
国立大学法人電気通信大学 / The University of Electro-Communications

Sharing Computing Resources with Virtual
Machines by Transparent Data Access

journal or
publication title

First International Symposium on Computing and
Networking (CANDAR'13)

page range 359-365
year 2013-12
URL http://id.nii.ac.jp/1438/00001922/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Creative Repository of Electro-Communications

https://core.ac.uk/display/147692473?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Sharing Computing Resources with
Virtual Machines by Transparent Data Access

Takuma Nakajima, Masato Yoshimi, Hidetsugu Irie, and Tsutomu Yoshinaga
Graduate School of Information Systems

The University of Electro-Communications
tnakajima@comp.is.uec.ac.jp, {yoshimi,irie,yosinaga}@is.uec.ac.jp

Abstract—Cloud computing has rapid growth in enterprise and
academic areas. Computing platform makes up the transition
from physical servers to virtual machines (VMs) in the cloud.
Instead of many advantages, VMs remain several problems to
employ effective utilization of physical computing resources,
especially many-core accelerators. Even though GPGPU is a
hopeful solution for high-load applications, existing methods to
utilize GPUs from VMs are subjected to various restraints. In
order to solve this problem, we propose a flexible method to share
external computing resources by providing transparent access for
data in the VMs. By committing commands to a computing host
which processes the jobs as substitution, VMs can process high
load jobs as necessary even if the VM has a tiny configuration.
The computing host mounts the working directories in the VMs
and enqueues jobs committed by the VMs. Experimental results
show that the overhead of our implementation is sufficiently small
in the low I/O load processes.

I. INTRODUCTION

Since cloud computing was introduced around 2006[1],
various services have been appeared in the form of cloud.
Companies and universities gradually shift their research and
development environments to the cloud. Researchers can cre-
ate and deploy new fresh testing VMs onto their private
clouds in a few seconds with no maintaining costs for local
computers.

Although cloud has drastically reduced the costs for build-
ing, operating and managing, several problems are still remain-
ing to effective utilization of physical computing resources.
Since the VMs are usually crammed into the physical ma-
chines, computing resources of each VM are insufficient to
compute high-load applications such as image processing and
video encoding. Since hardware of VMs is full- or para-
virtualized, their performance is not as powerful as a VM host
because of its overheads.

Even though utilizing many-core accelerators such as GPU
is a promising solution for high-load applications, there are
several challenges to use limited number of accelerators
from VMs. Typical works are rCUDA[2], V-OpenCL[3], and
NVIDIA GRID[4]. They use API interception or PCI pass-
through to access GPUs from the VMs. These methods are
effective for applications written with CUDA or OpenCL, but
these are restricted for hardware limitations. Since applications
are not always written with these languages, more flexible
mechanism to use remote computing resources for various
types of application is required. In addition, these technolo-
gies might incur considerable performance degradation when

communicating between CPU and GPU, which is connected
via network instead of a high-speed bus. Live migration of
VMs is also restricted because of strong relation between the
VMs and the computing host. Utilizing intra communication
between CPU and GPU on the host and its optimization may
solve these problems.

Meanwhile, there is a concept of Resource-as-a-Service
(RaaS) cloud[5]. The main purpose of RaaS is minimizing
cost and energy consumption of computing resources, such as
CPU, memory, GPU, and other accelerators, by on-demand
attachment of them to VMs. Since computational load of a
VM is not always high, the configurations of VMs should be
minimized for more efficient use of the cloud environment.
On-demand attaching and detaching of the high performance
computing resources will increase their efficient usage.

To share the computing resources with maintaining advan-
tages of the cloud computing, we propose a method to share
computing resources by providing transparent data access. In
this method, a remote computing host mounts the working
directories of VMs via the network and executes requested
jobs as substitutions. It broadly divides operations into com-
puting ones which are processed on the computing host, and
I/O which is performed on the client VM. Unlike the API
interception and PCI pass-through, this method makes best
use of performance of the computing host by no memory
transmission and sequential uploading and downloading. In
addition, since the VMs and the computing host are associated
with the network level, VM live migration need not stop nor
suspend the execution process.

To implement and evaluate the resource sharing system, we
configure private cloud and execute several image processing
as benchmarks. As results of the evaluation, the image process-
ing job is completed in about 6 seconds with offloading to a
computing host, which takes up to 30 seconds in VM locally.
These executions required about 0.3 seconds overheads for
providing transparent access to the working directory. Through
the evaluations, we confirmed that proposed methodology
permits sharing computing resources such as GPU which
has not been able to utilize easily, maintaining admissibility
overhead.

©2013 IEEE. Reprinted, with permission, from Takuma Nakajima, Masato Yoshimi, Hidetsugu Irie, and Tsutomu Yoshinaga, “Sharing Computing Resources with Virtual
Machines by Transparent Data Access” in Proc. of 2013 First International Symposium on Computing and Networking, Dec. 2013.

II. RELATED WORK

A. Using Remote Computing Resources from VMs

1) PCI Pass-through Model: PCI Pass-through [6] is a
common method to use a physical device directly in VMs. A
hypervisor passes through the physically attached PCI devices
to the VM. Because of the direct attachment, PCI pass-through
devices achieve almost same performance as using the device
in a local host environment[7]. Although we can use many
PCI devices in the VMs by the PCI pass-through technology,
these VMs cannot migrate from their original host to others.
Moreover, the attached PCI devices usually cannot be shared
with multiple VMs.

NVIDIA GRID[4] is a technology that shares a single GPU
with multiple VMs. NVIDIA GRID GPUs equip multiple
GPUs on a board and each GPU can be logically divided
into multiple virtual GPUs. Since divided virtual GPUs are
recognized as PCI attached devices, users can pass-through
them to VMs. However, the attached virtual GPUs become
exclusive use with their attached VMs because of the limitation
of PCI pass-through. Hence users cannot move the VMs from
an original NVIDIA GRID host to the others. Moreover, GPU
series which support this technology is limited to expensive
ones.

2) API Interception Model: API interception is another
method to use a GPU device with VMs. It intercepts CUDA
or OpenCL API calls and rewrites or resends them to the other
hosts by using wrapper libraries. vCUDA[8] and V-OpenCL[3]
use this model. When the VM host intercepts the API calls
through these libraries, they call the real API of the GPU driver
instead of emulating these calls by the CPU. Although VMs
can share a single GPU on a host, they cannot migrate to the
other VM hosts because of its strong relationship. VGRIS[9]
and gVirtuS[10] also use the API interception model and they
call the real GPU driver of the VM host.

rCUDA[2] also utilizes a similar API interception to share a
remote GPU from VMs. With this method, when the VM host
gets API calls of VMs, it sends trapped API calls to a remote
GPU host through the network socket. The remote GPU host
executes the received API calls through the real GPU driver.
After executing the call, the remote GPU host returns a result
of the call to the VM host through the network socket. Since
VMs can use remote GPUs, VM hosts are not necessary to
equip GPUs. Although rCUDA executes CUDA API calls on
a single GPU node, there is a method to execute these API
calls with distributed GPU cluster[11]. Since rCUDA requires
communication between the VMs and the computing host,
rCUDA enabled systems incur relatively large overhead[7].

3) Resource-as-a-Service (RaaS) Cloud: RaaS cloud is a
concept for selling individual resources, such as CPU, mem-
ory, and I/O devices, on-demand[5]. Most of providers in
current market do business by selling units of time to run
the VMs. This is not efficient one for users because they
don’t always use computing resources fully. RaaS type is more
efficient way to provide tiny VMs for users by dynamically
attaching and detaching required resources. Additionally, more

Computing Host

(2)Data Access

(4)Execution Result
(1)Command Request

(3)Execution

Virtual

Machine

Virtual

Machine

Virtual

Machine

Virtual

Machine

Server

Agent

Client

Agent

Client

Agent

Client

Agent

Client

Agent

Fig. 1. Design of our resource sharing method

number of VMs can be run on a single VM host because the
VMs become small.

Although there exist alternative technology to attach com-
puting resources to the VMs on-demand, such as CPU over-
committng and memory ballooning, few services enable these
features because of their complex settings.

III. DESIGN PROPERTIES AND OPERATION

A. Setting up situation

To propose a method for sharing computing resources,
suppose a environment illustrated in Fig.1. VMs are typically
provided for users as a tiny configuration, small processor
power, memory size and disk capacity to saturate a physical
machine for energy efficient utilization. Users regularly com-
pute their own tasks in their VMs, such as some web services,
processing or other operations.

We suppose that each VM is usually in low-load, but
sometimes required to operate high-load jobs. When a high-
load job is committed, the VM throws the job to the computing
host, which is configured comparatively large such as multi-
core physical machines with huge memory and many-core
accelerators. Computing hosts are shared by multiple VMs
connected with a network, and operate requests in order of
arrival.

The architecture mentioned above introduces cloud envi-
ronment higher computing density and users lower usage fee,
since physical machines can be stored more number of VMs
and users need not a VM with large configuration to prepare
beforehand rush time.

B. Sequence to share computing resources

Each VM and computing hosts run a client agent and
a server agent, respectively as shown in Fig.1. A client
agent issues control signal and data to server agent to utilize
features in the computing host with following sequences which
corresponds to the numbered operations in Fig.1.

1) The client agent tries to connect and requests the com-
mand to the computing host,

2) the computing host accesses data in the VM to execute
the command after acceptance of the request,

3) the requested command is executed, and
4) the result of the command is returned to the client agent.

Although such a part of sequences mentioned above is
already realized by rsh or ssh commands, the exclusive
feature of proposed methodology is that the server agent
mounts the local directory through client agent in sequence
(2) besides traditional client-server model. This feature brings
cloud following advantages;

1) Reducing networking overhead caused by excluding fre-
quent communication between the client and the server
in the process.

2) Since the server agent plays a proactive role in execution
in sequence (3), requests from the client agents can be
controlled ordering, and an exclusion control for limited
hardware such as GPUs can be implemented easily.

3) The medium between client and server is made by loose
network to introduce flexible operation including live
migration.

C. Advantages in proposed methodology

The primary objectives in proposed methodology are sum-
marized that (1) sharing computing resources from multiple
VMs, and (2) improving performance efficiency in the sight
of whole cloud (3) maintaining advantages of utilizing cloud
environment.

Live migration is a key feature of cloud computing that VMs
migrate from a physical machine in which the VM is running
to another without turning off. Attaching and detaching the
computing devices directly to the VMs like PCI Pass-through
have made strong connections between physical device and
VMs, which restrict the live migration.

With flexible communication, maximizing computational
performance is also important. This means that some artifice to
minimize the overhead by introducing proposed methodology.
Since frequent communication between client and server is
caused by overhead accumulation such as API interception,
the client agent exports the working directory on which
executes the commands by the server agent. Adopting network
file system, which transfers data file by file, introduces the
reduction of the number of data transfer through the sequence.

Exporting directories by client agent is also regarded as that
the VMs provide transparent data access to the computing host.
All computing operations are executed in the computing host
and the computing resources are shared through the network,
VMs can migrate one host to another and also computational
performance are maximized.

From the perspective of the user of the VM, the command
is executed on and returned the results from on the VM. The
detailed implementation is described in the next section.

IV. IMPLEMENTATION OF RESOURCE SHARING
ENVIRONMENT

A. Resource Sharing Architecture

To evaluate our method, we constructed a private cloud,
and implemented the server and client agents. The server and
client agents provide a function to share computing resources
on the computing host among VMs. The physical architecture
of the private cloud is shown in Fig.2. In the figure, physical

Computing Host

Server

Agent

Virtual Machine Host

Virtual

Machine

Client

Agent

Virtual

Machine

Client

Agent

Virtual

Machine

Client

Agent

Virtual

Machine

Client

Agent

Virtual Machine Host

Virtual

Machine

Client

Agent

Virtual

Machine

Client

Agent

Virtual

Machine

Client

Agent

Virtual

Machine

Client

Agent

...

Cloud Gateway

Cloud

Management

Server

Storage Server

Fig. 2. Physical architecture of the private cloud

NFS export

daemon

NFS daemon

Command

Transfer

Interface

Working Directory

User

Terminal

Client Agent

Virtual Machine Computing Host

Interpreter

Workpile

Temporary

directory
Execution

Context
Command

Queue

Server Agent

Network

Fig. 3. Software architecture of the resource sharing interface

machines are shaded. A computing host consists of CPU, GPU
and memory which are shared resources. The computing host
executes the server agent, while each VM executes the client
agent. These agents run as normal processes, they do not have
to recognize their VMs’ live migration. There exists a cloud
gateway server in order to access to the cloud network. The
communications between the VMs and the computing host
are done through the gateway. The cloud management server
executes cloud computing software to manage VMs and the
VM hosts.

B. Server Agent for Computing Hosts

Fig.3 shows a software architecture of the proposed resource
sharing interface. The server agent consists of an interpreter
and a workpile component. The workpile component is con-
sisted of a command queue and execution contexts. Execution
contexts are created by the interpreter and registered to the
command queue with the requested command. Temporary
directory is also created dynamically by the interpreter for
mounting the working directory of the VM. We describe
detailed roles of the interpreter and workpile in the following
paragraphs.

Interpreter component accepts the messaging commands
from the client agent and it communicate with workpile. In
our implementation, the interpreter understands five messaging

commands; checkin, mount, exec, umount, and checkout. The
client agent sends these messaging commands usually in this
order. Checkin and checkout messaging commands are used
for initialization and finalization. Mount and umount messag-
ing commands mount and unmount the working directories of
the VM. Exec messaging command is used perform a job.

Workpile is a command execution component with a com-
mand queue and execution contexts. The command queue
stores the requested commands. The execution context con-
tains a path of the temporary directory which is mounted a
working directory of the VM, and each execution context is
associated with the connection to the VM. Workpile is imple-
mented as an event-driven model. Events include registering a
command to the command queue and finishing the execution
of the command. These events trigger the command execution
as the event handler, and a command which is dequeued from
the command queue is set to a callback function. In the event
handler, it executes the requested command as the callback
function. Results as well as errors are sent back to the standard
output of the VM. In our current implementation, workpile
does not check whether a command uses any special devices
or not, and therefore only a single command is executed at a
time. For this reason, the server agent currently do not hold a
device list used by commands.

C. Client Agent for Virtual Machines

The client agent is composed of a NFS export daemon and
a command transfer interface. The NFS daemon in the VM is
provided by the operating system.

The Client agent provides the resource sharing interface in
the command line. Although the working directory is not a
component of the client agent, it is an important component
to provide the transparent data access to the computing host.

NFS export daemon is used to export the working directory
with NFS. When this daemon receives the path of the working
directory, it exports the directory to the network. Since user id
and group id are different in each platform, this daemon sets
proper permissions. The computing host will read and write
files with the permission of the user of the VM.

Command Transfer Interface is a command line applica-
tion to send a terminal command to the computing host. The
user of this interface issues terminal command with its argu-
ments to execute on the computing host. When the interface
received the terminal command and its arguments, it requests
to export the working directory to the NFS export daemon.
Then it commits the command to the computing host. After
requesting execution of the command to the computing host,
the computing host responses the command outputs as well as
errors to the VM. The command transfer interface displays the
results of the commands. After the command execution, the
command transfer interface requests the NFS export daemon
to finish exporting of the working directory. Table I shows the
format of the Command Transfer Interface and its arguments.
This interface try to read specific configuration file by default
when no configuration file specified, these options are not
always needed.

V. EVALUATION

A. Setup Experiments

Table II shows the specification of VM hosts. A computing
host is organized with the same specification of VM hosts as
shown in Table III except for the GPU device. Four types of
VMs as shown in Table IV are configured for experiments.
Two types of full duplex network connections are also config-
ured. Each host is connected each other via gigabit Ethernet.
VMs are deployed by CloudStack which is one of the typical
cloud computing software.

Two types of image processing jobs, blur and resize, with
three image sizes are evaluated for offloading processes to the
computing host. The matrix multiplication program is utilized
from AMD APP SDK. Both image processing and matrix
multiplication are OpenCL enabled, however, only the latter
uses the GPU device.

Details of the test image is described in Table V. The types
of image processing are blurring and resizing a 10,000x10,000
image. Blurring processes calculate the average of 5x5, 10x10,
and 20x20 adjacent areas for each pixel, and resizing processes
reduce the image geometrically to 5%, 10%, and 20%, respec-
tively.

B. Evaluation of Single VM

Computational time including overhead is measured when a
single VM offloads the image processing jobs to the computing
host to evaluate the efficiency of the job offloading system. To
obtain the computational time is as follows;

1) The VM offloads the job and measures time 12 times,
2) omits the longest and the shortest times,
3) and derives the average value from the rest of results.

Computational time is measured on each VM without com-
munication time between the VM and users since the commu-
nication time varies depending on the network types and their
status.

TABLE I
COMMAND LINE FORMAT AND ARGUMENTS

usage:
$ offld [options..] [--] exec_command [exec_command_args..]
Option Description
-c, --config=<filename> load configuration file from <filename>
-p, --profile show execution profile
-H, --host=<host>[:<port>] connect to host:port
-n, --no-mount do not mount current directory
-o, --output=<filename> output stdout and stderr to <filename>
-Q, --no-logging do not create logfile for stdout and stderr
-q, --quiet do not output stdout
-d, --debug show debug message
-h, --help show help message

TABLE II
SPECIFICATIONS OF THE VM HOSTS

CPU Intel Core i7 3770 (3.40GHz)
RAM 32GB
NIC 1 Gigabit Ethernet

0

2

4

6

8

10

12

14

Host A B C D Host A B C D Host A B C D Host A B C D Host A B C D Host A B C D

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
e

c
)

blur 5x5 blur 10x10 blur 20x20 resize 5% resize 10% resize 20%

Execution
Overhead

Fig. 4. Execution time of image processing jobs for a 100Mpx image

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

A B C D A B C D A B C D A B C D A B C D A B C D

O
v
e

rh
e

a
d

 T
im

e
 (

s
e

c
)

blur 5x5 blur 10x10 blur 20x20 resize 5% resize 10% resize 20%

connect
mount

unmount
disconnect

Fig. 5. Overhead time of image processing jobs for a 100Mpx image

Fig.4 and Fig.5 shows the computational time of each jobs
and their breakdown of overhead, respectively. The overhead
includes mount, connect, disconnect, and unmount introduced
by the offload jobs. VMs maintains offloading jobs properly
even when live migration occurs. Env.A, B, C, and D in these
figures correspond to the specification of VMs in Table IV.
The labels named Host in Fig.4 represent the computational
time when the job is executed on the computing host. Table
VI shows the execution time on VMs with 1GHz CPU and
1GB memory without offloading.

Fig.4, Fig.5 and Table VI show that the computational time
on the computing host is much faster than on the VM. The
result is quite natural because the computing resources of VMs
is restricted compared to the computing host. the overhead is
almost constant time between 0.2 and 0.3 seconds regardless
of the network throughput and the configuration of VMs. It
is sufficiently small values for high load applications which
usually take more than 5 seconds long. Fig.4 also shows
the execution times are comparable when the computing host

TABLE III
SPECIFICATIONS OF THE COMPUTING HOST

CPU Intel Core i7 3770 (3.40GHz)
RAM 32GB
NIC 1 Gigabit Ethernet
GPU AMD Radeon HD 6970

TABLE IV
CONFIGURATIONS OF EXPERIMENTAL ENVIRONMENT

Environment VM CPU clock VM Memory Network throughput
A 500MHz 1GB 100Mbps
B 500MHz 1GB 1000Mbps
C 1GHz 1GB 100Mbps
D 1GHz 1GB 1000Mbps

executes the job directly and when the VM offloads the job.
The computational time is affected by the network throughput
since the computing host mounts the working directory in the
VMs. Fig.5 explains that primary overhead is introduced by
mounting and unmounting the working directory in the VMs.
The overhead can be reduced by utilizing more efficient file
system.

C. Evaluation of Multiple VMs

To evaluate the performance of the resource sharing system,
the experiment that multiple VMs offload the jobs to a
single computing host simultaneously is observed. Since the
frequency that multiple VMs offload the jobs at the same time
is not so high, the situation can be regarded as the worst case.
Configuration D in Table IV is used for VM. Fig.6 shows the
computational time per each job measured in the computing
host. These results do not include the waiting time for the
other jobs’ execution. Computational time for a single VM
directly incurs the offloading overhead, including connection,
disconnection, mount, and unmount. With the number of VMs
increases, the overhead is gradually hidden by the computation
because the jobs are processed in a pipelined fashion. As a
result, the computational time per job is inversely reduced as
the number of VMs is increased.

Fig.7 shows the computational time per job measured in
the VM. The computational time in Fig.7 contains the queuing
time in the computing host. It is obvious that a single job con-
sumes around 0.5 seconds. The computational time gradually

TABLE V
DETAILS OF THE TEST IMAGE

Type JPEG
geometry size 10,000x10,000

file size 8MB

0.30

0.32

0.34

0.36

0.38

0.40

0.42

0.44

0.46

0.48

0.50

 1 2 3 4 5 6 7 8 9 10

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
e
c
)

Number of VMs

Fig. 6. Transaction time on a computing host for matrix multiplication

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

 1 2 3 4 5 6 7 8 9 10

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
e
c
)

Number of VMs

Offloading by multiple VMs
Single VM w/o offloading

Computing host native

Fig. 7. Computational time for each VM including queuing time

increases caused by the waiting time according to the number
of VMs. However, the overhead is quite small for the sake of
light-weight job switching.

VI. DISCUSSION

The main purpose of this research is to share computing
resources with multiple VMs and maximize its computational
performance without harming the advantages. We confirmed
the overhead of the job is sufficiently smaller than the benefit
of acceleration by offloading to the computing host, which
marks higher performance.

TABLE VI
COMPUTATIONAL TIME ON A VM WITHOUT OFFLOADING

(ENVIRONMENT D)

Job Type Option Computational Time (sec)
blur 5x5 778.1
blur 10x10 810.3
blur 20x20 806.4

resize 5% 28.6
resize 10% 26.1
resize 20% 37.7

Due to the design, any computational resources can be
shared with multiple VMs flexibly, without complex modi-
fications of applications. Note that the commands used to the
evaluations have low I/O load, therefore the high I/O load
processes might have the I/O bottleneck, but VMs should
execute such high I/O load processes on each VM without
offloading. As a consequence of these results, our method
makes it possible to execute high computational load jobs on
VMs which have tiny configurations.

In current implementation, the computing host is required to
prepare the command which is requested by VMs because the
commands are executed completely within the computing host.
Although GUI applications cannot be executed with current
implementation neither, when we use SSH X11Forwarding,
GUI applications which use our method as back-end can
be executed. Applications which need real-time rendering
support still will be difficult to reach the sufficient frame rate
because the command output of our method is limited to files
and console-based output. Technologies of PCI pass-through
model and API interception model may allow us to use the
visual application, although they restrict VM live migration.

From a perspective of security, current implementation
includes a security risk to share the working directory with
other nodes. The files in shared directories may be deleted or
modified without confirmation of VMs by the computing host.
To solve this problem, the connection is established from the
VMs to the computing host with encrypted data.

VII. CONCLUSION

Cloud computing need more efficient use of computing
resources. In this research, we proposed a method to share
computing resources with VMs by providing access to the
working directories of the VMs to the computing host. Al-
though existing methods to share computing resources restrict
the live migration of the computational performance, we
confirmed that our method does not harm them. Our method
has sufficiently small constant overhead compared with the
execution time.With these characteristics, our method is quite
useful for tiny VMs in cloud environment. Meanwhile we
have to enable secure data transmission instead of sharing the
working directories for the security risk. We can be resolve
the security risk by changing the data transfer method to one
which makes a data connection from VMs to the computing
host with encryption of communications.

REFERENCES

[1] P. Mell and T. Grance, “The NIST Definition of Cloud Computing,”
National Institute of Standards and Technology (NIST), Gaithersburg,
MD, Tech. Rep. 800-145, September 2011.

[2] J. Duato, A. Pena, F. Silla, R. Mayo, and E. Quintana-Orti, “rCUDA:
Reducing the number of GPU-based accelerators in high performance
clusters,” in High Performance Computing and Simulation (HPCS), 2010
International Conference on, 2010, pp. 224–231.

[3] C. Wang, T. Jiang, and R. Hou, “V-OpenCL: a method to use remote
GPGPU,” in Proceedings of the 27th international ACM conference on
International conference on supercomputing, ser. ICS ’13. New York,
NY, USA: ACM, 2013.

[4] H. Marinez, “Top Enterprise Technology Companies Embrace
NVIDIA GRID,” http://nvidianews.nvidia.com/Releases/Top-Enterprise-
Technology-Companies-Embrace-NVIDIA-GRID-953.aspx.

[5] O. Agmon Ben-Yehuda, M. Ben-Yehuda, A. Schuster, and D. Tsafrir,
“The resource-as-a-service (RaaS) cloud,” in Proceedings of the 4th
USENIX conference on Hot Topics in Cloud Ccomputing, ser. Hot-
Cloud’12. Berkeley, CA, USA: USENIX Association, 2012, pp. 12–12.

[6] C.-T. Yang, H.-Y. Wang, W.-S. Ou, Y.-T. Liu, and C.-H. Hsu, “On
implementation of GPU virtualization using PCI pass-through,” in
Cloud Computing Technology and Science (CloudCom), 2012 IEEE 4th
International Conference on, 2012, pp. 711–716.

[7] M. Vinaya, N. Vydyanathan, and M. Gajjar, “An evaluation of CUDA-
enabled virtualization solutions,” in Parallel Distributed and Grid Com-
puting (PDGC), 2012 2nd IEEE International Conference on, 2012, pp.
621–626.

[8] L. Shi, H. Chen, J. Sun, and K. Li, “vCUDA: GPU-Accelerated
High-Performance Computing in Virtual Machines,” Computers, IEEE
Transactions on, vol. 61, no. 6, pp. 804–816, 2012.

[9] M. Yu, C. Zhang, Z. Qi, J. Yao, Y. Wang, and H. Guan, “VGRIS:
Virtualized GPU Resource Isolation and Scheduling in Cloud Gaming,”
in ACM Symposium on High-Performance Parallel and Distributed
Computing 2013, 2013.

[10] G. Giunta, R. Montella, G. Agrillo, and G. Coviello, “A gpgpu transpar-
ent virtualization component for high performance computing clouds,”
in Euro-Par 2010 - Parallel Processing, ser. Lecture Notes in Computer
Science, P. D ’Ambra, M. Guarracino, and D. Talia, Eds. Springer
Berlin Heidelberg, 2010, vol. 6271, pp. 379–391.

[11] A. Kawai, K. Yasuoka, K. Yoshikawa, and T. Narumi, “Distributed-
shared cuda: Virtualization of large-scale gpu systems for programma-
bility and reliability,” in FUTURE COMPUTING 2012, The Fourth
International Conference on Future Computational Technologies and
Applications, 2012, pp. 7–12.

