
Optimal Triangulation of Bayesian Networks

for E�cient Inference

Chao Li

A dissertation submitted in partial satisfaction

of the requirements for the degree of

Doctor of Philosophy in Engineering

GRADUATE SCHOOL OF INFORMATION SYSTEMS

THE UNIVERSITY OF ELECTRO-COMMUNICATIONS

MARCH 2017

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Creative Repository of Electro-Communications

https://core.ac.uk/display/147700624?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

Optimal Triangulation of Bayesian Networks

for E�cient Inference

APPROVED BY SUPERVISORY COMMITTEE:

CHAIRPERSON: Professor Maomi Ueno

MEMBER: Professor Akihiko Ohsuga

MEMBER: Professor Satoshi Kurihara

MEMBER: Associate Professor Shuichi Kawano

MEMBER: Professor Hiro Ito

MEMBER: Associate Professor Yoshio Okamoto

4

Copyright

by

Chao Li

2017

6

ip tv e

n q

ip tv g e u

a a c T e ip tv

() n q

P ip tv e g N

e ip tv ip tv

g l m s l l c e

n q g l N T o

i a m el e ip tv l

g l Ne g l

c e g Ne e b c e

l b T e e a

Ne T ip tv l

g l g Ne e T

g ip tv Ta P

n q g N 1 ,1. 0 . g

n q g Ne

l y g e ip tv g

l l c y g Ne l

y g y tpg D tp g

l e l c y g Ne y tpg

e T y g Ne b tp l tp

b l e y b c

l ea e g Ne

g e T e ey zr

((! e ip tv

T e P g

n q g Ne n q g Ne ! 20

10 . 2 0 . . n q tp b T e g

Ne e tp y c g Ne

n q !)0 10 . 0 n q g Ne l

T l g N e

Ne g Ne g Ne n q

c b T

g l g e g N a g Ne

g Ne b l g

e g

i

ABSTRACT

Optimal triangulation of Bayesian networks

for e�cient inference

by

Chao Li

Doctor of Philosophy in Engineering

The University of Electro-Communications

Chairperson: Professor Maomi Ueno

Bayesian networks are widely used probabilistic graphical models that provide

a compact representation of joint probability distributions over a set of variables. A

common inference task in Bayesian networks is to compute the posterior marginal

distributions for the unobserved variables given some evidence variables that we

have already observed. However, the inference problem is known to be NP-hard

and this complexity of inference limits the usage of Bayesian networks. Many

attempts to improve the inference algorithm have been made in the past two

decades. Currently, the junction tree algorithm is among the most prominent

exact inference algorithms. To perform e�cient inference on a Bayesian network

using the junction tree algorithm, it is necessary to find a triangulation of the

moral graph of the Bayesian network such that the total table size is small. In

this context, the total table size is used to measure the computational complexity

of the junction tree inference algorithm. This thesis focuses on exact algorithms

for finding a triangulation that minimizes the total table size for a given Bayesian

network.

For optimal triangulation, Ottosen and Vomlel have proposed a depth-first

search (DFS) algorithm. They also introduced several techniques to improve the

ii

DFS algorithm, including dynamic clique maintenance and coalescing map prun-

ing. Nevertheless, the e�ciency and scalability of their algorithm leave much room

for improvement. First, the dynamic clique maintenance allows the recomputation

of some cliques. Second, for a Bayesian network with n variables, the DFS al-

gorithm runs in O⇤(n!) time because it explores a search space of all elimination

orders. To mitigate these problems, an extended depth-first search (EDFS) algo-

rithm is proposed in this thesis. The new EDFS algorithm introduces two tech-

niques: (1) a new dynamic clique maintenance algorithm that computes only those

cliques that contain a new edge, and (2) a new pruning rule, called pivot clique

pruning. The new dynamic clique maintenance algorithm explores a smaller search

space and runs faster than the Ottosen and Vomlel approach. This improvement

can decrease the overhead cost of the DFS algorithm, and the pivot clique pruning

reduces the size of the search space by a factor of O(n2). Our empirical results

show that our proposed algorithm finds an optimal triangulation markedly faster

than the state-of-the-art algorithm does.

iii

ACKNOWLEDGMENTS

Firstly, I would like to express my sincere gratitude to my advisor Prof. Maomi

Ueno for all of his support during my PhD studies and for encouragement in

completing this thesis. I especially thank him for always leading me in the right

direction and for bringing me into the Bayesian networks community. I am also

very grateful for his constant help in my writing, for help in revising my papers

and discussing my studies.

Besides my advisor, I would like to thank the rest of my thesis committee, Pro-

fessor Ito, Professor Kawano, Professor Kurihara, Professor Ohsuga, and Professor

Okamoto, not only for their insightful comments and encouragement, but also for

their hard questions, which prompted me to widen the perspective of my research.

I also appreciate the important work of many researchers from the Bayesian

networks community, including Joe Suzuki, Shin-ichi Minato and Jiri Vomlel, who

encouraged my studies and provided valuable comments on my previous work. In

particular, I am grateful to Dr. Thorsten Ottosen for his helpful comments and a

discussion at PGM2012 about pivot clique pruning.

I would like to thank the many people who engaged and supported me during

my graduate studies at The University of Electro-Communications. Last but not

least, I would like to thank my parents for supporting me spiritually throughout

writing this thesis and my life in general.

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Contributions . 6

1.3 Overview of the rest of the thesis 7

2 Triangulation of Bayesian networks 8

2.1 Background . 8

2.2 The triangulation problem . 13

2.2.1 Notation and definitions . 13

2.2.2 Search space of the optimal triangulation algorithm 17

2.3 Heuristic triangulation algorithms 17

2.4 The optimal triangulation algorithm 19

3 Dynamic clique maintenance 24

3.1 Introduction . 24

3.2 Previous work on dynamic clique maintenance 25

3.3 Proposed dynamic clique maintenance algorithm 29

3.4 Experiments . 32

3.4.1 Depth-first search with proposed dynamic clique maintenance 33

3.4.2 Dynamic clique maintenance on random graphs 37

iv

CONTENTS v

4 Pivot clique pruning 40

4.1 Introduction . 40

4.2 Pivot clique pruning . 41

4.3 Experiments . 47

4.3.1 Naive depth-first search with pivot clique pruning 47

4.3.2 Depth-first search with pivot clique pruning 50

4.3.3 Results for Bayesian networks with 100 variables 54

4.3.4 Triangulation with di↵erent objective functions 57

5 Conclusion and future work 61

5.1 Conclusions . 61

5.2 Future work . 62

List of Figures

2.1 The Asia Bayesian network . 9

2.2 Moralizing the Bayesian network graph: (a) connect the vertices

with common children and (b) drop the directions of directed edges. 10

2.3 (a) Add edges to make the moral graph chordal and (b) construct

a junction tree by connecting the cliques of the chordal graph. . . . 10

2.4 (a) Junction tree and (b) an illustration of message passing 12

2.5 Left: Initial graph G = (V,E). Right: Updated graph G0 obtained

by adding one edge (c, d) to G. 14

2.6 An example of eliminating vertices from the moral graph of the Asia

network. 16

2.7 The search tree of the optimal triangulation algorithm for a network

graph with five vertices. 18

2.8 An example of the vertex elimination process according to the elim-

ination order that starts with sequence ha, bi. Left: Initial graph.

Middle left: Partially triangulated graph corresponding to partial

elimination order hai. Middle right: Partially triangulated graph

corresponding to the partial elimination order ha, bi. Right: Final

chordal graph. 21

vi

LIST OF FIGURES vii

3.1 A sequence of graphs corresponding to eliminating vertexD followed

by vertex S in an order that starts with hD,Si. (L,B) is the fill-in

edge. 26

3.2 A comparison of the number of cliques that are enumerated by each

algorithm. Each label on the X-axis consists of the network name,

the number of variables, and the graph density for a Bayesian network. 34

3.3 A comparison of the running times for di↵erent dynamic clique

maintenance algorithms on the random graphs. 38

4.1 The part of search tree beginning at node t. 45

4.2 The correlation between the speed advantage of EDFS over DFS

and several factors that might a↵ect it. 53

List of Tables

3.1 A comparison of the running times (s) for the Ottosen and Vomlel

method (OandV), the Li and Ueno method (LandU2012) and the

Proposed method. 36

4.1 A comparison of the running times (s) and the numbers of node

expansions for the NDFS and the NDFS-PCP methods. 49

4.2 A comparison of the running times (s), the numbers of expanded

nodes and the sizes of coalescing maps for DFS and EDFS algo-

rithms. The columns labeled with mean(|sp|) and sd(|sp|) give

the average number of states of variables in each Bayesian network

and the standard deviation, respectively. Finally, tw denotes the

treewidth, and w-tw denotes the weighted treewidth. 51

4.3 A comparison of DFS and EDFS for graphs with various densities. 54

4.4 A comparison of the EDFS and the DFS (OandV) algorithms on a

set of Bayesian network with 100 variables 56

4.5 A comparison of the di↵erent objective functions. 58

viii

Chapter 1

Introduction

1.1 Motivation

Bayesian networks are graphical models that encode probabilistic relations among

several variables [Pearl, 1988]. A Bayesian network is a directed acyclic graph in

which vertices represent random variables and the arcs (or lack of them) repre-

sent the direct dependence (or conditional independence) relations between the

variables. Each network variable is associated with a conditional probability ta-

ble conditioning on its parent variables, which quantifies the relation between the

variable and its parents. Overall, a Bayesian network provides a compact repre-

sentation of joint probability distributions over the network variables.

An extremely common inference task in Bayesian networks is to compute the

posterior marginal distributions for the unobserved variables given some evidence

variables that we have already observed. However, exact computation of posterior

marginal distributions in a Bayesian network is known to be NP-hard [Cooper,

1990] and even an approximation of them is computationally intractable in the

general case [Roth, 1996]. Consequently, the inference algorithm has a network

size limitation that hinders the more widespread application of Bayesian networks.

Many attempts to improve the inference algorithm have been made in the past two

1

2 Introduction

decades. The junction tree algorithm [Lauritzen and Spiegelhalter, 1988; Jensen

et al., 1990; Shenoy and Shafer, 1990] is currently among the most prominent ex-

act inference algorithms. In that algorithm, a Bayesian network is first converted

into a special data structure called a junction tree, and then belief is propagated

on the tree. A junction tree can be formed if and only if the moral graph of the

Bayesian network is a chordal graph, also known as a triangulated graph. If the

graph is not chordal, then extra edges should be added to it until it becomes so.

The process of adding edges to a graph in order to make it chordal is called “tri-

angulation” in the Bayesian networks field. In general, a Bayesian network allows

several di↵erent triangulations, and the triangulation will a↵ect the structure of

the junction tree and the performance of subsequent belief propagation on that

tree. Hence, to enable e�cient inference on a Bayesian network using the junc-

tion tree algorithm, this study aims to find a triangulation of the moral graph of

the Bayesian network such that the total table size is minimized [Kjaerul↵, 1990;

Nielsen and Jensen, 2007]. In this context, the total table size is used to measure

the computational complexity of the junction tree inference algorithm. Unfortu-

nately, finding a triangulation with the minimum total table size is known to be

NP-hard [Wen, 1990]. Due to this complexity, early research in this direction fo-

cused mainly on developing approximation algorithms, such as greedy heuristics

[Kjaerul↵, 1990; Wen, 1990]. Heuristic approaches are useful for triangulation of

large-scale Bayesian networks, for which finding an optimal triangulation is infeasi-

ble; however, these approximation methods are not guaranteed to find an optimal

triangulation. Finding an optimal triangulation requires additional computational

time, but once the junction tree of a Bayesian network has been constructed, e�-

cient probabilistic inference can be performed on the same junction tree to process

any evidence [Madsen and Jensen, 1999; Darwiche, 2009]. Therefore, an optimal

triangulation can be found o↵-line and saved for use in inference algorithms. An

additional reason to find an optimal triangulation is that performing inference on

1.1 Motivation 3

Bayesian network systems with real-time computing constraints (including in real-

time systems [Musliner et al., 1995] and embedded systems [Ramos and Cozman,

2005]) requires an optimal triangulation to minimize the inference time. Therefore,

this thesis focuses especially on algorithms for optimal triangulation of Bayesian

networks.

In order to construct an e�cient junction tree, previous triangulation algo-

rithms have used depth-first search [Gogate and Dechter, 2004], branch and bound

[Bachoore and Bodlaender, 2006], best-first search [Dow and Korf, 2007] and dy-

namic programming [Bodlaender et al., 2012]. Instead of using the total table size

as a measure, these methods have employed the treewidth criterion. The treewidth

of a chordal graph is the size of the maximum clique minus one, and the treewidth

criterion requires finding a chordal graph that has minimum treewidth. A junction

tree is constructed by connecting the (maximal) cliques of a chordal graph. The

complexity of belief propagation for a clique is proportional to the table size of

the clique, which is the size of the joint state space of the variables represented

by the vertices in the clique. The total computational cost of belief propagation is

proportional to the total table size of the junction tree. For example, when we have

a Bayesian network in which all variables have at most c states, the running time

of the belief propagation using a junction tree with m cliques and treewidth k is of

order O(ck ·m). However, in practice, the statistical variables in a Bayesian net-

work might have di↵erent numbers of states, and so a triangulation with minimum

treewidth might not be optimal for this algorithm. Thus, the weighted treewidth is

employed for triangulation algorithms, where the weighted treewidth of a chordal

graph is the maximum table size required for any clique. Given a junction tree

with m cliques and weighted treewidth w, the running time of a belief propagation

is of order O(w · m). Taking advantage of considering the di↵erent number of

states over variables, the weighted treewidth criterion can obtain a better bound

for inference time than the treewidth criterion. Several triangulation algorithms

4 Introduction

that minimize the weighted treewidth have been proposed previously [Bachoore

and Bodlaender, 2007; van den Eijkhof et al., 2007]. Nevertheless, when cliques

are not almost all equal in table size (or, equivalently, weighted clique size), the

time bound for the inference algorithm is loose. Finally, the total table size is

the sum of all weighted clique sizes, and the total table size is proportional to the

running time of junction tree inference. Of all these optimality criteria, the total

table size yields the most exact bound for the time requirement of probabilistic

inference [Lauritzen and Spiegelhalter, 1988; Wen, 1990; Nielsen and Jensen, 2007].

Therefore, for e�cient inference on a Bayesian network, a triangulation is optimal

when it has the minimum total table size.

A triangulation can be found by an elimination algorithm known as the Elim-

ination Game, proposed by Parter [1961]. In this algorithm, a chordal graph is

obtained by eliminating all vertices from a graph according to a linear ordering of

the vertices of the graph (called the elimination order). Ottosen and Vomlel [2012]

have shown that the optimal triangulation problem can be formulated as a problem

to find an elimination order such that the chordal graph obtained according to the

order has the minimum total table size. Employing this formulation, Ottosen and

Vomlel investigated depth-first search and best-first search algorithms for explor-

ing the search space of all elimination orders [Ottosen and Vomlel, 2012]. They

claimed that depth-first search uses less memory than best-first search. More-

over, they demonstrated that the two methods have almost equal run times in

computational experiments: that is, the best-first search, which theoretically has

better order, does not necessarily run faster than the depth-first search in prac-

tice because, although the depth-first search expands more search nodes than the

best-first search does, the best-first search has the heavy overhead of maintaining

a priority queue. (To avoid confusion, in this paper, “vertex” is used exclusively

in the context of the graph being triangulated and “node” is used exclusively in

reference to the search space of the optimal triangulation algorithm.) This thesis

1.1 Motivation 5

focuses mainly on improvements to depth-first search algorithms for optimal trian-

gulation. In the depth-first search algorithm, in order to employ branch and bound

for pruning, it is necessary to compute the total table size of each node, which is

a lower bound for the node. To compute this quantity, we need to know the set of

cliques of the graph to which each node belongs. A simple method for computing

this is to run the Bron–Kerbosch (BK) algorithm [Cazals and Karande, 2008] for

each node of the graph; however, the complexity of the BK algorithm is exponen-

tial in the number of vertices of the graph [Tomita et al., 2006]. To resolve this

problem, Ottosen and Vomlel proposed a dynamic clique maintenance algorithm

[Ottosen and Vomlel, 2012] that runs the BK algorithm on a smaller subgraph in

which all the new cliques can be found and all known cliques within the subgraph

are removed. This dynamic clique maintenance reduced the overhead cost of each

node and made the optimal triangulation algorithm faster. To reduce the search

space, Ottosen and Vomlel also introduced the simplicial vertex rule [Bodlaender

et al., 2005; van den Eijkhof et al., 2007] and coalescing map pruning [Dow and

Korf, 2007; Darwiche, 2009]. Nevertheless, the depth-first search algorithm pro-

posed by Ottosen and Vomlel has the following two performance problems. First,

the dynamic clique maintenance algorithm allows recomputing some cliques. The

computational cost of the method increases with the number of duplicate compu-

tations. In the elimination process for triangulating a graph, it is well known that

a new added edge cannot connect to a vertex that has been eliminated. From this

observation, Li and Ueno [Li and Ueno, 2012] proposed an improved dynamic clique

maintenance algorithm. The Li and Ueno method reduced the search space of the

BK algorithm by removing eliminated vertices from the subgraph explored during

the Ottosen and Vomlel method. However, this method still computes many dupli-

cate cliques. Second, the depth-first search algorithm explores a search space of size

n!, where n is the number of variables in the Bayesian network, because it explores

the search space containing all elimination orders. It is known that some di↵erent

6 Introduction

elimination orders induce identical triangulations. Consequently, the depth-first

search algorithm might explore a large number of equivalent elimination orders.

1.2 Contributions

An extended depth-first search algorithm for the optimal triangulation of Bayesian

networks is proposed. This algorithm improves the Ottosen and Vomlel method

in two ways.

1. It reduces the overhead cost of each node, and

2. it reduces the size of the search space by a factor of O(n2).

To reduce the overhead cost, this study proposes a new dynamic clique mainte-

nance algorithm. When new edges are inserted in a graph during triangulation

process, we need to update the stored cliques to be those of the new graph. Any

new clique in the updated graph contains at least one new edge, and employing

this observation in our method allows not recomputing those cliques that do not

contain a new edge. Next, the proposed method runs the BK algorithm on the sub-

graph that contains only the vertices connected by new edges and all neighboring

vertices of new edges. The proposed method, therefore, explores an even smaller

subgraph than the one that the Ottosen and Vomlel method explores. Since the

computational cost of dynamic clique maintenance is inherent in expanding each

node, improving dynamic clique maintenance can decrease the overhead of each

node. To reduce the size of the search space, a novel pruning rule, called pivot

clique pruning, is introduced. The initial search space of the optimal triangula-

tion algorithm includes all elimination orders; pivot clique pruning removes a large

number of equivalent elimination orders from this search space. In a theoretical

analysis, this paper shows that the pruning method reduces the size of the search

space by a factor of O(n2). Our empirical results show that the proposed depth-

1.3 Overview of the rest of the thesis 7

first search algorithm represents a remarkable improvement over the Ottosen and

Vomlel algorithm.

1.3 Overview of the rest of the thesis

The rest of this thesis is organized as follows. Chapter 2 introduces the junction

tree inference algorithm and motivates optimal triangulation algorithms. We also

show that a recently proposed optimal triangulation algorithm has duplicate com-

putation, whereas the algorithms in chapters 3 and 4 can mitigate this problem.

Chapter 3 proposes a new dynamic clique maintenance algorithm and evaluates

the proposed method against the state-of-the-art method. The empirical results

show that the new algorithm reduces the number of duplicate cliques computed

during the triangulation process and remarkably improves the running time of the

depth-first search algorithm.

Chapter 4 proposes pivot clique pruning. We first introduce the concept of

equivalent elimination orders and then employ this observation to formalize the

idea of pivot clique pruning. We also discuss the pivot clique choice heuristic and

show how pivot clique pruning reduces the size of the search space by a factor of

O(n2).

Chapter 5 gives final conclusions and presents plans for additional research in

the future.

Chapter 2

Triangulation of Bayesian

networks

2.1 Background

A Bayesian network is a directed acyclic graph (DAG) in which the set of vertices

corresponds to a set of (discrete) random variables X = {x1, x2, . . . , xn

}, and the

arcs represent direct dependency relations between the variables. For example,

Figure 2.1 shows the classical Asia Bayesian network [Jensen et al., 1990]. More

precisely, each variable x
i

in X is represented as a vertex in the DAG and is

associated with a conditional probability table (CPT), P (x
i

| PA
i

), where PA
i

denotes the parents of x
i

in the DAG. Given a variable x
i

in a DAG G, the

parents of x
i

in G are defined to be the set of variables with an arc to x
i

. The

product of CPTs in a Bayesian network gives the joint probability distribution of

variables in the Bayesian network, with

P (X) = P (x1, x2, . . . , xn

) =
nY

i=1

P (x
i

| PA
i

), (2.1)

where n is the number of variables in the Bayesian network.

When an inference task is performed on a Bayesian network, we typically com-

8

2.1 Background 9

Figure 2.1: The Asia Bayesian network

pute the posterior marginal distributions for the unobserved variables given some

evidence variables that we have already observed. However, computing the poste-

rior marginal distributions is known to be NP-hard. Currently, the most e�cient

algorithm used for computing this distribution is the junction tree algorithm. The

junction tree algorithm uses two processes: compilation and propagation. The

compilation part of the method consists of the following steps:

1. moralize the Bayesian network graph, see Figure 2.2;

2. triangulate the moralized graph (i.e., add extra edges such that every cycle

of length greater than three has a chord), see Figure 2.3a;

3. identify all maximal cliques of the chordal graph (a clique is defined as a

subset of vertices of an undirected graph such that every two distinct vertices

in the vertex subset are adjacent);

4. construct a junction tree over these cliques, see Fig. 2.3b.

A junction tree over the cliques is characterized by the junction tree property:

given two cliques in the junction tree, C
i

and C
j

, every node on the path between

10 Triangulation of Bayesian networks

Figure 2.2: Moralizing the Bayesian network graph: (a) connect the vertices with

common children and (b) drop the directions of directed edges.

Figure 2.3: (a) Add edges to make the moral graph chordal and (b) construct a

junction tree by connecting the cliques of the chordal graph.

2.1 Background 11

them contains their intersection (C
i

\ C
j

). In the compilation part, steps 1 and 3

are deterministic but steps 2 and 4 raise optimization problems. For step 2, we will

discuss the optimal triangulation problem in detail in the next section. This thesis

focuses on the optimal triangulation algorithms. For step 4, Jensen [Jensen and

Jensen, 1994] has proposed an algorithm for optimal junction tree construction.

Before we discuss belief propagation, we must first introduce its central com-

ponent: the potential. A potential � is a function over a set of variables, mapping

each instantiation of these variables to a non-negative number. Two potentials can

be multiplied and divided. The marginalization operation is also well defined for

a potential. A good introduction to these concepts can be found in [Nielsen and

Jensen, 2007].

The propagation part of the method consists of the following steps:

1. giving all links in the junction tree a label consisting of the intersection of

the neighboring cliques (these labels are called separators, see Figure 2.4a);

2. forming a potential �
i

for each clique C
i

, using the CPTs of the Bayesian

network and attaching a potential �
ij

for each separator with all values ini-

tialized to one; and

3. letting the nodes communicate via the separators. For example, in Fig-

ure 2.4b, sending a message from clique C
i

to C
j

with separator S
ij

does

the following. It computes a new potential �0
ij

 P
Ci\Sij

�
i

. It computes a

message for node j : M
ij

= �0
ij

/�
ij

and multiplies the potential at node j by

the computed message: �
j

 �
j

M
ij

. Finally, it replaces the potential �
ij

on

the separator with �0
ij

.

Belief propagation begins by choosing an arbitrary clique as the root, from

which the propagation is initiated. Message passing starts from the leaves and is

divided into two stages. When a clique receives messages from all its neighbors ex-

cept one that lies toward the root, it is allowed to send a message toward the root.

12 Triangulation of Bayesian networks

Figure 2.4: (a) Junction tree and (b) an illustration of message passing

This continues until the root clique has received messages from all its neighbors.

This procedure is called COLLECT-EVIDENCE. Then, the root clique sends mes-

sages to all its neighbors. When a clique receives messages from all its neighbors,

it sends a message toward the leaves until all leaves have received a message. This

procedure is called DISTRIBUTE-EVIDENCE. After these two rounds of message

passing, each clique potential of the junction tree holds the marginal probability

distribution for the variables belonging to it.

Given a junction tree with m cliques and assuming only binary variables, per-

forming probabilistic inference on the tree needs to calculate
P

m

i=1 2
mi parameters,

where m
i

denotes the number of variables in the ith clique. The number
P

m

i=1 2
mi

is known as the total table size (or total clique tree size [Mengshoel, 2010] or total

state space size [Kjaerul↵, 1990]), and is an estimation of the time complexity of

the junction tree algorithm. We will give a formal definition of total table size

in the next section. A Bayesian network allows several di↵erent triangulations,

yielding di↵erent sets of cliques. The time complexity of belief propagation heav-

ily depends on the total table size of the chordal graph. Therefore, it is necessary

to find an optimal total table size triangulation for e�cient inference.

2.2 The triangulation problem 13

2.2 The triangulation problem

We first introduce some notation and definitions for the description of the triangu-

lation problem. Then we formulate the search space of the optimal triangulation

algorithm.

2.2.1 Notation and definitions

Let G = (V,E) be an undirected graph with vertex set V and edge set E, V(G)

denotes the vertex set of G and E(G) denotes the edge set of G. For a set of

vertices W ✓ V , G[W] = (W, {(v, w) 2 E | v, w 2 W}) is the subgraph of G

induced by W . For a set of edges F , V(F) denotes the set of vertices {v, w|(v, w) 2
F}. Two vertices v and w in G = (V,E) are said to be adjacent if (v, w) 2 E.

The set of neighbors of v in graph G = (V,E) is denoted by N (v,G) = {w 2
V |(v, w) 2 E}). The family FA(U,G) of a set of vertices U ✓ V is defined as the

set (
S

u2U N (u,G)) [U .

A graph G is complete if all pairs of vertices (u, v)(u 6= v) are adjacent in G.

A set W ✓ V of vertices is complete in G if G[W] is a complete graph. If W is a

complete set and no complete set U exists such that W is a proper subset of U ,

then W is a clique. (Remark: Any complete set is called a clique in some of the

literature. In that case, what we have defined as a clique is called a maximal clique.)

The set of all cliques of graph G is denoted by C(G). Let G0 = (V,E[F)(F\E = ;)
be the graph obtained by adding a set F of new edges to G = (V,E). Then,

RC(G,G0) = C(G)\C(G0) denotes the set of removed cliques, and NC(G,G0) =

C(G0)\C(G) denotes the set of new cliques. For example, in Fig. 2.5, let G be the

graph on the left, and G0 be the graph obtained by adding a new edge (c, d) to G. In

this example, we can compute C(G) = {{a, b, c}, {b, d}, {d, e}, {c, e}} and C(G0) =

{{a, b, c}, {b, c, d}, {c, d, e}}. Then we have RC(G,G0) = {{b, d}, {d, e}, {c, e}} and

NC(G,G0) = {{b, c, d}, {c, d, e}}.

14 Triangulation of Bayesian networks

Let G = (V,E) be an undirected graph with vertex set V that corresponds to

the variable set of a Bayesian network. The table size of a clique C in G is defined

as ts(C) =
Q

(v2C) |sp(v)|, where sp(v) denotes the state space of the network

variable corresponding to v. The total table size (tts) of a graph G is defined as

tts(G) =
P

C2C(G) ts(C).

Figure 2.5: Left: Initial graph G = (V,E). Right: Updated graph G0 obtained by

adding one edge (c, d) to G.

An undirected graph G is chordal if every cycle of length greater than three

has a chord, that is, an edge connecting two nonconsecutive vertices in the cycle.

Triangulation ofG = (V,E) is defined as adding a set of edges T such that T\E = ;
and graph H = (V,E [T) is chordal. For example, in Figure 2.5, the graph on

the left is not chordal because a chord-less cycle {b, c, e, d} exists. The graph on

the right is chordal, and the edge (c, d) produces a triangulation for the graph on

the left.

The elimination of a vertex v 2 V from graph G = (V,E) is the process of

adding necessary edges F to make the vertex set N (v,G) complete, and then re-

moving v and its incident edges from G. The edges F added during the elimination

2.2 The triangulation problem 15

process are called fill-in edges. If F = ;, then v is called a simplicial vertex of G.

An elimination order for graph G = (V,E) is a bijection ⇡ : {1, 2, . . . , |V |} ! V

describing an order for eliminating all vertices from G, where ⇡(i) denotes the

ith vertex in the order ⇡. The elimination of vertices from graph G according to

order ⇡ induces a remaining graph sequence G⇡

1 , G
⇡

2 , . . . , G
⇡

n

, where graph G⇡

1 = G

and graph G⇡

i+1 is obtained by eliminating vertex ⇡(i) from graph G⇡

i

. Moreover,

the elimination process induces a sequence of fill-in edges F ⇡

1 , F
⇡

2 , . . . , F
⇡

n

, where

F ⇡

i

are the fill-in edges introduced when eliminating vertex ⇡(i) from G⇡

i

. Let T ⇡

denote the union of all the fill-in edges that result from eliminating all vertices

from graph G = (V,E) according to order ⇡ and let H⇡ = (V,E [T ⇡) denote the

filled-in graph that results from adding edges T ⇡ to G. It is well known that T ⇡ is

a triangulation of G, and H⇡ is a chordal (or triangulated) graph [Golumbic, 2004].

The partially triangulated graph H⇡

i

for a graph G is defined as the graph that

results from adding fill-in edges F ⇡

1 , F
⇡

2 , . . . , F
⇡

i

to graph G. The final partially

triangulated graph H⇡

n

(also written as H⇡) is a chordal graph. Let ⌧ denote a

partial elimination order for graph G, which is a sequence of vertices for ordering

the elimination process. The partially triangulated graph H⌧ and the remaining

graph G⌧ are defined similarly.

Now, we present an example to demonstrate the process of eliminating vertices

from the moral graph of the Asia Bayesian network in Figure 2.6. Consider an

elimination order ⇡ starting with the sequence hD,Si. Because eliminating vertex

⇡(1) = D does not add any fill-in edges, F ⇡

1 is empty and D is a simplicial vertex.

This process induces two associated graphs: a partially triangulated graph H⇡

1

(see Figure 2.6(a)) and the remaining graph G⇡

2 (see Figure 2.6(b)). Then we

eliminate vertex ⇡(2) = S. Eliminating vertex S adds a fill-in edge (L,B), so

F ⇡

2 = {(L,B)}. This process also induces two associated graphs: the partially

triangulated graph H⇡

2 is shown in Figure 2.6(c) and the remaining graph G⇡

3 is

shown in Figure 2.6(d). If we continue to eliminate vertices until no vertex is left,

16 Triangulation of Bayesian networks

Figure 2.6: An example of eliminating vertices from the moral graph of the Asia

network.

2.3 Heuristic triangulation algorithms 17

the final partially triangulated graph H⇡ is a chordal graph that has no chord-less

cycles. Triangulation according to a particular elimination order is simple, but the

determination of an optimal elimination order is the most important step. In this

thesis, we try to find the order ⇡ for eliminating graph G that induces a chordal

graph H⇡ with the minimum total table size.

2.2.2 Search space of the optimal triangulation algorithm

To find an optimal triangulation of a Bayesian network, we can conduct a search

in the space of all elimination orders of the Bayesian network [Ottosen and Vomlel,

2012]. For this purpose, we generate a search graph that includes all elimination

orders of the Bayesian network. The search graph is a tree with root node cor-

responding to the initial search node and leaf nodes corresponding to all distinct

elimination orders. Figure 2.7 depicts the search space of the optimal triangu-

lation algorithm on a network graph with five vertices. In this search tree, each

non-leaf node is labeled using a partial elimination order ⌧ that is a sequence of

vertices for ordering the elimination process. We also associate the partially tri-

angulated graph H⌧ and the remaining graph G⌧ with each node for reasons of

computational convenience in the optimal triangulation algorithm. Each child of a

node ⌧ is generated by eliminating a vertex from its parent’s remaining graph G⌧

and appending that vertex to its parent’s partial elimination order ⌧ . By exploring

the search tree, we can find an elimination order that induces a chordal graph with

the minimum total table size.

2.3 Heuristic triangulation algorithms

In this section, we describe three common heuristic triangulation algorithms (min-

imum fill-in, minimum degree and minimum weight), which all greedily pick the

next vertex to eliminate based on a local score [Kjaerul↵, 1990; Wen, 1990; Dar-

18 Triangulation of Bayesian networks

Figure 2.7: The search tree of the optimal triangulation algorithm for a network

graph with five vertices.

wiche, 2009]. These heuristics have shown that they can generate a reasonably

good upper bound on treewidth and, indirectly, can generate a small total table

size triangulation. Although these approximation methods are not guaranteed to

find a triangulation with minimum total table size, they generate an approxima-

tion in polynomial time with respect to the size of the graph and therefore can

be used for computing an upper bound for optimal triangulation methods. The

minimum fill-in algorithm greedily selects the next vertex to eliminate if the elim-

ination adds the minimum number of fill-in edges; the minimum degree algorithm

greedily selects the next vertex to eliminate if it has the minimum number of neigh-

boring vertices; the minimum weight algorithm greedily selects the next vertex to

eliminate if the product of weights of its neighbors is a minimum.

2.4 The optimal triangulation algorithm 19

2.4 The optimal triangulation algorithm

This section reviews the depth-first search optimal triangulation algorithm pre-

sented by Ottosen and Vomlel [Ottosen and Vomlel, 2012]. The naive depth-first

branch and bound algorithm for optimal triangulation operates as follows. First,

the algorithm initializes the upper bound (UB) on total table size (tts) with the

triangulation obtained by the minimum fill-in heuristic (MinFill). Next, it tra-

verses all search tree nodes in a depth-first manner. For each search tree node,

we calculate the tts of the partially triangulated graph corresponding to the node.

This quantity is a lower bound for the tts of the node because the tts of a graph

cannot be decreased by adding edges [Ottosen and Vomlel, 2012]. If we find a node

for which the tts is greater than the tts of UB, then we prune all the descendants

of the node. On the other hand, if we find a leaf node for which the tts is smaller

than UB, we update UB by replacing UB with the leaf node (including the chordal

graph and the tts of the node). The search continues until all nodes have been

explored. At completion, the algorithm finds an optimal order or, equivalently,

an optimal triangulation. It is noteworthy that the algorithm explores the search

space of all elimination orders.

In the depth-first search algorithm, we intend to use the tts upper bound for

pruning nodes that have a greater tts. Therefore, we need to compute the tts of

each node in the search tree. The tts of a node is easy to compute if we know the

cliques of the partially triangulated graph corresponding to the node. To compute

the tts of a node time-e�ciently, Ottosen and Vomlel associate the following with

each node t [Ottosen and Vomlel, 2012].

• t.⌧ : The ordered list of vertices representing the partial elimination order.

• t.H: The partially triangulated graph obtained by adding all fill-in edges

accumulated along the ⌧ to the original moral graph.

20 Triangulation of Bayesian networks

• t.C: The set C(H) of cliques for H.

• t.tts: The total table size of graph H, which is a lower bound on the tts of

node t.

• t.R: The remaining graph, R = H[V \V(⌧)], where V(⌧) denotes the set of

vertices that lie in ⌧ .

To compute t.tts, we need to compute the set of cliques t.C first. For this purpose,

we can use a standard clique enumeration algorithm, such as the well-known Bron–

Kerbosch (BK) algorithm [Cazals and Karande, 2008]. Now, we present an example

to explain the lower bound and related computations.

Example 1. Figure 2.8 depicts the vertex elimination process according to the

leftmost path in Figure 2.7. The path corresponds to the sequential elimination of

vertices a and b. The root node r corresponds to the graph on the left in Figure 2.8

(initial graph), where no vertex has been eliminated. We can compute the cliques

of the root node’s graph r.C = {{a,b,c},{b,d},{d,e},{c,e}} using the BK algorithm.

In this case, the TTS (assuming all variables are binary) is 3 · 22 +23 = 20, which

is a lower estimate of the optimal TTS.

The successor node t of r (induced by elimination of vertex a) corresponds to

the middle-left graph in Figure 2.8. The partially triangulated graph t.H is the

same graph as the initial one. Therefore, we can derive t.tts = 20.

We generate the successor node t0 of t (corresponding to the elimination of

vertex a and then vertex b). The induced partially triangulated graph t0.H cor-

responds to the middle-right graph in Figure 2.8, which includes the fill-in edge

(c, d). Note that when we introduce fill-in edges in eliminating vertex b, we must

not add edge (a, d) because the vertex a has been eliminated and is not present

in the remaining graph, even though both a and d are neighbors of b in the par-

tially triangulated graph. Since graph t0.H is a chordal graph, it is not necessary

2.4 The optimal triangulation algorithm 21

Figure 2.8: An example of the vertex elimination process according to the elim-

ination order that starts with sequence ha, bi. Left: Initial graph. Middle left:

Partially triangulated graph corresponding to partial elimination order hai. Mid-

dle right: Partially triangulated graph corresponding to the partial elimination

order ha, bi. Right: Final chordal graph.

to generate any successor of t0. Finally, the cliques of the chordal graph are t0.C =

{{a,b,c},{b,c,d},{c,d,e}} and t0.tts is 3 · 23 = 24. In this example, we can see that

the TTS of a node is never higher than the TTS of its successor nodes. This key

property ensures the correctness of applying the branch and bound technique in the

optimal triangulation algorithm.

Unfortunately, the BK algorithm has a heavy computational cost. Because

eliminating one vertex changes only a small part of a partially triangulated graph,

performing the BK algorithm on the whole graph results in many redundant com-

putations. To tackle this problem, Ottosen and Vomlel [Ottosen and Vomlel, 2012]

proposed a more e�cient algorithm for computing the set of cliques in a dynamic

graph. We will explain this dynamic clique maintenance algorithm in Section 3.2.

However, the dynamic clique maintenance algorithm proposed by Ottosen and

Vomlel allows computing some duplicate cliques. To resolve this problem, we pro-

pose a new dynamic clique maintenance algorithm in Chapter 3.

For a Bayesian network with n variables, the depth-first search algorithm pre-

sented by Ottosen and Vomlel can be implemented in O⇤(2n) space and O⇤(n!)

22 Triangulation of Bayesian networks

Algorithm 1 Depth-first search with coalescing and upper-bound pruning.
1: function TriangulationByDFS(G)

2: Let s = (G, C(G), tts(G), V)

3: EliminateSimplicial(s) . Simplicial vertex rule

4: if |V(s.R)|=0 then

5: return s

6: end if

7: Let best = MinFill(s) . Best path

8: Let map = ; . Coalescing map

9: ExpandNode(s, best,map) . Start recursive call return best

10: end function

11: procedure ExpandNode(t,&best,&map)

12: for all v 2 V(t.R) do

13: Let m = Copy(t)

14: EliminateVertex(m, v) . Update graph, cliques and tts

15: EliminateSimplicial(m) . Simplicial vertex rule

16: if |V(m.R)|=0 then

17: if m.tts < best.tts then

18: Set best = m

19: end if

20: else

21: if m.tts � best.tts then

22: continue . Branch and bound

23: end if

24: if map[m.R].tts m.tts then

25: continue

26: end if

27: Set map[m.R] = m

28: ExpandNode(m, best,map)

29: end if

30: end for

31: end procedure

2.4 The optimal triangulation algorithm 23

time. Pseudocode for the Ottosen and Vomlel algorithm is outlined in Algorithm

1. The procedure EliminateVertex(m, v) eliminates vertex v from the remaining

graph of node m and simultaneously updates the set of cliques and the total ta-

ble size. To prune unnecessary search nodes further, Ottosen and Vomlel also

introduced the following pruning rules: (1) a graph reduction technique called

the simplicial vertex rule [Bodlaender et al., 2005; van den Eijkhof et al., 2007],

and (2) coalescing of nodes [Dow and Korf, 2007; Darwiche, 2009]. The pro-

cedure EliminateSimplicial(m, v) sequentially removes all simplicial vertices from

the remaining graph of node m. The coalescing map uses O⇤(2n) space to prune

unnecessary search nodes (see [Dow and Korf, 2007; Darwiche, 2009; Ottosen and

Vomlel, 2012] for details). Although the algorithm combined with the above prun-

ing techniques reduces the actual running time, it runs in O⇤(n!) time in the worst

case because it might explore the search space of all elimination orders, which has

size n!. It is known that some di↵erent elimination orders induce identical trian-

gulations. Consequently, the Ottosen and Vomlel algorithm might explore a large

number of equivalent elimination orders. In Section 4.2, we propose a pruning rule,

called pivot clique pruning, that removes a large number of superfluous elimination

orders from the search space.

Chapter 3

Dynamic clique maintenance

3.1 Introduction

In this section, we consider the problem of maintaining a set of cliques of a dynamic

undirected graph. A dynamic graph is defined as a graph in which the edges can

be removed and added, but the set of vertices is invariant. The dynamic clique

maintenance algorithm is a method to find all cliques of a dynamic graph. Let

G = (V,E) be a graph and G0 = (V,E [F) be the graph resulting by adding a

set of new edges F to G = (V,E). In particular, the dynamic clique maintenance

algorithm computes the set of cliques in G0 given that the set of cliques in G is

already known.

This study is motivated by the optimal triangulation of Bayesian networks with

respect to the total table size criterion using a best-first or depth-first search. This

requires a lower bound at each node on the total table size, for which we use the

total table size of the partially triangulated graph that is associated to the node.

In turn, this requires that we know all the cliques of each partially triangulated

graph in the triangulation process.

24

3.2 Previous work on dynamic clique maintenance 25

3.2 Previous work on dynamic clique maintenance

Algorithm 2 Dynamic clique maintenance algorithm proposed by Ottosen and

Vomlel.
1: procedure CliqueUpdate(G, C(G), F)

2: Let G0
= (V,E [F)

3: Let C(G0
) = C(G)

4: Let U = V(F)

5: for each clique C 2 C(G0
) do . Remove old cliques

6: if C \ U 6= ; then
7: Set C(G0

) = C(G0
) \ {C}

8: end if

9: end for

10: Let Cnew

= BKalgorithm(G0
[FA(U,G0

)])

11: for each clique C 2 Cnew

do . Add new cliques

12: if C \ U 6= ; then
13: Set C(G0

) = C(G0
) [{C}

14: end if

15: end for

16: end procedure

To avoid searching for all cliques in the whole graph as the BK algorithm does,

Ottosen and Vomlel proposed a dynamic clique maintenance algorithm that runs

a clique enumeration algorithm on a smaller subgraph in which all the new cliques

can be found and all the existing cliques are removed [Ottosen and Vomlel, 2012].

This dynamic clique maintenance is presented in Algorithm 2, where G is the initial

graph, C(G) is the set of cliques of G, F signifies the fill-in edges, and G0 is derived

by adding F to G. BKalgorithm(G) returns a set of cliques of the graph G. The

dynamic clique maintenance algorithm is based on the following theorem.

Theorem 3.1 ([Ottosen and Vomlel, 2012]). Let G = (V,E) be an undirected

26 Dynamic clique maintenance

Figure 3.1: A sequence of graphs corresponding to eliminating vertex D followed

by vertex S in an order that starts with hD,Si. (L,B) is the fill-in edge.

graph, and let G0 = (V,E [F) be the graph resulting from adding a set of new

edges F to G. Let U = V(F), and let C(G0) be initialized with C(G). If the cliques

in G that intersect with U are removed from C(G0) and the cliques in G0[FA(U,G0)]

that intersect with U are added to C(G0), then C(G0) is the set of cliques of G0.

Next, we provide an example to illustrate Algorithm 2.

Example 2. Consider the Figure 3.1a. C(G) is the set of cliques of G, {{A, T},
{T, L,E}, {E,X}, {S, L}, {S,B}, {B,D,E}}. We add fill-in edges F = {(L,B)}
to graph G, resulting in new graph G0 (corresponding to the graph in Figure 3.1b).

The set U = {L,B}, and we let C(G0) be initialized with C(G).

First, we scan through the cliques in C(G0) to remove the cliques that in-

tersect with U , which is the set of cliques {{T, L,E},{S, L},{S,B},{B,D,E}}.
Next, we run the BK algorithm on a subgraph G0[FA(U,G0)]. Thereby, we obtain

Cnew={{T, L,E},{S, L,B},{L,B,E},{B,D,E}}.
Finally, we add to C(G0) all the cliques found in the subgraph G0[FA(U,G0)]

that intersect with U . Now C(G0)={{A, T},{E,X},{T, L,E},{S, L,B}, {L,B,E},
{B,D,E}}, which is the set of cliques of the new graph G0.

The example shows that the algorithm sometimes removes a clique and then

adds it again. Although the Ottosen and Vomlel method reduces the search space

3.3 Proposed dynamic clique maintenance algorithm 27

of the BK algorithm from the whole graph G0 to a small subgraph G0[FA(U,G0)],

the method might present shortcomings in performance when the number of du-

plicate cliques becomes large. In this example, we observed that vertex D has

been eliminated. It is well known that a new fill-in edge cannot connect to a

vertex that has been eliminated. Because the neighbors of D are invariant in G

and G0, any clique containing D in the initial graph should remain a clique in

the updated graph. Generally, no clique containing one of the eliminated ver-

tices should be calculated again. Based on this observation, Li and Ueno [Li and

Ueno, 2012] proposed an improved dynamic clique maintenance algorithm. The Li

and Ueno dynamic clique maintenance procedure is shown in Algorithm 3, where

G, C(G), F are defined in the same manner as presented in Algorithm 2, and W is

the set of vertices that have been eliminated before. The improved dynamic clique

maintenance runs the BK algorithm on the graph G0[FA(U,G0) \W], which is a

subgraph of G0[FA(U,G0)] that the Ottosen and Vomlel method explores. Because

the complexity of the BK algorithm is exponential in the number of vertices in the

subgraph, reducing the search space of the BK algorithm is important for improv-

ing the performance of dynamic clique maintenance. In the Li and Ueno method,

when we remove an old clique C, one more conditional check is necessary to as-

certain whether clique C and W are disjoint. This check is usually not a problem

because the complexity of comparison of two cliques is constant if we store a clique

using a BitSet Object in the JAVA programming language. However, the method

still computes many duplicate cliques.

28 Dynamic clique maintenance

Algorithm 3 Dynamic clique maintenance algorithm proposed by Li and Ueno

(2012).
1: procedure CliqueUpdate1(G, C(G), F,W)

2: Let G0
= (V,E [F)

3: Let C(G0
) = C(G)

4: Let U = V(F)

5: for each clique C 2 C(G0
) do . Remove old cliques

6: if C \ U 6= ; then
7: if C \W = ; then
8: Set C(G0

) = C(G0
) \ {C}

9: end if

10: end if

11: end for

12: Let Cnew

= BKalgorithm(G0
[FA(U,G0

) \W])

13: for each clique C 2 Cnew

do . Add new cliques

14: if C \ U 6= ; then
15: Set C(G0

) = C(G0
) [{C}

16: end if

17: end for

18: end procedure

3.3 Proposed dynamic clique maintenance algorithm 29

Algorithm 4 Proposed dynamic clique maintenance algorithm.
1: procedure CliqueUpdate2(G, C(G), F)

2: Let G0
= (V,E [F)

3: Let C(G0
) = C(G)

4: Let W = FA(F,G0
)

5: for each clique C 2 C(G0
) do . Remove old cliques

6: if C ✓W then

7: Set C(G0
) = C(G0

) \ {C}
8: end if

9: end for

10: C(G0
) = C(G0

) [BKalgorithm(G0
[W]) . Add new cliques

11: end procedure

3.3 Proposed dynamic clique maintenance algo-

rithm

In the depth-first search optimal triangulation algorithm, it is necessary to com-

pute the lower bound of tts for each search node. Therefore, the computational

cost of updating cliques is inherent in expanding each node. To lower the overhead

cost of each node, we must compute the cliques of each graph e�ciently. In Sec-

tion 3.2, we have demonstrated by example that the Ottosen and Vomlel approach

might compute some duplicate cliques. To resolve this problem, we propose a new

dynamic clique maintenance algorithm. When some new edges are inserted into a

graph, a new clique contains at least one new edge. The main idea of our method

is to avoid recomputing the cliques that do not contain a new edge.

For a graphG = (V,E) and an edge e = (v, w) 2 E, we define the neighborhood

N (e,G) of an edge e as the set of vertices U ✓ V such that U contains all the

vertices adjacent to both v and w. For a set of edges F , the family FA(F,G) of

F is defined as the set ([
f2FN (f,G))[V(F). Let G = (V,E) be the initial graph

30 Dynamic clique maintenance

and let G0 = (V,E [F)(F \ E = ;) be the graph obtained by adding a set of

new edges F to G. All new cliques and removed cliques are included in the vertex

set FA(F,G0) according to the following theorem. Therefore, we can run the BK

algorithm on only the subgraph G[FA(F,G0)]. Note that the family FA(F,G0) is

a subset of the family FA(V(F), G0), which is the subgraph explored during the

Ottosen and Vomlel method. The proposed dynamic clique maintenance is shown

in Algorithm 4, where G,F, C(G) are defined in the same manner as presented in

Algorithm 2, and W = FA(F,G0) denotes the family of a set of edges F .

The new algorithm is based on the following theorem.

Theorem 3.2. Let G = (V,E) be an undirected graph, and let G0 = (V,E [F) be

the graph resulting from adding a set of new edges F to G. Let W = FA(F,G0),

and let C(G0) be initialized with C(G). If the cliques that are included in W are

removed from C(G0) and the cliques of C(G0[W]) are added to C(G0), then C(G0) is

the set of cliques of G0.

Proof. If C is a complete set inNC(G,G0) (which means C 2 C(G0) and C /2 C(G)),

then C contains at least one new edge f 2 F ; otherwise C would be a clique in

G. If C is a new clique that contains a new edge f = (v, w) 2 F , then any vertex

u 2 C (u 6= v or w) is included in N (f,G0). Therefore, C ✓ FA(F,G0). Thus, all

the new cliques can be found in the subgraph G[FA(F,G0)].

If K is a complete set in RC(G,G0) (which means K 2 C(G) and K /2 C(G0)),

then there exists a new clique C such that K ✓ C. Because any new clique is

included in FA(F,G0) as proved above, C ✓ FA(F,G0). Therefore, each removed

clique K is included in FA(F,G0).

We remove all the old cliques by removing all the cliques included in FA(F,G0)

from C(G0), and then add all the new cliques which can be found in the subgraph

G[FA(F,G0)] to C(G0). Then, C(G0) is the set of cliques of G0.

The following example illustrates the algorithm.

3.3 Proposed dynamic clique maintenance algorithm 31

Example 3. Consider again the graph G and updated graph G0 in Figure 3.1.

C(G) is the set of cliques of G, C(G) = {{A, T}, {T, L,E}, {E,X}, {S, L}, {S,B}, {B,D,E}}.
Let C(G0) be initialized with C(G). We first compute the family of edge set F ,

W = FA(F,G0) = {S,E, L,B}. Next, we scan through the cliques in C(G0) to

remove all the cliques included in W , which is the set of cliques {{S, L}, {S,B}}.
Then, we run the BK algorithm on a subgraph G0[W]. We obtain Cnew =

{{S, L,B}, {L,B,E}}. In the Ottosen and Vomlel method, we run the BK algo-

rithm on G0[FA(U,G0)], where FA(U,G0) = {S, T, E,D, L,B}. However, in our

new method, we run the BK algorithm on G0[W], where W = {S,E, L,B}. It can
be easily proved that vertex set W = FA(F,G0) is always a subset of FA(V(F), G0).

Our method makes the BK algorithm explore less search space for updating cliques

than the Ottosen and Vomlel method. Since the complexity of the BK algorithm is

exponential in the number of vertices in the subgraph, this reduction is important

to improve the performance of dynamic clique maintenance.

Finally, we simply add all new cliques Cnew to C(G0). In this example, we

only remove cliques RC(G,G0) from C(G0) and add cliques NC(G,G0) to C(G0). In

contrast, the Ottosen and Vomlel method removes some duplicate cliques and then

adds them again.

Given a graph G, a set of new edges F and the eliminated vertex set W , con-

sider the problem of computing the set of cliques of new graph G0. The Ottosen

and Vomlel method runs the BK algorithm on G0[FA(V(F), G0)], the Li and Ueno

method runs the BK algorithm on G0[FA(V(F), G0)\W] and the proposed method

runs the BK algorithm on G0[FA(F,G0)]. The BK algorithm su↵ers from heavy

computational cost, and the proposed method reduces the search space of the BK

algorithm because FA(V(F), G0) ◆ FA(V(F), G0) \W ◆ FA(F,G0). Therefore,

our proposed method is expected to dramatically reduce the running time of dy-

namic clique maintenance. In the Ottosen and Vomlel approach, it is necessary

to check each clique in G0[FA(V(F), G0)] to ascertain whether it intersects V(F).

32 Dynamic clique maintenance

However, we can remove this conditional check from our algorithm.

The dynamic clique maintenance algorithms has two main steps: scanning

all existing cliques and running the BK algorithm. If dynamic clique maintenance

algorithms are used for computing graphs with too many cliques, then the scanning

part will dominate the complexity of the dynamic clique maintenance because they

need to scan all existing cliques in the graphs. In this case, the three dynamic

clique maintenance algorithms are expected to perform equally well. Fortunately,

our study of the repository of Bayesian networks with less than 100 vertices found

that there are not so many cliques in these network graphs. Except on graphs with

many cliques, our proposed algorithm is expected to run faster than the Ottosen

and Vomlel method, because it reduces the search space of the BK algorithm. We

demonstrate the superior performance of the new algorithm by considering the

results of simulation experiments in the next section.

3.4 Experiments

We conducted computational experiments to evaluate our proposed algorithms

on a set of benchmark Bayesian networks. These networks are obtained from

the well-known Bayesian Network Repository [Scutari, 2016]. We also generated

a set of random graphs for doing controlled experiments. A random graph G

is generated by successively adding random edges to a set of vertices. Here, a

random edge was generated by picking its two endpoints uniformly at random

from all unconnected pairs of vertices. We compared our algorithm with state-

of-the-art algorithms on the benchmark networks and the random graphs. All

the algorithms described in this thesis are implemented in the Java language, and

the source code is available at http://www.ai.lab.uec.ac.jp/optimaltriangulation/.

The experiments were performed on a Windows 10 PC with a 2.6 GHz Intel Xeon

Processor E5-2640 and 16GB RAM, running version 8 of the Java Virtual Machine.

3.4 Experiments 33

3.4.1 Depth-first search with proposed dynamic clique main-

tenance

We first evaluated the computational costs of our proposed dynamic clique mainte-

nance algorithm and state-of-the-art algorithms. In particular, for each algorithm,

we compared the total number of cliques that have to be enumerated for optimal

triangulation of the repository Bayesian networks. For this purpose, we imple-

mented the following algorithms.

• DFS (OandV): the depth-first search (DFS) optimal triangulation algorithm

proposed by Ottosen and Vomlel, which uses the Ottosen and Vomlel ap-

proach [Ottosen and Vomlel, 2012] for dynamic clique maintenance.

• DFS (LandU2012): the DFS algorithm with the Li and Ueno approach for

dynamic clique maintenance [Li and Ueno, 2012].

• DFS (Proposed): the DFS algorithm with the proposed method of dynamic

clique maintenance.

34 Dynamic clique maintenance

100

102

104

106

108

C
hi

ld
; 2

0;
 0

.1
5

In
su

ra
nc

e;
 2

7;
 0

.1
9

W
at

er
; 3

2;
 0

.2
4

M
ild

ew
; 3

5;
 0

.1
3

A
la

rm
; 3

7;
 0

.0
9

H
ai

lF
in

de
r;

56
; 0

.0
6

H
ep

ar
2;

 7
0;

 0
.0

6
W

in
95

pt
s;

 7
6;

 0
.0

7

Pa
th

Fi
nd

er
; 1

09
; 0

.0
3

N
u

m
b

e
r

o
f

cl
iq

u
e

s

Method
OandV

LandU2012

Proposed

Figure 3.2: A comparison of the number of cliques that are enumerated by each

algorithm. Each label on the X-axis consists of the network name, the number of

variables, and the graph density for a Bayesian network.

3.4 Experiments 35

Figure 3.2 shows the number of cliques enumerated by each algorithm. For the

Barley Bayesian network in the repository, no triangulation algorithm completes

the computation within one hour. Therefore, we report the results for only nine

Bayesian networks. The number of cliques enumerated by our proposed method

is lower than the number of any other method. The reason is that the proposed

method reduces the number of duplicate cliques by reducing the search space of

the BK algorithm in dynamic clique maintenance. As described in Section 3.2,

the Ottosen and Vomlel method explores a subgraph with many cliques that do

not contain new edges. In contrast, our proposed algorithm explores an even

smaller subgraph that contains only the vertices connected by new edges and all

neighboring vertices of new edges. Consequently, the proposed algorithm reduces

the search space of the BK algorithm in dynamic clique maintenance and excludes

a large number of duplicate cliques.

To verify the superior performance of our proposed algorithm, we compared the

running times of DFS (OandV), DFS (LandU2012) and DFS (Proposed). Note that

the three algorithms explore the exact same search space and thus the di↵erences

between the computational times of the algorithms are only caused by di↵erences

of running times for dynamic clique maintenance. We also computed the ratio

of running time for each algorithm to the running time of the DFS (OandV) al-

gorithm. Table 3.1 shows the computational time and the time ratio for each

algorithm.

Our proposed dynamic clique maintenance remarkably improves the running

time of optimal triangulation. The reason is that the BK algorithm has a heavy

computational cost and the proposed method reduces the search space of the BK

algorithm. For Hepar2 and PathFinder, respectively, DFS (Proposed) is 12.04 and

6.5 times as fast as the DFS (OandV) method. From Figure 3.2, we can see that

the reason for this is that DFS (Proposed) computes much fewer cliques than DFS

(OandV) does on the two networks.

36 Dynamic clique maintenance

T
ab

le
3.
1:

A
co
m
p
ar
is
on

of
th
e
ru
n
n
in
g
ti
m
es

(s
)
fo
r
th
e
O
tt
os
en

an
d
V
om

le
l
m
et
h
od

(O
an

d
V
),

th
e
L
i
an

d
U
en
o

m
et
h
od

(L
an

d
U
20
12
)
an

d
th
e
P
ro
p
os
ed

m
et
h
od

.

B
ay
es
ia
n
N
et
w
or
ks

O
an

d
V

L
an

d
U
20
12

P
ro
p
os
ed

N
am

es
V

E
D
en
si
ty

T
im

e
O
an

d
V
/O

an
d
V

T
im

e
O
an

d
V
/L

an
d
U
20
12

T
im

e
O
an

d
V
/P

ro
p
os
ed

C
h
il
d

20
30

0.
15

0.
00
53

1
0.
00
14

3.
79

0.
00
09

5.
89

In
su
ra
n
ce

27
70

0.
19

1.
81

1
1.
07

1.
69

0.
68

2.
66

W
at
er

32
12
3

0.
24

9.
86

1
5.
96

1.
65

4.
52

2.
18

M
il
d
ew

35
80

0.
13

18
.2
6

1
7.
16

2.
55

4.
45

4.
1

A
la
rm

37
65

0.
09

0.
01
92

1
0.
00
54

3.
56

0.
00
42

4.
57

H
ai
lF
in
d
er

56
99

0.
06

13
.1
3

1
5.
46

2.
4

3.
8

3.
46

H
ep
ar
2

70
15
8

0.
06

0.
02
89

1
0.
00
3

9.
63

0.
00
24

12
.0
4

W
in
95
p
ts

76
22
5

0.
07

94
.4
2

1
38
.8
9

2.
43

26
.8
6

3.
52

P
at
h
F
in
d
er

10
9

20
8

0.
03

0.
06
37

1
0.
01
21

5.
26

0.
00
98

6.
5

3.4 Experiments 37

3.4.2 Dynamic clique maintenance on random graphs

The comparison of dynamic clique maintenance algorithms on random graphs was

done as follows. We generated 40 random graphs with various densities for each of

25, 50 and 75 vertices. Then we performed the following test on the dataset. We

triangulated each graph in the dataset 1,000 times by sequentially eliminating all

vertices (with a di↵erent random elimination order on each run) and saved the to-

tal running time. The set of cliques of the graph was updated after each vertex was

eliminated. We then normalized these times to ensure a fair comparison among

graphs with di↵erent sizes. For example, the task of triangulating a graph with 25

vertices 1,000 times performed 25,000 dynamic clique maintenance steps. There-

fore, we normalized this time by dividing by 25. Figure 3.3 depicts the normalized

running times of 1,000 triangulations of each graph in the dataset. The results show

that the proposed dynamic clique maintenance algorithm is faster than both the

OandV method and the LandU2012 method for all the random graphs except four

data sets (random graphs with more than 50 vertices and density of greater than

0.3). The reason for the di↵erence on these data sets is that there are too many

cliques in a dense graph and so scanning for cliques dominates the computational

complexity. For the ten graphs with 75 vertices and a density of 0.1, the average

number of cliques is 56.3. Because running the BK algorithm dominates the com-

plexity in this case, our proposed algorithm is the fastest algorithm. However, for

the ten graphs with 75 vertices and a density of 0.4, the average number of cliques

is 986.8. Because the scanning for cliques dominates the computational complexity

in this case and the three algorithms have to scan through equally many cliques,

the three algorithms performed almost equally well. Because the maximum num-

ber of cliques in a graph with n vertices and maximum degree d is bounded by

O(n · 2d) [Wood, 2007], we suspect that dense and large graphs tend to have more

cliques than sparse graphs and so make the dynamic clique maintenance problem

more di�cult. Finally, it is noteworthy that a Bayesian network with a sparse

38 Dynamic clique maintenance

O
a

n
d

V
L

a
n

d
U

2
0

1
2

P
ro

p
o

se
d

0.0000.0040.008

V
 =

 2
5

,
d

e
n

si
ty

 =
 0

.1

running time(second)

O
a

n
d

V
L

a
n

d
U

2
0

1
2

P
ro

p
o

se
d

0.0000.0040.008
V

 =
 2

5
,

d
e

n
si

ty
 =

 0
.2

O
a

n
d

V
L

a
n

d
U

2
0

1
2

P
ro

p
o

se
d

0.0000.0040.008

V
 =

 2
5

,
d

e
n

si
ty

 =
 0

.3
O

a
n

d
V

L
a

n
d

U
2

0
1

2
P

ro
p

o
se

d

0.0000.0040.008

V
 =

 2
5

,
d

e
n

si
ty

 =
 0

.4

O
a

n
d

V
L

a
n

d
U

2
0

1
2

P
ro

p
o

se
d

0.000.010.020.030.04

V
 =

 5
0

,
d

e
n

si
ty

 =
 0

.1

running time(second)

O
a

n
d

V
L

a
n

d
U

2
0

1
2

P
ro

p
o

se
d

0.000.010.020.030.04

V
 =

 5
0

,
d

e
n

si
ty

 =
 0

.2
O

a
n

d
V

L
a

n
d

U
2

0
1

2
P

ro
p

o
se

d

0.000.010.020.030.04

V
 =

 5
0

,
d

e
n

si
ty

 =
 0

.3
O

a
n

d
V

L
a

n
d

U
2

0
1

2
P

ro
p

o
se

d

0.000.010.020.030.04

V
 =

 5
0

,
d

e
n

si
ty

 =
 0

.4

O
a

n
d

V
L

a
n

d
U

2
0

1
2

P
ro

p
o

se
d

0.000.050.100.15

V
 =

 7
5

,
d

e
n

si
ty

 =
 0

.1

running time(second)

O
a

n
d

V
L

a
n

d
U

2
0

1
2

P
ro

p
o

se
d

0.000.050.100.15

V
 =

 7
5

,
d

e
n

si
ty

 =
 0

.2
O

a
n

d
V

L
a

n
d

U
2

0
1

2
P

ro
p

o
se

d

0.000.050.100.15

V
 =

 7
5

,
d

e
n

si
ty

 =
 0

.3
O

a
n

d
V

L
a

n
d

U
2

0
1

2
P

ro
p

o
se

d

0.000.050.100.15

V
 =

 7
5

,
d

e
n

si
ty

 =
 0

.4

Figure 3.3: A comparison of the running times for di↵erent dynamic clique main-

tenance algorithms on the random graphs.

3.4 Experiments 39

and small graph does not indicate an easy triangulation problem. For the Barley

network with 48 vertices and a density of 0.11, none of the three DFS algorithms

can find an optimal triangulation within the time limit.

Chapter 4

Pivot clique pruning

4.1 Introduction

In the worst case, the depth-first search algorithm described in Chapter 2 explores

the search space of all elimination orders which has size n!, where n is the number

of variables in the Bayesian network. It is known that di↵erent elimination orders

can induce identical triangulations. Consequently, the depth-first search algorithm

might unnecessarily explore a large number of elimination orders. In this chapter,

we propose a novel pruning rule called pivot clique pruning, which can remove a

large number of redundant elimination orders from the search space.

We first show an example of two di↵erent elimination orders leading to duplicate

results. Consider the process of eliminating vertices from the left graph G in

Figure 2.5. Let ⇡ = ha, b, e, c, di be an elimination order. By exchanging the

positions of b and e, we obtain the order ⇡0 = ha, e, b, c, di. If we eliminate all

vertices from the graph G according to order ⇡, then we obtain a chordal graph

H⇡, which is shown as the right graph in Figure 2.5. An important observation here

is that order ⇡0 induces an identical chordal graph, that is, H⇡

0
= H⇡. Let G⇡

1 and

G⇡

0
1 be initialized with graph G. We first eliminate vertex ⇡(1) = a from graph G⇡

1 ,

and vertex ⇡0(1) = a from graph G⇡

0
1 , then we obtain the identical remaining graphs

40

4.2 Pivot clique pruning 41

G⇡

2 = G⇡

0
2 . Next, we eliminate vertex ⇡(2) = b from graph G⇡

2 . In the elimination

process, we add fill-in edge (c, d) to make the neighbors of vertex b, N (b, G⇡

2)

complete, and then we obtain the remaining graph G⇡

3 . Because the vertices b and

e are not adjacent, the neighbors of e are the same in graphs G⇡

2 and G⇡

3 : that

is, N (e,G⇡

2) = N (e,G⇡

3). In contrast, consider eliminating vertex ⇡0(2) = e from

graph G⇡

0
2 . Doing so, we obtain the remaining graph G⇡

0
3 . Because the vertices b

and e are not adjacent, we also have the result N (b, G⇡

0
2) = N (b, G⇡

0
3). In the order

⇡, the elimination of vertices b and then e makes N (b, G⇡

2) and N (e,G⇡

3) complete.

In the order ⇡0, the elimination of vertices e and then b makes N (e,G⇡

0
3) and

N (b, G⇡

0
3) complete. Note that N (b, G⇡

2) = N (b, G⇡

0
3) and N (e,G⇡

3) = N (e,G⇡

0
3),

making these two identical sets complete requires identical fill-in edges. In addition,

it is clear that the remaining graphs are also equivalent: G⇡

4 = G⇡

0
4 and G⇡

5 = G⇡

0
5 .

Thus, the fill-in edges obtained from the orders ⇡ and ⇡0 are identical.

4.2 Pivot clique pruning

In the optimal triangulation algorithm, if we know two orders engender identical

triangulations, then we can prune one of the two orders from the search space.

However, we need not to explicitly identify the equivalent orders. The follow-

ing theorems o↵er a straightforward approach to prune redundant orders with

extremely low computational cost.

Lemma 4.1. Let G be a graph, and let ⇡ = (v1, . . . , vn) be an elimination or-

der. The elimination of vertices from graph G according to order ⇡ induces a

graph sequence G⇡

1 , G
⇡

2 , . . . , G
⇡

n

, where G⇡

1 = G and G⇡

i+1 is obtained by eliminat-

ing vertex v
i

from graph G⇡

i

. Suppose there exist two vertices v
i

and v
k

(i <

k) such that v
k

is nonadjacent to v
k�1 in G⇡

k�1 and v
l

is adjacent to v
l+1 for

l = i, ..., k � 2, then by moving v
k

directly before v
i

to obtain a new order ⇡0 =

(v1, . . . , vi�1, vk, vi, . . . , vk�1, vk+1, . . . , vn), the orders ⇡ and ⇡0 engender identical

42 Pivot clique pruning

chordal graphs.

Proof. First, we prove for l = i, ..., k � 1, v
l

is nonadjacent to v
k

. We prove this

by contradiction. Assume that there exists a vertex v
l

, l 2 [i, k � 1] such that v
l

is

adjacent to v
k

. Then, eliminating vertex v
l

makes v
l+1 adjacent to v

k

, because v
l

is adjacent to both v
l+1 and v

k

. Under this assumption, if we eliminated vertices

sequentially from v
i

to v
k�2, we would obtain the result that v

k�1 is adjacent to

v
k

, which is a contradiction.

Next, we prove that the filled-in graphs satisfy H⇡ = H⇡

0
. When a vertex v

l

is

eliminated, if a pair of neighbors of v
l

is not linked, a fill-in edge is added between

these two vertices. In the case of ⇡0, eliminating v
k

before v
l

(l 2 [i, k�1]) does not
add new neighbors to v

l

, because v
k

is nonadjacent to v
l

. Note that the neighbors

of v
k

are also invariant. As a result, the fill-in edges introduced by eliminating

v
l

(l 2 [i, k]) are invariant in the two orders ⇡ and ⇡0. Thus, we obtain the result

that H⇡

0
= H⇡.

Lemma 4.2. Let G be a graph, and let ⇡ = (v1, . . . , vn) be an elimination order.

The elimination of vertices from graph G according to order ⇡ induces a graph

sequence G⇡

1 , G
⇡

2 , . . . , G
⇡

n

, where G⇡

1 = G and G⇡

i+1 is obtained by eliminating vertex

v
i

from G⇡

i

. Suppose G⇡

i

is not complete, and let v
j

(i < j) be a vertex that is not

adjacent to v
i

. Then, by moving v
j

directly before v
i

, we obtain an order ⇡0=(v1,

. . ., v
i�1, vj, vi, . . ., vj�1, vj+1,. . ., vn) with a tts that is smaller than or equal to

the tts of ⇡.

Proof. The sequence of vertices (v
i

, . . . , v
n

) is such that either

1. there exists a vertex v
k

(i < k) such that v
k�1 is nonadjacent to v

k

and v
l

is

adjacent to v
l+1 for l = i, ..., k � 2, or

2. v
l

is adjacent to v
l+1, for l = i, ..., n� 1.

4.2 Pivot clique pruning 43

First, we prove the theorem in the first case. Note that v
i

and v
k

are not

adjacent, which was shown in the proof of Lemma 4.1. By moving v
k

directly

before v
i

, we obtain the new order ⇡0 = (v1, . . . , vi�1, vk, vi, . . . , vk�1, vk+1, . . . , vn).

Then, from Lemma 4.1, H⇡=H⇡

0
, and the tts of ⇡ is equal to that of ⇡0 from the

definition of tts.

Next, we prove the theorem in the second case. Lemma 4.1 cannot be directly

applied to prove the theorem, because v
l

is adjacent to v
l+1 for l = i, ..., n � 1.

Therefore, we first introduce a new order ! so as to use Lemma 4.1. Because

G⇡

i

is not complete and G⇡

n�1 is complete, there necessarily exists a vertex v
m

(i m < n� 1) such that G⇡

m

is not complete and G⇡

m+1 is complete. Either

(a) v
m

is adjacent to all vertices in G⇡

m+1, or

(b) there exists a vertex v
k

in G⇡

m+1, such that v
m

is not adjacent to v
k

.

We consider each of these cases in turn.

(a) In G⇡

m�1, there exists a vertex v
k

(m < k) that is not adjacent to v
m�1;

otherwise, eliminating v
m�1 would make G

m

complete. By moving v
k

directly

before v
m

, we obtain order !=(v1, . . ., vm�1, vk, vm, . . ., vk�1, vk+1,. . ., vn). Because

v
m

is adjacent to all vertices in G⇡

m+1, eliminating vertex v
m

adds all possible fill-in

edges to make G⇡

m

a complete graph. Therefore, order ! will not add di↵erent

edges from order ⇡. Thus, the filled-in graph H! is a subgraph of H⇡. In this case,

the tts of H! is smaller than or equal to the tts of H⇡ because the tts of a graph

is greater than or equal to that of a subgraph [Ottosen and Vomlel, 2012].

Because v
m�1 and v

k

are not adjacent and v
l

is adjacent to v
l+1 for l = i, ...,m�

2, v
i

and v
k

are not adjacent, which was shown in the proof of Lemma 4.1. For the

order !, by moving v
k

directly before v
i

, we obtain order ⇡0 = (v1, . . ., vi�1, vk, vi,

. . ., v
k�1, vk+1,. . ., vn). Since vertex v

k

is not adjacent to v
m�1, and v

l

is adjacent

to v
l+1 for l = i, ...,m� 2, from Lemma 4.1, H! = H⇡

0
. Therefore, the tts of H⇡

0

is smaller than or equal to the tts of H⇡.

44 Pivot clique pruning

(b) In the case of ⇡, eliminating a vertex after vertex v
m

does not introduce

fill-in edges, because G⇡

m+1 is complete. By moving v
k

directly before v
m+1, we

obtain order !=(v1, . . ., vm, vk, vm+1, . . ., vk�1, vk+1,. . ., vn). In the case of !,

eliminating a vertex after vertex v
m

also does not introduce fill-in edges. Because

the two orders ⇡ and ! introduce the same fill-in edges, H! = H⇡.

Because v
m

and v
k

are not adjacent and v
l

is adjacent to v
l+1 for l = i, ...,m�1,

v
i

and v
k

are not adjacent, which was shown in the proof of Lemma 4.1. For the

order !, by moving v
k

directly before v
i

, we obtain order ⇡0 = (v1, . . ., vi�1, vk, vi,

. . ., v
k�1, vk+1,. . ., vn). The vertices vm and v

k

are nonadjacent, and v
l

is adjacent

to v
l+1 for l = i, ...,m� 1. From Lemma 4.1, H⇡

0
= H!. Therefore, the tts of H⇡

0

is equal to the tts of H⇡.

Now, using Lemma 4.2, the following pivot clique pruning theorem can be

derived.

Theorem 4.1 (pivot clique pruning). Let G be the graph being triangulated, and

let t = (⌧, G⌧ , H⌧ , C(H⌧), tts(H⌧)) be a non-leaf node in the search tree, where

t.G⌧ is an incomplete graph. Pick an arbitrary clique in C(t.G⌧) as the pivot clique

C
pivot

. If a child node of t is derived by eliminating a vertex in C
pivot

, then the

child node and all its descendants can be pruned.

Proof. The search tree branches on node t to generate a child node for each vertex

v in the remaining graph t.G⌧ . Let U be the set of child nodes of t if the child is

derived by eliminating a vertex in C
pivot

, as shown in Figure 4.1. Let W be the

set of all child nodes of t except U . We show the following su�cient condition to

prove the theorem. For any leaf node x that is reachable from one node in U , there

is another leaf node y that is reachable from one node in W , such that the tts of

y is smaller than or equal to the tts of x.

Let x be an arbitrary leaf node that is reachable from a node t
A

in U , where

t
A

is a child node of t derived by eliminating vertex A from t.G⌧ . Because t
A

4.2 Pivot clique pruning 45

Figure 4.1: The part of search tree beginning at node t.

is in U , A is a vertex of C
pivot

. The elimination order of node x is a complete

elimination order ⇡
A

that is an extension of the partial elimination order t
A

.⌧ .

Based on Lemma 4.2, there exists a vertex B 2 V(t.G⌧) that is not adjacent to A,

such that by moving vertex B directly before A in the order ⇡
A

, a new order ⇡
B

is obtained for which the tts is smaller than or equal to that of ⇡
A

. Let t
B

be the

child node of t derived by eliminating vertex B from t.G⌧ . Then the leaf node y

labeled by ⇡
B

is reachable from a node t
B

. Because B and A are not adjacent, A

and B cannot be in the same clique. Since A is a vertex of clique C
pivot

, B is not

in C
pivot

. Thus, t
B

is in W .

This theorem can be directly applied to prune some nodes in the search tree.

Although pivot clique pruning might remove some optimal solutions, the reduced

search tree is guaranteed to contain at least one optimal solution. The proposed

depth-first search algorithm with pivot clique pruning is described in the Algorithm

5. The original depth-first search algorithm branches on a non-leaf node t for all

the vertices in V(t.R), where t.R is the remaining graph of node t. However, in

our proposed algorithm on line 3, we generate only child nodes for the vertices in

V(t.R)\ SelectPivotClique(C(t.R)). The procedure SelectPivotClique(C(G)) sim-

ply iterates through all the cliques of graph G to choose the largest clique of G.

46 Pivot clique pruning

We use this heuristic because it greedily prunes the largest number of child nodes.

Finding the largest clique of the remaining graph t.R seems to be expensive. How-

ever, it can be easily computed by finding the clique in t.C(H) such that the clique

has the largest intersection with V(t.R). It takes linear time in the number of

cliques to run the pivot clique selection heuristic. (Remark: If the e�ciency of the

heuristic cannot be ensured, then picking an arbitrary edge as pivot clique takes

only constant time.) A pivot clique has at least two vertices, so we can cut at

least two branches of each node according to Theorem 4.1. The size of the original

search tree for a Bayesian network with n variables is n!. But pivot clique pruning

can be applied in a recursive manner, because each pruning is guaranteed to pro-

duce a reduced search tree that has at least one optimal solution. As a result, the

size of the reduced search tree is smaller than or equal to (n � 2)!. To conclude,

pivot clique pruning reduces the size of the search space by a factor of O(n2), while

the overhead cost for the pruning can be extremely low.

Algorithm 5 Depth-first search with pivot clique pruning.
1: Insert lines 1–10 of Algorithm 1

2: procedure ExpandNode(t,&best,&map)

3: for all v 2 V(t.R)\ SelectPivotClique(t.C(R)) do . Prune due to Theorem 4.1

4: Let m = Copy(t)

5: EliminateVertex(m, v)

6: EliminateSimplicial(m)

7: Insert lines 16–29 of Algorithm 1

8: end for

9: end procedure

For the triangulation algorithm with treewidth as an objective, Bodlaender

et al. [Bodlaender et al., 2012] proposed a similar pruning rule. There are some

significant di↵erences between their algorithm and the one proposed here. First,

the algorithm in [Bodlaender et al., 2012] selects a maximum clique as a pivot

4.3 Experiments 47

clique before the searching starts, and then uses the fixed pivot clique to prune

unnecessary branches. In contrast, our proposed algorithm selects a pivot clique

at each node expansion. Secondly, the method in [Bodlaender et al., 2012] prunes

unnecessary orders on the basis of treewidth optimality. However, our method

prunes unnecessary orders on the basis of total table size optimality.

4.3 Experiments

We conducted computational experiments to examine the e↵ect of pivot clique

pruning on the depth-first search algorithm. Our analysis uses repository Bayesian

Networks and random Bayesian networks generated by BNGenerator software [Ide,

2015].

4.3.1 Naive depth-first search with pivot clique pruning

We first evaluated the reduction of the search space by applying the pivot clique

pruning. As described in Chapter 2, pruning (or branch and bound) is very impor-

tant for the performance of the depth-first search algorithm; however, pruning is

dependent on both the quality of bounds and the graph topology of the Bayesian

network. Therefore, we turned o↵ branch and bound pruning to eliminate this

confounding factor from our analysis of the e↵ect of pivot clique pruning. We

compared the number of node expansions and the running time for each of the

following two algorithms.

• NDFS: the naive depth-first search (NDFS) algorithm that is obtained by

turning o↵ all the pruning in the Ottosen and Vomlel depth-first search

algorithm.

• NDFS-PCP: the NDFS algorithm with pivot clique pruning.

48 Pivot clique pruning

The NDFS algorithm explores the search space of all elimination orders. In con-

trast, the NDFS-PCP algorithm removes a large number of redundant orders from

the search space, and so it is expected to run faster than the NDFS algorithm.

For the comparison of the two algorithms, we generated a set of random Bayesian

networks with 12 variables and various treewidths using the BNGenerator software.

Table 4.1 shows the number of node expansions and the running time for each

algorithm. The main observation is that the reduction of the number of node ex-

pansions by pivot clique pruning is more e↵ective on graphs with larger treewidths.

We observed that the graphs with larger treewidths tend to have higher density

and thus are expected to have more large cliques. Therefore, pivot clique pruning

can remove more branches from each node expansion for dense graphs. For the

running times, it is clear that the NDFS-PCP algorithm has a larger speed ad-

vantage on graphs with larger treewidths. Because pivot clique pruning is more

e↵ective on graphs with larger treewidths, the NDFS-PCP algorithm prunes more

nodes from the search space and runs faster than the NDFS algorithm does.

4.3 Experiments 49

T
ab

le
4.
1:

A
co
m
p
ar
is
on

of
th
e
ru
n
n
in
g
ti
m
es

(s
)
an

d
th
e
nu

m
b
er
s
of

n
od

e
ex
p
an

si
on

s
fo
r
th
e
N
D
F
S
an

d
th
e
N
D
F
S
-P
C
P

m
et
h
od

s.

B
ay
es
ia
n
N
et
w
or
ks

T
im

e
N
od

es

V
E

D
en
si
ty

tw
D
F
S
,P
C
P

D
F
S

D
F
S
/D

F
S
,P
C
P

D
F
S
,P
C
P

D
F
S

D
F
S
/D

F
S
,P
C
P

12
17

0.
25

1
1.
44
92

22
56
.5
78
1

15
57
.1
2

29
92
42

13
02
06
13
45

43
51
.2
0

12
19

0.
28

2
0.
94
56

23
94
.3
66
5

25
32
.1
1

20
25
45

13
02
06
13
45

64
28
.5
0

12
24

0.
36

3
0.
51
47

25
22
.4
69
7

49
00
.8
5

75
59
6

13
02
06
13
45

17
22
3.
94

12
34

0.
51

4
0.
06
38

25
31
.9
40
1

39
68
5.
58

38
39

13
02
06
13
45

33
91
66
.8
0

12
40

0.
6

5
0.
02
33

27
32
.4
13
6

11
72
70
.9
7

98
7

13
02
06
13
45

13
19
21
1.
09

12
48

0.
72

6
0.
00
78

24
41
.0
73
9

31
29
58
.1
9

11
0

13
02
06
13
45

11
83
69
21
.3
2

12
49

0.
74

7
0.
00
53

24
67
.1
23
7

46
54
95
.0
4

65
13
02
06
13
45

20
03
17
13
.0
0

12
57

0.
86

8
0.
00
24

24
93
.7
30
5

10
39
05
4.
38

16
13
02
06
13
45

81
37
88
34
.0
6

50 Pivot clique pruning

4.3.2 Depth-first search with pivot clique pruning

In order to examine the e↵ectiveness of the pivot clique pruning for the state-of-

the-art algorithm, we compared the following two algorithms.

• DFS: the depth-first search algorithm with the proposed dynamic clique

maintenance.

• EDFS : DFS with pivot clique pruning.

Since our proposed dynamic clique maintenance has been shown to be faster than

other methods, both the DFS and EDFS algorithms use it internally for updating

cliques. We empirically compared the two algorithms with respect to running time,

number of expanded nodes and required space.

4.3 Experiments 51

T
ab

le
4.
2:

A
co
m
p
ar
is
on

of
th
e
ru
n
n
in
g
ti
m
es

(s
),

th
e
nu

m
b
er
s
of

ex
p
an

d
ed

n
od

es
an

d
th
e
si
ze
s
of

co
al
es
ci
n
g
m
ap

s

fo
r
D
F
S
an

d
E
D
F
S
al
go
ri
th
m
s.

T
h
e
co
lu
m
n
s
la
b
el
ed

w
it
h
m
ea
n
(|s

p|)
an

d
sd
(|s

p|)
gi
ve

th
e
av
er
ag
e
nu

m
b
er

of
st
at
es

of
va
ri
ab

le
s
in

ea
ch

B
ay
es
ia
n
n
et
w
or
k
an

d
th
e
st
an

d
ar
d
d
ev
ia
ti
on

,
re
sp
ec
ti
ve
ly
.
F
in
al
ly
,
tw

d
en
ot
es

th
e
tr
ee
w
id
th
,
an

d

w
-t
w

d
en
ot
es

th
e
w
ei
gh

te
d
tr
ee
w
id
th
.

B
ay
es
ia
n
N
et
w
or
ks

D
F
S

E
D
F
S

T
im

e

n
am

e
V

E
d
en
si
ty

m
ea
n
(|s

p|)
sd
(|s

p|)
tw

w
-t
w

tt
s

T
im

e
(s
)

N
od

es
M
ap

T
im

e
(s
)

N
od

es
M
ap

D
F
S
/E

D
F
S

ch
il
d

20
30

0.
15
7

3
1.
17

3
14
4

64
2

0.
00
3

6
5

0.
00
2

4
3

1.
5

In
su
ra
n
ce

27
70

0.
19
9

3.
3

0.
99

6
48
00

23
88
0

0.
69
6

48
18

22
91

0.
19
9

30
96

19
19

3.
49

w
at
er

32
12
3

0.
24
7

3.
62

0.
49

9
58
98
24

30
28
30
5

3.
85
9

14
43
8

68
16

1.
07
8

80
49

51
87

3.
57

m
il
d
ew

35
80

0.
13
4

17
.6

27
.0
1

4
80
52
00

34
00
46
4

4.
20
9

69
31
0

22
35
1

0.
66
8

15
34
9

52
22

6.
3

al
ar
m

37
65

0.
09
7

2.
84

0.
73

4
10
8

99
6

0.
00
3

35
27

0.
00
2

27
25

1.
5

B
ar
le
y

48
12
6

0.
11
1

8.
77

9.
05

7
63
50
40
0

17
14
07
96

*
*

*
25
28
.6
36

18
82
49
00

55
66
50
1

*

H
ai
lfi
n
d
er

56
99

0.
06
4

3.
98

1.
72

4
32
67

94
06

3.
75

44
27
0

19
65
0

1.
65
5

31
28
9

12
53
7

2.
26

W
IN

95
P
T
S

76
22
5

0.
07
8

2
0

8
51
2

26
84

24
.8
12

74
22
7

34
99
3

5.
98
8

32
08
4

14
66
9

4.
14

p
at
h
fi
n
d
er

10
9

20
8

0.
03
5

4.
11

5.
91

7
32
25
6

18
26
41

0.
01
5

30
19

0.
00
4

22
16

3.
75

52 Pivot clique pruning

We ran the two triangulation algorithms on nine benchmark Bayesian net-

works. The results are presented in Table 4.2. The Time column lists the running

time of the algorithms on these networks. The Nodes column gives the number

of nodes expanded in the algorithms. The Map column gives the size of the coa-

lescing map, which estimates the memory-consumption of the algorithms. A “*”

indicates the algorithm did not finish within the time limit (one hour). Finally,

the last column lists the ratio of the running time of DFS to that of EDFS. We

observed that EDFS has from 1.5 to 6.3 times the speed of DFS. The two tri-

angulation algorithms employ the same dynamic clique maintenance, but EDFS

provides better performances than DFS. EDFS expanded fewer search nodes than

DFS, because the pivot clique pruning can remove a lot of equivalent nodes from

the search tree. The results show that reducing the number of expanded nodes

e↵ectively contributes to the reduction of the running time. For example, on the

Mildew Bayesian network EDFS explored only 15,349 nodes, but DFS explored

69,310 nodes. As a result, EDFS improved the running time from 4.209 seconds to

0.668 seconds. For the Barley network, EDFS is the only algorithm that can find

an optimal triangulation within the time limit. In addition, pivot clique pruning

also leads to a considerable reduction of memory use (see the reduction of the size

of coalescing map), which is also due to the reduction of the search tree.

Several graph parameters might influence the speed advantage of EDFS over

DFS for triangulation of a Bayesian network, including the number of variables,

the number of edges, the density of the moral graph, the average number of states

of variables, the standard deviation of the number of states of variables, treewidth

and weighted treewidth. To investigate the factors a↵ecting the triangulation time,

we analyzed the correlation between those factors and the speed-up of EDFS over

DFS. Figure 4.2 depicts the results. The most important factors for determining

the speed-up are the weighted treewidth, the tts, the average number of states

of variables and the standard deviation of the number of states of variables. The

4.3 Experiments 53

|V| |E| density mean(|sp|) sd(|sp|) tw w−tw tts

C
o
rr

e
la

tio
n

−
0
.2

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Figure 4.2: The correlation between the speed advantage of EDFS over DFS and

several factors that might a↵ect it.

correlation values between these factors and the speed-up are higher than 0.67.

Additionally, all the correlation values are positive, indicating that there might be

a higher speed-up when the Bayesian network has a more complex structure. This

fact highlights the contribution of pivot clique pruning.

Our comparison between DFS and EDFS so far is based on the results for

sparse graphs because the repository provides only a few sparse Bayesian networks.

However, it is not clear how much improvement in running time can be obtained

by EDFS for dense graphs. To answer this question, we generated a set of random

graphs with various densities. In particular, we generated random graphs by adding

some edges at random to the Insurance, Water and Alarm Bayesian networks. For

each moral graph of the Bayesian network, we generated three random graphs with

densities of 0.3, 0.4 and 0.5 (in total 9 random graphs). Because each group of

three graphs has the same number of variables and their variables have the same

state spaces, experiments on them can better demonstrate the performance of pivot

clique pruning for various densities. Table 4.3 lists the running times of DFS and

54 Pivot clique pruning

Table 4.3: A comparison of DFS and EDFS for graphs with various densities.

BN V E density Time(DFS) Time(EDFS) DFS/EDFS

insurance3 27 106 0.3 86.548 28.388 3.04

insurance4 27 141 0.4 11.932 3.788 3.14

insurance5 27 176 0.5 3.814 1.123 3.39

water3 32 149 0.3 230.127 88.589 2.59

water4 32 199 0.4 95.226 32.054 2.97

water5 32 248 0.5 18.217 4.516 4.03

alarm3 37 200 0.3 8967.604 3277.388 2.73

alarm4 37 267 0.4 562.412 181.614 3.09

alarm5 37 333 0.5 66.777 16.416 4.06

EDFS for the random graphs. The last column of the table lists the ratio of the

running time of DFS to that of EDFS. We also calculated the correlation between

the time ratio and the density of graphs; this is 0.75. The result indicates that

there is a higher speed-up when the Bayesian network has a denser graph. The

reason is that our pivot clique pruning works well on dense graphs, because dense

graphs tend to have more large cliques and then the more branches are pruned

by the larger pivot cliques. As we explained in Section 3.3, for dense graphs,

our proposed dynamic clique method does not improve the optimal triangulation

algorithms much; however, pivot clique pruning works better on dense graphs.

4.3.3 Results for Bayesian networks with 100 variables

We compared EDFS with DFS (OandV) on a set of random Bayesian networks with

100 variables. The purpose of this experiment is to investigate the performance

of our proposed algorithm on large scale networks. We generated ten random

Bayesian networks for treewidth k 2 {2, 5, 8} respectively. These networks are

4.3 Experiments 55

generated using the software BNGenerator. Each variable has a number of states

randomly selected from 2 to 4. We ran EDFS and DFS on these Bayesian networks.

The time limit for each instance is set to 1 h.

Table 4.4 reports the running time and the number of expanded nodes for

each method. The “Time” column lists the running times of the algorithms on

these networks. The “Nodes” column gives the number of nodes expanded by the

algorithms. The mark “*” indicates the algorithm did not finish within the time

limit (1 h). The results show that our proposed method is from 2.76 to 9.19 times

the speed of DFS. For three networks with treewidth 5 and two networks with

treewidth 8, the DFS cannot find an optimal triangulation within the time limit;

in contrast, our proposed method does.

56 Pivot clique pruning

Table 4.4: A comparison of the EDFS and the DFS (OandV) algorithms on a set

of Bayesian network with 100 variables
Bayesian Networks Time Nodes

V E Density tw DFS (OandV) EDFS DFS/EDFS DFS (OandV) EDFS DFS/EDFS

100 177 0.03 2 0.4229 0.1533 2.76 896 759 1.18

100 172 0.03 2 3.3153 1.1179 2.97 9146 8409 1.09

100 176 0.03 2 98.0187 25.2633 3.88 174406 124920 1.40

100 176 0.03 2 0.5754 0.0831 6.92 1090 452 2.41

100 178 0.03 2 0.0451 0.0072 6.26 140 69 2.03

100 180 0.03 2 0.0104 0.0019 5.47 13 10 1.30

100 166 0.03 2 1287.8544 300.2756 4.29 2758268 1683709 1.64

100 171 0.03 2 16.7556 3.8066 4.40 35908 26149 1.37

100 170 0.03 2 5.0397 1.4363 3.51 13156 9697 1.36

100 176 0.03 2 12.6262 3.2459 3.89 27965 20150 1.39

100 410 0.08 5 * 3265.6092 * * 5339766 *

100 405 0.08 5 * 1967.2311 * * 3640008 *

100 397 0.08 5 94.4848 15.9905 5.91 33271 31982 1.04

100 416 0.08 5 249.6761 27.1547 9.19 56721 44146 1.28

100 402 0.08 5 2937.612 330.2645 8.89 803643 622268 1.29

100 414 0.08 5 913.3883 106.7685 8.55 251592 211984 1.19

100 424 0.08 5 * 784.5601 * * 1034457 *

100 628 0.12 8 2737.3103 314.8126 8.70 342487 338180 1.01

100 665 0.13 8 * 1941.9927 * * 1213671 *

100 642 0.12 8 * 3160.7308 * * 2564786 *

4.3 Experiments 57

4.3.4 Triangulation with di↵erent objective functions

58 Pivot clique pruning

T
ab

le
4.
5:

A
co
m
p
ar
is
on

of
th
e
d
i↵
er
en
t
ob

je
ct
iv
e
fu
n
ct
io
n
s.

E
D
F
S
,t
t
s

E
D
F
S
,t
w

E
D
F
S
,w

-t
w

E
D
F
S
,f
i
l
l
i
n

M
in
F
il
l

B
N

t
t
s

t
w

w
-t
w

f
i
l
l
i
n

t
w

t
t
s

w
-t
w

t
t
s

f
i
l
l
i
n

t
t
s

t
t
s

t
w

w
-t
w

f
i
l
l
i
n

ch
il
d

6
4
2

4
2
1
6

2
4

6
7
8

1
4
4

6
7
8

2
6
7
8

6
7
8

4
2
1
6

2

In
su

ra
n
ce

2
3
8
8
0

7
4
8
0
0

2
6

7
2
9
3
5
2

4
8
0
0

2
9
3
5
2

2
6

2
9
3
5
2

2
9
3
5
2

7
7
2
0
0

2
6

w
a
te
r

3
0
2
8
3
0
5

1
0

5
8
9
8
2
4

4
7

1
0

3
6
5
7
1
8
0

5
8
9
8
2
4

3
6
5
7
1
8
0

4
6

3
6
5
7
1
8
0

3
6
5
7
1
8
0

1
1

1
7
6
9
4
7
2

4
7

M
il
d
ew

3
4
0
0
4
6
4

5
1
2
4
9
2
8
0

1
9

5
4
4
3
4
8
6
0

8
0
5
2
0
0

4
4
3
4
8
6
0

1
9

4
4
3
4
8
6
0

4
4
3
4
8
6
0

5
1
7
5
6
8
0
0

1
9

a
la
rm

9
9
6

5
1
0
8

5
5

1
0
3
8

1
0
8

1
0
3
8

5
1
0
3
8

1
0
3
8

5
1
4
4

5

B
a
rl
ey

1
7
1
4
0
7
9
6

8
7
2
5
7
6
0
0

4
6

8
1
7
1
4
0
7
9
6

6
3
5
0
4
0
0

1
7
1
4
0
7
9
6

4
5

1
7
1
4
0
7
9
6

1
7
1
4
0
7
9
6

8
7
2
5
7
6
0
0

4
6

H
a
il
F
in
d
er

9
4
0
6

5
3
2
6
7

1
7

5
9
7
0
6

3
2
6
7

9
7
0
6

1
6

9
7
0
6

9
7
0
6

5
3
2
6
7

1
6

W
in
9
5
p
ts

2
6
8
4

9
5
1
2

2
8

9
2
6
8
4

5
1
2

2
6
8
4

2
8

2
6
8
4

2
6
8
4

9
5
1
2

2
8

P
a
th

F
in
d
er

1
8
2
6
4
1

7
3
2
2
5
6

7
7

1
8
2
6
4
1

3
2
2
5
6

1
8
2
6
4
1

7
1
8
2
6
4
1

1
8
2
6
4
1

7
3
2
2
5
6

7

4.3 Experiments 59

To perform e�cient inference on a Bayesian network using the junction tree

algorithm, we employed the total table size as the objective function to obtain the

optimal triangulation of the Bayesian network. For general triangulation prob-

lems, the objective functions commonly have employed the treewidth, the weighted

treewidth and the minimum number of fill-in edges. However, these objective func-

tions are not guaranteed to optimize the total table size criterion. Therefore, this

study assumes that directly optimizing the total table size improves the obtained

triangulation of Bayesian networks. To ascertain this, we compared the perfor-

mances of these objective functions with those of the total table size. Specifi-

cally, we performed EDFS, employing these objective functions on nine repository

Bayesian networks and compared the total table sizes (tts) and the correspond-

ing objective values (the treewidths (tw), the weighted treewidths (w-tw) and the

minimum numbers of fill-in edges (fillin)) of the obtained triangulations with

those of EDFS employing the total table size. In addition, we also applied the

minimum fill-in heuristic (MinFill) on those networks to compare its performance

for the obtained triangulations because it is a well-known heuristic that provides a

good approximation to the exact solution (e.g., Gogate and Dechter [Gogate and

Dechter, 2004]).

Table 4.5 shows the computational results. The main observation is that EDFS

with tts as objective function (EDFS,tts) found triangulations with smaller total

table sizes than the other methods did on six Bayesian networks. However, on

Barley, Win95pts and PathFinder, our proposed algorithm EDFS,tts provided the

same total table sizes as MinFill. Although MinFill just greedily selects the next

vertex to eliminate, it works surprisingly well on the three networks. For Barley,

Win95pts and PathFinder, EDFS,tts could use the exact optimal solution as an

upper bound, since the MinFill provided the minimum total table sizes on the three

networks. Taking advantage of using the tight initial upper bound, EDFS,tts was

able to find an optimal total table size triangulation on PathFinder within 0.004 s

60 Pivot clique pruning

and on Win95pts within 5.988 s. On Barley, although EDFS,tts benefits from using

the tight bound, surprisingly it took extremely long time (2528 s) to find an optimal

total table size triangulation. This result suggests the importance of future work

toward finding a good lower bound for the total table size. Interestingly, EDFS,tts

also found the triangulations with the minimum treewidth for all the repository

networks. This means that although the optimal total table size triangulation does

not guarantee the minimum treewidth, it usually finds a triangulation with small

treewidth.

For all the repository networks other than water, the triangulation found by

MinFill also provided the minimum treewidth. Our results confirm the observation

of Gogate and Dechter [Gogate and Dechter, 2004], that the minimum treewidth

algorithm rarely finds better triangulations of the repository networks than MinFill

does. In addition, MinFill also provided a good approximation to the minimum

number of fill-in edges, which is obtained by EDFS,fillin. EDFS,w-tw provided a

lower weighted treewidth than MinFill did.

Focusing on the total table size, the algorithms EDFS,tw, EDFS,w-tw and

EDFS,fillin provided the same total table sizes that MinFill did. However, EDFS

with tts found better triangulations with smaller total table sizes for all the repos-

itory networks except for Barley, Win95pts and Pathfinder. Thus, the results

demonstrate that employing the total table size improves the triangulations of

Bayesian networks.

Chapter 5

Conclusions and future work

5.1 Conclusions

In this thesis an extended depth-first search (EDFS) algorithm for the optimal

triangulation of Bayesian networks has been proposed. The new EDFS algorithm

improves the state-of-the-art Ottosen and Vomlel (DFS) algorithm in two orthog-

onal directions: (1) reduction of the overhead cost and (2) reduction of the size of

the search space. Theoretical analysis and experiments reveal that the EDFS algo-

rithm is superior to the DFS algorithm. The EDFS algorithm lowers the time com-

plexity of the Ottosen and Vomlel algorithm from O(�(n) ·n!) to O(�(n) · (n�2)!)

, where n is the number of vertices in the graph, and �(n) and �(n) stand for the

overheads for DFS and EDFS, respectively.

To reduce the overhead cost per node, a new algorithm for maintaining the

cliques of a dynamic graph has been developed. The performance of the proposed

algorithm was compared with the state-of-the-art Ottosen and Vomlel [Ottosen

and Vomlel, 2012] and Li and Ueno [Li and Ueno, 2012] methods. The empirical

results show that the new method is superior to the other methods for graphs with

moderate size and density. By introducing the new dynamic clique maintenance,

the overhead cost is reduced from �(n) to �(n).

61

62 Conclusions and future work

To reduce the number of nodes in the search tree, the idea of pivot clique prun-

ing was introduced, and the pivot clique pruning theorem was proved in Section

4.2. In a theoretical analysis, we showed that the pruning reduced the size of

the search tree from n! to O((n � 2)!). The reduction of the search tree achieved

by introducing pivot clique pruning contributes e↵ectively to the reduction of the

running time of the optimal triangulation algorithm. If we do not apply any other

pruning techniques, such as branch and bound, coalescing map pruning and simpli-

cial vertex rule pruning, pivot clique pruning will at least cut the number of nodes

by (n!� (n� 2)!). In this case, our pruning provides n(n� 1) times speed-up over

the original algorithm. However, it is di�cult to analyze the time complexity of

the optimal triangulation algorithm combining all these smart pruning techniques.

Nevertheless, experiments show that EDFS is 1.3 to 6.3 times the speed of DFS

(with the proposed dynamic clique maintenance) for the repository datasets. The

pivot clique pruning also permits a considerable reduction in space requirements,

which is also due to the reduction of the search space.

5.2 Future work

Although our two proposed methods contributed to improvements in the running

time and scalability of the optimal triangulation algorithms, the algorithms are

still limited to relatively small and sparse Bayesian networks. Nevertheless, exact

optimal triangulation algorithms are valuable because the optimal triangulation

enables time-e�cient inference using the junction tree algorithm. Optimal trian-

gulation requires additional work time, but once the triangulation of a Bayesian

network has been done o↵-line, propagation can be done many times on the same

junction tree to process any evidence. In addition, total table size is important in

estimating the running time for inference on Bayesian networks. In the study of

the relationship between the junction tree inference time and the structure of the

5.2 Future work 63

Bayesian network, Ole J. Mengshoel used a heuristic triangulation that obtained

an approximate total table size to estimate inference time [Mengshoel, 2010]. Our

study on optimal triangulation might improve Mengshoel’s results. Finally, the

empirical results in Section 4.3 show that the running time of the optimal triangu-

lation on large Bayesian networks is di�cult to predict. It would be interesting to

characterize the hardness of finding an optimal triangulation for a given Bayesian

network.

Bibliography

Emgad H. Bachoore and Hans L. Bodlaender. A branch and bound algorithm for

exact, upper, and lower bounds on treewidth. In Proceedings of the Second Inter-

national Conference on Algorithmic Aspects in Information and Management,

AAIM’06, pages 255–266, Berlin, Heidelberg, 2006. Springer-Verlag.

Emgad H. Bachoore and Hans L. Bodlaender. Weighted treewidth algorithmic

techniques and results. In International Symposium on Algorithms and Compu-

tation, pages 893–903. Springer, 2007.

Hans L. Bodlaender, Fedor V. Fomin, Arie M. C. A. Koster, Dieter Kratsch, and

Dimitrios M. Thilikos. On exact algorithms for treewidth. ACM Trans. Algo-

rithms, 9(1):12:1–12:23, 2012. ISSN 1549-6325.

Hans L. Bodlaender, Arie M.C.A. Koster, and Frank van den Eijkhof. Preprocess-

ing rules for triangulation of probabilistic networks. Computational Intelligence,

21(3):286–305, 2005.

F. Cazals and C. Karande. A note on the problem of reporting maximal cliques.

Theoretical Computer Science, 407:564 – 568, 2008. ISSN 0304-3975.

Gregory F. Cooper. The computational complexity of probabilistic inference using

Bayesian belief networks. Artificial Intelligence, 42(2-3):393–405, 1990.

64

BIBLIOGRAPHY 65

Adnan Darwiche. Modeling and Reasoning with Bayesian Networks. Cambridge

University Press, 2009.

P. Alex Dow and Richard E. Korf. Best-first search for treewidth. In Proceedings

of the 22nd national conference on Artificial intelligence - Volume 2, AAAI’07,

pages 1146–1151. AAAI Press, 2007. ISBN 978-1-57735-323-2.

Vibhav Gogate and Rina Dechter. A complete anytime algorithm for treewidth.

In Proceedings of the 20th conference on Uncertainty in Artificial Intelligence,

UAI ’04, pages 201–208, Arlington, Virginia, United States, 2004. AUAI Press.

ISBN 0-9749039-0-6.

Martin Charles Golumbic. Algorithmic Graph Theory and Perfect Graphs, vol-

ume 57 of Annals of Discrete Mathematics. North-Holland Publishing Company,

2 edition, 2004.

Jaime Shinsuke Ide. BNGenerator. http://sites.poli.usp.br/pmr/ltd/, 2015.

Finn V. Jensen, Ste↵en L. Lauritzen, and Kristian G. Olesen. Bayesian updating

in causal probabilistic networks by local computations. Computational Statistics

Quarterly, 4:269–282, 1990. ISSN 0723-712X.

Finn Verner Jensen and Frank Jensen. Optimal junction trees. In UAI, pages

360–366, 1994.

U Kjaerul↵. Triangulation of graphs – algorithms giving small total state space.

Technical Report R9009 Department of Mathematics and Computer Science Aal-

borg University Denmark, 1990.

S. L. Lauritzen and D. J. Spiegelhalter. Local computations with probabilities

on graphical structures and their application to expert systems. Journal of the

Royal Statistical Society. Series B (Methodological), 50(2):pp. 157–224, 1988.

ISSN 00359246.

66 BIBLIOGRAPHY

Chao Li and Maomi Ueno. A depth-first search algorithm for optimal triangula-

tion of Bayesian network. In Proceedings of the Sixth European Workshop on

Probabilistic Graphical Models, pages 187–194, 2012.

Anders L Madsen and Finn V Jensen. Lazy propagation: a junction tree inference

algorithm based on lazy evaluation. Artificial Intelligence, 113(1):203–245, 1999.

Ole J. Mengshoel. Understanding the scalability of Bayesian network inference

using clique tree growth curves. Artificial Intelligence, 174:984 – 1006, 2010.

ISSN 0004-3702.

D. J. Musliner, J. A. Hendler, A. K. Agrawala, E. H. Durfee, J. K. Strosnider, and

C. J. Paul. The challenges of real-time AI. Computer, 28(1):58–66, 1995.

Thomas Dyhre Nielsen and Finn Verner Jensen. Bayesian Networks and Decision

Graphs. Information Science and Statistics. Springer-Verlag New York, 2 edition,

2007.

Thorsten Ottosen and Jiri Vomlel. All roads lead to rome: New search methods

for the optimal triangulation problem. International Journal of Approximate

Reasoning, 53(9):1350–1366, 2012. ISSN 0888-613X.

S. Parter. The use of linear graphs in gauss elimination. SIAM Review, 3(2):

119–130, Apr. 1961.

Judea Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible

Inference. Morgan Kaufmann Publishers, Inc., San Francisco, California, 1988.

ISBN 1-55860-479-0.

Fabio Tozeto Ramos and Fabio Gagliardi Cozman. Anytime anyspace probabilistic

inference. International Journal of Approximate Reasoning, 38(1):53 – 80, 2005.

ISSN 0888-613X.

BIBLIOGRAPHY 67

Dan Roth. On the hardness of approximate reasoning. Artificial Intelligence, 82:

273 – 302, 1996. ISSN 0004-3702.

Marco Scutari. Bayesian Network Repository.

http://www.bnlearn.com/bnrepository/, 2016.

Prakash P. Shenoy and Glenn Shafer. Axioms for probability and belief-function

propagation. In Uncertainty in Artificial Intelligence, pages 169–198, 1990.

Etsuji Tomita, Akira Tanaka, and Haruhisa Takahashi. The worst-case time com-

plexity for generating all maximal cliques and computational experiments. Theo-

retical Computer Science, 363(1):28 – 42, 2006. ISSN 0304-3975. Computing and

Combinatorics10th Annual International Conference on Computing and Combi-

natorics (COCOON 2004).

Frank van den Eijkhof, Hans L. Bodlaender, and MC Arie Koster. Safe reduction

rules for weighted treewidth. Algorithmica, 47(2):139–158, 2007.

Wilson Wen. Optimal decomposition of belief networks. In Proceedings of the

Sixth Conference Annual Conference on Uncertainty in Artificial Intelligence

(UAI-90), pages 245–256, New York, NY, 1990. Elsevier Science.

David R. Wood. On the maximum number of cliques in a graph. Graphs and

Combinatorics, 23(3):337–352, 2007.

List of Publications

Journal Papers

1. Chao Li and Maomi Ueno. An extended depth-first search algorithm for optimal

triangulation of Bayesian networks. International Journal of Approximate Reason-

ing, 80:294-312, 2017. ISSN 0888-613X, http://dx.doi.org/10.1016/j.ijar.2016.09.012.

International Conferences (Refereed)

1. Chao Li and Maomi Ueno. A Depth-First Search Algorithm for Optimal Tri-

angulation of Bayesian Network. In Proceedings of the Sixth European Workshop

on Probabilistic Graphical Models (PGM 2012), pages 187-194, 2012.

2. Chao Li and Maomi Ueno. A Fast Clique Maintenance algorithm for Op-

timal Triangulation of Bayesian Networks. In Proceedings of the Second Inter-

national Workshop on Advanced Methodologies for Bayesian Networks (AMBN

2015), LNAI 9505, pages 152-167, 2015

68

