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Chapter 1

Introduction

In all ages we find such recording media as have restrictions on rewriting. For example, a
punched card represents information by the absence or presence of holes, and once we punch a
hole we cannot undo it anymore. A vinyl record stores a sound by the depths of a spiral groove,
and we can only deepen it. A flash memory stores messages by the electric charge in floating
gates, and we cannot decrease it without block erasure.

In 1982, Rivest and Shamir [1] introduced a model of such rewrite-restricted media, called
Write-Once Memory (WOM), and formulated a notion of coding to rewrite on WOM. To be
exact, their model of WOM should be called the binary WOM, and it consists of a sequence of
storage elements called wirs. Each wit takes a state ® or 1, and once we change a state of a wit
from 0 to 1, we cannot change it anymore. And they presented a code that can store 2 bits of
information twice in a 3-wit binary WOM (Table 1.1).

Fiat and Shamir [2] introduced generalized WOM’s. When a finite directed acyclic graph

decode encode 2nd
0 1 2 3

000 or 111 | O 0| 000 | 000 100 010 0601
100 or 011 | 1 1st 1100 | 111 100 101 110
010 or 101 | 2 21010 | 111 011 010 110
001 or 110 | 3 31001 | 111 011 101 001

Table 1.1: Store 2 bits of information twice in a 3-wit binary WOM.



(v, &)is given, (¥, &)-WOM is such that each storage element takes a state in ", and that for
two states i and j, a transition from i to j is possible iff there is a path in (¥, &) from i to j.

An interesting question about WOM is how much information can be stored by rewriting on
WOM multiple times. For example, using the code shown in Table 1.1, we can store 2 bits at
the first writing and 2 bits at the second writing in a 3-wit binary WOM, and so the rate vector
of this code is (2/3, 2/3), and the sum rate is 4/3. What a good code does there exist when
the WOM length goes to infinity? What is the region that the rate vector of some code is in?
How large can the sum rate of a code be? Fu and Han Vinck [3] answered these questions by
determining the capacity region and the maximum sum rate.

We propose a further generalization of generalized WOM, called Write-Constrained Mem-
ory (WCM). For a finite costed directed graph (7, &, w), the (¥, &, w)-WCM is such that
each storage element, which we call cell, takes a state in ¥/, that for two states i and j, a state
transition from i to j in one update is possible iff (i, j) € &, and that for each (i, j) € &, a state
transition from i to j costs w(i, j). The cost of WCM update is defined as the sum of the cost of
each cell update. We restrict the average cost of WCM updates per cell per update.

But why does a state transition cost matter? In practice, a state transition cost is a physical
quantity such as energy or time. For example, on punched cards, it is natural to think that the
more holes must be punched, the more time the punching operation consumes. When you use
an electric keypunch, the total electric energy to punch holes will be proportional to the number
of holes to be punched. And it is a plausible story that for some reason you have to restrict the
operation time or the operation energy.

In this thesis, we introduce WCM and determine the capacity region and the maximum sum
rate of WCM with a certain cost constraint. This can be considered as an extension of Fu and

Han Vinck’s results for generalized WOM'’s in [3].



Chapter 2

Capacity of Write-Constrained Memory

In this chapter, we first give a mathematical definition of Write-Constrained Memory (WCM).

Then we define and determine the capacity region and the maximum sum rate of WCM.

2.1 Preliminaries

2.1.1 Notation

For a nonempty set S of real numbers, we denote by min S (resp. max S) the minimum (resp.

maximum) element in S.

2.1.2 Write-Constrained Memory

Forg > 2, wefix ¥ ={0,1,...,q—-1}, & c ¥V x¥,andw : & — R, and then consider
the (7, &, w)-WCM. The meaning of each parameter is as described in Chapter 1. Note that
unlike in the case of generalized WOM’s, the state transitions are associated with the edges of
the graph (7, &), not with the paths.

In terms of the state transitions, we introduce an “arrow’’ notation for convenience. For i,
jeV,leti— jmean (i, j)€ & Foranyn > land x = (x1, ..., x,), ¥y = V1, ..., yu) € V7",

let x — y mean (x;, y;) € & forevery 1 <i < n.

5



Formally, a sequence of pairs of functions {(¢;, l//t)}thl is called an [n, T, My, ..., M7]-
code for the (7, &, w)-WCM when it satisfies the following conditions. The domain and the

codomain of the functions ¢, and ¢, are such that

¢1 II[X{O}—)Af/n,
¢ L xIm(p) = V" (2<t<T),

U2 V" > (1<r<T),

where we let I, = {1, ..., M,} for 1 <t < T, and for every 1 <t < T and for every (a, x) €

Dom(¢,) it holds that

¢’t(¢t(a’ x)) =a, X — ¢[(Cl, x)'

The meaning is that ¢, is the ¢-th encoder and ¢, is the t-th decoder, and 0 € ¥ is the initial
state of the WCM, where every cell takes state 0. Using this code, we can write 7' times on an

n-cell WCM, with the number of messages being M, at the 7-th writing for 1 <¢ < T.

2.1.3 Cost Constraint

Assume {(¢;, ¥}, isan[n, T, My, ..., Mr]-code for the (¥, &, w)-WCM. Fix (a', ..., a»)
€I, x---xIp,where I’s (1 <t < T)are as in Subsect. 2.1.2, and consider writing a", ..., a"
sequentially using this code. The state of the WCM after the 7-th writing is given recursively by
xD = ¢,(a?, xV), for 1 <t < T, with x® = 0, and the cost per cell of the ¢-th writing is given
by w(x®P, x?)/n, where we let w(x, y) = 37, w(x;, y;) for x, y € ¥ such that x — y. With
the cost constraint we adopt in this paper, we restict the summation for 1 < ¢t < T of the cost
per cell of the ¢-th writing. We say that the code {(¢,, v,[/,)}szl satisfies c-average cost constraint

when it satisfies

T
Z wxY, xN/n < Te
t=1

forevery (a, ..., a ") e} x - X Ir.



2.2 Capacity Region

For T > 1 and ¢ € R, we define the capacity region of the (¥, &, w)-WCM with T writings and

c-average cost constraint, denoted by <7 (¥, &, w), as

oy (V, E, w) = Clo{(logMy)/n, ..., logMzr)/n): n=1, My, ..., My >1,
there exists an [n, T, My, ..., Mr]-code for the (¥, &, w)-WCM that satisfies

c-average cost constraint},

where ((log My)/n, ..., (log M7)/n) is called the rate vector of the [n, T, My, ..., Mr]-code.
Informally, <77 (¥, &, w) is the set of every T-vector that a sequence of the rate vectors of
the suitable WCM codes converges to.
To describe o7 (¥, &, w), we extend the “arrow” notation to the random variables on 7.
For X, Y that are r.v.’s on 7/, let X — Y mean that Pr{X =i, Y = j} > 0 holds only if (i, j) € &.
When we write such as X; — X, — -+ — X,, we implicitly assume that (X;);_, forms a Markov

chain.

Theorem 2.1. The following holds.

oy (Y, E,w)={({R, ..., Rr)eR": thereexistr.v’sS;,...,Syon ¥ s.t.
08 —--—> 87, EWO0,S)+Z w1, S < Te,

O<R <H(S1), OLZR <H(S:|S-1) Ve,

where E[-] means the expectation and H(-) the entropy.

Proof. For the proof, we need only minor modifications to the proof of [3, Theorem 3.1]. In the
following, we deliver a sketch of the proof, without a mathematical detail.
Direct Part: We only show the proof for T = 2. Extension to any 7 is easy.

The discussion utilizes the type theory. For a random variable X on a finite set X, denote by
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T% the set of all n-vectors whose type is equal to X, that is, we define Ty as
Ty ={(x, ..., x)) €eX"|#{i|1 <i<n, x;=a}=n-Pr{X =a} (VaecKX)}.

For n € N, we say that the distribution of a r.v. X on X is an n-type when n - Pr{X = a} is an
integer value for every a € X. Similarly, forar.v. X on X and ar.v. Y on Y, the joint distribution
of X and Y is called an n-type when n - Pr{X = a, Y = b} is an integer value for every a € X and
bel.

Suppose r.v.’s S, S, on ¥ are given such that 0 —» S| — S, and E[w(0, S ) +w(S, S,)] <
Tc.

First we make an n-approximation ($\”, §%”) of (S, §,) for n € N. It can be shown that
there exists {(SV", §9")},a such that for every n € N, § and §{” are r.v.’s on ¥ whose joint
distribution is an n-type, and which satisfy 0 — § (1") - S ;") and E[w(0, S (1")) +w(S (1"), S (2"))] <
E[w(0, $1) +w(S1, S2)], and that (§¢”, §1”) converges in law to (S, S) as n — co. Now we
explain how to make (§%, §”). We let I = {(i1, i) € 2 | Pr{S| = i1, S» = ir} > 0}, and take
(i}, i) € 1 that satisfies w(0, i}) + w(iy, i) < w(0, i;) + w(iy, i») for every (i, ip) € 1. Define

p":¥?* > Ras

[n-Pr{S1 =i1, S2 = ix}l/n if (i1, i) € T\{({], 5},

PO iy = {1 > UGB G b)) = G, ),
RATRGRSY

0 otherwise.

Then p™ gives a probability distribution on #2. We give the joint probability distribution of
S and §%” by PriS™ = iy, § = i} = p™(iy, i) for every (i), ir) € V.
Take ¢ > O arbitrarily and set M, := 2"HSV=01 pg, .= 2nHSAS V=01 For sufficiently large n,

if we can find a partition {F m}f‘nﬁl of T;’ that satisfies the following condition, then we can con-

(n)
2

struct an [n, 2, My, M,]-code for the (7', &, w)-WCM that satisfies c-average cost constraint.

8



The condition is that for any x € Tsi‘ and forany m € I, = {1, ..., M,} there exists y € F,,

(n)
1
such that x — y. The code construction is as follows. For the first writing, let ¢,(-, 0) be any

one-to-one mapping from /; = {1, ..., M;} to T;f and for every a € My, set ¥ (¢(a, 0)) := a.

(n)>
1
For the second writing, set to ¢,(m, x) an element y in F,, that satisfies x — y, and for every
mel,andy € F,, sety(y) := m.

A partition that satisfies the condition in the previous paragraph can be shown to exist for

sufficiently large n, same as in the proof of [3, Theorem 3.1].

Converse Part: We show that for any [n, T, My, ..., My]-code for (¥, &, w)-WCM that satis-

fies c-average cost constraint, there exist r.v.’s S, ..., Sy on ¥ such that0 - S| — --- - Sy,
E[w(0, S)) + Z,T=2 w(S -1, S1)] < Tc, logMy)/n < H(S ), and (logM,)/n < H(S, | S,-y) for
2<t<T.

Let {(¢,, w,)}tT:1 be such a code. Let Wy, ..., Wr be independent r.v.’s uniformly distributed
over I, = {1, ..., M,} respectively. Denote Y =0, Y = (Y, 1, ..., ¥, ) =¢(W,, ¥ ), 1 <1<
T. It follows that Y | — Y}, and ,(Y}) = W, Y,y ; — Y, ;. Then we have H(W,) = H(Y|Y]" ),
t=1,..., T. Let L be an index r.v. which uniformly distributed over {1, ..., n}, independent
of all other r.v.’s. Then we have (log M,)/n < H(Y, 1 | Y,.1.1) and E[Y._, w(Y,_1.1, Y, )] < Te.
Here, (Y, L)tT: , may not form a Markov chain, but we can take new r.v.’s §, ..., St on ¥ such
that (S,)IT:1 forms a Markov chain and forevery 1 <t <7, (S,-y, S,) and (Y- 1, ¥; 1) have the
same probability distribution. Therefore,0 — S| — --- — S7, E[w(0, S 1)+ZtT:2 w(S,—1, SpI £

Tc, (logMy)/n < H(S,),and (logM;)/n < H(S,| S;-1)for2 <t <T. O

2.3 Maximum Sum Rate

For T > 1 and ¢ € R, we define the maximum sum rate of the (V', &, w)-WCM with T writings

and c-average cost constraint, denoted by Cr (¥, &, w), as

T
Cr.o(V, & w) 2 max {Z R:QRi, ....,R) et (V, &, w)} .

=1



Preliminary to the determination of the maximum sum rate, here we introduce some nota-

tions. In what follows we fix 7 > 1. We define &r c ¥T and Wy : & — R as

Pr 21y, ..., ir)e?T|10>i — - —ir}and

T
WiGir, ..o in) 2 w0, i) + ) Wi, i),
t=2

and we let #7 2 ImW7 and define the famil (nﬁ,T))ueW of positive integers as n(uT) = W= {u))
y T p T

(u € #4). Note that #7 is a finite set. We denote (17, )uey;, by 7, simply.
For v € R, we say that a family (a,),cy 1S v-conformant when it is a family of nonnegative
real numbers indexed by a finite set of real numbers and there exist u, u’ € # such thatu < v <

u, a,>0anda, > 0.

Theorem 2.2. Suppose |[#7| > 2 and fix ¢ € R arbitrarily such that min #7 < Tc < max #7.

Then the maximum sum rate Cr (¥, &, w) is given by

(T)
(m®y  ifTe< Lty Wla mﬂ;) :
CT,C(/y/, éa, W) = ZMGWT Nu (21)

log|Zr| otherwise,

where, for a T'c-conformant family n = (1,).e, we denote by a(n) the unique positive root

w.r.t. @ of g(n, @) that is defined as

g0, @)= > n(u-Tea, (2.2)
ueN
and define {(n) as
L = log[z m a(n)“] - Telog a(y). (2.3)
ueENt

To prove Theorem 2.2, we first prepare a lemma and a corollary about zeroes of a certain

type of functions, which we will use later.

10



Lemma 2.3. Let # be a finite set of real numbers and let (a,),cy be a family of real numbers
indexed by # and suppose that there exists a real number v such that for every u € #', a, > 0
if u>vanda, <0if u <v. Then for the function f(x) = },cy a,x"* on R, we have either f(x)

is identically zero or f(x) has at most one positive zero.

Proof. The proof is by mathematical induction on [#/].

The statement clearly holds when |#/| < 1 because in this case either f(x) is identically zero
or f(x) has no positive zero.

Fix k > 1 and assume the statement holds when |#'| < k. Then we consider the case when
[#'| = k + 1. By induction hypothesis, the statement holds when @, = 0 for some u € #', and
so we assume otherwise. Set [ := max #/, s := min # . It is easy to see that the statement holds
when a; < 0 or a; > 0, because in this case f(x) has no positive zero. So we assume otherwise.

In the assumption made above, set f (x) := x*f(x). Then f (x) has the same positive zeroes
as f(x). Also f(x) is continuous on [0, +o0) and differentiable on (0, +oc0). We have f(O) <0
and f (x) — +o0 as x — +oo, and so f (x) has at least one positive zero due to the intermediate
value theorem. To see that f(x) has only one positive zero, assume by contradiction that f(x)
has at least two positive zeroes. Denote the two smallest positive zeroes of f(x) by & and &,
(&1 < &), and consider the following three cases.

Case 1: When f (c) < 0 for every c € (&1, &). Then, &; is a local maximum of f and so we have
f'(gl) = 0, and Rolle’s theorem assures the existence of ¢, € (¢, &) such that f,(CQ) =0.
Case 2: When f(c) > 0 for every ¢ € (&1, &), and for every sufficiently small £ > 0 it holds
that f(&, + €) > 0. Then, & is a local minimum of £ and so we have f'(&) = 0, and by Rolle’s
theorem there exists c¢; € (&1, &) such that f’(cl) =0.

Case 3: When f(c) > 0 for every c € (¢, &), and for every sufficiently small & > 0 it holds that
f(& + &) < 0. Now that f(x) — +co as x — +o0, f has a zero greater than &,, the smallest
of which we denote by &;. Then, Rolle’s theorem guarantees the existence of ¢; € (&1, &) such

that f’(cl) = ( and the existence of ¢, € (&, &;) such that f’(cz) =0.

11



In either case, f’(x) has at least two positive zeroes. But by mathematical induction, f’(x) =

Suens (= $)a,x*"*"! has at most one positive zero, which is a contradiction. O

By the proof of Lemma 2.3, we can immediately derive the following corollary.

Corollary 2.4. In the assumption of Lemma 2.3, assume also that there exist u, v’ € # such

that @, > 0 and a,, < 0. Then the f(x) in Lemma 2.3 has the unique positive zero.
The next lemma plays an important role in proving Theorem 2.2.

Lemma 2.5. Suppose [#7| > 2 and fix ¢ € R arbitrarily such that min #7 < Tc < max #7.

Consider the following optimization problem.

T
Maximize H(S,) + Z HS, IS,
t=2

subjectto Sy, ..., Srarerv’son 7, (2.4)

0= 81— =S, EwO,S)+Z w8, S)l=Te.
The optimal value of (2.4) is given by /(™).

Proof. The proof is by the Karush-Kuhn-Tucker (KKT) conditions [4]. (See also Appendix A.)

First we parametrize (S, ..., S7). We define 71, &, ¥, (2 <t < T) recursively as follows.

N ={je” 10, )j)es},
& ={G, peélie ¥} 2<t<T),

Y, ={je V|, j)e & forsomeic ¥_} 2<t<T).

For each i € ¥} let p1(i) = Pr{S| = i}. Foreach2 <t < T and (i, j) € &; let b,(i, j) = Pr{S, =
j1S,1 =1i. Foreach2 <t <T and je 7 let p,(j) = Pr{S; = j}. Then (2.4) is equivalent to

the following problem.

12



Problem (x): Maximize

T
2= ) ~p@logp)+ ) ) {Ptl(i) D, —bui, ploghyi j)}

€N t=2 i€V, J:(i, HES;

subject to py(i) = 0 (forie %), b(i, j)>=0 (for2<t<T, (i, j) € &), and

Ki=-Tc+ ZPI(DW(O’ 0+ i

D e Y bl jwli, j)] =0,

€N t=2 lie¥_ J:(i, ed;
L:=) pi(i)-1=0,
€N
Mi(i):= ) bi, )= 1=0 Q<i<T, ie¥i),
i, e
NG) = ) pa@bi, )= p) =0 Q2 <t<T, je).
i(i, )e&;

Second, we find all possible interior extrema of the above problem. We can confirm that at
any interior point (a feasible point where all inequality constraints are inactive) the gradients of
the equality constraints are linearly independent. To see it, suppose there exist real numbers £,

L mGi Q<t<T,ieV_andn(j) R2<t<T, je¥)thatsatisfy
T T
kVK + IVL + Z Z m,()V M, (i) + Z Z n(j)VN,(j) = 0. 2.5)

1=2 €Y t=2 je¥;

Observing the system (2.5) componentwise, we get the following equations.

Equation for 9/dpr(i): Fori € 77,

-nr() = 0.

Equation for 9/0b,(i, j): For2 <t < T and (i, j) € &,

(n(J) + kw(i, ))pe-1(@) + my(i) = 0.

13



Equation for 9/dp,(i): For2 <t < T —1andi€ ¥,

i)+ ) (e () + k(i )bt ) = 0.

J:, PESn

Equation for d/dp,(i): Fori € 71,

L+ kw0, )+ ) (ma(j) +kw(i, )baGis j) = 0.

Jli, Pe&

my(i)
pt—l(i),
so we have that when i € 7;_; is fixed, then n,(j) + kw(i, j) takes the same value for every j

From Equation for d/0b,(i, j), for2 <t < T and (i, j) € &; we have n,(j) + kw(i, j) = —

such that (i, j) € &;,. With Equation for d/dp,(i) combined, this means that it holds that n,(i) =
n1(j) + kw(i, j) for 2 <t < T — 1 and (i, j) € &4,. Further, from Equation for d/dp(i),
we have for (i, j) € & that [ + kw(0, i) = —(ny(j) + kw(i, j)). As a result, we have for every
(it ..., ir) € Pp that [ = —k(w(0, iy) + X/, w1, i1) = =kWr(ir, ..., ir), but this is only
possible when k = 0, because |#7| > 2. And also we have [ = 0. Now it is easy to see that every

m,(i) and n,(j) must be equal to 0. Thus we have confirmed the linear independence.

Let «, A, u,(i) and v,(j) be the KKT multipliers of equality constraints K, L, M,(i) and N,(}),
respectively. The KKT conditions require that at an interior extremum the following conditions

be satisfied for some real numbers «, A, (i) and v,(j).

Condition for 9/dp,(i): Fori € 71,

—w(0, i) = A= log pi(Q) ~loge = D balis plawli, j) + va(j) +logha(is P
J:G, Pe&r

Condition for 9/dp,(i): For2 <t <T —1andi€ ¥;,

V= ) bl Plwli, )+ viei () +10g brei G, ).

Ji, PESin

14



Condition for d/dpr(i): Fori € 77,

vr(i) = 0.

Condition for 9/0b,(i, j): For2 <t < T and (i, j) € &,

(D) = P (W ) + vi(j) + log bk, ) + log e}

Now in the equation of Condition for d/db,(i, j), we have p,_;(i) # 0 by assumption, and
so the underwaved part of the equation takes the same value for every j. Thus also in each
equation of Condition for d/dp;(i) and Condition for d/dp,(i), the underwaved part takes the
same value regardless of j. Combining these facts with 3}, yes D:(i, j) = 1, we have the

following modified version of conditions.

Condition’ for 9/dp,(i): For (i1, i,) € &,

—kw(0, 1) — A - IOg pl(ll) — loge = kw(iy, i) + vo(in) + log by(iy, ip).

Condition’ for 9/dp,(i): For2 <t < T -1, (i;, i;11) € &i41,

V(i) = kw(ip, ir1) + Vie1 (i) + log bi1(iyy 41).

Condition’ for 9/dpr(i): For iy € 77,

vr(ir) = 0.
So we have for every i = (iy, ..., ir) € Zr that
T
~A=loge ~kWr(i) = log piir) + ) logbilir-1. ). (2.6)

=2

When we denote p(i) = Pr{S; = i}, ..., S7 = ir}, then the RHS of (2.6) is equal to log p(i).
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Thus if we let a = exp(—1)/e and a = exp(—«), we have for every i € & that p(i) = aa"™®. It
is derived from the equality constraints in Problem (*) that Z pi) =1, Z Wr@)p@i) = Tc.

iE(@T iee@r
Thus using 5™ = ("), as defined before, we can write

Z nDa* =1, Z n‘Dua* = Te. (2.7)

ueWr uEN T

From (2.7) we obtain that g('”, @) = 0, where g is as defined in (2.2), which, regarded as an
equation in e, has the unique positive solution a(n™) due to Corollary 2.4. Now a is determined
uniquely from a = a(57'"), this gives the sole candidate of interior extremum, the value at which
is given by

7 = > —pli)log p()

e 2.8)

= > 0D {~ae*(oga + ulog @)} = ~loga - Teloga = (™).
MEWT

where ( is as defined in (2.3).

Finally to confirm that z* in (2.8) gives the global maximum of Problem (*), we assume
by contradiction that z* does not give the global maximum and hence there exists an optimal
solution P that have parameters p,(i) (1 <t < T, i€ ¥;) and b(i, ) Q<t<T, (i, j)e&)
such that one or more inequality constraints are active at P and that the value at P, which we
denote by Z, is greater than z*. We make a modification to Problem (x) so that every parameter

variable is removed whose “hatted” value is equal to 0. More precisely, we let

¥, ={i € ¥ | pu(i) > 0} (1<t<T),
&=

(G, pe&lie¥, b, >0 2<t<T)

and construct Problem (%) by replacing %1, ¥;_1, é;, V7, ¥, K, L, M,(i) and N,(j) in Problem

(*) with 4 , ”VA,_l, @?‘} ”I?T ”17, K, I, M,(i) and Nt( J), respectively. Note that a feasible solution of
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Problem (%) is also a feasible solution of Problem (*) when every undefined parameter is set to 0,
and that they take the same value. It is obvious by assumption that P (with parameters properly
removed) is a feasible solution of Problem (%) where all inequality constraints are inactive. For

technical reasons, we let @T ={i € Y7 | p(i) > 0} and consider the following two cases.

Case (a): Consider when IWT(@T)I > 2. In this case, we can confirm the linear independence
of the gradients of the equality constraints. An argument on the KKT conditions, which is
very similar to what we have previously done, leads that when we define ) = (,)uew; as f, =
|W; "Quh) N @T| for each u € #7, then 1 is Tc-conformant and the value of Z is given by £(#}).
Asf, < n,ST) clearly holds for every u € #7, if we can show that (&): every partial derivative
of ¢ is nonnegative in H = [1,ey [, 7 ], then it is derived that 2 = (@) < (™) = z* < 2,
which is a contradiction. Now we prove the claim (#). Note that every n = (1,), € H is Te-
conformant. To calculate the partial derivatives of £, we first confirm that da/dn, exist for every

u € #r. As g(n, a(n)) = 0, for the purpose it is sufficient to show that

0 1
98 _ Z u(u — Tc)rh,a”_1 = Z (u— Tc)znua/”

aa MEWT @ MEWT

is not equal to 0, which holds if € H. Now, for each u € #; we have

oc (ZVE% vnva"‘l) (Oa/dn,) +a" T, ot
_ : - L (@afon) = —2—,
aﬂu Zve“lﬂr na a ZVE’Y/ ma

which takes a positive value at every point in H, as desired.

Case (b): Consider when |WT(9'7T)| = 1. In this case, v = Tc is in #7 and it holds that
WT(@T) = {v}. Now the equality constraint K in Problem (%) is redundant and so we remove it.
Then we can confirm that the gradients of the equality constraints (with K removed) are linearly

independent. By an argument on the KKT conditions, it is derived that the value of Z is given

17



by log L@Tl. Now we define 7 = (7j,), as follows.

B2 (if u = v),
(max #7 —v)/D (f u = min #7),
(v—min #7)/D (if u = max #7),

0 (otherwise),

where we let D = max #7 — min #7. Then we can see that the family # is 7 c-conformant and
a(i) = 1, and thus we have {(@) = log(}’, 7,). Now that 7, < n holds for every u € #5,

we can derive, by an argument similar to that in Case (a), that /(i) < ¢(n7), and hence Z =

log | 27| < log(3, i.) < (D) = z* < 2, which is a contradiction. O

Proof of Theorem 2.2. Due to Theorem 2.1, C7 (¥, &, w) is given by the optimal value of the

following optimization problem.

T
Maximize H(S )+ Z H(S,|S,))

=2

subjectto Sy, ..., Srarer.v’son 7, 2.9)

0-S, —--—S7, EWwO,S)+X,wS. 1, S)]<Te.

We regard £(5'") and a(57'") as functions of ¢, and denote them by /(c) and a(c), respec-
tively. Then we have @(c*) = 1 for ¢* = (Zue% myu) / (T ety nu). Furthermore, we regard

g, @) as a function of ¢ and «, and denote it by g(c, «). Then, using g(c, @(c)) = 0, we have

d_C_l’(C) _ %(C, C_l’(C)) _ T@(C) ZuEWT nu&(C)u
de™ g_i(c» () Zuewy(u — TcYn,a(c)
d¢

%(c) = —T log a(c),

and hence /(c) is increasing over (min ##, c*) and decreasing over (c*, max #7). Now that
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Z(c*) = log|Z;|, it is derived that the optimal value for (2.9) is given by

l(c) ifc<cr,

7= max ()=
min #7<c'<c _
{(c*) otherwise,

from which we derive (2.1). O

It is not surprising that the log|Z?7| in (2.1), which is equal to Cr (¥, &, w) when c is
sufficiently large, coincides with the value of the maximum sum rate of the corresponding WOM

if it exists, which is determined in [3].
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Chapter 3

Examples

In this chapter, we give fine examples of the capacity region and the maximum sum rate of

WCM’s.

As examples of the state transition rule & and the cost function w of (¥, &, w)-WCM, we

adopt & = &Y or &@ and w = w' or w? that are defined as follows.

EV =G, eV xV i<
EP =G, eV x¥|i=0ori=j},
wG, j)=1j—il,
0 ifi=

w(, j) =

1 otherwise.

These &V and &@ are equivalent to the state transition rules of generalized WOM'’s that are
adopted in examples of [3]. We believe cost functions w" and w® are practically natural ones.

Note thatif g = 2, then & = &@ and wV = w®. For ¢ > 2, we denote ¥ = {0, 1, ..., g—1}.
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0

Figure 3.1: The capacity region of (¥, &1, w))-WCM with 2 writings and c-average cost
constraint.

3.1 Capacity Region

Example 3.1. The capacity region of (¥ @, &0, wD)-WCM with 2 writings and c-average

cost constraint is plotted in Figure 3.1 for each ¢ = 0.05, 0.10, 0.15, 0.20, 0.25, 0.30 and 0.5.

Note that in the figure, the area hidden by the capacity region with a smaller c is also a part
of the capacity region with a larger c. Figure 3.1 is made using the fact that for 0 < ¢ < 1/2 1t

holds that

(PP, ED, w) =R, Ry) : 0 < a <minf2c, 1/2}, R, = h(a),

0 <Ry <(1-a) h(min{Z=2, 1/2})},

1—

where h(x) = —xlogx — (1 — x)log(1 — x) is the binary entropy function.
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Cr (VD &L )y
3

4

log(q—1+T) ________________________
T

Figure 3.2: The maximum sum rate of (¥ @, &1, w))-WCM with T writings and c-average
cost constraint (the plotis forg =8, T = 4).

Cr (YD, £D )
3

4

log(l+(g—-DT)p-------------—=

0 g(g—1) q
2(1 + (g - DT) T

Figure 3.3: The maximum sum rate of (¥ @, &®, w))-WCM with T writings and c-average
cost constraint (the plotis forg =8, T = 4).
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Cr C(ﬂ//(q)’ g(l), W(2))

A

-1+T
log(q " ) _________________

T

| >
L

o) qg-1 min{g — 1, T}
q—-1+T T

Figure 3.4: The maximum sum rate of (¥?, &0, w»)-WCM with T writings and c-average
cost constraint (the plotis forg =8, T = 4).

Cr (Y@, £D 1)

A

log(1 + (g = DT -mm o

Vs

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
:
(0] g-1 |
1+@q-DT T

Figure 3.5: The maximum sum rate of (¥?, &@, w®)-WCM with T writings and c-average
cost constraint (the plotis forg =8, T =4).
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3.2 Maximum Sum Rate

Example 3.2. In Figure 3.2, the maximum sum rate of (¥@, &0, w()-WCM with T writings

and c-average cost constraint is plotted for min #7 < Tc < max #7r.

In this case, we have #7 = {0, 1, ..., g — 1}, and an enumerative argument gives nE,T) =

(1)
Zue“ll/f um, _

T
T ZMEWT TIM

) when ¢ = ¢* and remains the same value

(ufl+T

T _ (q71+T
T-1 -

) for u € #7. Thus we have ),y 1, r ), and if we take ¢* :=

-1 ) )
%, then the maximum sum rate attains log(

for ¢ > c¢*.

q-1+T
T

In Figure 3.2, we also shows (R}, ..., R}) € o/ (¥9, &P, wV) that attains the maximum
sum rate, thatis, 3" | R* = Cr. (7@, &0, wD). It seems to hold that R} > --- > R;, which we

have not yet succeeded in proving yet.

Example 3.3. In Figure 3.3, the maximum sum rate of (¥©, £@, w(V)-WCM with T writings

and c-average cost constraint is plotted for min #7 < Tc¢ < max #7.

In this case, we have #7 = {0, 1, ..., ¢ — 1}, and, by counting, n(()T) =1 and nE,T) = T for
Sew; Uy qlg-1)
€ #;\ {0}. Th h s =1+ (g—- 1T and L = .
u € /7 \0). Thus we have T, 7 (@ D and s = T+ (@ = T)

Example 3.4. In Figure 3.4, the maximum sum rate of (¥©, &0, w®)-WCM with T writings
and c-average cost constraint is plotted for min #7 < Tc¢ < max #7.

In this case, we have #7 = {0, 1, ..., min{g — 1, T}}, and an enumerative argument gives
Seemruny’  g-1
T ZMEWT 771(4T) q - 1 + T

m = (q;l)(Z) for u € #7. Thus we have ¥, ., 7 = (q_1T+T) and

Example 3.5. In Figure 3.5, the maximum sum rate of (¥?, £@, w®)-WCM with T writings
and c-average cost constraint is plotted for min #7 < Tc¢ < max #7.

In this case, we have #7 = {0, 1}, and, by counting, ng) =1 and n(lT) = (g — 1)T. Thus we

have ' =1+(q- DT and Suens il g-1
ave Qe =1+ (g — an = .
7 ) 1+(q=DT
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Chapter 4

Conclusions

In this thesis, we introduced WCM and proved the capacity region and the maximum sum rate
of WCM with such a cost constraint as restricts the average cost of rewrites.

It is another problem to construct a WCM code explicitly that satisfies some cost constraint,
and it is completely out of the scope of this thesis.

As a future work, we plan to investigate the behavior of the maximum sum rate when g goes
to infinity, and to make some proposition about an “optimal” value of g according to a given

cost constraint.
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Appendix A

The Karush-Kuhn-Tucker Conditions

In the proof of Lemma 2.5, we utilize the Karush-Kuhn-Tucker (KKT) conditions. In this chap-

ter, we give an outline of the KKT conditions to the extent needed in the proof of Lemma 2.5.

Consider the following nonlinear optimization problem.

Minimize f(x)
subjectto hix)=0 (j=1,...,m), (A.1)

gix)=0 (@G=1,...,p).

Here, f : R" — R is called the objective function, i; : R* = R (j = 1, ..., m) is called the

equality constraints, and g; : R” - R (i =1, ..., p)is called the inequality constraints.

The set of points in R" that satisfy the equality and the inequality constraints, which we
denote by ¥ = {x e R" [ hj(x) =0 (j=1,...,m), g(x) 20 (i=1, ..., p)}, is called the
feasible set of the problem (A.1), and every element in ¥ is called a feasibile point (or feasible

solution) of (A.1).

For a feasible point ¥ € ¥ and 1 < i < p, if it holds that g;(¥) = 0, then we say that the
inequality constraint “g;(x) > 0” is active at X. Conversely, if it holds that g;(¥) > 0, then we

say that the inequality constraint “g;(x) > 0” is inactive at ¥X. We denote by /(X) the set of every
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index 1 < i < p such that the inequality constraint “g;(x) > 0” is active at ¥, that is,
I(®)2{i|1<i<p, g(® =0}

We say that the Linear Independence Constraint Qualification (LICQ) is satisfied at ¥ € F
when gradients Vh;(X) (j=1, ..., m), Vgi(X) (i € I(X)) exist and are linearly independent.

Suppose that f, h; (j=1,...,m)and g; (i=1, ..., p) are all continuously differentiable
at x* € . Suppose also that x* gives a local minimum of the problem (A.1) and that the LICQ
is satisfied at x*. Then the KKT conditions say that there exist multipliers 4; (i =1, ..., p) and

uj (j=1,..., m)such that
p m
Vi) = D AVex) + Y pVhi(x),
i=1 j=1

420, Lg(x)=0G=1,...,p).
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