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 要  旨 

今のインターネットは世界を結ぶ情報社会の基盤となっている。様々なサービスやアプリケーシ

ョンはインターネット上で増加しており、ネットワークはますます複雑になっている。このよう

な状態を打破するため新たなネットワークアーキテクチャの設計が必要となる。ソフトウェア定

義ネットワーク（SDN）は、コントロールプレーンとデータプレーンを分離するネットワークへ

の新しいアプローチである。SDNネットワークにおいて、新しいトポロジーおよびサービスを適

合させるため、ネットワークの設定を更新することは一般的である。この新しい技術を実現する

ため、OpenFlow という新しい技術を標準として導入される。OpenFlow プロトコルはコントロ

ールプレーンとデータプレーンの間の通信が可能にする。しかし、全てのネットワーク機器にお

いて設定の更新が整合性を持たなければ、不一致性による問題が生じる。この問題により、ネッ

トワークにおけるパケット損失やループなど不正確な動作が起こる可能性がある。 

 

本稿では、SDNと OpenFlowに関する関連技術を紹介し、SDNにおける不一致性問題を定義し、

先行研究を交えて議論する。そして、パケット損失とループを防止するネットワーク設定更新方

式を提案する。具体的には SDN コントロールはネットワーク設定の更新前と更新後の転送経路

を分析し、開放ループと閉合ループの有無により二つの経路間の関係を分類する。この関係を基

づいて、スイッチ設定の更新の順番を計算し、コントロールはこの順番によってネットワーク設

定を更新する。提案の正確性を検証するため、コントロール POX とネットワークエミュレータ

Mininet 上で実装しシミュレーションを行い、TCP と UDP 二つのプロトコルでリンクのスルー

プットやパケット損失を評価した。結果としては提案手法はリンクのスループットを保証し、パ

ケット損失を抑制を実現した。また上記の提案手法を実装するためには、コントローラとスイッ

チ間の遅延が大きく作用するため、コントロールとスイッチの間に遅延の測定と設置の手法を提

案し、評価を行った。最後に関連研究と比較して提案方式を議論した。 
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Abstract 
The Internet has become the foundation of the modern information society. Kinds of services 
and applications are increasing on the Internet. The network has become more complex. The 
need of redesigning the network architecture has been felt.  Software-Defined Networking 
(SDN) is a new network architecture, which separates the control plane from the data plane. 
OpenFlow is the standard protocol for communication interface between the control plane and 
data plane to realize the SDN architecture. Configuration changes are very common in the 
SDN networks to adapt a new topology and services. However, failing to perform update in 
the configurations consistently can introduce inconsistency problems. The inconsistency 
problems may cause the network to behave incorrectly such as creating of routing loops or 
misleading packets into a loop. 
In this thesis, we introduced the concept of SDN and OpenFlow briefly. We defined and 
discussed the inconsistency problems and presented a scheme to avoid loops and packet loss 
during updating network configuration by analyzing and classifying relation between a new 
forwarding path and the old forwarding path. Based on this relation, the controller calculates 
the switches order and updates the configuration of switch based on the order.  We conducted 
experiments to verify our scheme by using POX as controller and Mininet as network emulator. 
The experiments evaluated the throughput and packet loss using TCP and UDP based 
communications. The results show that our scheme can ensure the throughput and avoids 
packet loss during the network configuration update time. In order to realize the experiments, 
we also proposed an approach to measure and set the delay between controller and switches. 
Finally, we compared our scheme performance with related work.
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Chapter 1 
Introduction 
Computer network is one of the greatest innovations in the 20th century. Computer network has 
been developing for more than 40 years since Advanced Research Projects Agency Network 
(ARPANET) funded by the Defense Advanced Research Projects Agency (DARPA) of the 
United States Department of Defense.  
After decades of development, the current Internet constituents many kinds of devices such as 
NICs, hubs, switches, routes, firewalls and other middle boxes which are the physical 
foundation of the networks. And at the same time, various kinds of contents, services including 
VoIP, IP-TV, online banking, sensor networking, content delivery developing and more 
protocols are added into the stack of network devices [1]. Through these devices, services, and 
protocols, billions of computers, mobile devices and sensors connect to the network and 
communicate with each other. 
However, this increasing number of hardware and software makes networks more complicated 
and harder to control and manage. On the other side, current networks are also very difficult 
for researchers, network operators, and vendors to innovate, since it takes a long time to test 
and standardize new architectures, protocols and services [1].  
To address these problems, Open Networking Foundation (ONF) has been formed and 
dedicated to the promotion and adoption of Software-Defined Networking (SDN) through 
open standards development [2]. 
SDN is an architecture based on decoupling of the control and data planes. This new 
architecture makes the network more intelligence and enables the logically centralized 
management. The underlying network infrastructure of SDN is abstracted from the 
applications. As a result, enterprises and carriers gain unprecedented programmability, 
automation, and network control, enabling them to build highly scalable, flexible networks 
that readily adapt to changing business needs [3]. And since the control planes and data planes 
in SDN are decoupled, these two planes are able to evolve separately, thus faster innovation of 
networking technologies. 
OpenFlow is the first standard communications interface defined for exchanging information 
between the controller and forwarding layers of the SDN architecture [4]. It provides an open 
and standard way for a controller to communicate with the switches [5]. OpenFlow has caught 
attention of the researchers and the router vendors. It is developed under a clean-slate future 
Internet program by Stanford University. 
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Software Defined Network defines a centralized architecture, and this centralized approach 
introduces various challenges in terms of consistency.  
The consistency update [6] from one configuration to another configuration in SDN 
guarantees that every packet flowing in the network is forwarded according to either the 
configuration prior to the update or the configuration after the update. If inconsistency update 
occurs during changes of network topology such as due to host migration, link state change, 
switch failure, or policy changing on load-balancing, resource sharing and security, the 
network may behave incorrectly and cause loops, packet loss and violations of policies. This 
kind of packet loss or loop cannot be tolerated. Packet loss may cause a session break or 
stopping of service such as interruption of HTTP applications and packet loop may cause 
broadcast storm and network congestion. Therefore, when the controller updates the data 
plane’s forwarding rules, the controller must be capable to handle the inconsistency problem. 
Contributions 
In this thesis, we proposed a scheme to update network configuration to avoid packet loss and 
loop in SDN. We conducted experiments to verify the correctness and performance of our 
scheme. The results show that our scheme can ensure the throughput and avoid packet loss 
during the network configuration update time. 
Thesis overview 
The rest of this thesis is organized as follows: 

In Chapter 2, we introduce the background of software-defined networking and 
OpenFlow protocol. 
In Chapter 3, we introduce and define the inconsistency problem 
Chapter 4 proposes the update scheme for network configuration without packet loop 
and loss. 
In Chapter 5, we conduct experiments to verify the correctness and performance of 
our scheme. 
In Chapter 6, we discuss our scheme and compare our scheme with related works. 
In Chapter 7 presents the conclusion of this thesis. 
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Chapter 2 
Background 
Current networks have many limitations because of increasing of number of devices, services, 
contents and protocols. SDN and OpenFlow change the way to address the network problems. 
This chapter first introduces the current network limitations briefly and then provides the 
concept of SDN and OpenFlow. 
2.1 Limitations of current networks 
The current networks have been in use for many years and gained great success both in the 
academic and industrial field based on the hierarchical network architecture [15]. However, 
since the TCP/IP computer network was designed 40 years ago and with the development of 
technology and service, the complexity of network configuration and Internet traffic is 
increasing time by time, and the past design of network cannot meet the current and future 
requirements. Due to the integrated control plane and data plane, the innovation of network is 
slow and it makes the network equipment expensive. Many limitations of current networks 
hinder the development of network. 
Distributed Control:  
The networks are composed of many kinds of devices such as switches, routers and firewalls. 
The control software running in these devices are complex and distributed. Each devices is 
controlled by itself and cannot obtain a whole view of the network.  
Hard to Management: 
Due to distributed control, network management has become very complex. Network 
operators have to control and configure each device using different low-level configuration 
interfaces that vary across venders [9].  
Difficulty to Extend: 
Since the current network is a distributed control system and consists of numerous devices, 
any part of network change will lead to reconfiguration of all of these devices. It takes a long 
time to compute and install new configurations and to assure that the new network works well.  
Expensive Equipment: 
Current network devices are composed of both software and hardware. The most expensive 
part, control software contains millions of lines of source codes and the control software 
cannot be customized by customers even though there may be many functions that the 
customer may not need.  
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Slow Innovation [11]: 
Current standardizing process is slow. It takes several years to improve the prototype perfectly 
and over 10 years to standardize. Even many good research ideas proposed by researchers 
cannot be tested at scale and on real networks with real user traffic. 
Therefore, to manage networks easily, reduce network expenses, make network innovation fast 
and meet future requirements, we need a new technology with a clean-slate approach. 
Following subsections introduce the technology of software-defined networking and 
OpenFlow. 
2.2 Software Defined Networking 
Software Defined Networking (SDN) has originated from the Clean Slate project in Stanford 
University since 2006 [14] and first proposed by Professor Mckeown in 2009 [11]. SDN is a 
new approach to networking in which the network control is decoupled from the data 
forwarding function and is directly programmable [7]. It logically centralizes the network 
intelligence and state, and reduces network complexity through automation by writing 
program. And with the separation of the control and data planes, network switches become 
simple forwarding devices and the control logic is implemented in a logically centralized 
controller, simplifying policy enforcement and network configuration and evolution [12][13]. 
2.2.1 Overview of SDN Architecture 
Figure 2- 1shows an overview of SDN architecture proposed by Open Network Foundation 
(ONF) [8]. The application layer, control layer and infrastructure layer are the main three parts 
in SDN architecture. 
Application Layer (SDN Application) – The application layer defines all the features, 
services and policies in the network. This layer uses an abstract network view provided by 
controller to make decision and realize services and policies. Application layer consists of an 
SDN Application (APP) and a Northbound Interface (NBI) driver. The SDN APP is the main 
body of logic control to the network and the NBI driver is an interface to communicate with 
controller layer via NBI. 
Control Layer (SDN Controller) – Located in the central position of SDN architecture. This 
layer communicates with network devices and obtains abstract view of network. It controls the 
network devices’ behavior according to the application layer, and provides the abstract view of 
network to the application layer such as statistics, events and topology. This layer consists of 
an SDN control logic, an NBI agent via which control layer communicates with application 
layer, and an SDN Control Data Plane Interface (CDPI) via which the control layer 
communicates with the data plane. 
Infrastructure Layer (Data Plane) – This layer is a collection of network devices. Devices in 
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this layer are connected with each other physically. It forwards and processes packets as the 
controller commands and knows nothing about the information of network. This layer consists 
of a CDPI agent via which the data plane communicates with the control plane and a 
forwarding engine or processing function to forward and process packets. 
SDN Northbound Interfaces (NBI) – NBI is an interface between the application layer and 
the control layer.  The control layer provides application programming interfaces and abstract 
network views to the application layer.  
SDN Control to Data Plane Interfaces (CDPI or Southbound Interfaces) – CDPI is an 
interface between the control layer and the infrastructure layer. This interface provides least 
programmatic control of all forwarding operations, capabilities advertisement, statistics 
reporting, and event notification. 
 

 
‘ 
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Figure 2- 1 Overview of SDN architecture 
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2.2.2 Benefits of SDN 
The separation of control plane and data plane brings many benefits compared with the current 
network architecture. Some benefits are as following. 
Programmable – Since the control logic is decoupled from the data plane and centralized to 
one location, and this control logic knows the abstract of network view, it is easy to use this 
feature to program the network directly.  
Easy to Extend – Based on the programmable feature, the complexity to extend a network is 
reduced. Network administrators do not have to configure devices directly. The program on 
the controller reconfigures the network automatically.  
Fast Innovation – Since the control plane and data plane are decoupled, these planes can 
evolve independently. Like the OSI reference model, each layer can develop its own new 
technology without affecting the other. 
Cheap Equipment – Everyone could produce their own SDN equipment as long as their 
products follow the SDN standards.  
2.2.3 SDN Controller 
SDN controller is the most important part in the SDN architecture. It is the “brain” of the 
network. SDN controller abstracts the data plane and provides a whole view of network and 
installs applications’ deployment to the data plane. SDN controller can also be regarded as a 
network operating system (NOS).  
The most well-known NOS in current networking is the Cisco IOS [21]. While in SDN, 
numbers of NOS have been created developed. Figure 2- 2 shows a SDN controller platform. 
This platform is based on the analysis of different SDN controllers and extracted common 
elements to provide a best attempt to use and research controller [13]. 

Following are some well-known controllers. 
Floodlight [22] 
Floodlight Open SDN Controller is an enterprise-class controller licensed by Apache. It fully 
supports OpenFlow 1.0 and 1.3 and experimentally supports OpenFlow 1.1, 1.2 and 1.4 with 

 
Figure 2- 2 SDN controller platform 
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easy-to-use, version-agnostic APIs. Floodlight uses Java programming language and has the 
latest version v1.1 released in April 2015. 
OpenDaylight [23] 
OpenDaylight is a highly available, modular, extensible, scalable and multi-protocol controller 
infrastructure built for SDN deployments on modern heterogeneous multi-vendor networks. 
OpenDaylight is licensed by Eclipse Public License (EPL-1.0) and uses Java as programming 
language. The latest release is third release, called LITHIUM, released in June 2015.  
Trema [24] 
Trema provides a high-level OpenFlow library and a network emulator that can create 
OpenFlow-based networks for testing on PC. It uses C and Ruby as programming language 
and is licensed by GNU General Public License version 2.0 (GPL-2.0). The latest version is 
v0.9.0 (unreleased). 
Ryu [25] 
Ryu is a component-based software defined networking framework. Ryu supports OpenFlow, 
Netconf, OF-config, etc. Ryu fully supports OpenFlow version 1.0, 1.2, 1.3, 1.4, 1.5 and 
Nicira Extensions. All the code is freely available under the Apache 2.0 license. Ryu uses 
Python as programming language. The latest release is v3.28 (January 2016). 
Beacon [26] 
Beacon is a Java-based open source OpenFlow controller. It supports to start and stop existing 
applications or new applications at runtime. Beacon is now licensed by BSD. The current 
v1.0.4 is released in September 2013.  
POX [27] 
POX is an open source development platform written in Python. It is a sibling of NOX [28]. It 
currently supports OpenFlow 1.0 and a number of the Nicira extensions. The current version 
of POX is 0.3.0 (dart). 
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The following table is a comparison between SDN controllers. 
Table 2- 1 SDN controllers 

Name Northbound API License Programming 
Language 

Version 

Floodlight RESTful API Apache 2.0 Java V1.1 
OpenDaylight REST,RESTCONF EPL-1.0 Java LITHIUM 
Trema Ad-hoc API GPL-2.0 Ruby V0.9.0 
Ryu Ad-hoc API Apache 2.0 Python V3.28 
Beacon Ad-hoc API BSD Java V1.0.4 
POX Ad-hoc API Apache 2.0 Python V0.3.0 
2.2.4 ONF Standardization Activities 
Technical communities in the Open Networking Foundation are organized to promote the 
adoption of SDN. Only ONF member companies and their representatives can participate in a 
variety of ways to fulfill ONF’s missions [16]. The technical communities in ONF handle 
specific issues related to SDN and collaborate with the world’s leading experts regarding SDN 
concepts, frameworks, architecture, software, standards and certifications. Four main areas is 
focused: Operator, Services, Specification and Market.  
Operator Area 
The Operator Area works to gather and validate network operator requirements, priorities, 
tradeoffs, and vision [17]. 
Table 2- 2 ONF Operator Area activities 

Fields Focus 
Carrier Grade SDN Focus on the unique needs of carrier operators of SDN 

environments. 
Data Center Content to come 
Enterprise Content to come 
Migration Produce methods and recommendations for migrating 

network services from a traditional network to an 
OpenFlow-based software defined network 
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Services Area 
The Services Area works on technical projects to enable applications and network operator 
services with SDN technologies [18]. 
Table 2- 3 ONF Services Area Activities 

Fields Focus 
Architecture & 
Framework 

Help standardize SDN by defining the broad set of 
problems that the SDN architecture needs to address 

Information Modeling Responsible for a Core Information Model and forwarding 
technology-specific information models  

L4-7 Services Focuses on end-to-end services that require various L4-L7 
functions and chaining 

Northbound Interfaces Develops concrete requirements, architecture, and working 
code for northbound interfaces 

Security Carry out the analysis of security issues with SDN and 
promote discussion of security considerations and 
recommendations  

Specification Area 
The specifications area is responsible for publishing all ONF technical specifications [19]. 
Table 2- 4 ONF Specification Area activities 

Fields Focus 
Open Datapath Maintain and evolve the OpenFlow protocol and associated 

datapath modeling technologies 
OF-Config Address core Operations, Administration, and Management  

issues 
Open Transport Address SDN and OpenFlow Standard-based control 

capabilities for transport technologies of different types 
Protocol Independent 
Forwarding 

Identify and employ SDN and OpenFlow standard based 
technology in mobile networks 

Mobile Networks  Develop an interpreter for an Intermediate Representation  
Testing & 
Interoperability 

Accelerate the development and adoption of the OpenFlow 
Standard 
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Market Area 
The Market Area’s primary goals are to educate the SDN community on the value proposition 
of software-defined networks based on ONF Standards and promoting adoption for open SDN 
[20]. 
Table 2- 5 ONF Market Area activities 

Fields Focus 
Liaisons Establish relationships with a variety of organizations to 

partner and address issues of common concerns and 
collaborate on shared interests 

Proofs of Concept   
Publications   
SDN Solutions Showcase Highlight the adoption of SDN technologies 
Skills Certification   
Workshops   

2.2.5 Challenges of SDN 
Since SDN is a very new architecture compared with other concepts, a lot of ongoing research 
on SDN has been recently pursued in the world. The topic of SDN is the hottest field in the 
most top conferences in recent years. There are some challenges in SDN as following: 
The design of forwarding plane 
The forwarding plane can be designed as hardware or software. The hardware forwarding 
plane has a high packet forwarding rate whereas the software forwarding plane can be 
reconfigured easily when needed. As the evolution of networking, it is important to increase 
packet forwarding rate and support the network programmability. 
Scalability and distribution of control plane 
In many medium-size networks, the latency from every node to a single controller can meet 
the response-time goals of existing technologies. However, as the size of networks gets larger 
and larger, we need to consider where and how many controllers to deploy in the networks and 
how these controllers can get a consistency view of the network and the control plane [29]. 
Speed and availability of controller processing 
The controller has to obtain the abstraction of data plane and control the behavior of data plane. 
As the services and contents increasing, how to improve the speed and availability of 
controller processing is important [29]. 
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Testing techniques 
In large-scale networks, one challenge is to detect and resolve security policy violation and to 
test and verify forwarding tables to find routing errors due to the frequent changes in routing 
state [13]. How to design and develop testing tools is also a very important issue in SDN.  
Language for controller API 
Like computer programming languages switched from low-level languages (assemble 
languages) to high-level languages (C, Python) [13], the programming languages for 
networking is also needed to switch from a low-level languages to a high-level languages 
which can abstract the data plane and make programming tasks easier [30]. 
Besides the above points, there are many other issues that need to be solved such as security 
issues, design of north/south bound interfaces, and application, and virtualization.   
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2.3 OpenFlow 
In order to realize SDN architecture, there needs some methods for the control plane to 
communicate with the data plane. The Open Networking Foundation (ONF) introduced 
OpenFlow which enables remote programming of the forwarding plane. OpenFlow is the first 
standard communications interface between the data plane and control plane and a vital 
element in SDN architecture [4]. Following is a brief introduction about OpenFlow based on 
OpenFlow Switch Specification Version 1.0.0 released in December 2009 [31]. 
2.3.1 Requirements in OpenFlow based switches  
An OpenFlow based switch has two parts as shown in Figure 2- 3: secure channel and flow 
table. OpenFlow switch communicates with a controller over the secure channel by using 
OpenFlow protocol. The controller configures and manages devices and receives events form 
data plane through the secure channel interface. Transport Layer Security (TLS) is one choice 
to establish a secure connection over OpenFlow protocol.  

The flow table contains a set of flow entries, activity counters and actions. Packets entering 
into switches are processed according to the flow entries. If a matching entry is found, the 
action in this entry is applied to the packet and if no matching entry is found, the packet is 
forwarded to the controller over the secure channel. 
2.3.2 Flow table 
A flow table contains a set of flow entries, consisting of header fields, counters, and actions.  
The header field is matched against packets and contains a specific value, or ANY. Table 2- 6 
lists the layers and fields a header field can match. OpenFlow v1.0 supports 12-tuple match 

 
Figure 2- 3 An OpenFlow switch communicates with a controller 
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Controller
OpenFlow
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OpenFlow Switch



14 
 

fields and if the switch supports subnet masks on IP fields, these can more precisely specify 
matches. 
The counter field is to record the static network information. This field is updated as a flow 
entry is matched.  Counters can obtain information of network on per-table, per-flow, per-port 
and per-queue. Table 2- 7, Table 2- 8, Table 2- 9, and Table 2- 10list the counters used in 
statistics messages. 
Table 2- 6 Match fields and lengths 
Layer Field Length (number of bits) 
L1 Ingress port Implementation dependent 
L2 Ethernet source address  48 

Ethernet destination address  48 
Ethernet type 16 
VLAN id 12 
VLAN priority 3 

L3 IP source address 32 
IP destination address 32 
IP protocol 8 
ToS 6 

L4 Transport source port / ICMP type 16 
Transport destination port / ICMP 

code 
16 

Table 2- 7 Per Table Counter 
Counter Length (number of bits) 
Active Entries 32 
Packet Lookups 64 
Packet Matches 64 
Table 2- 8 Per Flow Counter 
Counter Length (number of bits) 
Received Packets 64 
Received Bytes 64 
Duration (seconds) 32 
Duration (nanoseconds) 32 
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Table 2- 9 Per Port Counter 
Counter Length (number of bits) 
Received Packets 64 
Transmitted Packets 64 
Received Bytes 64 
Transmitted Bytes 64 
Receive Drops 64 
Transmit Drops 64 
Receive Errors 64 
Transmit Errors 64 
Receive Frame Alignment Errors 64 
Receive Overrun Errors 64 
Receive CRC Errors 64 
Collisions 64 
Table 2- 10 Per Queue Counter 
Counter Length (number of bits) 
Transmit Packets 32 
Transmit Bytes 64 
Transmit Overrun Errors 64 
The action field dictates how the switch processes packets matched with the flow entry. If no 
forward actions in the flow entry, the switch drops the packets. The action field supports four 
kinds of actions: Forward, Enqueue, Drop, and Modify-Field. 
Forward action is either required action or optional action. Table 2- 11 lists the Forward 
action’s classification. OpenFlow-compliant switches are of two types: OpenFlow-only and 
OpenFlow-enable. The required action is supported only by OpenFlow-only switches, whereas 
the optional action is also supported by the NORMAL action. Either type of switch supports 
FLOOD action. 
Enqueue action is an optional action. It forwards a packet through a queue attached to a port. 
Drop action is a required action. If there is no action specified in a flow entry, the packet 
matching this flow entry is dropped. 
Modify-Field action is an optional action. This action can modify the contents in a packet. 
Generally, VLAN ID/priority can be set, VLAN header can be stripped, and Ethernet 
source/destination MAC address, IPv4 source/destination address, IPv4 ToS bits, and transport 
source/destination port can be modified. Switches do not necessarily support this action but 
the specification suggests that VLAN modification be supported.  
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Table 2- 11 Forward action’s classification 
Required/Optional Action Action name Description 
Required Action - Forward out from assigned port 

ALL Send the packet out all interfaces, not 
including the incoming interface 

CONTROLLER Send the packet to controller 
LOCAL Send the packet to the switches local 

networking stack 
TABLE Perform actions in flow table 
IN_PORT Send the packet out the input port 

Optional Action NORMAL Performance as a traditional switch 
FLOOD Flood the packet along the minimum 

spanning tree, not including the incoming 
interface 
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2.3.3 Matching 
Matching occurs every time a packet enters a switch. The switch looks up the flow entry 
according to the header of the packet and if the flow entry is matched with the header, the 
packet is processed as the action field indicates.  
Figure 2- 4 shows how a packet is processed inside the switches and Figure 2- 5 shows how 
header fields are parsed. 

 
Figure 2- 4 Packet processing in switch 

 
Figure 2- 5 Flowchart of header fields parsing process 
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2.3.4 OpenFlow Protocol 
There are three types of messages in OpenFlow protocol: controller-to-switch message, 
asynchronous message, and symmetric message.  
The controller-to-switch message is initialed by the controller and the switch may or may not 
respond the message according to the sub message type. Table 2- 12 lists the sub-type 
messages of controller-to-switch messages. 
The asynchronous message is a message sent by switches to the controller. This message is 
used to send packets with no matched flow entry, notify switch’s state change, or inform error 
in switch. Table 2- 13 lists he sub-type messages of asynchronous message.  
The symmetric message is a message initialed either by the controller or by a switch. Table 2- 
14 lists the sub-type messages of symmetric message. 
Table 2- 12 Sub-type Messages of Controller-to-switch 

Message Description 
Features Request the capabilities supported by switch. 
Configuration Set and query configuration in the switch. 
Modify-State Add, delete and modify flows in the flow table and set switch port properties. 
Read-State Collect information from switches 
Packet-Out Direct switch to send packets out of a specified port 
Barrier Ensure the message switch received have been completely implemented  
Table 2- 13 Sub-type Messages of Asynchronous 

Message Description 
Packet-In Forward packets, which have no matching flow entry, to controller. 
Flow-Removed Notify controller that a flow entry is removed. 
Port-Status Notify controller about the status change of port 
Error Notify controller about problems or errors in switch. 
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Table 2- 14 Sub-type Messages of Symmetric 

Message Description 
Hello Exchanged between switch and controller 

upon connection startup 
Echo Echo request/reply messages sent by either 

controller or switch and must be replied 
Vendor For future vendor’s additional functions  
 
2.3.5 OpenFlow Message construction 
This section introduces formats of some OpenFlow messages. 
OpenFlow Header 

OpenFlow message is started from an OpenFlow header. Each header contains a version field 
specifying the OpenFlow protocol version, a type field indicating the message type, length 
field indicating the total length of message and xid field as identifier. 
Packet-In Message 

The reason field in Packet-In message indicates the reason switch forwards the packet to 
controller. Two reasons are specified: no match flow and action explicitly output to controller. 

 
Figure 2- 6 OpenFlow Header 
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Figure 2- 7 Packet-In Message 
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Packet-Out message 

 
Flow-Modify Message 

The command field indicates that how controller directs the switch to process the flow entry. 
This field can contain one of the following commands: 

OFPFC_ADD: Install a new flow entry. 
OFPFC_MODIFY: Modify all matching flows entry. 
OFPFC_MODIFY_STRICT: Modify flow entry strictly matching wildcards 
OFPFC_DELETE: Delete all matching flows entry. 
OFPFC_DELETE_STRICT: Strictly match wildcards and priority. 

 
Figure 2- 9 Flow-Modify Message 
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Figure 2- 8 Packet-Out Message 
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Chapter 3 
Inconsistency Problem 
SDN decouples the control plane and data plane and enables centralized management on 
control plane. But this method is also facing many problems in terms of consistency and 
performance. 
Similar to traditional networks, the network topology and configuration in SDN change time 
to time for routing, load balancing, etc. The controller in SDN has to update the configurations 
of switches in the data plane according to the topology change.  However, the data plane is 
actually a distributed system and, as most of other distributed systems, it encounters CAP 
theorem (also known as Brewer's theorem) [32]. 
The CAP theorem shows that it is impossible for a distributed computer system to provide the 
following three guarantees: consistency, availability, and partition tolerance. The systems have 
to be trade-off on these three aspects. The same problem also exists in SDN [33]. In the 
following subsections, we discuss SDN from the aspect of inconsistency in the network state. 
3.1 Problem Definition 
In the traditional network, the inconsistency problem has been researched for many years. 
Many protocols and methods have been proposed to solve the inconsistent behavior during 
reconfiguration of the network. These protocols and methods solve some aspects of network 
such as in the field of BGP [34], IGP [35], OSPF [36], and some other routing protocols. 
Many researchers have noticed the same inconsistency problem in SDN and done much 
research on this problem. To address the inconsistency problem, the author in [6] defined the 
inconsistency problem into two levels: per packet consistency and per flow consistency. 
Per packet consistency: the per packet consistency update guarantees that when a 
configuration update occurs, every packet in the network is processed either using the 
configuration rules existing prior to the update, or the configuration rules existing after the 
update. 
Per flow consistency: the per flow consistency update guarantees that all packets of a flow are 
processed by the same version of the configuration rules.  
3.2 Related Work 
In [6] [42], the authors provided a two-phase commit for per-packet consistency. The 
two-phase commit installs new configuration rules assigned with a new version number in the 
internal network and then installs the new configuration rules assigned with the new version 
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number in the ingress switch. The ingress switch tags new packets with the new version 
number and when all packets with the old version number go out of network, the old 
configuration rules are deleted. But since the switches have to save two versions of 
configuration rules for some time, this method wastes the memory resource of switches, such 
as TCAM. It thus incurs high hardware cost, high power consumption and heat generation, and 
may result in lowering the switch capacity [37]. For per-flow consistency update mechanisms, 
the authors purposed three implementations: switch rules with timeouts, wildcard cloning, and 
end-host feedback. However, the latter two of these three implementations are not dependent 
on OpenFlow technology. 
In [38], the authors proposed an incremental consistent update algorithm. This algorithm 
breaks an update into K rounds and in each round the algorithm moves a part of traffic to the 
new configuration. This algorithm reduces rule spaces by increasing the update time. However, 
it can only guarantee the packet-level consistency, not the flow-level consistency. 
In TIMECONF [39] method, the controller enforces coordinated updates by incorporating a 
scheduled execution time, T, in every configuration message. Thus, every update procedure 
starts with an offline preprocessing stage, where the controller computes the update time T and 
distributes the configuration messages. Consequently, every switch executes the configuration 
update at the scheduled time, T, and thus all updates are performed during the period (T-d; 
T+d), where d denotes the clock synchronization accuracy in the system. 
In [40], authors proposed a method in which switches send all packets affected by the update 
procedure to the controller. The controller caches the packets and update switches’ 
configurations. When all switches have been updated, controller sends the packets back to 
switches. This method consumes bandwidth between the controller and switches.  
In [41], the authors proposed a K-prefix covering scheme to guarantee flow-level consistency. 
This scheme computes K optimal prefixes, which can cover existing flows by collecting the 
header information. Then it installs the new rule and K old sub-rules with lower and higher 
priorities, respectively. When the old rules reach time out, the new rules come into effect. 
In [43], the authors proposed an updating method based on classification of rules. In this 
method, the controller first divides the network devices into two parts, entry network devices 
and other network devices, and then divides flow entries into four parts: new flow entry, 
shared flow entry, deleted flow entry, and modified flow entry. Based on these classifications, 
the controller installs and deletes different kinds of flows in different types of switches.  
In [44], the authors discussed where to place the controller and how many controllers are 
needed to satisfy the requirement of network on the basis of the analysis of the average latency 
and the worst-case latency.  
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3.3 Example of Inconsistency Problem 

Example 1. Per packet consistency 
Figure 3- 1 shows an example of inconsistency problem [45]. Three switches and two hosts are 
in the network topology.  
Loop 
The delay between switch1 and switch2 and between switch1 and switch3 are 20ms, the delay 
between switch2 and switch3 is 70ms. The controller runs an application that forwards packets 
along the link with a minimum delay. 
Initially, the link between switch1 and switch3 is down, the packets from host1 to host2 are 
forwarded via switch1 and switch2 and the link delay is 90ms. At some time, the link between 
switch1 and switch3 is up. Then the minimum delay between host1 and host2 is 20ms via 
switch1 and switch2. When controller detects this change, controller updates the 
configurations in every switch to forward the packets. However, if the switch1’s configuration 
is updated prior to switch2’s, then the packets from switch1 towards switch2, will be sent back 
to switch1 by switch2 because at this time the minimum delay from switch2 to host2 is via 
switch1. And loop happens between switch1 and switch2.  
Packet loss: 
Another situation is that at first packets are forwarded along the path with switch1 and switch3, 
and then forwarded along the path with switch1, switch2, and switch3. So the controller has to 
update switch1 and switch2. However, if swich1 is updated before switch2, the packet is 
forward towards switch2 where there is no rule for these packets in switch2, thus the packets 
loop between switch1 and switch2. 

 
Figure 3- 1 Example of inconsistency problem – per packet consistency 
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The switch1’s configuration is updated prior to switch2’s due to the differences in the delay 
between switches and controller or differences in the process speed of different switches.  

Example 2. Per flow consistency 
Figure 3- 2 shows another inconsistency problem. Three switches and two hosts are in the 
network topology. Host2 is a replica of host1. Switch1 acts like a load balancer.  
Initially, flows from A (say A as a network) are forwarded to host1 via switch1 and switch2. At 
some time, controller detects that the load of host1 or the bandwidth between switch1 and 
switch2 is getting heavily used. The controller switches the flow from the upper link to the 
lower link in Figure 3- 2. But the controller has to process carefully so that the flow is not 
divided into two parts, of which one part gets forwarded to host1 and another to host2. This 
will cause the service broken. 
Another problem in this network topology is that if the switch3’s configuration is updated later 
than switch1’s, switch1 will forward packets and flows to switch3, and since switch3 has not 
been updated yet, the packets will be lost between switch1 and switch3. Although switches 
may send the packets to controller because no rules match to these packets, but since at this 
time, the controller has sent the new rules to switches and due to delay between switches and 
controller, the new rules have not been installed yet, but controller’s status has changed. If the 
application in controller doesn’t handle it very well, the controller may not know how to 
process these packets but dropped.  
The inconsistency problem could cause packets loss, loop, and flow break if the controller 
does not handle the update carefully. It is very important that the controller is capable to 
handle the inconsistency problem. 

 
Figure 3- 2 Example of inconsistency problem – per flow consistency 
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Chapter 4 

Network configuration update scheme 
In this part, we will introduce our proposed scheme to update network configuration. This 
scheme can update network configuration without loop and packet loss. It analyzes the old and 
new configurations and computes a correct updating order for the switches.  
4.1 Assumptions 

a) Data plane is simply forwarding packets based on destination IP addresses; 
b) Data plane does not modify any packet header by neither old nor new rules (except 
modification of destination IP address in type II, see 4.4.1 type II relation); 
c) One rule is exactly matched by one flow. That is, no two rules are matched by the same 
flow. 

Based on the assumptions, the controller analyzes old and new rules and classifies the relation 
between old and new paths into two types according to whether an open loop is included in the 
graph surrounded by the new and old paths.  
4.2 Basic concept 
Before introducing the scheme, we first clarify some concept concerning with the scheme. 
This section introduces the concept of path, new path, old path, loop, open loop, etc. used in 
the description of the network configuration updating procedure. 
Path: 
A path is a finite or infinite sequence of edges, which connect a sequence of distinct vertices. A 
forwarding path is a path with finite sequence of links (edges), which connect a sequence of 
switches and hosts (vertices). Figure 4- 1 shows a path composed of two hosts and two 
switches. 
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New path and old path: 
A new path is a path after the network configuration is updated. An old path is a path before 
the network configuration update. Figure 4- 2 shows new path and old path.  
If packets first flow along with path [h1, s1, s2, s3, h2] and then flow along with path [h1, s1, 
s4, s5, s3, h2] or along with path [h1, s1, s4, s5, h3], then path [h1, s1, s2, s3, h2] is old path 
and path [h1, s1, s4, s5, s3, h2] or path [h1, s1, s4, s5, h3] is the new path. 

Loop: 

 
Figure 4- 1 Path 
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Figure 4- 3 Loop 
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Figure 4- 2 New path and old path 
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A loop is a closed path that starts and ends at the same vertex and does not travel to any vertex 
twice. A loop is also a closed loop with an ingress and an egress. Figure 4- 3 shows a loop 
composed of four switches [s1, s2, s3, s5, s4]. s1 is the ingress vertex and s3 is the egress 
vertex. 
Open loop: 
An open loop is a loop with only ingress and no egress. An open loop is surrounded by old 
path and new path. Figure 4- 4 shows [h2, s3, s2, s1, s4, s5, h3] as the open loop and s1 is 
ingress.  

4.3 New and old forwarding path relation analysis 
A current forwarding path will change to a new forwarding path due to a network status 
change. Basically, there are two types of path change scenarios:  

(1) Path changes but the source host and destination host are the same, and 
(2) Path changes and the destination host also changes.  

The first scenario may occur in the situation of link or switch up (or down), link congestion or 
long latency, in which the network has to find a new path to forward packets to the destination. 
The second scenario may occur in the situation of load balancing, in which the network has to 
forward traffic to a new replica of a server. 

 
Figure 4- 4 Open loop 
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Intuitively, based on the above two kinds of change scenarios, the relation between new and 
old paths can be classified into two types according to whether an open loop is included in the 
graph surrounded by the new and old paths. 

Type I relation 
Figure 4- 5 shows type I relation. Path[H1,S1,S2,S3,S6,H2] is old path and 
Path[H1,S1,S4,S2,S3,S5,S6,H2] is new path. In this type, all packets forwarded along with the 
path finally go to the same destination (H2) and there is no open loop, which means for any 
ingress (S1, S3), there is an egress (S2, S6). 

Type II relation 
Figure 4- 6 show type II relation. Path [H1,S1,S2,S3,H2] is the old path and Path 
[H1,S1,S4,S5,H3] is the new path. In this type, packets are forwarded to another destination 
(H1) and there is one and only one open loop. That is, for ingress (S1) there is no egress 
vertex. 

 
Figure 4- 5 Type I relation: No open loop 
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Figure 4- 6 Type II relation: one and only one open loop 
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We can prove that there is no open loop in the first type because if there is an open loop, there 
would be an ingress with no egress, and packets would be forwarded to another host and 
cannot be forwarded back to the original host since a path cannot traverse to any vertex twice. 
And also in the second type, there is only one open loop because if there is no open loop, 
packets will be forwarded to the same host and if there are more than one open loop, a path 
will traverse some vertices twice. 
4.4 Loop-free and no packet loss update scheme 
In this section, we introduce the update scheme. We first summarize the update procedure by 
showing how the scheme guarantees no packet loss and then describe how the scheme 
guarantees loop free updates. 
4.4.1 No packet loss update 
No packet loss update is classified according to the type I relation or type II relation. Since 
Type II relation may contain type II relation, we first describe type I relation update scheme, 
and by using type I relation update scheme, we describe type II relation update scheme. 
Type I relation 

Figure 4- 7 shows the simplest type I relation. Old path [H1, S1, S2, S3, S6, H2], and new path 
[H1,S1,S4,S5,S3,S6,H2] compose only one closed loop [S1,S4,S5,S3,S2,S1]. S1 is ingress and 
S3 is egress vertix. In order to update from the old path to new path with loop free and no 
packet loss, controller first updates all the inner switches on new path and egress switch (S4, 
S5, S3) remaining ingress S1 and old path switch S2. During this period, packets are 
forwarded via S1, S2 and S3 that incurs no packet loss. Once the controller completes 
updating inner and egress switches, it updates ingress S1 and sets a timeout on the old rule in 
S2, then packets are forwarded to the new path and packets in-flight in the old path will still be 
forwarded to the correct destination without loss. Old rules in S2 will be timeout and removed 
automatically once in-flight packets in the old path are all out of the network. 

 
Figure 4- 7 Type I relation with one loop 
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We summarize the update procedure for type I relation as following: 
1. Find out closed loops in type I relation; 
2. Determine ingress and egress of each closed loops; 
3. Update inner switches on the new path of closed loop first; 
4. Wait for all switches update completed in step 3; 
5. Update ingress and set a timeout on inner switches on old path of closed loop; 
6. Repeat step 3 to step 5 for each closed loop. 

 

Figure 4- 8 shows type I relation with more than one closed loop. We can see these closed 
loops as some different independent closed loops and update one by one following the 
procedure mentioned above repeatedly. Because for each closed loop, it can guarantee 
loop-free and no packet loss, the controller can update the whole network with loop-free and 

 
Figure 4- 8 Type I relation with more than one loop 
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Figure 4- 9 Type I relation with two loops connected by on switch 
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no packet loss. 
Figure 4- 9 shows a special situation where two closed loops are connected by one switch. In 
this situation, the first closed loop’s egress is the second closed loop’s ingress vertex. Under 
the assumption the “data plane is simply forwarding packets based on destination IP 
addresses”, new rules in the switch are separated into two parts: one part belonging to the 
previous closed loop and the other part belonging to the latter closed loop. This kind of 
topology can be updated following the procedure of type I as well. 
Type II relation 

Figure 4- 10 shows the type II relation. Path [H1,S1,S2,S3,S6,H2] is the old path and 
path[H1,S1,S4,S2,S3,S5,S7,H3] is the new path. [S1, S4, S2] compose a closed loop where S1 
is ingress and S2 is egress. [H2, S6, S3, S5, S7, H3] composes an open loop where S3 is 
ingress and there is no egress for it. Host H3 could be a replica of host H2. S3 modifies the 
header of packets destined for H3 for load balancing. In order to update from the old path to a 
new path with loop free and no packet loss, the controller first updates the closed loop by 
following the procedure mentioned in type I relation. Then the controller updates switches on 
the new path of open loop S5 and S7. During this period, packets are still forwarded to H2 
with no packet loss. After this completion, the controller updates the ingress S3 and sets a 
timeout on S6’s rule. Then packets from H1 will be forwarded to H3. Packets in-flight in the 
old path will still be forwarded to H1 without any loss. Old rules in S6 will be timeout and 
removed once all in-flight packets are out of the network. 
For type II relation, we summarize the update procedure as follows: 

1. Find out closed and open loops; 
2. Update closed loops; 

 
Figure 4- 10 Type II relation with a closed loop and an open loop 
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3. Determine ingress of open loop; 
4. Update switches on new path of open loop; 
5. Wait for all switches update completed in step 4; 
6. Updated ingress and set a timeout on old path of open loop. 

Figure 4- 11 shows a special situation that the last closed loop’s egress may be the open loop’s 
ingress. Controller can also update the network configuration by using the procedure described 
above. 
4.4.2 Loop free update 
Consider the topology shown in Figure 4- 12, which is a loop-prone topology. Suppose that the 
current forwarding path is [H1,S1,S4,S2,S3,S5,S6,H2], shown by the solid line and new 
forwarding path is [H1,S1,S2,S3,S4,S5,S6,H2] shown by the dotted line. This forwarding path 
can be classified as Type I relation, thus we can use the Type I update scheme to update this 
network.  

 
Figure 4- 11 Type II relation with closed loop and open loop connected by switch S2 
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Figure 4- 12 Loop-prone topology 
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The controller finds out all the closed loops in the network: loop [S1,S4,S2] and loop 
[S3,S4,S5]. The controller first updates the loop [S1,S4,S2], as shown in Figure 4- 13. For 
now the packets are forwarded via [S1,S2,S3,S5,S6], and no loop occurs. After confirming the 
update completion of the first loop, we update the loop [S3,S4,S5], as shown in Figure 4- 14. 
After the second loop update finishes, the forwarding path is switched to the new path and 
during update period, packet loop is diminished. 

 
 
 
 
 
 

 
Figure 4- 13 Network topology after updating loop [S1, S4, S2] 

 

 
Figure 4- 14Forwarding path after updating loop [S3, S4, S5] 
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4.5 Algorithm to find a loop and determine ingress and egress 
As mentioned in the previous section, finding out closed and open loops surrounded by old 
and new paths and determining ingress and egress switches are the key to realize loop-free and 
no packet loss update. In this section, we describe how to find the loops and how to determine 
ingress and egress vertices. 
4.5.1 Forwarding graph 
A serial of switches and links in order can represent a forwarding path. We use ( , ) to 
present a forwarding path graph.  represents a set of switches and  represents a set of 
links.  
New forwarding path can be expressed as G ( , ),  is a set of switches and  is a set 
of links along with new path.  
Old forwarding path can be expressed as G ( , ),  is a set of switches and  is a set of 
links along with old path. 
G ( , ) = G ∪ G  represents the whole graph composed by old and new paths where 

= V ∪ V  and = E ∪ E . 
4.5.2 Algorithm to find a loop 
We use the graph abstraction described above to find loops in the forwarding path graph.  
In [46] the author describes an algorithm to find a fundamental set of loops of a graph. We 
borrow this algorithm to find loops. Controller first analyzes the old path  G ( , ) and the 
new path G ( , ), and merges them into a whole graph G ( , ). If the graph belongs 
to type II relation, controller adds an edge between the final two end hosts into the graph (not 
to add a link into data plane) in order to make an easy computation. Then, controller computes 
a spanning tree and finds out all loops. The algorithm is as follows: 

 is the set of vertices in spanning tree and  is the set of vertices not yet examined. At the 
beginning, let = ∅ , = , then take any vertex  from  as the root of the spanning tree, 
and add v into , then = , = . Next take any vertex  from ∩ , if  is not 
none, examine : if ’s neighbor  is not in , add  into , if  is in , a loop is found. 
This loop consists of edge( , ) and the unique path in tree  from w to z. In each case, 
delete edge ( , ). After all ’s edges have been visited, remove  from X and examine a 
new . 
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Figure 4- 15 and Figure 4- 16 shows an example of finding loops by creating a spanning tree. 
Figure 4- 15 is the graph to be examined and Figure 4- 16 is the spanning tree created. First 
take S0 as tree’s root and examine S0’s neighbor S1. Since S1 is not in tree, add S1 into tree, 
and then examine S1 and its neighbors. Since the neighbors S2, S4, S2 and S4 are not in tree, 
add them into tree. Next examine S2 and its neighbor S3 and S4. Since S3 is not in tree, add 
S3 into the tree whereas S4 has been in tree. Then, we found a loop constructed by S2, S4 and 
S1. Using the same algorithm we can find another loop [S3, S6, S5]. 

 
Figure 4- 15 Example of finding loops by creating spanning tree (a) 

 
 

 
Figure 4- 16 Example of finding loops by creating spanning tree (b) 
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4.5.3 Determine ingress and egress 
Using the algorithm in [46], we can find loops in graph. But, it simply gives out a set of 
vertices, and the order of vertices in set is uncertain because of various roots of spanning trees 
and various searching ways via the tree. In order to update data plane in a correct order, the 
controller must know the ingress, egress and switches’ order between ingress and egress. We 
compare the set of loops with  and  respectively and based on the order of  and 

, we can get a correct order of switches.  
For example, in Figure 4- 7, the loop is a set of vertices [S1,S2,S3,S5,S4], and the new path is 
a set of vertices [H1,S1,S4,S5,S3,S6,H2]. We can first compute Loop∩Path = [S1,S3,S5,S4], 
and compare this with Path to get a correct order [S1,S4,S5,S3], where S1 is ingress and S3 is 
egress. For type II relation, we can find ingress and egress use in the same way, whereas the 
last loop’s egress is a host not a switch, then we can know the first switch in the vertices set is 
the ingress of the last open loop. 
4.6 A framework for updating network configuration 
In this section, we describe a framework for the loop-free and no packet loss update scheme. 
Figure 4- 17 shows the framework for update. There are several modules in this framework as 
described below.  
Topology Discovery module 
It discovers the network topology for the other modules.  
Network Monitor module 
It interacts with data plane and obtains network statics information such as flow statics, table 
statics, packets statics, load statics, link status and so on. It also sends information obtained to 
Update Analysis module. 
Update Analysis module 
It analyzes received information and decides to update data plane if one or more statics 
parameter is beyond a threshold. It calculates a new path based on the topology given out by 
Topo Discovery module and sends the old path and new path to Type Identification module.  
Type Identification module  
It identifies relation type according to old and new paths, forms a forwarding path graph and 
sends the graph to Graph Analysis module.  
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Graph Analysis module  
It analyzes the graph and gives out cycles, ingress, egress and switch update order to Update 
module.  
Update module  
It updates data plane by using the switch update order received from Graph Analysis. 

 
 
 

 
Figure 4- 17 Framework for loop-free and no packet loss update scheme 
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Chapter 5 

Experiments 
In this chapter, we conducted experiments to verify the proposed scheme. We first introduce 
tools used in the experiments. Then we proposed a method to measure the delay between the 
controller and data plane and compared with a related method. We describe how to set a delay 
value to each link between switches in data plane and controller. Finally, we test our scheme 
by using TCP and UDP applications.  
5.1 Tools for experiment  
Mininet 
Mininet [47] is a network emulator for rapidly prototyping large networks on a single 
computer. Since code developed in Mininet can deployed in a real network, it is more realistic 
compared with other simulators such as ns-2 [48] or Opnet [49]. Mininet can also create 
lightweight virtual machines for network performance tests. Figure 5- 1 shows the components 
and connections in a two-host network created with Mininet. 

 
Figure 5- 1 Components and connections in a two-host network created with Mininet 
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POX 
As mentioned in Chapter 2, POX is an open source OpenFlow controller platform. POX uses 
python as programming language. POX is a publish/subscribe paradigm controller. In a 
publish/subscribe pattern [50], there are 3 parts -- publisher, subscriber and event. Publisher 
can publish raise an event without any knowledge of subscriber. A subscriber can subscribe a 
publisher. Multiple subscribers can subscribe a publisher, and a subscriber can subscribe 
multiple publishers as well. POX works in publish/subscribe pattern and is an event-driven 
system. Figure 5- 2 shows a publish-subscribe paradigm.  

Wireshark 
Wireshark is a network protocol analyzer [51]. It supports hundreds of protocols including 
OpenFlow. Wireshark captures live packets and analyzes packets real-time and offline. It can 
run on multi-platform such as Windows, Linux, OS X, FreeBSD, NetBSD.  
Iperf 
Iperf [52] is a commonly used network testing tool that can create Transmission Control 
Protocol (TCP) and User Datagram Protocol (UDP) data streams and measure the throughput 
of a network that is carrying them. 
netem and Traffic Control (tc) 
netem [10] provides Network Emulation functionality for testing protocols by emulating the 
properties of wide area networks. tc is a Linux command to configure the Linux kernel's 
network scheduler to show and manipulate Network traffic control settings. 
 
 
 

 
Figure 5- 2 Publish-subscribe paradigm 
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5.2 Delay measurement between controller and data plane 
It is important to measure the delay between a controller and data plane. Results of 
measurement can be used to evaluate the update scheme and monitor the actual delay when the 
delay is set between the controller and switches. 
We first introduce a method to test the delay between controller and data plane. We utilize 
echo request/reply messages to measure the delay between controller and switches. The Echo 
request/reply messages are usually used to keep alive the connection between controller and 
data plane. 
Echo request/reply message is a symmetric message, which means that either controller or 
switch can send this message without prior solicitation to the other.  

Figure 5- 3 shows the Echo request and reply messages. In the system composed of POX and 
Mininet, the echo request message is usually initially sent by Mininet and POX returns an 
echo reply every 5 seconds. However, the echo request message initially sent by data plane 
cannot do any measurement on the controller side. We thus modified the source code of POX 
to send the echo request message initially.  

 
Figure 5- 3 Echo request and reply messages 
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Experiment setup: 

Figure 5- 4 shows the experiment setup. POX and Mininet are installed in two different 
Ubuntu Servers 14.04. We tested two types of round-trip delay setups. In the first setup, the 
controller and switch are next to each other and connected via a switch. Both POX and 
Mininet are in the same local area network. In the second setup, we assume a long distance 
round-trip measurement that the controller is located in America whereas Mininet is located in 
Japan. 
Experiment results 
We modified the POX source code to make Echo request/reply message supporting delay 
measurement between controller and switches. Controller sends a echo request message to a 
switch every second and waits for the switch’s reply message. We didn’t set any delay value 
for the communication path between the controller and switch. Controller records the Echo 
request sent time 1 and the corresponding Echo reply receiving time 2. It calculates the 
round-trip delay   : 

= 2 − 1 
Figure 5- 5 shows the results of round-trip delay measurement between a controller and a 
switch which are located in the same local area network.  
Figure 5- 6 shows the results of round-trip delay between a controller and a switch, which are 
separated by a long distance that the controller was in a server located in America borrowed 
from University of Massachusetts Amherst and switch was located in Japan.  

Figure 5- 4 Experiment setup 
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For each experiment, we measured the round-trip delay for 120 seconds and compared this 
method with the results of delay measured by “ping” command at the same time. 
 

 

 
Figure 5- 5 Round-trip delay: Controller and switch are in the same LAN 
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Figure 5- 6 Round-trip delay: Controller and switch are separated in a long distance 
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5.3 Setting delay between a controller and switches 
In order to verify the update scheme, we need to set delay between the controller and switches 
to establish an inconsistent network configuration update environment. We used traffic control 
on interface in Linux to control the traffic flowed through the interface.  
According to Figure 5- 1, Mininet communicates with controller via an interface eth0, and 
switches emulated by Mininet are in the root namespaces. If we use tc command to control 
traffic on this interface, the delay between controller and each switch will remain the same 
value.   
By analyzing the packets between controller and switches, we found that although Mininet 
uses one interface and one IP address to communicate with POX, POX establishes multiple 
connections with each switch using different TCP port numbers. We thus could set different 
delay values for each connection between the controller and switches by filtering on these port 
numbers. 
Usually, the link delay is a bi-direction feature. For example, if a link between A and B has a 
delay of 10ms, then a packet suffers 10ms delay no matter if this packet is from A to B or from 
B to A. And since tc can only control packets out of an interface, we used tc to set delay both 
on POX and Mininet sides. 

Above commands show an example to set 100ms delay for packets with source IP address of 
172.21.66.182 and TCP source port of 44549 coming out of interface eth0. 
Results 
 Figure 5- 7 show the round-trip delay results when 100ms delay was set for the link between 
the controller and switch. The round-trip delay was measured by exchanging the Echo 
messages. The test period was 120 seconds. 
Figure 5- 8 show the round-trip delay results when setting 100ms, 200ms and 300ms delay to 
each link between the controller and switch.  The round-trip delay was measured by 
exchanging the Echo messages. The test period was 120 seconds. 
 

$sudo tc qdisc add dev eth0 root handle 1: prio 
$sudo tc qdisc add dev eth0 parent 1:1 handle 10: netem delay 100ms 
$sudo tc filter add dev eth0 protocol ip parent 1:0 prio 3 u32 match ip src 
172.21.66.182/32 match ip sport 44549 0xffff flowid 1:1 
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Figure 5- 7 Set 100ms delay between controller and  switch 
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Figure 5- 8 Setting different delays to links between the controller and three switches 
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5.4 Validation of scheme for updating without loop and packets loss 
The experiment setup is the same as shown in Figure 5- 4. POX and Mininet are located in 
different servers. The network topology is shown as Figure 5- 9. Packets are sent from H1 to 
H2. The old path is [H1, S1, S2, S3, S6, H2] and the new path is [H1, S1, S4, S5, S3, S6, H2]. 
Controller switches the forwarding path from the old to new path during the test period.  

We defined ∆  as the delay difference between the links form the controller to S1 and from 
the controller to S4. As shown in Figure 5- 9, if the delay between S1 and controller is 1 and 
the delay between S4 and controller is 2, then 

∆ = | 2 − 1| 
Here we suppose that all other delays from controller to switches are smaller than the delay 
from controller and S4. 
The reason to define this variable is because the inconsistency problem is caused mainly by 
the link delay differences as they lead to switches updating their configurations 
asynchronously. 
 

 
Figure 5- 9 Experiment topology 
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5.4.1 TCP test 
We first use TCP packets to test on the network with and without our proposed updating 
scheme. 
When the system is started up, the controller first installed a set of rules along the old path to 
guarantee that iperf could establish a connection between H1 and H2. Once iperf established 
the link and sent TCP packets along old forwarding path, the controller updated the network to 
switch the forwarding path from the old to the new one, this can be triggered by events such as 
link congestion. 
We tested with the network topology by setting ∆  varied from 100ms to 1000ms both with 
and without our updating scheme to show how our scheme guarantees the network’s correct 
behavior.  
We recorded the statistics about the data transferred by iperf and calculated the throughput 
every 0.5 second. For each ∆  value, the total testing period was 20 seconds. 
5.4.2 General throughput characteristic of paths 
We tested the new and old path throughputs without any configuration update to understand 
the general throughput characteristic of both paths. 
Figure 5- 10 shows the results of the test. Both new (blue line) and old (orange line) paths’ 
throughputs are in the range between 3.3 GBytes/sec and 4 GBytes/sec.  

 
Figure 5- 10 General throughput characteristic of paths 
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5.4.3 Performance measurement of the proposed scheme 
The controller switched the forwarding path from the old path to the new path, and we 
measured the throughput twice: once with our scheme and another without using our scheme 
for each  ∆ . 
Figure 5- 11 shows the throughput with our scheme during update and Figure 5- 12 shows a 
comparison between the throughput with our scheme (blue line) and the one without scheme 
(orange line) during network configuration updating. We can see that during the update period, 

 
Figure 5- 11 Throughput with our scheme ∆ = 100 ms 

 
Figure 5- 12 Throughput with and without using our scheme ∆ = 100 ms 
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the throughput without our scheme got significantly low (1.65 GBytes/sec), almost half of the 
general throughput whereas the throughput with proposed scheme did not got obviously low. 
Because of two times measurement, the throughput variations with our scheme are different 
from the one without our scheme. But compared with the general throughput characteristic 
shown in Figure 5- 10, the throughput with our scheme is within the lower bound value of 3.3 
GBytes/sec. 
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Figure 5- 13 and Figure 5- 14 show the throughput with our scheme and comparison with the 
one without our scheme when ∆ = 500 ms, we can see that the throughput without the 
proposed scheme got much lower (0.096GBytes/sec). 

 
Figure 5- 13 Throughput with our scheme ∆ = 500 ms 

 
Figure 5- 14 Throughput with and without using our scheme ∆ = 500 ms 
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Figure 5- 15 and Figure 5- 16 show the throughput with our scheme and comparison with the 
one without our scheme when ∆ = 900 ms, we can see that the throughput without proposed 
scheme got zero for more than 2 seconds. 

 
Figure 5- 15 Throughput with our scheme ∆ = 900 ms 

 
Figure 5- 16 Throughput with and without using our scheme ∆ = 900 ms 

 

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Thr
oug

hpu
t (G

By
tes/

sec
)

Time (sec)

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Thr
oug

hpu
t (G

By
tes/

sec
)

Time (sec)
with the proposed scheme without our scheme



52 
 

The figures from Figure 5- 11 to Figure 5- 16 show the results of throughput measured during 
network configuration updating. As the results shown, as the value of ∆  increased, the 
throughput without our proposed scheme got lower. If the controller did not handle the 
consistency problem, the network would behave terribly worse as shown Figure 5- 14 and 
Figure 5- 16 during the updating period. The throughput was low (as in Figure 5- 12) or even 
zero (as in Figure 5- 16) when ∆  had a large value.  
The results also showed that compared with the general throughput characteristic of paths, the 
throughput with our scheme is within the lower bound value 3.3 GBytes/sec which mean that 
our scheme could guarantee the throughput when network configuration update even when ∆  
had a large value. 
5.4.4 UDP test 
We tested on the network topology based on the same scenario but iperf sends UDP packets. 
We repeated the experiment with different value of ∆  with and without using our scheme to 
illustrate how this delay difference between the controller and switches created inconsistency 
problems when our scheme was not applied. 
Figure 5- 17 shows the number of lost packets and the loss rate during network updates 
without using the proposed scheme. Upper (blue) line represents the number of lost packets 
out of total 1785 packets and lower (orange) line represents packet loss rate during 20 seconds. 

 
Figure 5- 17 Packet loss and packet loss rate (out of total 1785 packets sent) when our 

scheme was not used. 
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We repeated the experiment by using our scheme to update network on the same system and 
we confirm no packet loss detected in the iperf output. 
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Chapter 6 
Discussion 
In Chapter 5, we described an approach to test the delay between controller and data plane, 
showed how the inconsistency makes the network behave incorrectly, and verified the 
correctness of our proposed scheme.  
Chapter 3 introduced related work in the field of the consistency problem, and compared our 
scheme with previous work. 
The proposed scheme analyzes old path and new paths, computes update order, and updates 
the data plane in such a way that there are no loops and no packet losses. Our scheme 
guarantees the bandwidth between controller and data plane since our scheme does not have to 
forward any data packets to the controller. 
Both Type I and Type II relations in our scheme can guarantee per-packet consistency. Type I 
relation also guarantees per-flow consistency since every packet in a flow finally arrives at the 
same and correct destination but some flows may suffer out-of-order packet delivery 
depending on the network topology.  
There are some limitations of our scheme. It is based on the assumption that only one rule is 
matched by a flow and it cannot support any modification of packet header through the 
forwarding path, which may be required for host mobility 
In future, we will improve the proposed scheme to support header modification, multi-flow 
match and per flow consistency. 
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Chapter 7 
Conclusion 
This thesis introduced software-defined networking (SDN), gave an overview of the 
architecture, and listed its benefits and limitations. It also described OpenFlow as the most 
popular protocol used to communication between the control plane and the data plane of SDN.  
It defined and analyzed the consistency problem, which lead to an incorrect network behavior 
in SDN. In order to solve this problem, it proposed a scheme to update SDN networks in such 
a way that there exist no packet loops or losses.  
The controller analyzes the rules and network topology in the data plane, and classifies the 
relation between old and new paths into two types, based on whether an open loop is included 
in the topology or not.  
It described the procedure to find loops included by old and new paths by using the graph 
theory concept and presented the update procedure. It also explained about the experiment 
conducted to verify the proposed scheme. From the results of the experiments, it is verified 
that the proposed scheme can guarantee the throughput and with no packet loss during the 
update period.  
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