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The Capacity of Write-Once Memory with a
Writing Cost Function
（書込コスト関数を持つライト・ワンス・メモリの容量）

書換に制限を有する記憶媒体というのは古今東西存在する．例えば，パンチカードは一

度穴を開けたら塞ぐことができない．またフラッシュメモリにおいては，ブロック消去と

呼ばれる特別な操作を行わなければ，記憶素子であるセル内部の電荷を減らすことができ

ない．R.L. Rivestと A. Shamirは 1982年に，そのような制限を有する記憶媒体のモデル

としてWrite-Once Memory (WOM)を導入した．そして彼らは，WOMを複数回にわたり

書換える際，書込可能なメッセージの量をなるべく多くするための工夫とはどのようなも

のかを提示した．そのような工夫は，WOM符号化と呼ばれている．

オリジナルのWOMでは記憶素子の取りうる状態が二値であったが，その後 1984年に

A. FiatとA. Shamirにより，多値を扱える一般化WOMが提案された．一般化WOMでは，

素子の取りうる状態および状態間の可能な遷移を，無閉路有向グラフによって指定する．

WOMにおいて興味深い問題の一つは，最良の符号化によりどれだけ多くのメッセージ

を書込めるかということである．この問題に対する解答として，F. FuとA.J. Han Vinckは

1999年に，任意の一般化WOMにおける容量域と最大和率を決定した．

本研究では，一般化WOMをさらに拡張したWrite-Constrained Memory (WCM)を提案

する．WCMの大きな特徴の一つは，それが状態遷移のコストを考慮することである．実

用的には，状態遷移コストは時間やエネルギーといった物理量としての意味を持つもので

あり，何らかの理由でそれを制限しなければならないという状況が想定される．本研究で

はそのような制限の一つとして，WCMに対する平均コスト制約というものを提案する．

本研究における主要な結果は，任意のWCMにおいて，定数回にわたり書換える際，平

均コスト制約を満足する容量域および最大和率を決定したことである．

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Creative Repository of Electro-Communications

https://core.ac.uk/display/147695399?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Master’s Thesis

The Capacity of Write-Once Memory with a Writing

Cost Function

Department of Information Network Systems

Graduate School of Information Systems

The University of Electro-Communications

Tetsuya KOBAYASHI

Student Number: 1252014

Supervisory Committee:

Chair : Prof. Hiroyoshi MORITA
Member : Assoc. Prof. Hiroyuki KASAI
Member : Assoc. Prof. Tomohiro OGAWA

January 27, 2014



Contents

1 Introduction 3

2 Capacity of Write-Constrained Memory 5

2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.2 Write-Constrained Memory . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.3 Cost Constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Capacity Region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Maximum Sum Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Examples 20

3.1 Capacity Region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Maximum Sum Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4 Conclusions 25

A The Karush-Kuhn-Tucker Conditions 26

Bibliography 28

2



Chapter 1

Introduction

In all ages we find such recording media as have restrictions on rewriting. For example, a

punched card represents information by the absence or presence of holes, and once we punch a

hole we cannot undo it anymore. A vinyl record stores a sound by the depths of a spiral groove,

and we can only deepen it. A flash memory stores messages by the electric charge in floating

gates, and we cannot decrease it without block erasure.

In 1982, Rivest and Shamir [1] introduced a model of such rewrite-restricted media, called

Write-Once Memory (WOM), and formulated a notion of coding to rewrite on WOM. To be

exact, their model of WOM should be called the binary WOM, and it consists of a sequence of

storage elements called wits. Each wit takes a state 0 or 1, and once we change a state of a wit

from 0 to 1, we cannot change it anymore. And they presented a code that can store 2 bits of

information twice in a 3-wit binary WOM (Table 1.1).

Fiat and Shamir [2] introduced generalized WOM’s. When a finite directed acyclic graph

decode

000 or 111 0
100 or 011 1
010 or 101 2
001 or 110 3

encode 2nd
0 1 2 3

1st

0 000 000 100 010 001

1 100 111 100 101 110

2 010 111 011 010 110

3 001 111 011 101 001

Table 1.1: Store 2 bits of information twice in a 3-wit binary WOM.
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(V , E ) is given, (V , E )-WOM is such that each storage element takes a state in V , and that for

two states i and j, a transition from i to j is possible iff there is a path in (V , E ) from i to j.

An interesting question about WOM is how much information can be stored by rewriting on

WOM multiple times. For example, using the code shown in Table 1.1, we can store 2 bits at

the first writing and 2 bits at the second writing in a 3-wit binary WOM, and so the rate vector

of this code is (2/3, 2/3), and the sum rate is 4/3. What a good code does there exist when

the WOM length goes to infinity? What is the region that the rate vector of some code is in?

How large can the sum rate of a code be? Fu and Han Vinck [3] answered these questions by

determining the capacity region and the maximum sum rate.

We propose a further generalization of generalized WOM, called Write-Constrained Mem-

ory (WCM). For a finite costed directed graph (V , E , w), the (V , E , w)-WCM is such that

each storage element, which we call cell, takes a state in V , that for two states i and j, a state

transition from i to j in one update is possible iff (i, j) ∈ E , and that for each (i, j) ∈ E , a state

transition from i to j costs w(i, j). The cost of WCM update is defined as the sum of the cost of

each cell update. We restrict the average cost of WCM updates per cell per update.

But why does a state transition cost matter? In practice, a state transition cost is a physical

quantity such as energy or time. For example, on punched cards, it is natural to think that the

more holes must be punched, the more time the punching operation consumes. When you use

an electric keypunch, the total electric energy to punch holes will be proportional to the number

of holes to be punched. And it is a plausible story that for some reason you have to restrict the

operation time or the operation energy.

In this thesis, we introduce WCM and determine the capacity region and the maximum sum

rate of WCM with a certain cost constraint. This can be considered as an extension of Fu and

Han Vinck’s results for generalized WOM’s in [3].
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Chapter 2

Capacity of Write-Constrained Memory

In this chapter, we first give a mathematical definition of Write-Constrained Memory (WCM).

Then we define and determine the capacity region and the maximum sum rate of WCM.

2.1 Preliminaries

2.1.1 Notation

For a nonempty set S of real numbers, we denote by minS (resp. maxS) the minimum (resp.

maximum) element in S.

2.1.2 Write-Constrained Memory

For q ≥ 2, we fix V = {0, 1, . . . , q − 1}, E ⊂ V × V , and w : E → R, and then consider

the (V , E , w)-WCM. The meaning of each parameter is as described in Chapter 1. Note that

unlike in the case of generalized WOM’s, the state transitions are associated with the edges of

the graph (V , E ), not with the paths.

In terms of the state transitions, we introduce an “arrow” notation for convenience. For i,

j ∈ V , let i → j mean (i, j) ∈ E . For any n ≥ 1 and x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ V n,

let x→ y mean (xi, yi) ∈ E for every 1 ≤ i ≤ n.
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Formally, a sequence of pairs of functions {(ϕt, ψt)}Tt=1 is called an [n, T, M1, . . . , MT ]-

code for the (V , E , w)-WCM when it satisfies the following conditions. The domain and the

codomain of the functions ϕt and ψt are such that

ϕ1 : I1 × {0} → V n,

ϕt : It × Im(ϕt−1)→ V n (2 ≤ t ≤ T ),

ψt : V n → It (1 ≤ t ≤ T ),

where we let It = {1, . . . , Mt} for 1 ≤ t ≤ T , and for every 1 ≤ t ≤ T and for every (a, x) ∈

Dom(ϕt) it holds that

ψt(ϕt(a, x)) = a, x→ ϕt(a, x).

The meaning is that ϕt is the t-th encoder and ψt is the t-th decoder, and 0 ∈ V n is the initial

state of the WCM, where every cell takes state 0. Using this code, we can write T times on an

n-cell WCM, with the number of messages being Mt at the t-th writing for 1 ≤ t ≤ T .

2.1.3 Cost Constraint

Assume {(ϕt, ψt)}Tt=1 is an [n, T, M1, . . . , MT ]-code for the (V , E , w)-WCM. Fix (a(1), . . . , a(T ))

∈ I1 × · · · × IT , where It’s (1 ≤ t ≤ T ) are as in Subsect. 2.1.2, and consider writing a(1), . . . , a(T )

sequentially using this code. The state of the WCM after the t-th writing is given recursively by

x(t) = ϕt(a(t), x(t−1)), for 1 ≤ t ≤ T , with x(0) = 0, and the cost per cell of the t-th writing is given

by w(x(t−1), x(t))/n, where we let w(x, y) =
∑n

i=1 w(xi, yi) for x, y ∈ V n such that x → y. With

the cost constraint we adopt in this paper, we restict the summation for 1 ≤ t ≤ T of the cost

per cell of the t-th writing. We say that the code {(ϕt, ψt)}Tt=1 satisfies c-average cost constraint

when it satisfies
T∑

t=1

w(x(t−1), x(t))/n ≤ Tc

for every (a(1), . . . , a(T )) ∈ I1 × · · · × IT .
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2.2 Capacity Region

For T ≥ 1 and c ∈ R, we define the capacity region of the (V , E , w)-WCM with T writings and

c-average cost constraint, denoted by AT, c(V , E , w), as

AT, c(V , E , w) △= Clo
{ (

(log M1)/n, . . . , (log MT )/n
)

: n ≥ 1, M1, . . . , MT ≥ 1,

there exists an [n, T, M1, . . . , MT ]-code for the (V , E , w)-WCM that satisfies

c-average cost constraint
}
,

where
(
(log M1)/n, . . . , (log MT )/n

)
is called the rate vector of the [n, T, M1, . . . , MT ]-code.

Informally, AT, c(V , E , w) is the set of every T -vector that a sequence of the rate vectors of

the suitable WCM codes converges to.

To describe AT, c(V , E , w), we extend the “arrow” notation to the random variables on V .

For X, Y that are r.v.’s on V , let X → Y mean that Pr{X = i, Y = j} > 0 holds only if (i, j) ∈ E .

When we write such as X1 → X2 → · · · → Xr, we implicitly assume that (Xi)r
i=1 forms a Markov

chain.

Theorem 2.1. The following holds.

AT, c(V , E , w) = {(R1, . . . , RT ) ∈ RT : there exist r.v.’s S 1, . . . , S T on V s.t.

0→ S 1 → · · · → S T , E[w(0, S 1) +
∑T

t=2 w(S t−1, S t)] ≤ Tc,

0 ≤ R1 ≤ H(S 1), 0 ≤ Rt ≤ H(S t | S t−1) (2 ≤ ∀t ≤ T )},

where E[·] means the expectation and H(·) the entropy.

Proof. For the proof, we need only minor modifications to the proof of [3, Theorem 3.1]. In the

following, we deliver a sketch of the proof, without a mathematical detail.

Direct Part: We only show the proof for T = 2. Extension to any T is easy.

The discussion utilizes the type theory. For a random variable X on a finite set X, denote by
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T n
X the set of all n-vectors whose type is equal to X, that is, we define T n

X as

T n
X = {(x1, . . . , xn) ∈ Xn | #{i | 1 ≤ i ≤ n, xi = a} = n · Pr{X = a} (∀a ∈ X)}.

For n ∈ N, we say that the distribution of a r.v. X on X is an n-type when n · Pr{X = a} is an

integer value for every a ∈ X. Similarly, for a r.v. X onX and a r.v. Y onY, the joint distribution

of X and Y is called an n-type when n · Pr{X = a, Y = b} is an integer value for every a ∈ X and

b ∈ Y.

Suppose r.v.’s S 1, S 2 on V are given such that 0→ S 1 → S 2 and E[w(0, S 1)+w(S 1, S 2)] ≤

Tc.

First we make an n-approximation (S̃ (n)
1 , S̃ (n)

2 ) of (S 1, S 2) for n ∈ N. It can be shown that

there exists {(S̃ (n)
1 , S̃ (n)

2 )}n∈N such that for every n ∈ N, S̃ (n)
1 and S̃ (n)

2 are r.v.’s on V whose joint

distribution is an n-type, and which satisfy 0 → S̃ (n)
1 → S̃ (n)

2 and E[w(0, S̃ (n)
1 ) + w(S̃ (n)

1 , S̃ (n)
2 )] ≤

E[w(0, S 1) + w(S 1, S 2)], and that (S̃ (n)
1 , S̃ (n)

2 ) converges in law to (S 1, S 2) as n −→ ∞. Now we

explain how to make (S̃ (n)
1 , S̃ (n)

2 ). We let I = {(i1, i2) ∈ V 2 | Pr{S 1 = i1, S 2 = i2} > 0}, and take

(i∗1, i∗2) ∈ I that satisfies w(0, i∗1) + w(i∗1, i∗2) ≤ w(0, i1) + w(i1, i2) for every (i1, i2) ∈ I. Define

p(n) : V 2 → R as

p(n)(i1, i2) =



⌊n · Pr{S 1 = i1, S 2 = i2}⌋/n if (i1, i2) ∈ I \ {(i∗1, i∗2)},

1 −
∑

(i′1, i
′
2)∈I\{(i∗1, i

∗
2)}

p(n)(i′1, i′2) if (i1, i2) = (i∗1, i∗2),

0 otherwise.

Then p(n) gives a probability distribution on V 2. We give the joint probability distribution of

S̃ (n)
1 and S̃ (n)

2 by Pr{S̃ (n)
1 = i1, S̃ (n)

2 = i2} = p(n)(i1, i2) for every (i1, i2) ∈ V 2.

Take δ > 0 arbitrarily and set M1 := 2n[H(S 1)−δ], M2 := 2n[H(S 2 |S 1)−δ]. For sufficiently large n,

if we can find a partition {Fm}M2
m=1 of T n

S̃ (n)
2

that satisfies the following condition, then we can con-

struct an [n, 2, M1, M2]-code for the (V , E , w)-WCM that satisfies c-average cost constraint.
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The condition is that for any x ∈ T n
S̃ (n)

1

and for any m ∈ I2 = {1, . . . , M2} there exists y ∈ Fm

such that x → y. The code construction is as follows. For the first writing, let ϕ1(·, 0) be any

one-to-one mapping from I1 = {1, . . . , M1} to T n
S̃ (n)

1

, and for every a ∈ M1, set ψ1(ϕ1(a, 0)) := a.

For the second writing, set to ϕ2(m, x) an element y in Fm that satisfies x → y, and for every

m ∈ I2 and y ∈ Fm, set ψ2(y) := m.

A partition that satisfies the condition in the previous paragraph can be shown to exist for

sufficiently large n, same as in the proof of [3, Theorem 3.1].

Converse Part: We show that for any [n, T, M1, . . . , MT ]-code for (V , E , w)-WCM that satis-

fies c-average cost constraint, there exist r.v.’s S 1, . . . , S T on V such that 0→ S 1 → · · · → S T ,

E[w(0, S 1) +
∑T

t=2 w(S t−1, S t)] ≤ Tc, (log M1)/n ≤ H(S 1), and (log Mt)/n ≤ H(S t | S t−1) for

2 ≤ t ≤ T .

Let {(ϕt, ψt)}Tt=1 be such a code. Let W1, . . . , WT be independent r.v.’s uniformly distributed

over It = {1, . . . , Mt} respectively. Denote Yn
0 = 0, Yn

t = (Yt, 1, . . . , Yt, n) = ϕt(Wt, Yn
t−1), 1 ≤ t ≤

T . It follows that Yn
t−1 → Yn

t , and ψt(Yn
t ) = Wt, Yt−1, i → Yt, i. Then we have H(Wt) = H(Yn

t |Yn
t−1),

t = 1, . . . , T . Let L be an index r.v. which uniformly distributed over {1, . . . , n}, independent

of all other r.v.’s. Then we have (log Mt)/n ≤ H(Yt, L | Yt−1, L) and E[
∑T

t=1 w(Yt−1, L, Yt, L)] ≤ Tc.

Here, (Yt, L)T
t=1 may not form a Markov chain, but we can take new r.v.’s S 1, . . . , S T on V such

that (S t)T
t=1 forms a Markov chain and for every 1 ≤ t ≤ T , (S t−1, S t) and (Yt−1, L, Yt, L) have the

same probability distribution. Therefore, 0→ S 1 → · · · → S T , E[w(0, S 1)+
∑T

t=2 w(S t−1, S t)] ≤

Tc, (log M1)/n ≤ H(S 1), and (log Mt)/n ≤ H(S t | S t−1) for 2 ≤ t ≤ T . □

2.3 Maximum Sum Rate

For T ≥ 1 and c ∈ R, we define the maximum sum rate of the (V , E , w)-WCM with T writings

and c-average cost constraint, denoted by CT, c(V , E , w), as

CT, c(V , E , w) △= max

 T∑
t=1

Rt : (R1, . . . , RT ) ∈ AT, c(V , E , w)

 .
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Preliminary to the determination of the maximum sum rate, here we introduce some nota-

tions. In what follows we fix T ≥ 1. We define PT ⊂ V T and WT : PT → R as

PT
△
= {(i1, . . . , iT ) ∈ V T | 0→ i1 → · · · → iT } and

WT (i1, . . . , iT ) △= w(0, i1) +
T∑

t=2

w(it−1, it),

and we let WT
△
= ImWT and define the family (η(T )

u )u∈WT of positive integers as η(T )
u
△
=

∣∣∣W−1
T ({u})

∣∣∣
(u ∈ WT ). Note that WT is a finite set. We denote (η(T )

u )u∈WT by η(T ), simply.

For v ∈ R, we say that a family (au)u∈W is v-conformant when it is a family of nonnegative

real numbers indexed by a finite set of real numbers and there exist u, u′ ∈ W such that u < v <

u′, au > 0 and au′ > 0.

Theorem 2.2. Suppose |WT | ≥ 2 and fix c ∈ R arbitrarily such that min WT < Tc < max WT .

Then the maximum sum rate CT, c(V , E , w) is given by

CT, c(V , E , w) =


ζ(η(T )) if Tc ≤

∑
u∈WT

uη(T )
u∑

u∈WT
η(T )

u

,

log |PT | otherwise,

(2.1)

where, for a Tc-conformant family η = (ηu)u∈WT we denote by α(η) the unique positive root

w.r.t. α of g(η, α) that is defined as

g(η, α) △=
∑
u∈WT

ηu(u − Tc)αu, (2.2)

and define ζ(η) as

ζ(η) △= log

∑
u∈WT

ηu α(η)u

 − Tc logα(η). (2.3)

To prove Theorem 2.2, we first prepare a lemma and a corollary about zeroes of a certain

type of functions, which we will use later.
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Lemma 2.3. Let W be a finite set of real numbers and let (au)u∈W be a family of real numbers

indexed by W and suppose that there exists a real number v such that for every u ∈ W , au ≥ 0

if u > v and au ≤ 0 if u < v. Then for the function f (x) =
∑

u∈W auxu on R, we have either f (x)

is identically zero or f (x) has at most one positive zero.

Proof. The proof is by mathematical induction on |W |.

The statement clearly holds when |W | ≤ 1 because in this case either f (x) is identically zero

or f (x) has no positive zero.

Fix k ≥ 1 and assume the statement holds when |W | ≤ k. Then we consider the case when

|W | = k + 1. By induction hypothesis, the statement holds when au = 0 for some u ∈ W , and

so we assume otherwise. Set l := max W , s := min W . It is easy to see that the statement holds

when al < 0 or as > 0, because in this case f (x) has no positive zero. So we assume otherwise.

In the assumption made above, set f̃ (x) := x−s f (x). Then f̃ (x) has the same positive zeroes

as f (x). Also f̃ (x) is continuous on [0, +∞) and differentiable on (0, +∞). We have f̃ (0) < 0

and f̃ (x) −→ +∞ as x −→ +∞, and so f̃ (x) has at least one positive zero due to the intermediate

value theorem. To see that f̃ (x) has only one positive zero, assume by contradiction that f̃ (x)

has at least two positive zeroes. Denote the two smallest positive zeroes of f̃ (x) by ξ1 and ξ2

(ξ1 < ξ2), and consider the following three cases.

Case 1: When f̃ (c) < 0 for every c ∈ (ξ1, ξ2). Then, ξ1 is a local maximum of f̃ and so we have

f̃ ′(ξ1) = 0, and Rolle’s theorem assures the existence of c2 ∈ (ξ1, ξ2) such that f̃ ′(c2) = 0.

Case 2: When f̃ (c) > 0 for every c ∈ (ξ1, ξ2), and for every sufficiently small ε > 0 it holds

that f̃ (ξ2 + ε) > 0. Then, ξ2 is a local minimum of f̃ and so we have f̃ ′(ξ2) = 0, and by Rolle’s

theorem there exists c1 ∈ (ξ1, ξ2) such that f̃ ′(c1) = 0.

Case 3: When f̃ (c) > 0 for every c ∈ (ξ1, ξ2), and for every sufficiently small ε > 0 it holds that

f̃ (ξ2 + ε) < 0. Now that f̃ (x) −→ +∞ as x −→ +∞, f̃ has a zero greater than ξ2, the smallest

of which we denote by ξ3. Then, Rolle’s theorem guarantees the existence of c1 ∈ (ξ1, ξ2) such

that f̃ ′(c1) = 0 and the existence of c2 ∈ (ξ2, ξ3) such that f̃ ′(c2) = 0.
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In either case, f̃ ′(x) has at least two positive zeroes. But by mathematical induction, f̃ ′(x) =∑
u∈W \{s}(u − s)auxu−s−1 has at most one positive zero, which is a contradiction. □

By the proof of Lemma 2.3, we can immediately derive the following corollary.

Corollary 2.4. In the assumption of Lemma 2.3, assume also that there exist u, u′ ∈ W such

that au > 0 and au′ < 0. Then the f (x) in Lemma 2.3 has the unique positive zero.

The next lemma plays an important role in proving Theorem 2.2.

Lemma 2.5. Suppose |WT | ≥ 2 and fix c ∈ R arbitrarily such that min WT < Tc < max WT .

Consider the following optimization problem.

Maximize H(S 1) +
T∑

t=2

H(S t | S t−1)

subject to S 1, . . . , S T are r.v.’s on V ,

0→ S 1 → · · · → S T , E[w(0, S 1) +
∑T

t=2 w(S t−1, S t)] = Tc.

(2.4)

The optimal value of (2.4) is given by ζ(η(T )).

Proof. The proof is by the Karush-Kuhn-Tucker (KKT) conditions [4]. (See also Appendix A.)

First we parametrize (S 1, . . . , S T ). We define V1, Et, Vt (2 ≤ t ≤ T ) recursively as follows.

V1 = { j ∈ V | (0, j) ∈ E },

Et = {(i, j) ∈ E | i ∈ Vt−1} (2 ≤ t ≤ T ),

Vt = { j ∈ V | (i, j) ∈ E for some i ∈ Vt−1} (2 ≤ t ≤ T ).

For each i ∈ V1 let p1(i) = Pr{S 1 = i}. For each 2 ≤ t ≤ T and (i, j) ∈ Et let bt(i, j) = Pr{S t =

j | S t−1 = i}. For each 2 ≤ t ≤ T and j ∈ Vt let pt( j) = Pr{S t = j}. Then (2.4) is equivalent to

the following problem.
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Problem (∗): Maximize

z =
∑
i∈V1

−p1(i) log p1(i) +
T∑

t=2

∑
i∈Vt−1

pt−1(i)
∑

j:(i, j)∈Et

−bt(i, j) log bt(i, j)


subject to p1(i) ≥ 0 (for i ∈ V1), bt(i, j) ≥ 0 (for 2 ≤ t ≤ T , (i, j) ∈ Et), and

K := − Tc +
∑
i∈V1

p1(i)w(0, i) +
T∑

t=2

 ∑
i∈Vt−1

pt−1(i)
∑

j:(i, j)∈Et

bt(i, j)w(i, j)

 = 0,

L :=
∑
i∈V1

p1(i) − 1 = 0,

Mt(i) :=
∑

j:(i, j)∈Et

bt(i, j) − 1 = 0 (2 ≤ t ≤ T , i ∈ Vt−1),

Nt( j) :=
∑

i:(i, j)∈Et

pt−1(i)bt(i, j) − pt( j) = 0 (2 ≤ t ≤ T , j ∈ Vt).

Second, we find all possible interior extrema of the above problem. We can confirm that at

any interior point (a feasible point where all inequality constraints are inactive) the gradients of

the equality constraints are linearly independent. To see it, suppose there exist real numbers k,

l, mt(i) (2 ≤ t ≤ T , i ∈ Vt−1) and nt( j) (2 ≤ t ≤ T , j ∈ Vt) that satisfy

k∇K + l∇L +
T∑

t=2

∑
i∈Vt−1

mt(i)∇Mt(i) +
T∑

t=2

∑
j∈Vt

nt( j)∇Nt( j) = 0. (2.5)

Observing the system (2.5) componentwise, we get the following equations.

Equation for ∂/∂pT (i): For i ∈ VT ,

−nT (i) = 0.

Equation for ∂/∂bt(i, j): For 2 ≤ t ≤ T and (i, j) ∈ Et,

(nt( j) + kw(i, j))pt−1(i) + mt(i) = 0.
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Equation for ∂/∂pt(i): For 2 ≤ t ≤ T − 1 and i ∈ Vt,

−nt(i) +
∑

j:(i, j)∈Et+1

(nt+1( j) + kw(i, j))bt+1(i, j) = 0.

Equation for ∂/∂p1(i): For i ∈ V1,

l + kw(0, i) +
∑

j:(i, j)∈E2

(n2( j) + kw(i, j))b2(i, j) = 0.

From Equation for ∂/∂bt(i, j), for 2 ≤ t ≤ T and (i, j) ∈ Et we have nt( j) + kw(i, j) = − mt(i)
pt−1(i)

,

so we have that when i ∈ Vt−1 is fixed, then nt( j) + kw(i, j) takes the same value for every j

such that (i, j) ∈ Et. With Equation for ∂/∂pt(i) combined, this means that it holds that nt(i) =

nt+1( j) + kw(i, j) for 2 ≤ t ≤ T − 1 and (i, j) ∈ Et+1. Further, from Equation for ∂/∂p1(i),

we have for (i, j) ∈ E2 that l + kw(0, i) = −(n2( j) + kw(i, j)). As a result, we have for every

(i1, . . . , iT ) ∈ PT that l = −k
(
w(0, i1) +

∑T
t=2 w(it−1, it)

)
= −kWT (i1, . . . , iT ), but this is only

possible when k = 0, because |WT | ≥ 2. And also we have l = 0. Now it is easy to see that every

mt(i) and nt( j) must be equal to 0. Thus we have confirmed the linear independence.

Let κ, λ, µt(i) and νt( j) be the KKT multipliers of equality constraints K, L, Mt(i) and Nt( j),

respectively. The KKT conditions require that at an interior extremum the following conditions

be satisfied for some real numbers κ, λ, µt(i) and νt( j).

Condition for ∂/∂p1(i): For i ∈ V1,

−κw(0, i) − λ − log p1(i) − log e =
∑

j:(i, j)∈E2

b2(i, j)
{
κw(i, j) + ν2( j) + log b2(i, j)

}
:::::::::::::::::::::::::::::

.

Condition for ∂/∂pt(i): For 2 ≤ t ≤ T − 1 and i ∈ Vt,

νt(i) =
∑

j:(i, j)∈Et+1

bt+1(i, j)
{
κw(i, j) + νt+1( j) + log bt+1(i, j)

}
:::::::::::::::::::::::::::::::

.
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Condition for ∂/∂pT (i): For i ∈ VT ,

νT (i) = 0.

Condition for ∂/∂bt(i, j): For 2 ≤ t ≤ T and (i, j) ∈ Et,

−µt(i) = pt−1(i)
{
(κw(i, j) + νt( j) + log bt(i, j)) + log e

}
:::::::::::::::::::::::::::::::::::::

.

Now in the equation of Condition for ∂/∂bt(i, j), we have pt−1(i) , 0 by assumption, and

so the underwaved part of the equation takes the same value for every j. Thus also in each

equation of Condition for ∂/∂p1(i) and Condition for ∂/∂pt(i), the underwaved part takes the

same value regardless of j. Combining these facts with
∑

j:(i, j)∈Et
bt(i, j) = 1, we have the

following modified version of conditions.

Condition′ for ∂/∂p1(i): For (i1, i2) ∈ E2,

−κw(0, i1) − λ − log p1(i1) − log e = κw(i1, i2) + ν2(i2) + log b2(i1, i2).

Condition′ for ∂/∂pt(i): For 2 ≤ t ≤ T − 1, (it, it+1) ∈ Et+1,

νt(it) = κw(it, it+1) + νt+1(it+1) + log bt+1(it, it+1).

Condition′ for ∂/∂pT (i): For iT ∈ VT ,

νT (iT ) = 0.

So we have for every i = (i1, . . . , iT ) ∈PT that

−λ − log e − κWT (i) = log p1(i1) +
T∑

t=2

log bt(it−1, it). (2.6)

When we denote p(i) = Pr{S 1 = i1, . . . , S T = iT }, then the RHS of (2.6) is equal to log p(i).
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Thus if we let a = exp(−λ)/e and α = exp(−κ), we have for every i ∈PT that p(i) = aαWT (i). It

is derived from the equality constraints in Problem (∗) that
∑
i∈PT

p(i) = 1,
∑
i∈PT

WT (i)p(i) = Tc.

Thus using η(T ) = (η(T )
u )u as defined before, we can write

a
∑
u∈WT

η(T )
u αu = 1, a

∑
u∈WT

η(T )
u uαu = Tc. (2.7)

From (2.7) we obtain that g(η(T ), α) = 0, where g is as defined in (2.2), which, regarded as an

equation in α, has the unique positive solution α(η(T )) due to Corollary 2.4. Now a is determined

uniquely from α = α(η(T )), this gives the sole candidate of interior extremum, the value at which

is given by

z∗ =
∑
i∈PT

−p(i) log p(i)

=
∑
u∈WT

η(T )
u

{−aαu(log a + u logα)
}
= − log a − Tc logα = ζ(η(T )),

(2.8)

where ζ is as defined in (2.3).

Finally to confirm that z∗ in (2.8) gives the global maximum of Problem (∗), we assume

by contradiction that z∗ does not give the global maximum and hence there exists an optimal

solution P̂ that have parameters p̂t(i) (1 ≤ t ≤ T , i ∈ Vt) and b̂t(i, j) (2 ≤ t ≤ T , (i, j) ∈ Et)

such that one or more inequality constraints are active at P̂ and that the value at P̂, which we

denote by ẑ, is greater than z∗. We make a modification to Problem (∗) so that every parameter

variable is removed whose “hatted” value is equal to 0. More precisely, we let

V̂t = {i ∈ Vt | p̂t(i) > 0} (1 ≤ t ≤ T ),

Êt = {(i, j) ∈ Et | i ∈ V̂t−1, b̂t(i, j) > 0} (2 ≤ t ≤ T )

and construct Problem (∗̂) by replacing V1, Vt−1, Et, VT , Vt, K, L, Mt(i) and Nt( j) in Problem

(∗) with V̂1, V̂t−1, Êt, V̂T , V̂t, K̂, L̂, M̂t(i) and N̂t( j), respectively. Note that a feasible solution of
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Problem (∗̂) is also a feasible solution of Problem (∗) when every undefined parameter is set to 0,

and that they take the same value. It is obvious by assumption that P̂ (with parameters properly

removed) is a feasible solution of Problem (∗̂) where all inequality constraints are inactive. For

technical reasons, we let P̂T = {i ∈PT | p(i) > 0} and consider the following two cases.

Case (a): Consider when |WT (P̂T )| ≥ 2. In this case, we can confirm the linear independence

of the gradients of the equality constraints. An argument on the KKT conditions, which is

very similar to what we have previously done, leads that when we define η̂ = (η̂u)u∈WT as η̂u =∣∣∣W−1
T ({u}) ∩ P̂T

∣∣∣ for each u ∈ WT , then η̂ is Tc-conformant and the value of ẑ is given by ζ(η̂).

As η̂u ≤ η(T )
u clearly holds for every u ∈ WT , if we can show that (♣): every partial derivative

of ζ is nonnegative in Ĥ =
∏

u∈WT
[η̂u, η

(T )
u ], then it is derived that ẑ = ζ(η̂) ≤ ζ(η(T )) = z∗ < ẑ,

which is a contradiction. Now we prove the claim (♣). Note that every η = (ηu)u ∈ Ĥ is Tc-

conformant. To calculate the partial derivatives of ζ, we first confirm that ∂α/∂ηu exist for every

u ∈ WT . As g(η, α(η)) = 0, for the purpose it is sufficient to show that

∂g
∂α
=

∑
u∈WT

u(u − Tc)ηuα
u−1 =

1
α

∑
u∈WT

(u − Tc)2ηuα
u

is not equal to 0, which holds if η ∈ Ĥ. Now, for each u ∈ WT we have

∂ζ

∂ηu
=

(∑
v∈WT

vηvα
v−1

)
(∂α/∂ηu) + αu∑

v∈WT
ηvαv − Tc

α
(∂α/∂ηu) =

αu∑
v∈V ηvαv ,

which takes a positive value at every point in Ĥ, as desired.

Case (b): Consider when |WT (P̂T )| = 1. In this case, v = Tc is in WT and it holds that

WT (P̂T ) = {v}. Now the equality constraint K̂ in Problem (∗̂) is redundant and so we remove it.

Then we can confirm that the gradients of the equality constraints (with K̂ removed) are linearly

independent. By an argument on the KKT conditions, it is derived that the value of ẑ is given
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by log |P̂T |. Now we define η̃ = (η̃u)u as follows.

η̃u =



|P̂T | (if u = v),

(max WT − v)/D (if u = min WT ),

(v −min WT )/D (if u = max WT ),

0 (otherwise),

where we let D = max WT − min WT . Then we can see that the family η̃ is Tc-conformant and

α(η̃) = 1, and thus we have ζ(η̃) = log(
∑

u η̃u). Now that η̃u ≤ η(T )
u holds for every u ∈ WT ,

we can derive, by an argument similar to that in Case (a), that ζ(η̃) ≤ ζ(η(T )), and hence ẑ =

log |P̂T | < log(
∑

u η̃u) ≤ ζ(η(T )) = z∗ < ẑ, which is a contradiction. □

Proof of Theorem 2.2. Due to Theorem 2.1, CT, c(V , E , w) is given by the optimal value of the

following optimization problem.

Maximize H(S 1) +
T∑

t=2

H(S t | S t−1)

subject to S 1, . . . , S T are r.v.’s on V ,

0→ S 1 → · · · → S T , E[w(0, S 1) +
∑T

t=2 w(S t−1, S t)] ≤ Tc.

(2.9)

We regard ζ(η(T )) and α(η(T )) as functions of c, and denote them by ζ̄(c) and ᾱ(c), respec-

tively. Then we have ᾱ(c∗) = 1 for c∗ =
(∑

u∈WT
uηu

)
/
(
T

∑
u∈WT

ηu

)
. Furthermore, we regard

g(η(T ), α) as a function of c and α, and denote it by ḡ(c, α). Then, using ḡ(c, ᾱ(c)) = 0, we have

dᾱ
dc

(c) = −
∂ḡ
∂c (c, ᾱ(c))
∂ḡ
∂α

(c, ᾱ(c))
=

T ᾱ(c)
∑

u∈WT
ηuᾱ(c)u∑

u∈WT
(u − Tc)2ηuᾱ(c)u > 0,

dζ̄
dc

(c) = −T log ᾱ(c),

and hence ζ̄(c) is increasing over (min WT , c∗) and decreasing over (c∗, max WT ). Now that
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ζ̄(c∗) = log |PT |, it is derived that the optimal value for (2.9) is given by

z∗ = max
min WT<c′≤c

ζ̄(c′) =


ζ̄(c) if c ≤ c∗,

ζ̄(c∗) otherwise,

from which we derive (2.1). □

It is not surprising that the log |PT | in (2.1), which is equal to CT, c(V , E , w) when c is

sufficiently large, coincides with the value of the maximum sum rate of the corresponding WOM

if it exists, which is determined in [3].
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Chapter 3

Examples

In this chapter, we give fine examples of the capacity region and the maximum sum rate of

WCM’s.

As examples of the state transition rule E and the cost function w of (V , E , w)-WCM, we

adopt E = E (1) or E (2) and w = w(1) or w(2) that are defined as follows.

E (1) = {(i, j) ∈ V × V | i ≤ j},

E (2) = {(i, j) ∈ V × V | i = 0 or i = j},

w(1)(i, j) = | j − i|,

w(2)(i, j) =


0 if i = j,

1 otherwise.

These E (1) and E (2) are equivalent to the state transition rules of generalized WOM’s that are

adopted in examples of [3]. We believe cost functions w(1) and w(2) are practically natural ones.

Note that if q = 2, then E (1) = E (2) and w(1) = w(2). For q ≥ 2, we denote V (q) = {0, 1, . . . , q−1}.

20



c = 0.05

c = 0.10

c = 0.15

c = 0.20

c = 0.25

c = 0.30

c = 0.5

O
R1

R2

log 2

log 2

Figure 3.1: The capacity region of (V (2), E (1), w(1))-WCM with 2 writings and c-average cost
constraint.

3.1 Capacity Region

Example 3.1. The capacity region of (V (2), E (1), w(1))-WCM with 2 writings and c-average

cost constraint is plotted in Figure 3.1 for each c = 0.05, 0.10, 0.15, 0.20, 0.25, 0.30 and 0.5.

Note that in the figure, the area hidden by the capacity region with a smaller c is also a part

of the capacity region with a larger c. Figure 3.1 is made using the fact that for 0 ≤ c ≤ 1/2 it

holds that

A2, c(V (2), E (1), w(1)) =
{
(R1, R2) : 0 ≤ a ≤ min{2c, 1/2}, R1 = h(a),

0 ≤ R2 ≤ (1 − a) · h
(
min

{
2c−a
1−a , 1/2

}) }
,

where h(x) = −x log x − (1 − x) log(1 − x) is the binary entropy function.
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(
q − 1 + T
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q − 1
T + 1
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O
c

CT, c(V (q), E (1), w(1))

R∗1

R∗2

R∗3

R∗4

Figure 3.2: The maximum sum rate of (V (q), E (1), w(1))-WCM with T writings and c-average
cost constraint (the plot is for q = 8, T = 4).

log(1 + (q − 1)T )

q(q − 1)
2(1 + (q − 1)T )

q − 1
T

O
c

CT, c(V (q), E (2), w(1))

Figure 3.3: The maximum sum rate of (V (q), E (2), w(1))-WCM with T writings and c-average
cost constraint (the plot is for q = 8, T = 4).
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Figure 3.4: The maximum sum rate of (V (q), E (1), w(2))-WCM with T writings and c-average
cost constraint (the plot is for q = 8, T = 4).

log(1 + (q − 1)T )

q − 1
1 + (q − 1)T

1
T

O
c

CT, c(V (q), E (2), w(2))

Figure 3.5: The maximum sum rate of (V (q), E (2), w(2))-WCM with T writings and c-average
cost constraint (the plot is for q = 8, T = 4).
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3.2 Maximum Sum Rate

Example 3.2. In Figure 3.2, the maximum sum rate of (V (q), E (1), w(1))-WCM with T writings

and c-average cost constraint is plotted for min WT ≤ Tc ≤ max WT .

In this case, we have WT = {0, 1, . . . , q − 1}, and an enumerative argument gives η(T )
u =(

u−1+T
T−1

)
for u ∈ WT . Thus we have

∑
u∈WT

η(T )
u =

(
q−1+T

T

)
, and if we take c∗ :=

∑
u∈WT

uη(T )
u

T
∑

u∈WT
η(T )

u

=

q − 1
T + 1

, then the maximum sum rate attains log
(

q−1+T
T

)
when c = c∗ and remains the same value

for c ≥ c∗.

In Figure 3.2, we also shows (R∗1, . . . , R∗T ) ∈ AT, c(V (q), E (1), w(1)) that attains the maximum

sum rate, that is,
∑T

t=1 R∗t = CT, c(V (q), E (1), w(1)). It seems to hold that R∗1 > · · · > R∗T , which we

have not yet succeeded in proving yet.

Example 3.3. In Figure 3.3, the maximum sum rate of (V (q), E (2), w(1))-WCM with T writings

and c-average cost constraint is plotted for min WT ≤ Tc ≤ max WT .

In this case, we have WT = {0, 1, . . . , q − 1}, and, by counting, η(T )
0 = 1 and η(T )

u = T for

u ∈ WT \ {0}. Thus we have
∑

u∈WT
η(T )

u = 1 + (q − 1)T and
∑

u∈WT
uη(T )

u

T
∑

u∈WT
η(T )

u

=
q(q − 1)

2(1 + (q − 1)T )
.

Example 3.4. In Figure 3.4, the maximum sum rate of (V (q), E (1), w(2))-WCM with T writings

and c-average cost constraint is plotted for min WT ≤ Tc ≤ max WT .

In this case, we have WT = {0, 1, . . . , min{q − 1, T }}, and an enumerative argument gives

η(T )
u =

(
q−1

u

)(
T
u

)
for u ∈ WT . Thus we have

∑
u∈WT

η(T )
u =

(
q−1+T

T

)
and

∑
u∈WT

uη(T )
u

T
∑

u∈WT
η(T )

u

=
q − 1

q − 1 + T
.

Example 3.5. In Figure 3.5, the maximum sum rate of (V (q), E (2), w(2))-WCM with T writings

and c-average cost constraint is plotted for min WT ≤ Tc ≤ max WT .

In this case, we have WT = {0, 1}, and, by counting, η(T )
0 = 1 and η(T )

1 = (q − 1)T . Thus we

have
∑

u∈WT
η(T )

u = 1 + (q − 1)T and
∑

u∈WT
uη(T )

u

T
∑

u∈WT
η(T )

u

=
q − 1

1 + (q − 1)T
.
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Chapter 4

Conclusions

In this thesis, we introduced WCM and proved the capacity region and the maximum sum rate

of WCM with such a cost constraint as restricts the average cost of rewrites.

It is another problem to construct a WCM code explicitly that satisfies some cost constraint,

and it is completely out of the scope of this thesis.

As a future work, we plan to investigate the behavior of the maximum sum rate when q goes

to infinity, and to make some proposition about an “optimal” value of q according to a given

cost constraint.
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Appendix A

The Karush-Kuhn-Tucker Conditions

In the proof of Lemma 2.5, we utilize the Karush-Kuhn-Tucker (KKT) conditions. In this chap-

ter, we give an outline of the KKT conditions to the extent needed in the proof of Lemma 2.5.

Consider the following nonlinear optimization problem.

Minimize f (x)

subject to h j(x) = 0 ( j = 1, . . . , m),

gi(x) ≥ 0 (i = 1, . . . , p).

(A.1)

Here, f : Rn → R is called the objective function, h j : Rn → R ( j = 1, . . . , m) is called the

equality constraints, and gi : Rn → R (i = 1, . . . , p) is called the inequality constraints.

The set of points in Rn that satisfy the equality and the inequality constraints, which we

denote by F = {x ∈ Rn | h j(x) = 0 ( j = 1, . . . , m), gi(x) ≥ 0 (i = 1, . . . , p)}, is called the

feasible set of the problem (A.1), and every element in F is called a feasibile point (or feasible

solution) of (A.1).

For a feasible point x̃ ∈ F and 1 ≤ i ≤ p, if it holds that gi(x̃) = 0, then we say that the

inequality constraint “gi(x) ≥ 0” is active at x̃. Conversely, if it holds that gi(x̃) > 0, then we

say that the inequality constraint “gi(x) ≥ 0” is inactive at x̃. We denote by I(x̃) the set of every
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index 1 ≤ i ≤ p such that the inequality constraint “gi(x) ≥ 0” is active at x̃, that is,

I(x̃) △= {i | 1 ≤ i ≤ p, gi(x̃) = 0}.

We say that the Linear Independence Constraint Qualification (LICQ) is satisfied at x̃ ∈ F

when gradients ∇h j(x̃) ( j = 1, . . . , m), ∇gi(x̃) (i ∈ I(x̃)) exist and are linearly independent.

Suppose that f , h j ( j = 1, . . . , m) and gi (i = 1, . . . , p) are all continuously differentiable

at x∗ ∈ F . Suppose also that x∗ gives a local minimum of the problem (A.1) and that the LICQ

is satisfied at x∗. Then the KKT conditions say that there exist multipliers λi (i = 1, . . . , p) and

µ j ( j = 1, . . . , m) such that

∇ f (x∗) =
p∑

i=1

λi∇gi(x∗) +
m∑

j=1

µ j∇h j(x∗),

λi ≥ 0, λigi(x∗) = 0 (i = 1, . . . , p).
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