query problems such as nearest neighbor search [24] and

multiway spatial join [25, 26], etc. Thus, for the mCK query problem, the study of Zhang et



1.4. ORGANIZATION 5

Figure 1.3: An example of mCK query

al [1] assumed a specialized R*-tree (called bR*-tree) to store all records and proposed a top-

down approach which uses an Apriori-based enumeration of node sets in top-down process.

However there are still some questions to be figured out, we think.

Therefore, our main objective of this thesis is to improve the previous work of top-down

search approach for mCK queries with respect to the design of data index and search strategy.

We analyze the factors which restrict the search efficiency by clarifying our unique questions

to existing methods, and propose four new, more efficient, top-down search methods to solve

this problem.

1.4 Organization

The organization of thesis is the following.



6 CHAPTER 1. INTRODUCTION

Chapter 2 reviews related works of mCK queries problem. This chapter first introduces

spatial keyword queries over geo-textual web. Then details of mCK queries problem are

described, including problem setting and preceding techniques. After that we describe our

motivation of this thesis.

Chapter 3 proposes a new search strategy called Diameter Candidate Check(DCC) and

an on-the-fly data structure for those questions in Chapter 2. This chapter first outlines

basic ideas of DCC strategy. Then a nested loop method using DCC strategy, which is called

DCC-NL, is proposed.

Chapter 4 enhances the DCC strategy in a recursive way, which is called RDCC. Moreover,

this chapter also introduces an optimized technique incorporated with RDCC method , which

uses a new tighter lower bound to improve pruning ability,.

Chapter 5 proposes a new top-down search way Pairwise Expansion(PE). This chapter

first discusses limitations of the exploration policy in the preceding chapters, which needs to

generate node-sets in top-down process. Then detailed description of PE without node-set

generation is given.

Chapter 6 improves PE by using a convex-hull based lower/upper bounds. And a different

data structure on-the-fly kd-tree will be discussed in this chapter.

Chapter 7 concludes this thesis.



Chapter 2

Related Works and Problem Setting

2.1 Spatial web data

Spatial web data associated with both geographic location and text information can be found

everywhere in our daily life. For example, a lot of online social media (or social networking

services) such as Twitter and Facebook enable users to post messages with their publishing

locations. Figure 2.1 shows a ’tweet’ data from website of Twitter [14]. In this ’tweet’ data,

there is a short message with some characters as text information. In addition to this, it

also contains a location information where the message is published. Besides, a ’post’ data

of Facebook, which is shown in Figure 2.2, also allow users to attach a geotag to the photos

as well as some textual tags. In addition, the spatial data for business or PoIs (points of

interests) with a name or textual description such as hotels or restaurants also increasingly

appeared in web. According to official home page of Google Place API [29], Google declared

that it has more than 100 million specific places with detailed information in Google’s ’Places

API Web Service’ [29]. Therefore the spatial web data becomes a very important part in the

web.

As a formal description, according to [9], a spatial web data is described as o : 〈ψ, λ〉,

where o.ψ is the text property of o in the form of a text message or tags, and o.λ is the

location of o by using geographic coordinates. o is denoted by an object from here on.

At the same time, due to these increased sources of spatial data, various web applications

that satisfy both contents and spatial requirements are provided to support different services.

7



8 CHAPTER 2. RELATED WORKS AND PROBLEM SETTING

For example, we can search for a hotel from online hotel reservation services such as ”Jalan”

by using a map view (in Figure 2.3). It is more convenient for us to understand the details of

the hotels including their locations and other services information. On the other hand, there

is a large demand for spatial data on the Web. We can refer to the report in the article of

[30] which says ”50 percent of mobile users are most likely to visit shops after conducting a

local search, while this number of consumers on tablets or computers is 34 percent.” Thus

queries with a spatial intent take up a large proportion in search engines.

Consequently, retrieval about these spatial web data brings us new issues and challenges.

Figure 2.1: An example of tweet

Figure 2.2: An example of Facebook data



2.2. SPATIAL KEYWORD QUERIES 9

Figure 2.3: Spatial search on Jalan

2.2 Spatial keyword queries

A spatial keyword query is a general concept that allows users to issue some keywords of

interest to find the spatial object(s) which can best match their needs about textuality and

spatiality.

There ara many specific spatial keyword queries for different needs of users [31, 40, 6,

41, 42, 43]. Some tutorials categorized these queries according to their targets of retrieval

[2, 23, 5]. Here we introduce some typical queries to review these spatial keyword query

problems based on the tutorial of [5].

Early researches of spatial keyword queries target one individual object or a list of ranked

objects in a spatial web dataset [31, 32, 33, 34, 35]. They are generalized as standard queries

in [5]. As an typical standard queries, Cong et al proposed a Top-k kNN query(TkQ) [32].

In the TkQ problem, given a query q with a location and a set of keywords, each object o

in dataset can be evaluated by two arguments: location proximity and text relevancy [32].

The location proximity of o is determined by the Euclidian distance between o and location

of q, and text relevancy of o is computed using the language model of q’s keywords. Then

Cong et al used a linear score function of location proximity and text relevancy to give a

score to each object. Finally k objects with the highest scores are returned.



10 CHAPTER 2. RELATED WORKS AND PROBLEM SETTING

The standard queries are applicable to the cases of finding several objects, each of which

can independently meet user’s needs. A good example is to find some PoIs in location services

by using accessible keywords, such as ”comfortable hotel” or ”sushi restaurant”, which are

easy to concentrate on one object.

However, in some other cases, the standard queries may not be appropriate. Considering

the case that an user may issue the keywords ”station, school, supermarket” to look for

a real estate, these keywords are difficult to be covered by an exact place. With a view to

these cases, finding a group of objects to match query keywords had been proposed in the

researches of spatial keyword queries [1, 10, 9, 3, 7, 4, 36, 37, 38, 39].

One of these researches is the subject of this thesis, m-Closest Keywords(mCK) queries.

An mCK query retrieves a set of objects Oopt which covers all the query keywords and each of

them should be close to each other [1]. This query uses a diameter of an object-set O, which

is the maximum Euclidean distance between any two objects in O to measure the closeness

of O, and minimize the diameter.

Another typical query is so-called collective spatial keyword query that proposed by

Cao et al [3]. Similar as the mCK query, a collective spatial keyword query also retrieves

the optimal object-set Oopt that must cover all the user-given query keywords. However this

query does not only consider the inner closeness of Oopt, but still need to take into account the

closeness between Oopt and query location. Thus for each object-set O, Cao et al proposed a

linear function of these two closenesses to calculate the ’cost’ of O, and minimized this cost.

Actually the collective spatial keyword query is an extension of the mCK query, whose result

is the optimal group of objects with a small diameter, and near to the query location.

After that, some other queries to find optimal group(s) of objects such as Top-k Groups

Queries [37] are proposed [4, 36, 38, 39]. Most of these queries measure closeness of object-set

in the same manner as the mCK query. Thus mCK query problem is important and worthy

of study.

Consequently, if the standard spatial keyword query is regarded as to find some positions

of interests (PoIs), then the retrieval of object group can be considered as finding a region

of interests, which may contain various individual PoIs. This can provide users with more

abundant quality results in practical applications.



2.3. SPATIAL INDICES 11

2.3 Spatial indices

A spatial index is a kind of organization of spatial data according to their locations. As

auxiliary spatial data structures, spatial indices are used to improve the speed and efficiency

of spatial queries associating with some specific query algorithms. There have been many

studies about spatial indices and a number of different types of spatial indices have been

proposed. Here we briefly describe two common types of them: R-tree and grid.

2.3.1 R-tree

An R-tree [48] is a height-balanced hierarchical data structure, which is an extension of B-

tree in the multi-dimensional spaces. It divides spatial objects by using minimum bounding

rectangles (MBRs). An MBR R is a ’region’, that means all the spatial objects belong to R

are included in the ’region’ of R, and the ’region’ is minimized. Each of MBR corresponds to

an node in R-tree. There are two kinds of nodes: internal nodes and leaf nodes. An internal

node of R-tree has some children nodes such that the MBRs of these children nodes must be

included in the MBR of it. A leaf node contains pointers to the spatial objects in its MBR.

Figure 2.4 shows an example of R-tree. R4 to R10 are leaf nodes. Each of them corre-

sponds with an MBR in the planar space, which tightly bounds some objects in it. R1 to

R3 are internal nodes, each of which contains some leaf nodes. R0 is the root node of this

R-tree. It is a specific internal node such that the MBR of R0 includes all the objects.

Figure 2.4: An example of R-tree



12 CHAPTER 2. RELATED WORKS AND PROBLEM SETTING

There are many variants of R-trees to improve the efficiency of R-tree such as R*-tree and

R+-tree, etc. R*-trees optimized the node-splitting method in order to reduce the overlap

of MBRs and number of children nodes. Thus it is one of the most widely used in various

spatial queries.

2.3.2 Grid

A grid index is a simple structure that divides spatial objects into some equal-sized square or

rectangular regions. Each region is called a cell. In some cases, spatial objects are not evenly

distributed, thus the cells with dense objects are often subdivided into sub cells until the

numbers of all the cells are less than a threshold (or capacity). This type of unbalanced and

multi-level grid index is called a hierarchical grid partitioning. Figure 2.5 shows an example

of hierarchical grid partitioning. In this figure, all the objects are assigned to 3× 3 = 9 cells.

If the capacity is set to 4, then the cell 1 needs to be subdivided into 9 cells again.

Figure 2.5: An example of grid

2.3.3 Specialized indices for spatial keyword queries

For a spatial web object, it has not only spatial but also the textual attributes. Thus, in

order to efficiently search these spatial web objects, a lot of new index technologies have

been proposed [46, 47, 1]. These indices often use inverted file or bitmap to index the textual



2.4. MCK QUERIES 13

attributes of objects, then combined them with R-tree or grid by using some combination

schemas for their geographic attributes. For example, Zhang et al proposed bR*-tree as index

structure for mCK queries. The bR*-tree uses R*-tree as a spatial index. And in each node

of R*-tree, a keyword bitmap is added to summarize the keywords in the node. Another

example of IR-tree, which is widely used in spatial keyword queries, combines R-tree and

inverted file in a seamless manner. It can simultaneously handle both the textual and spatial

aspects of the spatial web objects, thus the efficiency of query can be improved.

2.4 mCK queries

2.4.1 Definition

According to the original definition of [1, 9], the mCK query (m-closest keywords query) is

defined as follows:

[mCK query]: Given a spatial database of objects D = {o1, o2, ..., on} and a query with

m given keywords Q = k1, k2, ..., km, let O = {oi1, oi2, ..., oil}(⊆ D) be a set of objects, termed

an object-set. If an object-set O covers all the keywords of Q, (
∪

o∈O

o.ψ ⊇ Q), then we say

that O ’satisfies’ Q.

Let also diam(O) = max
ox,oy∈O

dist(ox, oy) (x 6= y) , where dist(ox, oy) is the distance between

ox and oy, be termed a diameter of O. Then, the mCK query is defined as a query to find

the object-set Oopt = {oi1, oi2, ..., oil} (l ≤ m) where Oopt has the smallest diameter among

all object-sets O that satisfy Q.

The mCK query aims to find the object-set Oopt such that Oopt satisfies query keywords Q

and the objects in Oopt should be closest to each other. In this definition, the diameter is used

to measure the closeness of an object-set. As an example, for the object-setO = {o1, o2, o3, o4}

in Figure 2.6, distance between o1 and o4 is the diameter of O.

Actually an object-setO can be regarded as a set of discrete points in the multi-dimensional

spaces, and we can use a convex hull of these points in O to represent the amount of space

occupied by O. It is intuitive that if the convex hull of O is small, then the objects in O are



14 CHAPTER 2. RELATED WORKS AND PROBLEM SETTING

Figure 2.6: Diameter of object-set

Figure 2.7: Diameter comparison

close to each other. Thus the diameter of convex hull (i.e., the diameter of object-set) is a

simple way that can be good at estimating the size of its occupied space. Compared with the

other measurement metrics such as area (or volume) size, using diameter can greatly simplify

the calculation procedure, especially in high-dimensional space. Therefore the diameter of

an object-set is well suited option to represent the its closeness, and this way is used in many

other spatial keyword queries which aim for a group of objects [3, 7, 4, 36, 37]. In Figure 2.7

, because the diameter of object-set O1 is less than object-set O2, we can see the objects in

O1 is closer to each other than O2.

In this thesis, the distance between two objects is the Euclidean distance.



2.4. MCK QUERIES 15

2.4.2 Zhang’s Apriori-based top-down search strategy

Generic strategy

Essentially themCK query can be classified as the problem that find the optimal solution from

possible solution space over spatial dataset. For this type of problems, a branch-and-bound

technique in a top-down process based on hierarchical data structure has been successful in

numerous spatial queries such as nearest neighbor query (NN query) [24], range query [27]

and spatial join [25, 26].

We briefly describe a typical branch-and-bound technique of top-down strategy as follow:

Step 1 (Initialization): Use a global variable χ∗ to represent the current optimal solution

of the spatial query and initialize χ∗ with +∞ or −∞.

Step 2 (Start): Start from the root node of the hierarchical data structure. Because the

optimal solution must exist in the region of root node, choose this region as current

solution space SC .

Step 3 (Check and Pruning): For current solution space SC , if it exists no better solu-

tion than χ∗ in SC , then prune the branch of SC . Otherwise, goto Step 4.

Step 4 (Branching): If SC is an internal-node, then divide SC into some partial regions

as candidate solution spaces by using its children nodes. Otherwise if SC is a leaf-node,

then enumerate all the solution χ in SC and compare with χ∗ for each χ: if χ is better

than χ∗, then update χ∗ with χ.

Step 5 (Selection of Candidate): Choose one from the candidate solution spaces as cur-

rent solution space SC , then return to Step 3.

Step 6 (Termination Test): Stop if there is no candidate solution spaces. Finally χ∗ is

the optimal solution.

Zhang’s approach

According to the above description, Zhang et al proposed a top-down exploration approach

taking advantage of a special R*-tree called bR*-tree [1](2009). The bR*-tree is an extension



16 CHAPTER 2. RELATED WORKS AND PROBLEM SETTING

of the index structure of R*-tree . Beside the node MBR of R*-tree, each node N in bR*-tree

is augmented with two additional information: keyword bitmap and keyword MBR.

• keyword bitmap: keyword bitmap is a bitmap that summarize the keywords in the

node N . Each bit bi shows that whether a keyword ki exists in N . If bi = 1, then

there exists at least one object associated with keyword ki in N . Otherwise, there is

no object of ki in N .

• keyword MBR: For each keyword ki, the keyword MBR of ki is the minimum bound

rectangle of all the objects in N that are associated with ki.

(a) Data distribution and bR*-tree (b) Search space tree

(c) Keyword bitmap and keyword MBR

Figure 2.8: An example of Apriori-Z

Figure 2.8(a) is an example of the bR*-tree for the objects associated with four keywords

A,B,C and D. In this bR*-tree, root node R0 has five children nodes R1 to R5. Each node

has an MBR which is tightly bound up with all objects in this node. Furthermore, keyword



2.4. MCK QUERIES 17

bitmap and keyword MBR are also attached in each node(Figure 2.8(c)). For example of

Figure 2.8(c), in node R2 the keyword bitmap = 1100 denotes that R2 contains objects only

associated with keyword A and B, not C and D. Accordingly, the keyword MBR of A and

B are the spatial bound of all the objects with keyword A and B, respectively.

Zhang et al used the bR*-tree to index all the objects and proposed a top-down search

approach based on this bR*-tree. Next we describe this top-down approach.

Different from the typical spatial queries such as NN queries or range queries, the result

of mCK query is a set of objects, thus the solution spaces are not confined in one node of

bR*-tree. For this reason, Zhang et al used a set of nodes, termed as a node-set, as a solution

space in the search process. That means for a solution (an object-set O) in a solution space

(a node-set N), each object of O must belong to one node of N and each node of N must

contain at least one object of O.

Therefore in the branching procedure of top-down process for the mCK query problem,

the solution space SC is divided into all the possible sub solution spaces (sub node-sets), each

of which is a combination of children nodes of SC . For example, Figure 2.8(b) is the search

space tree of the bR*-tree in Figure 2.8(a). In Figure 2.8(b), we can see each branch of the

root node R0 is a subset of {R1, R2, ..., R5} such as {R1, R2, R4}. Here the size of the node-set

is m at most, because an object-set is compose of at most m objects. In addition, these sub

node-sets are generated as an Apriori-style way which has been used for mining frequent

itemsets. Thus the enumeration of these sub node-sets follows the order from length-1 (one

MBR) to length-m (m MBRs). Due to this, we call Zhang’s top-down approach as Apriori-Z

approach.

Apriori-Z

In Apriori-Z, a global variable δ∗ is denoted as the current smallest diameter among the

object-sets explored so far. Then in the pruning procedure of top-down process, Zhang et al

proposed three pruning rules for a node-set N as follow to decide whether it can be pruned.

Pruning rule 1: If N does not contain all the query keywords, then there exists no object-

set that contains all the keywords in N . Thus N can be pruned directly.



18 CHAPTER 2. RELATED WORKS AND PROBLEM SETTING

Pruning rule 2: If there exists two nodes ni, nj ∈ N such that the minimum distance

between ni and nj is greater than δ∗, then N can be pruned. That is because the

minimum distance between ni and nj is an lower bound of distances between any two

objects oi and oj (oi ∈ ni, oj ∈ nj). Hence it is also the lower bound of the diameters

of possible object-sets. If this lower bound is greater than δ∗, there exists no object-set

with diameter than δ∗ in N .

Pruning rule 3: If the distance between two keywords are greater than δ∗, which means

for any object oi associated with keyword ki and oj associated with keyword kj in N , we

can always find that dist(oi, oj) is greater than δ∗, then N can be pruned. The keyword

MBRs in each node of N are used to calculate the distances between two keywords.

In the selecting procedure of top-down process, Zhang et al traversed the search space

tree in the depth-first order. That means if a node-set N as the current solution space cannot

be pruned, then immediately access N ’s sub node-sets.

In consequence, we summarize Apriori-Z approach as follow:

Step 1 (Initialization): Use a global variable δ∗ to represent the current smallest diame-

ter. δ∗ is initialized as follow: first find the smallest node NI that contains all the query

keywords among all the nodes of bR*-tree. If NI is an internal-node, then initialize

δ∗ with the diagonal distance of NI ; if NI is a leaf-node, then initialize δ∗ with the

smallest diameter in NI by exhaustively generating all the object-sets.

Step 2 (Start): Start from the root node-set {root} of the bR*-tree. choose it as current

node-set NC .

Step 3 (Check and Pruning): For current node-set NC , if it can be pruned by the three

pruning rules, then skip NC and repeat to check next candidate node-set. Otherwise,

goto Step 4.

Step 4 (Branching): If all the nodes in NC are leaf-nodes, then enumerate all the object-

sets in NC and compare each diameter δ with δ∗ : if δ < δ∗ , then update δ∗ with δ.

Otherwise, create all the sub node-sets in an Apriori-style order as candidate node-sets.



2.4. MCK QUERIES 19

Step 5 (Selection of Candidate): Choose the first sub node-set in a depth-first way,

then return to Step 3.

Step 6 (Termination Test): Stop if all the candidate node-sets are checked. Finally δ∗

is the optimal diameter.

2.4.3 Guo’s approach

In the study of [9] in SIGMOD 2015, Guo first theoretically proved that the problem of

mCK queries is NP-hard. Then they mainly focused on several algorithms for finding the

approximation solution of mCK queries problem. At the end of their study , they also

presented an exact algorithm by utilizing the result of the approximation algorithm. Here

we summarize their algorithms, according to the description of their paper [9].

The first proposed algorithm is called Greedy Keyword Group(GKG). Given a query

Q = {k1, k2, ..., km}, make a set of object collections C = {C1, C2, ..., Cm} such that each Ci

(i ∈ {1, ...m}) is the collection of objects associated with keyword ki. Then GKG first chooses

the collection having the smallest size in C, denoted by Cinf . Next, for each object o in Cinf ,

GKG finds the nearest object from o, from within Cj for each keyword kj (kj ∈ Q − o.ψ).

Then these nearest objects with o form one object-set covering all the keywords of Q. Thus,

after all of these object-sets from Cinf are generated, GKG chooses the object-set GGKG

which has the smallest diameter as the answer. Guo proved that this answer is not larger

than twice of the diameter of the optimal result.

Next, Guo proposed a series of algorithms which can get better approximation ratios

than GKG. The basic idea of these algorithms is to construct a Minimum Covering Circle

(MCC) for an object-set G , denoted by MCCG. MCCG is defined as the circle that encloses

all the objects of G with the smallest diameter. Then the diameter of MCCG is used as an

approximation of G’s diameter.

In [9], Guo denoted the diameter of the circle MCCG by φ(MCCG), and denoted the

diameter of object-set G by δ(G). The relationship between φ(MCCG) and δ(G) can be

deduced by using a theorem (in [49]) that MCCG can be determined by at most three object

points in G which lie on the boundary of the circle of MCCG. Guo states that if the circle of



20 CHAPTER 2. RELATED WORKS AND PROBLEM SETTING

(a) MCCG1 is determined by two points (b) MCCG2 is determined by three points

Figure 2.9: Example of two diameters (This figure is derived from Fig.2 of [9])

MCCG is determined by only two object points, then the line segment connecting those two

points must be a diameter of the circle (see Figure 2.9 (a)). If MCCG is determined by three

object points, then the triangle consisting of those three points is not obtuse (see Figure 2.9

(b)). Based on these observations, Guo derived out the following inequality relation [9].

√
3

2
φ(MCCG) ≤ δ(G) ≤ φ(MCCG). (2.1)

Accordingly, the search policy of Guo’s approximate algorithms is to find theMCC having

the smallest diameter such that the object-set in the MCC must cover all the query keywords

of Q.

The above MCC is called Smallest Keywords Enclosing Circle, denoted by SKECQ.

And the object-set in SKECQ is denoted by GSKEC . Then according to the inequation (2.1),

Guo proved that δ(GSKEC) ≤ φ(MCCSKEC) ≤ 2√
3
δ(Gopt) where δ(Gopt) is the diameter of

the optimal result. Thus the approximation ratio can be reduced to 2√
3

by using SKECQ as

approximate solutions.

To find the smallest keywords enclosing circle SKECQ, Guo proposed three algorithms



2.5. OUR MOTIVATION BASED ON TOP-DOWN APPROACH 21

which are called SKEC, SKECa and SKECa+, respectively. Basically, according to the

above explanations, the circle of SKECQ is determined by two or three object points. In

algorithm SKEC, Guo considers the set of objects that contain at least one query keyword,

denoted by O′, and then for each object o ∈ O′ as a seed point, o is combined with other one

or two points to determine a circle and check if this circle contains all the query keywords.

In SKEC, some objects which are combined with o can be pruned out by using the result

of algorithm GKG.

Next, Guo uses algorithm SKECa and SKECa+ to find SKECQ approximately. SKECa

uses a binary search to find the approximate smallest keywords enclosing circle for each o ∈ O′.

SKECa first sets a circle with an upper bound D of a diameter and sets o as an object lo-

cated on the boundary of the circle. Then this circle is rotated around o clockwise and tests

whether or not it can cover all the query keywords at a particular position. If it can, then

SKECa tries to test a smaller D; otherwise, it enlarges D. This process is repeated until

the error tolerance ratio of binary search is converged within a small value. After all the ob-

jects o are checked, the approximate answer of SKECQ can be found. The other algorithm

SKECa+ enhanced SKECa. In SKECa+, the binary search process is performed on all

objects in O′ together,instead of the testing on each of them separately. Thus the checking

cost can be reduced.

At last, Guo also proposed an exact algorithm. This algorithm sets a circle with diameter

2√
3
φ(GSKECa) where GSKECa is the answer of algorithm SKECa+. Then the circle is rotated

around each o clockwise, and once it covers all the query keywords, then the algorithm

exhaustively enumerates all the object-sets in the circle. Finally, the exact result can be

found.

2.5 Our motivation based on top-down approach

In this chapter, we introduced mCK query problem and some previous researches for it. As a

spatial query problem, the top-down search by using a spatial index is a kind of fundamental

method. Though Guo’s approach which is different from top-down style is good at finding

the approximation solution of mCK query problem, when considering further requirements



22 CHAPTER 2. RELATED WORKS AND PROBLEM SETTING

of various spatial searches such as finding top-k closest object-sets, top-down search is surely

an useful technique for these extensions.

However the existing Apriori-Z approach is a straightforward top-down method, which

combines the node-sets of bR*-tree in an apriori way level-by-level with some pruning rules.

There are some apparent questions in this approach.

• Apriori-Z decides whether or not a given node-set can be pruned out through the

comparison of the N ’s lower bound and the current smallest diameter δ∗ in pruning

rule 2 and 3. Hence the δ∗ is an important factor that influences the pruning efficiency.

If an smaller δ∗ can be found in an early stage, then more node-sets can be pruned out.

Otherwise, it needs to generate enormous amount of object-sets and node-sets such that

the search efficiency is poor. However, the Apriori-based enumeration of sub node-sets

cannot guarantee that the smaller object-set will be enumerated firstly especially in the

skewed distribution.

• Apriori-Z uses a bR*-tree to store all the objects. However the bR*-tree is not applicable

to the real spatial web which are frequently updated like Flickr and Twitter data.

Moreover for the practical cases of mCK query, such as that we may want the results

from different datasets (like Twitter and Flickr) simultaneously, we need a more flexible

index to satisfy various user’s requirements.

Therefore, there remain much rooms for us to consider deeply and explore more sophisti-

cated top-down approaches for mCK query problem. We explore these sophistication in the

following chapters.



Chapter 3

DCC: A New Top-down Search

Strategy with a Priority Order

3.1 Problem setting

3.1.1 Objective of this chapter

In chapter 2, we discussed some problems in the Apriori-Z approach for mCK query problem.

Thus the objective in this chapter is to ameliorate these problems in two aspects:

1) Consider a new technique to organize these spatial web data for more practical situation.

2) Improve the pruning ability of search space by enumerating the node-sets in a priority

order.

3.1.2 Zhang’s Apriori-based method on bR*-tree

In the study of [1], Zhang et al used a specialized R*-tree, a bR*-tree, to store all records in

preparation, and proposed an Apriori-based enumeration of MBR combinations. However,

this assumption of R*-tree is not applicable to all cases; Twitter or Flickr just provides

only ’bare’ records having location information, or, at most, some major services like Google

Maps only provide grid-style partitioning. In addition the Apriori-based enumeration method

performs well especially when one MBR (or, one object) satisfies multiple keywords. In

contrast, the method is weak when any set of mutually-close MBRs does not satisfy Q. In

23



24 CHAPTER 3. DCC-NL

that case, the Apriori must enumerate too many itemsets of MBRs. To avoid it, the method

depends on how well a bR*-tree clusters the optimal answer into one MBR of an upper level.

3.1.3 Our setting

In this chapter, we do not expect any prepared data-partitioning, but assume that we create

a grid partitioning from necessary data only when an mCK query is given. Under this

assumption, we propose a new search-strategy termed Diameter Candidate Check (DCC),

and show that DCC can efficiently find a better set of grid-cells at an earlier stage of search,

thereby reducing search space greatly.

Figure 3.1 is our assumption of executing mCK queries over spatial web objects. When

a query of m-keywords is submitted, we load objects associated with each keyword ki from

one or multiple datasets and then create a hierarchical grid partitioning Gi for each ki. Thus

m grid indexes are built.

Figure 3.1: On-demand creation of grid partitioning

Figure 3.2(a) is an example of spatial distribution of some objects, and each object is

associated with one keyword among A,B,C,D. When Q = {A,B,C,D} is given, four

hierarchical grids GA, GB, GC , GD are created as shown in Figure 3.2(b). In a hierarchical

grid partitioning of a fixed degree(4x4=16, as an example) of equi-sized partitioning at each

level, each cell of the grid partitioning is uniquely denoted by an ordinal integer i. (e.g., let



3.1. PROBLEM SETTING 25

i = 0 be the root node. Then i = 17 is the 1st cell of the level of 2(=1 + 17 mod 16)). In the

following, the symbol A[i] refers to the i-th cell of the grid corresponding to the keyword A.

Such A[i] is termed a node. When Q is {A,B,C,D}, the set of nodes {A[i], B[j], C[k], D[l]}

is termed a node-set.

Furthermore, in the following, in each grid Gi for a keyword ki, each cell is given an

additional MBR that contains all objects stored in the grid-cell. This is equal to the keyword-

MBR of bR*-tree. We use these keyword-MBRs for estimating distance between cells.

Next, Figure 3.2(c) is the search space for finding the optimal node-set under A,B,C,D

using a naive nested loop search algorithm. Here we use δ∗ to denote the current minimum

diameter and it is initialized to ∞. Then this algorithm is written as follow:

Algorithm 1: Nested-Loop(curSet)

curSet is an m-sized node-set each of node in curSet belong to a grids Gi .

Step 1: If the curSet is an internal node set and the distance between every two nodes

∈ curSet is less than δ∗, we first put all child-node(s) (i.e. child grid-cells) of each

internal node into a list, respectively; and then start to enumerate new child node-sets

according to the nested loop of these child-node lists in the order of the ordinal integers

of cells. Every time when a new child node-set is generated, we recursively invoke this

Nested-Loop algorithm using the new node-set as curSet. When all breaches are tested,

return δ∗.

Step 2: If the curSet is an m leaf node-set and the distance between every two nodes

∈ curSet is less than δ∗, we exhaustively enumerate all the object-sets and find the

minimum diameter of object-set, then update the value of δ∗ to this diameter.

In the example of Figure 3.2(c), we start from the root node-set {A[0], B[0], C[0], D[0]}.

Then the node-set {A[1], B[1], C[2], D[2]} becomes the first child node-set generated, because

A and B exist firstly in the 1st cells but C and D appear firstly in the 2nd cells. In case of a

naive nested loop search over the given keyword ordering of A,B,C,D on these hierarchical

grids, the search recursively proceeds in the depth-first order in the tree of the search space.

δ∗ will finally become the minimum diameter and be outputted as the result. Clearly, this



26 CHAPTER 3. DCC-NL

(a) data distribution (c) the search space of mCK query

(b) m independent grids structure

Figure 3.2: grid and search space of m-CK

naive approach is too expensive. Furthermore, as a disadvantage of using a grid, the grid

structure is often weak in clustering correlated objects in one grid-cell (the over-splitting

problem). Thus we must give a higher priority of search to a better set of grid-cells during

the recursive search in the search space of Figure 3.2(c).

3.2 Diameter Candidate Check (DCC)

3.2.1 Basic idea of DCC

In the search space of Figure 3.2(c), two factors affect the efficiency of node-set enumeration.

One factor is the order of enumerating node-sets. An ideal way is to test a ’better’

node-set with higher priority in the search space; a ’better’ node-set is that having a smaller



3.2. DIAMETER CANDIDATE CHECK (DCC) 27

(a) example of a data set (b) search space and order of node-sets

Figure 3.3: search method of the mCK query

diameter. This leads to finding an object-set having a smaller diameter, which can prune out

unnecessary node-sets. We should explore such a desirable node-set as early as possible.

As an example, let us consider a data distribution of Figure 3.3(a) and the corresponding

search space of Figure 3.3(b). Actually, there are four independent grids for A,B,C,D in

Figure 3.3(a), but we visualize these grids by one virtual grid of Figure 3.3(a).

Figure 3.3(b) shows which node-sets (by combining the cells of the first-level partitioning)

are enumerated by the naive nested loop method of Algorithm 1.

In this example, the smallest diameter really exists in the node-set {A[6], B[7], C[10], D[11]}

at the first level of grid-partitioning. Clearly, we should choose this ’better’ node-set firstly

in Figure 3.3(b), from among all the node-sets of the first-level cells. Namely this ’bet-

ter’ node-set should be given a higher priority in the exploration of the search space. This

priority-based search is not achieved either by the naive nested loop or the Zhang’s method.

In case of using a nested-loop style search in the search space of Figure 3.3(b) or Fig-

ure 3.2(c), another expensive factor is the order of keywords to be tested. Let δ∗ be

the currently-found minimum diameter in the search process. Suppose we test a node-set

{A[i], B[j], C[k], D[l]} in the nested loop of keyword-ordering of A,B,C,D. Then, if the

minimum distance between C[k] and D[l] is larger than δ∗, the search process will repeat

expensive test of other combinations of useless node-sets. Thus a fixed global ordering of



28 CHAPTER 3. DCC-NL

keywords must be avoided in the search process.

To overcome these factors, we propose a search strategy called Diameter Candidate Check

(DCC). DCC is aimed to find a node-set having a smaller diameter as quickly as possible

and reduces the search space.

The basic idea of DCC is as follows: The goal of mCK query is to find the smallest

diameter, and the diameter is determined by two objects ox, oy. Thus, rather than enumer-

ating the m-sized object-sets (or, node-sets) directly, we firstly enumerate all pairs made

of two objects, 〈ox, oy〉, (or two child-nodes, 〈nx, ny〉,) from an inputted node-set, and sort

the pairs in the ascending order of their possible diameter’s lengths. Each pair is called a

diameter-candidate. Next, in the sorted order of smaller (=better) diameter-candidates, we

pick up a diameter-candidate and generate a new object-set (or, a child-level node-set) from

the diameter-candidate, and recursively test the child node-sets, in a top-down manner, if

necessary.

By this strategy, due to the ascending sort of diameter-candidates, a node-set having

a smaller diameter is tested with a higher priority in the search space. Furthermore, the

enumeration of all diameter-candidates is much less expensive than that of all m-sized object-

sets.

It is a basic idea to use a pair of ”closer” objects as a key to reduce the search space in

various spatial keyword query problems. This idea is also used in the pairwise distance-owner

finding in the MaxSum-Exact algorithm of Collective Spatial Keyword Query (CoSKQ,[7]),

which is a problem to find the best disc of objects whose center is a given query-point

and where the disc must also cover given m-keywords. Their algorithm depends on NN-

queries from the query-point or some data-objects by using an IR-tree. In contrast, the mCK

problem has no query-point, and our originality of DCC exists in the point that we explore

and reduce the search space in a top-down manner without any query-point, by using DCC

on dynamically-created hierarchical grid partitions.

3.2.2 Technical terms

To implement DCC, we prepare some technical terms.

Let dist(o1, o2) be the distance between two objects o1 and o2. Let ni (or, sometimes



3.2. DIAMETER CANDIDATE CHECK (DCC) 29

written as nwi
) be a grid-cell associated with a keyword wi. Then, Maxdist(nw1 , nw2) is the

maximum distance between two rectangles of nw1 and nw2 , which are MBRs in the grid-cells

of w1 and w2. Mindist(nw1 , nw2) is the minimum distance between the same MBRs of nw1

and nw2 .

When m-keywords {w1, w2, ..., wm} are given as a query, we define MaxMaxdist and

MaxMindist of a node-set N = {nw1 , nw2 , ..., nwm}, as follows:

Definition 1: For a node-set N = {nw1 , nw2 , ..., nwm} under m-keywords,

• MaxMaxdist of N is defined as:

MaxMaxdist(N) = maxnwi ,nwj∈NMaxdist(nwi
, nwj

).

• the pair of nodes 〈nwi
, nwj

〉 is said to be the diameter pair of N if dist(nwi
, nwj

) =

MaxMaxDist(N).

• MaxMindist of N is defined by

MaxMindist(N) = maxnwi ,nwj∈NMindist(nwi
, nwj

).

Figure 3.4: MaxMaxdist and MaxMindist

MaxMaxdist is an upper bound of all possible diameter’s lengths that are derived from

the node-set N . MaxMindist(N) is a lower bound of diameter’s lengths which can be found

from N . Figure 3.4 shows their examples of N = {nw1 , nw2 , nw3}. The pair 〈nw1 , nw3〉 is the

diameter pair of N .



30 CHAPTER 3. DCC-NL

3.2.3 DCC in a nested loop method

We here describe the implementation of DCC strategy in a nested loop search algorithm.

This algorithm is called DCC-NL. DCC-NL uses a nested loop method over all keywords in

order to generate and test a new node-set from a diameter-candidate.

DCC-NL has three steps in the process, as shown in Figure 3.5. In the following, we

explain the case of four keywords A,B,C,D of Figure 3.2(b) as an example. It is given a

node-set NI as the input, and finally returns the minimum diameter. It starts from the root

node-set N0 = {A[0], B[0], C[0], D[0]}, where all nodes are the level-0 grid-cells:

Figure 3.5: workflows of DCC three steps

[step1 : Candidate Enumeration]

We assume that in the inputted node-set NI = {nw1 , nw2 , ..., nwm}, all nwi
’s are non-leaf

nodes. (The other cases are described later.) Then, for each keyword wi, we first find all

child-nodes (i.e., = child grid-cells) which satisfy wi in the node nwi
∈ NI , and put these

child-nodes into a corresponding list Lwi
. Next, from every two different lists Lwi

and Lwj
,

we generate all pairs of child-nodes, by picking one from each list. These pairs are called the

diameter candidates (denoted as DC, in short).

As an example, in Figure 3.6(a), if we use the root node-set as the input, we can get

four child-node lists LA, LB, LC , LD corresponding to keyword A,B,C,D. Then four DCs,



3.2. DIAMETER CANDIDATE CHECK (DCC) 31

(a) child-node lists

(b) example of DC and Check

Figure 3.6: Creating a node-set from a given DC



32 CHAPTER 3. DCC-NL

〈A[1], B[1]〉, 〈A[1], B[6]〉, 〈A[2], B[1]〉, 〈A[2], B[6]〉, are generated from the list LA and LB. Also

six DCs, 〈B[1], C[2]〉, ..., 〈B[6], C[6]〉, are done from LB and LC . Thus we finally generate 37

pairs in total.

Thereafter we sort these DCs by the ascending order of Maxdist(DC). Note that if the

size of each list Lwi
is s, the number of DCs is (mC2 × s2), which is much less than the

amount of possible node-sets (= sm).

[step2 : Diameter Candidate Check]

We pick up a DC = 〈ni, nj〉, from the top of the sorted list of DC’s, and check if this

DC cannot become a diameter pair of any child node-set of NI . If so, we will not need to

consider this DC.

There are three points to be checked: they are checked in the order of (2-1) to (2-3). If

any one of the points holds, the DC is removed and we return to checking the next DC from

the sorted list.

(2-1) If the DC 〈ni, nj〉 is such that Mindist(ni, nj) ≥ δ∗ (δ∗ is the current minimum

diameter), no node-set which is generated from this DC can give an object-set having a

diameter < δ∗. Thus we remove this DC and go to the next DC.

(note: This reduces the overhead factor of testing node-sets by the fixed global order of

keywords, as described in Section 3.2.1.)

(2-2) Next, we try to generate a node-set ND from the DC 〈ni, nj〉. (ND is a child node-

set of the inputted node-set NI in the search space.) If ND is successfully created, the DC

must be included within ND and be the diameter pair of ND. This requires that every node

n∗ ∈ ND except the two nodes of the DC must satisfy both:

Maxdist(n∗, ni) < Maxdist(ni, nj) and

Maxdist(n∗, nj) < Maxdist(ni, nj).

The above condition can be said as follows: every n∗ ∈ ND must be a node included

in the shuttle scope (red) drawn in Figure 3.6(b), where this shuttle scope represents the

above condition. This shuttle scope is uniquely determined by a DC, thus being denoted by

Shuttle(DC). In order to compose ND from a given DC, we need not consider any nodes

which are outside the Shuttle(DC).

As an example, in Figure 3.6(b), when the current DC is 〈A[1], B[6]〉, then the nodes



3.2. DIAMETER CANDIDATE CHECK (DCC) 33

C[3], C[6] in LC and D[2] in LD are outside the Shuttle(〈A[1], B[6]〉). Thus we ignore these

nodes for generating ND from the DC.

As a result, the step (2-2) is as follows: we check if there exists any keyword wi such that

all the node associated with wi are outside Shuttle(DC). If such wi exists, we remove the

DC and go to the next DC.

(2-3) Next, let the DC be 〈ni, nj〉 and consider the Shuttle(〈ni, nj〉). For every two

keywords wx, wy ∈ Q− {wi, wj}, we check the following constraint:

there must exist some two nodes nx, ny where nx ∈ Lwx , ny ∈ Lwy such that both nx, ny are

included in Shuttle(DC) and Maxdist(nx, ny) ≤Maxdist(ni, nj). If this constraint fails for

some wx, wy, then the DC 〈ni, nj〉 cannot become a diameter pair any more. Thus, the DC

〈ni, nj〉 is not necessary to be considered, and the next DC is checked.

As an example, in Figure 3.6(b), both Maxdist(C[2], D[5]) and Maxdist(C[2], D[6]) are

larger than Maxdist(A[1], B[6]). Thus the DC 〈A[1], B[6]〉 is removed, and we go to the next

DC.

[step3 : Node-Set generation]

After the step 2, we generate a new child node-set ND from the current DC. To do so, we

take a combination of the child-nodes in Shuttle(DC) by using a nested loop method over

all Lwi
’s of (m−2) keywords (except the keywords of the DC). During this process, we must

skip over such a node-set that some two nodes in the combination have a larger Maxdist

than Maxdist(DC). Each time when we get an output of the combination over the (m− 2)

keywords, the output is merged with the DC, and is used as the ND; i.e., we recursively

invoke DCC-NL(ND).

As the last comment, if all the nodes of the input node-set are leaf-nodes in the step1,

each leaf-node is decomposed into individual objects and the above procedure is used. If

some node in the input is a leaf and some is not, then the decomposition of the leaf-nodes is

skipped over until all nodes in N become leaf-nodes.

According to the above, we summarize the DCC-NL algorithm as Algorithm 2.

Algorithm 2: DCC-NL(curSet)



34 CHAPTER 3. DCC-NL

curSet is an m-sized node-set each of node in curSet belong to a grids Gi .

Step 1: If the curSet is an internal node set and the distance between every two nodes

∈ curSet is less than δ∗, we enumerate all the node-pairs as DCs and sort them. For

each DC 〈ni, nj〉 in these DCs do:

1.1 Test the step2 for the DC 〈ni, nj〉.

1.2 If the step2 judges the DC 〈ni, nj〉 must be skipped over, we test the next DC;

otherwise, go to 1.3.

1.3 Generate all (m− 2)-sized node-sets among nodes in Shuttle(〈ni, nj〉). Every time

we get an (m− 2)-sized node-set Nm−2 where Maxdist between every two nodes

∈ Nm−2 is less than Maxdist(ni, nj), we merge Nm−2 and DC 〈ni, nj〉 into an m-

sized node-set and use it as curSet, and we recursively invoke DCC-NL algorithm.

Step 2: If the curSet is an m-sized leaf node-set and the distance between every two nodes

∈ curSet is less than δ∗, we enumerate all the object-pairs as DCs and sort them. For

each DC 〈oi, oj〉 in these DCs :

2.1 Check the step2 by setting 〈oi, oj〉 as a DC.

2.2 If DC 〈oi, oj〉 is judged to be skipped over, we go to the next DC; otherwise, go

to 2.3.

2.3 Generate (m− 2)-sized object-sets. Once we get a (m− 2)-sized object-set Om−2

that the distance between every two objects ∈ Om−2 is less than Dist(oi, oj), we

set δ∗ to Dist(oi, oj), and return.

3.3 Further pruning rules using MaxMindist

We can consider further pruning rules, which filter out unnecessary node-sets. Firstly, the

following lemma holds:

Lemma 1 : Given a node-set N = {nw1 , nw2 , ..., nwm}, assume that some node nwi
∈ N

satisfies that Maxdist(nwi
, nwj

) < MaxMindist(N) for all nwj
∈ N (wj 6= wi). Then nwi

is



3.3. FURTHER PRUNING RULES USING MAXMINDIST 35

not necessary to compute the diameter of N . (Thus nwi
can be virtually removed from every

descendent node-set of N .)

In Figure 3.7(a), for the node-set N = {nw1 , nw2 , nw3}, MaxMindist(N) = Mindist(nw1 ,

nw3), and both Maxdist(nw2 , nw1) and Maxdist(nw2 , nw3) are less than MaxMindist(N).

Therefore, for any object-set {ow1 , ow2 , ow3} generated from N , dist(ow1 , ow3) must be the

largest. Thus all ow2 ’s in nw2 are not necessary to compute the diameter.

By the lemma 1, we consider two pruning rules:

Pruning Rule 1 Given a node-set N = {nw1 , nw2 , ..., nwm}, assume that nodes in N

can be classified into two groups {nwa , ..., nwb
, |nwc , ..., nwd

}, where nwc , ..., nwd
are the nodes

which can be removed by lemma 1 and nwa , ..., nwb
are not removed. Then we need not test

any other node-set N ′ where N ′ contains {nwa , ..., nwb
}.

In Figure 3.7(b) where N = {nw1 , nw2 , nw3}, we can remove nw2 from N by Lemma 1.

Then, we can skip over the test of another node set N ′ = {nw1 , n
′
w2
, nw3}. It is because the

diameter created from N ′ is never smaller than that computed from N .

Pruning Rule 2 : If a node-set N is generated from a DC 〈nwi
, nwj

〉 and all the nodes

in N except nwi
and nwj

can be removed by Lemma 1, then any other node set which is

generated from this DC can be pruned out.

Pruning Rule 2 is a special case of Pruning Rule 1. Once a node-set satisfies Pruning

Rule 2, we can use only the two nodes of DC for computing the diameter. Furthermore the

remaining other node-sets from this DC can be skipped over.

(a) example of Lemma 1 (b) example of pruning rule 1

Figure 3.7: Pruning rules



36 CHAPTER 3. DCC-NL

3.4 Experimental evaluation

3.4.1 Experimental set-up

Here we evaluate our algorithm over synthetic datasets and real datasets.

The synthetic datasets consist of two-dimensional data points where each point has only

one keyword. We generated 1000 data points for each keyword in advance, up to 100 key-

words. The x- and y- values of a data-point are in [0, R], taken from a square of the side-length

R. As for these synthetic datasets, we prepared a separate data-file for each keyword. When

a query of m-keywords is given, we build m grids from the necessary files, as explained in

Figure 3.1. We use three types of data-distribution:

1) uniform distribution: All coordinates of data points are randomly generated (Figure

3.8(a)).

2) normal distribution with σ = 1
4
R: For each keyword, we randomly generate one point

as the reference point, and then all the data points associated with this keyword are generated

so that the distance to the reference point follows a normal distribution (Figure 3.8(b)). We

set the standard deviation σ = 1
4
R.

3) normal distribution with σ = 1
8
R: The same as 2) except that σ = 1

8
R (Figure 3.8(c)).

This is the case of much higher skew than that of σ = 1
4
R.

We also employ a real dataset which collects 46,303 photo records from Flickr in Tokyo

area. Each photo record contains a geographic information, which is used as the x- and y-

values of the data-point. And each record is associated with 1 to 73 tags that can be viewed

as keywords of data-point. As an example we choose 4 keywords sakura(red), river(green),

temple(blue), shrine(yellow), and the distribution is shown in Figure 3.8(d). As for the

Flickr data, we stored them in MongoDB, and we prepared keyword indices at first. When

a query is given, we load necessary data as shown in Figure 3.1.

As a grid-partitioning of Section 3.1.2, we defined that each cell is divided when the

number of data points is greater than 100. The fan-out is set to 100 (= a square of 10 × 10).

Note that the grid partitioning is created dynamically when a query is given.

We also implemented the Zhang’s Apriori-based algorithm for the comparison. We execute

all algorithms under our grid-partitioning setting of Section 3.1.2. We execute the Zhang’s



3.4. EXPERIMENTAL EVALUATION 37

(a) uniform distribution (b) normal distribution of σ = 1
4R

(c) normal distribution of σ = 1
8R (d) Flickr photo data distribution

Figure 3.8: data points distribution

method by making one grid structure of Figure 3.2(a). This is fair because our grid still keeps

keyword-MBRs in each grid-cell. We implemented all the algorithm in Java with version 1.7

on a machine with an Intel(R) Xeon(R) CPU of 2.6GHz and 12GB of RAM ,running the linux

vine 5.2. The performance measure is the average response time (ART). The ART includes

all time of data access, grid creation and search execution. For each m, we randomly chose

m keywords 10 times and takes ART.

The algorithms we test are:

• Apriori-Z: Zhang’s Apriori-based algorithm

• Nested-Loop: the naive nested loop algorithm



38 CHAPTER 3. DCC-NL

• DCC-NL: the DCC algorithm Algorithm2

• DCC-NL++: DCC-NL with the two pruning rules of Section 3.3.

3 4 5 6 7 8 9
0

3000

6000

9000

12000

15000

A
R
T(
m
s)

m

 Apriori-Z
 Nested-Loop
 DCC-NL
 DCC-NL++

(a) uniform distribution

3 4 5 6 7 8 9
0

5000

10000

15000

20000

25000

30000  Apriori-Z
 Nested-Loop
 DCC-NL
 DCC-NL++

A
R
T(
m
s)

m

(b) normal distribution with σ = 1
4R

 Apriori-Z
 Nested-Loop
 DCC-NL
 DCC-NL++

3 4 5 6 7
0

5000

10000

15000

20000

25000

30000

A
R
T
(m

s)

m

(c) normal distribution with σ = 1
8R

3 4 5 6 7
0

5000

10000

15000

20000

25000

30000

A
R
T(
m
s)

m

 Apriori-Z
 Nested-Loop
 DCC-NL
 DCC-NL++

(d) Flickr photo data distribution

Figure 3.9: performance of mCK

3.4.2 Evaluation of Synthetic Datasets

First we tested synthetic datasets in Figure 3.9(a)-(c).

Figure 3.9(a) is ART vs. the number of keywords m in the uniform distribution.

In Figure 3.9(a), we can see Apriori-Z has the best performance. It keeps lower ARTs

even when m increases up to 9. This is because the uniform distribution gathers necessary

objects of all keywords into one smaller grid-cell. This makes Apriori-Z can firstly find a



3.4. EXPERIMENTAL EVALUATION 39

much smaller diameter in an itemset of MBRs of length-1 or -2, and it helps Apriori-Z cut

down almost all node-sets at an early stage of the search.

The performances of the other algorithms are degraded when m ≥ 8 . It is because

node-set enumeration using nested loop is inherently exponential to m. Due to the uniform

distribution, we can easily get a relative small diameter without enumerate all node-pairs;

hence Nested-Loop outperforms DCC-NL. DCC-NL++ is the worst at m ≥ 8 because the

node-sets with larger MaxMindist are pruned, but we must spend CPU time to check all

subsets of each node-set.

Next, Figure 3.9(b) is the case of the normal distribution of σ = 1
4
R. In this case,

we observe that the data points with each keyword is lightly skewed, but there still exist

some object-sets with small diameters, although they are not necessarily gathered in one

cell. Apriori-Z and the Nested-Loop deteriorated sharply. Because all keywords may not

be gathered in one cell, it is difficult to guarantee that these methods find a much smaller

diameter as an initial value. In contrast, DCC-NL and DCC-NL++ worked well than the

other algorithms. It means that the DCC strategy works good. DCC-NL++ is a little worse

than DCC-NL, but it is because MaxMindist of a node-set is not so large as to reach the

conditions of the pruning rules, thereby consuming more CPU times.

Lastly, Figure 3.9(c) is the case of the normal distribution of σ = 1
8
R. Here the data points

associated with each keyword are highly skewed. Thus any object-sets are not expected to

have small diameters. As a result, Apriori-Z and Nested-Loop drop rapidly at a lower m.

Even DCC-NL cannot keep good at m = 6. In contrast, DCC-NL++ keeps a relative slow

drop in ART, because it can prune out unnecessary node-sets not only depending on a current

threshold but also using the Pruning Rules 1 and 2.

In summary, DCC-NL++ is the best when m ≤ 7 in case of the skewed datasets. Even

in the uniform dataset, DCC-NL++ works well if m ≤ 7, but DCC-NL++ spends useless

CPU time at m ≥ 8.

3.4.3 Evaluation of Flickr Datasets

Next Figure 3.9(d) shows the performance comparison of Flickr data. In this test, we chose m

keywords randomly in the Flickr data, but we chose each keyword whose frequency ≤ 2.5%



40 CHAPTER 3. DCC-NL

of all records. We can see the average performance of Apriori-Z decreases rapidly as m

increases. In our assumption of grid partitioning, due to the over-splitting problem, it is

difficult to guarantee all the query keywords into a small leaf-cell. It causes the situation

that a less-than-ideal initial value of diameter makes the heavy enumeration of node-sets.

Furthermore an unbalanced depth of the grid also makes the enumerating cost even worse.

Under this situation, the performance of Apriori-Z becomes extremely unstable, which af-

fected the average performance. For example, we observed that when m = 5, in some good

query which can get a small initial value, the response time of Apriori-Z only needed 0.2 sec-

onds. However in another query, we observed that its response time dropped to 535 seconds.

This unstability becomes apparent as m increases.

In contrast, in Figure 3.9(d) DCC-NL and DCC-NL++ worked well at m ≤ 7. That

means if there exists a small diameter, even though necessary data are not clustered in one

small grid-cell, DCC strategy can find them at an earlier stage of search.

3.5 Summary

In this chapter, we discussed a new algorithm for the mCK query, which is used to find the

optimal object-set that satisfies the m keywords over spatial web objects. We assumed that

there is no prepared data-partitioning for the target datasets at the data-providing servers.

Hence we assumed to create grid partitioning dynamically, on the loaded necessary data when

each query is given. We proposed an effective search strategy named Diameter Candidate

Check (DCC) so as to work well under this assumption. DCC is aimed to find a better set of

grid-cells at an earlier stage of search, and can reduce search space even if it is implemented

in a nested loop search method, named DCC-NL. We also proposed two pruning rules adding

to DCC-NL, as the method DCC-NL++, for the case of highly-skewed data.

We compared DCC algorithms with Zhang’s Apriori method under our assumption. The

performance under both synthetic and real datasets demonstrated that the preceding Apriori-

based algorithm of Zhang is highly efficient on the uniformly distribution case, but can get

worst in the other skewed data cases. Instead our DCC-based algorithm DCC-NL and DCC-

NL++ keep stable and good performance in skewed data at m ≤ 7. DCC-NL++ is good in



3.5. SUMMARY 41

skewed cases, but its CPU overhead is disadvantageous in a uniform dataset.

Looking at these results, DCC strategy can provide acceptable efficiency in different

datasets at m ≤ 7 even in a highly-skewed case. However DCC-NL is inherently weak when

one data-point has many keywords of the mCK query, because the nested-loop search is

exponential as the number of keywords increases.





Chapter 4

Optimization of mCK Search by using

Recursive DCC Strategy

4.1 Optimization of DCC-NL

4.1.1 Objective of this chapter

In this chapter, we develop the DCC strategy to further improve the search efficiency in two

ways:

1)Enumerate node-set in a better priority order than DCC-NL approach in Chapter 3.

2)Strengthen the ability of pruning by using a tighter lower bound.

4.1.2 Policy to optimize DCC-NL

In the general idea about the top-down approach for a mCK query, a node-set can be pruned

if the lower bound of this node-set is greater than the smallest diameter discovered so far

(δ∗). Thus we can improve the pruning ability through two ways:

1. Quickly find a smaller δ∗.

2. Increase the lower bound of node-set.

In Chapter 3, in order to realize the first way above that find a smaller δ∗ at an early stage,

we considered a new exploration strategy called DCC, which can give a node-set with smaller

43



44 CHAPTER 4. RECURSIVE DCC

diameter a higher priority. And we proposed DCC-NL algorithm to realize DCC strategy in

a nested loop method. DCC-NL first enumerates all node-pairs in an ascending order of their

Maxdists which are regarded as the upper bounds of diameters. Then generates node-sets for

each node-pair by combining with the relevant nodes in the shuttle scope. Thus the node-set

with a smaller upper bound will be given a higher priority in generation.

However the node-sets derived from same node-pair are unordered. Due to nested-loop

generation, this part of node-sets will not be given a priority order. If the number of relevant

nodes in the shuttle scope is small, it will not be an issue. but when the number grows larger,

numerous unordered node-sets may reduce search efficiency. In this chapter, we will discuss

this problem, and propose a recursive DCC strategy to solve it.

Further, we only considered the first way to improve the search efficiency. Actually, the

second way is also expected. DCC-NL uses the Mindist between two MBRs in a node-set

N as the lower bound which is used to determine whether or not N can be pruned. In this

chapter, we enlarge this lower bound by using a tighter lower bound of N to improve its

pruning ability.

We call these technique as RDCC which contain the recursive DCC strategy for generation

and tight lower bound for pruning.

4.2 Review of DCC-NL search approach

4.2.1 Description of DCC-NL

Here we describe the DCC-NL algorithm in an example of Figure 4.1 .

Similar as the description in Section 3.3, Figure 4.1(a) shows the data distribution. Once

a query of four keywords {A,B,C,D} is submitted, we create an independent grid for each

keyword, thus there are four grid structures {GA, GB, GC , GD} in Figure 4.1(b). We use a

number to identify a cell of a grid. In 4.1(b) the roots are divided into 36 subcells, thus the

identification numbers are from 1 to 36 in this level of grid. We also use the symbol A[i] to

represent the i-th cell of the grid corresponding to the keyword A. Such A[i] is termed a node

(A[0] is the root node of GA). Figure 4.1(c) shows the search space tree of mCK query. Each

element of this search space tree is a node-set {A[i], B[j], C[k], D[l]}, which is composed of



4.2. REVIEW OF DCC-NL SEARCH APPROACH 45

(a) Data distribution (c) Search space

(b) On-the-fly grids

Figure 4.1: An example of DCC-NL



46 CHAPTER 4. RECURSIVE DCC

one cell from different grid.

The algorithm DCC-NL(N) (N is an variable of node-set) has the following three steps

in top-down process. At first, δ∗ = ∞ and DCC-NL(N0 = {A[0], B[0], C[0], D[0]}) is invoked.

Step 1: For the child-nodes of N , enumerate all the node-pairs 〈K1[a], K2[b]〉 (K1, K2 ∈

{A,B,C,D}, K1 6= K2) as DCs. In the example of Figure 4.1, 107 DCs, 〈A[1], B[6]〉,

〈A[1], B[11]〉, ..., 〈C[32], D[36]〉, are generated from N0. Then sort these DCs by the

ascending order of Maxdist(DC).

Step 2: Pick up a DC from the top of the sorted list of DCs. Then all the relevant nodes

which may constitute a node-set must exist in the shuttle scope of DC. Figure 4.2(a)

shows the shuttle scope of DC = 〈A[15], D[29]〉. We can see that there are five nodes

in this shuttle scope, B[16], B[17], C[21], C[22], C[27].

Step 3: Generate all the (m− 2)-sized sub node-sets for the relevant nodes in the shuttle

scope by using a nested loop method . These sub node-sets should cover the remaining

(m− 2) keywords (except the keywords of the DC). Once a sub node-set is generated,

merge them with the two nodes of DC to a full m-sized node-set N ′. If all the nodes

in N ′ are leaf-nodes then find the smallest diameter δ in N ′ and update δ∗ if δ < δ∗;

otherwise, recursively invoke DCC-NL(N ′). In Figure 4.2(b), we generate 6(2 × 3) sub

node-sets for node lists of keyword B and C and merge them. Then we can see the

node-set {A[15], B[16], C[21], D[29]}) will be generated firstly.

4.2.2 The problems of DCC-NL

There are two problems in DCC-NL algorithm.

Problem 1: DCC-NL can give higher priority to the part of node-sets with a smaller

DC. Overall, we can get a smaller diameter at an early stage. However, for the node-

sets derived from the same DC, the prioritized enumeration of these node-sets cannot be

ensured. That is due to nested loop method for generating (m − 2)-sized sub node-sets.

For example, in Figure 4.2(a), among all the node-sets derived from DC = 〈A[15], D[29]〉,

{A[15], B[16], C[22], D[29]} should be given a higher priority than {A[15], B[17], C[27], D[29]},



4.2. REVIEW OF DCC-NL SEARCH APPROACH 47

(a) Shuttle scope

(b) Relevant nodes

Figure 4.2: Generation of node-sets



48 CHAPTER 4. RECURSIVE DCC

because we can get a smaller diameter in {A[15], B[16], C[22], D[29]}. But we cannot guar-

antee this by using a nested loop method.

Problem 2: In DCC-NL algorithm, given a node-set N = {n1, n2, ..., nm}, the lower

bound (termed as LB) of a node-set N is defined by

LB(N) = max
na,nb∈O

Mindist(na, nb) (4.1)

For instance, in Figure 4.3 , for the node-set N = {n1, n2, n3}, the lower bound of N is

determined by the Mindist of n1 and n3, LB(N) = Mindist(n1, n3).

Figure 4.3: Lower bound of node-set

Next we compare the lower bound with δ∗, if LB(N) ≥ δ∗, then N can be pruned out.

However some node-sets may not be pruned out in this way, even though there is no object-set

with smaller diameter than δ∗ in these node-sets.

We use the example in Figure 4.2(a) to illustrate this problem. WhenDC = 〈A[15], D[29]〉,

suppose at first the node-set N1 = {A[15], B[16], C[22], D[29]} is generated. Then we find the

best diameter inN1 is dist(a, d) where a ∈ A[15], d ∈ D[29], and update δ∗ to dist(a, d). Next,

we use this δ∗ to determine whether the following node-set N2 = {A[15], B[16], C[21], D[29]}

can be pruned out or not . However, at this point, the lower bound of N2 is the Mindist be-

tween A[15] and D[29]. Due to Mindist(A[15], D[29]) < δ∗(dist(a, d)), N2 cannot meet

the condition to be pruned out. That means all the node-set N∗ satisfied LB(N∗) =

Mindist(A[15], D[29]) will not be pruned out. Moreover, if the dist(a, d) is the smallest

distance between A[15] and D[29] such that it is the best diameter we can get from the node-

sets with DC = 〈A[15], D[29]〉, we still need to recursively invoke DCC-NL for N∗ which are

useless.



4.3. RECURSIVE DCC AND TIGHT LOWER BOUND 49

We will discuss the solutions for the two problems in next section.

4.3 Recursive DCC and tight lower bound

4.3.1 Priority Search Order of Recursive DCC

DCC-NL uses DCC strategy to decide the enumeration order of child node-sets of N . We

can summarize DCC strategy into the following three stages:

Stage 1: Generate all the DCs for the child-nodes of N and sort them.

Stage 2: For each DC, generate the all the (m − 2)-sized sub node-sets for the relevant

nodes in the shuttle scope of this DC.

Stage 3: Merge each such the (m− 2)-sized sub node-sets with the two nodes of DC to a

full m-sized node-set.

DCC-NL generate the (m − 2)-sized sub node-sets using a nested loop method in Stage

2 such that it is difficult to keep the priority order for them (Problem 1). However we

can also use DCC strategy in Stage 2 for generating ordered (m − 2)-sized sub node-sets.

Therefore we propose an approach called RDCC, which recursively uses DCC strategy in

the process of generating node-sets. then we describe RDCC as follow (Suppose the query

Q = {k1, k2, ..., km}):

RDCC(N)

Step 1: For the child-nodes of N , generate all the node-pairs 〈ni, nj〉, where ni is associated

with keyword ki and nj is associated with keyword kj (ki, kj ∈ Q, ki 6= kj), as DCs.

Then sort these DCs by the ascending order of Maxdist(DC).

Step 2: Pick up aDC = 〈ni, nj〉, from the top of the sorted list ofDCs. Then use a variable

CurSet as the current node-set generated and CurSet is initialized with {ni, nj}.

Step 3: For the relevant nodes in the shuttle scope of DC, enumerate all node-pair as sub

DCs in ascending order. Note the relevant nodes are not associated with the generated

keywords in CurSet.



50 CHAPTER 4. RECURSIVE DCC

Step 4: For each DC in the sorted list of sub DCs, insert the two nodes of it into CurSet.

Then repeat Step 3 and Step 4.

Step 5: For each repeat will reduce two keywords and increase two nodes in CurSet, thus

after bm/2c times repetitions, there are only the nodes associated with 0(m is even) or

1 (m is odd) keyword left in the shuttle scope. Thus we insert each of these node into

CurSet to complete a full m-sized node-set N ′. If all the nodes in N ′ are leaf-nodes

then find the smallest diameter δ in N ′ and update δ∗ if δ < δ∗; otherwise, recursively

invoke RDCC(N ′).

In RDCC approach, we choose the smallest DC in each repetition, thus we can give a

higher priority to the node-set with a smaller diameter than DCC-NL. Figure 4.4 shows the

search order of RDCC approach for the example in Figure 4.2 . In Figure 4.4, we firstly choose

DC 〈A[15], D[29]〉 and insert it into CurSet such that CurSet = {A[15], D[29]}. Next we

generate all the node-pairs for the nodes associated with keyword B and C in the shuttle of

〈A[15], D[29]〉. Then the smallest node-pair 〈B[16], C[22]〉 is choosen firstly and is inserted

into CurSet such that CurSet = {A[15], D[29], B[16], C[22]}. Therefore the node-sets with

same DC = 〈A[15], D[29]〉 can be generated in a priority order. Due to m = 4, the m-sized

node-set is completed in two repetitions.

Figure 4.4: Search order of Recursive DCC



4.3. RECURSIVE DCC AND TIGHT LOWER BOUND 51

4.3.2 Tight lower bound for pruning

In Figure 4.2 (a), we can first generate the node-set {A[15], B[16], C[22], D[29]} by RDCC

and find the δ∗ = dist(a, d). However the other node-sets with DC = 〈A[15], D[29]〉 cannot

be pruned out by their lower bound (Problem 2). This problem still restricts the pruning

efficiency. Thus we use a tighter lower bound of node-set N called TLB(N) to instead of

original lower bound LB(N).

[Obj-Mindist] Giver two nodes n1 and n2, the Obj-Mindist between n1 and n2 is defined

as

Obj −Mindist(n1, n2) = min
oa∈n1,ob∈n2

{dist(oa, ob)} (4.2)

Obj-Mindist(n1, n2) is the minimum distance of object-pair generated from 〈n1, n2〉 .

[Tight Lower Bound(TLB)] Given a node-set N={n1, n2, ..., nm}, TLB of N is defined

as follow:

TLB(N) = max
na,nb∈N

{Obj −Mindist(na, nb)} (4.3)

TLB(N) is the maximum Obj-Mindist between any two nodes in N (Figure. 4.5).

Figure 4.5: TLB of node-set

According to the definitions of LB and TLB, LB is the minimum distance between the

two boundary line of two nodes, while TLB is the minimum distance between two objects

in the two nodes respectively. Compared to LB , TLB is greater . Thus TLB has more

efficient pruning ability than original LB. For example , in Figure 4.2 (a), we first update

δ∗ to dist(a, d) which is the smallest diameter of node-set N1 = {A[15], B[16], C[22], D[29]}.



52 CHAPTER 4. RECURSIVE DCC

Then node-set N2 = {A[15], B[16], C[21], D[29]} is generated, we know the TLB of N2 is the

Obj-Mindist between A[15] and D[29] (= dist(a, d)). Thus we get TLB(N2) = δ∗, which

means there exists no smaller diameter than δ∗ in N2. Hence N2 can be pruned out.

About the cost of computing the TLB of N , we can adopt a top-down search strategy

by using grid structures for each two nodes of N . It is equivalent to the cost of mCK query

with m = 2 which is much less than the cost when m > 2. Thus it can be calculated at high

speed.

4.3.3 Object generation in leaf node-set

In Step 5 of RDCC approach , When all the nodes in N ′ are leaf-nodes, we need to enumerate

object-sets for the objects in N ′, and find the smallest diameter in N ′. Here the recursive

DCC approach also can be used.

We first enumerate all the object-pairs as DCs and sort them. Then if a DC 〈oi, oj〉

cannot be skipped over, we check if it can be a diameter of an object-set. That means try to

find an (m − 2)-sized object-set whose diameter is less than dist(oi, oj) in the shuttle scope

of 〈oi, oj〉 . If such an (m − 2)-sized object-set exists , we return dist(oi, oj) as the smallest

diameter and stop search process. At the stage of finding the (m − 2)-sized object-set for

〈oi, oj〉, we also recursively enumerate sub DCs and check them. Thus when bm/2c-th time

recursion ends, we can get an object-set.

Moreover, a property can be used to reduce the times of recursions as follow:

Property: Given an object-pair 〈A,B〉 as current DC, if it exists an sub DC 〈C,D〉 in

the shuttle scope of 〈A,B〉 and 〈C,D〉 satisfies:

1. All the remaining keywords are covered in the shuttle scope of 〈C,D〉

2. dist(C,D) ≤ 1√
3
× dist(A,B)

Then 〈A,B〉 is confirmed as a diameter hence we can return dist(A,B) directly (Figure

4.6).



4.4. EVALUATION OF RDCC 53

Figure 4.6: Property

4.4 Evaluation of RDCC

Our experiments were conducted over five datasets: three types of synthetic datasets and

two real datasets.

The three distributions of synthetic datasets are same as Section 3.5.

1. uniform distribution

2. normal distribution of σ = 1
4
R

3. normal distribution of σ = 1
8
R

For each keyword, we generated 1000 data points and prepared a separate data-file to

save them. The total keywords are up to 100, thus there are 100,000 (= 1,000 × 100 ) data

points in all for each dataset.

In addition we use Flickr data and Twitter data as two real datasets. We collected 46,303

photo records from Flickr in Tokyo area. There are 19,425 unique tags in these photo records.

Each record is associated with 1 to 73 tags that can be viewed as keywords of data-point. We

also collected 164,175 tweets data as Twitter dataset and there are 300,301 tags (keywords)

in these texts of tweets data.

We use two collections of MongoDB to store these data points for Flickr dataset and

Twitter dataset. For each collection we prepared keyword indices at first. When a query is



54 CHAPTER 4. RECURSIVE DCC

given, we load necessary data and create m grids on demand. The capacity of leaf-node in

each grid is 100 objects, and each internal-node has 100 child-nodes.

To evaluate the proposed approach in this chapter, we test three top-down algorithms as

follow :

• Apriori-Z: Zhang’s Apriori-based algorithm

• DCC-NL: the DCC strategy with Nested Loop method

• RDCC: the recursive DCC approach with tight lower bound

Figure 4.7 shows the ART vs. the number of keywords m in the above five datasets.

In the case of uniform distribution (Figure 4.7(a)), we can see the Apriori-Z algorithm

provide a stable performance when m increase. This distribution gathers necessary objects

of all keywords into one smaller grid-cell, thus Apriori-Z can easily find a small δ∗ and use it

to cut down almost all the node-sets. On the other hand, because the enumerated node-sets

grows faster as m increases the performance of DCC-NL are degraded quickly when m gets

larger. However RDCC uses TLB for pruning, thus it can cut down a lot of node-sets that

could not prune in DCC-NL to curb the degradation of search performance. We can see

RDCC also keeps a stable search speed close to the Apriori-Z.

Figure 4.7(b) is the case of the normal distribution of σ = 1
4
R. Though this distribution is

lightly skewed , it still exists a result of object-set with small diameter δ∗opt for most of queries.

(when m = 9, the average of δ∗opt = 0.02R). But the result is not necessarily gathered into

one cell. Therefore the generation of node-sets in Apriori-Z becomes heavy as m increases.

In this case however, we can see the DCC based algorithms worked well.

With the distribution become highly skewed. Figure 4.7(c) shows that RDCC outperforms

the other two algorithms. In this case, the object-sets with small diameter may not exist.

Thus Apriori-Z cannot find a smaller initial value, and have to enumerate vast amount of

node-sets. DCC-NL also has more nodes in the shuttle of DCs which lead to more node-sets.

Moreover, due to the problem 2 in section 4.2.2, these node-sets cannot be pruned efficiently.

Hence DCC-NL also has a poor performance when m get larger. In contrast, RDCC has a

better priority order than DCC-NL and solved problem 2 by using TLB, thus keeps a good

performance.



4.4. EVALUATION OF RDCC 55

3 4 5 6 7 8 9
0

500

1000

1500

2000

2500

A
R
T
(m

s)

m

 Aprioriz-Z
 DCC-NL
 RDCC

(a) Synthetic dataset of uniform distribution

3 4 5 6 7 8 9
0

2000

4000

6000

8000

10000

12000

A
R
T
(m

s)

m

 Aprioriz-Z
 DCC-NL
 RDCC

(b) Synthetic dataset of normal distribution
with σ = 1

4R

3 4 5 6 7 8 9
0

2000

4000

6000

8000

10000

12000

A
R
T
(m

s)

m

 Aprioriz-Z
 DCC-NL
 RDCC

(c) Synthetic dataset of normal distribution
with σ = 1

8R

3 4 5 6 7 8 9
0

2000

4000

6000

8000

10000

12000

A
R
T
(m

s)

m

 Aprioriz-Z
 DCC-NL
 RDCC

(d) Flickr dataset

3 4 5 6 7 8 9
0

500

1000

1500

2000

2500

A
R
T
(m

s)

m

 Aprioriz-Z
 DCC-NL
 RDCC

(e) Twitter dataset

Figure 4.7: performance comparison



56 CHAPTER 4. RECURSIVE DCC

In the case of real datasets of Flickr(Figure 4.7(d)) and Twitter (Figure 4.7(e)), we can

see the average performance of RDCC outperforms the other two algorithms. In RDCC, we

can find a better δ∗ at an earlier stage and increase the lower bound of node-set, thus RDCC

can provide more stable search efficiency than Apriori-Z and DCC-NL.

4.5 Summary

In this chapter, we first reviewed DCC-NL algorithm for mCK query problem, and discussed

two problems in DCC-NL. One problem is that the enumeration of node-sets derived from

same DC cannot keep a priority order by using a nested loop search method. The other

problem is the original lower bound in DCC-NL failed to prune out part of node-sets even

though we know these node-sets are unnecessary enumerating. Therefore, we proposed a

search approach call RDCC. RDCC improved the DCC strategy in a recursive way such that

all the node-sets can be enumerated in a priority way. Moreover, in RDCC, we enhanced the

original lower bound by using a tighter lower bound (TLB) of node-set which can effectively

improve the pruning ability .

In our experiments, we compared RDCC algorithm with preceding DCC-NL algorithm.

The results in various datasets demonstrated that RDCC can efficiently inhibit the exponen-

tial growth of CPU overhead caused by the distributions in DCC-NL. Thus we can say the

RDCC significantly improved search efficiency of DCC-NL.

In these search algorithms including Apriori-Z, DCC-NL and RDCC, we need to generate

both node-sets and object-sets in the top-down process. Thus the NP property exists both

node-sets and object-sets enumeration. Theoretically, there exists a risk that we may generate

exponential node-sets in these algorithms. Though RDCC can reduce this risk, but cannot

completely avoid it. Furthermore, our assumption that create a grid partitioning for each

keyword may increase the risk especially when the objects have multiple keywords.



Chapter 5

Pairwise Expansion as a new top-down

search without node-set generation

5.1 New Top-down Search Strategy

5.1.1 Objective of this chapter

Up to now, the top-down search approaches we have discussed all need to enumerate node-

sets such that search efficiency may become unstable. Thus in this chapter, we consider a

technique that can eliminate this unstable factor of generating node-sets in the top-down

process.

5.1.2 Basic idea

According to the definition of mCK queries, we know that the mCK query is essentially an

combinatorial optimization problem, which is to find the optimal object-set with minimum

diameter among all the object-sets relevant to query keywords. The number of these object-

sets is in an exponential order of data size and this problem has been proved to be an NP-hard

problem in [9]. So far all of the algorithms for mCK query problem we have discussed follow

the same underlying principle:

• Use top-down exploration approaches taking advantage of hierarchical indices.

57



58 CHAPTER 5. PAIRWISE EXPANSION

• First enumerate sets of internal/leaf-nodes of each level of a hierarchical index, then

prune unnecessary node-sets to reduce generation of object-sets.

• For the leaf node-set which cannot be pruned out, exhaustively examine all possible

object-sets.

However the hardness also exists in the node-set enumeration, and pruning of node-sets

becomes very unstable on different data distributions.

Therefore, we propose a new top-down approach called Pairwise Expansion, which solves

mCK problem in two stages. We know the diameter of an object-set is an object-pair (a pair

of two objects). Thus in the first stage we enumerate object-pairs and give a higher priority

to a closer object-pair. We also know if an object-pair is the diameter of an object-set, then

the object-set must exist in a small shuttle area of the object-pair. Thus in the second stage

we expand the object-pair into object-sets in the shuttle area to test if it is a diameter of any

correct object-sets satisfying all query keywords. Finally we return the closest object-pair

which pass the test. In the first stage of object-pair enumeration we use top-down exploration

of node-pairs (a pair of two nodes) to find the closer object-pairs, thus we can avoid the risk

of generating exponential node-sets and still keep the strong pruning ability. And in the

second stage of object-pair check we adopt a recursive strategy like RDCC and circle check

method to reduce the total number of generated object-sets.

5.2 New setting of an On-the-fly quad-tree

In chapter 3 and 4, we created a grid partitioning for each keyword. However when one

object o is associated with l keywords, o will be existed in l different grids. This add to the

actual amount of data retrieved.

Therefore we employ an on-the-fly quad-tree structure to compute mCK queries. When

Q, as an mCK query keywords, is given, we only load necessary objects associated with Q

from one or multiple datasets and then create a quad-tree for these objects. Next we start

the search process from this quad-tree.

Figure 5.1 is an example of on-the-fly quad-tree when four keywords Q = {A,B,C,D} are

given. In this quad-tree each internal node (node 1) has exactly four children (node 1-1,1-2,1-



5.3. PAIRWISE EXPANSION METHOD 59

3,1-4). Furthermore, each node is given an additional MBR which is tightly bound with all

objects in this node. These MBRs are used to estimate the distance between nodes instead

of original cell’s boundary rectangles. We also append an additional keyword bitmap in each

node to summarize the keyword information in the same way as bR*-tree. For example in

the node 4-4, the bitmap = 0111 says that this node contains objects only associated with

keyword B,C,D and not A. The additional MBR and keyword bitmap are produced when

we create a new node. Thus this process does not need much extra time.

Figure 5.1: on-the-fly quad-tree

5.3 Pairwise Expansion method

5.3.1 Overview

Given a data set with n objects, the number of possible object-sets is O(nm). Because the

diameter of an object-set is determined by only two objects, the number of possible diameters

for all the object-sets is just O(n2). From this property it is natural to think that we must



60 CHAPTER 5. PAIRWISE EXPANSION

find the closest object-pair p among all the object-pairs such that there exists an object-set

O satisfying all given keywords and the diameter of O is p. Thus our idea is to accomplish

the search process in two stages: First we enumerate object-pairs in ascending order of their

distances. Next, we pick up each ’closer’ object-pair and expand it into some object-sets

and check if it can be the diameter of any of object-sets satisfying all given keywords. Here

we call the object-set that satisfy all given keywords a ’correct’ object-set. This approach is

called Pairwise Expansion.

5.3.2 Stage1: Top-down Generation of Object-Pair

In this stage we need to generate object-pairs for all objects in the dataset. In order to give

a higher priority to a closer object-pair, we employ an algorithm according to the method to

Closest Pair Query (CPQ) problem [11] . We depict the algorithm of CPQ problem first by

using our quad-tree structure.

The algorithm of CPQ problem in [11] uses a branch-and-bound strategy of top-down

search. There are two global variables in the algorithm :

1. δ∗: minimum distance found so far as an upper bound of the true minimum value;

2. Queue: a queue holds node-pairs in ascending order according to Mindist of these node-

pairs.

The algorithm of [11] can be written as follows:

Algorithm: CPQ

Step 1: Initialize δ∗ with ∞, and add the root node-pair (〈root, root〉) into the Queue.

Step 2: Pull out the head node-pair 〈ni, nj〉 of Queue. If Mindist(ni, nj) ≥ δ∗, then return

δ∗.

Step 3: If both ni and nj are leaves, calculate the distance of each object-pair 〈oi, oj〉

(oi ∈ ni, oj ∈ nj). If dist(oi, oj) < δ∗, then update δ∗ by dist(oi, oj).

Step 4: If either ni or nj is an internal node, add all the child-node pairs into Queue. If

Maxdist(ni, nj) < δ∗, then update δ∗ by Maxdist(ni, nj).



5.3. PAIRWISE EXPANSION METHOD 61

Step 5: If Queue is empty then return δ∗; otherwise go to Step 2.

In CPQ algorithm the result is the simply minimum ’distance’ of object-pair. However the

result of mCK is the minimum ’diameter’. Thus, even if we get an object-pair whose distance

is smaller than δ∗, we cannot use it to update δ∗ directly. It is because we do not know if it

can be a diameter of a ’correct’ object-set. Furthermore, in Step 4, Maxdist(ni, nj) is not

an upper bound of a diameter. It’s because a ’correct’ object-set O including 〈ox, oy〉(ox ∈

ni, oy ∈ nj) may have a diameter greater than dist(ox, oy). That means δ∗ will not be updated

until down to leaf node-pairs. Thus the size of Queue may be too large and be very costly

to maintain it. We will make this algorithm to be suitable for mCK problem.

Given an object-pair 〈o1, o2〉, if it is the diameter of an object-set O, then dist(o1, o2) is

larger than any distance of object-pair 〈oa, ob〉(∀oa, ob ∈ O). Thus all the objects of O must

exist in the area of Shuttle(〈o1, o2〉) (Figure 5.2(a)).

Here Shuttle(〈o1, o2〉) is defined as the set of all objects o′ such that o′ must satisfy that

dist(o′, o1) ≤ dist(o1, o2) and dist(o′, o2) ≤ dist(o1, o2).

Therefore we have the property that if the objects in Shuttle(〈o1, o2〉) do not satisfy all

given keywords, then 〈o1, o2〉 will never be a diameter of any ’correct’ object-set, and we can

skip this object-pair.

Similarly, given a node-pair 〈n1, n2〉, if we know that no object-pair belonging to 〈n1, n2〉

can be a diameter of a ’correct’ object-set, then we can skip 〈n1, n2〉. Hence we define the

area of Shuttle(〈n1, n2〉) for node-pair 〈n1, n2〉, as follows (Figure 5.2 (b)).

Shuttle(〈n1, n2〉) is defined to be the set of all possible objects o′ such that o′ must satisfy

that Mindist(o′, n1) ≤Maxdist(n1, n2) and Mindist(o′, n2) ≤Maxdist(n1, n2).

Here Mindist(o′, n1) is the minimum distance between object o′ and MBR of n1. In Fig

5.2 (b) , we can see that the area of Shuttle(〈n1, n2〉) is formed by the intersection of two

regions by definition. We denote these two regions by Reg(n1) and Reg(n2), respectively.

According to the definition, we know that Shuttle(〈n1, n2〉) covers all the shuttle areas

of object-pairs 〈oi, oj〉 such that∀oi ∈ n1,∀oj ∈ n2. Thus if Shuttle(〈n1, n2〉) does not satisfy

all the query keywords Q, then Shuttle(〈oi, oj〉) for each object-pair 〈oi, oj〉 cannot satisfy Q,

and thus we can skip 〈n1, n2〉 .

On the other hand, if the Shuttle(〈n1, n2〉) contains all the keywords Q, then there exists



62 CHAPTER 5. PAIRWISE EXPANSION

(a) shuttle area of object-pair

(b) shuttle area of node-pair

Figure 5.2: shuttle area

at least one ’correct’ object-set O in the shuttle area such that the diameter of O ≤ the max-

imum distance between any two points on the boundary of the shuttle area. The maximum

distance of shuttle area is difficult to calculate directly, but we can know its upper bound D.

In Fig 5.2 (b) , we can see D is no larger than the maximum distance existing in Reg(N1)

and that inReg(N2). We know that the maximum distance in Reg(N1) is Diag(N1) + 2 ×

Maxdist(N1, N2) (Diag(N1) is the diagonal distance of MBR of N1), the maximum distance

in Reg(N2) is Diag(N2) + 2 ×Maxdist(N1, N2). Thus we can set D as follow:

D = Min(Diag(N1), Diag(N2)) + 2 ×Maxdist(N1, N2).

D is also an upper bound of a diameter. Thus we can use it to update δ∗.

To determine the keywords contained in Shuttle(〈n1, n2〉), we employ range search of [13]

. The deterministic process is recursive. Starting from the root node of quad-tree, we check



5.3. PAIRWISE EXPANSION METHOD 63

the positional relation between a current node n∗ and Shuttle(〈n1, n2〉). If n∗ is an internal

node of the shuttle (e.g., N3 in Figure 5.2 (b)), then we add all the keywords of n∗ by using

the bitmap of n∗; if n∗ is an external node of the shuttle (e.g., N5 in Figure 5.2 (b)), then n∗

is skipped; if n∗ is crossed by the boundary of the shuttle (e.g., N4 in Figure 5.2 (b)), then we

recursively check the children nodes or objects in n∗. Lastly, when all the nodes and objects

in the shuttle area are checked, we can determine the keywords in Shuttle(〈n1, n2〉).

In summary, our algorithm of PE is written based on the algorithm of CPQ problem as

follows:

Algorithm: Pairwise Expansion (PE)

// Input: root: root node of quad-tree; Q: m given keywords.

// Output: δ∗opt: the minimal diameter.

// Variables: Queue: a sorted list of node-pair 〈ni, nj〉, sorted in the ascending order of

Mindist(ni, nj); δ
∗: current minimum diameter.

Step 1: Set the node-pair 〈root, root〉 into Queue. Initialize δ∗ with ∞.

// This is a (do-while) loop from Step 2 to Step 5, in order to repeat pulling out the current

smallest node-pair from Queue.

Step 2: Dequeue node-pair 〈ni, nj〉 from Queue. Do:

2-1: If the Mindist(ni, nj) ≥ δ∗, then return δ∗.

2-2: If Shuttle(〈ni, nj〉) does not contain all the keywords of Q, then goto Step 5.

2-3: Calculate the upper bound D of Shuttle(〈ni, nj〉). If D < δ∗, update δ∗ by D.

2-4: If either ni or nj is not a leaf-node, goto Step 4. Else goto Step 3.

Step 3: // (both ni and nj are leaf-nodes.)

For each object-pair 〈oa, ob〉 in 〈ni, nj〉 (oa ∈ ni, ob ∈ nj) in the ascending order of

dist(oa, ob), do:

3-1: If dist(oa, ob) ≥ δ∗, then break this for-loop and goto Step 5.

3-2: Check if 〈oa, ob〉 is a diameter of a ’correct’ object-set which exists in Shuttle(〈oa, ob〉).



64 CHAPTER 5. PAIRWISE EXPANSION

3-3: If the check is true , update δ∗ by dist(oa, ob) and goto Step 5.

3-4: If the check is false , continue this for-loop.

(//the next 〈oa, ob〉 is tested. )

Step 4: If either ni or nj is an internal node, generate all the child-node pairs into the

Queue.

Step 5: Return δ∗ if Queue is empty. Otherwise goto Step 2.

5.3.3 Stage2: Check of Object-Pair

Next, we must formalize the ’check’ action of Step 3. To do so, we firstly propose

RecursiveCheck(oa,ob). After that, we propose SophisticatedCheck(oa,ob) as the final version.

RecursiveCheck

At (3-2) of PE, to check if an object-pair 〈o1, o2〉 (denoted as 〈oa, ob〉 in PE’s (3-2)) can be a

diameter of a ’correct’ object-set, we will expand 〈o1, o2〉 into object-sets by using the objects

contained in Shuttle(〈o1, o2〉). Once we find at least one ’correct’ object-set whose diameter

is dist(o1, o2), then the check of (3-2) succeeds, and we goto (3-3).

Firstly we use a recursive way to do the checking process. In order to check if 〈o1, o2〉

is the diameter of a ’correct’ object-set which covers all the query keywords Q, we need

to confirm whether or not there exists an object-set O′ in Shuttle(〈o1, o2〉) such that the

diameter of O′ ≤ dist(o1, o2) and O′ covers all the rest of keywords of {Q − o1.ψ − o2.ψ}.

This is because, if such O′ exists, then 〈o1, o2〉 can be determined as the diameter of the

’correct’ object-set which is formed by the combination of 〈o1, o2〉 and O′. Otherwise, 〈o1, o2〉

cannot be the diameter of any ’correct’ object-set. Here, O′ can be viewed as a sub object-

set of a ’correct’ object-set, and the diameter of O′ is an object-pair in Shuttle(〈o1, o2〉).

Therefore, in order to confirm or deny the existence of O′, it is sufficient to test each object-

pair 〈ox, oy〉 (dist(ox, oy) ≤ dist(o1, o2)) in Shuttle(〈o1, o2〉) to see whether or not 〈ox, oy〉 can

be the diameter of a sub object-set which covers the rest of keywords of {Q− o1.ψ − o2.ψ}.

Thus we repeat this test recursively. We perform this recursive process until one O′ is found



5.3. PAIRWISE EXPANSION METHOD 65

(succeed, 〈o1, o2〉 is a diameter) or all the object-pairs are tested and no such O′ exists (fail,

〈o1, o2〉 is not a diameter).

We explain our idea in an example of Figure 5.3. In Figure 5.3, given a query Q =

{A,B,C,D,E, F,G,H}, consider that at the step 3 of PE, we check that 〈o1, o2〉 is the

diameter of some ’correct’ object-set. If we can find a sub object-set O′ of O (suppose that

O′ = {o3, o4, o5} in Figure 5.3 ) in Shuttle(〈o1, o2〉), such that O′ must cover all the rest of

keywords of {Q − o1.ψ − o2.ψ}(= {D,E, F,G,H}) and the diameter of O′ = dist(o3, o4) ≤

dist(o1, o2), then we can determine that 〈o1, o2〉 is the diameter of a ’correct’ object-set

O = {o1, o2, o3, o4, o5} by combining 〈o1, o2〉 with O′. To examine O′, we can pick up 〈o3, o4〉

and test to see that 〈o3, o4〉 is the diameter of O′ with a sub object-set {o5} of O′ such that

{o5} covers the rest of keywords ({G,H}) which are not included in o3 and o4. Here {o5}

only has one object, thus the recursive process is ended and the test of 〈o1, o2〉 succeeded.

Figure 5.3: division of object-set

We summarize this strategy as algorithmRecursiveCheck(oa, ob). RecursiveCheck(oa, ob)

is recursive and has two return-values: true (〈oa, ob〉 is diameter) or false(otherwise). In the

algorithm, let q be the set of the keywords (⊆ Q) whose tests have been finished. q is

initialized to ∅. The algorithm is described as follows:

Algorithm: RecursiveCheck(oa,ob)



66 CHAPTER 5. PAIRWISE EXPANSION

// Input: Q: m given keywords.

// Output: true or false.

// Variables: q: the set of keywords (⊆ Q) which has been tested.

// according to q, we can know the rest of keywords (Q− q) that a sub object-set O′ must

contain.

Step 1: Add the keywords of oa and ob to q. If q = Q or there exists one object o∗ in

Shuttle(〈oa, ob〉) such that q ∪ o∗.ψ = Q, then return true.

Step 2: Check if Shuttle(〈oa, ob〉) satisfies keywords Q− q. If the check fails, return false.

Step 3: Generate all the object-pairs 〈oi, oj〉 such that oi, oj ∈ Shuttle(〈oa, ob〉) and

dist(oi, oj) ≤ dist(oa, ob). Then sort them in ascending order of dist(oi, oj) into d.

Step 4: For each object-pair 〈oi, oj〉 in d in the sorted order, do:

4-1: Invoke RecursiveCheck(oi, oj).

4-2: If RecursiveCheck(oi, oj) = true, then return true;

4-3: If RecursiveCheck(oi, oj) = false, continue this loop.

(//the next object-pair is picked up in d.)

Step 5: When all the object-pairs in d are checked, then no object-pair can be the diameter

of any ’correct’ object-set, return false.

In this algorithm, we generate an object-set by repeated iteration of a set of object-pairs.

And we skip all object-pairs if their shuttle areas lack necessary keywords.

SophisticatedCheck

Next we propose a new check procedure called SophisticatedCheck(oa,ob).

In section 2.4.3, we briefly introduced Guo’s approach that uses the minimum covering

circle MCC of an object-set to find an approximate solution. Our idea is considered along

the proof process of the approximate property using MCC in [9]. Here we use Figure 5.4 to

illustrate this idea.



5.3. PAIRWISE EXPANSION METHOD 67

Figure 5.4: boundary circle Figure 5.5: boundary circle check

When we check the object-pair 〈o1, o2〉 in Figure 5.4, if there is a set of objects O′ (such

as O′ = {o3, o4, o5}) in Shuttle(〈o1, o2〉) such that O′ covers all the rest of keywords (Q −

o1.ψ − o2.ψ) and O′ can be enclosed in a circle C whose diameter = dist(o1, o2), then the

diameter of O′ ≤ dist(o1, o2). Thus we can generate a ’correct’ object-set by a combination

of 〈o1, o2〉 and O′ and the diameter of the ’correct’ object-set is dist(o1, o2).

Based on this idea, in the step 3 of RecursiveCheck(oa,ob), when an object-pair 〈oc, od〉 is

recursively generated, we can make two circles C1 and C2 that the diameters of both C1 and

C2 are dist(oa, ob), and that oc and od are on the boundary of these two circles. This situation

is shown in Figure 5.5. Then we test each circle to examine whether or not it contains the

rest keywords Q− q. This test is called ’the circle test’. If a circle C is determined to contain

the rest keywords, then we say that the circle test of C succeeds; otherwise, this circle test

fails. Apparently, the following rule 1 holds:

Rule 1: If either C1 or C2 of an object-pair succeeds in the circle test, we can safely

stop recursion and return true. It is because there exists an sub object-set O′ in C1 or C2

which covers all the rest of keywords and the diameter of O′ ≤ dist(oa, ob).

Next, assume the case where we have examined the circle tests for all object-pairs in

Shuttle(〈oa, ob〉) and where we cannot find any successful circles. Under this situation, the

following rule 2 holds:



68 CHAPTER 5. PAIRWISE EXPANSION

Rule 2: If the circle tests for all object-pairs fail, then in Step 4 of algorithm Re-

cursiveCheck, we have no need to recursively check any object-pair 〈oi, oj〉 which satisfies

dist(oi, oj) ≤
√

3
2
dist(oa, ob).

This is because dist(oi, oj) can not be the diameter of any sub object-set O′ covering all

the rest of keywords. We use the following lemma to illustrate it.

lemma: The rule 2 never misses the answer.

proof: We use proof by contradiction. Let the hypothesis be that, (1) there is no object-

pair that succeeds in the circle test of rule 1 and that (2) there exists a sub object-set O′

whose diameter δ(O′) = dist(ox, oy) such that O′ covers all the rest of query keywords and

dist(ox, oy) ≤
√

3
2
dist(oa, ob). Then, we can know the following inequation, according to Guo’s

theorem 4 of [9] which is described as inequation (2.1) in section 2.4.3.

φ(MCCO′) ≤ 2√
3
δ(O′). (5.1)

Due to our assumption of (2), we also know that

δ(O′) = dist(ox, oy) ≤
√

3

2
dist(oa, ob). (5.2)

Thus we can get

φ(MCCO′) ≤ 2√
3
× dist(ox, oy) ≤

2√
3
×

√
3

2
× dist(oa, ob) = dist(oa, ob) (5.3)

The relationship (5.3) says that because of φ(MCCO′) ≤ dist(oa, ob), O
′ can be enclosed by

a larger circle whose diameter is dist(oa, ob). Thus there must be two objects om and on in

O′ such that the circle test of 〈om, on〉 succeeds in rule 1. This is a contradiction. Therefore,

any object-pair 〈oi, oj〉 which can be the diameter of such a sub object-set O′ must satisfy

dist(oi, oj) >
√

3
2
dist(oa, ob). �

As an example of Figure 5.6, if there exists O′ = {o3, o4, o5, o6} whose diameter is

dist(o5, o6) in Shuttle(〈o1, o2〉) and dist(o5, o6) ≤
√

3
2
dist(o1, o2), then the diameter of MCCO′

is less than dist(o1, o2). Thus O′ should be successfully checked in the circle C of object-pair



5.3. PAIRWISE EXPANSION METHOD 69

〈o3, o6〉.

Figure 5.6: Successful example of circle test

The circle test can speed up the process of object-pair check. If it succeeds, then we can

return true directly due to the rule 1. Even if it fails, a part of object-pairs for recursion can

be cut down due to the rule 2.

In summary, we add the process of circle test into RecursiveCheck algorithm and rewrite

it as SophisticatedCheck as follow.

Algorithm: SophisticatedCheck(oa,ob)

// Input: Q: m given keywords.

// Output: true or false.

// Variables: q: the set of keywords (⊆ Q) which has been tested.

// according to q, we can know the rest of keywords (Q− q) that a sub object-set O′ must

contain.

Step 1: Add the keywords of oa and ob to q. If q = Q or there exists one object o∗ in

Shuttle(〈oa, ob〉) such that q ∪ o∗.ψ = Q, then return true.

Step 2: Check if Shuttle(〈oa, ob〉) satisfies keywords Q− q. If the check fails, return false.



70 CHAPTER 5. PAIRWISE EXPANSION

Step 3: Generate all the object-pairs in Shuttle(〈oa, ob〉), and examine the two circles C1

and C2 of rule 1 for every object-pair. If there exists a circle satisfying keywords

Q − q, then return true; otherwise we choose all object-pairs 〈oi, oj〉 such that
√

3
2

×

dist(oa, ob) < dist(oi, oj) ≤ dist(oa, ob) and sort them into d.

Step 4: For each object-pair 〈oi, oj〉 in d in the sorted order, do:

4-1: Invoke SophisticatedCheck(oi, oj).

4-2: If SophisticatedCheck(oi, oj) = true, then return true;

4-3: If SophisticatedCheck(oi, oj) = false, continue this loop.

(//the next object-pair is picked up in d).

Step 5: When all the object-pairs in d are checked, then no object-pair can be the diameter

of any ’correct’ object-set, return false.

5.4 Preliminary evaluation

5.4.1 Experimental Set-up

In this section we also evaluate our algorithm over a synthetic dataset and real datasets.

As the uniform dataset in chapter 3 and 4, the synthetic datasets consist of two-dimensional

data points where each point has only one keyword. We generated 1000 data points for each

keyword in advance, up to 100 keywords, thus the total data is 100,000. These data points

are randomly generated and stored in a data file. When a query of m-keywords is given, we

build a quad-tree only for the necessary data points after reading the data-file.

We also employ a real dataset which collects 399,754 photo records from Flickr in Tokyo

area. Each record is associated with from 1 to 75 tags that can be viewed as keywords of

data-point. There are 89,277 unique tags as a whole. We stored these records in MongoDB,

and we built index of tags for them in advance. When a query is given, we load necessary

data by using query statements of MongoDB.

As a quad-tree, we defined that each node is divided when the number of data points is

greater than 30.



5.4. PRELIMINARY EVALUATION 71

As a comparison, we test four top-down algorithms as follow :

• Apriori-Z: Zhang’s Apriori-based algorithm

• DCC-NL: the DCC strategy with Nested Loop method in chapter 3

• RDCC: the recursive DCC approach with tight lower bound in chapter 4

• PE: Pairwise Expansion method in this chapter

We implemented the Zhang’s Apriori-based algorithm denoted by Apriori-Z under our

quad-tree. And for each of nodes we also prepared bitmap and keyword MBR information

like bR*-tree, and the other set is the same. the other algorithms are DCC-NL in chapter

3 and RDCC in chapter 4. In its implementation we use m pieces of hierarchical grid-

partitionings for m given keywords. The maximum capacity and fan-out of each grid-cell are

both 100. Note that both quad-tree and grid-partitioning are also created dynamically when

a query is given.

All the algorithms are implemented in Java with version 1.7 on a machine with an In-

tel(R) Xeon(R) CPU of 2.6GHz and 12GB of RAM. The performance measure is the average

response time (ART). The ART includes all time of data access, tree creation and search

execution. For each m, we use 50 sets of query keywords with size m and take ART over

them.

5.4.2 Experimental evaluation

Efficiency

Figure 5.7(a) is ART vs. the number of keywords m in the synthetic dataset.

In Figure 5.7(a), we vary the number of keywords and evaluate the performance of the

three algorithms. We can see all the algorithms have good performance when m is small,

because the uniform distribution gathers necessary objects of all keywords into a small area.

Thus it can easily get a small diameter as a threshold, which has high pruning efficiency

of node-set. However with the increase of m, the diameter becomes larger and pruning

efficiency drops down. Thus the enumeration of node-sets is the major overhead affecting



72 CHAPTER 5. PAIRWISE EXPANSION

3 4 5 6 7 8 9
0

200

400

600

800

1000

1200

A
R
T
(m

s)

m

 Aprioriz-Z
 DCC-NL
 RDCC
 PE

(a) synthetic dataset

3 4 5 6 7 8 9
0

500

1000

1500

2000

2500

3000

A
R
T
(m

s)

m

 Aprioriz-Z
 DCC-NL
 RDCC
 PE

(b) Flickr dataset

Figure 5.7: performance comparison with respect to average response time (ART) for four
algorithms: Apriori-Z, DCC-NL, RDCC and PE varying m (3-9)

the performance. Pairwise Expansion does not need to enumerate node-set. Hence the ART

just increases slowly as the amount of data increases.

Next Figure 5.7(b) shows the performance comparison of Flickr data. We test 50 different

sets of query keywords for each m. For each test, we declare that this test is invalid if the

response time is longer than 30,000 milliseconds. Thus in Figure 5.7(b) there are no value

for Apriori-Z when m > 5 and DCC-NL when m > 6 and RDCC when m > 7.

For the mCK query problem, the enumeration of node-sets is an unstable factor for

performance. On some data distributions, the number of enumerated node-sets may be too

large such that the response time become too long. Therefore we can see the ARTs of Apriori-

Z and DCC-NL and RDCC decrease rapidly as m increases for the real dataset. Under this

situation, Pairwise Expansion worked well, as a result of no node-set enumeration.

Scalability

We evaluate the scalability of Pairwise Expansion algorithm. We prepare four data sets of

Flickr data which collect 0.4M, 0.8M, 1.2M and 1.6M photo records, respectively. In Figure

5.8 we can see the ARTs of each m in the four different data sets. We tested 50 different sets

of queries for each dataset. In order to clearly demonstrate the search performance of our

algorithm, we show the ART in three parts of time: Load time , Building time of quad-tree



5.4. PRELIMINARY EVALUATION 73

and CPU time.

• Load time: the time accessing necessary data from MongoDB

• Building time of quad-tree: the time of construction for a quad-tree

• CPU time: the time of executing the algorithm and returning result

The performance of Figure 5.8 shows that CPU time increases with the data size. It is

because we need to enumerate more object-pairs when the data size increases. But compared

with the exponential enumeration of node-sets, Pairwise Expansion has an acceptable rate

as the data scales up in our experiment. In addition, we can also see that Load time grows

linearly as data size increases, while the Building time of quad-tree grows faster than

linearly.

Figure 5.8: comparison of the performance for PE algorithm in four different sizes of datasets:
0.4M, 0.8M, 1.2M and 1.6M



74 CHAPTER 5. PAIRWISE EXPANSION

Figure 5.9: performance for each test case for data size=1.6M and m = 7

5.4.3 Further tests

In order to know more details about the performance, Figure 5.9 shows the respective per-

formances for 50 test cases when m = 7 in the Flickr dataset with 1.6M records. We can see

that in most of test cases, the Building time of quad-tree takes a higher proportion of the

overall response time.

Furthermore, we observe the impact about number of relevant objects for each case in

Figure 5.10, we can see the Load time grows at the same rate with relevant objects increase

in Figure 5.10(a). In contrast, the Building time of quad-tree grows obviously faster than

Load time, and the growth is not stable (Figure 5.10(b)). It is because that the quad-tree is

an unbalanced tree, thus when the distribution of data is skewed, we spend more additional

cost for the division of cell. And these additional costs will be much greater with the data

size increases.

5.5 Summary

In this work, we proposed Pairwise Expansion approach for the issue of mCK query. We

accomplished the search process in two stages. In the stage of object-pair enumeration we



5.5. SUMMARY 75

generated the closer object-pair in the first place by the top-down enumeration of node-pairs.

And we checked the keywords in the shuttle area of each node-pair to prune unnecessary

object-pairs. In the stage of object-pair check, we checked if an object-pair is a diameter

of any object-set by expanding it into some object-sets. We used repeated iteration of a

set of object-pairs to generate the object-sets. And we adopted the circle check strategy to

accelerate the object-pair check process in the stage. The search process is executed under

the assumption that there is no prepared data structure. Thus we create a simple quad-tree

dynamically by using the necessary data loaded when each query is given.

Compared with the existing top-down search methods, Pairwise Expansion can avoid

the unstable factor of enumeration of node-sets. The performance of synthetic and real

datasets demonstrated that our approach keeps stable and the well CPU time for different

distribution of data. This is efficient and applicable for real spatial web data.

However, the cost of construction of our quad-tree takes a higher proportion of the total

search cost such that the overall performance is reduced. We will discuss the improvement

method in next chapter.



76 CHAPTER 5. PAIRWISE EXPANSION

(a) number of objects vs. Load time

(b) number of objects vs.Building time of quad-tree

Figure 5.10: Impact about number of objects



Chapter 6

PE Enhanced with Convex-hull based

Lower/Upper Bounds

6.1 Remaining issues of the naive PE method

In Chapter 5, we proposed Pairwise Expansion approach for the mCK query problem. Dif-

ferent from the existing top-down search methods, Pairwise Expansion does not expand

all the node-sets at each level of a hierarchical index in top-down process. Instead, it just

enumerates node-pairs to find the closer object-pairs, and expands only in the shuttle scopes.

Thus Pairwise Expansion can avoid the unstable factor of enumeration of node-sets, and

remain a high pruning efficiency of top-down search strategy. However though the naive

Pairwise Expansion method keeps a well performance for different data distributions com-

pared with other existing top-down methods, it still has some deficiencies to be improved

and perfected.

Based on the performance result of Figure in Section 5.5, we can see that when data size

is small, it takes tiny time to build the quad-tree. However as the size of related data set

increases, the construction of the on-the-fly quad-tree will become very time consuming, and

take a higher proportion of the overall response time. That is not inconformity with our

original intention that quickly build a data index on demand for real spatial web data. Thus

this problem needs to be addressed. We will discuss the data structure in detail later in this

chapter.

77



78 CHAPTER 6. ENHANCEDPE

Furthermore, in the naive Pairwise Expansion approach, we noticed a trend that when

the diameter of final result is large, the search time will correspondingly grows very quickly.

In our approach, we need to generate and check the object-pairs whose distances are less

than the diameter of final result. Hence there are too many object-pairs to be enumerated

under a large optimal diameter. Though we can prune parts of them in the case that the

shuttle area of a node-pair/object-pair does not cover all the keywords, this is not sufficient

enough for this situation. Thus we need some other way to improve the pruning efficiency.

In this chapter, we will discuss a convex-hull based lower and upper bounds for this problem.

6.2 Discussion about data structure

6.2.1 Review of on-the-fly quad-tree

Up to now, the spatial indexing methods employed here, including grid partitioning in DCC

and quad-tree in naive PE, are all based on a fixed grid scheme which means recursively

divides nodes(cells) into fixed numbers of equal-sized subnodes(subcells). It is difficult to

decide which index is the most suitable in mCK queries problem. Hence we chose a fixed

grid because it lends itself to relatively simple scheme that does not spend much effort in

seeking optimal split way, thus it should be quickly built for the loaded data on demand.

However the performance result of Flickr data set brings to our attention that we ought to

reconsider this spatial indexing method. Here we will figure out the problem of our quad-tree.

First of all, we describe how to build an on-the-fly quad-tree in naive PE. Suppose we

want to create a quad-tree for the related data set O = {o1, o2, ...ol} in the sense that each

object in O contains at least one of query keywords. And we use C to denote the Capacity of

the quad-tree, which means the maximum number of objects in a leaf node. The algorithm

CreateQuadtree(O) is described as follow:

Algorithm: CreateQuadtree(O)

Step 1: Create a node N for O, then scan all the objects in O, and determine the Minimum

Boundary Rectangle(MBR) for N .



6.2. DISCUSSION ABOUT DATA STRUCTURE 79

Step 2: If the size l of O is larger than C, then divide the region of N into four equal-sized

region and N is marked as an internal-node. Accordingly, objects in O are also divided

into four sub data sets O1, O2, O3 and O4. Next, for each sub data set Ok(k = 1, 2, 3, 4),

we recursively invoke CreateQuadtree(Ok) to create sub nodes.

Step 3: If the size of O is not larger than C, then N is marked as leaf-node.

According to the description of algorithm CreateQuadtree(O), it needs a full scan for

the objects in O when the node N is created. Thus the cost of building a quad-tree is

determined by the times of object scanned. However because the quad-tree divides node into

equal-sized regions, the number of objects in each region is unbalanced. That may create

too much repeated scan for the same objects and make the cost expensive. As an extreme

case, when all the objects gathered together in a small area, we have to repeatedly scan these

objects for many times before reach to this small area. There are quite a few cases of data

distributions like this in the real spatial data sets, especially the objects associated with a

toponym. For example, the objects associated with keyword ’choufu’ are mainly gathered

around the choufu station. Therefore, it is difficult to quickly built a quad-tree for the large

number of such skew distributional data.

Moreover, the capacity C in the quad-tree is an important parameter for the search

performance including both build time of quad-tree and CPU time for execution of search

algorithm. In order to make clear the relationship between C and search performance, we

compare various performance metrics for different numbers of C. Beside the performance

metrics of ’CPU time’, ’Load time’ and ’Building time of quad-tree’ in Section 5.5, we also

measure the search performance based on the following three performance metrics to compare

the different aspects of CPU time.

• Number of enumerated node-pairs: in our naive Pairwise Expansion method,

we create a queue to enumerate the node-pairs in top-down process. For each node-

pair 〈na, nb〉 in queue, it is necessary to check the keywords in shuttle scope of 〈na, nb〉

to decide if the sub node-pairs of 〈na, nb〉 will be enumerated. Hence the number of

enumerated node-pairs represents the pruning ability of node-pair side.



80 CHAPTER 6. ENHANCEDPE

• Number of generated object-pairs: compared with the node-pair enumeration, the

cost in object-pair side constitutes a more significant portion of the CPU time. Here

we use two numbers (of generated object-pairs and checked object-pairs) to represent

the total cost of object-pairs. If the two nodes of the dequeued node-pair are both

leaf-nodes, we will generate all the object-pairs for this node-pair. After an object-

pairs is generated, we need to compute its distance and compare with threshold for

pruning. Thus the total number of generated object-pairs is an indication of absolute

computational cost.

• Number of checked object-pairs: some of generated object-pairs can be pruned

directly when the keywords of two objects are same or the distance between them is

larger than δ∗. The rest of object-pairs which cannot be pruned directly are called

checked object-pairs. For each checked object-pair, it is necessary to check that if it

can be the diameter of a ’correct’ object-set. Since the check cost may be large, we

hope less object-pairs to be checked. Thus the number of checked object-pairs reflects

the pruning ability of object-pair side.

We proceed with the experiment by using the same set-up of naive PE, and fix the number

of query keywords m = 6. We randomly choose 6 keywords 50 times and take average values

for each performance metrics. Then we choose the following three different distributions of

data sets.

• uniform distribution: in this distribution, the quad-tree will be relatively balanced,

and each leaf-node objects will has nearly same number of objects. When m = 6, the

average number of total objects associated with the query keywords is 5991.

• normal distribution with σ = 1
8
R: In this data set, data will be gathered in one or

some small area, thus there may be big different numbers of objects among leaf nodes.

And the average number of total objects is also 5991.

• Flickr data set of 1.6M: In the Flickr data set, data may be extremely skew and the

height of quad-tree may become very high. The average number of objects is 22968.



6.2. DISCUSSION ABOUT DATA STRUCTURE 81

Table 6.1: Performance comparison of quad-tree on different capacity under uniform distri-
bution

Capacity 10 30 100
CPU time(ms) 116 177 421
Load time(ms) 252 252 262

Building time of quad-tree(ms) 14 12 11
Number of generated object-pairs 91521 467818 1544567
Number of checked object-pairs 8798 9438 9553

Number of enumerated node-pairs 5027 1785 632

Table 6.2: Performance comparison of quad-tree on different capacity under normal distri-
bution with σ = 1

8
R

Capacity 10 30 100
CPU time(ms) 417 630 1515
Load time(ms) 257 250 262

Building time of quad-tree(ms) 17 14 12
Number of generated object-pairs 31135 163180 763692
Number of checked object-pairs 8589 29728 95373

Number of enumerated node-pairs 2414 1389 611

Table 6.3: Performance comparison of quad-tree on different capacity under Flickr dataset
Capacity 10 30 100

CPU time(ms) 88 230 1073
Load time(ms) 157 143 147

Building time of quad-tree(ms) 403 387 361
Number of generated object-pairs 11706 96604 718597
Number of checked object-pairs 2125 9425 38224

Number of enumerated node-pairs 4227 2660 1335



82 CHAPTER 6. ENHANCEDPE

Table 6.1, 6.2 and 6.3 show the comparisons under three data sets, respectively. Each

table compares the six performance metrics on different capacity C = 10, 30 and 100.

From these tables, we can observe that the building times of quad-tree get shorter as

C increases. That is because large capacity of node can reduce the times of node split,

accordingly the cost of scanning objects becomes smaller.

In contrast, the CPU times become longer as C increases. We observe that if we increase

the value of C, the numbers of enumerated node-pairs are small. It can be explained that

the total numbers of nodes in quad-trees are reduced, thus less node-pairs are enumerated.

We also observe that the number of generated object-pairs increase. That is because more

objects in leaf-node will produce more object-pairs. Considering that if a leaf node-pair

〈na, nb〉 cannot be pruned, then all the object-pairs of 〈na, nb〉 need to be generated. If

both the objects number of na and nb are 30, then the number of generated object-pairs is

30 × 30 = 900; and if the objects number increase to 100, then 100 × 100 = 10, 000 object-

pairs will be generated. Thus we can see a rapid growing number of generated object-pairs in

these tables. In addition, a larger capacity also slow down the convergent rate of threshold δ∗

especially in the case of skewed distributions such that the numbers of checked object-pairs

increase inevitably.

In consequence, as C increases, though the enumeration of node-pairs can be reduced,

the costs in object-pair side increase more significantly. Thus the total CPU times increase.

6.2.2 Balance tree: on-the-fly kd-tree

According to the discussion of Section 6.2.1, we knew that since quad-tree is an unbalanced

tree, it is difficult to limit the depth of the tree with a small capacity such that we may

have to take much time for building this data index. Therefore we apply the solution of a

kd-tree[Jon Bentley 1975] to decrease the cost in construction of data index.

The kd-tree is known as a special case of binary space partitioning tree. In a kd-tree, each

internal-node has two subnodes which divided the space into two parts. The two subnodes

are determined by a specific dimension, which means all the objects in the internal-node are

splited into two groups equally according to their coordinate values on the specific dimension.

For instance, if we use ’X’ axis as the specific dimension, and M is the median value of the



6.2. DISCUSSION ABOUT DATA STRUCTURE 83

coordinate values of all objects on the ’X’ axis, then the objects with smaller X-coordinates

than M will be in one group and the rest of objects will be in another group. Thus the

object numbers of two subnodes are equal (when objects number is even) or almost equal

(when objects number is odd). Hence the whole tree is balanced. There are some strategies

to decide the division dimension:

1. The division dimension at each branching level is chosen in a round-robin fashion. For

instance, in a 2-D space, we alternatively use the X and Y axis to split objects, which

means if a node is divided by X axis, then its two subnodes should be divided by Y

axis.

2. The division dimension at each node is chosen as the one with the widest spread. The

spread of an axis is the difference between the maximum value and minimum value on

an axis. For instance, the spread of X axis can be calculated by X.max -X.min in which

X.max/X.min is the largest/smallest X-coordinate among all the objects in this node.

Here we use this strategy to construct our kd-tree.

3. At each node, calculate the variance of all coordinate values on each dimension and the

largest one will be chosen as the division dimension.

Based on the above description about kd-tree, the algorithm of creating a kd-tree can be

written like CreateQuadtree as follows (here we also use C to denote the capacity in the

kd-tree):

Algorithm: CreateKdtree(O)

Step 1: Create a node N for O, then scan all the objects in O, and determine the Minimum

Boundary Rectangle(MBR) for N .

Step 2: If the object number of O is greater than C, then invoke Split(O) to divide O into

two subsets Ol and Or, and N is marked as an internal-node. Next, for Ol and Or, we

recursively invoke CreateKdtree(Ol) and CreateKdtree(Or) to create subnodes.

Step 3: If the size of O is not greater than C, then N is marked as a leaf-node.



84 CHAPTER 6. ENHANCEDPE

Then we depict the division algorithm of O as follows:

Algorithm: Split(O)

Step 1: Calculate the spread in X axis and Y axis by the MBR of N . Then choose the

widest one as division dimension denoted as D axis.

Step 2: Find the median value on D axis among all the objects and any object whose

D-coordinate is smaller than the median will be put into Ol; otherwise it will be put

into Or. Then output Ol and Or.

Due to the balance of kd-tree, the depth of kd-tree is O(logN
C

). The object scan and the

calculation of median value can be accomplished in linear time. Thus it can guarantee an

O(NlogN
C

) time to create a kd-tree, which should be better than a quad-tree.

The above kd-tree is actually a binary tree in which each internal-node has only two

subnodes. However the quad-tree divide an internal-node into four subnodes. In view of

comparing the two indices fairly, we will modify the above CreateKdtree algorithm to change

the fanout of the ’kd-tree’ into four as follow.

Step 2: If the object number of O is greater than C, then invoke Split(O) to divide O into

two subsets Ol and Or. Next we invoke Split(Ol) again and divide Ol into two subsets

Oll and Olr . In the same way Or is also divided into two subsets Orl
and Orr . Thus there

are four subsets of O, then we recursively invoke CreateKdtree(Ok) (k = ll, lr, rl, rr) to

create subnodes for them.

In this way, each internal-node in this particular ’kd-tree’ has four subnodes. We call

such ’kd-tree’ a Quad-Split kd-tree, an QSkd-tree for short. In addition, the complexity of

creating a QSkd-tree is the same as standard kd-tree.

Comparing the difference between a quad-tree and a QSkd-tree, the region of an internal-

node in the quad-tree are divided into four smaller regions with same region size; while in

the QSkd-tree the region are divided into four smaller regions with same number of objects

in order to keep balanced. Thus in the case of uniform distribution, these two partition

structures will be nearly same. However in the case of skewed distribution, quad-trees will



6.2. DISCUSSION ABOUT DATA STRUCTURE 85

become unbalanced in depth. In contrast QSkd-trees can keep balanced in depth, but the

region size of each node will become extremely unbalanced. Figure 6.1 and Figure 6.2 show

the two partition structures in uniform distribution and skewed distribution respectively.

(a) quad-tree (b) QSkd-tree

Figure 6.1: Comparison between quad-tree and QSkd-tree under uniform distribution



86 CHAPTER 6. ENHANCEDPE

(a) quad-tree (b) QSkd-tree

Figure 6.2: Comparison between quad-tree and QSkd-tree under skewed distribution

Same as the quad-tree, we also evaluate the search performance by varying the number

of capacity C. Here we also fix the query keywords number m = 6 and use the same test

cases to compare the six performance metrics in Section 6.2.1. Since the data structures and

performances between quad-tree and QSkd-tree are almost same, We only evaluate the case

of skewed distribution by using Flickr data set of 1.6M.

Table 6.4 shows the average values of these performance metrics when capacities C of

QSkd-tree are 10, 30 and 100. The result demonstrates that as C increases, the building

time of QSkd-tree become shorter but the CPU time get longer. The reason is same, al-

though larger capacity can reduce the number of enumerated node-pairs, the cost generated

object-pairs and checked object-pairs increases more significantly, thus the whole CPU time

increased.

Table 6.4: Performance comparison of QSkd-tree on different capacity under Flickr dataset
Capacity 10 30 100

CPU time(ms) 156 333 2119
Load time(ms) 164 156 157

Building time of quad-tree(ms) 189 157 129
Number of generated object-pairs 39895 275919 1573849
Number of checked object-pairs 3647 12957 52739

Number of enumerated node-pairs 8297 4051 1533



6.2. DISCUSSION ABOUT DATA STRUCTURE 87

We can compare the performances between quad-tree and QSkd-tree by Table 6.3 and

Table 6.4. First, QSkd-tree performs consistently better in terms of building time than quad-

tree. Note that the QSkd-tree is a balanced tree and it can guarantee an O(NlogN
C

) time in

construction. In contrast, quad-tree may be too deep which lead to higher object scanned

cost in skewed distributions. In order to prove it, we randomly chose 10 test cases when

m = 6 and compare the depth of the two structures in Table 6.5. Then we found that the

depths of the quad-tree are much higher than the QSkd-tree. Consequently QSkd-tree is able

to exhibit a good performance in the building time.

We also observe that QSkd-tree performs worse than quad-tree in terms of CPU time.

We thought there are two reasons:

1. Since the nodes of quad-tree are divided into fixed region size, the number of objects in

a leaf node may be relatively small. It is possible that a leaf node has only one object.

In contrast, in order to keep balance, QSkd-tree ensure each leaf node with nearly same

object number. A node has at least C
4

objects. Thus most of the time, the number

of objects in a node of quad-tree is smaller than QSkd-tree. This can be proved in

Table 6.5 which compares the average object numbers of leaf nodes for the two trees.

This is one of the reasons that more object-pairs are generated from a leaf node-pair

of QSkd-tree.

2. Due to more object number in a node, the size of the node’s MBR of QSkd-tree is bigger

than the quad-tree. Table 6.5 shows the comparison of the average sizes of leaf nodes

for the two trees. Here the size of a leaf node is the diagonal distance of node’s MBR.

For this reason, QSkd-tree may has the bigger shuttle area of node-pair such that it is

easy to contain all the keywords in the shuttle area. That will lead to worse pruning

efficiency. Thus the numbers of enumerated node-pairs and checked object-pairs are

larger than quad-tree.

Consequently QSkd-tree spends more CPU time than quad-tree.



88 CHAPTER 6. ENHANCEDPE

Table 6.5: Node comparison between quad-tree and QSkd-tree under Flickr dataset
depth of tree average object number average size(km)

case number quad-tree QSkd-tree quad-tree QSkd-tree quad-tree QSkd-tree
case1 15 5 10 11 3.18 5.98
case2 17 6 10 8 1.44 1.91
case3 16 5 10 12 1.82 4.18
case4 18 6 10 11 0.74 1.55
case5 15 5 11 29 1.95 7.08
case6 14 5 10 10 2.86 5.36
case7 16 5 10 11 2.84 5.61
case8 16 5 10 18 2.02 6.65
case9 18 6 10 14 1.02 2.36
case10 16 5 10 21 2.33 7.09

6.3 Convex-hull as new lower/upper bounds in Pair-

wise Expansion

6.3.1 Motivation

According to the naive Pairwise Expansion approach, a node-pair or an object-pair can be

pruned out if the shuttle scope of it does not contain all the query keywords. However the

pruning efficiency will reduce as the distance between the two nodes or two objects get larger.

Therefore we consider a further way to enhance the pruning ability by using convex-hull based

lower and upper bounds. This approach is called EnhancedPE.

6.3.2 Preparation

To illustrate it, we prepare some technical terms.

Firstly, we define as the Dist(〈oa, ob〉, o) (Figure 6.3) is the ’distance’ between an object-

pair 〈oa, ob〉 and an object o as follow:

Definition 1 Dist(〈oa, ob〉, o) : Given an object-pair 〈oa, ob〉 and an object o, the distance

between them is defined by:



6.3. CONVEX-HULL AS NEW LOWER/UPPER BOUNDS IN PAIRWISE EXPANSION89

Figure 6.3: Dist(〈na, nb〉, o) Figure 6.4: Dist(〈na, nb〉, o)

Dist(〈oa, ob〉, o) = max {dist(oa, o), dist(ob, o)} (6.1)

Dist(〈oa, ob〉, o) represents the relation between object o and the shuttle scope of 〈oa, ob〉.

If this Dist is larger than dist(oa, ob), then o is outside of shuttle scope of 〈oa, ob〉; otherwise,

o is in it.

Similar as Definition 1, Dist(〈na, nb〉, o) (Figure 6.4)is defined as the ’distance’ between

a node-pair 〈na, nb〉 and an object o as follow:

Definition 2 Dist(〈na, nb〉, o): Given a node-pair 〈oa, ob〉 and an object o, the distance

between them is defined by:

Dist(〈na, nb〉, o) = max {Mindist(na, o),Mindist(nb, o)} (6.2)

For each keyword in the shuttle scope of a node-pair, we have the follow definition:

Definition 3 Min Distki
(〈na, nb〉): Given a node-pair 〈na, nb〉, if the shuttle scope of

〈na, nb〉 contains all the keywords, then for any one of query keywords ki(ki /∈ na, ki /∈ nb),

Min Distki
(〈na, nb〉) is defined as the minimum Dist between 〈na, nb〉 and any object o

associated with ki:



90 CHAPTER 6. ENHANCEDPE

Min Distki
(〈na, nb〉)) = min

o∈O
Dist(〈na, nb〉, o),

where O is the object collection of all the objects associated with ki in the shuttle scope

of 〈na, nb〉.

According to Definition 2, the following lemma holds:

Lemma If an object-pair 〈o1, o2〉 generated from 〈na, nb〉 satisfies that dist(o1, o2) <

Dist(〈na, nb〉, o), then o is outside of shuttle scope of 〈o1, o2〉.

In Figure 6.5 , we know the Dist(〈na, nb〉, o) = Mindist(na, o) = a, thus dist(o1, o) must

be larger than a. Due to dist(o1, o2) < a, we can infer dist(o1, o) < dist(o1, o2), then o is

outside of 〈o1, o2〉.

Figure 6.5: Lemma

6.3.3 New lower bound

By this lemma, we consider the following pruning rules:



6.3. CONVEX-HULL AS NEW LOWER/UPPER BOUNDS IN PAIRWISE EXPANSION91

Pruning Rule Given an object-pair 〈oa, ob〉 generated from node-pair 〈na, nb〉, if the

distance of 〈oa, ob〉 is less than the Min Distki
(〈na, nb〉) for any keyword ki, then 〈oa, ob〉 can

be pruned out directly.

In Figure 6.6 there are two objects o1 and o2 associated with keyword E. We can see

that Min DistE is Dist(〈na, nb〉, o2), denoted by dE. Then dE can be a lower bound of the

distance for the object-pairs generated from 〈na, nb〉. That means any object-pair om, on

that satisfies dist(om, on) < dE cannot be a diameter of any ’correct’ object-set, because the

shuttle scope of 〈om, on〉 cannot contain E.

Figure 6.6: rule

We can use this pruning rule in the naive Pairwise Expansion algorithm. Given a node-

pair 〈na, nb〉, if the shuttle scope of 〈na, nb〉 contains all the keywords, then for each keyword

ki(ki /∈ na, ki /∈ nb), we can get Min Distki
for it ,denoted by dki

. Thus max
ki∈Q

dki
is a lower

bound LB of 〈na, nb〉 .

We rewrite the PE algorithm in chapter 5 by adding this lower bound as follow:

Algorithm: PEwithLB

// Input: root: root node of spatial index; Q: m given keywords.

// Output: δ∗opt: the minimal diameter.

// Variables: Queue: a sorted list of node-pair 〈ni, nj〉, sorted in the ascending order of

Mindist(ni, nj); δ
∗: current minimum diameter.



92 CHAPTER 6. ENHANCEDPE

Step 1: Set the node-pair 〈root, root〉 into Queue. Initialize δ∗ with ∞.

// This is a (do-while) loop from Step 2 to Step 5, in order to repeat pulling out the current

smallest node-pair from Queue.

Step 2: Dequeue node-pair 〈ni, nj〉 from Queue. Do:

2-1: If the Mindist(ni, nj) ≥ δ∗, then return δ∗.

2-2: If Shuttle(〈ni, nj〉) does not contain all the keywords of Q, then goto Step 5.

2-3: Calculate dkl
for each keyword kl ∈ Q, and set LB = max

kl∈Q
dkl

.

2-4: Calculate the upper bound D of Shuttle(〈ni, nj〉). If D < δ∗, update δ∗ with D.

2-5: If either ni or nj is not a leaf-node, goto Step 4. Else goto Step 3.

Step 3: // (both ni and nj are leaf-nodes.)

For each object-pair 〈oa, ob〉 which satisfies dist(oa, ob) ≥ LB in 〈ni, nj〉 (oa ∈ ni, ob ∈

nj), in the ascending order of dist(oa, ob), do:

3-1: If dist(oa, ob) ≥ δ∗, then break this for-loop and goto Step 5.

3-2: Check if 〈oa, ob〉 is a diameter of a ’correct’ object-set which exists in Shuttle(〈oa, ob〉).

3-3: If the check is true , update δ∗ by dist(oa, ob) and goto Step 5.

3-4: If the check is false , continue this for-loop.

(//the next 〈oa, ob〉 is tested. )

Step 4: If either ni or nj is an internal node, add the child-node pair 〈na, nb〉 which satisfies

Maxdist(na, nb) ≥ LB into the Queue.

Step 5: Return δ∗ if Queue is empty. Else goto Step 2.

In addition, in order to calculate Min Distki
for each keyword ki, we adopt a top-down

method which is similar to find the nearest neighbour (NN) object. Thus we can apply the

branch-and-bound solution for NN search [24] in a top-down way.



6.3. CONVEX-HULL AS NEW LOWER/UPPER BOUNDS IN PAIRWISE EXPANSION93

6.3.4 New upper bound

Furthermore, since all the ’closest’ objects okimin
for each keyword ki were found, these

’closest’ objects and the MBRs of na and nb can be enclosed in a convex-hull. Thus convex-

hull contains all the keywords and we can use the diameter of it as an upper bound of result.

In Figure 6.7, given a node-pair 〈na, nb〉 in which node na contains keywords {A,B} and

node nb contains keywords {C,D}. Then suppose the query keywordsQ = {A,B,C,D,E, F}

and the o2 and o3 are the ’closest’ objects of E and F respectively. Then we can find a convex-

hull H such that na, nb, o2, o3 are in it. Thus H can contain all the query keywords of Q, and

there exists a ’correct’ object-set in it. Consequently, the diameter of H must be an upper

bound of distances of object-pairs generated from 〈na, nb〉.

Once 〈na, nb〉 computed H, consider we test another node-pair 〈nx, ny〉, then if any object-

pair 〈ox, oy〉 ∈ 〈nx, ny〉 satisfies that dist(ox, oy) > H’s diameter, such 〈ox, oy〉 can be pruned

out. Furthermore, if any child node-pair 〈n′
x, n

′
y〉 ∈ 〈nx, ny〉 satisfies that Mindist(n′

x, n
′
y) >

H’s diameter, then 〈n′
x, n

′
y〉 can be pruned out.

Figure 6.7: Upper bound of node-pair

In the Pairwise Expansion approach in chapter 5, we used D which is the maximum

distance between any two points on the boundary of the shuttle area as the upper bound of

result. As the Figure 6.7 shows, we can observe that the diameter of H is further smaller

than D. Thus this is more efficient for pruning . We replace D with the diameter of H in

the algorithm PEwithLB and revise the Step 2 as follow.



94 CHAPTER 6. ENHANCEDPE

Algorithm: PEwithLBandUB (EnhancedPE)

// Input: root: root node of spatial index; Q: m given keywords.

// Output: δ∗opt: the minimal diameter.

// Variables: Queue: a sorted list of node-pair 〈ni, nj〉, sorted in the ascending order of

Mindist(ni, nj); δ
∗: current minimum diameter.

Step 1: Set the node-pair 〈root, root〉 into Queue. Initialize δ∗ with ∞.

// This is a (do-while) loop from Step 2 to Step 5, in order to repeat pulling out the current

smallest node-pair from Queue.

Step 2: Dequeue node-pair 〈ni, nj〉 from Queue. Do:

2-1: If the Mindist(ni, nj) ≥ δ∗, then return δ∗.

2-2: If Shuttle(〈ni, nj〉) does not contain all the keywords of Q, then goto Step 5.

2-3: Calculate dkl
for each keyword kl ∈ Q and find the ’closest’ object for each keyword

kl ∈ Q. Set LB = max
kl∈Q

dkl
.

2-4: Create a convex hull H by using these ’closest’ objects from 2-3 and two MBRs of

ni and nj. If the diameter of H < δ∗, then update δ∗ with it.

2-5: If either ni or nj is not a leaf-node, goto Step 4. Else goto Step 3.

Step 3: // (both ni and nj are leaf-nodes.)

For each object-pair 〈oa, ob〉 which satisfies dist(oa, ob) ≥ LB in 〈ni, nj〉 (oa ∈ ni, ob ∈

nj), in the ascending order of dist(oa, ob), do:

3-1: If dist(oa, ob) ≥ δ∗, then break this for-loop and goto Step 5.

3-2: Check if 〈oa, ob〉 is a diameter of a ’correct’ object-set which exists in Shuttle(〈oa, ob〉).

3-3: If the check is true , update δ∗ by dist(oa, ob) and goto Step 5.

3-4: If the check is false , continue this for-loop.

(//the next 〈oa, ob〉 is tested. )

Step 4: If either ni or nj is an internal node, add the child-node pair 〈na, nb〉 which satisfies

Maxdist(na, nb) ≥ LB into the Queue.



6.4. EVALUATION 95

Step 5: Return δ∗ if Queue is empty. Else goto Step 2.

6.4 Evaluation

The EnhancedPE approach utilizes two techniques to improve the efficiency of search pro-

cess. First, QSkd-tree is used as the on-the-fly index structure, instead of the quad-tree, to

reduce the building time of index. Next, the basic Pairwise Expansion (PE) method is en-

hanced with convex-hull based lower/upper bounds, in order to improve the pruning ability.

This section evaluates performances of these two techniques. The experimental set-up is the

same as that of section 5.4.1. We use the same Flickr data set with 1.6 million photo records

for all experiments.

6.4.1 Performance comparison between quad-tree and QSkd-tree

Here, we compare the performances of two index structures, i.e., QSkd-tree and quad-tree,

by proceeding with both PE and EnhancedPE methods. The capacity C is set to 30 in both

quad-tree and QSkd-tree.

Figure 6.8 shows the comparison of average response times(ARTs) of PE method under

both quad-tree and QSkd-tree when we vary the number of query keywords m. Similar as

Section 5.4.2, ART is divided into three parts: ’CPU time’, ’Building time of tree’ and ’Load

time’ to show more details of performance information.

In Figure 6.8, we can see the Building time of QSkd-tree is much smaller than that of quad-

tree. That is because the QSkd-tree takes less cost on the construction of data partitioning.

However, due to the large size of node, CPU time of PE method under QSkd-tree is much

larger than that under quad-tree, especially when m is large. This slows down the overall

performance, thus the ART of QSkd-tree is larger than that of quad-tree when m > 7.

Figure 6.9 shows the comparison between QSkd-tree and quad-tree with EnhancedPE

method. In this figure, we can see that the QSkd-tree can keep lower ARTs than the quad-

tree. Although QSkd-tree with EnhancedPE method also takes more CPU time than the

quad-tree, the EnhancedPE method can efficiently improve the pruning ability, which makes

the difference of CPU time becomes smaller. And the building time of QSkd-tree is much



96 CHAPTER 6. ENHANCEDPE

smaller than that of quad-tree. Thus the overall performance of QSkd-tree with EnhancedPE

is better than quad-tree.

Figure 6.8: m vs. ARTs between quad-tree and QSkd-tree with basic PE method



6.4. EVALUATION 97

Figure 6.9: m vs. ARTs between quad-tree and QSkd-tree with EnhancedPE method

6.4.2 Performance comparison between PE and EnhancedPE

There are two aspects mainly to analyse and compare the performance of EnhancedPE

method with basic PE method. Firstly we focus on elapsed time (ARTs) and their gra-

dient components.

First, we use QSkd-tree as index structure and compare the ARTs of two methods in

different numbers of query keywords m. The result is shown in Figure 6.10. According to

Figure 6.10, we can observe that the CPU time of EnhancedPE is much smaller than PE,

thus the overall performance of EnhancedPE is better than original PE method.

Second, in order to know more details about the performances of using lower bound and

upper bound under different index structures, we use the following six test approaches for

comparison:

• quad: The Pairwise Expansion in chapter 5 under quad-tree structure.

• quad+LB: The PEwithLB algorithm under quad-tree structure.



98 CHAPTER 6. ENHANCEDPE

Figure 6.10: m vs. ARTs between PE and EnhancedPE under QSkd-tree

• quad+LB+UB: The PEwithLBandUB(EnhancedPE) algorithm under quad-tree struc-

ture.

• QSkd: The Pairwise Expansion in chapter 5 under QSkd-tree structure.

• QSkd+LB: The PEwithLB algorithm under QSkd-tree structure.

• QSkd+LB+UB: The PEwithLBandUB(EnhancedPE) algorithm under QSkd-tree

structure.

We fix the numbers of query keywords m = 6 and m = 8 respectively, then test the six

performance metrics in Section 6.2.1 to evaluate these approaches. The results are shown in

Table 6.5 and 6.6.

According to the results of Table 6.5 and 6.6 , we can observe that using lower bound can

significantly cut down the checked object-pairs and enumerated node-pairs, accordingly the

CPU times are reduced. That demonstrates that it can work well for pruning both in quad-

tree and QSkd-tree. We can also observe that when we use the upper bound, the number of



6.4. EVALUATION 99

checked object-pairs and enumerated node-pairs are further decreased, hence this can further

reduce the CPU time when the number of keywords is large (m = 8).

Table 6.6: Performance comparison for all kinds of PE based methods when m = 6 under
Flickr dataset (data size =1.6M ). (”quad” : basic PE under quad-tree; ”quad+LB+UB”
: EnhancedPE under quad-tree; ”QSkd” : basic PE under QSkd-tree; ”QSkd+LB+UB” :
EnhancedPE under QSkd-tree)

Method quad quad+LB quad+LB+UB QSkd QSkd+LB QSkd+LB+UB
Total response time(ms) 760 651 654 646 489 498

CPU time(ms) 230 105 114 333 165 169
Load time(ms) 143 156 155 156 162 165

Building time of tree(ms) 387 390 385 157 162 164
# of generated object-pairs 96604 96604 96604 275919 275919 275919
# of checked object-pairs 9425 2064 1665 12957 2337 1957

# of enumerated node-pairs 2660 1972 1859 4051 2889 2705

Table 6.7: Performance comparison for all kinds of PE based methods when m = 8 under
Flickr dataset (data size =1.6M ). (”quad” : basic PE under quad-tree; ”quad+LB+UB” :
EnhancedPE under quad-tree; ”QSkd” : basic PE under QSkd-tree; ”QSkd+LB+UB” : En-
hancedPE under QSkd-tree)

Method quad quad+LB quad+LB+UB QSkd QSkd+LB QSkd+LB+UB
Total response time(ms) 1640 1353 1344 1667 927 910

CPU time(ms) 595 285 277 1171 428 409
Load time(ms) 247 269 268 240 240 241

Building time of tree(ms) 798 799 799 256 259 260
# of generated object-pairs 137251 137251 137251 333427 333427 333427
# of checked object-pairs 20954 3562 2785 35771 4743 4053

# of enumerated node-pairs 3972 2856 2508 7370 4298 3791

6.4.3 Memory consumption test

Beside the search time as the competitive performance, we also discuss the memory con-

sumption of the two methods. Different from the other methods (Apriori-Z, DCC-NL and

RDCC), all of which used the depth-first search strategies, PE and EnhancedPE need to hold

a sorted queue of node-pairs in memory. Thus the memory consumption of them should be

considered.

We measure the maximum size of the global queue for each test case and take the average

values for each m. Figure 6.11(a) shows comparison of maximum size of queue between PE

and EnhancedPE under the quad-tree index structure. According to the result, we can see

the maximum size of queue of EnhancedPE is smaller than that of PE. That is because



100 CHAPTER 6. ENHANCEDPE

EnhancedPE excludes the node-pair 〈ni, nj〉 which satisfies Maxdist(ni, nj) < LB (LB:

lower bound) from the queue. Furthermore, EnhancedPE also uses a smaller upper bound

to prevent the size of queue from getting too large before arriving at leaf node-pairs, thus

the maximum size of queue is effectively limited. That can demonstrate that the memory

consumption of EnhancedPE is smaller than that of PE. Figure 6.11(b) shows the same

comparison under the QSkd-tree index structure. We can see that the maximum sizes of

queue in EnhancedPE are only around a half of sizes of queue in PE when the m > 6.

In addition, we use the runtime class of Java to track the memory usage of JVM for the

search instance of query keywords Q = {winter, hotel, f lower, temple, garden, ski, snow}.

We use QSkd-trees as index structure, and respectively execute PE and EnhancedPE for this

Q. During the executions of both PE and EnhancedPE, we continuously monitor the memory

usage of JVM at all the points of queue operations, including enqueue and dequeue. That

means once the enqueue or dequeue operation performs, we record the two values: (1)the

size of queue and (2) memory usage, at the time. Thus we get a list of these records.

(a) quad-tree (b) QSkd-tree

Figure 6.11: m vs. maximum size of queue between PE and EnhancedPE



6.5. DISCUSSION 101

(a) PE (b) EnhancedPE

Figure 6.12: comparison of memory usage of JVM between PE and EnhancedPE. m = 7,
Q = {winter, hotel, f lower, temple, garden, ski, snow}

We observed that the value of memory usage does not constantly change with the size of

queue changes. Hence we only choose the records at which the value of memory usage changed

from this list to show the relationship between size of queue and memory usage in Figure 6.12.

According to Figure 6.12, we can observe that the memory usage of EnhancedPE is much

smaller than that of PE overall. That can demonstrate that EnhancedPE can effectively

reduce the memory consumption by pruning more node-pairs from the global queue. In

Figure 6.12(a), we observed that the memory usage suddenly fell when the size of queue is

2024. It is because the memory allocated for the dequeued node-pairs is freed by the garbage

collection system of Java.

In consequence, these results show that EnhancedPE is more advantageous than PE in

the performances of both search time and memory consumption.

6.5 Discussion

In Section 2.3.4, we introduced Guo’a approach in [9]. Based on the description, we can know

that Guo’s approach does not use the top-down search technique. Instead, this approach finds

both approximation solutions and exact solution by traversing through all the objects O′

associated with query keywords in data set D. To find the exact solution, Guo uses a rotated

circle whose diameter is determined by the approximation solution to restrict the potential



102 CHAPTER 6. ENHANCEDPE

solutions in some small areas around each object o ∈ O′, then exhaustively enumerates the

object-sets in these areas. At this point, our EnhancedPE method also restricts the potential

solutions in some small shuttle areas and finds the exact solution by exhaustive enumeration

of object-sets in them. However, EnhancedPE uses a top-down way to find these shuttle

areas instead of the direct manner.

In addition, there are some differences between these two approaches in the details of

object-set enumeration.

1. In Guo’s exact algorithm, the aim of object-set enumeration is to find the smallest

object-set. Thus it is necessary to enumerate and compare all the object-sets which

cannot be pruned out in each circle area. On the other hand, our EnhancedPE aims to

check whether the object-pair can be the diameter of a ’correct’ object-set in Section 5.3.

Thus once we find such ’correct’ object-set, we can stop the enumeration. That means

EnhancedPE is more probable to reduce the risk of exponential object-set enumeration.

2. Guo’s exact algorithm uses an iterative way to generate object-sets. In each iteration, it

selects one object from candidate objects in the circle area. In this way , an object-set

can be generated after (m-1) iterations. When the number of candidate objects is large,

this iterative way is easy to generate exponential object-sets. Our EnhancedPE method

uses recursive DCC strategy to generate size-(m-2) sub object-sets in shuttle area. In

each recursion, EnhancedPE uses circle check to reduce the number of sub DCs. Thus

this can ease the generation of exponential object-sets to some extent.

Moreover, in the aspect of search policy, Guo’s approach uses a direct manner that enu-

merates all the related objects O′ and finds approximation solutions and exact solution for

each objects o ∈ O′ instead of the traditional top-down way. Although this policy of Guo’s

approach is beneficial to find good approximate solutions of mCK query problem, we consider

that our top-down approach of EnhancedPE also has some advantages in both mCK query

problem and its extension.

1. Guo proved that the mCK query is an NP-hard problem. In the previous study of

top-down approach of Apriori-Z, it is necessary to generate node-sets in the top-down

process. However the number of node-sets also can be exponential, which may be



6.6. SUMMARY 103

the major problem affecting the search efficiency. Guo’s approach directly enumerates

the objects, thus it can avoid this problem. Our EnhancedPE also can overcome this

problem. It uses the generation of node-pairs instead of node-sets, thus it can rapidly

find the restricted areas in a quadratic complexity (in worst case) and its shuttle areas

is much smaller than the circle area of Guo’s approach.

2. If we expand the mCK queries problem to find top-k smallest object-sets, or if we

consider using some other parameters to calculate the score of an object-set and find

the top-1 or top-k results under the score, the top-down method is a natural way to

flexibly deal with these possible situations. However it is difficult to expand Guo’s

approach to these extensions.

3. mCK queries use the diameter to measure the closeness of an object-set. Essentially

the diameter is an ’line segment’ of two objects. Guo’s approach uses a circle (MCC)

as a key of search. This can be viewed as using a ’volume’ of MCC as the approximate

solution of the ’line segment’. This can work well in two-dimensional data. But when

mCK queries are used in higher dimensional data, the circle (MCC) will become a hy-

persphere, and the ’volume’ of this hypersphere may become more complicated and the

approximate ratio will be declined. In this case, our EnhancedPE keeps the diameter

of the line segment (maximum dist(ox, oy) ∈ O) as a key of search, and recursively enu-

merates object-pairs (line segment) to generate an object-set. Thus it can be easier to

expand to higher dimensional data than Guo’s approach. (Note we use RecursiveCheck

instead of SophisticatedCheck algorithm in Section 5.3.3).

6.6 Summary

In this chapter, we proposed the EnhancedPE method. It solves two points of basic Pairwise

Expansion approach in chapter 5.

One is the building time of the data index. As our original intention, we expect a data

index which can be quickly constructed for the loaded object on demand. However the on-

the-fly quad-tree might create too much repeated scan for the objects which would slow down



104 CHAPTER 6. ENHANCEDPE

the set-up speed when all the objects gathered together in a small area. To overcome this

problem, we adopted a kd-tree based data structure called QSkd-tree to reduce the cost of

building time of index. The performance of Flickr dataset demonstrated that the QSkd-tree

could be constructed faster than the quad-tree.

Another point is that in the Pairwise Expansion approach in chapter 5, we pruned out

a node-pair or an object-pair only if the shuttle scope of it does not contain all the query

keywords. However the pruning efficiency is not enough especially when the diameter of

final result is large. Thus we proposed convex-hull based lower bound and upper bound

to improve the pruning ability. This technique can significantly decrease the numbers of

enumerated node-pairs and checked object-pairs, hence the CPU time is reduced.

Finally, we compared this enhanced approach under quad-tree and QSkd-tree, and found

that though quad-tree took less CPU time than QSkd-tree, the cost of building a quad-tree

is far more than the QSkd-tree. In conclusion, the EnhancedPE is the most reasonable in all

the top-down methods for the mCK query problem.



Chapter 7

Conclusions and Future Work

Recently, spatial keyword query problem becomes a hot topic in the field of spatial database.

Quite a number of spatial keyword queries focus on finding a set of objects which combine to

satisfy user’s requirements about both textuality and spatiality. As an earlier study, mCK

query first employed a ’diameter’ to measure the closeness of a set of objects. After that, this

manner is used in a lot of other spatial keyword query problems targeted to a set of objects

such as collective spatial keyword queries and top-k group queries. Thus efficient processing

of mCK queries is of great significance in this type of problems.

As a general idea, a top-down search schema by using hierarchical data structures is well

suited to solve this type of query problems. Zhang et al proposed a top-down exploration

approach (Apriori-Z) using a special R*-tree call bR*-tree. This approach enumerates some

sets of nodes (node-sets) level-by-level in the bR*-tree and prune unnecessary ones to improve

search efficiency. However due to the Apriori-based enumeration of node-sets, this approach

may enumerate too many node-sets especially when the optimal object-set does not gather

in one small node. Thus in this thesis, the main contribution of our work is to learn about

restricted factors in top-down search approach of mCK query problem, and to propose four

top-down search methods to improve search efficiency.

In addition , the assumption that store all the objects by using a bR*-tree in preparation

is not applicable to all cases of real spatial web. Thus, we adopted an on-the-fly way to build

index for these spatial web data. When an mCK query is given, we create grid partitionings

or kd-trees from necessary data. Under this assumption, we list our proposed methods as

105



106 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

follow:

• DCC-NL When a node-set is generated in top-down process, whether or not it can

be pruned depends on the comparison between the lower bound of this node-set and

the smallest diameter discovered so far (δ∗). Thus we considered that if we can find

a smaller δ∗ at an early stage, then the pruning ability of node-sets can be improved.

For this reason, we proposed our first algorithm DCC-NL. Because the diameter of an

object-set is determined by only two objects, DCC-NL first enumerates DCs (the pairs

of two nodes) in an ascending order. Then the node-sets are generated for each DC

in a nested loop method. Thus a priority order of generation is given. The evaluation

for DCC-NL results to the fact that it is efficient to find a smaller diameter at an early

stage.

• RDCC After that, we improved the DCC strategy in a recursive way. This strategy can

enumerate node-sets in a more reasonable priority order so that a smaller diameter can

be found earlier than DCC-NL. Furthermore, we employed a tighter lower bound (TLB)

of node-set to ultimately improve the pruning ability. This method is called RDCC.

Though the search performance of RDCC is better than DCC-NL and Apriori-Z, the

enumeration of node-sets is still an unstable factor that limits the search efficiency.

• Pairwise Expansion To solve this problem, we proposed Pairwise Expansion (PE)

method, which can skip the intermediate process of enumerating node-sets. PE first

enumerates object-pairs in an ascending order by using a top-down exploration of node-

pairs according to the method to Closest Pair Query (CPQ). Then it expands each

object-pair into object-sets in the shuttle area, in order to test if the object-pair becomes

a diameter of any object-sets satisfying all query keywords. Once an object-pair passed

the test, it is the result of the smallest diameter. PE can work well in a larger scale

of real spatial web dataset, though it has some weak points about the construction of

data index.

• EnhancedPE Finally, we improved the PE by using two techniques. First we adopted

a kd-tree based data structure called QSkd-tree to reduce the cost of building time of



107

index. Then we proposed convex-hull based lower bound and upper bound to improve

the pruning ability. These two techniques can significantly reduce the cost of building

time of index and decrease the enumerated node-pairs and checked object-pairs. Hence

the overall search performance can be improved. To the best of the ours knowledge,

this method is the most efficiency top-down approach for mCK query problem.

As future works,

• Our top-down search approach may also be employed in other queries to find one or

top-k set(s) of objects. We learned that in the collective spatial keyword queries [3],

Cao et al also used enumeration of node-sets in top-down search process to find the

exact solution. It is possible to use a top-down exploration of node-pairs for these

queries , and the more appropriate pruning techniques may be generated.

• In our search approach, we enumerated object-pairs in an ascending order by using

a top-down node-pair exploration. Thus it can be naturally extended to find top-k

smallest diameter. In addition, the diversity of these top-k results may be considered.





Bibliography

[1] D.X.Zhang, Y.M.Chee, Anirban Mondal, Anthony K.H.Tung, M. Kitsuregawa, ”Key-

word Search in Spatial Databases: Towards Searching by Document,” IEEE ICDE,

pp.688-699, 2009.

[2] Christian S. Jensen. “Data Management on Spatial Web”,keynote, Proceedings of the

VLDB Endowment, Vol. 5, No.12, 2012

[3] X.Cao, G. Cong, Christian S. Jensen , and B.C.Ooi. “Collective spatial keyword query-

ing.” SIGMOD, pp. 373-384, 2011.

[4] X. Cao, G. Cong, T. Guo, C. S. Jensen, and B. C. Ooi. “Efficient processing of spatial

group keyword queries.” ACM Trans. Database Syst., 40(2):13, 2015.

[5] G. Cong, Christian S. Jensen. “Querying Geo-Textual Data: Spatial Keyword Queries

and Beyond.” SIGMOD, pp. 2207-2212 , 2016.

[6] R. Hariharan, B. Hore, C. Li, and S. Mehrotra. “Processing spatial keyword queries in

geographic information retrieval systems.“ In SSDBM, pp. 16-25, 2007.

[7] C.Long, R.C.-W.Wong, K.Wang, A.W.-C.Fu, “Collective spatial keyword queries:a dis-

tance owner-driven approach.” ACM SIGMOD , pp. 689-700, 2013.

[8] Z. S. Li , B. H. Zhen , W. C. Lee, D. L. Lee , X. F. Wang “ IR-Tree: An Efficient Index

for Geographic Document Search” IEEE TRANSACTIONS ON KNOWLEDGE AND

DATA ENGINEERING, VOL. 23, NO. 4, APRIL 2011, pp. 585-599

[9] T.Guo, X.Cao, G.Cong, “Efficient Algorithms for Answering the m-Closest Keywords

Query. ” ACM SIGMOD, pp. 405-418, 2015.

109



110 BIBLIOGRAPHY

[10] D.X.Zhang, B.C.Ooi, Anthony K.H.Tung, “Locating Mapped Resources in Web2.0.”

IEEE ICDE, pp. 521―532, 2010.

[11] A.Corral, Y.Manolopoulos, Y.Theodoridis, M.Vassilakopoulos“Closest pair queries in

spatial databases. ” ACM SIGMOD, pp. 189-200, 2000.

[12] Y.Qiu, T.Ohmori, T.Shintani, H.Fujita, “A New Algorithm for m-Closest Keywords

Query over Spatial Web with Grid Partitioning. ” IEEE/ACIS SNPD, pp. 507-514,

2015.

[13] P.K. Agarwal, and J. Erickson, “Geometric range searching and its relatives. ”In Discrete

and Computational Geometry: Ten Years Latter., (B. Chazelle, E. Goodman, and R.

Pollack eds.), American Math. Society, Providence, 1998.

[14] https://twitter.com/

[15] https://www.flickr.com/

[16] I.D.Felipe, V.Hristidis, and N.Rishe. “Keyword searchon spatial databases. ” IEEE

ICDE, pp. 656―665, 2008.

[17] D. Wu, M. L. Yiu, and C. S. Jensen. “Moving spatial keyword queries: Formulation,

methods, and analysis. ” ACM Trans. Database Syst., 38(1):7, 2013.

[18] D. Wu, M. L. Yiu, C. S. Jensen, and G. Cong. “Efficient continuously moving top-k

spatial keyword query processing.” IEEE ICDE, pp. 541―552, 2011.

[19] L. Chen, X. Lin, H. Hu, C. S. Jensen, and J. Xu. “Answering why-not questions on

spatial keyword top-k queries.” IEEE ICDE, pp. 279―290, 2015.

[20] J. Lu, Y. Lu, and G. Cong “Reverse spatial and textual k nearest neighbor search.”

ACM SIGMOD, pp. 349-360, 2011.

[21] J. Fan, G. Li, L. Zhou, S. Chen, and J. Hu. “SEAL:spatio-textual similarity search.”

PVLDB, 5(9):824―835, 2012.



BIBLIOGRAPHY 111

[22] J. B. Rocha-Junior and K. Nrv ag. “Top-k spatial keyword queries on road networks.”

EDBT, 168―179, 2012.

[23] X. Cao, L. Chen, G. Cong, C. S. Jensen, Q. Qu, A. Skovsgaard, D. Wu, and M. L. Yiu.

“Spatial keyword querying.” ER, pp. 16―29, 2012.

[24] N. Roussopoulos, S. Kelley, and F. Vincent. “Nearest neighbor queries.” ACM SIGMOD,

pp. 71―79, 1995.

[25] A. Corral, Y. Manolopoulos, Y. Theodoridis and M. Vassilakopoulos. “Multi-Way Dis-

tance Join Queries in Spatial Databases.” GeoInformatica, vol. 8, no. 4, pp. 373-402,

2004.

[26] A. Corral, Y. Manolopoulos, Y. Theodoridis and M. Vassilakopoulos. “ Distance Join

Queries of Multiple Inputs in Spatial Databases.” ADBIS, LNCS, vol. 2798, pp. 323―

338, 2003 .

[27] C.-T. Ho , R. Agrawal , N. Megiddo , R. Srikant. “Range queries in OLAP data cubes.

” ACM SIGMOD, pp. 73-88, 1997.

[28] https://www.flickr.com/groups/geotagging/

[29] https://developers.google.com/places/web-service/

[30] https://searchenginewatch.com/sew/study/2343577/google-local-searches-lead-50-of-

mobile-users-to-visit-stores-study

[31] A. Cary, O. Wolfson, and N. Rishe. “ Efficient and scalable method for processing top-k

spatial Boolean queries.” SSDBM, pp. 87―95, 2010.

[32] G. Cong, C. S.Jensen, and D. Wu. “Efficient retrieval of the top-k most relevant spatial

web objects.” PVLDB, pp. 337―348, 2009.

[33] J. B. Rocha-Junior, O. Gkorgkas, S. Jonassen, and K. Nrv ag. “ Efficient processing of

top-k spatial keyword queries.” SSDT, pp. 205―222, 2011.



112 BIBLIOGRAPHY

[34] S. Vaid, C. B. Jones, H. Joho, and M. Sanderson. “ Spatio-textual indexing for geo-

graphical search on the web.” SSDT, pp. 218―235, 2005.

[35] M. Christoforaki, J. He, C. Dimopoulos, A. Markowetz, and T. Suel. “ Text vs. space:

efficient geo-search query processing.” CIKM, pp. 423―432, 2011.

[36] K. S. Bgh, A. Skovsgaard, and C. S. Jensen. “GroupFinder: A new approach to top-k

point-of-interest group retrieval. ” PVLDB, 6(12):1226―1229, 2013.

[37] A. Skovsgaard and C. S. Jensen. “Finding top-k relevant groups of spatial web objects.

” VLDB J., 24(4):537―555, 2015.

[38] X. Cao, L. Chen, G. Cong, and X. Xiao. “Keyword-aware optimal route search. ”

PVLDB, 5(11):1136―1147, 2012.

[39] B. Yao, M. Tang, and F. Li. “Multi-approximate-keyword routing in GIS data. ”

SIGSPATIAL, pp. 201―210, 2011.

[40] G. Li, J. Feng, and J. Xu. “Desks: Direction-aware spatial keyword search. ” IEEE

ICDE, pp. 474―485, 2012.

[41] D. Wu, M. L. Yiu, C. S. Jensen, and G. Cong. “Efficient continuously moving top-k

spatial keyword query processing. ” IEEE ICDE, pp. 541―552, 2011.

[42] W. Huang, G. Li, K.-L. Tan, and J. Feng. “Efficient safe-region construction for moving

top-k spatial keyword queries. ” CIKM, pp. 932―941, 2012.

[43] D. Wu, M. L. Yiu, and C. S. Jensen. “Moving spatial keyword queries: Formulation,

methods, and analysis.” ACM Trans. Database Syst., 38(1):7, 2013.

[44] J. Lu, Y. Lu, and G. Cong. “Reverse spatial and textual k nearest neighbor search. ”

ACM SIGMOD, pp. 349―360, 2011.

[45] F. Choudhury, J. S. Culpepper, T. Sellis, and X. Cao. “Maximizing bichromatic reverse

spatial and textual k nearest neighbor queries. ” PVLDB, 9(6):456―467, 2016.



BIBLIOGRAPHY 113

[46] Z. Li, K. C. K. Lee, B. Zheng, W.-C. Lee, D. L. Lee, and X. Wang. “Ir-tree: An efficient

index for geographic document search.” IEEE TKDE, 23(4):585―599, 2011.

[47] A. Khodaei, C. Shahabi, and C. Li. Hybrid indexing and seamless “ranking of spatial

and textual features of web documents.” In DEXA, pp. 450―466, 2010.

[48] A. Guttman. “R-trees: a dynamic index structure for spatial searching.” In SIGMOD,

pp. 47―57, 1984.

[49] J.Elzinga, D.W.Hearn. “Geometrical solutions for some minimax location problems. ”

Transportation Science,6[4], pp. 379―394, 1972.





Acknowledgements

The study of PhD has been a truly memorable experience for me and it would not have

been possible to do without the support and guidance that I received from many people.

First and foremost, I would like to thank my supervisor, Prof. Tadashi Ohmori, for the

patient guidance, encouragement and advice he has provided throughout my graduate career.

I have been extremely lucky to have a supervisor who cared and supported so much about

my work. I would also like to thank all the members of staff at university who helped me in

all aspects of my life. In particular I would like to thank Assoc.Prof. Takahiko Shintani and

Assist.Prof. Hideyuki Fujita for their help and suggestions in my PhD study.

I would like to thank the rest of my supervisory committee: Prof. Yasuhiro Minami,

Prof. Hiroyoshi Morita, Assoc.Prof. Hisashi Koga, and Assoc.Prof. Yasuyuki Tahara for

their encouragement and insightful comments from various perspectives.

I must express my gratitude to my wife and my son, for their continued support and

encouragement. I warmly thank and appreciate my parents and my mother and father-in-

law for their material and spiritual support.





List of Publications Related to the Dissertation

Journal Paper

• 邱 原, 大森 匡, 新谷 隆彦, 藤田 秀之“m-最近接空間キーワード検索における探索優

先順制御とタイトな下界値を用いた高速化手法の提案,” 電子情報通信学会論文誌 D,

VOL.J99-D No.7 pp.638-651, 2016年 6月.

International Conference Papers

• Y. Qiu, T. Ohmori, T. Shintani, H. Fujita ”A New Algorithm for m-Closest Keywords

Query over Spatial Web with Grid Partitioning,” Proceedings of 16th IEEE/ACIS

International Conference on Software Engineering, Artificial Intelligence, Networking

and Parallel/Distributed Computing (SNPD 2015), pp.507-514, June 2015.

• Y. Qiu, T. Ohmori, T. Shintani, H. Fujita ” Pairwise Expansion: A New Topdown

Search for mCK Queries Problem over Spatial Web,” Proceedings of 18th Asia Pa-

cific Web Conference (APWeb2016), short paper(LNCS 9932 Volume 2), pp.459-463,

September 2016.

International Conference Poster Presentation

• Y. Qiu, H. Zhai, D. H. Anh, T. Ohmori, H. Fujita and T. Shintani ”A new search

strategy for m-closest keywords query by using dynamically-created grid partitioning

over spatial datasets,” CIU2015, p2, March 2015.

Domestic Convention Papers

• 邱 原, 大森 匡, 新谷 隆彦,“空間データにおける 2n分割木を用いたm-最近傍キーワー

ド検索,” DEIM 2013, A9-5, 2013年 3月.

• 邱 原, 大森 匡, 新谷 隆彦, 藤田 秀之, ”空間データベースにおけるm-最近接キーワード

検索の一方式,” 76回情報処理全国大会 5M-1, 2014.(学生奨励賞)



• D.H.Anh, 邱 原, 大森 匡, 藤田 秀之, 新谷 隆彦, ”Flickrデータを用いたm-最近傍キー

ワード検索の評価,” 第 76回情報処理全国大会 5M-2, 2014.

• 邱 原, 大森 匡, 新谷 隆彦, 藤田 秀之 ”空間Webデータにおけるm-最近接キーワード

検索方式DCCの性能評価,” FIT2014, D-005, 2014.

• 邱 原, 大森 匡, 新谷 隆彦, 藤田 秀之 ”再帰的なDCC戦略によるmCK検索の高速化,”

FIT2015, D-030, 2015.(FIT奨励賞)

• 杜 翔, 大森 匡, 藤田 秀之, 新谷 隆彦, 邱 原 ”データ取得制限のあるDeep Webからの

サンプルデータ収集方式,” FIT2015, D-028, 2015.



A
S
tu

d
y

on
T
op

-d
ow

n
S
earch

A
lgorith

m
s

for
m

-C
losest

K
ey

w
ord

s
Q

u
eries

P
rob

lem
over

S
p
atial

W
eb

Y
u
an

Q
iu

2017

1


