
Department of Communication Engineering and Informatics

Graduate School of Informatics and Engineering

The University of Electro-Communications, Tokyo, Japan

Preventive Start-time Routing considering
Failure Characteristics

Student number: 1231028

Name: KAPTCHOUANG Stephane

Supervisor 1: OKI Eiji, Professor

Supervisor 2: KISHI Naoto, Professor

Submission date: 27 January 2014

-i-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Creative Repository of Electro-Communications

https://core.ac.uk/display/147695461?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Department of Communication Engineering and Informatics

Graduate School of Informatics and Engineering

The University of Electro-Communications, Tokyo, Japan

Preventive Start-time Routing considering
Failure Characteristics

Student number: 1231028

Name: KAPTCHOUANG Stephane

Supervisor 1: OKI Eiji, Professor

Supervisor 2: KISHI Naoto, Professor

Submission date: 27 January 2014

-ii-

Contents

Abstract v

Acknowledgments vii

Chapter 1. Introduction 1

1.1. Network model 5

Chapter 2. Conventionnal Routing Scheme 7

2.1. SO: Start-time Optimisation 7

2.2. PSO-P: Preventive start-time Optimisation with Penalty 8

Chapter 3. PSO-NP: Preventive Start-time with No Penalty 10

3.1. Overview 10

3.2. ILP approach 11

3.3. Heuristic approach 15

3.4. Performance evaluation and simulation environments 18

3.5. Variations of PSOs 23

Chapter 4. GPSO: Generalized preventive Start-time Optimization 25

4.1. Overview 25

4.2. GPSO mathematical formulation 25

4.3. GPSO heuristic algorithm 26

Chapter 5. PSO-FP: Preventive Start-time Optimization Considering link

Failure probability 29

5.1. Overview 29

5.2. Procedure 29

5.3. Performance Evaluation & Simulation Environments 31

-iii-

Chapter 6. Conclusion 34

Publications 35

-iv-

Abstract

We propose a Preventive Start-time Routing that considers failure characteristics.

The Preventive Start-time Routing (Optimization) scheme determines a suitable set

of OSPF link weights at the start time that can handle any link failure scenario

preventively. Previously a PSO (Preventive Start-time Optimization) scheme was

designed to minimize the worst case congestion ratio in case of failure. That scheme

considers any failure pattern to determine a link weight set that counters worst case

failure. Unfortunately, under no failure, that link weight set leads to a high congestion

ratio. Under no failure, a high congestion ratio would be a penalty that will be carried

on and thus become a burden especially in networks with few failures.

In the first part of this work, we present a Preventive Start-time Optimiza-

tion scheme that suppresses that penalty while reducing the worst congestion ratio

by considering both failure and non failure scenarios. we call this scheme PSO-

NP(Preventive Start-time Optimization with no Penalty). PSO-NP is simple and

effective in finding a link weight set thats considers both failure and non failure

scenarios. We expand PSO-NP into a General Preventive Start-time Optimization

(GPSO) to find a link weight set that balances both the penalty under no failure and

the congestion ratio under worst case failure. Simulation results show that PSO-NP

achieves substantial congestion reduction for any failure case while suppressing the

penalty in case of no failure in the network. In addition, GPSO as framework is

effective in determining a suitable link weight set that considers the trade off between

the penalty under non failure and the worst case congestion ratio reduction.

In the second part of our work, we propose a Preventive Start-time Optimization

that considers link Failure Probability (PSO-FP). While PSO, PSO-NP and GPSO

examine every failure pattern, more than 50% of link failures may sometimes be

concentrated on only 3% of total links in the network. This factor should be taken

into consideration when dealing with failure. To include this factor we propose a

-v-

Preventive Start-time Optimization that considers link Failure Probability. Simula-

tion results show that PSO-FP is effective in finding a weight set that reduces the

congestion ratio expectation value.

-vi-

Acknowledgments

We would like to thank Eiji Oki, Naoto Kishi, Ihsen Aziz Ouédraogo, and Ravindra

Sandaruwan Ranaweera for their contribution to our work.

-vii-

1

CHAPTER 1

Introduction

Implementing the most appropriate set of routes ameliorates the network resource

utilization rate and thus increase network throughput of Internet Protocol (IP) net-

works. Since it optimises resource assignment, additional traffic can be supported.

It also reduces network congestion and increases robustness against network failure.

One useful approach to enhancing routing performance is to minimise the maximum

link utilization rate, also called the network congestion ratio, of all network links.

minimising the worst-case network congestion ratio can increase the admissible traf-

fic.

Open Shortest Path First (OSPF) [2] is a widely used routing protocol. OSPF

is a link-state-based Interior Gateway Protocol (IGP) for IP networks. This means

that it gathers all the topology characteristics to build a routing scheme. In OSPF,

all packets are transmitted over shortest paths. These paths calculation is based on

Dijkstra’s algorithm. Dijkstra’s algorithm uses link weight or link cost (metric) to

determine the path with the lowest total cost between a source and a destination

pair. Therefore based on link weights in the network, OSPF computes the shortest

path from each originating node to all nodes in the same network, and shares it

among nodes in the network. In other words, determining the optimal path based on

shortest-path routing means determining the optimal link weights.

Several algorithms that compute a set of optimal link weights in OSPF-based

networks were addressed in [3, 4, 5, 6, 7] under the condition that the network

topology and traffic matrix are given. Fortz et al. presented a heuristic algorithm

based on tabu search [3, 4]. Buriol et al. presented a genetic algorithm with a local

improvement procedure [6]. A fast heuristic algorithm was also developed by Reichert

2

and Magedanz [5]. These Optimisation algorithms yield nearly optimal sets of link

weights in a practical manner.

Under the condition that the network topology and traffic matrix are given, Start-

time Optimisation (SO) determines the optimal set of link weights once at the begin-

ning of network operation. This set minimises the congestion ratio under the given

traffic matrix so as to maximise additional traffic. Unfortunately, SO is weak against

network failures. For example, a link failure will trigger the rerouting of active paths,

causing a surge of congestion in the network. Meaning that under a failure scenario

SO-generated weight set is no longer optimal. This makes SO unsuitable for failure

prone networks because, it does not take any link failure into consideration during

the Optimisation process.

The weakness of SO can be overcome by computing a new optimal set of link

weights whenever the topology is changed. This approach, called Run-time Opti-

misation (RO), provides the best routing performance after each link failure, but it

makes the network unstable. When link weights are changed, the updated informa-

tion is broadcast across the network. As routers learn the updated link weights, they

recompute their shortest paths to update their routing tables. This leads to higher

resource utilization while creating confusion [8, 9]. Meanwhile, IP packets may arrive

out of order and the performances of Transport Control Protocol (TCP) connections

are degraded [3, 4]. The more often are link weights changed, the more the network

becomes unstable. This is because packets are sent back and forth between routers to

achieve the divergent processes of updating routing tables and calculating the shortest

paths based on the updated link weight set.

It seems reasonable to find a scheme that can determine, at start time, a set of

link weights that avoids both unexpected network congestion and network instability,

regardless of which link failure occurs. Moreover, 70% of link failures affect a single

link at a time [10, 11]. It makes sense to focus on single failures that occur in the

network. A scheme called Preventive Start-time Optimisation (PSO) was presented

[12].

3

PSO determines, at the start time, a suitable set of link weights that can handle

any single link failure scenario preventively. PSO considers any failure scenario and

minimises the worst possible congestion ratio. In PSO scheme, the link that creates

the worst case congestion has to be avoided in other to relax the network. For that

reason, A higher link weight will be assigned to that link (critical link) so that in case

of failure the portion of traffic sent to those link is reduced.

There are several related works on PSO [13, 14, 15, 16]. To determine a suitable

set of link weights based on the PSO policy, there are two PSO-based algorithms,

PSO-LC (limited rage of candidates) [12] and PSO-WC (wide range of candidates)

[13, 14]. Although PSO-LC relaxes the worst-case congestion, it does not confirm

the optimal worst-case performance. To pursue this optimality, PSO-WC upgrades

the objective function of SO that determines the set of link weights at start time

by considering all possible single link failures; its goal is to minimise the worst-case

congestion. Numerical results showed that PSO-WC effectively relaxes the worst-case

network congestion compared to SO, while it avoids the network instability caused

by the run-time changes of link weights caused by RO. At the same time, PSO-WC

yields performance superior to that of PSO-LC [14]. Ranaweera et al. presented a

PSO policy for the hose model, where the exact traffic demand between each source

and destination node pair does not need to be specified, to optimise the link weights

against link failures [15, 16]. Their presented scheme for the hose model employs a

heuristic algorithm to determine a suitable set of link weights to reduce the worst-case

congestion for any single link failure.

However, the authors in [12] pointed out that any application of PSO’s results

will lead to a penalty in case of no failure, but they do not show how to decrease

that penalty. If we consider a network where link failures rarely happen PSO might

not be realistic. Using PSO when there is no failure means that we are avoiding

would-be critical links even when they might not fail. So network resources are

under-utilized and the quantity of data sent throughout the network become smaller.

For a network where failures scarcely happen, the under-utilisation will be a burden

4

overall. Although PSO minimises the worst case congestion ratio, we are in fact

carrying a burden compare to SO in networks less prone to link failures, because

SO is optimal in case of no link failure. Now let us call this Preventive Start-time

Optimisation scheme, a PSO-P (Preventive Start-time with Penalty).

A question arises: Is it possible to find a link weight set that eliminates that

penalty while reducing the worst case congestion ratio?

The first part of the work answers this question by proposing a Preventive Start-

time with No-Penalty (PSO-NP) [1]. PSO-NP generates a link weight set that com-

pletely suppresses the penalty and at the same time, reduces substantially the con-

gestion ratio even for the worst case congestion scenario. PSO-NP scheme is based

on SO. Under no failure scenario, SO generates many optimal sets but chooses only

the first one. PSO-NP evaluates the performance of each of these sets under worst

failure and chooses the one that reduces most the congestion ratio. We use two ap-

proaches to realise PSO-NP. The first one is an ILP based approach while the second

is a heuristic algorithm. We expand PSO-NP into General Start-time Optimisation

(GPSO) to find a weight that considers the trade-off between the penalty under no

failure and the worst case congestion.

While PSO, PSO-NP and GPSO considers every failure patterns, some of them

may not even happen. In fact, vulnerable links might be a very small number of links

in the network. For example PSO considers only the worst case failures. For that

reason, the network becomes more congested under no failure. That worst case failure

may not even happen in reality. Therefore Considering failure probability when in

Preventive Start-time Routing is required.

An another question arises: Is it possible to find a link weight set that reduces

the expectable congestion ratio?

In the second part of our work we answer this question by proposing PSO-FP

(Preventive Start-time Optimization that considers link failure probability). PSO-

FP generates a link weight set that minimizes the congestion ratio expectation value

when the failure probability of each link is given.

1.1. NETWORK MODEL 5

1.1. Network model

The network is represented as a directed graph G(V,E), where V is the set of

nodes and E is the set of links. v ∈ V , where v = 1, 2, · · · , N , indicates an individual

node, where N is the number of nodes in the network, or N = |V |. We consider only

single link failure in this work, as the probability of multiple link failure at the same

time is much less than that of single link failure. Let a link from node i ∈ V to node

j ∈ V be denoted as (i, j) ∈ E. L is the number of links in the network, or L = |E|.

F is the set of link failure indices l, where l = 0, 1, 2, . . . , L and F = E ∪ {0}. The

number of elements in F is |F | = L + 1. l = 0 indicates no link failure and l(̸= 0)

indicates the failure of (i, j) = l(̸= 0). The network in which link l(̸= 0) is considered

failed is described as a directed graph Gl(V,El). Since l = 0 indicates no link failure,

G0(V,E0) = G(V,E). uij, (i, j) ∈ E represents the traffic flowing through link (i, j)

and cij its capacity. If (i, j) = l, clij = 0. W = {wij} is the link weight set of network

G, where wij is the weight of (i, j). Let {1, . . . , wmax} be the set of values possibly

taken as a link weights. xpqij (W, l) is the portion of traffic from node p ∈ V to node

q ∈ V routed through (i, j) ∈ El. Note that xpqij (W, l) will be determined based

on the shortest path routing when link weight set W is applied to the network. In

this analysis, it is assumed that Equal-Cost Multi-Path (ECMP) routing is employed,

where traffic is evenly split among equal-cost paths [17]. xpqij (W, l) is used to represent

the load distribution variables under link weights setW . A traffic matrix T is defined

by T = {dpq}, where dpq represents the traffic rate from node p to node q.

Let consider E(W) the set of links on our transmitting paths when W is our link

weight set. The network congestion ratio r refers to the maximum value of all link

utilization ratios in the network. r is defined by,

(1.1) r(W) = max
(i,j)∈E(W)

uij
cij
,

where 0 ≤ r(W) ≤ 1. maximising the additional traffic volume is equivalent to

minimising r(W) [18] by choosing the best weight set W . For any link l ∈ F failed,

1.1. NETWORK MODEL 6

the congestion ratio is defined as:

(1.2) r(W, l) = max
(i,j)∈El(W)

uij
cij
,

and the worst case congestion as:

(1.3) R(W) = max
l∈F

r(W, l).

Note that r(W, 0) represents the congestion ratio in a network when there is no

failure. For simplicity, let r(W, l) be denoted as r(l). r(W, 0) is therefore r(0). The

paper is organized as follows. In chapter 2, we revisite previous work related to

Preventive Start-time Optimisation. In chapter 3, we explain PSO-NP and evaluate

its performance. We introduce GPSO in chapter 4 and we discuss PSO-FP in chapter

5. Finally, we conclude our discussion in chapter 6.

7

CHAPTER 2

Conventionnal Routing Scheme

2.1. SO: Start-time Optimisation

2.1.1. Overview. SO determines an optimal link weight set W that minimises

r(0) when link failure is not considered, enabling additional flow in the network. Let

us call that set WSO. It is expressed as:

(2.1) WSO = argmin
W

r(0),

and its corresponding congestion ratio denoted as rSO or rSO(0) to stress the fact that

link failure is not considered.

2.1.2. application. Let us consider the illustrative network defined in Fig. 2.1,

where all link capacity is set to 1 unit of traffic. Suppose that, we want to send 0.5

unit of traffic from node 1 to node 4 and another 0.5 unit from node 2 to node 4.

Under a no link failure scenario, SO enables us to find an optimal link weight set that

minimises congestion ratio in our network up to rSO = 0.375.

Figure 2.1. Illustrative sample network

Unfortunately, SO is not optimal under failure. Let us consider that a failure

occurs. The failure that causes the highest congestion is called a worst case failure.

2.2. PSO-P: PREVENTIVE START-TIME OPTIMISATION WITH PENALTY 8

One possible worst case failure is a failure of link (2,4). if (2,4) fails, rerouting the

traffic under the same link weight set determined by SO, creates a more congested

network with a congestion ratio maxl∈F rSO(l) = 0.75. This is almost the double of

the congestion ratio under no failure.

To tackle this drawback, PSO-P [12] was presented.

2.2. PSO-P: Preventive start-time Optimisation with Penalty

2.2.1. overview. PSO-P determines the best link weight set at the start time

to minimise congestion ratio under any possible failure. The main achievement is the

preservation of network stability, which is a major drawback for RO, because there

are no running-time changes.

PSO-P considers any failure patterns and provides the best link weight set that

reduces the worst congestion. Since PSO-P focuses only on finding a link weight set

that minimises R(W), a solution is expressed as:

(2.2) WPSO−P = argmin
W

R(W).

2.2.2. application. In our illustrative network, under the same traffic demand,

PSO-P optimal weight set reduces the worst case congestion up to maxl∈F rPSO−P (l) =

0.5 which is less than maxl∈F rSO(l) = 1.0.

More generally, worst case congestion in SO is higher or equal to that of PSO-P,

which is expressed by:

(2.3) R(WSO) ≥ R(WPSO−P).

In other words, PSO-P outperforms SO under the worst case congestion with a sig-

nificant worst congestion ratio reduction. We define this reduction ratio of PSO-P

as:

(2.4) αPSO−P =
maxl∈F r(WSO, l)−maxl∈F r(WPSO−P , l)

maxl∈F r(WSO, l)
.

2.2. PSO-P: PREVENTIVE START-TIME OPTIMISATION WITH PENALTY 9

Note that from Eq. (1.3),

(2.5) R(WSO) = max
l∈F

r(WSO, l),

(2.6) R(WPSO−P) = max
l∈F

r(WPSO, l).

2.2.3. problem statement. The difficulty with PSO-P is that if the link weight

set determined by PSO-P is used in a no failure scenario, the congestion ratio may

be higher than that of SO.

For example, Fig. 2.1 illustrative network gives us, rPSO−P (0) = 0.5 while rSO(0) =

0.375. This means that, compared to SO we will have to cary a penalty when there

is no failure.

In general,

(2.7) r(WSO, 0) ≤ r(WPSO−P , 0).

Therefore, PSO-P shows a penalty under no failure that we define as:

(2.8) βPSO−P =
r(WPSO−P , 0)− r(WSO, 0)

r(WSO, 0)
.

βPSO−P raises an issue for networks with relatively few link failures because the

penalty is carried on and becomes a burden in the long run.

10

CHAPTER 3

PSO-NP: Preventive Start-time with No Penalty

3.1. Overview

PSO-NP determines a link weight set that completely suppresses the penalty and

at the same time, reduces substantially the congestion ratio even for the worst case

congestion scenario.

PSO-NP scheme is based on SO. Under no failure scenario, SO generates a set that

minimises the congestion ratio. There is in fact, a possibility that many candidate

sets with the same performance exist. SO chooses the first one among these sets.

PSO-NP extends SO by evaluating the performance of each of these sets under worst

failure to choose the one that reduces most the congestion ratio.

Since the solution weight set of PSO-NP, WPSO−NP is generated through SO,

under no failure PSO-NP and SO show the same congestion ratio:

(3.1) r(WSO, 0) = r(WPSO−NP , 0).

Moreover, PSO-P is optimal under worst case failure. As a result,

(3.2) R(WPSO−P) ≤ R(WPSO−NP) ≤ R(WSO).

PSO-NP guarantees zero penalty under no failure while boosting protection under

failure compared to the typical SO scheme.

In this work we use two approaches to realise PSO-NP. The first one is a direct

mathematical approach while the second is a heuristic approach that focuses on both

the reduction ratio and the penalty.

3.2. ILP APPROACH 11

3.2. ILP approach

3.2.1. ILP formulation. The ILP formulation of PSO-NP is straightforward

in minimising r(0) while decreasing maxl∈F r(l). When the network topology and

the traffic demand are known, an optimal weight link set at the start time can be

determined using SO. In fact, the optimal link weight set returned by SO may not be

unique. SO returns only one among these sets, the first one found. In PSO-NP, all the

optimal link weight sets generated by SO are kept and we examine the performance

of each optimal set under the worst failure scenario. The most suitable set will be

the one showing the lowest worst congestion under any single failure scenario.

3.2. ILP APPROACH 12

We extend the ILP formulation of SO [19] to PSO-NP, which is expressed as

follows:

Objective min
W

rSO + ϵ · rPSO(3.3a)

s.t.
∑

j:(i,j)∈El

xpqij (W, l)−
∑

j:(i,j)∈El

xpqji (W, l) = 1,

∀p, q ∈ V, i = p, l ∈ F(3.3b) ∑
j:(i,j)∈El

xpqij (W, l)−
∑

j:(i,j)∈El

xpqji (W, l) = 0,

∀p, q ∈ V, i(̸= p, q), l ∈ F(3.3c) ∑
p,q∈V

dpqx
pq
ij (W, 0) ≤ c0ij · rSO,

∀(i, j) ∈ E0(3.3d) ∑
p,q∈V

tpqx
pq
ij (W, l) ≤ clij · rPSO,

∀(i, j) ∈ El, l ∈ F(3.3e)

0 ≤ f i
pq(l)− x

pq
ij (W, l) ≤ 1− δijq (l),∀p, q ∈ V,

(i, j) ∈ El, l ∈ F(3.3f)

xpqij (W, l) ≤ δijq (l), ∀p, q ∈ V,

(i, j) ∈ El, l ∈ F(3.3g)

0 ≤ ψjq(l) + wij − ψiq(l) ≤ (1− δijq (l))U,

∀q ∈ V, (i, j) ∈ El, l ∈ F(3.3h)

1− δpqq (l) ≤ ψjq(l) + qij ≤ ψiq(l),

∀q ∈ V, (i, j) ∈ El, l ∈ F(3.3i)

f i
pq(l) ≥ 0, ∀p, q, i ∈ V, l ∈ F(3.3j)

δijq (l) ∈ {0, 1},∀q ∈ V, (i, j) ∈ El, l ∈ F(3.3k)

1 ≤ wij ≤ wmax, ∀(i, j) ∈ El, l ∈ F.(3.3l)

3.2. ILP APPROACH 13

The key decision variable of this ILP problem is the link weight set W . In

the objective function, rSO and rPSO which are also decision variables represent

r(0)and maxl∈F r(l) respectively. A constant value of ϵ is set so that ϵ·rPSO

rSO
<< 1

can be satisfied. ϵ is small enough to enable us to find the weight set that re-

duces most maxl∈F r(l) among the ones minimising rSO. Other decision variables

are clij, f
i
pq(l), x

pq
ij (W, l), δ

ij
q (l), δ

ij
q and ψjq(l). These variables are determined once W

is calculated.

The constraints of Eqs. (3.3b)-(3.3l) are explained as follows. Eqs. (3.3b) and

(3.3c) express the flow conservation constraints. Eq. (3.3d) expresses the capacity

constraint for each link by using the network congestion ratio, rSO, in case of no

link failure. Eq. (3.3e) expresses the capacity constraint for each link by using the

worst-case network congestion ratio, rPSO, for any single link failure. Eqs. (3.3f) -

(3.3i) indicate the constraints of the ECMP routing, where U is a given constant with

a sufficiently large value. The details of the ECMP routing constraints are explained

in [19]. Eqs. (3.3j)-(3.3l) give the types and ranges of the decision variables.

3.2.1.1. Application of ILP approach. Sample networks used are shown in Fig. 3.1.

We consider the traffic matrix given.

Figure 3.1. Sample Networks for ILP

We determine WPSO−NP by solving the ILP problem defined in Eqs. (3.3a)-(3.3l).

For ϵ = 0, we obtain WSO. Finally we change Eq. (3.3a) into:

(3.4) Objective min
W

rPSO,

3.2. ILP APPROACH 14

to obtain WPSO−P . From these three sets we deduce αSO, αPSO−NP , αPSO−P , βSO,

βPSO−NP , βPSO−P .

Table 3.1 shows the comparison of PSO-P, SO, PSO-NP schemes for both the

worst case failure and the no failure scenario. By definition both αSO and βSO are

qual to zero. Note that the congestion ratios are normalized by that of SO under no

failure scenario.

Table 3.1. Comparisons of PSO-NP and PSO-P performance in Network
1 based on ILP formulation

r(0) maxl∈F r(l) α β
PSO-P 1.11 1.22 0.39 0.11
PSO-NP 1.00 1.22 0.39 0.00
SO 1.00 2.00 0.00 0.00

Table 3.2. Comparisons of PSO-NP and PSO-P performance in Network
2 based on ILP formulation

r(0) maxl∈F r(l) α β
PSO-P 1.02 1.07 0.46 0.02
PSO-NP 1.00 1.51 0.23 0.00
SO 1.00 1.97 0.00 0.00

From Table 3.1, PSO-NP reduces the worst congestion ratio up 39%, equalling

PSO-P performance. While PSO-P show a penalty of 11% under no failure case,

PSO-NP keeps the penalty to zero. PSO-NP generated link weight set is therefore

effective for both failure and non failure scenarios. In Table 3.2, PSO-NP still reduces

worst case congestion ratio. Even though PSO-P shows a higher reduction ratio it still

has a penalty. In this case, Network operators can select one of either depending on

the quality of service they need to deliver. In any case, PSO-NP is certainly effective

in a network with few failures, where a performance close to SO’s is required when

there is no failure in the network.

In the ILP approach, it is not possible to get the optimal solution when the

network size becomes large. For this reason we present a heuristic algorithm to

determine WPSO−NP in larger networks.

3.3. HEURISTIC APPROACH 15

3.3. Heuristic approach

3.3.1. Overview. Since under a no failure scenario SO is optimal and returns

only one out multiple link weight set solution, let W k
SO be a solution candidate

generated by SO, where k is an index of each candidates. Let us call this set of

weights candidates S. In a no failure case, all these sets present the same conges-

tion ratio that is the minimal congestion ratio by definition of SO. In other terms

r(W k
SO, 0) = r(WSO, 0) for all W

k
SO ∈ S. Thus the penalty for all the members of S

under no failure scenario would be such that:

(3.5) βk =
r(W k

SO, 0)− r(WSO, 0)

r(WSO, 0)
= 0,

for all W k
SO ∈ S. Since all elements of S show the lowest congestion ratio under no

failure, the one showing the highest congestion ratio under worst case failure is by

definition WPSO−NP . Let

(3.6) αk =
maxl∈F r(WSO, l)−maxl∈F r(W

k
SO, l)

maxl∈F r(WSO, l)
,

be the reduction ratio of the worst case congestion of W k
SO ∈ S. Under worst case

failure, it is desirable to have a large value of α as it represents the worst congestion

reduction ratio. Since WPSO−NP is the element of S with the lowest congestion ratio

under worst case failure, it is equivalent to the set with the largest α. Therefore,

(3.7) WPSO−NP ≡ arg max
Wk

SO∈S
αk
SO.

Under worst case failure, WPSO−NP reduction ratio compared to WSO is defined

as:

(3.8) αPSO−NP =
maxl∈F r(WSO, l)−maxl∈F r(WPSO−NP , l)

maxl∈F r(WSO, l)
,

and its penalty under no failure,

(3.9) βPSO−NP =
r(WPSO−NP , 0)− r(WSO, 0)

r(WSO, 0)
,

3.3. HEURISTIC APPROACH 16

which is, of course, zero.

3.3.2. Procedure. Since PSO-NP selects one set among SO generated weight

sets, the first step of our procedure is to implement SO and generate S. In our

procedure, z represents a fixed increment value in the link weight searching procedure

and S is initialized to S = ∅. wmax is set to 1000.

The procedure taken by PSO-NP to obtain WPSO−NP is defined by Eq. (3.7) and

divided into three steps as follows.

• Step 1: Get WSO and collect all sets that generates the same r(WSO, 0).

These sets are elements of S.

• Step 2: For each W k
SO ∈ S, evaluate αk, using Eq. (3.6).

• Step 3: Get WPSO−NP by using Eq. (3.7).

Step 1 is divided into 4 steps.

In Step 1, r and I are variables used to respectively store the congestion ratio and

count the number of generated weight sets. the variables are respectively initialized

to r =∞ and I = 1. The procedure in step 1 is as follow:

• Step 1.1:

Generate new link weight set Winit.

Wtemp ← Winit.

flag ← true.

• Step 1.2:

While (flag)

Run shortest path algorithm and find the link

(i0, j0) with the highest congestion ratio r0.

if(r0 = r)

add Wtemp into S.

if(r0 < r)

r ← r0.

clear S.

3.3. HEURISTIC APPROACH 17

add Wtemp into S.

Update Wtemp by replacing wi0j0 ← wi0j0 + z.

if (wi0j0 + z > wmax)

flag ← false.

• Step 1.3:

Increment I.

if (I ≤ Imax)

go to step 1.1.

else

return S = {W 1
SO,W

2
SO,W

3
SO, . . .}.

end.

3.3.3. Computation time complexity. The computation time complexity of

PSO-NP is the total sum of the computation time complexity of steps 1, 2, and step

3.

The computation time complexity of step 1 is equal to that of SO. Under the

SO Optimisation process, if we focus on determining one link weight, there are wmax

combinations for each link weight. To determine L link weights, we do not decrement

link weights and we only increment them at most Lwmax times to get the SO solution.

Therefore, we have Lwmax weight-set combinations to determine L link weights for a

given initial link weight set. For each weight set, we need to compute the network

congestion ratio. Let O(X) be the computation time complexity to find the congestion

ratio for each weight set. Moreover, we need to compute all the initial Imax sets.

Therefore, the computation complexity of SO is O(LwmaxXImax).

Consider the computation time complexity of steps 2 and 3. To determine the

worst case congestion ratio we need to examine all possible link failure patterns includ-

ing the no failure scenario, which gives us a total of L+1 failure patterns. Therefore,

the computation complexity to get the worst case congestion ratio is O(LX) for a

link weight set in S. We need this computation time complexity for every element of

3.4. PERFORMANCE EVALUATION AND SIMULATION ENVIRONMENTS 18

S. Let Smax be the maximum number of elements in S. The total computation time

complexity of steps 2 and 3 is O(LXSmax).

In all, the PSO-NP computation time complexity is expressed by,

(3.10) O(LwmaxXImax + LXSmax).

O(X) can be evaluated by using the computation time complexity of Dijkstra’s algo-

rithm. In Dijkstra’s algorithm, for each source node a shortest path tree is computed

using a computation complexity of O(L+N logN). Since we use Dijkstra’s algorithm

to every node in the network to determine the congestion ratio after a single failure,

O(X) = O((L+N logN)×N) = O(NL+N2 logN).

By substituting X = NL + N2 logN into Eq. (3.10), the PSO-NP computation

time complexity is expressed by,

(3.11) O((wmaxImax + Smax)(NL
2 +N2L logN)).

wmax, Imax, and Smax are the parameters that can be controlled. To enhance the Op-

timisation accuracy, we set wmaxImax > Smax. In this case, the PSO-NP computation

time complexity is expressed by O(wmaxImax(NL
2 +N2L logN)), which is the same

computation time complexity of SO.

3.4. Performance evaluation and simulation environments

The performances of the PSO-P, PSO-NP and SO are compared via simulations

for both failure and non-failure scenarios through our heuristic approach. For each

scheme we evaluate the congestion ratio under worst case failure and non failure

scenarios. Comparison metrics are respectively the reduction ratio of the worst con-

gestion,

(3.12) αX =
maxl∈F r(WSO, l)−maxl∈F r(WX , l)

maxl∈F r(WSO, l)
.

3.4. PERFORMANCE EVALUATION AND SIMULATION ENVIRONMENTS 19

and the penalty under no failure,

(3.13) βX =
r(WX , 0)− r(WSO, 0)

r(WSO, 0)
,

where X = PSO-P, PSO-NP and SO.

We use five sample networks, as shown in Fig. 5.1.

Figure 3.2. Examined network topologies.

Networks 1 and 2 are the examined topologies used in the ILP approach of PSO-

NP. Networks 3 and 4, which mirror typical backbone networks are used to evaluate

routing performance in [20]. Networks 5 is an Abiline network [21]. Finally, network

6 is a random network generated via BRITE [22]. The characteristics of networks

considered in this work are shown in Table 5.1.

Table 3.3. characteristics of networks

Network type No. of nodes No. of links (bidirectional) Aver. node degree
Network 1 5 8 1.60
Network 2 5 10 2.00
Network 3 6 11 1.83
Network 4 12 22 1.83
Network 5 14 21 1.50
Network 6 10 20 2.00

For the given networks, link capacities are randomly generated with uniform dis-

tribution in the range of (10UC ,100UC), where UC [Gbit/s] is given a constant integer

3.4. PERFORMANCE EVALUATION AND SIMULATION ENVIRONMENTS 20

value. dpq is also randomly generated with uniform distribution in the range of (0,

100UD), where UD [Gbit/s] is a given constant integer value. UD/UC is determined

so that we can get feasible solutions. z is set to 1 to evaluate the performance of a

maximum number of weight sets. Tables 3.4, 3.5, 3.6, 3.7, 3.8 and 3.9 show respec-

tively the results obtained for networks 1, 2, 3, 4, 5 and 6. As in the ILP approach,

the congestion ratios are normalised by that of SO.

Table 3.4. Comparisons of PSO-NP and PSO-P performance in Network 1

r(0) maxl∈F r(l) α β
PSO-P 1.11 1.22 0.39 0.11
PSO-NP 1.00 1.22 0.39 0.00
SO 1.00 2.00 0.00 0.00

Table 3.5. Comparisons of PSO-NP and PSO-P performance in Network 2

r(0) maxl∈F r(l) α β
PSO-P 1.02 1.07 0.46 0.02
PSO-NP 1.00 1.51 0.23 0.00
SO 1.00 1.97 0.00 0.00

Table 3.6. Comparisons of PSO-NP and PSO-P performance in Network 3

r(0) maxl∈F r(l) α β
PSO-P 1.42 1.47 0.45 0.42
PSO-NP 1.00 1.50 0.44 0.00
SO 1.00 2.68 0.00 0.00

Table 3.7. Comparisons of PSO-NP and PSO-P performance in Network 4

r(0) maxl∈F r(l) α β
PSO-P 1.25 1.56 0.80 0.25
PSO-NP 1.00 2.46 0.68 0.00
SO 1.00 7.78 0.00 0.00

For both networks 1 and 2, the results obtained through the heuristic approach

equal the the ones obtained through the ILP approach. This can be observed by

comparing Tables 3.1 and 3.2 to Tables 3.4 and 3.5, respectively. In addition, From

TABLE 3.6 and 3.9, we can state that PSO-NP reduces the worst case congestion

ratio almost as much as PSO-P while suppressing the penalty which PSO-P does not.

3.4. PERFORMANCE EVALUATION AND SIMULATION ENVIRONMENTS 21

Table 3.8. Comparisons of PSO-NP and PSO-P performance in Network 5

r(0) maxl∈F r(l) α β
PSO-P 1.67 2.03 0.14 0.67
PSO-NP 1.00 2.37 0.00 0.00
SO 1.00 2.37 0.00 0.00

Table 3.9. Comparisons of PSO-NP and PSO-P performance in Network 6

r(0) maxl∈F r(l) α β
PSO-P 1.85 1.83 0.66 0.85
PSO-NP 1.00 2.02 0.63 0.00
SO 1.00 5.41 0.00 0.00

PSO-P carries a penalty of 42% and 85% for networks 3 and 6 respectively when

there is no failure. This shows the effectiveness of PSO-NP in reducing the worst

congestion ratio while eliminating the penalty when there no failure. In Table 3.7,

for network 4, the reduction ratio of PSO-NP is lower than PSO-P’s but still has the

advantage of keeping penalty to zero. For this case also, network operators can select

one of either depending on the quality of service they need to deliver. Finally, in

Table 3.8, for network 5, PSO-NP does not show any amelioration compared to SO.

We study this case later in this paper.

For all the samples examined here, the penalty in case of no failure β, numerically

confirmed our prediction as follows:

(3.14) βSO(= 0) = βPSO−NP ≤ βPSO−P ,

where PSO-NP maintains the penalty to zero. For the worst case single link failure,

we also compared the reduction ratio for both PSO-NP and PSO-P schemes. We

observed:

(3.15) αSO(= 0) ≤ αPSO−NP ≤ αPSO−P ,

For larger networks the effectiveness of PSO-NP depends on Imax values. For

larger values of Imax, αPSO−NP may be boosted and even match αPSO−P because

more initial weight sets means more possible elements of S. However, in smaller

3.4. PERFORMANCE EVALUATION AND SIMULATION ENVIRONMENTS 22

networks such as network 1 and 2, the variety of initial weight sets does not impact

the performance of PSO-NP. We examined the performance of PSO-NP for the values

of Imax ranging from 1 to 10000 in Network 3, 4 5 and 6. The results are listed in

Tables 3.10, 3.12 3.11 and 3.13.

Table 3.10. Dependency of PSO-NP over Imax in Network 3

Imax αPSO−P αPSO−NP βPSO−P βPSO−NP

1 0.18 0.09 0.28 0.00
3 0.18 0.09 0.28 0.00
5 0.18 0.09 0.28 0.00

20 0.27 0.12 0.27 0.00
100 0.44 0.32 0.16 0.00

1000 0.45 0.44 0.41 0.00
5000 0.45 0.44 0.41 0.00
10000 0.45 0.44 0.42 0.00

Table 3.11. Dependency of PSO-NP over Imax in Network 4

Imax αPSO−P αPSO−NP βPSO−P βPSO−NP

1 0.62 0.00 0.43 0.00
3 0.62 0.00 0.43 0.00
5 0.62 0.00 0.43 0.00

30 0.62 0.00 0.43 0.00
100 0.62 0.00 0.43 0.00

1000 0.58 0.00 0.47 0.00
5000 0.36 0.00 0.25 0.00
10000 0.80 0.68 0.25 0.00

Table 3.12. Dependency of PSO-NP over Imax in Network 5

Imax αPSO−P αPSO−NP βPSO−P βPSO−NP

1 0.003 0.00 0.72 0.00
3 0.003 0.00 0.72 0.00
5 0.003 0.00 0.72 0.00

30 0.003 0.00 0.72 0.00
100 0.003 0.00 0.62 0.00

1000 0.003 0.00 0.75 0.00
5000 0.003 0.00 0.72 0.00
10000 0.14 0.00 0.67 0.00

In all, PSO-NP heuristic algorithm eliminates PSO-P penalty while producing

a considerable congestion ratio reduction under the worst case failure scenario. It

may even reduce the worst congestion ratio as PSO-P does for some cases. In the

examined cases, increasing the number of initial sets ameliorates our solution.

3.5. VARIATIONS OF PSOS 23

Table 3.13. Dependency of PSO-NP over Imax in Network 6

Imax αPSO−P αPSO−NP βPSO−P βPSO−NP

1 0.37 0.00 0.00 0.00
3 0.37 0.00 0.00 0.00
5 0.37 0.00 0.00 0.00

20 0.37 0.00 0.43 0.00
100 0.63 0.60 0.85 0.00

1000 0.69 0.60 0.85 0.00
5000 0.66 0.63 0.85 0.00
10000 0.66 0.63 0.85 0.00

The computation times of SO, PSO-NP, PSO-P are examined. The Simulation

is performed by using a Linux-based computer equipped with a 2.3 GHz Intel Core

i5 Processor and 4 GB memory. Computation time is evaluated in second (s) and

shown in Table 5.6.

Table 3.14. Computation time comparison of SO, PSO-NP and PSO-P in seconds

Network type SO PSO-NP PSO-P
Network 1 1620.22 1848.48 3892.85
Network 2 1685.79 1723.13 8568.55
Network 3 3157.54 3140.79 18026.84
Network 4 31603.00 32129.77 336610.75
Network 5 42136.04 43073.50 627295.30
Network 6 16291.27 16559.43 182786.63

We observe that PSO-NP computation time is close to that of SO as we expected.

PSO-NP extends SO by evaluating SO generated sets worst congestion ratio.

PSO-P computation time is 2 to 10 times that of PSO-NP depending on the

network size. Compared to PSO-P, PSO-NP reduces the worst congestion ratio in a

shorter time while keeping the penalty to zero.

3.5. Variations of PSOs

PSO-NP basically keeps r(0) = rSO(0) = 1.00 while reducing maxl∈F r(l) but may

not be effective in some cases. In Table 3.8 for example PSO-NP and SO show the

same result. There is no advantage of PSO-NP compared to SO under the worst

case failure. Now, if we try to loosen the constraint under no failure, for example

r(0) = 1.001 compared to rSO(0) = 1.0, it is actually possible to get a substantial

3.5. VARIATIONS OF PSOS 24

decrease of maxl∈F r(l). In this case the penalty β = 0.001 and is almost negligible

while α is boosted. Therefore, a limited or small enough penalty under no failure

may yield a substantial reduction ratio under worst case failure. A preventive start-

time that considers a limited penalty while increasing the reduction ratio should be

examined. This scheme is called Preventive Start-time with Limited Penalty (PSO-

LP).

PSO-LP can even be extended so as to consider the balance between r(0) and

maxl∈F r(l) through a General Preventive Start-time Optimisation(GPSO).

25

CHAPTER 4

GPSO: Generalized preventive Start-time Optimization

4.1. Overview

GPSO determines a suitable weight set that balances r(0) and maxl∈F r(l) and

enables network operators to select the link weight set that shows the best couple

(r(0), maxl∈F r(l)). As in network 6, PSO-NP may sometimes coincide with SO

under worst case failure. For those cases, the reduction ratio α cannot be improved.

Actually the reduction ratio improves if we loosen the penalty β under no failure.

Therefore finding a link weight set that considers the balance of both α and β makes

senses. We propose a way to find that set through a mathematical and heuristic

approach.

4.2. GPSO mathematical formulation

GPSO is designed to give network operator the latitude to get suitable link weight

set considering the balance between r(0) and maxl∈F r(l) instead of focusing on one

of them. GPSO ILP formulation derives from Eq. (3.3a). The formulation can be

expressed by changing only the objective function of our PSO-NP ILP formulation in

to:

(4.1) Objective min
W

(1− γ) · rSO + γ · rPSO,

where 0 ≤ γ ≤ 1. γ is a parameter defined by network operators. γ = 0 means

that we do not consider worst case failure. In other terms only rSO becomes our

objective function. This shows that setting γ = 0 can enable us to recover SO. In

addition, when γ is set to 1, the objective function becomes rPSO, meaning that only

the worst case congestion ratio is considered. GPSO becomes equivalent to PSO-P.

4.3. GPSO HEURISTIC ALGORITHM 26

Finally, when γ increases from 0 towards 1, GPSO shifts progressively from PSO-NP,

PSO-LP and PSO-P. This enables network operators to find the best couple (r(0),

maxl∈F r(l)) instead of just targeting on one of them as in SO and PSO-P.

In total GPSO is summarised as follows:

GPSO =

SO, if γ = 0

PSO −NP, if 0 < γ ≪ rSO

rPSO

PSO − LP, if rSO

rPSO
< γ < 1

PSO − P, if γ = 1

Unfortunately, for larger topologies like network 5, the ILP approach is not able to

give us a solution in a practical time. A heuristic formulation of GPSO is therefore

required.

4.3. GPSO heuristic algorithm

In our heuristic algorithm we directly evaluate the balance between α and β

because finding the weight set that gives the best (r(0), maxl∈F r(l)) is equivalent to

finding the one with the best (α, β). For that, we allow the congestion ratio under

no failure r(0) to have a range. That range is set as:

(4.2) rSO(0) ≤ r(0) ≤ rSO(0) + δ, δ > 0,

where δ is given. In other words, under no failure the penalty is no kept at zero like

PSO-NP but bounded as:

(4.3) 0 ≤ β ≤ βupp,

where

(4.4) βupp =
δ

rSO(0)

is the upper bound penalty.

4.3. GPSO HEURISTIC ALGORITHM 27

The upper bound penalty is the maximal allowable penalty when there is no failure

in the network. For a given value of βupp, GPSO finds the weight set that reduces

most maxl∈F r(l) boosting α as a consequence. βPSO−P is the highest possible penalty

to pay under a no failure scenario compared to SO scheme. Therefore the range of

βupp is:

(4.5) 0 ≤ βupp ≤ βPSO−P ,

Since βupp represents the maximal allowable penalty under no failure in the network,

the solution weight set of GPSO can be expressed as:

(4.6) WGSOβupp
= arg

0≤β≤βupp

max
W

α(W).

Figure 4.1. Worst congestion reduction ratio for given penalty under no failure

4.3. GPSO HEURISTIC ALGORITHM 28

Now, if we shift the values of βupp progressively from 0 to βPSO−P we obtain

respectively PSO-NP, PSO-LP an PSO-P scheme. In General, we have:

GPSO =

PSO −NP, if βupp = 0

PSO − LP, if 0 < βupp < 1

PSO − P, if βupp = βPSO−P

We examined the performance of GPSO in network 5. As shown in Fig. 4.1 for

βupp = 0.0015 we achieve a reduction equal to that of PSO-P showing that with

negligible penalty maximal reduction can be achieved. In addition, for values of

βupp equal to 0 and βPSO−P GPSO matches PSO-NP and PSO-P reduction ratio

respectively. GPSO therefore generalizes the previous schemes and goes further to

provide a more flexible weight set depending on upper bound penalty when there is

no failure.

29

CHAPTER 5

PSO-FP: Preventive Start-time Optimization Considering

link Failure probability

5.1. Overview

PSO-FP determines the link weight set that minimizes the worst congestion ratio

based on the link failure probability.

When W is fixed, for l ∈ E, (pl, r(W, l)) couples are known. PSO-FP aim is

to calculate a set that minimizes the expectation value
∑

l∈E Plr(W, l). Therefore a

mathematical formulation of a possible solution to our problem can be expressed as:

(5.1) min
W

∑
l∈E

plr(W, l).

Many weight set may satisfy this formulation of PSO-FP. Under no failure the con-

gestion ratio should be as low as possible. As a result our Objective function is:

(5.2) Objective min
W

∑
l∈E

plr(W, l) + ϵ · r(0).

Now, let

(5.3) WPSO−FP = arg min
W

∑
l∈E

plr(W, l) + ϵ · r(0),

the solution set. We show below how to find the solution set.

5.2. Procedure

Our procedure used Simulated annealing search ,where a link is randomly selected

and its weight changed. In our Procedure Wsol the final weight set solution. Winit

represents a initial set use in the optimization procedure. We use Imax initial weight

sets. step represents the number of times we select a link randomly to change its

5.2. PROCEDURE 30

weight. M0 is used as a temporary variable to store our expected congestion ratio

while M is the minimal expectable congestion ratio. M and step are initialized as

M =∞, step = E× V. The rest of our procedure is as follow:

while(Imax){

Generate an initial Winit

Wtemp ← Winit

while(step){

flag ← false

Select randomly a link (u, v) ∈ E.

Update Wtemp (W up
temp)by increasing or decreasing wuv by a value z.

M0 ← average congestion(Wtemp).

if (M0>M){

M ←M0.

flag ← true

Wsol ← Wtemp.

}

if(flag)}

Wtemp ← W up
temp.

step is renitialized.

}

else{

decrement step.

{

}

decrement Imax.

}

Now the function, average congestion(W) gives the expected congestion ratio when

the argument weight set is given. it is defined as follow:

double average congestion(weight setW){

5.3. PERFORMANCE EVALUATION & SIMULATION ENVIRONMENTS 31

initialize m0 = 0.

for all l ∈ F {

get Gl.

calculate r(W, l).

m0 ← m0 + r(W, l)× Pl.

}

return m0.

}

5.3. Performance Evaluation & Simulation Environments

The performance of the PSO-FP scheme is compared to those of PSO and SO

scheme via simulations for both failure and non-failure scenarios. For each scheme we

evaluate the worst case congestion ratio, the congestion ratio under no failure scenario

and the expected congestion ratio. For that, we use three comparison variables. Let

X =PSO-FP, PSO or SO.The first comparison variable is the penalty β under no

failure:

(5.4) βX =
r(WX , 0)− r(WSO, 0)

r(WSO, 0)
.

The second comparison is δ. δ represents the risk of not using PSO under worst case

failure and is defined as:

(5.5) δX =
maxl∈F r(WX , l)−maxl∈F r(WPSO, l)

maxl∈F r(WPSO, l)
.

The last comparison variable is γ. γ represents the gap between the expected con-

gestion ratio given by PSO-FP and other schemes.

(5.6) γX =
MX −MPSO−FP

MPSO−FP

.

with MX =
∑

l∈E plr(WX , l).

We use four sample networks, as shown in Fig. 5.1.

5.3. PERFORMANCE EVALUATION & SIMULATION ENVIRONMENTS 32

Figure 5.1. Examined network topologies.

Networks 1 and 2, which mirror typical backbone networks are used to evaluate

routing performance in [20]. Networks 3 is an Abiline network [21]. Finally, network

4 is a random network generated via BRITE [22]. The characteristics of networks

considered in this work are shown in Table 5.1.

Table 5.1. characteristics of networks

Network type No. of nodes No. of links (bidirectional) Aver. node degree
Network 1 6 11 1.83
Network 2 12 22 1.83
Network 3 14 21 1.50
Network 4 10 20 2.00

For the given networks, link capacities are randomly generated with uniform dis-

tribution in the range of (10UC ,100UC), where UC [Gbit/s] is given a constant integer

value. dpq is also randomly generated with uniform distribution in the range of (0,

100UD), where UD [Gbit/s] is a given constant integer value. UD/UC is determined

so that we can get feasible solutions. z is set to 1 to evaluate the performance of a

maximum number of weight sets. Also Imax and step are set respectively to 1000 and

E × V .

Table 5.2. Comparisons of PSO-FP and PSO performance in Network 1

r(0) maxl∈F r(l) M β δ γ
SO 1.0 1.97 4.55 0.0 0.27 27.31
PSO 1.19 1.55 2.37 0.19 0.0 13.76
PSO-FP 1.34 2.02 0.16 0.34 0.30 0.0

5.3. PERFORMANCE EVALUATION & SIMULATION ENVIRONMENTS 33

Table 5.3. Comparisons of PSO-FP and PSO performance in Network 2

r(0) maxl∈F r(l) M β δ γ
SO 1.0 1.85 0.90 0.0 0.09 4.13
PSO 1.26 1.70 0.91 0.26 0.0 4.20
PSO-FP 1.57 2.00 0.18 0.57 0.18 0.0

Table 5.4. Comparisons of PSO-FP and PSO performance in Network 3

r(0) maxl∈F r(l) M β δ γ
SO 1.0 1.70 0.33 0.00 0.15 0.54
PSO 1.18 1.48 0.39 0.18 0.00 0.85
PSO-FP 1.43 1.78 0.21 0.43 0.20 0.00

Table 5.5. Comparisons of PSO-FP and PSO performance in Network 4

r(0) maxl∈F r(l) M β δ γ
SO 1.0 2.05 0.62 0.00 0.00 1.92
PSO 1.28 2.05 0.32 0.28 0.00 0.50
PSO-FP 1.46 2.19 0.21 0.46 0.07 0.00

TABLE 5.2, 5.3, 5.4 and 5.5 show respectively the results obtained for the sample

networks 1, 2, 3 and 4. We can say that under no failure case PSO-FP congestion

ratio is close to that of SO while SO average congestion ratio is high compare to

PSO-FP’s. In addition, under worst case failure scenario, PSO-FP congestion ratio is

closer to that of PSO while PSO average congestion ratio is greater than PSO-FP’s.

The computation time of SO, PSO and PSO-FP is compared. and show in ta-

ble 5.6. PSO-FP computation time is is much more lower than that of SO and PSO.

Table 5.6. SO, PSO and PSO-FP Computation time comparison in seconds

Network type SO PSO PSO-FP
Network 1 610.58 2491.40 14.61
Network 2 6821.74 135362.71 889.47
Network 3 6612.07 103392.75 1818.56
Network 4 3119.18 31842.83 430.35

PSO also shows a congestion that nears both SO and PSO more than PSO and SO

near itself. When link failure probability is known PSO-FP is a useful preventive

scheme that enables us to determine a link weight set that minimizes the average of

the worst possible congestion ratio in the network.

34

CHAPTER 6

Conclusion

Our objective is to determine, at the start time a link weight set that counters

any link failure scenario while considering link failure characteristics. Previous studies

have focused on finding a set of link weights that minimises the worst case congestion

ratio under only a failure scenario. Applying these link weight sets in the network may

cause a larger than normal congestion under a non-failure scenario. This issue was

mentioned in [12] but was not addressed. We have addressed this problem because

in networks with few failure, that burden would be carried all along and become

troublesome.

We have proposed a scheme to eliminate that penalty while reducing the worst

case congestion ratio. Our scheme is simple and based on SO (Start-time Optimisa-

tion) scheme. SO enables us to find the optimal link weight set that minimises the

congestion ratio under a non-failure scenario. We also know that SO’s solution is not

unique and there are actually many sets calculated by SO that would produce the

same result. The proposed scheme relies on choosing among the solutions of SO the

set best prepared to deal with the worst case congestion in our network.

In our evaluation, we used two approaches, a direct ILP based mathematical

approach and heuristic algorithm. We verified that both approaches matches in terms

of performance for networks of simple size. For network of bigger size, only the

heuristic algorithm was explored as the ILP formulation cannot be solved in a practical

time. Still, PSO-NP is able to guarantee SO performance in case of no failure while

significantly reducing the congestion ratio under the worst case failure. In some cases

PSO-P performance under failure was even matched. PSO-NP is therefore applicable

for networks with few failures because unlike previous schemes it does not carry any

35

penalty in case of no failure and can still manage to reduce notably the worst case

congestion ratio under any single link failure scenario.

However, in some cases loosening the penalty to a negligible value could lead to

even bigger reduction of the congestion ratio under worst case failure scenario. We

explored the trade-off between the penalty when there is no failure and the reduction

ratio of the worst case congestion through General Preventive Start-time Optimisation

(GPSO). GPSO determines the weight set that minimises the worst case congestion

when maximal allowable penalty (upper bound penalty) under no failure is given. We

showed that GPSO includes previous start-time optimisation when the upper bound

penalty is appropriately set. If the penalty upper bound if fixed to zero, GPSO results

matches PSO-NP’s. If the penalty is neglected, GPSO will match PSO-P. Overall,

GPSO provides an efficient and flexible weight set that considers both failure and non

failure scenarios.

In fact, failure distribution is not the same for every link in the network. Most

link failures may in fact focus on a small number of links. Therefore a scheme that

considers link failure distribution in the network has to be considered. We address

this issue in the second part of our work. We propose a Preventive Start-time Opti-

mization that considers link failure probability (PSO-FP). When Traffic demand and

link failure probability are known PSO-FP computes a link weight set that minimizes

the expectation value of the congestion ratio for all possible failures. Simulation re-

sults show that PSO-FP is much more closer to both SO and PSO than they are to

it. For both no failure and worst scenario PSO-FP gives a congestion close to SO and

PSO respectively whereas SO and PSO gives an expected congestion ratio sometimes

10 times that of PSO-FP. Overall PSO-FP is that proposes more flexibility in the

assignment of link weight when link failure may concentrate on a few number of links

in the network.

36

Publications

Curriculum Vitae

Kaotchouang Stephane is a master’s student at the University of Electro-Communications.

He received his Bachelor in Mathematics from the Faculty of science of the Univer-

sity of Yaounde 1, Cameroon in 2007. Then he will receive his Master of Engineering

majoring in Information and Communications Systems in March 2014. His research

focuses on network optimization, network failure and routing.

Journal Publications

• S. Kaptchouang, Ihsen Aziz Ouédraogo, and E. Oki, “Preventive Start-time

Optimisation Considering Both Failure and Non-Failure Scenarios,” IET Net-

works, (Under review).

• S. Kaptchouang, Ihsen Aziz Ouédraogo, and E. Oki,“Preventive Start-Time

Optimization Considering Link Failure Probability,” IEEE Trans. Commun.,

(To be submitted).

• S. Kaptchouang, Ihsen Aziz Ouédraogo, and E. Oki,“Preventive Start-time

Optimization Enhanced,” IEICE Commun. Express.,(To be submitted).

Conference Proceeding Publications

• S. Kaptchouang, and E. Oki, “Enhancing Preventive Start-Time Optimiza-

tion Considering Both Failure and Non-Failure Scenarios,” 19th Asia-Pacific

Conference on Communications (APCC 2013), Aug. 2013.

• S. Kaptchouang, and E. Oki, “Preventive Start-time Optimisation Consider-

ing Both Failure and Non-Failure Scenarios,” IEICE Technical report (PN2013-

11), Page:39-43, Nov. 2013.

6.0. CONFERENCE PROCEEDING PUBLICATIONS 37

• S. Kaptchouang, Ihsen Aziz Ouédraogo, and E. Oki,“PSO-FP: Preventive

Start-Time Optimization Considering Link Failure Probability,” 6th Work-

shop on Photonics Network., Mar. 2014.

38

APPENDIX A

SO source code

//SO source code, C++//

♯include<iostream>

♯include<stdio.h>

♯include<limits.h>

♯include<time.h>

♯include<set>

♯include<queue>

♯include<algorithm>

♯include<math.h>

using namespace std;

typedef pair<int,int>P;

typedef pair<P, double>PPD;

♯define MAX V 20

♯define INF 11000

♯define BORN 1000

int V, Imax, E;

int w = 0;

double p[MAX V][MAX V];

double T[MAX V][MAX V];

class Graph{

private:

int cost[MAX V][MAX V];

double capacity[MAX V][MAX V];

double Y[MAX V][MAX V];

39

double x[MAX V][MAX V];

double U[MAX V][MAX V][MAX V][MAX V];

double traffic[MAX V][MAX V];

double c ratio[MAX V][MAX V];

bool unconnected[MAX V][MAX V];

int d[MAX V];

bool used[MAX V];

int counter[MAX V][MAX V];

int n[MAX V];

double x int[MAX V];

int V;

int prev[MAX V][MAX V];

int next[MAX V][MAX V];

public

void init cost() {

for(int i=0;i<MAX V;i++) {

for(int j=0;j<MAX V;j++) {

if(unconnected[i][j]) continue;

cost[i][j] = INF;

capacity[i][j]=capacity[j][i]=0;

}

}

}

void init unconnected(){

for(int i=0;i<MAX V;i++) {

for(int j=0;j<MAX V;j++) {

x[i][j]=0.0;

p[i][j]=0.0;

unconnected[i][j] = false;

40

}

}

}

void breakLink(int u, int v) {

setCost(u,v,INF);

setCost(v,u,INF);

}

void showGraph() {

for(int i=0;i<V;i++) {

for(int j=0;j<V;j++) {

if(cost[i][j] >= INF)

printf(”INF ”);

else

printf(”%2d ” ,cost[i][j]);

}

printf(”\n”);

}

printf(”\n”);

}

void setRandomCost() {

for(int i=0;i<V;i++) {

for(int j=0;j<V;j++) {

if(unconnected[i][j]){

setCost(i,j, rand()%BORN+1);

}

}

}

}

double getAveRatioBreak(){

41

double sum=0.0;

for(int u=0;u<size();u++){

for(int v=u+1;v<size();v++){

int x=getCost(u,v);

int y=getCost(v,u);

if(x == INF) continue;

breakLink(u,v);

operation ecmp();

PPD p max link1 = getcongestion();

sum=sum+p[p max link1.first.first][p max link1.first.second]*p max link1.second;

setCost(u,v,x);

setCost(v,u,y);

}

}

return sum;

}

PPD getMaxCRatioBreak(){

PPD p max link=PPD(P(0,0),-1);

for(int u=0;u<size();u++){

for(int v=u+1;v<size();v++){

int x=getCost(u,v);

int y=getCost(v,u);

if(x == INF) continue;

breakLink(u,v);

operation ecmp();

PPD p max link1 = getcongestion();

if(p max link1.second¿p max link.second){

p max link = p max link1;

}

42

setCost(u,v,x);

setCost(v,u,y);

}

}

return p max link;

}

void setCost(int u, int v, int pcost) {

cost[u][v] = pcost;

}

void setGraphSize(int v) {

V = v;

}

int size() {

return V;

}

bool isConnected(int u, int v) {

return cost[u][v] < INF;

}

void setConnected(int u, int v, int cost1,int capa, double prop) {

cost[u][v] = cost1;

if(w==0){

cost[v][u]=cost1;

}

capacity[u][v]=capacity[v][u]=capa ;

p[u][v]=p[v][u]=prop;

unconnected[u][v]=unconnected[v][u]=true;

}

void get ecmp(int q){

for(int j=0;j<V;j++){

43

if(prev[q][j]==-1) continue;

next[j][q]=q; counter[q][j]++;

if(counter[q][j]<2) n[j]++;

get ecmp(j);

}

}

void cal ecmp(int p){

for(int i=0;i<V;i++){

if(next[p][i]==-1) continue;

x[p][next[p][i]]=x[p][next[p][i]]+x int[p]/n[p];

x int[next[p][i]]=x[p][next[p][i]];

cal ecmp(next[p][i]);

}

}

void dijkstra(int s) {

fill(d, d + V, INF/2);

fill(n, n + V, 0);

fill(x int, x int + V, 1.0);

fill(used, used + V, false);

for(int i=0;i<V;i++){

fill(prev[i],prev[i]+V,-1);

fill(counter[i], counter[i] + V, 0);

fill(next[i],next[i]+V,-1);

fill(x[i], x[i] + V, 0.0);

}

d[s] = 0;

while(true) {

int v = -1;

for(int u = 0; u < V; u++) {

44

if (!used[u] && (v == -1 —— d[u] < d[v])) v = u;

}

if(v == -1) break;

used[v] = true;

for(int u=0;u<V;u++) {

if(u == v) continue;

if(d[u] ¿ d[v] + cost[v][u]) {

fill(prev[u],prev[u]+V,-1);

d[u] = d[v] + cost[v][u];

prev[u][v] = v;

}

else if(d[u] == d[v] + cost[v][u]){

prev[u][v] = v;

}

}

}

}

int getCost(int u, int v) {

return cost[u][v];

}

void usedSet(int p, int q) {

dijkstra(p);

get ecmp(q);

cal ecmp(p);

for(int i=0;i<V;i++){

for(int j=0;j<V;j++){

if(x[i][j])

U[p][q][i][j]=x[i][j];

}

45

}

for(int i=0;i<V;i++)

fill(x[i], x[i] + MAX V, 0.0);

}

void operation ecmp(){

for (int p=0;p<V;p++){

for(int q=0;q<V;q++){

if(p!=q) {

usedSet(p,q);

}

}

}

}

PPD getcongestion() {

for(int i=0;i<V;i++){

fill(Y[i], Y[i] + MAX V, 0.0);

}

PPD p max link=PPD(P(0,0),-1);

for(int i=0;i<V;i++){

for(int j=0;j<V;j++){

if(i==j) continue;

for(int p=0;p<V;p++){

for(int q=0;q<V;q++){

if(p==q) continue;

Y[i][j]=Y[i][j]+T[p][q]*U[p][q][i][j];

}

}

}

}

46

for(int i=0;i<V;i++){

for(int j=0;j<V;j++){

if(!unconnected[i][j]) continue;

double r = Y[i][j]/capacity[i][j];

if(p max link.second<r){

p max link.second = r;

p max link.first.first=i;

p max link.first.second=j;

}

}

}

for(int i=0;i<V;i++){

for(int j=0;j<V;j++){

for(int p=0;p<V;p++){

for(int q=0;q<V;q++){

U[q][p][i][j]=0.0;

}

}

}

}

return p max link;

}

};

Graph g;

Graph prev g;

Graph so g;

PPD prev link =PPD(P(0,0),INT MAX);

void solve(){

PPD p max link=PPD(P(0,0),-1);

47

int C=Imax;

while(C){

bool changed = false;

while(true){

g.operation ecmp();

p max link= g.getcongestion();

if(p max link.second<prev link.second){

p max link.second=prev link.second;

so g =g;

}

int pcost=g.getCost(p max link.first.first,p max link.first.second);

if(pcost>BORN-1){

break;

}

g.setCost(p max link.first.first,p max link.first.second,pcost+1);

}

g.setRandomCost();

C–;

}

so g.operation ecmp();

printf(”SO congestion no failure case =%1.7lf\n”,so g.getcongestion().second);

printf(”SO worst case congestio=%1.7lf\n”,so g.getMaxCRatioBreak().second);

printf(”SO expected congestion=%1.7lf\n”,so g.getAveRatioBreak());

printf(”\n”);

}

int main(){

clock t start;

start =clock();

double sum=0.0;

48

srand(1);

cin>>Imax;

cin>>V>>E;

g.setGraphSize(V);

g.init unconnected();

g.init cost();

for(int i=0;i<E;i++) {

int u,j,cost,capacity;

double prop;

cin>>u>>j>>cost>>capacity>>prop;

sum+=prop;

g.setConnected(u,j,cost,capacity,prop);

}

w++;

for (int i=0;i<V;i++){

for(int j=0;j<V;j++){

cin>>T[i][j];

p[i][j]=p[i][j]/sum;

}

}

solve();

start=(clock()-start);

printf(”Run time %lf\n”,start/(double)CLOCKS PER SEC);

printf(”Imax= %3d\n”,Imax);

return 0;

}

49

APPENDIX B

PSO-NP source code

//PSO-NP source code, C++//

♯include<iostream>

♯include<stdio.h>

♯include<limits.h>

♯include<time.h>

♯include<set>

♯include<queue>

♯include<algorithm>

♯include<math.h>

using namespace std;

typedef pair<int,int>P;

typedef pair<P, double>PPD;

♯define MAX V 20

♯define INF 11000

♯define BORN 1000

int V, Imax, E;

int w = 0;

double p[MAX V][MAX V];

double T[MAX V][MAX V];

class Graph{

private:

int cost[MAX V][MAX V];

double capacity[MAX V][MAX V];

double Y[MAX V][MAX V];

50

double x[MAX V][MAX V];

double U[MAX V][MAX V][MAX V][MAX V];

double traffic[MAX V][MAX V];

double c ratio[MAX V][MAX V];

bool unconnected[MAX V][MAX V];

int d[MAX V];

bool used[MAX V];

int counter[MAX V][MAX V];

int n[MAX V];

double x int[MAX V];

int V;

int prev[MAX V][MAX V];

int next[MAX V][MAX V];

public

void init cost() {

for(int i=0;i<MAX V;i++) {

for(int j=0;j<MAX V;j++) {

if(unconnected[i][j]) continue;

cost[i][j] = INF;

capacity[i][j]=capacity[j][i]=0;

}

}

}

void init unconnected(){

for(int i=0;i<MAX V;i++) {

for(int j=0;j<MAX V;j++) {

x[i][j]=0.0;

p[i][j]=0.0;

unconnected[i][j] = false;

51

}

}

}

void breakLink(int u, int v) {

setCost(u,v,INF);

setCost(v,u,INF);

}

void showGraph() {

for(int i=0;i<V;i++) {

for(int j=0;j<V;j++) {

if(cost[i][j] >= INF)

printf(”INF ”);

else

printf(”%2d ” ,cost[i][j]);

}

printf(”\n”);

}

printf(”\n”);

}

void setRandomCost() {

for(int i=0;i<V;i++) {

for(int j=0;j<V;j++) {

if(unconnected[i][j]){

setCost(i,j, rand()%BORN+1);

}

}

}

}

double getAveRatioBreak(){

52

double sum=0.0;

for(int u=0;u<size();u++){

for(int v=u+1;v<size();v++){

int x=getCost(u,v);

int y=getCost(v,u);

if(x == INF) continue;

breakLink(u,v);

operation ecmp();

PPD p max link1 = getcongestion();

sum=sum+p[p max link1.first.first][p max link1.first.second]*p max link1.second;

setCost(u,v,x);

setCost(v,u,y);

}

}

return sum;

}

PPD getMaxCRatioBreak(){

PPD p max link=PPD(P(0,0),-1);

for(int u=0;u<size();u++){

for(int v=u+1;v<size();v++){

int x=getCost(u,v);

int y=getCost(v,u);

if(x == INF) continue;

breakLink(u,v);

operation ecmp();

PPD p max link1 = getcongestion();

if(p max link1.second¿p max link.second){

p max link = p max link1;

}

53

setCost(u,v,x);

setCost(v,u,y);

}

}

return p max link;

}

void setCost(int u, int v, int pcost) {

cost[u][v] = pcost;

}

void setGraphSize(int v) {

V = v;

}

int size() {

return V;

}

bool isConnected(int u, int v) {

return cost[u][v] < INF;

}

void setConnected(int u, int v, int cost1,int capa, double prop) {

cost[u][v] = cost1;

if(w==0){

cost[v][u]=cost1;

}

capacity[u][v]=capacity[v][u]=capa ;

p[u][v]=p[v][u]=prop;

unconnected[u][v]=unconnected[v][u]=true;

}

void get ecmp(int q){

for(int j=0;j<V;j++){

54

if(prev[q][j]==-1) continue;

next[j][q]=q; counter[q][j]++;

if(counter[q][j]<2) n[j]++;

get ecmp(j);

}

}

void cal ecmp(int p){

for(int i=0;i<V;i++){

if(next[p][i]==-1) continue;

x[p][next[p][i]]=x[p][next[p][i]]+x int[p]/n[p];

x int[next[p][i]]=x[p][next[p][i]];

cal ecmp(next[p][i]);

}

}

void dijkstra(int s) {

fill(d, d + V, INF/2);

fill(n, n + V, 0);

fill(x int, x int + V, 1.0);

fill(used, used + V, false);

for(int i=0;i<V;i++){

fill(prev[i],prev[i]+V,-1);

fill(counter[i], counter[i] + V, 0);

fill(next[i],next[i]+V,-1);

fill(x[i], x[i] + V, 0.0);

}

d[s] = 0;

while(true) {

int v = -1;

for(int u = 0; u < V; u++) {

55

if (!used[u] && (v == -1 —— d[u] < d[v])) v = u;

}

if(v == -1) break;

used[v] = true;

for(int u=0;u<V;u++) {

if(u == v) continue;

if(d[u] ¿ d[v] + cost[v][u]) {

fill(prev[u],prev[u]+V,-1);

d[u] = d[v] + cost[v][u];

prev[u][v] = v;

}

else if(d[u] == d[v] + cost[v][u]){

prev[u][v] = v;

}

}

}

}

int getCost(int u, int v) {

return cost[u][v];

}

void usedSet(int p, int q) {

dijkstra(p);

get ecmp(q);

cal ecmp(p);

for(int i=0;i<V;i++){

for(int j=0;j<V;j++){

if(x[i][j])

U[p][q][i][j]=x[i][j];

}

56

}

for(int i=0;i<V;i++)

fill(x[i], x[i] + MAX V, 0.0);

}

void operation ecmp(){

for (int p=0;p<V;p++){

for(int q=0;q<V;q++){

if(p!=q) {

usedSet(p,q);

}

}

}

}

PPD getcongestion() {

for(int i=0;i<V;i++){

fill(Y[i], Y[i] + MAX V, 0.0);

}

PPD p max link=PPD(P(0,0),-1);

for(int i=0;i<V;i++){

for(int j=0;j<V;j++){

if(i==j) continue;

for(int p=0;p<V;p++){

for(int q=0;q<V;q++){

if(p==q) continue;

Y[i][j]=Y[i][j]+T[p][q]*U[p][q][i][j];

}

}

}

}

57

for(int i=0;i<V;i++){

for(int j=0;j<V;j++){

if(!unconnected[i][j]) continue;

double r = Y[i][j]/capacity[i][j];

if(p max link.second<r){

p max link.second = r;

p max link.first.first=i;

p max link.first.second=j;

}

}

}

for(int i=0;i<V;i++){

for(int j=0;j<V;j++){

for(int p=0;p<V;p++){

for(int q=0;q<V;q++){

U[q][p][i][j]=0.0;

}

}

}

}

return p max link;

}

};

Graph g;

Graph prev g;

Graph so g;

PPD prev link =PPD(P(0,0),INT MAX);

void solve(){

PPD p max link=PPD(P(0,0),-1);

58

int C=Imax;

while(C){

bool changed = false;

while(true){

g.operation ecmp();

p max link= g.getcongestion();

if(p max link.second=prev link.second){

printf(” non failure c =%1.7lf\ worst congestion=%1.7lf\n”,prev link.second,

g.getMaxCRatioBreak().second);

}

if(p max link.second<prev link.second){

p max link.second=prev link.second;

so g =g;

}

int pcost=g.getCost(p max link.first.first,p max link.first.second);

if(pcost>BORN-1){

break;

}

g.setCost(p max link.first.first,p max link.first.second,pcost+1);

}

g.setRandomCost();

C–;

}

so g.operation ecmp();

printf(”SO congestion no failure case =%1.7lf\n”,so g.getcongestion().second);

printf(”SO worst case congestio=%1.7lf\n”,so g.getMaxCRatioBreak().second);

printf(”SO expected congestion=%1.7lf\n”,so g.getAveRatioBreak());

59

printf(”\n”);

}

int main(){

clock t start;

start =clock();

double sum=0.0;

srand(1);

cin>>Imax;

cin>>V>>E;

g.setGraphSize(V);

g.init unconnected();

g.init cost();

for(int i=0;i<E;i++) {

int u,j,cost,capacity;

double prop;

cin>>u>>j>>cost>>capacity>>prop;

sum+=prop;

g.setConnected(u,j,cost,capacity,prop);

}

w++;

for (int i=0;i<V;i++){

for(int j=0;j<V;j++){

cin>>T[i][j];

p[i][j]=p[i][j]/sum;

}

}

solve();

start=(clock()-start);

printf(”Run time %lf\n”,start/(double)CLOCKS PER SEC);

60

printf(”Imax= %3d\n”,Imax);

return 0;

}

61

APPENDIX C

PSO-P source code

//PSO-P Source code// ♯include<iostream>

♯include<stdio.h>

♯include<limits.h>

♯include<time.h>

♯include<set>

♯include<queue>

♯include<algorithm>

♯include<math.h>

using namespace std;

typedef pair<int,int>P;

typedef pair<P, double>PPD;

♯define MAX V 20

♯define INF 11000

♯define BORN 1000

int V, Imax, E;

int w = 0;

double p[MAX V][MAX V];

double T[MAX V][MAX V];

class Graph{

private:

int cost[MAX V][MAX V];

int capacity[MAX V][MAX V];

double Y[MAX V][MAX V];

double x[MAX V][MAX V];

62

double U[MAX V][MAX V][MAX V][MAX V];

double traffic[MAX V][MAX V];

double c ratio[MAX V][MAX V];

bool unconnected[MAX V][MAX V];

int d[MAX V];

bool used[MAX V];

int n[MAX V];

int counter[MAX V][MAX V];

int next[MAX V][MAX V];

double x int[MAX V];

int V;

int prev[MAX V][MAX V];

public: void init cost() {

for(int i=0;i<MAX V;i++) {

for(int j=0;j<MAX V;j++) {

if(unconnected[i][j]) continue;

cost[i][j] = INF;

capacity[i][j]=capacity[j][i]=0;

}

}

}

void init unconnected(){

for(int i=0;i<MAX V;i++) {

for(int j=0;j<MAX V;j++) {

x[i][j]=0.0;

p[i][j]=0.0;

unconnected[i][j] = false;

}

}

63

}

void breakLink(int u, int v) {

setCost(u,v,INF);

setCost(v,u,INF);

} void showGraph() {

for(int i=0;i<V;i++) {

for(int j=0;j<V;j++) {

if(cost[i][j] >= INF)

printf(”INF ”);

else

printf(”%2d ” ,cost[i][j]);

}

printf(”\n”);

}

printf(”\n”);

}

void setRandomCost() {

for(int i=0;i<V;i++) {

for(int j=0;j<V;j++) {

if(unconnected[i][j]){

setCost(i,j, rand()%BORN+1);

}

}

}

}

double getAveRatioBreak(){

double sum=0.0;

for(int u=0;u<size();u++){

for(int v=u+1;v<size();v++){

64

int x=getCost(u,v);

int y=getCost(v,u);

if(x == INF) continue;

breakLink(u,v);

operation ecmp();

PPD p max link1 = getcongestion();

sum=sum+p[p max link1.first.first][p max link1.first.second]*p max link1.second;

setCost(u,v,x);

setCost(v,u,y);

}

}

return sum;

}

PPD getMaxCRatioBreak(){

PPD p max link=PPD(P(0,0),-1);

for(int u=0;u<size();u++){

for(int v=u+1;v<size();v++){

int x=getCost(u,v);

int y=getCost(v,u);

if(x == INF) continue;

breakLink(u,v);

operation ecmp();

PPD p max link1 = getcongestion();

if(p max link1.second¿p max link.second){

p max link = p max link1;

}

setCost(u,v,x);

setCost(v,u,y);

}

65

}

return p max link;

}

void setCost(int u, int v, int pcost) {

cost[u][v] = pcost;

}

void setGraphSize(int v) {

V = v;

}

int size() {

return V;

}

bool isConnected(int u, int v) {

return cost[u][v] < INF;

}

void setConnected(int u, int v, int cost1,int capa, double prop) {

cost[u][v] = cost1;

if(w==0){

cost[v][u]=cost1;

}

capacity[u][v]=capacity[v][u]=capa ;

p[u][v]=p[v][u]=prop;

unconnected[u][v]=unconnected[v][u]=true;

}

void get ecmp(int q){

for(int j=0;j<V;j++){

if(prev[q][j]==-1) continue;

next[j][q]=q; counter[q][j]++;

if(counter[q][j]<2) n[j]++;

66

get ecmp(j);

}

}

void cal ecmp(int p){

for(int i=0;i<V;i++){

if(next[p][i]==-1) continue;

x[p][next[p][i]]=x[p][next[p][i]]+x int[p]/n[p];

x int[next[p][i]]=x[p][next[p][i]];

cal ecmp(next[p][i]);

}

}

void dijkstra(int s) {

fill(d, d + V, INF/2);

fill(n, n + V, 0);

fill(x int, x int + V, 1.0);

fill(used, used + V, false);

for(int i=0;i<V;i++){

fill(prev[i],prev[i]+V,-1);

fill(counter[i], counter[i] + V, 0);

fill(next[i],next[i]+V,-1);

fill(x[i], x[i] + V, 0.0);

}

d[s] = 0;

while(true) {

int v = -1;

for(int u = 0; u < V; u++) {

if (!used[u] && (v == -1 —— d[u] < d[v])) v = u;

}

if(v == -1) break;

67

used[v] = true;

for(int u=0;u<V;u++) {

if(u == v) continue;

if(d[u] ¿ d[v] + cost[v][u]) {

fill(prev[u],prev[u]+V,-1);

d[u] = d[v] + cost[v][u];

prev[u][v] = v;

}

else if(d[u] == d[v] + cost[v][u]){

prev[u][v] = v;

}

}

}

}

int getCost(int u, int v) {

return cost[u][v];

}

void usedSet(int p, int q) {

dijkstra(p);

get ecmp(q);

cal ecmp(p);

for(int i=0;i<V;i++){

for(int j=0;j<V;j++){

if(x[i][j])

U[p][q][i][j]=x[i][j];

}

}

for(int i=0;i<V;i++)

fill(x[i], x[i] + MAX V, 0.0);

68

}

void operation ecmp(){

for (int p=0;p<V;p++){

for(int q=0;q<V;q++){

if(p!=q) {

usedSet(p,q);

}

}

}

}

PPD getcongestion() {

for(int i=0;i<V;i++){

fill(Y[i], Y[i] + MAX V, 0.0);

}

PPD p max link=PPD(P(0,0),-1);

for(int i=0;i<V;i++){

for(int j=0;j<V;j++){

if(i==j) continue;

for(int p=0;p<V;p++){

for(int q=0;q<V;q++){

if(p==q) continue;

Y[i][j]=Y[i][j]+T[p][q]*U[p][q][i][j];

}

}

}

}

for(int i=0;i<V;i++){

for(int j=0;j<V;j++){

if(!unconnected[i][j]) continue;

69

double r = Y[i][j]/capacity[i][j];

if(p max link.second<r){

p max link.second = r;

p max link.first.first=i;

p max link.first.second=j;

}

}

}

for(int i=0;i<V;i++){

for(int j=0;j<V;j++){

for(int p=0;p<V;p++){

for(int q=0;q<V;q++){

U[q][p][i][j]=0.0;

}

}

}

}

return p max link;

}

};

Graph g;

Graph prev g;

Graph pso g;

PPD prev link =PPD(P(0,0),INT MAX);

void solve(){

PPD p max link=PPD(P(0,0),-1);

int C=Imax;

while(C){

70

while(true){

p max link= g.getMaxCRatioBreak();

if(p max link<prev link){

prev link.second=p max link.second;

pso g=g;

int pcost=g.getCost(p max link.first.first,p max link.first.second);

if(pcost>BORN-1){

break;

}

g.setCost(p max link.first.first,p max link.first.second,pcost+1);

}

g.setRandomCost();

C–;

}

printf(”PSO-P worst congestion ratio = %1.7lf\n”,pso g.getMaxCRatioBreak().second);

pso g.operation ecmp();

printf(”PSO-P congestion under no failure= %1.7lf\n”,pso g.getcongestion().second);

printf(”PSO-P expected congestion ratio = %1.7lf\n”,pso g.getAveRatioBreak());

printf(”\n”);

}

int main(){

clock t start;

start =clock();

double sum=0.0;

srand(1);

cin>>Imax;

cin>>V>>E;

g.setGraphSize(V);

g.init unconnected();

71

g.init cost();

for(int i=0;i<E;i++) {

int u,j,cost,capacity;

double prop;

cin>>u>>j>>cost>>capacity>>prop;

sum+=prop;

g.setConnected(u,j,cost,capacity,prop);

}

w++;

for (int i=0;i<V;i++){

for(int j=0;j<V;j++){

cin>>T[i][j];

p[i][j]=p[i][j]/sum;

}

}

solve();

start=(clock()-start);

printf(”Run time %lf\n”,start/(double)CLOCKS PER SEC);

printf(”Imax= %3d\n”,Imax);

72

APPENDIX D

PSO-FP source code

//PSO-FP source code// ♯include<iostream>

♯include<stdio.h>

♯include<limits.h>

♯include<time.h>

♯include<set>

♯include<queue>

♯include<algorithm>

♯include<math.h>

using namespace std;

typedef pair<int,int>P;

typedef pair<P, double>PPD;

♯define MAX V 20

♯define INF 11000

♯define BORN 1000

int V, Imax, E;

int w = 0;

double p[MAX V][MAX V];

double T[MAX V][MAX V];

class Graph{

private:

int cost[MAX V][MAX V];

double capacity[MAX V][MAX V];

double Y[MAX V][MAX V];

double x[MAX V][MAX V];

73

double U[MAX V][MAX V][MAX V][MAX V];

double traffic[MAX V][MAX V];

double c ratio[MAX V][MAX V];

bool unconnected[MAX V][MAX V];

int d[MAX V];

bool used[MAX V];

int counter[MAX V][MAX V];

int n[MAX V];

double x int[MAX V];

int V;

int prev[MAX V][MAX V];

int next[MAX V][MAX V];

public

void init cost() {

for(int i=0;i<MAX V;i++) {

for(int j=0;j<MAX V;j++) {

if(unconnected[i][j]) continue;

cost[i][j] = INF;

capacity[i][j]=capacity[j][i]=0;

}

}

}

void init unconnected(){

for(int i=0;i<MAX V;i++) {

for(int j=0;j<MAX V;j++) {

x[i][j]=0.0;

p[i][j]=0.0;

unconnected[i][j] = false;

}

74

}

}

void breakLink(int u, int v) {

setCost(u,v,INF);

setCost(v,u,INF);

}

void showGraph() {

for(int i=0;i<V;i++) {

for(int j=0;j<V;j++) {

if(cost[i][j] >= INF)

printf(”INF ”);

else

printf(”%2d ” ,cost[i][j]);

}

printf(”\n”);

}

printf(”\n”);

}

void setRandomCost() {

for(int i=0;i<V;i++) {

for(int j=0;j<V;j++) {

if(unconnected[i][j]){

setCost(i,j, rand()%BORN+1);

}

}

}

}

PPD getWorstRatio(){

PPD p max link=PPD(P(0,0),-1);

75

for(int u=0;u<size();u++){

for(int v=u+1;v<size();v++){

int x=getCost(u,v);

int y=getCost(v,u);

if(x == INF) continue;

breakLink(u,v);

operation ecmp();

PPD p max link1 = getcongestion();

if(p max link1.second¿p max link.second){

p max link = p max link1;

}

setCost(u,v,x);

setCost(v,u,y);

}

}

return p max link;

}

double getMaxCRatioBreak(){

double sum=0.0;

for(int u=0;u<size();u++){

for(int v=u+1;v<size();v++){

int x=getCost(u,v);

int y=getCost(v,u);

if(x == INF) continue;

breakLink(u,v);

operation ecmp();

PPD p max link1 = getcongestion();

sum=sum+p[p max link1.first.first][p max link1.first.second]*p max link1.second;

setCost(u,v,x);

76

setCost(v,u,y);

}

}

return sum;

}

void setCost(int u, int v, int pcost) {

cost[u][v] = pcost;

}

void setGraphSize(int v) {

V = v;

}

int size() {

return V;

}

bool isConnected(int u, int v) {

return cost[u][v] < INF;

}

void setConnected(int u, int v, int cost1,int capa, double prop) {

cost[u][v] = cost1;

if(w==0){

cost[v][u]=cost1;

}

capacity[u][v]=capacity[v][u]=capa ;

p[u][v]=p[v][u]=prop;

unconnected[u][v]=unconnected[v][u]=true;

}

void get ecmp(int q){

for(int j=0;j<V;j++){

if(prev[q][j]==-1) continue;

77

next[j][q]=q; counter[q][j]++;

if(counter[q][j]<2) n[j]++;

get ecmp(j);

}

}

void cal ecmp(int p){

for(int i=0;i<V;i++){

if(next[p][i]==-1) continue;

x[p][next[p][i]]=x[p][next[p][i]]+x int[p]/n[p];

x int[next[p][i]]=x[p][next[p][i]];

cal ecmp(next[p][i]);

}

}

void dijkstra(int s) {

fill(d, d + V, INF/2);

fill(n, n + V, 0);

fill(x int, x int + V, 1.0);

fill(used, used + V, false);

for(int i=0;i<V;i++){

fill(prev[i],prev[i]+V,-1);

fill(counter[i], counter[i] + V, 0);

fill(next[i],next[i]+V,-1);

fill(x[i], x[i] + V, 0.0);

}

d[s] = 0;

while(true) {

int v = -1;

for(int u = 0; u < V; u++) {

if (!used[u] && (v == -1 —— d[u] < d[v])) v = u;

78

}

if(v == -1) break;

used[v] = true;

for(int u=0;u<V;u++) {

if(u == v) continue;

if(d[u] ¿ d[v] + cost[v][u]) {

fill(prev[u],prev[u]+V,-1);

d[u] = d[v] + cost[v][u];

prev[u][v] = v;

}

else if(d[u] == d[v] + cost[v][u]){

prev[u][v] = v;

}

}

}

}

int getCost(int u, int v) {

return cost[u][v];

}

void usedSet(int p, int q) {

dijkstra(p);

get ecmp(q);

cal ecmp(p);

for(int i=0;i<V;i++){

for(int j=0;j<V;j++){

if(x[i][j])

U[p][q][i][j]=x[i][j];

}

}

79

for(int i=0;i<V;i++)

fill(x[i], x[i] + MAX V, 0.0);

}

void operation ecmp(){

for (int p=0;p<V;p++){

for(int q=0;q<V;q++){

if(p!=q) {

usedSet(p,q);

}

}

}

}

PPD getcongestion() {

for(int i=0;i<V;i++){

fill(Y[i], Y[i] + MAX V, 0.0);

}

PPD p max link=PPD(P(0,0),-1);

for(int i=0;i<V;i++){

for(int j=0;j<V;j++){

if(i==j) continue;

for(int p=0;p<V;p++){

for(int q=0;q<V;q++){

if(p==q) continue;

Y[i][j]=Y[i][j]+T[p][q]*U[p][q][i][j];

}

}

}

}

for(int i=0;i<V;i++){

80

for(int j=0;j<V;j++){

if(!unconnected[i][j]) continue;

double r = Y[i][j]/capacity[i][j];

if(p max link.second<r){

p max link.second = r;

p max link.first.first=i;

p max link.first.second=j;

}

}

}

for(int i=0;i<V;i++){

for(int j=0;j<V;j++){

for(int p=0;p<V;p++){

for(int q=0;q<V;q++){

U[q][p][i][j]=0.0;

}

}

}

}

return p max link;

}

};

Graph g;

Graph prev g;

Graph so g;

void solve(){

int C=0;

int j=0;

double sum = 0.0;

81

while(C<Imax){

if(j==0){

sum = g.getMaxCRatioBreak();

j++;

prev g=g;

}

step = E*V;

while(step){

bool flag=false;

int u,v;

int a=0;

do{

u = rand() %V + 1;

v = rand() %V + 1;

}while(g.getCost(u,v)==INF);

int pcost1 = g.getCost(u,v);

int pcost = pcost1;

if(pcost>=2){

g.setCost(u,v,pcost-1);

double t=g.getMaxCRatioBreak();

if(t<sum){

sum=t;

a= g.getCost(u,v);

flag =true;

prev g = g;

}

}

if(pcost<=BORN-1){

g.setCost(u,v,pcost+1);

82

double t=g.getMaxCRatioBreak();

if(t<sum){

sum=t;

a= g.getCost(u,v);

flag =true;

prev g = g;

}

}

if(flag){

g.setCost(u,v,a);

step = E*V;

}

g.setCost(u,v,pcost1);

step–;

}

g.setRandomCost();

C++;

}

prev g.operation ecmp();

printf(”PSO-FP congestion under no failure =%1.7lf\n”,prev g.getcongestion().second);

printf(”PSO-FP worst congestion ratio =%1.7lf\n”,prev g.getWorstRatio().second);

printf(”PSO-FP expected congestion ratio =%1.7lf\n”,sum);

printf(”\n”);

}

int main(){

clock t start;

start =clock();

double sum=0.0;

srand(1);

83

cin>>Imax;

cin>>V>>E;

g.setGraphSize(V);

g.init unconnected();

g.init cost();

for(int i=0;i<E;i++) {

int u,j,cost,capacity;

double prop;

cin>>u>>j>>cost>>capacity>>prop;

sum+=prop;

g.setConnected(u,j,cost,capacity,prop);

}

w++;

for (int i=0;i<V;i++){

for(int j=0;j<V;j++){

cin>>T[i][j];

p[i][j]=p[i][j]/sum;

}

}

solve();

start=(clock()-start);

printf(”Run time %lf\n”,start/(double)CLOCKS PER SEC);

printf(”Imax= %3d\n”,Imax);

84

Bibliography

[1] Kaptchouang, S., and Oki, E.: ‘Enhancing Preventive Start-Time Optimization Considering Both Fail-

ure and Non-Failure Scenarios’, 19th Asia-Pacific Conference on Communications (APCC 2013), Aug.

2013.

[2] Moy, J.: ‘OSPF version 2’, IETF RFC 1247, July 1991.

[3] Fortz, B., and Thorup, M.: ‘optimizing OSPF/IS-IS weights in a changing world’, IEEE Journal on

Selected Areas in Communications, May 2002, 20, (4), pp: 756-767.

[4] Fortz, B., Rexford, J., and Thorup, M.: ‘Traffic engineering with traditional IP protocols’, IEEE

Commun. Mag., Dec. 2002, 40, (10), pp: 118-124.

[5] Reichert, C., and Magedanz, T.: ‘A fast heuristic for genetic algorithms in link weight Optimization’,

Lecture Notes in Computer Science, Oct. 2004, 3266, pp: 144-153.

[6] Buriol, L.S., Resende, M.G.C., Ribeiro, C.C., and Thorup, M.: ‘A hybrid genetic algorithm for the

weight setting problem in OSPF-IS-IS routing’, Networks, Aug. 2005, 46, (1), pp: 36-56.

[7] Wang, Y., and Ito, M.R.: ‘Dynamics of load sensitive adaptive routing’, IEEE International Conference

on Communications (ICC), May 2005.

[8] ‘Reducing Link Failure and Topology Change Notification times in IS-IS Networks’, online,

http://www.cisco.com/en/US/docs/ios-xml/ios/iproute isis/configuration/15-mt/irs-fscnt.html/.

[9] Brewer, E.: ‘Lessons from giant-scale services’, IEEE Internet computing, July 2001, 5, (4), pp: 46-55.

[10] Iannaccone, G., Chuah, C., Mortier, R., Bhattacharyya, S., and Diot, C.: ‘Analysis of link failures in a

large IP backbone’, Proc. 2nd ACM SIGCOM Internet Measurement Workshop, Nov. 2002.

[11] Markopolou, A., Iannaccone, G., Bhattacharyya, S., and Chuah, C.: ‘Characterization of link Failures

in IP Backbone’, IEEE INFOCOM, Mar. 2004.

[12] Kamrul, I.M., and Oki, E.: ‘Optimization of OSPF Link Weights to Counter Network Failure’, IEICE

Trans. on Commun., July 2011, E94B, (7), pp: 1964-1972.

[13] Kamrul, I.M., and Oki, E.: ‘Optimization of OSPF link weight to minimise worst-case network con-

gestion against single-link failure’, IEEE International Conference on Communications, June 2011, pp:

1-5.

[14] Kamrul, I.M., and Oki, E.: ‘PSO: Preventive Start-time Optimization of OSPF Link Weights to Counter

Network Failure’, IEEE Commun. Letters, June 2010, 14, (6), pp: 581-583.

85

[15] Ranaweera, R.S., Kamrul, I.M., and Oki, E.: ‘Preventive Start-Time Optimization of OSPF Link

Weights against Link Failure for Hose Model’, 18th Asia-Pacific Conference on Communications (APCC

2012), Oct. 2012.

[16] Ranaweera, R.S., Kamrul, I.M., and Oki, E.: ‘Preventive Start-Time Optimization of OSPF Link

Weights for Hose Model’, IET Networks, available online, sep. 2013.

[17] Thaler, D., and Hopps, C.: ‘Multipath Issues in Unicast and Multicast Next-Hop selection’, IETF RFC

2991, Nov. 2000.

[18] Oki, E., and Iwaki, A.: ‘Load-Balanced IP Routing Scheme Based on Shortest Paths in Hose Model’,

IEEE Trans. Commun., July 2010, 58, (7), pp: 2088-2096.

[19] Chu, J., and Lea, C.: ‘Optimal link weights for IP-based networks supporting hose-model VPNs’,

IEEE/ACM Trans. on Networking, June 2009, 17, (3), pp: 778-788.

[20] Chu, J., and Lea, C.: ‘Optimal link weights for maximizing QoS traffic’, IEEE International Conference

on Communications, June 2007, pp: 610-615.

[21] ‘The Internet2 Network’, online, http://www.internet2.edu/network/.

[22] Medina, A., Lakhina, A., Matta, I., and Byers, J.: BRITE: Boston University Representa-

tive Internet Topology Generator, Boston Univ., Boston, MA, Apr. 2001 [Online]. Available:

http://www.cs.bu.edu/brite

