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Chapter 1

Introduction

This thesis studies photoelectron spectra of the one-electron atomic system in

the stabilization regime by the Siegert state expansion method. The stabilization, first

discovered theoretically by Pont et al. [1], is a phenomenon in which the ionization rate

of an atom decreases for the laser intensity larger than a certain critical value in a high-

frequency laser field. Here the term “high-frequency" means that the photon energy ω

of the laser field is much higher than the binding energy of the electron Ip, i.e.,

ω ≫ Ip. (1.1)

Here and hereafter the atomic units are used so that ~ = 1, e = 1,me = 1. This high-

frequency condition indicates that the optical cycle of the laser field is much faster than

the characteristic time scale of the electron motion. Then the rapid oscillations of the

laser field can be averaged out in time; the electron can be regarded as being bound

in the time-averaged static potential well. The stabilization can be understood with

the help of the excursion amplitude α of a fictitious free-electron in the laser field; For

monochromatic laser fields, α is given by α = F/ω2, where F is the amplitude of the

laser field. In the high-frequency laser field, the electron decouples from the nucleus for

the excursion amplitude larger than a certain critical value αc, i.e.

α = F/ω2 > αc. (1.2)

Then the photon absorption is suppressed, and the stabilization emerges. Thus, the

stabilization regime can be defined by the parameter space formed by the laser frequency

ω and field amplitude F satisfying the conditions Eq. (1.1) and (1.2). In this thesis, let

us call the laser field satisfying the condition Eq. (1.2), a high-intensity laser field; if the
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laser field satisfies both the conditions Eq. (1.1) and (1.2), let us call it a high-frequency

and high-intensity laser field. In this thesis, we treat theoretically a few noteworthy

effects caused by the stabilization. The stabilization is intensively studied by many

researchers; see, for example, [2, 3] and also review articles [4, 5]. In these theoretical

calculations, the typical laser parameters considered are such that the photon energy

is about tens of eV and the intensity is I ≈ 1016 W/cm2. This parameter regime is

still difficult to attain even in the latest laser technologies. However, Vos [6] and Pont

[7] pointed out later that the use of the Rydberg Ne atom (2p)5 5g (m=4) relaxes

these difficulties; here m is the magnetic quantum number. Its ionization potential is

Ip = 0.544 eV, the high-frequency condition Eq. (1.1) can be satisfied using the laser

in the visible range. Thus the intensity required for the stabilization Eq. (1.2) is also

relaxed. Based on this idea, de Boer et al. [8, 9] and van Druten et al. [10] implemented

an experiment by employing the Rydberg state of Ne atom (2p)5 5g (m=4) with the laser

wave length and intensity 620 nm and ≈ 1014 W/cm2, respectively. The Rydberg state

is prepared by an pump pulse ultraviolet (UV) laser pump pulse of wave length 286 nm.

They observed the stabilization in the sense of decrease in ionization yield as a function

of laser intensity. Later, Piraux et al. qualitatively reproduced the experimental results,

and attributed the decrease in ionization yield to the stabilization [11].

However, as far as we know, studies in this regime, theoretical or experimental,

usually concentrate on the ionization rate or total ionization probability (see, e.g., [12];

see also review articles [13, 5] and references therein). Such gross characteristics are

important, but describe only one aspect of the dynamics. To gain insight into further

details, it is essential to consider the photoelectron spectrum which may bear various sig-

natures of the dynamics not revealed by the total ionization probability alone. However,

this is not straightforward. Widely used approach with absorbing boundary conditions

in a large box solves the time-dependent Schrödinger equation (TDSE) in the laboratory

frame, see e.g. [14, 15, 16, 17]. However, this scheme substantially bears the following

problems. First, the laboratory frame modifies the dynamics since the laser field must

be eventually cut off beyond the finite box considered in the calculations. Second, the

dynamics is disturbed also by the absorbing potential, whose effect is difficult to control

and disentangle. Under the circumstances, Reed and Burnett [18] suggested to use the
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Kramers-Henneberger (KH) frame [19, 20] instead of the laboratory frame. In the KH

frame, the interaction with the laser field is represented by the atomic potential whose

center follows the quivering trajectory of a classical electron. Hence it is localized in a

finite region of space where the atomic potential is effective. The electron moves freely

once it leaves this interaction region. As was demonstrated in [18], this fact enables

one to increase (approximately double) the length of a laser pulse that can be treated,

because the calculations can be extended up to the moment when the electron returns

to the interaction region after its reflection from the boundary of the box. Alternatively,

one can reduce (approximately halve) the size of the box. In any case, a gain in the

computational efficiency is achieved. The advantage of the KH frame is well recognized

[13, 5]. As regards the boundary reflections in [18], zero boundary conditions were used.

In this case, the box size must exceed the interaction region to calculate the spectrum

substantially, the finiteness of the box obviously limits the high-energy extent of the

spectrum obtained as well as its resolution. The gain from the use of the KH frame

would be much more essential if one could reduce the size of the box to that of the

interaction region. The absorbing boundary conditions may help to reach this goal, but

if only the total ionization probability is needed. In this thesis, we present a method in

which only the interaction region needs to be considered and, at the same time, which

is capable of calculating the spectra up to any desired energy and without any practical

limitations.

The idea consists of applying the recently developed Siegert-state expansion ap-

proach [21, 22, 24] to solving the TDSE in the KH frame [23]. Siegert states (SSs) are

the solutions to the stationary Schrödinger equation satisfying outgoing-wave boundary

conditions. The corresponding eigenvalue problem was first considered by Siegert [25]

for s-wave scattering in a finite range potential. SSs remained a mere formal object in

scattering theory until Tolstikhin et al. [26, 27, 28] developed an algebraic formulation

known as the theory of Siegert pseudostates (SPSs) which became a powerful tool in

practical calculations. Recently, this formulation was supplemented by its application

to the SPS perturbation theory [29]. More recently, it has been generalized to nonzero

values of the angular momentum [30]. In the stationary framework, SPSs have been

employed, for example, for the calculation of resonances in three-body Coulomb systems
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[31, 32, 33]. Yoshida et al. [34] and Tanabe et al. [35] pioneered applications of SPSs

as a basis to treat time propagation of wave packets. An advantage of such a basis is

that it does not produce unphysical reflections at the boundary of the box because the

outgoing-wave boundary conditions are exactly satisfied. Subsequently, Santra et al.

[36] following an earlier work [37] developed a rigorous formalism of the wave packet

expansion in terms of SPSs for the case of a stationary Hamiltonian. Finally, Tolstikhin

[21, 22, 23, 24] has extended the method to time-dependent Hamiltonians, which made

its applications to many nonstationary problems such as laser-atom interaction possible.

The SS expansion approach [21, 22] enables us to solve the TDSE, avoiding unphysical

reflections from the boundary of the box. The use of the KH frame guarantees that the

interaction with the laser field is fully taken into account so long as the box is large

enough to cover the interaction region. When these two elements are combined, the

method is free from approximations despite the use of a very restricted box size. But

the main advantage of the method is its ability to produce highly resolved accurate

spectra.

There are two goals in this thesis. A first goal is developing the Siegert state

expansion approach in the Kramers-Henneberger frame to accurately calculate the pho-

toelectron spectrum. The other goal is providing a look at general features of the

dynamics of ionization by laser pulses in the stabilization regime via analysis of the

photoelectron spectra.

Thus this thesis is organized as follows. In Chapter 2, an overview of the stabiliza-

tion regime is provided. The most prominent physical phenomenon is the stabilization.

We introduce the high-frequency Floquet theory [38] to clarify the dynamics of the

stabilization by introducing some important concepts and terminologies. These are

indispensable for extracting the ionization dynamics recorded onto the photoelectron

spectrum. In Chapter 3, the basic results of the Siegert states both for the 1D [22] and

3D cases [30] are summarized. The aim of this Chapter is to understand how to expand

a wave packet in terms of the SSs. This is not trivial since the SSs have nonstandard

orthogonality and completeness relations. In Chapter 4, the Siegert state expansion

approach in the Kramers-Henneberger frame for both the 1D [39] and 3D [40] cases are

summarized. In Chapters 5 and 6, we study two prominent features in the photoelec-
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tron spectrum in the stabilization regime for both the 1D and 3D cases. In Chapter 5,

we observe that oscillating substructures are formed in the multiphoton peaks at high

intensity. We develop an adiabatic version of the high-frequency Floquet theory, which

can handle the finiteness of the pulse duration, and they facilitates physical interpreta-

tion of the phenomenon. We then show that the oscillating substructures are nothing

but interference fringes of the photoelectron wave packets produced at the different mo-

ments in time [39, 40]. Interference fringes in photoelectron spectra have been seen in

a different context in X-ray range. Interference fringes appear when the field is intense

enough to drive Rabi oscillations between a bound and autoionizing state [41]; see also

[42, 43, 44]. In Chapter 6, we analyze the slow electron peak. Although the photon en-

ergy is much higher than the binding energy, the electron having almost zero energies are

produced. This counterintuitive effect cannot be explained by the well-known ionization

mechanisms, namely, multiphoton and tunneling processes. Using a recently developed

theoretical method by Tolstikhin [24], we clarify that this is due to the nonadiabatic

transitions caused by the slowly deforming dressed potential [45]. In Chapters 5 and 6,

for the the sake of theoretical convenience and clarity we consider a negative ion for the

target system, and employ the high-intensity laser pulse of wavelength in X-ray range.

Then on account of the high photon energy, we do not need to consider additional

technical difficulties such as preparing the electron in a Rydberg state to satisfy the

high-frequency condition Eq. (1.1). However, the coherent light sources in X-ray range

are rapidly being developed by the high-harmonic generation [46, 47, 48, 49, 50, 51, 52]

and the free-electron laser technologies [53]. These promising light sources have already

clarified many unprecedented aspects of the atoms and molecules in both theoretical and

experimental studies; see for instance, [41, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66].

Thus in Chapter 7, we conclude the thesis by pointing out some possibilities for experi-

mental observation of the physical effects found in Chapters 5 and 6, and express a belief

that experimentalists further develop the high-intensity laser to study the stabilization

regime in EUV to X-ray range, and our results are to be verified in future.



Chapter 2

The stabilization regime

2.1 Introduction

This Chapter aims to study the atomic stabilization [67, 1]. This is one of the most

striking manifestations of high-frequency and high-intensity phenomena, and plays an

essential role in the ionization dynamics in the stabilization regime. For its experimental

status, refer to Appendix A.

To obtain an overview of the stabilization, let us consider the one-electron system

interacting with a laser field. For brevity, we model the one-electron system by the

Eckart potential

V (x) = − 15/8
cosh2 x

. (2.1)

This potential supports two bound states. The ground and excited state energy lev-

els are E0 = −1.125 and E1 = −0.125, respectively. Let ω be the frequency of the

monochromatic laser field such that ω satisfies the high-frequency condition ω ≫ |E0|

in the stabilization regime. The one-photon ionization rate Γ of the ground state is

shown by the red line in Fig. 2.1. The procedures for calculating the ionization rate

are described in Sec. 2.3. The parameter α represents the maximum amplitude of the

classical trajectory given by α = F/ω2, where F is the field amplitude. Here let us

assume that the value of ω being fixed. In this case the ionization rate Γ can be re-

garded as a function of F . One can see that Γ first increases as F grows, but begins to

decrease when F exceeds the critical value at α ≈ 0.8. This phenomenon is called the

stabilization first discovered by Pont et al. [67, 1]. However, the function Γ does not

decay monotonically despite further increase in F [73, 75].

To understand this counterintuitive phenomenon, let us recall that the stabi-
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Figure 2.1: One-photon ionization rate Γ(α) (red) and its interference term Q(α) (blue)
defined by Eq. (2.16) and Eq. (2.17), respectively. The classical electron tends to stay
near the turning point x = ±α. Thus two photoelectron wave packets are produced near
the left (x = −α) and right (x = α) turning points. One of them catches the other and
interference occurs with the phase difference determined by the distance between two
turning points. The function Q(α) is the interference term in the ionization rate Γ(α)
extracted from this interference picture. The emergence of the stabilization at α ≈ 0.8 is
connected to the destructive interference between the two photoelectron wave packets,
i.e. Q(α) < 0.

lization occurs under the conditions Eq. (1.1) and Eq. (1.2). The condition Eq. (1.2)

pertains to the value of α. Thus it is expected that rewriting the time-dependent

Schrödinger equation (TDSE) in terms of the classical trajectory facilitates the anal-

yses for extracting the mechanism of the stabilization. This can be implemented by

the Kramers-Henneberger (KH) transformation [19, 20]. After this transformation, the

classical trajectory is combined into the atomic potential. This transformed potential

is called the KH potential. The center of the KH potential quivers along the classical

trajectory with the frequency ω. However, under the high-frequency condition Eq. (1.1),

the period of the quivering motion of the KH potential is much shorter than the time

scale of the electronic motion. Thus the quivering motion of the KH potential can be

averaged out with respect to time. The resulting potential is called the dressed potential

which is the effective potential of the electron under the high-frequency condition. The
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dressed potential is not only a function of the electronic coordinate but also of α. The

electron tends to stay near the classical turning points x = ±α where the velocity of the

classical electron is zero. It is thus expected that the two photoelectron wave packets

are launched most efficiently from these turning points when photo absorption occurs.

One of them catches up with the other, and then interference takes place with the phase

difference determined by the distance of the turning points, i.e. 2α. When α is small,

the interference is constructive since the phase difference is negligible. However, the

phase difference increases as α grows, the interference eventually becomes destructive

for the value of α satisfying the condition Eq. (1.2). This triggers the decrease of the

ionization rate. This is the origin of the stabilization [75].

In what follows, we concentrate on the 1D case for brevity. The extension to the

3D case is straightforward as will beshown in Chapters 5 and 6.

2.2 Kramers-Henneberger frame

First, we introduce the Kramers-Henneberger frame into the TDSE taking the

condition Eq. (1.2) into account. The time-dependent Schrödinger equation in the

laboratory frame (L) in the length gauge reads,

i
∂ψL(xL, t)

∂t
=
[
−1

2
∂2

∂x2
L

+ V (xL) + F (t)xL

]
ψL(xL, t), (2.2)

where V (xL) and F (t) represent the atomic potential and the laser electric field. Here

the atomic potential V (xL) has a finite range, hence it can be cut off at x = x±, i.e.,

V (xL)|xL<x−
= V (xL)|xL>x+

= 0. (2.3)

Let x(t) and v(t) = dx(t)/dt be the position and velocity of the classical trajectory of a

free electron in the laser field,

d2x(t)
dt2

= −F (t), (2.4a)

x(t ≤ 0) = v(t ≤ 0) = 0, (2.4b)

where they satisfy

v(t) = −
∫ t

0
F (t′)dt′, x(t) =

∫ t
0
v(t′)dt′. (2.5)
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The KH transformation [19, 20] is defined by

xL = xKH + x(t), (2.6a)

ψL(xL, t) = exp
[
iv(t)xL −

i

2

∫ t
0
v2(t′) dt′

]
ψKH(xKH, t). (2.6b)

After the transformation, one obtains the time-dependent Schrödinger equation (TDSE)

in the KH frame,

i
∂ψKH(xKH, t)

∂t
=
[
−1

2
∂2

∂x2
KH

+ V (xKH + x(t))
]
ψKH(xKH, t). (2.7)

In the following, the subscript “KH" is omitted for brevity. The effect of the laser pulse

is now combined into the atomic potential V (x) via the classical trajectory x(t). This

is the KH potential mentioned in the previous section. The idea of the KH frame is

introduced by Kramers [19], and applied to the laser atom interaction in 1968 [20]. In

[20], Henneberger pointed out that large discrepancies in the ionization cross section

between experiment and theory are due to the fact that the perturbative approach is

employed in theory beyond its validity which ignores the strong distortion of the initial

state of the atom. So, he considered the KH frame in which the atomic potential and

the laser field can be treated on equal footing.

In the KH frame, the effect of the laser field is represented by the quiver motion

of the KH potential along the classical trajectory x(t), the amplitude of the oscillation

is given by α = F/ω2 for a monochromatic laser field. Therefore, it is expected that

the perturbation theory in the KH frame is valid even with very high intensity if the

frequency is high enough. This is actually the case as can be seen when we study the

photoelectron spectrum in Chapters 5 and 6, where the typical value of α is several

atomic units. This value is smaller than the range of the atomic potential considered

there so that the first-order perturbation theory qualitatively reproduces the spectrum.

2.3 High-frequency Floquet theory

The high-frequency aspect of the laser field, Eq. (1.1), is incorporated by the high-

frequency Floquet theory (HFFT). For a monochromatic laser field, the KH potential

is periodic with respect to time. Hence, it can be expanded into Fourier series,

V (x+ α cosωt) =
∞∑

n=−∞
Vn(x;α)e−inωt, (2.8)
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where

Vn(x;α) = 1
T

∫ T
0
V (x+ α cosωt)einωtdt. (2.9)

In the stabilization regime, the laser frequency is much higher than the binding energy

of the electron i.e. ω ≫ |E0|. This means that the period of the laser field is much

shorter than the time scale of the electronic motion. Therefore, in the leading order

approximation, we only take the n = 0 term in Eq. (2.9). Thus the TDSE reduces to

[H(α)− E(α)]ϕ(x;α) = 0, (2.10a)

H(α) = −1
2
d2

dx2 + V0(x;α), (2.10b)

where H(α) is the effective Hamiltonian in the stabilization regime. This Hamiltonian

is called the dressed Hamiltonian since the atomic potential wears the laser field in the

sense of Eq. (2.9). The important thing is that the time dependency is washed out in

the TDSE, and the electron is bound in the static potential. Thus tunneling ionization

plays no role. In the stabilization regime, the various high-intensity and high-frequency

phenomena including the atomic stabilization can be explained in terms of the dressed

potential V0(x;α). Thus Eqs. (2.10) is the basic equation to extract the physics out of

the photoelectron spectrum in Chapters 5 and 6. The dressed Hamiltonian was obtained

in [20], and its eigenenergies was analyzed in [71]. The eigenstates supported by the

dressed potential V0(x;α) are called the dressed states. The function Vn(x;α) (n ̸= 0)

represents the |n|-photon decay channels. The one-photon ionization rate Γ(α) for the

dressed ground state is given by

Γ(α) = Γ−(α) + Γ+(α)
2πk(α)

. (2.11)

where Γ±(α) represents the ionization rate of electron receding from the potential region

to the right (+) and left (−) direction, respectively. The function Γ±(α) are written as

Γ±(α) = 2π
∣∣∣∣∣
∫ x+

x−
φ∗±(x, k(α);α)V1(x;α)ϕ0(x;α) dx

∣∣∣∣∣
2

, (2.12)

where ϕ0(x;α) represents the dressed ground state with energy E0(α), and φ∗±(x; k(α);α)

the scattering state of momenta k =
√

2(E0(α) + ω) of the dressed Hamiltonian Eq. (2.10b).

The dressed scattering state is constructed in terms of the Siegert pseudostates, see

Eq. (3.20). The behavior of the function Γ(α) is shown in Fig. 2.1. Now we are ready
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Figure 2.2: The dressed potential, n = 0 term in Eq. (2.9), for two different values of α.

to clarify the mechanism of the atomic stabilization, namely the asymptotic decline of

the ionization rate Γ(α) shown in Fig. 2.1.

2.4 Atomic stabilization

As discussed in the previous section, the dressed potential V0(x;α) plays the key

role in the stabilization regime. So, let us start with visualising V0(x;α). Fig. 2.2 shows

the dressed potential V0(x;α) for two different values of α. The red line represents

the field free atomic potential (α = 0); the blue line shows the dressed potential for

α = 3.04, which is above the critical value of the stabilization α ≈ 0.8. The velocity of

the classical electron is zero at the turning points x = ±α. Therefore, as α grows, the

electron spends more time in the outer region of the dressed potential rather than near

the core at origin. This emerges as the double-well structure in the dressed potential

shown by the blue line in Fig. 2.2. The ground state wave function ϕ0(x;α) for α = 3.04

thus has localized amplitudes at the turning points x = ±α, i.e.,

ϕ0(x;α) = 1√
2

[ϕL(x;α) + ϕR(x;α)] , (2.13)



12

where the function ϕL(x;α) and ϕR(x;α) have localized amplitude near the left (x = −α)

and right (x = α) turning points, respectively. They can be written by the linear

combination of the ground (ϕ0(x;α)) and the first excited state wave function (ϕ1(x;α)),

ϕL(x;α) = 1√
2

[ϕ0(x;α) + ϕ1(x;α)] , ϕR(x;α) = 1√
2

[ϕ0(x;α)− ϕ1(x;α)] . (2.14)

From Fig. 2.2, it can be expected that the two photoelectron wave packets are produced

from the left and right well for α = 3.04 when photon absorption takes place. Substi-

tuting the expression Eq. (2.13) into Eq. (2.12), the ionization rate Γ±(α) in Eq. (2.11)

can be recast into

Γ±(α) = 2π
∣∣∣ΓL
±(α) + ΓR

±(α)
∣∣∣2 , (2.15)

Here ΓL
±(α) and ΓR

±(α) are given by

ΓL
±(α) =

∫ x+

x−
φ∗±(x, k(α);α)V1(x;α) 1√

2
ϕL(x;α)dx, (2.16a)

ΓR
±(α) =

∫ x+

x−
φ∗±(x, k(α);α)V1(x;α) 1√

2
ϕR(x;α)dx. (2.16b)

They represent the transition matrix elements for the electron being ionized from the left

(L) and right (R) well, and leaving to the left (−) and right (+) direction, respectively.

After the two photoelectron wave packets are launched, one of them catches up with

the other and interference occurs with the phase difference determined by the distance

between the two wells, i.e., 2α. Substituting Eq. (2.15) into Eq. (2.11), the interference

term in the ionization rate Γ(α) can be extracted as

Q(α) = 2
k(α)

∑
i=+,−

|ΓL
i ||ΓR

i |ReΓR
i

ΓL
i

(2.17)

In Fig. 2.1, the interference term Q(α) is shown by blue line. For the small value of α, the

interference is constructive since the phase difference is negligible. However, the phase

difference increases as α grows, the picture of the interference turns into destructive

when the function Q(α) becomes negative for α > αc. This causes the stabilization

[75]. However, the decay of the ionization rate is not monotonic after the stabilization.

One can clearly see oscillating structures in Fig. 2.1 since constructive and destructive

interference emerges alternately as α grows.
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2.5 Theoretical and experimental challenges in the stabilization
regime

The suppression of the ionization rate as well as total ionization probability has

been the main subject in the stabilization regime both theoretically [67, 1] and exper-

imentally [8, 9, 10]. In the experiments [8, 9, 10], one of the difficulties was placing

atoms sufficiently rapidly into a field of high intensity. It may be considered that the

ground state depletes before the laser intensity reaches its maximum. To overcome this

difficulty, they employed the Rydberg states of Ne atom whose lifetime is of the order

of a few hundreds of femtoseconds for high-frequency laser pulses applied to observe the

stabilization. Thus the pulse duration of 90 fs was short enough to prevent the depletion

of the ground state. Other experimental difficulty is the volume effect of the laser pulse.

That is, an ensemble of atoms subjected to an inhomogeneity in intensity due to the

spatial distribution of the laser intensity. Thus it may be expected that the volume

integration of the experimental results washes out the physical effect of interests. To

prevent this, they applied loosely focused laser pulse to atoms. See Appendix A for

these discussions.

The suppression of the ionization rate as well as total ionization probability is

important but represents only one aspect of the dynamics in this regime. To obtain

deeper insights in this regime, it is essential to consider the photoelectron spectrum

which may contain various signatures of the dynamics not revealed by the suppression

of the total ionization probability or ionization rate. In the next two Chapters, we aim

to develop the Siegert state expansion in the Kramers-Henneberger frame which leads

us to accurately calculate the photoelectron spectrum.



Chapter 3

Siegert states

3.1 Introduction

This Chapter studies the Siegert states (SSs) [25]. The SSs are the solutions to

the stationary Schrödinger equation satisfying the outgoing wave boundary condition.

We summarize some basic properties of the SSs which are required to implement the

SS expansion of a wave packet in the following Chapters. Before moving into detailed

discussions, let us provide an overview on the SS by solving a simple problem.

Let us consider a square well potential,

V (x) =

 −V0 (−a < x < a)

0 (x < −a, x > a)
, (3.1)

where V0 and a represent the depth and width of the potential. The Siegert states (SSs)

[25] are defined by the outgoing wave boundary conditions,(
d

dx
∓ ikn

)
ϕn(x)

∣∣∣∣
x=±a

= 0. (3.2)

This boundary condition destroys the hermiticity of the Hamiltonian H, the eigenen-

ergies En becomes generally complex valued. The wave function in the inner region

−a < x < a is,

ϕ(x) = A sin κx+B cosκx, (3.3a)

κ =
√
k2 + 2V0, (3.3b)

k =
√

2E. (3.3c)

The atomic potential is symmetric with respect to the origin so that the solutions are

classified into even or odd parity. The transcendental equation is readily obtained from
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Figure 3.1: Complex energy plane of the Siegert eigenvalue problem for the square
well potential Eq. (3.1). In this figure, even and odd parity solutions are indicated
by “Even" (red +) and “Odd" (green x), respectively. The eigenvalues are separated
into four hierarchies: bound states on positive imaginary axis, antibound states on
negative imaginary axis, outgoing states on forth quadrant, and incoming states on third
quadrant. In this figure, the solutions “EVP" are obtained from the Siegert pseudostate
eigenvalue problem, Eq. (3.28), which is the numerical implementation of the SS.

the matching condition Eq. (3.2),

κn = nπ

2a
− i

2a
log κn + kn

κn − kn
(n = 0, 1, 2, . . .), (3.4)

where even (odd) n corresponds to even (odd) parity. For concreteness sake, let us

set V0 = 112.5 and a = 1, and solve the above equation iteratively. In Fig. 3.1, the

eigenvalue distribution obtained from the transcendental equation Eq. (3.4) and the

eigenvalue problem Eq. (3.28) are shown. The set of Siegert eigenvalues are split into

four classes: bound states (Re kn = 0, Im kn > 0), anti bound states (Re kn = 0, Im

kn < 0), outgoing states (Re kn > 0, Im kn < 0), and incoming states (Re kn < 0, Im

kn < 0).

There are several important advantages in the SS expansion. First, the SS

expansion enables us to remove unphysical reflection which destroys the dynamics

when the part of the wave packet returns to the potential region from the boundary
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[34, 35, 36, 21, 22, 23]. Second, the scattering state of an arbitrary value of momentum

k can be expanded in terms of the SSs [26, 27]. The photoelectron spectrum can be then

obtained by projecting the wave function at the end of the pulse onto the scattering state

of a certain momentum value k. Thus once dependably evaluated SSs become available,

the photoelectron spectrum can be calculated with desired resolutions. However, the

SS has some nonstandard properties. First, the eigenvalue problem to be solved turns

out to be quadratic with respect to the eigen momentum on account of the outgoing

wave boundary condition (see Eq. (3.11)). So, we need to introduce an ingenious idea

proposed by Tolstikhin [26, 27] to recast this into a linear one for practical calculations.

Second, the orthogonality and completeness relations are nonstandard; it is not trivial

to see how to obtain unique expansion coefficients of the wave packet in terms of the

SSs. These are the price for incorporating the outgoing wave boundary condition into

the Schrödinger equation. Nonetheless, there are more advantages for exploiting from

the SSs by overcoming the difficulties.

In this chapter, the theory of the SS are summarized for the whole axis problem

in the 1D case [22] and 3D case [30] with non-zero values of the angular momentum.

The SSs are numerically implemented by the Siegert pseudostates (SPSs) first proposed

by Tolstikhin et al. [26, 27], which is the finite basis representation of the SSs.

The historical developments of the SSs are summarized in Appendix B.

3.2 One dimensional case

3.2.1 Siegert states for the whole axis problem

The stationary Schrödinger equation for the whole axis problem in the one di-

mensional case reads,

(H − E)ϕn(x) = 0, (3.5)

where the atomic Hamiltonian H is

H = −1
2
d2

dx2 + V (x). (3.6)

It is assumed that the atomic potential V (x) has a finite range,

V (x)|x<x− = V (x)|x>x+
= 0. (3.7)
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The outgoing wave boundary conditions are(
d

dx
∓ ikn

)
ϕn(x)

∣∣∣∣
x=x±

= 0. (3.8)

Let us introduce the operators

F(x;x0) = δ(x− x0), D(x;x0) = δ(x− x0) d
dx
. (3.9)

Using the operator D(x;x0), the hermitized Hamiltonian is defined by

H̃ = H + 1
2

[D(x;x+)−D(x;x−)] . (3.10)

Then Siegert eigenvalue problem, Eq. (3.5) and (3.8), becomes(
H̃ − ik

2
F − k2

2

)
ϕ(x) = 0, (3.11)

where

F = F(x;x−) + F(x;x+). (3.12)

This quadratic eigenvalue problem with respect to k can be converted into a linear one

[26, 27] by introducing a new vector  ϕn(x)

ϕ̃n(x)

 , (3.13)

where

ϕ̃(x) = ikϕ(x). (3.14)

Then one obtains, 
 0 1

−2H̃ F

− ikn

 ϕn(x)

ϕ̃n(x)

 = 0. (3.15)

Multiplying the matrix  −F 1

1 0

 (3.16)

from the left side, we have a symmetrized form,
 −2H̃ 0

0 1

− ikn
 −F 1

1 0



 ϕn(x)

ϕ̃n(x)

 = 0. (3.17)
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Therefore the eigenvector (ϕn(x) ϕ̃n(x))T is subject to the orthonormal relationship

∫ x+

x−

(
ϕn(x) ϕ̃n(x)

) −F 1

1 0


 ϕm(x)

ϕ̃m(x)

 dx = 2iknδnm. (3.18)

This is equivalent to∫ x+

x−
ϕn(x)ϕm(x)dx+ i

ϕn(x−)ϕm(x−) + ϕn(x+)ϕm(x+)
kn + km

= δnm. (3.19)

The SS expansion of the scattering state for the momentum k is given by,

φin
±(x, k) = ike∓ikx±

∑
n

ϕn(x)ϕn(x±)
kn(k − kn)

, x− ≤ x ≤ x+. (3.20)

The wave packet formed by the superposition of φ(x, k) for a narrow interval of k

represents the in state, which it approaches the interaction region x− < x < x+ in the

remote past from the left and right, respectively. See Appendix D.1.1 for its derivation

and details. The completeness of the set of the eigenvectors (ϕn(r)ϕ̃n(r))T is given by

∑
n

1
2ikn

 ϕn(x)

ϕ̃n(x)

 (ϕn(x) ϕ̃n(x)) = δ(x− x′)

 0 1

1 F

 . (3.21)

Comparing both sides of the above equation, we find,∑
n

1
kn
ϕn(x)ϕn(x′) = 0, (3.22a)

∑
n

ϕn(x)ϕn(x′) = 2δ(x− x′), (3.22b)

∑
n

iknϕn(x)ϕn(x′) = 2δ(x− x′)
[
δ(x′ − x−) + δ(x− x+)

]
. (3.22c)

The SSs form an overcomplete set in the original Hilbert space H, Eq. (3.22b), while the

vectors in H2 = H ⊗ H, i.e. Eq. (3.13), satisfy the normal completeness relationships

Eq. (3.21).

3.2.2 Siegert state expansion of an arbitrary function

For a given function ψ(x) ∈ H, it is important to consider how to expand it

in terms of SSs. To uniquely define the expansion coefficients, we introduce a new

component ψ̃(x), and consider a vector (ψ(x) ψ̃(x))T of H2. This vector is expanded in

terms of SSs,  ψ(x)

ψ̃(x)

 =
∑
n

an

 ϕn(x)

ϕ̃n(x)

 . (3.23)
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Using the orthogonal relationship Eq. (3.18), we obtain the expansion coefficients

an = 1
2ikn

[
ikn

∫ x+

x−
ϕn(x)ψ(x)dx− ϕn(x−)ψ(x−)− ϕn(x+)ψ(x+) +

∫ x+

x−
ϕn(x)ψ̃(x)dx

]
.

(3.24)

Substituting this expression into Eq. (3.23) and using Eq. (3.22a), (3.22b) and (3.22c),

the function ψ(x) is reconstructed.

Thus we adopt the set of vectors Eq. (3.13) for expanding a wave packet.

3.2.3 Numerical implementation: Siegert pseudostates for the whole

axis problem

In the numerical calculations, the SS formulation mentioned above is implemented

in terms of the Siegert pseudostates (SPSs) [26, 27], which is the finite basis represen-

tation of the SSs. Let {πi(x)} be a complete orthonormal basis set∫ x+

x−
πi(x)πj(x)dx = δij , (3.25)

∞∑
n

πn(x)πn(x′) = δ(x− x′). (3.26)

Substituting the finite basis expansion of a wave function

ϕn(x) =
N∑
i=1

c
(n)
i πi(x) (3.27)

into Eq. (3.5), and using the boundary condition Eq. (3.8), we obtain
 0 I

−2H̃ F

− ikn

 c(n)

c̃(n)

 = 0, (3.28)

where

H̃ij =
∫ x+

x−
πi(x)H̃πj(x)dx

= 1
2

∫ x+

x−

dπi(x)
dx

dπj(x)
dx

dx+
∫ x+

x−
πi(x)V (x)πj(x)dx, (3.29)

Fij =
∫ x+

x−
πi(x)Fπj(x)dx = πi(x−)πj(x−) + πi(x+)πj(x+). (3.30)

The set of 2N solutions for the above equation are called Siegert pseudostates (SPSs)

which is a finite basis representation of a SSs. In the SPS formulation, the summation

runs over all the SPSs. For instance, the summation in Eq. (3.20) and Eq. (3.23) runs

over 2N SPSs, although some of them might give a false impression of being numerically

useless. Let us note that even removing just one of them leads to the wrong result.
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3.3 Three dimensional case

3.3.1 Siegert states for the non-zero value of the angular momentum

The theory of the SS can be further extended to the three-dimensional (3D) case.

The 3D Siegert eigenvalue problem with nonzero value of the angular momentum is

defined by

(Hl − E)ϕ(r) = 0, (3.31a)

Hl = −1
2
d2

dr2 + l(l + 1)
2r2 + V (r), (3.31b)

V (r)|r≥a = 0, (3.31c)

ϕ(0) = 0, (3.31d) d

dr
− ik + 1

a

l∑
p=1

zlp
ika+ zlp

ϕ(r)

∣∣∣∣∣∣
r=a

= 0. (3.31e)

Here, a is the cut-off radius for the atomic potential V (r) and zlp (p = 1, . . . , l) are

the zeros of the reverse Bessel polynomial [77]. The additional term in the outgoing

wave boundary condition stems from the centrifugal potential. See Appendix C for the

outgoing wave boundary condition in the 3D case. Solutions are denoted by kln, Eln =

k2
ln/2 and ϕln(r). Using the operator D(r; a) introduced by Eq. (3.9), the hermitized

Hamiltonian H̃l is defined by

H̃l = Hl +
1
2
D(r; a). (3.32)

Then the eigenvalue problem Eq. (3.31) becomesH̃l − 1
2

ik − 1
a

l∑
p=1

zlp
ika+ zlp

F(r; a)− 1
2
k2

ϕ(r) = 0. (3.33)

The eigenvalue problem becomes non-linear with respect to k. Introducing new nota-

tions

ϕ̃ln(r) = iklnϕln(r), (3.34a)

ϕlnp = − zlp
iklna+ zlp

ϕln(a) (p = 1, . . . , l), (3.34b)
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let us define the new augmented vector

ϕln(r) =



ϕln(r)

ϕ̃ln(r)

ϕln1
...

ϕlnl


. (3.35)

Then the eigenvalue problem becomes,

[Λl − ikln]ϕln(r) = 0, (3.36)

where

Λl =



0 1 0 0 · · · 0

−2H̃l F(r; a) F(r; a)/a F(r; a)/a · · · F(r; a)/a

−zl1FT (r; a)/a 0 −zl1/a 0 · · · 0

−zl2FT (r; a)/a 0 0 −zl2/a · · · 0
...

...
...

... . . . ...

−zllFT (r; a)/a 0 0 0 · · · −zll/a


. (3.37)

The operator FT (r; a) acts on an arbitrary function u(r) according to

FT (r; a)u(r) = u(a). (3.38)

Multiplying the weight matrix

Wl =



−F(r; a) 1 0 · · · 0

1 0 0 · · · 0

0 0
...

... −1/zlp

0 0


, (3.39)

from the left side of Eq. (3.36), we obtain the symmetrized form



−2H̃l 0 F(r; a)/a · · · F(r; a)/a

0 1 0 · · · 0

FT (r; a)/a 0

FT (r; a)/a 0 1/a
...

...

FT (r; a)/a 0


− iklnWl





ϕln(r)

ϕ̃ln(r)

ϕln1

ϕln2
...

ϕlnl


= 0. (3.40)
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The object zlp and 1/a are the diagonal matrix of dimension l whose pth (p = 1, . . . , l)

diagonal element is given by zlp and 1/a, respectively. Therefore the eigenvectors satisfy

the orthonormal relationship,

∫ a
0

(
ϕln(r) ϕ̃ln(r) ϕln1 ϕln2 · · · ϕlnl

)
Wl



ϕln′(r)

ϕ̃ln′(r)

ϕln′1

ϕln′2
...

ϕln′l


dr = 2iklnδnn′ . (3.41)

The Siegert state expansion of the scattering state is given by

φl(r, k) = −ike−ika (−ika)l

θl(−ika)
∑
n

ϕln(r)ϕln(a)
kln(kln − k)

, 0 ≤ r ≤ a. (3.42)

See Appendix D.2.1 for its derivation.

From the orthonormal relationship Eq. (3.41), SSs satisfy the following complete-

ness relationship ∑
n

1
2ikln

ϕln(r)ϕTln(r′) = δ(r − r′)W −1
l . (3.43)

Comparing both sides of this equation, we obtain

∑
n

ϕln(r)ϕln(r′) = 2δ(r − r′), (3.44a)

∑
n

1
kln

ϕln(r)ϕln(r′) = 0. (3.44b)

As discussed in the 1D case, the SSs form an overcomplete set in the original Hilbert

space H, while they have the usual completeness in H(l)
2 = H ⊗ H ⊗ Cl. Here Cl is

the vector space formed by the vectors (ϕln1, . . . , ϕlnl) in Eq. (3.35). To obtain unique

expansion coefficients for a given function ψ(r) in terms of the SSs, we consider another

auxiliary function ψ̃(r) and l additional components ψp (p = 1, . . . , l), and introduce

the vector 

ψ(r)

ψ̃(r)

ψ1
...

ψl


. (3.45)
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This vector can be expanded by the set of vectors Eq. (3.35) with unique expansion

coefficients. Thus we employ the set of vectors Eq. (3.35) as basis functions for expanding

a wave packet.

3.3.2 Numerical implementation: Siegert pseudostates for the non-zero

values of the angular momentum

In numerical calculations, the SSs are implemented by the Siegert pseudostates

(SPS), which is the finite basis representation of the SS. Let {πi(r)} i = 1, 2, . . . be a

complete orthonormal basis set. Then,∫ a
0
πi(r)πj(r) = δij , (3.46a)

∞∑
i

πi(r)πj(r′) = δ(r − r′). (3.46b)

Substituting the finite basis representation of the wave function

ϕln(r) =
N∑
i=1

c
(n)
i πi(r) (3.47)

into Eq. (3.31a), and using boundary conditions Eq. (3.31d) and (3.31e), we obtain



0 I 0⃗ · · · 0⃗

−2H̃l F f/a · · · f/a

−zl1fT /a 0⃗T
...

... −zlp/a

−zllfT /a 0⃗T


− ikln





c(n)

c̃(n)

ϕln1
...

ϕlnl


= 0, (3.48)

where

ϕlnp = −zlpϕln(a)
ika+ zlp

, p = 1, . . . , l. (3.49)

The matrix elements are defined by

H̃l,ij =
∫ a

0
πi(r)H̃lπj(r)dr

= 1
2

∫ a
0

dπi(r)
dr

dπj(r)
dr

dr +
∫ a

0
πi(r)

[
l(l + 1)

2r2 + V (r)
]
πj(r)dr, (3.50)

and

Fij =
∫ a

0
πi(r)F(r; a)πj(r)dr = πi(a)πj(a), (3.51a)

fi = πi(a). (3.51b)
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Here 0⃗ denotes the null vector of which all the elements are 0. The dimension of the

original Hilbert space is N , but it is extended to 2N+l to incorporate the outgoing wave

boundary condition into the Schrödinger equation. As discussed in the 1D case, all the

solutions participate in the SPS expansion of the physical quantities. For instance, the

scattering state Eq. (3.42) involves 2N + l SPSs.

In this thesis, we employ the discrete variable representation (DVR) method [70]

to solve the SPS eigenvalue problem Eq. (3.28) and Eq. (3.48) for the 1D and 3D

case, respectively. The numerical approach for calculating the SPSs are the same as

[27], the Legendre polynomials and the associated Gaussian quadrature are employed.

The reason for the use of the Legendre polynomial is that the basis functions having the

finite amplitude at the boundary are required to implement the outgoing wave boundary

condition.



Chapter 4

Siegert state expansion of a wave packet in the Kramers-Henneberger
frame: Accurate numerical method to calculate photoelectron spectra

4.1 Introduction

From the theoretical point of view, how to implement the numerical scheme to

study a laser-atom interaction is a fundamental issue. Solving the time-dependent

Schrödinger equation (TDSE) in the laboratory frame in the length gauge with absorb-

ing boundary conditions in a large box is a widely used approach, see e.g. [14, 15, 16, 17].

However, this scheme substantially bears the following problems. First, the laboratory

frame in the length gauge modifies the dynamics since the laser field must be eventu-

ally cut off beyond a finite box considered in the calculations. Second, the dynamics

is disturbed also by the absorbing potential, whose effect is difficult to control and

disentangle. Under the circumstances, Reed and Burnett [18] suggested to use the

Kramers-Henneberger (KH) frame [19, 20] instead of the laboratory frame. In the KH

frame, the interaction with the laser field is represented by a quiver motion of the cen-

ter of the atomic potential along a trajectory that the classical electron would follow.

Hence it is localized in a finite region of space so that the dynamics are not modified for

the cut-off radius larger than the range of the quivering potential being effective. The

electron moves freely once it leaves this interaction region. As was demonstrated in [18],

this fact enables one to increase (approximately double) the length of a laser pulse that

can be treated, because the calculations can be extended up to the moment when the

electron returns to the interaction region after its reflection from the boundary of the

box. Alternatively, one can reduce (approximately halve) the size of the box. In any

case, a gain in the computational efficiency is achieved. The advantage of the KH frame
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is well recognized [13, 5]. In [18], zero boundary conditions were used, that is, the wave

function vanishes at the boundary. In this case, to calculate the spectrum the box must

contain the entire interaction region substantially, the finiteness of the box obviously

limits the high-energy extent of the spectrum obtained as well as its resolution. The

gain from the use of the KH frame would be much more essential if one could reduce

the size of the box down to that of the interaction region. Imposing absorbing bound-

ary condition may help to reach this goal, but if only the total ionization probability

is needed. The branching ratios are the beyond its scope. The true solution lies in

correctly incorporating the outgoing-wave boundary condition into the time-dependent

Schödinger equation, and it can be implemented in terms of the Siegert state of the

previous Chapter.

In this chapter, we summarize the formulation of the Siegert state expansion in

the KH frame for both the 1D [39] and 3D [23] cases, its application is implemented

in the next Chapter to calculate and study photoelectron spectra. Yoshida et al. [34]

and Tanabe et al. [35] pioneered the applications of SPSs as a basis to treat the time

propagation of wave packets. Subsequently, Santra et al. [36] following an earlier work

[37] developed a rigorous formalism of the expansion in terms of SPSs for the case of a

stationary Hamiltonian. Finally, Tolstikhin [21, 22] has extended the method to time-

dependent Hamiltonians, which made its applications to many nonstationary problems

such as the laser-atom interaction possible. It is shown in [21, 22] that The most

important task is to rewrite the outgoing wave boundary condition in the time domain

to incorporate it into the TDSE. As shown in later, this is implemented by introducing

the new operator λ̂t, which is proportionate to the square root of the time differentiation

or
√
∂
∂t symbolically. Then the TDSE is recast into a new form in terms of λ̂t by doubling

the dimension of the Hilbert space originally considered for the TDSE. The wave packet

is expended by the SS basis functions, the resulting close coupling equations for the

expansion coefficients of the wave packet are of the Volterra equation of the second kind,

which is non-local with respect to time. This is the price for incorporating the outgoing

wave boundary condition into the TDSE, but the numerical procedure to solve it is

well established [78]. The primary goal of this Chapter is to express the photoelectron

spectrum in terms of these expansion coefficients in Sec. 4.2.6 and 4.3.6.
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4.2 One dimensional case

4.2.1 The Kramers-Henneberger frame

We consider a one-electron system in one dimension interacting with laser pulses.

The time-dependent Schrödinger equation in the laboratory frame (L) in the length

gauge reads,

i
∂ψL(xL, t)

∂t
=
[
−1

2
∂2

∂x2
L

+ V (xL) + F (t)xL

]
ψL(xL, t). (4.1)

In this thesis, we adopt the dipole approximation for describing the interactions between

the electron and laser fields. The dipole approximation is expected to be valid in this

thesis since the wavelengths of the laser fields being considered are much larger than

the size of systems. However, this approximation fails for the wavelength in hard X-ray

range when Compton scattering dominates the ionization processes. It is assumed that

the atomic potential V (x) vanishes beyond the interval −X < xL < X,

V (|xL| > X) = 0. (4.2)

The laser electric field has a finite duration T ,

F (t < 0) = F (t > T ) = 0. (4.3)

Let x(t) and v(t) = dx(t)/dt be classical trajectories of the free electron in the laser field

defined by Eqs. (2.4) and (2.5). Using them, we implement the Kramers-Henneberger

(KH) transformation defined by Eq. (2.6). Then we obtain the TDSE in the KH frame,

i
∂ψ(x, t)
∂t

=
[
−1

2
∂2

∂x2 + V (x+ x(t))
]
ψ(x, t). (4.4)

Note that the subscript “KH" in Eq. (2.7) is omitted for brevity. The advantage of the

KH potential is that it is localized in a finite interval x− < xKH < x+,

x− = −X + min[x(t)], x+ = X + max[x(t)]. (4.5)

Therefore, the effect of the laser field can be fully taken into account once the box size

is large enough to cover the range of this oscillation. Let us rewrite Eq. (4.4) as follows,

i
∂ψ(x, t)
∂t

= H(t)ψ(x, t), (4.6)
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where

H(t) = H + U(x, t). (4.7)

Here H and U(x, t) represent the atomic Hamiltonian and laser-atom interaction,

H = −1
2
∂2

∂x2 + V (x), (4.8)

and

U(x, t) = V (x+ x(t))− V (x). (4.9)

The wave function in the laboratory frame when the pulse is over can be obtained

using Eqs. (2.6b). The observables are calculated by projecting this wave function

onto the bound and scattering states of the atomic Hamiltonian Eq. (4.8). Thus the

observables depend on the classical trajectories. In this thesis, we assume that the

classical trajectories satisfy

x(T ) = v(T ) = 0. (4.10)

In this case, the wave functions in the laboratory and KH frame coincides for t >

T , and hence the observables in both frames also coincide. These conditions are not

satisfied unless the value of the carrier envelope phase (CEP) is zero. In this case, the

photoelectron spectra in both frames do not coincide due to the phase factor in (4.6b).

However, the influence of this additional phase factor on photoelectron spectra may be

negligible for high-frequency laser pulses being employed in the following chapters; the

electron follows the envelope of the pulse in the high-frequency regime.

4.2.2 The Green’s function

We rewrite the solution for Eq. (4.6) using the Green’s function to discuss the

outgoing wave boundary condition in time domain in the next subsection. Let us start

with the stationary outgoing Green’s function defined by

(E −H)G(x, x′; k) = δ(x− x′) (4.11)

with the boundary conditions(
d

dx
± ik

)
G(x, x′; k)

∣∣∣∣
x=x∓

= 0. (4.12)
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The retarded Green’s function for the atomic Hamiltonian H is defined by(
i
∂

∂t
−H

)
G(x, x′; t) = δ(t)δ(x− x′), (4.13a)

G(x, x′; t)
∣∣
t<0 = 0. (4.13b)

They are related by the Fourier transform,

G(x, x′; t) =
∫ ∞
−∞

G(x, x′; k)e−iEtdE
2π

. (4.14)

The retarded Green’s function for the full-Hamiltonian H(t) is given by,[
i
∂

∂t
−H(t)

]
G (x, x′; t, t′) = δ(t− t′)δ(x− x′), (4.15a)

G (x, x′; t, t′)
∣∣
t<t′ = 0. (4.15b)

Using Eq. (4.13), we have another form of this function,

G (x, x′; t, t′) = G(x, x′; t− t′) +
∫ ∞
−∞

dt′′
∫ x+

x−
dx′′G(x, x′′; t− t′′)U(x′′, t′′)G (x′′, x′; t′′, t′).

(4.16)

We assume that the initial state of the electron,

ψ(x, t)|t→−∞ = e−iE0tϕ0(x), (4.17)

where E0 and ϕ0 represent the ground state of the atomic Hamiltonian,

(H − E0)ϕ0(x) = 0. (4.18)

Then the solution for Eq. (4.6) can be written using Eq. (4.13) as follows,

ψ(x, t) = e−iE0tϕ0(x) +
∫ ∞
−∞

dt′
∫ x+

x−
dx′G(x, x′; t− t′)U(x′, t′)ψ(x′, t′). (4.19)

4.2.3 Outgoing wave boundary condition in time domain

Here we work toward expressing the outgoing wave boundary condition in the time

domain using the fractional time derivative approach. Let F and D be the operators

F(x;x0) = δ(x− x0), D(x;x0) = δ(x− x0) d

dx
. (4.20)

We introduce the hermitized Hamiltonian

H̃(t) = H(t) + 1
2

[D(x;x+)−D(x;x−)] . (4.21)
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Let us introduce the operator λ̂t whose action on f(t) is defined in terms of the Fourier

transform as follows,

f(t) =
∫ ∞
−∞

f(E)e−iEtdE
2π

, (4.22)

and

λ̂tf(t) =
∫ ∞
−∞

ikf(E)e−iEtdE
2π

. (4.23)

Then we have the relationship between λ̂t and time-derivative

i
∂

∂t
= − λ̂t

2

2
, − iλ̂t =

√
2i ∂
∂t
. (4.24)

Now let us seek to express the outgoing wave boundary condition in time domain. Using

the operators Eq. (4.20), we rewrite the boundary condition Eq. (4.12) as,

D(x;x−)G(x, x′; k) = −ikF(x;x−)G(x, x′; k), x′ > x−, (4.25a)

D(x;x+)G(x, x′; k) = +ikF(x;x+)G(x, x′; k), x′ < x+. (4.25b)

Using Eqs. (4.25) and (4.14), we have

D(x;x−)G(x, x′; t) = −F(x;x−)λ̂tG(x, x′; t), x′ > x−, (4.26a)

D(x;x+)G(x, x′; t) = +F(x;x+)λ̂tG(x, x′; t), x′ < x+. (4.26b)

Using Eqs. (4.26) and (4.16), we obtain

D(x;x−)G (x, x′; t, t′) = −F(x;x−)λ̂tG (x, x′; t, t′), x′ > x−, (4.27a)

D(x;x+)G (x, x′; t, t′) = +F(x;x+)λ̂tG (x, x′; t, t′), x′ < x+. (4.27b)

Using Eqs. (4.26), (4.19) and identity (see Appendix E.1)

(λ̂t − ik)e−iEt = 0, (4.28)

we find

D(x;x±)ψ(x, t) = ±F(x;x±)λ̂tψ(x, t). (4.29)

We find that this equation amounts to the boundary conditions(
∂

∂x
∓ λ̂t

)
ψ(x, t)

∣∣∣∣
x=x±

= 0. (4.30)

This is the outgoing wave boundary condition in the time domain for the wave function

ψ(x, t) as it should be from a naive guess using the Fourier transform of ψ(x, t). It is

rigorously proved here to be the general characterization of the operator λ̂t.
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4.2.4 Matrix form of the time-dependent Schrödinger equation

It has been shown that the outgoing wave boundary condition in the time domain

is closely related to the operator λ̂t. Therefore, one needs to derive the TDSE involving

λ̂t to incorporate the outgoing wave boundary condition. To this end, we introduce the

new vector  ψ(x, t)

ψ̃(x, t)

 , (4.31)

where

ψ̃(x, t) = λ̂tψ(x, t). (4.32)

Then the TDSE can be rewritten in terms of the operator λ̂t,λ̂t −
 0 1

−2H̃(t) F



 ψ(x, t)

ψ̃(x, t)

 = 0, (4.33)

where

F = F(x;x−) + F(x;x+). (4.34)

4.2.5 Siegert state expansion: coupled Volterra equations for inner

region

Here we seek the solution to Eq. (4.33) in terms of the stationary Siegert states

(SSs). As discussed in Chapter 3, we adopt the set of the two-component vector

Eq. (3.13) as the basis functions to uniquely define the expansion coefficients of the

wave packet in terms of the SSs. Hence, we seek the solution to Eq. (4.33) for inner

region x− < x < x+ in the form ψ(x, t)

ψ̃(x, t)

 =
∑
n

an(t)

 ϕn(x)

iknϕn(x)

 . (4.35)

Substituting this expansion into Eq. (4.33), multiplying the factor

(ϕn(x) ϕ̃n(x))

 −F 1

1 0

 (4.36)



32

form the left, integrating over [x−, x+], and using the orthonormal relationship Eq. (3.18),

one obtains

ikn(λ̂t − ikn)an(t) +
∑
m

Unm(t)am(t) = 0, (4.37a)

an(t)|t→−∞ = δn0e
−iE0t (4.37b)

where

Unm(t) =
∫ x+

x−
ϕn(x)U(x, t)ϕm(x) dx. (4.38)

Using the retarded Green’s function g(t; k) for the operator λ̂t− ikn, see Appendix E.2,

we have an integral form of this equation,

an(t) = δn0e
−iE0t + i

kn

∑
m

∫ t
−∞

g(t− t′; kn)Unm(t′)am(t′) dt′. (4.39)

These are the coupled Volterra equations of the second kind. The equation Eq. (4.39)

indicates that all the past information of am(t) is required to calculate the value of

an(t) for a given time. This originate from the non-local property of the operator λ̂t

Eq. (4.24), see Appendix E.1, in the outgoing wave boundary condition Eq. (4.30).

Outgoing wave boundary condition in time domain has been intensively studied

in literatures; for instance, see [79, 80, 81, 82] and references therein. In [80, 81, 82],

outgoing wave boundary conditions for the Crank-Nicolson finite difference scheme were

derived in 1D and 2D cases. The resulting boundary conditions are equivalent to

Eq. (4.30). In these literatures, it was pointed out that these are non-local with re-

spect to time since the pseudodifferential operator Eq. (4.24) is incorporated. Recently,

Tolstikhin developed the Siegert state approach to implement outgoing wave boundary

conditions in time domain [21, 22, 23]. The SS formulation gave us new perspectives,

in particular, for physics of laser-atom interaction because photoelectron spectra can be

exactly described by the expansion coefficients of a wave packet an(t), Eq. (4.35), for

one-electron systems being bound in short range potentials.

4.2.6 Photoelectron spectra

To define the photoelectron spectrum, we need to expand the wave function in

terms of the out states. The out states are the scattering states of which the wave

packets formed by them recede from the interaction region in remote future to the left
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and right, respectively; see Appendix D.1.2 for the detailed discussions. Using the out

states, the wave function can be expanded as

ψ(x, t) =
∑
n∈{b}

Cn(t)ϕn(x) +
∫ ∞

0
[C−(k, t)φout

− (x, k)

+C+(k, t)φout
+ (x, k)] dk

2π
, (4.40)

where n ∈ {b} indicates the summation over the bound states of the atomic Hamiltonian

H Eq. (4.8). For t→∞ coefficients Cn(t) and C±(k, t) are

Cn(t)|t→∞ = Cne
−iEnt, (4.41a)

C±(k, t)|t→∞ = C±(k)e−iEt (4.41b)

where

Cn = δn0 − i
∑
m

∫ ∞
−∞

eiEntUnm(t)am(t)dt, (4.42a)

C±(k) = ke∓ikx±
∫ ∞
−∞

ψ(x±, t)eiEtdt. (4.42b)

The probability amplitude Pn and P±(k) for the electron being found in the bound

states n and ionized with momenta k are

Pn = |Cn|2 = |δn0 − iAn(En)|2, (4.43a)

P±(k) = |C±(k)|2 = k2
∣∣∣∣∣∑
n

An(E)
kn(k − kn)

ϕn(x±)
∣∣∣∣∣
2

, (4.43b)

where P±(k) represent the probability amplitude of the ionized electron leaving from

the interaction region to the left (−) and right (+) direction, respectively, and

An(E) =
∑
m

∫ T
0
eiEtUnm(t)am(t) dt. (4.44)

See [22] for the detailed derivations. The energy distributions P (E) and total ionization

probabilities Pion are

P (E) = P−(k) + P+(k)
2πk

, Pion =
∫ ∞

0
P (E) dE. (4.45)

The unitarity condition reads,

∑
n∈{b}

Pn +
∫ ∞

0
[P−(k) + P+(k)] dk

2π
= 1. (4.46)
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4.2.7 Numerical implementations

4.2.7.1 The Siegert pseudostate expansion

The formulation presented in Sec. 4.2.5 and 4.2.6 is numerically implemented with

the Siegert pseudostates (SPSs). We solve the SPS eigenvalue problem Eq. (3.28). Let

N be the number of the basis functions for expanding the wave functions Eq. (3.27), we

obtain the set of 2N solutions of Eq. (3.28). The wave packet is expanded using all of

them in the same manner as Eq. (4.35). So, the summations in Eq. (4.39), Eq. (4.43b),

and Eq. (4.44) run over 2N SPSs.

4.2.7.2 Numerical solutions for the coupled Volterra equations

To solve the coupled Volterra equation Eq. (4.39), we employ the simple trape-

zoidal formula. The time interval 0 ≤ t ≤ T is divided into equally spaced time steps

ti = ih, where i = 0, . . . ,M and h = T/M . At time ti, we use the following quadrature

to evaluate the integral in Eq. (4.39),

∫ ti
0

f(t′)
(ti − t′)1/2dt

′ ≈
√
h
i∑
j=0

ω
(i)
j f(tj), (4.47)

where

ω
(i)
0 =

√
i−
√
i− 1, (4.48a)

ω
(i)
j =

√
i− j + 1−

√
i− j − 1, j = 1, . . . , i− 1, (4.48b)

ω
(i)
i = 1 (4.48c)

Note that the integration variable is changed to τ =
√
ti − t′ from t′ to eliminate the

singularity of the integral at t = ti in Eq. (4.47)

After the integration with respect to time, we obtain 2N linear simultaneous

equations for an(ti)(n = 1, . . . , 2N). This can be solved using any standard routine in

numerical calculations.

When we calculate the photoelectron spectra in Chapters 5 and 6, the time step

h is chosen so that the error on the unitarity Eq. (4.46) is less than 1%.
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4.3 Three dimensional case

4.3.1 The Kramers-Henneberger frame

We further extend our approach to the three-dimensional (3D) case. Most of the

formulas here parallel those of the 1D case except for the inclusion of the partial waves.

The TDSE in the laboratory frame in the length gauge reads,

i
∂ψL(rL, t)

∂t
=
(
−1

2
∆L + V (rL) + rL · F(t)

)
ψL(rL, t). (4.49)

It is assumed that the laser pulse F vanishes beyond the time interval 0 ≤ t ≤ T

F(t ≤ 0) = F(t ≥ T ) = 0, (4.50)

and an atomic potential has a finite range,

V (r)|r≥R = 0. (4.51)

Let α(t) be the classical trajectory of a free electron in the laser pulse,

α̈(t) = −F(t), (4.52a)

α̇(0) = α(0) = 0, (4.52b)

where the dot denotes the differentiation with respect to time. The Kramers-Henneberger

(KH) transformations is defined by

rL = rKH +α(t), (4.53a)

ψL(rL, t) = exp
(
iα̇(t) · rL −

i

2

∫ t
0
α̇2(t′)dt′

)
ψKH(rKH, t). (4.53b)

Substituting these equations into Eq. (4.49), one obtains the TDSE in the KH frame,

i
∂ψKH(rKH, t)

∂t
=
(
−1

2
∆KH + V (|rKH +α(t)|)

)
ψKH(rKH, t). (4.54)

In the following, the subscript “KH" is omitted for brevity. The effect of the laser pulse

can be correctly taken account into the TDSE for the box size

a > R+ max[α(t)]. (4.55)

It is assumed that the laser parameters are chosen so that the electron comes back to

the origin with zero velocity when the pulse is over,

α̇(T ) = α(T ) = 0. (4.56)
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We expand the wave function in terms of the spherical harmonics,

ψ(r, t) =
∑
lm

ψlm(r, t)Ylm(Ω). (4.57)

Substituting this, we obtain coupled equations[
i
∂

∂t
−Hl

]
ψlm(r, t)−

∑
l′m′

Ulm,l′m′(r, t)ψl′m′(r, t) = 0, (4.58)

where

Hl = −1
2
d2

dr2 + l(l + 1)
2r2 + V (r), (4.59a)

Ulm,l′m′(r, t) =
∫
Y ∗lm(Ω)U(r, t)Ylm(Ω)dΩ, (4.59b)

U(r, t) = V (|r +α(t)|)− V (r). (4.59c)

4.3.2 The Green’s function

The stationary outgoing wave Green’s function is defined by

(E −Hl)Gl(r, r′; k) = δ(r − r′), (4.60)

subject to the boundary conditions

Gl(0, r′; k) = 0, (4.61)

and  ∂

∂r
− ik + 1

a

l∑
p=1

zlp
ika+ zlp

Gl(r, r′; k)

∣∣∣∣∣∣
r=a

= 0. (4.62)

The time-dependent retarded Green’s function is defined by(
i
∂

∂t
−Hl

)
Gl(r, r′; t) = δ(t)δ(r − r′), (4.63a)

Gl(r, r′; t)
∣∣
t<0 = 0. (4.63b)

The relationship between the stationary and time-dependent Green’s function is given

by

Gl(r, r′; t) =
∫ ∞
−∞

Gl(r, r′; k)e−iEtdE
2π

. (4.64)
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The initial condition of the wave packet is

ψlm(r, t)|t→−∞ = δll0δmm0ϕl0n0(r)e−iEl0n0 t, (4.65)

where ϕl0n0(r) is the bound state of the atomic Hamiltonian

(Hl0 − El0n0)ϕl0n0(r) = 0. (4.66)

Then the wave packet at some moment t can be written using the Green’s function,

ψlm(r, t) = δll0δmm0ϕl0n0(r)e−iEl0n0 t+
∑
l′m′

∫ ∞
−∞

dt′
∫ a

0
dr′Gl(r, r′; t−t′)Ulm,l′m′(r′, t′)ψ(r′, t′).

(4.67)

4.3.3 Outgoing wave boundary condition in the time domain

Here we derive the outgoing wave boundary condition in the 3D case. Using

Eq. (4.62),

D(r; a)Gl(r, r′; k) = F(r; a)

ik − 1
a

l∑
p=1

zlp
ika+ zlp

Gl(r, r′; k) (4.68)

Using this, we obtain

D(r; a)Gl(r, r′; t) = F(r; a)

λ̂t − 1
a

l∑
p=1

zlp

aλ̂t + zlp

Gl(r, r′; t). (4.69)

Using this and Eq. (4.67), we obtain

D(r; a)ψlm(r, t) = F(r; a)

λ̂t − 1
a

l∑
p=1

zlp

aλ̂t + zlp

ψlm(r, t) (4.70)

We find that this equation accounts for the condition, d

dr
− λ̂t +

1
a

l∑
p=1

zlp

aλ̂t + zlp

ψlm(r, t)

∣∣∣∣∣∣
r=a

= 0 (4.71)

This is the outgoing wave boundary condition in time domain for the 3D case.
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4.3.4 Matrix form of the time-dependent Schrödinger equation

We must rewrite the TDSE again in terms of λ̂t to incorporate the outgoing wave

boundary condition. To this end, let us define a new vector,

ψlm(r, t) =



ψlm(r, t)

ψ̃lm(r, t)

ψlm1(t)

. . .

ψlml(t)


, (4.72)

where

ψlmp(t) = −zlp
a

(λ̂t + zlp/a)−1ψlm(a, t), (p = 1, . . . , l). (4.73)

Note that there are l additional components compared to the 1D case. We also define

the matrix operator

Λl =



0 1 0 . . . 0

−2H̃l F(r; a) F(r; a)/a · · · F(r; a)/a

−zl1FT (r; a)/a 0
...

... −zlp/a

−zllFT (r; a)/a 0


. (4.74)

Here the action of the operator FT on the function u(r) is defined by

FT (r; a)u(r) = u(a). (4.75)

The boxed object represents the l×l square diagonal matrix with the elements inside the

box. So, −zlp/a denotes the l× l diagonal matrix with elements −zlp/a (p = 1, . . . , l).

Then the TDSE is recast into

[λ̂t −Λl]ψlm(r, t) + 2
∑
l′m′

Ulm,l′m′(t)ψl′m′(r, t) = 0, (4.76)

where

Ulm,l′m′ =



0 0 . . . 0

Ulm,l′m′(r, t) 0 . . . 0

0 0 · · · 0
...

...
...

...

0 0 · · · 0


. (4.77)
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4.3.5 Siegert state expansion: coupled Volterra equations for the inner

region

As demonstrated in the 1D case, we employ the set of the vectors Eq. (3.35) to

uniquely define the expansion coefficients of the wave packet. We seek the solution to

the Eq. (4.76) in the form,

ψlm(r, t) =
∑
n

aν(t)ϕln(r), 0 ≤ r ≤ a, (4.78)

where a new index ν represents the enumeration of the quantum numbers

ν = (l,m, n). (4.79)

Similarly we write ν ′ = (l′,m′, n′). Substituting Eq. (4.78) into Eq. (4.76), and using

the orthogonality Eq. (3.41), we obtain

ikln(λ̂t − ikln)aν(t) +
∑
ν′

Uνν′(t)aν′(t) = 0, (4.80a)

Uνν′(t) =
∫ a

0
ϕln(r)WlUlm,l′m′(r, t)ϕl′n′(r)dr. (4.80b)

Using the Green’s function g(t; k) for the operator λ̂t − ik, this equation is recast into

the integral form.

aν(t) = δν0e
−iE0t + i

kln

∑
ν′

∫ t
−∞

g(t− t′; kln)Uνν′(t′)aν′(t′)dt′, (4.81)

where δν0 = δll0δmm0 , and E0 = El0n0 . It is worth to remark that this equation has the

same form as the 1D case Eq. (4.39).

4.3.6 Photoelectron spectra

The large time asymptotic of the wave function ψlm(r, t) has the form

ψlm(r, t)|t→∞ =
∑
n∈{b}l

Cνϕln(r)e−iElnt +
∫ ∞

0
Clm(k)φl(r, k)e−iEt dk

2π
. (4.82)

Let Aν(E) be a function defined by

Aν(E) =
∑
ν′

∫ ∞
−∞

Uνν′(t)aν′(t)eiEtdt. (4.83)
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Using this the probability amplitude for the electron being found in the bound state

when the laser pulse terminates is

Pν = |Cν |2 = |δν0 − iAν(Eln)|2, ν ∈ {b}, (4.84)

where the symbol {b}l denotes the set of the bound state of the atomic Hamiltonian Hl
Eq. (4.59a), and {b} denotes the collection of the sets {b}l for all the value of l.

The momentum distribution of the photoelectron in a partial wave is

Plm(k) = |Clm(k)|2 =
∣∣∣∣∣ k

el(ka)
∑
n

Aν(E)ϕln(a)
kln(k − kln)

∣∣∣∣∣
2

. (4.85)

The function el(kr) is related to the spherical Hankel function of first kind; see Ap-

pendix C. The 3D momentum distribution of the photoelectron is

P (k) = 1
2π

∣∣∣∣∣∑
ν

clm(E)Ylm(Ω)
∣∣∣∣∣
2

= 1
2π

∣∣∣∣∣∑
ν

Aν(E)ϕln(a)Ylm(Ω)
el(ka)kln(k − kln)

∣∣∣∣∣
2

(4.86)

where k = (k,Ω), and the function clm(E) is defined by

clm(E) = 1
el(ka)

∫ ∞
−∞

ψlm(a, t)eiEtdt. (4.87)

The energy distribution and the probability amplitude of transitions to the continuum

in a partial wave are

Plm(E) = Plm(k)
2πk

, P
(c)
lm =

∫ ∞
0

Plm(E)dE. (4.88)

The total energy distribution of the photoelectron is

P (E) =
∑
lm

Plm(E) = k

∫
P (k)dΩ. (4.89)

The total probability of transitions to the continuum is

Pc =
∑
lm

P
(c)
lm =

∫ ∞
0

P (E)dE =
∫
P (k)d3k. (4.90)

Finally, the unitarity condition is

∑
ν∈{b}

Pν + Pc = 1. (4.91)

See [23] for the detailed derivations.
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4.3.7 Numerical implementations

4.3.7.1 Siegert pseudostate expansion

The formulation in Sec. 4.3.5 and 4.3.6 are implemented by the Siegert pseu-

dostates (SPSs). For each l in the partial wave expansion of the total wave function

Eq. (4.57), we solve the SPS eigenvalue problem Eq. (3.48). Let N be the number of

basis functions to expand the wave function Eq. (3.47), we obtain a set of 2N + l SPSs.

Then the partial wave component ψlm(r, t) in Eq. (4.57) can be expanded in terms of

the 2N + l SPSs in the manner of Eq. (4.78). The magnetic quantum number runs from

−l to l with the step of 1 in Eq. (4.57), we obtain set of the (2N + l)× (2l+ 1) Volterra

equations in Eq. (4.81) for given l. Let lmax be the maximum angular momentum in

the partial wave expansion Eq. (4.57). Thus we obtain Ntot =
∑lmax
l=0 (2N + l)× (2l+ 1)

coupled Volterra equations in Eq. (4.81). The indices ν and ν ′ in Eq. (4.81) runs over

all the possible combination of (l,m, n) so that the total number of the elements is Ntot.

4.3.7.2 Numerical solutions for the coupled Volterra equations

The numerical procedures to solve Eq. (4.81) is the same as the 1D case; see the

chapter 4.2.7.2.



Chapter 5

Interference fringes of the photoelectron wave packets in the
above-threshold ionization peaks

5.1 Introduction

In Chapters 5 and 6, we study photoelectron spectra of the negative ion both in

1D and 3D cases. The main goal of these Chapter is to provide general and hitherto

unknown features of the ionization dynamics in the stabilization regime by analysing the

photoelectron spectra more fully than earlier studies for the total ionization probabilities

[12, 13, 5].

First, we study the 1D case for both the perturbation regime and stabilization

regime. In the perturbation regime, the amplitude of the classical trajectory α0 is

very small compared with the range of the atomic potential. Then the perturbation

theory is implemented by approximating the KH potential in the first order of α0. We

show that the result obtained from our SS expansion in the KH frame developed in

the previous Chapter is consistent with that from the perturbation theory in the KH

frame. Thus we confirm the validity of our numerical scheme. Next, we move to the

stabilization regime, where the laser is intense enough for the stabilization to occur. In

this regime, oscillating substructures are found in the above-threshold ionization (ATI)

peaks [83, 39]. Since a large number of optical cycles are contained in the laser pulse,

the electron is expected to follow the slowly varying pulse envelope adiabatically instead

of each optical cycle. Based on this picture, we analyze the ATI spectrum on the basis

of the adiabatic version of the high-frequency Floquet theory (HFFT). As far as we

know, ours is its first application to the photoelectron spectrum although the idea of

the adiabatic version of the HFFT appears in several literatures in fragments, see for
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example [11, 76]. The adiabatic HFFT attributes the oscillating substructure in the ATI

peaks to the interference fringes of the photoelectron wave packets produced at different

moments in time, and show how the stabilization plays a key role. The conditions for

the laser parameters are clarified to clearly observe this oscillating substructure.

Second, we extend our study to the 3D case, and show that the oscillating sub-

structure persists in the ATI peaks for hydrogen negative ion H− [40]. The numerical

calculations with a wide range of laser parameters show that the oscillating substruc-

tures emerge with the same conditions for the laser parameters found in the 1D case.

It is also shown that the dependency of their structures on the laser parameters can be

explained in terms of the interference picture of the photoelectron wave packets. The

interference picture thus remains to be an assumption to be indirectly verified in the 3D

case. It is not trivial to show that this picture is again the decisive mechanism of the

oscillating substructures in the 3D case. We verify the interference picture by a numeri-

cal experiment in which the polarization axis is made to vary its direction adiabatically

in time. Because the photoelectron wave packet tends to get ejected along the polariza-

tion axis, this variation in the polarization axis prevents the photoelectron’s trajectories

from crossing. Accordingly the oscillating substructures are shown to get suppressed.

Thus it is confirmed that the oscillating substructures originate from the interference of

the photoelectron wave packets. It is shown that the oscillating substructure is again

reconstructed in terms of the adiabatic version of the HFFT based on the interference

picture. In the 3D calculations, we find one more prominent peak at the vicinity of zero

energy in the photoelectron spectrum. We shall call it the slow electron peak (SEP) [45].

The generation of the SEP is counterintuitive since the photon energy is about ten times

larger than the ionization potential of H−. The discussion of its origin is postponed till

the subsequent Chapter since its physics is quite different from the interference fringes

we discuss here.

5.2 One dimensional case

We work on the two extreme regimes, namely, perturbative and stabilization

regimes. In the perturbative regime, the maximum amplitude of the classical trajectory

α0 = max[x(t)] ≈ F0/ω
2 falls within a much smaller region than the outer most range
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of the potential. This regime can be thus treated by the perturbation theory with

respect to α0. The weak laser pulse is thus exploited for checking the consistency of our

numerical scheme by comparing the perturbative and TDSE results.

In the stabilization regime, we treat the ultra-intense field so that the field am-

plitude α0 becomes comparable to the outer most range of the atomic potential. In this

regime, we find the oscillating substructures in the above-threshold ionization (ATI)

peaks. This section develops toward clarifying the origin and the role of the stabiliza-

tion.

In the 1D calculations to follow, we model the one-electron system by the Eckart

potential,

V (x) = − 15/8
cosh2 x

. (5.1)

This potential is employed to clearly illustrate the oscillating substructure in the ATI

peaks in Sec. 5.2.2. This potential, Eq. (5.1), can be cut off for the box size |X| > 5

beyond which |V (x)| ≪ 1. The bound states energies are E0 = −1.125 and E1 = −0.125.

In the following calculations, the ground state E0 is chosen as the initial state for the

electron. The profile of the laser pulse is given by

F (t) = F0f(t) cosωt, (5.2)

where f(t) is the pulse envelope

f(t) = sin2 πt

T
. (5.3)

The parameters F0, T and ω represent the maximum field amplitude, pulse duration

and frequency; we set ω = π and T = 200 so that the number of the optical cycles

noc = 100.

5.2.1 The perturbative regime

In this regime it is expected that almost all the population stays in the ground

state when pulse is over. Thus, the expansion coefficients of the wave packet in Eq. (4.35)

and (4.39) can be approximated as

am(t) ≈ δm0e
−iE0t. (5.4)
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The interaction terms between the electron and laser field Eq. (4.9) can be approximated

by

U(x, t) = V (x+ x(t))− V (x) ≈ dV

dx
x(t), (5.5)

where x(t) is free electron’s classical trajectory in the laser field, Eqs. (2.4), (2.5). The

first order result of the perturbation theory for the spectrum is given by

PPT(E) = |x(E − E0)|2 |d−(k)|2 + |d+(k)|2

2πk
, (5.6)

where d±(k) is the dipole matrix element

d±(k) =
∫
φout∗
± (x, k) dV (x)

dx
ϕ0(x) dx, (5.7)

the function ϕ0(x) and φout
± are the ground state wave function and scattering state

of momenta k Eq. (3.20) of the atomic Hamiltonian Eq. (4.8). The function x(E) is

the Fourier transformation of the classical trajectory (see Appendix G for its explicit

expression).

For a numerical examination, we adopt F0 = 0.1; thus α0 = F0/ω
2 ≈ 0.01

is sufficiently smaller than the maximum range of the atomic potential [−5, 5]. The

photoelectron spectrum for the present model is shown in Fig. 5.1. The black line

represents the TDSE results; one can clearly see a series of ATI peaks separated by the

photon energy ω = π. The excitation probability in this calculation is about 1.96×10−12.

The height of the one-photon absorption peak is about 3.1 × 10−2, hence the one-

photon peak from the excited state can be estimated as (1.96× 10−12)× (3.1× 10−2) ≈

6.1× 10−14, which is below visibility. The red line represents the results from the first

order perturbation theory. In the figure, the perturbation theory perfectly reproduced

the one-photon peak, and the envelope of the spectrum obtained by dropping the rapidly

oscillating factor sin(ET/2). This agreement in turn confirms the overall consistency of

our numerical scheme.

5.2.2 Stabilization regime

Having tested our method, we further study the photoelectron spectrum for the

laser pulse of the ultra-high intensity. We adopt F0 = 30, hence α0 ≈ 3.04; this is

now comparable to the range of the atomic potential. Thus we extend the interaction
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Figure 5.1: Present results for the model considered in Ref. [22], see Eqs. (5.1) and (5.2)
with F0 = 0.1, T = 200, and ω = π. One can clearly see a number of ATI peaks in
the photoelectron spectrum P (E) produced by multiphoton absorption from the ground
state. For comparison, the envelope P̄PT (E) of the perturbation theory results obtained
by dropping the rapidly oscillating factor sin2(ET/2) in Eq. (5.6) is also shown. This
agreement in turn confirms the general consistency of our numerical scheme.

region, Eq. (4.5), in our numerical treatment to [x−, x+] = [−8, 8]. The photoelectron

spectrum is shown in Fig. 5.2a. The ATI peaks can be seen again acquiring a quite

different shapes. The first peak is enlarged in the linear scale in Fig. 5.2b; one can

clearly see the oscillating substructures. Let us discuss the origin of this structure.

5.2.3 Analysis in terms of the high-frequency Floquet theory

Since the photon energy corresponding to the center of the wave length of our laser

pulse is much higher than the binding energy of the electron, the adequate framework
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Figure 5.2: (a) Photoelectron spectrum P (E) for the same model as in Fig. 5.1, but for
a very strong laser pulse with F0 = 30. (b) Enlarges the first ATI peak in linear scale.
Two bunches of oscillations can be seen at energies around E(α = αc1) + ω ≈ 2.19 and
E(α = αc2) + ω ≈ 2.62. Here αc1 and αc2 are the first and second threshold values of
the excursion amplitude of the free electron’s classical trajectory for suppression of the
ionization rate shown in Fig. 5.3. PHFFT(E) shows the results obtained from Eq. (5.12).

is the high-frequency Floquet theory (HFFT). As discussed in Sec. 2.3, The quivering

motion of the KH potential along the classical trajectory x(t) can be averaged out for a

monochromatic high-frequency laser field; the the optical period of the laser field is much

shorter than the time scale of the electronic motion. Thus the effective Hamiltonian,

called the dressed Hamiltonian, can be found for the electron, Eq. (2.10b). Let E0(α)

and ϕ0(x;α) be the ground state energy and wave function of the dressed Hamiltonian.

The function E0(α) added by the photon energy ω and one-photon ionization rate Γ(α),

defined by Eq. (2.11), (2.12) and (2.9), are shown in Fig. 5.3a. In the figure, E(α) goes

up as the dressed potential V0(x;α) becomes shallower; the electron is loosely bound as

the excursion amplitude grows. Γ(α) initially increases but it begins to decrease after
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Figure 5.3: The energy and width of the initial atomic state “dressed” by the high-
frequency laser field as functions of the amplitude α of classical trajectory and time t
related to each other by Eq. (5.8) with F0/ω

2 ≈ 3.

the critical value αc1. This is the stabilization we studied in Chapter 2. However, the

decay of Γ(α) accompanies oscillations.

Our laser pulse is not monochromatic but its envelope varies slowly as function of

time; it contains noc = 100 periods of optical cycles. So, it is expected that the electron

adiabatically follows the momentary Hamiltonian H(α), while the photoionization is

taking place at each α according to Eq. (2.11). In the rising part of the pulse, 0 <

t < T/2, the function E0(α) + ω and Γ(α) start at α = 0 and adiabatically evolves on

the blue and red curves, respectively, until they reach α = 3.04, corresponding to the

maximum field amplitude of the laser field at t = T/2. In the falling part of the pulse,

T/2 < t < T , this evolution is inversely repeated; They start at α = 3.04, and traces
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back to α = 0 along the curves E0(α) + ω and Γ(α). Therefore, it is expected that

the function E0(t) + ω becomes bell-shaped, and Γ(t) has four clearly separated humps

since it exceeds the second critical value αc2 for the ionization suppression. According

to this picture, the adiabatic approximation is implemented by substituting,

α → α(t) = F0
ω2 f(t), (5.8)

where the function f(t) is the pulse envelope defined by Eq. (5.3). After this substitu-

tion, the functions E0(t) + ω and Γ(t) behave as shown in Fig. 5.3b. So, it is expected

that the photoelectron wave packet of the same energy can be produced in the rising

and falling part of the pulse, and their interference causes the oscillating substructures

in the ATI peaks. Now we estimate interference fringes qualitatively in the same ap-

proximation. The probability for the electron to be found in the ground state at time t

is

P0(t) ≈ exp
[
−
∫ t

0
Γ(t′) dt′

]
. (5.9)

Let E be the energy of the photoelectron ionized at time t, then

E = E0(t) + ω. (5.10)

The ionization yield from t to t + dt is given by P0(t)Γ(t)dt. This is equivalent to the

photoelectron yield from E to E+dE, namely C2(E)|dE| where C(E) is the amplitude

of the photoelectron. Then we obtain

C(E) =
√
P0(t)Γ(t)

∣∣∣∣ dtdE
∣∣∣∣
∣∣∣∣∣
t=t(E)

. (5.11)

For the present pulse, the inverse function t = t(E) is double valued. The photoelectron

wave packet of the same energy is produced at t1(E) ∈ [0, T/2] and t2(E) ∈ [T/2, T ],

corresponding to the rising and falling part of the pulse, see Fig. 5.3b. In the rising

part of the pulse, the first wave packet is produced at t1(E) and evolves until t2(E); the

second wave packet is produced at t2(E) with an additional phase accumulated between

t1(E) and t2(E) in the dressed potential. Let Φ(E) be the phase difference of these

wave packets, the photoelectron spectrum can be written

PHFFT(E) =
∣∣∣C1(E) + C2(E)eiΦ(E)

∣∣∣2 , (5.12)
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where the phase difference Φ(E) is given by

Φ(E) = E × [t2(E)− t1(E)]−
∫ t2(E)

t1(E)
[E0(t) + ω] dt. (5.13)

Here the first term in Φ(E) represents the phase of the photoelectron wave packet

produced at t = t1(E). The second terms represents the phase of the photoelectron wave

packet produced at t = t2(E). This adiabatic version of the HFFT nicely reproduces the

TDSE calculation as shown in Fig. 5.2b. The larger bunch of the oscillating structure

around E = E0(αc1) + ω is due to the pair of the bigger humps of Γ(t), meanwhile the

smaller pair is responsible for the additional oscillating structure around E = E0(αc2)+

ω. Some disagreement in the lower energy part is explained by the fact that the HFFT

is valid for ω ≫ |E0| and α2(t)ω ≫ 1 [38]; the second condition is not satisfied in the

beginning and ending part of the pulse. The sharp increase of the HFFT result at the

vicinity of max[E0(t)] +ω is due to the divergence of dt/dE in Eq. (5.11). On the basis

of the above discussions, the conditions for observing the oscillating substructure are

ω ≫ |E0|, (5.14a)

F0/ω
2 > αc1, (5.14b)

ωT ≫ 1, (5.14c)

and

a reasonable value of T. (5.14d)

The conditions Eq. (5.14a) and (5.14b) are required to reach the stabilization regime

where the pair of the photoelectron wave packets are produced. The condition Eq. (5.14c)

is required for the validity of the adiabatic version of the HFFT. The last condition is

required for obtaining a number of fringes with good contrast. Suppose T is too large,

then most of the population gets lost during the first ionization event in the rising part

of the pulse, hence being proportional to the surviving ground state amplitude, the

photoelectron wave packet produced in the falling part of the pulse becomes very small.

If T is too small, then the phase difference between the pair of the photoelectron wave

packets becomes very small, and it results in few oscillations.

To summarize, it is shown that the oscillating substructure in the ATI peaks is

the interference fringes of the photoelectron wave packets at the same energy produced

in the rising and falling part of the pulse.
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5.3 Three dimensional case

We extend our study to the 3D case. The 3D calculations give us two significant

pieces of insight which cannot be obtained in the 1D calculations. First, we can clarify

how the structures of the ATI peaks depend on the partial wave components and laser

polarizations. Second, therefore it is not obvious whether the oscillating substructures

emerges in the same way. Separate treatment of the 3D photoelectron spectrum is

thus unavoidable for theoretical completeness. Indeed, the oscillating substructures do

appear also in the 3D case, but it is not trivial to see whether the HFFT approxima-

tion with the simple interference picture of the pair of photoelectron wave packets can

reconstruct the oscillating substructures and whether their structures have similar de-

pendencies on the laser parameters. In the 3D calculations, we employ the one-electron

model of the hydrogen negative ion modeled by

V (r) = −V0 exp(−r2/r2
0), (5.15)

where V0 = 0.3831087 and r0 = 2.5026 [23]. This potential supports only one bound

state with energy E0 = −0.0277510. The components of the laser electric field 0 < t < T

are represented by

Fx(t) = εF0f(t) sinωt, (5.16a)

Fz(t) = F0f(t) cosωt, (5.16b)

where ε, F0, ω, and T are the ellipticity, amplitude, frequency and the durations of the

laser pulse. We employ the laser envelope modeled as

f(t) =
(

1− n2
oc − 4
n2

oc − 1
cos2 πt

T

)
sin2 πt

T
, (5.17)

where noc = ωT/2π is the number of optical cycles in the pulse. Note that this has a

different form than what we employed in the 1D case. The second term in the brackets is

needed so that the classical trajectories satisfy the initial conditions, Eq. (4.52b). Let us

define the reference laser pulse F0 = 0.5 (8.8×1015W/cm2), ω = π/10 (8.55 eV), and T =

600 (14.4 fs); hence noc = 30. The photoelectron spectrum for the reference pulse with

ellipticity ε = 1 is shown in Fig. 5.4. In this figure, each of the partial wave components

l = 0, . . . , 5 is obtained by summing over magnetic quantum numbers, and the total
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Figure 5.4: The partial wave and total photoelectron spectra for the reference laser
pulse with ε = 1, F0 = 0.5, ω = π/10, and T = 600. The multiphoton absorption
energies E0 + nω are shown by arrows. Note that the total spectrum is multiplied by
10 for the illustrative purpose.

yield is summed over the partial waves. One can clearly see a train of the ATI peaks

located around the n-photon absorption energies E0+nω, n = 1, 2, . . . with the dominant

contribution coming from l = n. The peaks associated with n-photon absorption will

be called the nth peak. One may consider that this is a trivial consequence of the

perturbation theory. However, the total ionization rate is 0.972, so the situation is

very far from the regime of the standard perturbation theory. One can also see a peak

around the zero energy which is dominated by the partial wave l = 0; we call it the

zeroth peak. The contribution of the zeroth peak to the total ionization probability is

0.263, so it represents a non-negligible feature. However, its origin stems from a quite

different mechanism that which we discussed so far. Its physico-mathematical analysis

is thus postponed till the next Chapter. The contributions of the higher partial waves

to the total ionization probability are 0.637, 0.465× 10−3, 0.206× 10−3, 0.378× 10−4 ,

and 0.378× 10−4, respectively for l from 1 to 5.
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Figure 5.5: Momentum distribution of the photoelectron in the xy plane for the reference
laser pulse with ε = 1.

5.3.1 Three dimensional momentum distribution

Fig. 5.5 shows a map of the 3D momentum distribution Eq. (4.86) of the photo-

electron in the xy plane (perpendicular to the polarization plane xz) for the same pulse

parameters as in Fig. 5.4. The bright disk at the center is the zeroth peak mentioned

above. The series of bright rings correspond to the ATI peaks. In the present case of

circular polarization, the momentum distribution looks axially symmetric about the y

axis (the direction of propagation of the laser pulse), although this symmetry is not ex-

act. In the linear polarization case, the distribution is exactly axially symmetric about

the polarization axis [23]. The cut of ATI rings along the ky axis kx = 0 reflects their

partial wave contents in terms of the magnetic quantum number. It is explained by

the fact that the dominant contribution to the nth peak comes from the partial wave

with l = n. This feature is in accordance with the absorption of n circularly polarized

photons and again may seem to be a trivial consequence of the standard perturbation

theory in the laboratory frame, although the situation is highly non-perturbative. In

fact, we shall see below that the problem can be nevertheless treated perturbatively in

the KH frame within the HFFT [38].

An oscillatory substructure in ATI peaks is clearly seen again in Fig. 5.4; it is

also noticeable as circular ripples within ATI rings in Fig. 5.5. A similar oscillating
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Figure 5.6: The first ATI peak for pulses with ε = 1, ω = π/10, and T = 600 and three
values of the field amplitude F0 = 0.1, 0.3 and 0.5.

substructure is also found in the 3D calculations for linear polarization [23]. In the 1D

case, it is clarified that the interference of the photoelectron wave packets produced at

different moments in time causes the oscillating substructure. In the rest of this chapter,

we discuss this substructure and clarify the underlying interference mechanism focusing

on the first ATI peak in the 3D case. In doing so, we follow a train of thought similar

to that in the 1D case, but deal with circular and elliptic polarizations to show that the

effect is robust for any polarization and under variations of the laser parameters.

5.3.2 Dependence of the oscillating substructures on the laser parame-

ters

We confirm that the criteria for the laser parameters found in the 1D case are

similarly applicable to the 3D case for observing the oscillating substructures in the ATI

peaks. To this end, we first clarify that the emergence of the oscillating substructure

also requires the conditions Eq. (5.14), while there is no dependence on the polarization

of the laser pulse. We then confirm by way of a numerical experiment in the next

section that the origin of the oscillating substructures come from the interference of the

photoelectron wave packets.

Since our laser pulses always satisfy the conditions Eq. (5.14a) and (5.14c), we
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Figure 5.7: The first ATI peak for pulses with ε = 1, F0 = 0.5, and ω = π/10 and four
values of the pulse duration T = 200, 400, 600 and T = 800.

focus on Eq. (5.14b) and (5.14d). First, we discuss the condition Eq. (5.14b). We

consider circularly polarized pulses with ω = π/10 and T = 600 and the different values

of F0, see Fig. 5.6. As can be seen from Fig. 5.6, for F0 = 0.1 the first ATI peak

has a simple bell-like shape centered near the one-photon absorption energy E0 + ω,

as one would expect in the perturbation regime. For the present parameters noc = 30,

so the pulse is rather monochromatic. However, a pronounced oscillating substructure

appears for larger values of F0. The threshold value of the field amplitude for which

this substructure becomes clearly visible is estimated to be F0 ≈ 0.2, which corresponds

to αc ≈ 2. This value is connected to the emergence of the stabilization. For α > αc,

the ionization rate has separated peaks, the oscillating substructures may be attributed

to the interference of the photoelectron wave packets produced in the rising and falling

part of the pulse.

Second, we discuss the condition Eq. (5.14c). We again consider circularly polar-

ized pulses with ω = π/10, with a fixed field amplitude F0 = 0.5 and the different values

of T , see Fig. 5.7. In these calculations α ≈ 5.07, which is definitely larger than αc as

estimated above. The interference substructure of the first ATI peak can be clearly

seen in the figure. The frequency of the oscillations grows with T , because the phase

difference is proportional to T as is shown below. However, the contrast of the fringes
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Figure 5.8: The first ATI peak for F0 = 0.5, ω = π/10, and T = 600 with linear (ε = 0),
intermediate elliptic ε = 0.5, and circular ε = 1 polarizations.

deteriorates as T grows. Indeed, let Imax and Imin be the local maximum and local min-

imum values of P (E) in one-cycle of the oscillation, and I be the contrast defined by

I = (Imax−Imin)/(Imax +Imin). Then the contrast values for T = 200, 400, 600, and 800

are approximately given by I = 0.75, 0.62, 0.49 and 0.38, respectively. This is explained

as before by the fact that for a good contrast the two interfering wave packets must

have comparable amplitudes. Meanwhile, if the pulses are too long, complete depletion

of the initial state occurs in the rising part of the pulse, so the amplitude of the second

wave packet becomes much smaller than that of the first one.

Finally, we discuss the dependence of the spectrum on the laser polarization. We

consider pulses with F0 = 0.5, ω = π/10, and T = 600 for the polarization varying

from linear ε = 0 to circular ε = 1, see Fig. 5.8. In all cases, a pronounced oscillating

substructure can be clearly seen. We thus conclude that this substructure is robust for

all possible polarizations. The variance of the position of the interference fringes is due

to the difference of the corresponding classical trajectories.

Summarizing, we confirmed that the emergence of the oscillating substructure in

the 3D case requires the conditions for the laser parameters Eq. (5.14) just as in the 1D

case. The dependencies of the structures of the ATI peaks on the laser parameters are

well described by the interference picture of the photoelectron wave packets.
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5.3.3 Verification of the interference picture by a numerical experiment

In this section, we confirm more directly by a numerical experiment that the

interference picture is responsible for the oscillating substructures in the ATI peaks.

Let us consider a laser pulse defined by [cf Eqs. (5.16)]

Fx(t) =
(
1− [s(t− T/2)]2

)
F0f(t) cosωt, (5.18a)

Fz(t) = s(t− T/2)F0f(t) cosωt, (5.18b)

where f(t) is the envelope function (5.17) and s(t) is the switching function which

smoothly varies from 1 to 0 as t passes through zero in the positive direction,. The

switching function s(t) is given by

s(t) = 1
2

(
1− tanh ω

2π
t

)
(5.19)

The effect of introducing the switching function is to adiabatically rotate the polarization

axis from z to x within a few laser cycles around the temporal center of the pulse t = T/2.

The photoelectron wave packets created in the rising and falling part of the pulse in this

case propagate in different directions, along the z and x axis, respectively. Hence they

do not necessarily interfere and the oscillating substructure in the spectrum should be

suppressed if their interference is the direct cause of the oscillating substructure. Fig. 5.9

compares the first ATI peak for linear polarization (LP), i.e. Eqs. (5.16) with ε = 0,

and in the case where the polarization axis is adiabatically rotated (AR) in the manner

of Eqs. (5.18). The laser parameters in these calculations are F0 = 0.5, ω = π/10, and

T = 600. Indeed, one can see clear oscillations in the spectrum in the LP case, but none

in the AR case. The AR spectrum reveals the true shape of each of the wave packets

created and serves as a background for the oscillations in the LP spectrum. Thus by

rotating the polarization axis at a time between the two humps of the ionization rate

Γ(t) one can control the interference substructure. Designing an ingenious experimental

scheme for rotating the polarization axis within the duration of a pulse should be a

challenge.

5.3.4 Analysis in terms of the high-frequency Floquet theory

Having established the fact that the observed oscillations in the spectrum result

from an interference mechanism, here we reconstruct the first ATI peak using an adia-



58

 0

 5

 10

 15

 20

 25

 30

 0.24  0.28  0.32  0.36

LP

AR

E (a.u.)

P
(E

) 
(a

.u
.)

Figure 5.9: The first peak of the ATI spectrum for linear polarization (LP) along the z
axis, and the case where the polarization axis adiabatically rotates from the z to x axis
(AR). In the case of the AR, the photoelectron wave packet produced in the rising and
falling part of the pulse propagate along the z and x direction. Hence the interference
fringes is suppressed.

batic version of the HFFT [38] by including the polarization and the angular degrees of

freedom. The present analysis thus generalizes that of the 1D [39] straightforwardly to

the 3D case. We consider a circularly polarized pulse, ε = 1. It is convenient to rotate

the coordinate axes with respect to what has been implied in the above discussion in

such a way that the polarization plane coincides with the xy plane, thus the laser pulse

propagates along the z axis.

Let us consider a monochromatic laser field, i.e., temporarily omit the envelope

factor f(t) in Eqs. (5.16). The classical trajectory in this case is given by α(t) =

(α cosωt, α sinωt, 0), where α = F0/ω
2 is the excursion amplitude of a free electron in

the laser field. The KH potential can be expanded into a Fourier series,

V (|r +α(t)|) =
∞∑

n=−∞
Vn(r, θ;α)ein(φ−ωt), (5.20a)

V0(r, θ;α) = 1
T

∫ T
0
V (
√
r2 + 2α sin θ cosωt+ α2)dt, (5.20b)

where θ and φ are the polar angles defining the direction of r. In the zeroth order of

the HFFT [38], the system is described by the stationary ‘dressed’ Hamiltonian

HHFFT(α) = −1
2
∂2

∂r2 + l̂2

2r2 + V0(r, θ;α), (5.21)
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where l̂2 is the square of the angular momentum operator. It can be seen that V0(r, θ; 0) =

V (r), hence HHFFT(α) reduces to the unperturbed atomic Hamiltonian in the absence

of the field. Let ψ0(r, θ;α) and E0(α) denote the eigenfunction and eigenvalue, respec-

tively, of the initial bound dressed state, which coincides with the ground state of the

unperturbed atom for α = 0. The partial wave expansion of the dressed ground state is

ψ0(r, θ;α) =
∑
l=0,2,...

ϕl(r;α)P̃l(cos θ), (5.22)

where P̃l(cos θ) is the normalized Legendre polynomial, and the summation runs only

over even l since the dressed potential V0(r, θ;α) is even function of cos θ. Our calcu-

lations show that even for the largest excursion amplitude considered here, α = 4, the

dressed binding potential V0(r, θ;α) approximately preserves spherical symmetry to a

good approximation, i.e, it is sufficient to take only l = 0 and 2 in Eq. (5.22). The

stationary Schrödinger equation for the dressed bound state reads,[
−1

2
∂2

∂r2 + l̂2

2r2 + Ull(r;α)− E
]
ϕl(r;α) +

∑
l′ ̸=l

Ull′(r;α)ϕl(r;α) = 0, (5.23)

where

Ull′(r;α) =
∫ π

0
P̃l(cos θ)V0(r, θ;α)P̃l′(cos θ) sin θdθ. (5.24)

The behavior of the eigenvalue E0(α) is shown in Fig. 5.10a. The initial state remains

bound in the interval of α shown in the figure, but the binding energy monotonically

decreases as α grows, since the potential V0(r, θ;α) becomes shallower. Let ψ(r,k;α)

be the scattering dressed state corresponding to the momentum k = (k,Ω) and energy

k2/2, normalized to a unit amplitude of the incoming plane wave. Then, in the first

order of the HFFT [38, 73], the partial width of the initial state associated with the

absorption of one photon is given by

Γ(α) = k(α)
(2π)2

∫
|A(k(α),Ω;α)|2 dΩ, (5.25)

where A(k,Ω;α) is the transition amplitude,

A(k,Ω;α) =
∫
ψ∗(r,k;α)V1(r, θ;α)eiφ ψ0(r, θ;α) dr, (5.26)

k(α) is the momentum of the photoelectron,

k(α) =
√

2(E0(α) + ω), (5.27)
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Figure 5.10: The energy and width of the initial atomic state “dressed” by the high-
frequency laser field as functions of the amplitude α of classical trajectory and time t
related to each other by Eq. (5.8) with F0/ω

2 ≈ 3.

and ψ(r,k;α) is the scattering state of momenta k

ψ(r,k;α) = 4π
∑
lm

ilφl(r, k(α))Ylm(θ, ϕ)Y ∗lm(k̂). (5.28)

Here φl(r, k;α) is the Siegert pseudostate expansion of the scattering state of

angular momentum l, Eq. (3.42). We construct this term by retaining only the spherical

term of the dressed potential V0(r, θ;α) in the Hamiltonian, Eq. (5.21). One can easily

recognize in these formulas the first-order perturbation theory expressed by Eq. (5.26)

for the dressed interaction potential V1(r, θ;α)ei(φ−ωt) in the basis of the dressed states.

This is the applicability of the first order perturbation theory in the KH frame which we

meant. In Eq. (5.26), it can be easily understood that only terms with m = 1 contribute

to the integral in Eq. (5.26) according to the orthogonal relationship of the spherical

harmonics Ylm(θ, φ). The one-photon decay channel V1(r, θ;α) can be expanded into

the normalized Legendre polynomial P̃nl (cos θ),

V1(r, θ;α) =
∑

l=1,3,5,...
vnl(r;α)Pnl (cos θ), (5.29)
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where the summation runs over l in steps of 2, since the left-hand side in Eq. (5.20a)

is an even function of cos θ. Our calculations show that in the expansion, (5.29), for

V1(r, θ;α) the term with l = 1 dominates in the interval of α under consideration.

This explains the results of the exact calculations discussed in Sec. 5.3: the dominant

contribution to the first ATI peak comes from the partial wave with l = 1, see Fig. 5.4,

the contribution from l = 3 is smaller by an order of magnitude. Hence to calculate

Γ(α) it is sufficient to retain only the term with (l,m) = (1, 1) in the expansion (5.28).

The width Γ(α) calculated for ω = π/5 is shown in Fig. 5.10a. It first grows with α, but

then decays after α passes the critical value αc ≈ 1.5. Such a behavior of Γ(α), which

is a signature of stabilization, is a key for understanding the ionization dynamics. To

close this discussion, we note that the dominance of the l = 0 and l = 1 components in

the dressed binding V0(r, θ;α) and interaction V1(r, θ;α) potentials, respectively, means

that the angular dependence of the transition amplitudes in the perturbation theory

in terms of the HFFT is similar to that in the standard perturbation theory in the

laboratory frame. However, the absolute values may be qualitatively different because

of the effect of the dressing on the initial and final states and the transition operator,

as can be seen from the very fact of non-monotonic behavior of Γ(α). The remaining

part of the analysis parallels that in the 1D case. To provide a clear illustration of

our point, let us consider a laser pulse with the parameters F0 = 1.2, ω = π/5, and

T = 2000. The length of the pulse is increased in comparison to the previous cases,

to have a pronounced interference substructure. The frequency is doubled, to keep a

good contrast by reducing the decay rate. The field amplitude is increased accordingly

to satisfy α > αc. A part of the photoelectron spectrum near the first ATI peak

(E0 + ω ≈ 0.601) is extracted for this pulse as shown in Fig. 5.11. This pulse is not

monochromatic with respect to ω. However, its envelope varies slowly, the pulse contains

noc = 200 optical cycles. So, the adiabatic approximation Eq. (5.8) employed in the

1D case can be also applied in this case. Repeating the train of thought from Eq. (5.8)

to Eq. (5.13), we obtain the dressed ground state E0(t) and one-photon ionization rate

Γ(t) as functions of time as shown in Fig. 5.10b. The dressed ground state E0(t) is

bell-shaped, while the one-photon ionization rate Γ(t) has the clearly separated pair of

humps. Hence, the adiabatic version of the HFFT confirms that the photoelectron wave
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of the factor dt(E)/dE in Eq. (5.11).

packets of the same energy are produced in the rising and falling part of the pulse. The

oscillating substructure is nicely reproduced in terms of the interference between them

as shown in red in Fig. 5.11. But the amplitude is somewhat overestimated, especially

in the lower part of the spectrum. However, in spite of these limitations, it is clear that

the theory correctly accounts for the mechanism responsible for the appearance of the

interference substructure. This analysis confirms our qualitative interpretation of the

dynamics. We point out that the interference fringes have been seen in X-ray range in a

different context when the laser field is strong enough to drive Rabi oscillations between

a bound and autoionizing state, see [36].

We close this chapter with an account of some experimental difficulties to observe

the interference fringes discussed here. First, in experiments, ensemble of atoms subject

to inhomogeneous intensity due to the spatial distribution of the laser intensity. Thus, it

is expected that the volume integral of experimental results washes out the interference

fringes. Second, our interference fringes discussed here requires the conditions Eq. (5.14).

Thus it may be considered that X-ray free-electron laser (XFEL) is feasible to examine

the interference fringes. However, XFELs currently available are produced using Self
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Amplification of Spontaneous Emission (SASE) method, these are chaotic lights so that

each pulse consists of a train of uncorrelated spikes. Thus it is speculated that the

interference fringes are washed out when contributions of each spikes are added up.

Instead of XFELs, we propose to employ the Rydberg state of rare gas atom.

Since ionization potential of Rydberg atoms are generally small, the high-frequency

condition Eq. (5.14a) can be satisfied with wavelength in the visible range. Thus,

the laser intensity for satisfying condition Eq. (5.14b) is expected to be relaxed. See

Appendix A for more details.



Chapter 6

The slow electron peak

6.1 Introduction

In the previous chapter, we studied the oscillating substructures in the ATI peaks.

However, in Fig. 5.4, one more prominent feature can be seen; the low energy peak near

the origin, i.e. the bright disk at the center in Fig. 5.5. Let us call it the slow electron

peak (SEP) on account of its small kinetic energy. This might appear counterintu-

itive since the photon energy is much larger than the binding energy of the electron.

The origin of the SEP cannot be explained by the well-known ionization mechanisms

i.e. multiphoton and tunneling processes. For instance the multiphoton ionization fol-

lowed by the emission of the same number of photons might be considered. However,

the contribution from this process should be negligibly small because the electron flies

away immediately with large kinetic energy from the interaction region after the photon

absorption so that interaction between core and electron vanishes. The tunneling ion-

ization has nothing to do in the high-frequency regime. One may also consider that SEP

results from the channel closing. But this is excluded since the ponderomotive energy

for the ground state is expected to be almost the same as that for the threshold. There-

fore we need to seek an alternative mechanism to account for the SEP. In the HFFT

analysis of the previous chapter, we accounted for the adiabatic approximation including

the slow time-dependence of the pulse envelope. Then the dressed Hamiltonian deforms

slowly in time via the amplitude of the classical trajectory. As one follows the time

variation, the slow deformation of the dressed potential promotes the dressed ground

state to the dressed continuum through nonadiabatic transitions. Recently, Tolstikhin

developed a theory for nonadiabatic transitions to the continuum in the case where the
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ω = π/10, and T = 2400.

Hamiltonian of the system is a function of the “slow" time variable [24]. Employing this

theory, in this chapter, we clarify the origin of the SEP and propose that the SEP is

another pathway of ionization when the high-frequency intense laser pulse is applied to

an atom.

In this Chapter, we employ the same model as in the 3D calculations in the

previous chapter. The atomic potential is modeled by the Gaussian potential Eq. (5.15),

and the profiles for the laser pulse are given in Eqs. (5.16) and Eq. (5.17). In what

follows, we consider the photoelectron spectrum again concentrating on the SEP.

6.2 Photoelectron spectrum

The partial-wave photoelectron spectra are shown in Fig. 6.1 for the linearly (LP)

and circularly (CP) polarized laser pulse . The laser parameters are F0 = 0.3, ω = π/10

and T = 2400 with ε = 0 and 1 for the LP and CP in Eqs. (5.16), respectively. The

SEP can be found for both LP and CP cases. Therefore these results show that the

SEP does not depend on the polarization of the laser pulse. Our calculations show that

the SEP appears under the following conditions,

ω ≫ |E0|, ωT ≫ 1, |E0|T ≫ 1. (6.1)
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The first one justifies the HFFT, and the second one allows us to adopt the adiabatic

picture into the HFFT. The last condition provides us with the adiabatic approximation

for transitions to the continuum. These conditions are different from those in Eq. (5.14)

for the interference fringes in that the stabilization is not required and the longer pulse

is feasible.

The SEP of our interest is brought about by relatively slow rise and fall of an

experimentally feasible pulse satisfying Eq. (6.1). A pulse of contrasting character can

also lead to generation of slow electron as a sudden projection onto the continuum [90].

Førre [89] points this out using a pulse with square-shaped envelope such that |E0|T = 0.

We set this issue aside here because the SEP we are considering is due to a much slower

variation subject to the treatment in the next section.

6.3 Adiabatic version of the time-dependent Schrödinger equation

A natural framework for treating the regime defined by the first condition in

(6.1) is the high-frequency Floquet theory [38]. For a monochromatic laser field, the

KH potential can be expanded into a Fourier series,

V (|r +α(t)|) =
∞∑

n=−∞
V0(r;α)e−inωt. (6.2)

In the leading order of the HFFT, we obtain

HHFFT(α) = −1
2

∆ + V0(r;α), (6.3)

where V0(r;α) is the n = 0 term in Eq. (6.2). Our laser pulse is not monochromatic but

the envelope contains noc = 120 cycles. The second condition in Eq. (6.1) being well

satisfied, we work with the adiabatic version of the HFFT as employed in Chapter 5.

We implement the adiabatic approximation by substituting α0 → α(t) = α0f(t/T ). As

discussed in the introduction, multiphoton decay channels Vn(r;α)(n = 1, 2, . . .) cannot

account for the emergence of the SEP. Another path way of ionization is nonadiabatic

transitions caused by deformation of the dressed potential V0(r;α). Although the first

two conditions of Eq. (6.1) suggest us that the dressed potential V0(r;α) varies its

shape adiabatically, the finiteness of the pulse length causes the nonadiabatic transitions.

Neglecting all multiphoton processes, we thus arrive at the equation

i
∂ψ0(r, t)

∂t
=
[
−1

2
∆ + V0(r;α(t))

]
ψ0(r, t). (6.4)
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In contrast to Eq. (4.54), the Hamiltonian in Eq. (6.4) depends on time only via a

slow time dependence of the envelope of the pulse; rapid oscillations of α(t) at the

laser frequency are averaged out by switching to the dressed potential. We shall call

Eq. (6.4) the time-averaged TDSE. Equation (6.4) does not account for multiphoton

processes, but we expect that it correctly describes the physics associated with the

SEP. To confirm this, we compare spectra obtained by solving Eqs. (4.54) and (6.4).

The mathematical step in going from Eq. (4.54) to Eq. (6.4) is justifiable by the first

two conditions in (6.1), so these conditions must be examined. We consider the pulses

of the same length T = 2400 as in Fig. 6.1. The spectra obtained from the full TDSE

(4.54) depend on the field amplitude F and frequency ω separately, while those obtained

from the time-averaged TDSE (6.4) depend only on their combination given by α0. We

solve Eqs. (4.54) for pulses with F = n2F0 and ω = nω0, so the value of α0 is kept fixed,

where F0 = 0.3 and ω0 = π/10, as in Fig. 6.1. As n grows, the frequency of the pulse

grows, the spectra obtained from Eq. (4.54) are expected to converge to the one from

Eq. (6.4). This is indeed the case, see Fig. 6.2. This holds for any polarization of the

pulse. We thus conclude that the physical origin of the SEP can be sought on the basis

of Eq. (6.4).

6.4 Adiabatic approximation for the transitions to the continuum

The third condition in (6.1) facilitates the analysis of Eq. (6.4). Under this con-

dition, transitions caused by variations of the dressed potential can be treated in the

adiabatic approximation. We are interested in transitions to the continuum. While

nonadiabatic transitions between discrete states have been a subject of intensive studies

[84], much less is known about nonadiabatic transitions between a discrete and contin-

uum states. The problem was raised and solved for a certain situation in an early paper

by Solov’ev [85], see also his review article [86]. More recently, the theory was rederived

on completely different grounds [24], which confirmed the results of [85], but also pro-

vided a way to implement them in practical calculations. We shall use the formulation

of [24]. A key object in this formulation is the Siegert state (SS) for the Hamiltonian in

Eq. (6.4), the one which coincides with the initial bound state of the unperturbed atom

for α(t) = 0. We discuss the adiabatic approximation only for circular polarization
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since this case permits us to calculate the dressed potential analytically for the present

model. This potential is axially symmetric about the normal to the polarization plane.

To construct the SS, we expand the wave function into partial waves with outgoing-

wave boundary conditions imposed as in [30]. The details are given in Appendix H.

Let k0(t) and E0(t) = k2
0(t)/2 denote the momentum and energy eigenvalues for the SS.

We adopt t = −T/2 and T/2 as the starting and ending moment of the pulse. Then

it holds α(±T/2) = 0, hence k0(±T/2) = i
√
−2E0(±T/2). As α(t) grows, the dressed

potential V0(r;α(t)) becomes shallower, and at some critical point αc = α(tc) the bound

state disappears, i.e., E0(tc) = 0. The critical amplitude αc depends on the number of

partial waves incorporated into the eigenvalue equation. We obtain αc = 4.16, 4.46 and

4.48 for the total angular momenta l = 0, 2 and 4, respectively. Hence, the value of αc

rapidly converges as the number of partial waves increases. Thus we adopt αc = 4.48

for the present model. For the pulse parameters being employed to obtain the results

shown in Figs. 6.1 and 6.2, maxα(t) = α0 = 3.04. So the SS remains bound all during

the application of the pulse, see Fig. 5.10a, and we stay on the real axis of time, which
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corresponds to the under barrier case in the classification of [24]. Its energy E0(t) < 0

goes up while its momentum k0(t) goes down along the imaginary axis in the complex

k plane on the rising part of the pulse −T/2 < t < 0, and reaches its maximum at

t = 0. This evolution is repeated in the reverse order on the falling part of the pulse

0 < t < T/2. In the adiabatic regime, transitions can efficiently occur only when the

energies of the initial and final states coincide; transitions associated with a change in

the energy of the system are suppressed. Thus the moment of ionization is defined by

[24]

k0(t) = k → t = t(k), (6.5)

where E = k2/2 is the energy of the ionized electron. The procedure for constructing

the line t = t(k) is given in Appendix I. In the under barrier case, this equation does

not have a solution on the real t axis. A solution can be found in the complex plane

if, reaching the maximum of E0(t) at t = 0, one turns to the left and goes along the

imaginary axis into the upper half of the complex t plane as shown by the solid arrows in

Fig. 6.3. The value of α(t) is real and continues to grow along this path. The SS remains

bound up to the point tc = t(0), where k0(tc) = 0. This signifies the entrance into the

continuum. The solution t(k) to Eq. (6.5) traces a trajectory in the complex t plane

passing through tc. Only a part of this trajectory corresponding to the positive values

of k is needed to calculate the photoelectron spectrum in the adiabatic approximation
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[24]. The partial wave spectrum is given by [24]

Pl(E) ≈ e−2ImS(t(k))
∣∣∣∣dt(k)
dk

∣∣∣∣
∣∣∣∣∣ϕ

(l)
0 (a; t(k))
ka h

(1)
l (ka)

∣∣∣∣∣
2

, (6.6)

where

S(t) = Et−
∫ t

0
E0(t)dt. (6.7)

See Appendix J for its derivation. Here h(1)
l (z) is the spherical Hankel function of the

first kind. The radial functions ϕ(l)
0 (r; t) correspond to the partial-wave expansion of

the SS eigenfunction. The radius a at which the outgoing-wave boundary condition

is applied appears in Eq. (6.6), but the results become independent of its value as a

exceeds the range of the dressed potential [24]. In Fig. 6.4, we compare the partial-wave

photoelectron spectra obtained by solving Eq. (6.4) with those defined by Eq. (6.6) for

three pulses of different lengths, i.e. T = 600, 1200, and 2400 for the same value of α0 as

in Figs. 6.1 and 6.2. The full width at half maximum for the present pulse envelope f(τ)

is T/3, so the third condition in (6.1) can be specified more accurately as |E0|T/3≫ 2π.

One can see that T = 600 is only the onset of the adiabatic regime. As T grows,

the agreement between the exact spectra obtained from Eq. (6.4) and the adiabatic

approximation (6.6) clearly improves. This argument suggests that Eq. (6.6) describes
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the SEP reliably in the adiabatic regime. An advantage of having this approximation is

that now we can extract the dependence of the SEP on the electron energy E and pulse

length T analytically. In the ultimate adiabatic limit of T →∞, the width of the SEP

tends to zero, so all the characteristics of the SS needed to implement Eq. (6.6) can be

drawn by their values at t = tc. We thus obtain

Pl(E) ≈ AlTk2l+1e−BT−2|τcTE , (6.8)

where the coefficients Al, B, and τc = tc/T depend on the atomic potential V (r) and

pulse envelope f(τ), but do not depend on E or T . They are given by

Al = 1
k

∣∣∣∣∣ ϕ
(l)
0 (a; tc)

ka h
(1)
l (ka)

∣∣∣∣∣
2

, (6.9)

B = − 2
T

Im
∫ tc

0
E0(t)dt, (6.10)

The spectra obtained from Eq. (6.8) for the longest pulse with T = 2400 are also shown

in Fig. 6.4. Equation (6.8) is less accurate than Eq. (6.6), but is certainly correct

qualitatively. One consequence of Eq. (6.8) is that the SEP has a very simple and

typical energy dependence for the adiabatic regime [24, 87]. Another consequence is

that the width of the SEP and the total yield of slow electrons scale with T as T−1 and

T−1/2e−BT , respectively. The critical moment tc appears in Eq. (6.8) and hence is an

observable characteristic. The main dependence on the field amplitude is hidden in the

value of tc and is not that simple to extract.

In summary, we discussed the appearance of a slow electron peak in photoelectron

spectra produced by a high-frequency laser pulse. The SEP is a robust feature and exists

for any polarization of the laser field. It results from promotion of the atomic electron

to the continuum via a nonadiabatic transition [24, 85] caused by slow deformation of

the dressed potential that follows a variation of the envelope of the laser pulse. This

ionization mechanism should reveal itself in all spectra produced by high-frequency

pulses of finite length. The mechanism of the SEP is very similar to the “promotion

mechanism" in the hidden crossing theory [91, 92, 93, 94]. Being a function of the pulse

envelope, the slow electron peak could serve as a measure of the pulse length or intensity.

The adiabatic version of the high-frequency Floquet theory [38], proposed in [39, 40] to

explain the interference substructure of ATI peaks and applied in the present work to
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explain the slow electron peak, seems to provide a useful framework for analyzing the

photoionization dynamics in the high-frequency regime.



Chapter 7

Conclusions

In this thesis, we explored the photoelectron spectra of the one electron system

in the stabilization regime. In so doing, we developed the powerful numerical methods.

Our approach begins with the Siegert state (SS) expansion of a wave packet in the

Kramers-Henneberger (KH) frame to accurately calculate the photoelectron spectrum

in the stabilization regime. In the KH frame, the laser field is combined into the atomic

potential via the classical trajectories of the free electron in the laser field. Then the

effect of the laser field is represented by the quiver motion of the atomic potential

along the classical trajectories. Thus the laser field is correctly taken into the time-

dependent Schrödinger equation for the box size large enough to cover this oscillation.

There are two advantages for the SSs as basis functions for the wave packet. First,

unphysical reflection from the boundary of the box can be removed since the SS satisfies

the outgoing wave boundary conditions. Second, the continuum state with arbitrary

energy can be expanded by SSs exactly, allowing to obtain the photoelectron spectrum

of a desired resolution. In consequence, our numerical scheme produces highly accurate

photoelectron spectra.

We came to reveal the following noteworthy features in the photoelectron spec-

trum of the one-electron atomic system in the stabilization regime. In the 1D calcu-

lations, oscillating substructures in the above-threshold ionization (ATI) peaks were

found for the intense high-frequency laser pulse. We developed the adiabatic version

of the high-frequency Floquet theory (HFFT) to take into account the slowly varying

envelope of the laser pulse. The HFFT analysis showed conclusively that this oscillating

substructure is due to the interference of photoelectron wave packets produced in the

rising and falling part of the pulse, and the stabilization plays a key role. The dimen-
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sionality often plays a significant role so that what appears in 1D is not generated to

occur in 3D. Carrying the 3D calculations, we confirmed the same type of oscillating

substructures. Their dependency on the laser parameters were correctly explained by

the interference picture developed in the 1D case, applying also a gedanken experiment

based on the polarization of the pulse. The oscillating substructures were again recon-

structed appropriately by the adiabatic HFFT attributing them to the interference of a

pair of wave packets as in 1D.

In the photoelectron spectrum, we also found the emergence of the slow electron

peak (SEP). The generation of the SEP might contradict intuition since the photon

energy is much higher than the binding energy of the electron. It was shown that the

origin of the SEP cannot be explained by the well-known ionization mechanisms: multi-

photon and tunneling processes. The SEP is generated by the non-adiabatic transition

to the continuum in the situation where the dressed potential is slowly varying in time.

These features manifest themselves as general and robust structures in the photoelectron

spectrum of the one-electron system.

Finally, we point out possibilities of experimental observations of our physical

effects discussed in Chapters 5 and 6. In these Chapters, the employed laser parameters

fall in X-ray range. Thus, it may be considered that our physical effect can be observed

using X-ray free-electron lasers (XFELs). However, it seems to be difficult to observe

our physical effects using XFELs due to the facts in the following. First, XFELs are

produced using Self-Amplified Spontaneous Emission (SASE) method. SASE XFELs

are chaotic lights so that each pulse consists of a train of uncorrelated spikes. Thus it

can be speculated that the interference fringes can be washed out after adding up the

contributions from each spike. Second, it may not be possible to observe our physical

effects with the laser parameters being pursued currently in XFEL projects in the world.

The only XFELs currently available exist at the Linac Coherent Light Source (LCLS) in

US. In the LCLS, the photon energy, peak intensity, and duration of spikes in realistic

AMO experiments in future are expected to be 800 to 2000 eV, ≈ 1018 W/cm2, and

a few fs long, respectively [95]. Using the photon energy ~ω = 800 eV, peak laser

intensity I = 1018 W/cm2, and pulse duration T = 48 fs for the parameters of the

linearly polarized laser pulse, we calculated the photoelectron spectrum of one-electron
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model of hydrogen negative ion Eq. (5.15) within the dipole approximation. However,

both the yield of the first peak and slow electron are negligible since the total ionization

probability is much less than 1%. The maximum excursion amplitude α of the classical

trajectory is about 0.006 so that the situation is highly perturbative; the frequency is too

high for α being comparable with the size of the system. Although we employed the laser

parameters in X-ray range in this thesis, as pointed out in Chapter 1 and Appendix A,

we propose employing a suitable Rydberg state of noble gas atoms of high angular

momentum to open up experimental possibilities for verifying our physical effects with

realistic laser parameters [6, 7, 8, 9, 10]. In such a system, the conditions Eq. (1.1) and

Eq. (1.2) can be satisfied using the laser sources available in current experiments, and

thus our physical effects in the stabilization regime should be accessible.
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Appendix A

Experiments of the stabilization

Here we summarize the experimental results in [8, 9, 10]. In these papers, they

employed a Rydberg state of the Ne atom, namely (2p)55g (m=4). They pointed out

some advantages for the use of the Rydberg atom. First, the ionization potential for the

Rydberg state being very small, it becomes relatively easy to satisfy the high-frequency

condition Eq. (1.1), using lower frequency photon available in experiments. Second, the

high angular momentum prevents the Rydberg electron to penetrate into the vicinity of

the atomic core so that the binding energy is rather small. The photoionization cross

section is thus expected to be small due to the weak interaction between the Rydberg

electron and the parent core. Hence, the laser amplitude for α to exceed the critical

value αc is also expected to be small. Finally, the life time is of the order of hundreds of

femto seconds. Then the required duration of a laser pulse is experimentally achievable,

making it possible to prevent the electron from completely depleted before the laser

pulse reaches its peak intensity. For instance, in [68], the life time of the 5g state of

the H atom subject to the laser pulse of photon wavelength 620 nm was estimated as

a function of the laser intensity, and its shortest value of the life time was shown to be

571 fs at the intensity 5.5× 1013 W/cm2.

Let us show in Fig. A.1A the experimental scheme employed in [10]. The Rydberg

state of Ne (2p)55g with magnetic quantum number m = 4 was prepared by five-photon

absorption by a circularly polarized UV laser pulse of λ = 286 nm. During the time

interval of τd = 20 ps before the second pulse, the external magnetic field of 0.9T is

applied to make the angular momentum vector of the 5g state precessing around the

magnetic field axis , i.e. the Lamor precession. This precession is exploited for aligning

the 5g state with m = 4 along the polarization vecor of the main pulse. Next, the
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second linearly polarized red laser pulse of λ = 620 nm (2.0 eV) and pulse duration

τ = 90 fs was irradiated to observe the yield of the ionized electrons as a function of the

laser intensity. The photon energy 2.0 eV is much larger than the ionization potential

Ip = 0.544 eV for the 5g electron; the pulse duration 90 fs is much shorter than the

minimum life time mentioned above. On account of the selection rule ∆m = 0 for

absorption of the linearly polarized light, 5g state with m = 4 does not couple to the

lower-lying state. In [10], they observed that the yield of the photoelectron decreased

for the intensity larger than 60 TW/cm2, thus it strongly deviates from the golden rule

as in Fig. A.1B. They applied yet another laser pulse of a weak intensity but of a long

duration and examined the population of the Rydberg states that survived the second

red laser pulse. This yield saturated for the intensity above I ≈ 60 TW/cm2. This

is interpreted that the 5g state remained undepleted, that is ionization was ineffective.

They concluded that this was a signature of the stabilization.
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Figure A.1: Figures from van Druten et al. [10]. (A) Schematic diagram of the exper-
iment. (a) The first preparation pulse pump the ground state of the Ne atom (2p)6 to
the Rydberg state (2p)55g (m=5) where m denotes the magnetic quantum number. (b)
The main pulse is irradiated to photoionize the electron. On account of the small ion-
ization potential Ip = 0.544 eV of the 5g electron, the laser pulse of the wavelength 620
nm, corresponding to the photon energy 2 eV, is enough to satisfy the high-frequency
condition. (c) The survived population after the main pulse is measured by the probe
pulse. (B) Experimental results. The black and represents the photoelectron yield by
the main pulse as a function of the intensity of the main pulse; The white circle repre-
sents the surviving population of the 5g state as function of the intensity of the main
pulse, measured by the probe pulse. The solid and broken line denote the photoelectron
yield and the surviving population obtained from the Fermi’s Golden rule. One can see
that the experimental results show the strong deviations from the Fermi’s Golden rule.
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Brief summary of the historical development of the Siegert state

The development of the SS has a long history. In 1939, Siegert pointed out that

the cross section in nuclear reactions becomes singular when the wave function satisfies

the outgoing wave boundary condition [25]. This led Siegert to define the resonance

state as the solution of the Schrödinger equation[
−1

2
d2

dr2 + V (r)
]
ϕ(r) = 0, (B.1)

with the boundary conditions

ϕ(0) = 0,
(
d

dr
− ik

)
ϕ(r)

∣∣∣∣
r=r0

= 0, (B.2)

where the atomic potential V (r) is assumed to vanish for r > r0. The outgoing wave

boundary condition destroys the hermiticity of the Hamiltonian, the eigenenergy be-

comes generally complex valued,

E = 1
2
k2
n = Eres − iΓ/2. (B.3)

In [25], Siegert showed that Eres and Γ emerge as the resonance energy and width in the

cross section; they are the characteristic parameters for identifying a resonance. The

resonant state belongs to the set of the outgoing states with a small imaginary part, i.e.

|Eres| ≫ Γ. Therefore, the SS provides us with a powerful framework for the scattering

theory, but to the contrary it remained to be regarded as a mere formal object for a long

time due to the lack of an appropriate numerical scheme for generating the SSs system-

atically. The Siegert eigenvalue problem Eq. (B.1) subject to Eq. (B.2) is quadratic with

respect to k. Therefore, eigenvalues used to be calculated individually using iterative

procedures [69]. Additionally, SSs have unusual orthogonal and completeness relations.

These prevented the development of the theory from reaching practical level.
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However, Tolstikhin made a major breakthrough in 1997 by introducing the

Siegert pseudostate (SPS) [26]. His is the finite basis representation of the SS for a

cut-off potential. He reconstructed the theory of the SS in terms of SPS, and showed

that the theory of the SPS coincide with that of the SS in the limit of N → ∞ and

r0 → ∞, where N is the number of basis functions [27]. And he showed that the

quadratic eigenvalue problem can be recast into a linear one by doubling the dimension

of the original Hilbert space. Hence, a set of SPSs can be obtained by diagonalizing a

single matrix, making it suitable for practical calculations.

The theory of the SPS is further being developed. Sitnikov and Tolstikhin [28]

developed the two-channel case for s-wave , Toyota et al. supplemented the perturbation

theory of the SPS for one- and two-threshold cases [29] for s-wave, and Batischev and

Tolstikhin extended the 1D one-channel case to 3D one-channel case that is for non-

zero values of an angular momentum [30]. Recently, the theory is being developed to

utilize the SPS as basis functions for a wave packet in order to solve the time-dependent

Schrödinger equation. The idea is that unphysical reflection from the boundary can

be removed by explicitly imposing the boundary condition Eq. (B.2). This is firstly

pioneered by Yoshida et al. [34], and Tanabe et al. [35]. Later, Santra et al. developed

a rigorous theory for the stationary Hamiltonian, and Tolstikhin further developed it for

the time-dependant Hamiltonian [21, 22, 23, 24]. These developments have stimulated

numerous applications in atomic physics for both time-independent and time-dependent

frame works [31, 32, 33, 34, 35, 36, 37, 21, 22, 24, 23, 39, 40, 45].
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Siegert boundary condition for non-zero values of the angular
momentum

Here we discuss the outgoing wave boundary conditions for the case of non-zero

values of the angular momentum. Since the centrifugal potential does not vanish beyond

the finite cut-off radius, some modifications are needed for the outgoing wave boundary

condition. In the outer region r > a, where the atomic potential vanishes, the Han-

kel function of the first and second kind, h(1)(kr) and h(2)(kr), respectively, are the

independent solutions for the atomic Hamiltonian Eq. (4.59a). They are defined by

h
(1)
l (kr) = jl(kr) + inl(kr), (C.1a)

h
(2)
l (kr) = jl(kr)− inl(kr), (C.1b)

where jl(kr) and nl(kr) are the spherical Bessel function and spherical Neumann func-

tion, respectively. Their asymptotic behavior is represented by

h
(1)
l (kr)

∣∣∣
r→∞

= (−i)l+1

kr
eikr, (C.2a)

h
(2)
l (kr)

∣∣∣
r→∞

= il+1

kr
e−ikr. (C.2b)

So, let us define a new function el(kr)

el(kr) = il+1kr h
(1)
l (kr), (C.3a)

el(kr)|r→∞ = eikr. (C.3b)

So, we connect the internal wave function with the above external function el(kr) at

r = a. We need a derivative of this function to construct the outgoing wave boundary

condition. To this end, let us consider the Bessel polynomial yl(kr) of order l [88],

yl(kr) =
l∑
m=0

(l +m)!
m!(l −m)!

(kr)m

2m
. (C.4)
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Then the reverse Bessel polynomial is given by

θl(kr) = (kr)lyl
( 1
kr

)
=

l∑
m=0

(2l −m)!
m!(l −m)!

(kr)m

2l−m
. (C.5)

The coefficients of zn in the reverse Bessel polynomial appears in the reverse order of

the Bessel polynomial. For instance,

y2(z) = 1 + 3z + 3z2, (C.6a)

θ2(z) = 3 + 3z + z2. (C.6b)

The series representation of the spherical Hankel function of first kind h
(1)
l (z) is given

by [88],

h
(1)
l (z) = i−n−1z−1eiz

n∑
k=0

(n+ k)!
k!Γ(n− k + 1)

(−2iz)−k, (C.7)

where Γ(z) is the Gamma function. Using Eq. (C.7), one finds

h
(1)
l (kr) = −ieikr(kr)−l−1θl(−ikr). (C.8)

Using Eq. (C.8), equation (C.3a) can be recast into

el(kr) = θl(−ikr)
(−ikr)l

eikr. (C.9)

Let zlp (z = 1, . . . , l) be the zeros of the θl(−ikr). Then

θl(−ikr) =
l∏
p=1

(−ikr − zlp). (C.10)

Using this formula, the derivative of el(kr) is d

dr
− ik + 1

r

l∑
p=1

zlp
ikr + zlp

 el(kr) = 0. (C.11)

This is the outgoing wave boundary condition in the 3D case.



Appendix D

Siegert state expansion of the scattering state and the Green’s
function

D.1 One-dimensional case

D.1.1 Siegert state expansion of the scattering state

The scattering state can also be expanded by the SSs. Let ϕin
±(x, k), 0 < k <∞,

be the solutions for Eq. (3.5) satisfying the boundary conditions,

φin
−(x, k) =

 eikx − r−(k)e−ikx, x < x−,

t(k)eikx, x > x+,
(D.1a)

φin
+(x, k) =

 t(k)e−ikx, x ≤ x−,

e−ikx − r+(k)eikx, x ≥ x+,
(D.1b)

where r±(k) and t(k) are the reflection and transmission amplitudes; for symmetric

atomic potentials, r+(k) = r−(k). The wave packet formed by the superposition of

φin
±(x, k) for a narrow interval of k represents the in state, which it approaches the

interaction region x− < x < x+ in the remote past from the left and right, respec-

tively. To define the photoelectron spectra, we need out states φout
± ; the wave packet

formed by them recede from the interaction region in remote future to the left and right,

respectively. These two sets are related by the unitary transformation, φout
− (x, k)

φout
+ (x, k)

 =

 −r∗−(k) t∗(k)

t∗(k) −r∗+(k)


 φin

−(x, k)

φin
+(x, k)

 , (D.2)

It is easily shown that

φout
± (x, k) = φin*

± (x, k). (D.3)
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Using the in states, the Green’s function is given by

G(x, x′; k) = Aφin
−(x>, k)φin

+(x<, k), (D.4)

where x< (x>) is the smaller (larger) of x and x′, and A is a constant. This obviously

satisfies the boundary conditions Eqs. (4.12). The constant A can be determined so that

this function satisfies Eq. (4.11). Substituting this expression into Eq. (4.11), setting

x′ = x+, and integrate over [x+ − 0, x+ + 0],(
dG

dx

)
x++0
−
(
dG

dx

)
x+−0

= 2, (D.5)

Thus we obtain

A = − i

kt(k)
. (D.6)

Hence, using the Siegert state expansion of the Green’s function, Eq. (D.12), we obtain

the scattering states

φin
−(x, k) = ike+ikx−

∑
n

ϕn(x)ϕn(x−)
kn(k − kn)

, x ≥ x−, (D.7a)

φin
+(x, k) = ike−ikx+

∑
n

ϕn(x)ϕn(x+)
kn(k − kn)

, x ≤ x+. (D.7b)

D.1.2 Siegert state expansion of the Green’s function

The equation and boundary condition for the Green’s function are given by

Eq. (4.11) and Eqs. (4.12). Let us expand the Green’s function using the Siegert states

(SSs)

G(x, x′; k) =
∑
n

αnϕn(x)ϕn(x′). (D.8)

Substituting this into Eqs. (4.12),(
d

dx
± ik

)
G(x, x′; k)

∣∣∣∣
x=x∓

= ∓i
∑
n

αn(kn − k)ϕn(x∓)ϕn(x′) = 0. (D.9)

From the sum rule for the SSs Eq. (3.22a), one finds

αn = 1
kn(k − kn)

. (D.10)

Then using Eq. (3.22b), it can be shown that

(E −H)G(x, x′; k) =
∑
n

(E − En)
ϕn(x)ϕn(x′)
kn(k − kn)

= 1
2
∑
n

(
1 + k

kn

)
ϕn(x)ϕn(x′)

= δ(x− x′). (D.11)
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Thus we obtain

G(x, x′; k) =
∑
n

ϕn(x)ϕn(x′)
kn(k − kn)

. (D.12)

D.2 Three-dimensional case

D.2.1 Siegert state expansion of the scattering state

Here we derive the SS expansion of the scattering state . The scattering states

satisfy Eq. (3.31a) and the boundary conditions Eq. (3.31d) and

φl(r, k)|r→∞ = e−ikr − (−1)lSl(k)eikr, (D.13)

where Sl(k) is the scattering matrix. Taking Eq. (4.51) into account, in outer region we

have

φl(r, k)|r≥a = el(−kr)− (−1)lSl(k)el(kr), (D.14)

where the function el(kr) is is the scaled spherical Hankel function of first kind defined

by Eq. (C.3a). The Green’s function is related to this function,

Gl(r, r′; k) = i

k
φl(r<)el(kr>), r> ≥ R (D.15)

where r<(r>) is the smaller (larger) of r and r′. Setting r′ = a, we find

φl(r, k) = − ikGl(r, a; k)
el(ka)

, 0 ≤ r ≤ R. (D.16)

Substituting the spectral resolution of the Green’s function Eq. (D.18), we obtain the

SS expansion of the scattering state,

φl(r, k) = −ike−ika (−ika)l

θl(−ika)

2N+l∑
n=1

ϕln(r)ϕln(a)
kln(kln − k)

, 0 ≤ r ≤ R, (D.17)

where θl(kr) is the reverse Bessel polynomial, see Appendix C.

D.2.2 Siegert state expansion of the Green’s function

The spectral representation of the Green’s function is given by

Gl(r, r′; k) =
∑
n=1

ϕln(r)ϕln(r′)
kln(kln − k)

, (0 ≤ r, r′ ≤ R). (D.18)

The detailed procedure for its derivation is the same as in Appendix D.1.2.



Appendix E

Some properties of the operator λ̂t

E.1 Proof of the identity (λ̂t − ik)e−iEt = 0

From the definition of the operator λ̂t,

λ̂tδ(t) =
∫ ∞
−∞

ike−iEt
dE

2π
, (E.1)

and using the formula ∫ ∞
0

e±ik
2t/2dk =

√
π

2
e±iπ/4

(t± i0)1/2 , (E.2)

we obtain

λ̂tδ(t) = 2e3iπ/4
√

2π
d

dt

[
θ(t)
t1/2

]
. (E.3)

Using the identity,

f(t) =
∫ ∞
−∞

δ(t− t′)f(t′)dt′, (E.4)

we find

λ̂tf(t) = 2e3iπ/4
√

2π
d

dt

∫ t
−∞

f(t′)
(t− t′)1/2dt

′. (E.5)

The equation (E.5) indicates that calculating the value of λ̂tf(t) for a given time t

requires all the past information of f(t′) form t′ = −∞ to t′ = t with the weight

1/
√
t− t′. Thus the operator λ̂t is non-local with respect to time. Substituting f(t) =

e−iEt, setting s =
√
t− t′, and using Eq. (E.2), one finds,

(λ̂t − ik)e−iEt = 0. (E.6)

E.2 The Green’s function of the operator λ̂t − ik

To obtain the Green’s function for the operator λ̂t− ik, we proceed the following

steps. First, we proof

λ̂t

[
df(t)
dt

]
= d

dt

[
λ̂tf(t)

]
, (E.7)
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where f(t) is a smooth function of t. This is the commutativity between the operator

λ̂t and time derivative. Second, we calculate the action of the operator λ̂t on t−1/2,

λ̂t

[
e−3πi/4θ(t)√

2πt

]
= δ(t), (E.8)

where θ(t) is the step function. Finally, we calculate the action of the operator λ̂t on

the Faddeeva function w(z) [88], namely,

λ̂t[θ(t)w(α
√
t)] =

√
2eπi/4θ(t)

[
i√
πt
− αw(α

√
t)
]
. (E.9)

Using them, we construct the Green’s function for the operator λ̂t − ik.

E.2.1 Commutativity between the operator λ̂t and time-derivative

Equation (E.5) is equivalent to

f(t) = e−3πi/4
√

2π

∫ t
−∞

λ̂t′f(t′)
(t− t′)1/2dt

′. (E.10)

This can be proved easily. Multiplying the factor 1/
√
t′′ − t for both sides, and integrate

over [t′, t′′], ∫ t′′
t′

f(t)√
t′′ − t

dt = e−3πi/4
√

2π

∫ t′′
t′

dt√
t′′ − t

∫ t
−∞

λ̂t′f(t′)√
t− t′

dt′

= e−3πi/4
√

2π

∫ t
−∞

λ̂t′f(t′)dt′
∫ t′′
t′

dt√
t′′ − t

√
t− t′

= e−3πi/4B(1/2, 1/2)√
2π

∫ t
−∞

λ̂tf(t′)dt′, (E.11)

where B(x, y) is the beta function. We obtain∫ t
−∞

λ̂t′f(t′)dt′ =
√

2πe3πi/4

B(1/2, 1/2)

∫ t′′
t′

f(t)√
t′′ − t

dt. (E.12)

Differentiate both hand side by t, taking limit t′ → −∞ and using B(1/2, 1/2) = π, we

obtain Eq. (E.5).

Integrating by parts Eq. (E.5), we obtain another form of this equation,

λ̂tf(t) = 2e3πi/4
√

2π

∫ t
−∞

df(t′)
dt′

dt′

(t− t′)1/2 . (E.13)

Here it is assumed that the function satisfies limt→−0 f(t)|t<0 = 0. Substituting df(t)dt
into Eq. (E.5), differentiate Eq. (E.13) by t, and compare them, we find

λ̂t

[
df(t)
dt

]
= d

dt

[
λ̂tf(t)

]
. (E.14)

So λ̂t commutes with the time derivative.
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E.2.2 The action of the operator λ̂t on the function t−1/2

Acting λ̂t from the left side of Eq. (E.3), and using the property Eq. (E.14), and

integrating with respect to t, we obtain

λ̂t

[
e−3πi/4θ(t)√

2πt

]
= δ(t). (E.15)

E.3 The action of the operator λ̂t on the Faddeva function w(z)

The Faddeva function w(z) is defined by

dw(z)
dz

= −2zw(z) + 2i√
π
, w(0) = 1. (E.16)

Substituting w(z) = C(z)e−z2 , one finds the solution,

w(z) = e−z
2erfc(−iz), (E.17)

where erfc(z) is the complementary error function defined by

erfc(z) = 1 + 2i√
π

∫ z
0
et

2
dt. (E.18)

Using the formula (See Appendix F),∫ t
0

w(α
√
t′)

(t− t′)1/2dt
′ = i
√
π

α

[
1− w(α

√
t)
]
, (E.19)

we find

λ̂t[θ(t)w(α
√
t)] = 2e3πi/4

√
2π

d

dt

∫ t
−∞

θ(t′)w(α
√
t′)

(t− t′)1/2 dt′

= 2e3πi/4
√

2π
d

dt

∫ t
0

w(α
√
t′)

(t− t′)1/2dt
′

=
√

2e3πi/4 d

dt

i

α
[1− w(α

√
t)]

= −
√

2e3πi/4 i

α

dw(α
√
t)

dt

=
√

2eπi/4θ(t)
[

i√
πt
− αw(α

√
t)
]

(E.20)
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E.3.1 The Green’s function

Using Eq. (E.15) and Eq. (E.20), we find the Green’s function for the operator

λ̂t − ik is given by

g(t; k) = θ(t)
[
e−3πi/4
√

2πt
− k

2
w(−e−πi/4k

√
t/2)

]
. (E.21)



Appendix F

Proof of the identity Eq. (E.19)

Let us rewtite the definition Eq. (E.16) of the Faddeva function w(z),

dw(α
√
t′)

dt′
= −α2w(α

√
t′) + iα√

πt′
. (F.1)

Multipling 1/
√
t− t′ to the above equation, and integrating by t′ over [0, t], one obtains∫ t

0

w(α
√
t′)dt′√

t− t′
= − 1

α2

∫ t
0

dw(α
√
t′)

dt′
dt′√
t− t′

+ i√
πα

∫ t
0

dt′√
t′(t− t′)

. (F.2)

The second term of Eq. (F.2) can be evaluated as

i√
πα

∫ t
0

dt′√
t′(t− t′)

= i√
πα

∫ 1

0

ds√
s(1− s)

,

= i√
πα

B(1/2, 1/2),

= i

√
π

α
, (F.3)

where B(x, y) is the Beta function. The Faddeva function can be expanded into a series

[88],

w(α
√
t) =

∞∑
n=0

(iα
√
t)n

Γ(n/2 + 1)
, (F.4)

where Γ(z) is the Gamma function. Using this, the time derivative is given by

dw(α
√
t)

dt′
=
∞∑
n=1

(iα)n

Γ(n/2)
tn/2−1. (F.5)

Using this,∫ t
0

dw(α
√
t′)

dt′
dt′√
t− t′

=
∞∑
n=1

(iα)n

Γ(n/2)

∫ t
0

(t′)n/2−1dt′√
t− t′

,

=
∞∑
n=1

(iα)n

Γ(n/2)
tn/2−1/2

∫ 1

0
sn/2−1(1− s)−1/2ds,

=
∞∑
n=1

(iα)n

Γ(n/2)
tn/2−1/2B(n/2, 1/2). (F.6)
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The Beta function B(n/2, 1/2) is given by [88]

B(n/2, 1/2) = Γ(n/2)Γ(1/2)
Γ(n/2 + 1/2)

. (F.7)

Using this and Γ(1/2) =
√
π, Eq. (F.6) becomes∫ t

0

dw(α
√
t′)

dt′
dt′√
t− t′

=
√
π
∞∑
n=1

(iα)n

Γ(n/2 + 1/2)
tn/2−1/2. (F.8)

Let us define m = n− 1, then

√
π
∞∑
n=1

(iα)n

Γ(n/2 + 1/2)
tn/2−1/2 =

√
πiα

∞∑
m=0

(iα)m

Γ(m/2 + 1)
tm/2,

=
√
πi α w(α

√
t). (F.9)

Using Eq. (F.6) and (F.9), the intergral Eq. (F.2) becomes∫ t
0

w(α
√
t′)dt′√

t− t′
= i
√
π

α

[
1− w(α

√
t)
]
. (F.10)



Appendix G

Fourier transform of the classical trajectory

The Newton equation for the free-electron in the laser field is,

d2x

dt2
= −F0 sin2 πt

T
cosωt, (G.1)

where the initial conditions are

dx

dt

∣∣∣∣
t=0

= 0, x(0) = 0. (G.2)

The solution of above equation is

x(t) =

 −
F0
2

[
1−cosωt
ω2 − 1−cos(ω+ω0)t

2(ω+ω0)2 − 1−cos(ω−ω0)t
2(ω−ω0)2

]
(0 < t < T ),

0 (other).
(G.3)

For a = n2π
T (n = 1, 2, . . .), we have∫ T

0
(1− cos at)eiEtdt = −2e

iEt
2 sin ET

2
a2

E2 − a2 . (G.4)

Using this, the Fourier transform of x(t) is given by

x(E) =
∫ ∞
−∞

x(t)eiEtdt

=
∫ T

0
x(t)eiEtdt

= −F0e
iEt

2 sin ET
2

ω2
0(E2 + 3ω2 − ω2

0)
E(E2 − ω2)

[
(E + ω)2 − ω2

0
] [

(E − ω)2 − ω2
0
] (G.5)



Appendix H

Partial wave expansion of the Siegert states for non-symmetric
potential

The Siegert state eigenvalue problem for the non-symmetric atomic potential in

the 3D case reads,[
−1

2
∂2

∂r2 + l̂2

2r2 + V0(r, θ;α)− E(α)
]
ϕ(r, θ;α) = 0, (H.1a)

ϕ(r, θ;α) =
∑
l

ϕl(r;α)P̃l(cos θ), (H.1b)

ϕl(0;α) = 0, ϕl(r;α)|r≥a ∝ el(k(α)r), (H.1c)

E(α) = k(α)2/2. (H.1d)

The νth solution for the above eigenvalue problem will be denoted by

kν(α), Eν(α), ϕν(r, θ;α), and ϕνl (r;α). (H.2)

Let

V
(ll′)

0 (r;α) =
∫ π

0
P̃l(cos θ)V0(r, θ;α)P̃l′(cos θ) sin θ dθ, (H.3a)

(H.3b)

then

Hl(r;α) = −1
2
d2

dr2 + l(l + 1)
2r2 + V

(ll)
0 (r;α). (H.3c)

The hermitized Hamiltonian H̃l is defined by

H̃l(r;α) = Hl(r;α) + 1
2
D(r; a), (H.3d)
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Let us introduce some notations,

ϕ̃l(r;α) = ik(α)ϕl(r;α), (H.4a)

ϕlp(α) = − zlpϕl(a;α)
ik(α)a+ zlp

p = 1, . . . , l. (H.4b)

Using them, let us define the new vector of dimension 2 + l,

ϕl(r;α) =



ϕl(r;α)

ϕ̃l(r;α)

ϕl1(α)

. . .

ϕll(α)


. (H.4c)

Let us introduce the new square matrices Λl(r;α) of the dimension (2 + l)× (2 + l) and

Λl(r;α) =



0 1 0 0 . . . 0

−2H̃l(r;α) F(r; a) F(r; a)/a F(r; a)/a . . . F(r; a)/a

−zl1FT (r; a)/a 0 −zl1/a 0 . . . 0

−zl2FT (r; a)/a 0 0 −zl2/a . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

−zllFT (r; a)/a 0 0 0 . . . −zll/a


, (H.5)

and Vll′0 of the dimension (2 + l)× (2 + l′),

V(ll′)
0 =



0 0 . . . 0

V
(ll′)

0 (r;α) 0 . . . 0

0 0 . . . 0

. . . . . . . . . . . . . . . . . . . . .

0 0 . . . 0


. (H.6)

Then the SS eigenvalue problem can be presented in the form

[Λl(r;α)− ik(α)]ϕl(r;α)− 2
∑
l′ ̸=l

V(ll′)
0 (r;α)ϕl′(r;α) = 0. (H.7)



100

Normalization is implemented in the following manner,∫ π
0

sin θdθ
∫ ∞

0
ϕ2(r, θ;α) dr =

∑
l

∫ ∞
0

ϕ2
l (r;α) dr

=
∑
l

(∫ a
0
ϕ2
l (r;α) dr +

∫ ∞
a

ϕ2
l (r;α) dr

)

=
∑
l

∫ a
0
ϕ2
l (r;α) dr + i

ϕ2
l (a;α)
2k(α)

1 +
l∑
p=1

zlp
(ik(α)a+ zlp)2

 = 1. (H.8)



Appendix I

Line t(k)

The time t can be converted into α via the pulse envelope Eq. (5.17). Instead of

Eq. (6.5), we consider the equation

k0(α) = k. (I.1)

For a certain fixed value of k, we obtain the corresponding value of α. Note that α = αc

for k = 0, hence we obtain t = tc. Suppose Eq. (I.1) was solved. Then let us consider

the same equation with a small shift ∆k form k, namely

k0(α+ ∆α) = k + ∆k. (I.2)

We seek the value of ∆α for this equation to hold. To this end, let us consider the

Siegert eigenvalue problem Eq. (H.7) for α+ ∆α. Using Eq. (I.2), we obtain

[Λl(r;α+ ∆α)− i(k + ∆k)]ϕl(r;α+ ∆α)− 2
∑
l′ ̸=l

V(ll′)
0 (r;α+ ∆α)ϕl′(r;α+ ∆α) = 0.

(I.3)

We assume that ∆k is sufficiently small, then ∆α is also very small. Then we approxi-

mate V (ll′)
0 (r;α) by

V
(ll′)

0 (r, θ;α+ ∆α) ≈ V (ll′)
0 (r, θ;α) + dV

(ll′)
0 (r, θ;α)
dα

∆α. (I.4)

Therefore we obtain the following eigenvalue problem with respect to ∆α,

[Λl(r;α)− i(k + ∆k)]ϕl(r;α+ ∆α)− 2
∑
l′ ̸=l

V0
(ll′)(r;α)ϕl′(r;α+ ∆α)

= 2∆α
∑
l′

W0
(ll′)(r;α)ϕl′(r;α+ ∆α) (I.5)
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where the matrix W of dimension (2 + l)× (2 + l′) is given by

W0
(ll′)(r;α) =



0 0 . . . 0
dV

(ll′)
0
dα 0 . . . 0

0 0 . . . 0

. . . . . . . . . . . . . . . . .

0 0 . . . 0


. (I.6)

After solving Eq. (I.5), we pick up the one closest to 0. Then we replace α by α+ ∆α.

The mapping between α and t is given by

α = α(t) = α0

[
1−∆ cos2 π

T

(
t+ T

2

)]
sin2 π

T

(
t+ T

2

)
, (I.7)

∆ = n2
oc − 4
n2

oc − 1
. (I.8)

Here the origin of time is shifted by T/2. After some algebra, we obtain

t = −iT
π

log
[
ic+

√
1− c2

]
− T

2
, (I.9a)

c =

√√√√q − 1
2q

+

√(
q − 1

2q

)2
+ 1
q

α

α0
, (I.9b)

q = n2
oc − 4
n2

oc − 1
. (I.9c)

To construct the spectrum of the slow electron Eq. (J.13), we need to find the moment

t when the electron is ionized with the positive momentum k. To this end, in finding

t, the most appropriate branch is chosen to lie in the second quadrant of the complex t

plane.



Appendix J

Spectrum of the slow electron

The exact spectrum is

P (E) =
∑
l

Pl(E) = k

2π
∑
l

∣∣∣∣∣ 1
ka h

(1)
l (ka)

∫ ∞
−∞

(∫ π
0
P̃l(cos θ)ψ(a, θ, t) sin θdθ

)
eiEtdt

∣∣∣∣∣
2

.

(J.1)

In the adiabatic approximation,

ψ(r, θ, t) =
∑
l

al(t)ϕl(r, θ, t) ≈ a0(t)ϕ0(r, θ, t), (J.2a)

a0(t) ≈ exp
[
−i
∫ t

0
E(t′)dt′

]
(J.2b)

Using this and

ϕ0(r, θ, t) =
∑
l

ϕ
(l)
0 (a, t)P̃l(cos θ), (J.3)

then Eq. (J.1) becomes

P (E) = k

2π
∑
l

∣∣∣∣∣ 1
ka h

(1)
l (ka)

∫ ∞
−∞

ϕ
(l)
0 (a; t)eiS(t)dt

∣∣∣∣∣
2

, (J.4)

where S(t) is the action defined by

S(t) = Et−
∫ t

0
E(t′)dt′. (J.5)

We evaluate Eq. (J.4) using the steepest descent method,

dS

dt
= E − E(t) = 0→ k(t) = k → t(k) = k. (J.6)

We approximate the function S(t) by

S(t) ≈ Et(k)−
∫ t(k)

0
E(t′)dt′ − 1

2

(
dE(t)
dt

)
t(k)

t2. (J.7)
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Substituting this into Eq. (J.4)

P (E) = k

2π
exp [−2ImS(t(k))]

∑
l

∣∣∣∣∣ ϕ
(l)
0 (a; t)

kah
(1)
l (ka)

∣∣∣∣∣
2 ∣∣∣∣∫ ∞
−∞

exp
[
−1

2
ikk̇(t)t2

]
dt

∣∣∣∣2 (J.8)

The integral in the above equation can be evaluated as follows. Changing the variable,

t =
√

2√
kk̇(t)

t′, (J.9)

then ∣∣∣∣∫ ∞
−∞

exp
[
−1

2
ikk̇(t)t2

]
dt

∣∣∣∣2 = 2
k|k̇(t)|

∣∣∣∣∣∣
∫ +

√
2√
kk̇(t)
∞

−
√

2√
kk̇(t)
∞

exp[−it′2]dt′
∣∣∣∣∣∣
2

(J.10)

From the residue theorem, ∫ ∞
−∞
−
∫ +

√
2√
kk̇(t)
∞

−
√

2√
kk̇(t)
∞

= 0. (J.11)

Using the formula for the Fresnel integral [88]

∫ +
√

2√
kk̇(t)
∞

−
√

2√
kk̇(t)
∞

=
∫ ∞
−∞

=
√
π

2
− i
√
π

2
. (J.12)

Then Eq. (J.8) becomes

P (E) = exp [−2ImS(t)]
|k̇(t)|

∑
l

∣∣∣∣∣ ϕ
(l)
0 (a; t)

kah
(1)
l (ka)

∣∣∣∣∣
2∣∣∣∣∣∣
t=t(k)

. (J.13)
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