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暗号要素技術の一般的構成を介した高い安全性・高度な機能
を備えた暗号要素技術の構成

坂井祐介

論文概要

通常の暗号化や認証にとどまらず, 複雑な機能を備えた暗号要素技術の提案が活発に

なっている. 暗号要素技術の安全性は利用形態に応じて, セキュリティ上の脅威をモデル

化して安全性要件を定め,新方式はそれぞれ安全性定義を満たすことの証明と共に提案さ

れる.

既存研究では,次の問題があった: (1)要素技術ごとに個別に安全性の定義を与えている

ため,理論的な体系化が不十分であった. (2)安全性定義が実用上の脅威を完全に捉えきれ

ているかの検証が難しかった.

本研究は上記の問題を次の考え方で解決する. (1) ある要素技術 (A)を構成するには別

の要素技術 (B)を部品として用いることが不可欠であることに注目し,各要素技術の安全

性要件の関連を整理・体系化して, 新方式を見通し良く構成可能とする. (2)要素技術 (B)

で考慮されていた安全性要件 (b)に対応する要素技術 (A)の安全性要件が未定義なら, そ

れを (A)の新たな安全性要件 (a)として定式化する. これにより未知の脅威の検出が容易

になる.

グループ署名と非対話開示機能付き公開鍵暗号という 2 つの要素技術について上記の

考え方を適用して,グループ署名について未知の脅威を指摘する.

また,証明書失効機能と呼ばれる拡張機能を持つグループ署名に上記の考え方を適用し

て,公開鍵暗号についての新たな拡張機能である,暗号化できる平文を制限できる公開鍵暗

号の効率的な構成法を明らかにする.
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NEW SECURITY NOTIONS AND EXTENSIONS OF
CRYPTOGRAPHIC PRIMITIVES THROUGH GENERIC

TRANSFORMATIONS AMONG DIFFERENT PRIMITIVES

YUSUKE SAKAI

ABSTRACT

Recent years have witnessed an active research on cryptographic primitives with complex

functionality beyond simple encryption or authentication. A cryptographic primitive is re-

quired to be proposed together with a formal model of its usage and a rigorous proof of

security under that model.

This approach has suffered from the two drawbacks: (1) security models are defined in

a very specific manner for each primitive, which situation causes the relationship between

these security models not to be very clear, and (2) no comprehensive ways to confirm that a

formal model of security really captures every possible scenarios in practice.

This research relaxes these two drawbacks by the following approach: (1) By observing

the fact that a cryptographic primitive A should be crucial for constructing another primitive

B, we identify an easy-to-understand approach for constructing various cryptographic prim-

itives. (2) Consider a situation in which there are closely related cryptographic primitives A

and B, and the primitive A has no known security requirement that corresponds to some well-

known security requirement (b) for the latter primitive B. We argue that this situation suggests

that this unknown security requirement for A can capture some practical attack. This enables

us to detect unknown threats for various cryptographic primitives that have been missed by

the current security models.

Following this approach, we identify an overlooked security threat for a cryptographic

primitive called group signature. Furthermore, we apply the methodology (2) to the “revo-

cable” group signature and obtain a new extension of public-key encryption which allows to

restrict a plaintext that can be securely encrypted.
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Notations

[n] {1, . . . , n}
[n,m] {n, . . . ,m}
ek Encryption key for a PKE/TBE/PKENO scheme

dk Decryption key for a PKE/TBE/PKENO scheme

vk Verification key for a signature scheme

sk Signing key for a signature scheme

gpk Group public key for a group signature scheme

ik Issuing key for a group signature scheme

ok Opening key for a group signature scheme

(upk, usk) User public/secret keys for a group signature scheme

gsk Group signing key for each group member

cert Membership certificate for each group member

(pk, vk, (ski)i∈[n]) Public/verification/secret keys for a threshold encryption scheme

ck Commitment key

G Parameter generator for a cryptographic (bilinear) group

e : G1 × G2 → GT Bilinear map

⊕ Bit-wise exclusive OR

y← A(x) Operation of running algorithm A on input x and setting y to be its output

y← A(x; r) Same as y← A(x), to explicitly mention the randomness r for A

Pr[O1; . . .On : E] Probability of event E after operations O1, . . ., On performed

⟨x1, . . . , xn⟩ Uniquely-decodable binary encoding of tuple (x1, . . . , xn)
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Chapter 1

Introduction

1.1 Background

In the recent highly-computerized society, information security is increasingly important.

Among various information security technologies, the public-key encryption for secret mes-

sage transmission and the digital signature for message integrity are the central tools for

secure communications.

In addition to these fundamental primitives, more sophisticated cryptography than the sim-

ple encryption or authentication, is also the target of active research (These cryptographic

schemes are often called cryptographic primitives or simply primitives). Group signature,

which is a “anonymous” authentication, is a typical example of such cryptographic primi-

tives. For public-key encryption, various extensions, that are suitable for various types of

multiparty computation, are also the target of actively research. Although most of these so-

phisticated cryptographic primitives are far from a practical use, some of them are almost

ready to use in practice, as their standardization processes are almost complete.

1.1.1 The “Provable Security” Framework

The “provable security” framework is a nowadays standard approach for analyzing cryp-

tographic schemes. In this framework, we first describe a mathematical “model” for the

practical use of the cryptographic primitive to be analyzed, and after that we provide a math-
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ematical prove that any attempt to attack which can be mounted under the model will fail.

This approach provides a useful tool to specify “what level of security is achieved” by the

cryptographic scheme and to validate the security claim of the scheme in a rigorous way.

1.1.2 The Problem and Our Approach

However, even the provable security framework has suffered from several weakness. The

most important drawback is that the security model for various cryptographic primitives

(sometimes they are called as “security notion”) have been defined in an ad hoc and primitive-

specific manner. This situation is not very satisfiable, as it tends to cause a bunch of extension

of primitives, their security notions, and ad hoc constructions of these primitives. The worse

thing is, it often occurs that once researcher defines a security notions for some primitive, they

tend to stick to constructing a scheme that satisfying this security notion and not to explore

further practical threats that are not included in the current security notion.

To relax the above drawbacks, this research takes the following approach.

• By clarifying the relationship among security notions of different cryptographic prim-

itives, we try to identify techniques in common among various primitives and tech-

niques specific to some primitives, even for quite complex primitives.

• we try to clarify the relative strength of various security notions (in particular, in the

form of any scheme that satisfies some security notion can be generically transformed

to another scheme that satisfies a different security notion).

This approach is not only interesting in a theoretical point of view, but we below argue that it

is also helpful for the above-mentioned problems.

1.1.3 The Benefit of Our Approach

In the following we describe the merit of our approach.

(I) Guidelines for Designing Cryptographic Schemes. Firstly, our approach can provide a

useful guideline for designing a concrete cryptographic scheme. In particular, following our
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approach of clarifying the relationship of security notions, when we need to design a new

cryptographic scheme satisfying new security notion (possibly stronger than known notions),

we can easily choose appropriate building blocks, can easily provide precise security proof.

In particular, let us assume that by following our approach, we observe that a scheme with

the new security notion can be generically transformed to another well-known primitive with

a well-known security notion. This can be interpreted as a strong evidence that the latter well-

known primitive is crucial to construct the former, less-understood primitive. Thus it further

suggests that to use the former primitive is a promising approach to construct the latter new

primitive.

In contrast to this, let us assume that any scheme(s) with well-known security notion(s) can

be generically transformed to a scheme with the new security notion. In this case, the obvi-

ous merit is of course that by following this generic transformation we can obtain a scheme

that satisfies the new security notion. However, often such a generic construction will not

necessarily achieve practical performance, and for these cases we will deviate (or optimize)

the generic construction to construct a more practical scheme. A demerit of this optimized

scheme is that we need to provide a security proof for the optimized scheme separately, since

the security proof for the generic construction no longer ensures the security of the optimized

scheme. Fortunately, for most cases, the security proofs for both the generic construction

and the optimized scheme share the basic principle. Then the security proof for the generic

construction can serve as a guideline for the security proof for the optimized scheme.

This approach is potentially useful when we need to move from current (number-theoretic)

cryptography from cryptography based on completely different hardness assumption due to,

for example, practical quantum computers. Even for such a case, since our approach identifies

the core technique for various cryptographic primitives, at first we will realize these core

techniques from the new hardness assumptions, and thus over these core techniques we can

re-construct various cryptographic primitives.

(II) More Comprehensive Detection of Overlooked Threat. The other merit of our ap-

proach is that it potentially enable us to identify overlooked practical threat more easily.

This is because investigating the relationship between among various primitives we may find
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closely related two primitives A and B in which the former primitive A has no well-known

security notion which corresponds to a well-known security notion for the latter primitive B.

In this case, we can define a new security notion for A to complement the correspondence

between two primitives. This new security notion might be artificial and of only theoretical

interest. However, if their counterparts well capture some practical threats, it is natural to

expect such new security notions to have practical importance. Moreover, it is plausible for

recent sophisticated cryptographic primitives with quite complex usage to having overlooked

practical threats.

1.2 Contributions

This section describes the contribution of this thesis.

1.2.1 On Public-key Encryption with Non-interactive Opening

The first part of the contribution is on the relationship among the primitive called public-

key encryption with non-interactive opening (PEKNO) [DHKT08] and other cryptographic

primitives.

1.2.1.1 Application to Group Signature

Group signature is a cryptographic primitive for anonymous authentication. It is well-known

that a group signature scheme can be constructed from a combination of a public-key

encryption scheme (satisfying a certain security notion) and other cryptographic primi-

tives [BMW03, BSZ05, AW04, OFHO09].

We will investigate this relationship between group signature and public-key encryption,

from the viewpoint (II) of the above. In particular, we observed that the security levels

achieved by PKENO (PKENO can be seen as an extension of public-key encryption with

a stronger security notion) will not correspond to any known security notions for group sig-

nature, and thus from the viewpoint (II) we will obtain a new security notion for group sig-

nature (We name this opening soundness). We stress that this security notion is not included
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in the Bellare-Shi-Zhang model, which it a currently standard security definition for group

signature.

Furthermore, we also argue that opening soundness captures several threat of practical

importance. For example, the lack of opening soundness will be crucial in an anonymous

auctions using group signature (it is a typical and well-known application of group signa-

ture [ACJT00]). We will discuss that if the group signature scheme does not have opening

soundness, it is possible for a malicious bidder who did not bid the highest price to claim

falsely in a publicly verifiable way that he bid the highest price.

In addition to this, from the viewpoint (I), we will investigate what is a crucial building

block for achieving opening soundness. Firstly, we will construct group signature schemes

with opening soundness, using techniques of PKENO. In contrast, we also shows that any

group signature scheme that satisfies opening soundness can be transformed to a PKENO

scheme. Following the viewpoint (I), these two result shows that PKENO is a crucial tool for

achieving opening soundness.

1.2.1.2 Applications to Threshold Encryption

Threshold (public-key) encryption is an extension of public-key encryption which divides a

secret keys of public-key encryption into several decryption servers to avoid a single point of

failure. As the name suggest, a ciphertext can be decrypted if decryption servers more than

some threshold cooperate. Robustness is a security notion for threshold encryption, which

intuitively requires that any deviation from the protocol of decryption server can be detected.

We will investigate the robustness notion from the viewpoint (I) of the above.

Galindo et al. showed that a robust threshold encryption scheme can be constructed from

any secure PKENO scheme [GLF+10]. Following the viewpoint (I), their result suggests

that using PKENO is crucial to for constructing TPKE. The other direction, however, is not

clearly and exhaustively stated in the literature.

We will investigate the latter direction, and will show that from any PKENO scheme we

can construct a robust threshold encryption scheme. From the viewpoint (I) this result can be

interpreted as the evidence for the equivalence between the existence of PKENO and that of

robust threshold encryption, and will provide a useful suggestion for constructing both robust
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threshold encryption and PKENO.

1.2.2 On Revocable Group Signature

Revocable group signature is an extension of group signatures with an additional functionality

for securely expires some secret keys for authentication. As mentioned above, a group sig-

nature scheme can be constructed using public-key encryption as a building block [BMW03,

BSZ05, AW04, OFHO09]. The viewpoint (II) suggests that this relationship between group

signature and public-key encryption can be extended to revocable group signature, and when

doing so we have some extended functionality for public-key encryption.

By promoting this idea, we will present a new extension of public-key encryption called

restrictive public-key encryption (restrictive PKE), which enable us to restrict plaintext that

is securely encrypted. Furthermore, an efficient construction of restrictive PKE from using

techniques of revocable group signature schemes.

– 8 –



Chapter 2

Preliminary

In this chapter we introduce notations and definitions used throughout this thesis.

2.1 Public-key Encryption and Its Extensions

2.1.1 Chosen-ciphertext Secure Public-key Encryption

A public-key encryption scheme (PKg,PEnc,PDec) consists of the following three proba-

bilistic polynomial-time algorithms:

PKg. The key-generation algorithm PKg takes as input the security parameter 1λ and out-

puts a pair (ek, dk) of the encryption key and the decryption key. The encryption key

ek implicitly specifies the message spaceMek, which determines the set of plaintexts

that can be encrypted under that encryption key.

PEnc. The encryption algorithm PEnc takes as input an encryption key ek and a plaintext

m ∈ Mek and outputs a ciphertext c.

PDec. The decryption algorithm PDec takes as input a decryption key dk and a ciphertext

c and outputs a plaintext m ∈ Mek or a special symbol ⊥ indicating the decryption

failure.

A public-key encryption scheme is required to satisfy the following correctness condition:

for all λ ∈ N, all (ek, dk) ← PKg(1λ), all m ∈ Mek, it holds that PDec(dk,PEnc(ek,m)) = m
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with probability one.

Chosen-ciphertext security [NY90, RS92] is a nowadays standard security notion for

public-key encryption schemes. This security notion intuitively requires that even when an

adversary knows the decryption result of some ciphertexts of her choice, it does not help her

for recovering the plaintext of any other ciphertext. The formal definition of this notion is

defined by the following experiment.

ExpCCA
(A1,A2)(λ):

b← {0, 1}
(ek, dk)← PKg(1λ)
(m0,m1, state)← A1

PDec(dk,·)(ek)
c∗ ← PEnc(ek,mb)
b′ ← A2

PDec(dk,·)(state, c∗)
return b = b′

In the experiment, the adversary (A1,A2) is required to output m0 and m1 which satisfy

|m0| = |m1|, andA2 is required not to submit c∗ to its oracle.

Definition 2.1. A public-key encryption scheme (PKg,PEnc,PDec) is chosen-ciphertext

secure if for all probabilistic polynomial-time adversary (A1,A2) the advantage

AdvCCA
(A1,A2)(λ) = |2 · Pr[ExpCCA

(A1,A2)(λ) = 1] − 1| is negligible in λ.

2.1.2 Tag-based Encryption

Tag-based encryption [MRY04] is an extension of public-key encryption. It allows a sender to

associate the ciphertext with an arbitrary string called the tag, and the decryption is performed

under some specific tag. The formal syntax is as follows.

TKg. The key-generation algorithm PKg takes as input the security parameter 1λ and out-

puts a pair (ek, dk) of the encryption key and the decryption key. The encryption key

ek implicitly specifies the message spaceMek, which determines the set of plaintexts

that can be encrypted under that encryption key.

TEnc. The encryption algorithm PEnc takes as input an encryption key ek, a tag t, a plain-
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text m ∈ Mek and outputs a ciphertext c associated with the tag t.

TDec. The decryption algorithm PDec takes as input a decryption key dk, a tag t, and a

ciphertext c and outputs a plaintext m ∈ Mek or a special symbol ⊥ indicating the

decryption failure.

We require a tag-based encryption scheme to satisfy the following correctness condi-

tion: for all λ ∈ N, all (ek, dk) ← TKg(1λ), all m ∈ Mek, and any tag t it holds that

TDec(dk, t,TEnc(ek, t,m)) = m with probability one.

In this thesis we will utilize the security notion for tag-based encryption schemes called

selective-tag weak chosen-ciphertext security [Kil06]. This notion is formally defined by the

following experiment.

ExpsTag-wCCA
(A1,A2,A3)(λ):

b← {0, 1}
(t∗, state1)← A1(1λ)
(ek, dk)← TKg(1λ)
(m0,m1, state2)← A2

TDec(dk,·,·)(state1, ek)
c∗ ← TEnc(ek, t∗,mb)
b′ ← A3

TDec(dk,·,·)(state2, c∗)
return b = b′

In the experiment, the adversary (A1,A2,A3) is required to output m0 and m1 which satisfy

|m0| = |m0|, and not to submit any decryption query of the form (t∗, c) with any c throughout

the experiment*1.

Definition 2.2. A tag-based encryption scheme (TKg,TEnc,TDec) is selective-tag weak

chosen-ciphertext secure if for all probabilistic polynomial-time adversary (A1,A2,A3) the

advantage AdvsTag-wCCA
(A1,A2,A3)(λ) = |2 · Pr[ExpsTag-wCCA

(A1,A2,A3)(k) = 1] − 1| is negligible in λ.

*1 The name “weak” comes from this restriction. In contrast to this, the (ordinary, non-weak) chosen-ciphertext

security for tag-based encryption only forbidsA3 to submit the query (t∗, c∗).
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2.1.3 Public-key Encryption with Non-interactive Opening

Public-key encryption with non-interactive opening is another extension of public-key en-

cryption [DHKT08]. This allows the receiver to demonstrate the decryption result of any

given ciphertext to any third-party, without making the decryption key itself public. Formally

this primitive is constituted by the following five algorithms.

NOKg. The key-generation algorithm NOKg takes as input the security parameter 1λ and

outputs a pair (ek, dk) of the encryption key and the decryption key. The encryption key

ek implicitly specifies the message spaceMek, which determines the set of plaintexts

that can be encrypted under that encryption key.

NOEnc. The encryption algorithm NOEnc takes as input an encryption key ek and a plain-

text m ∈ Mek and outputs a ciphertext c.

NODec. The decryption algorithm NODec takes as input a decryption key dk and a cipher-

text c and outputs a plaintext m ∈ Mek or a special symbol ⊥ indicating the decryption

failure.

NOProve. The proof algorithm NOProve takes as input a decryption key dk and a ciphertext

c and outputs a proof π.

NOVerify. The verification NOVerify takes as input an encryption key ek, a ciphertext c, a

decryption result m ∈ Mek∪{⊥}, and a proof π, and outputs a symbol⊤ or⊥ indicating

the validity or invalidity of the proof, respectively.

As correctness requirements, a PKENO scheme is required to satisfy the following condi-

tions:

1. for all λ ∈ N, any (ek, dk) ← NOKg(1λ), and any plaintext m ∈ Mek, it holds that

NODec(dk,NOEnc(ek,m)) = m with probability one, and

2. for all λ ∈ N, any (ek, dk)← NOKg(1λ), and any ciphertext c not necessarily generated

honestly by NOEnc, it holds that NOVerify(ek, c,NODec(dk, c),NOProve(dk, c)) = ⊤.
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Basically there are two different kinds of security requirements for PKENO schemes, the

first of which is usual plaintext secrecy, and the other is soundness of the proof. The former

is defined as an extension of chosen-ciphertext security of public-key encryption. The latter

has, actually, two variations of definitions, which is relatively weaker and stronger.

The secrecy requirement is defined as a natural extension of chosen-ciphertext security

(of public-key encryption), and is also called the chosen-ciphertext security. The formal

definition of the chosen-ciphertext security for PKENO schemes are defined by the following

experiment.

ExpPKENO-CCA
(A1,A2) (λ):

b← {0, 1}
(ek, dk)← NOKg(1λ)
(m0,m1, state)← A1

NODec(dk,·),NOProve(dk,·)(ek)
c∗ ← NOEnc(ek,mb)
b′ ← A2

PDec(dk,·),NOProve(dk,·)(state, c∗)
return b = b′

In the experiment, the adversary (A1,A2) is required to output m0 and m1 with |m0| = |m1|,

andA2 is required not to submit c∗ to its both oracles NODec(dk, ·) and NOProve(dk, ·).

Definition 2.3. A PKENO scheme (NOKg,NOEnc,NODec,NOProve,NOVerify) is chosen-

ciphertext secure if for all probabilistic polynomial-time adversary (A1,A2) the advantage

AdvPKENO-CCA
(A1,A2) (λ) = |2 · Pr[ExpPKENO-CCA

(A1,A2) (λ) = 1] − 1| is negligible in λ.

The first variant of the soundness notions is proof soundness. This security notion requires

even an malicious receiver, who possesses the decryption key, to be unable to produce a false

proof that claims that a ciphertext would decrypted to a different result than that is actually

is. The exact definition of the experiment is as follows.

ExpPKENO-Sound
(A1,A2) (λ):

(ek, dk)← NOKg(1λ)
(m, state)← A1(ek, dk)
c← NOEnc(ek,m)
(m′, π′)← A2(state, c)
return (NOVerify(ek, c,m′, π′) = ⊤) ∧ (m , m′)
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In the experiment, m′ is allowed to be ⊥. This is interpreted as it excludes the possibility

of producing two different proofs for single ciphertext in which one proof claims that the

ciphertext is decrypted successfully, and the other claims that it will be rejected as an invalid

ciphertext.

Definition 2.4. A PKENO scheme (NOKg,NOEnc,NODec,NOProve,NOVerify) satisfies

proof soundness if for all probabilistic polynomial-time adversary (A1,A2) the advantage

AdvPKENO-Sound
(A1,A2) (λ) = Pr[ExpPKENO-Sound

(A1,A2) = 1] is negligible in λ.

The last security notion is called the committing property, which is firstly defined by

Galindo et al. [GLF+10]. This security notion, intuitively, requires soundness of the proof

to hold even for maliciously generated ciphertexts. As opposed to this, the proof soundness

notion, only requires soundness to hold for honestly generated ciphertext. It comes from the

description of the experiment of proof soundness, in which the ciphertext c is generated by

the encryption algorithm NOEnc but not generated by the adversary. The experiment for the

committing property is as follows.

ExpPKENO-Commit
A (λ):

(ek, dk)← NOKg(1λ)
(c,m, π,m′, π′)← A(ek, dk)
return (NOVerify(ek, c,m, π) = ⊤) ∧ (NOVerify(ek, c,m′, π′) = ⊤) ∧ (m , m′)

In the experiment, the plaintexts m and m′ is required to be in Mek ∪ {⊥}. As in the proof

soundness, m and m′ are allowed to be ⊥.

Definition 2.5. A PKENO scheme (NOKg,NOEnc,NODec,NOProve,NOVerify)

is committing if for all probabilistic polynomial-time adversary A, the advantage

AdvPKENO-Commit
A (λ) = Pr[AdvPKENO-Commit

A (λ) = 1] is negligible in λ.

2.2 Digital Signatures

A signature scheme consists of the following three algorithms:

SgKg. The key-generation algorithm SgKg takes as input the security parameter 1λ and
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outputs a pair (vk, sk) of the verification key and the signing key.

SgSign. The signing algorithm SgSign takes as input a signing key sk and a message m and

outputs a signature σ.

SgVerify. The verification algorithm SgVerify takes as input a verification key vk, a message

m, and a signature σ and outputs a symbol ⊤ or ⊥ indicating validity or invalidity,

respectively, of the signature for the message.

As a correctness requirement, it is required that for all λ ∈ N, any message m it holds that

SgVerify(vk,m,SgSign(sk,m)) = ⊤ with probability one.

The standard security notion for signature scheme is existential unforgeability under

chosen-message attacks [GMR88]. This notion is defined via the following experiment.

ExpEUF-CMA
A (λ):

(vk, sk)← SgKg(1λ)
(m∗, σ∗)← ASgSign(sk,·)(vk)
return SgVerify(vk,m∗, σ∗) = ⊤ and m∗ is not queried byA

Definition 2.6. A signature scheme (SgKg,SgSign,SgVerify) is existentially unforgeable

under chosen-message attacks if for all probabilistic polynomial-time adversary A the ad-

vantage AdvEUF-CMA
A (λ) = Pr[ExpEUF-CMA

A (λ) = 1] is negligible in λ.

Another useful notion of security of signature scheme is the strong unforgeability. Th

strong unforgeability further requires that no adversary, given a correct signature–message

pair (m, σ), is able to alter the signature σ to σ′ which is verified as a valid signature for the

same message m. In this thesis we will utilize a strongly unforgeable signature scheme that

resists one-time chosen-message attacks. This requirement is formalized by the following

experiment.

ExpsEUF-OT-CMA
(A1,A2) (λ):

(vk, sk)← SgKg(1λ)
(m, state)← A1(vk)
σ← SgSign(sk,m)
(m∗, σ∗)← A2(σ, state)
return (SgVerify(vk,m∗, σ∗) = ⊤) ∧ ((m∗, σ∗) , (m, σ))
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Definition 2.7. A signature scheme (SgKg,SgSign,SgVerify) is strongly unforgeable under

one-time chosen-message attack if for all probabilistic polynomial-time adversary (A1,A2)

the advantage AdvsEUF-OT-CMA
(A1,A2) (λ) = Pr[ExpsEUF-OT-CMA

(A1,A2) (λ) = 1] is negligible in λ.

For simplicity, we sometimes call a signature scheme that is strongly unforgeable under one-

time chosen-message attack as a strongly-unforgeable one-time signature.

2.3 Group Signatures

2.3.1 Brief History of Models for GS Schemes

Since its introduction, GS has enjoyed a fair amount of interest, leading to a number of con-

crete schemes being proposed, but also resulting in many kinds of security requirements of

GS schemes being considered, e.g. unforgeability, exculpability, traceability, coalition re-

sistance, framing resistance, anonymity, and unlinkability [CvH91, ACJT00, AT99, CP95].

Therefore, there was a need to consolidate the security requirements of GS schemes, and

in 2003, Bellare, Micciancio, and Warinschi [BMW03] (BMW) showed that their formula-

tions of full-anonymity and full-traceability are strong enough to capture all the above se-

curity requirements. In addition, they gave a concrete GS scheme in their model based on

a simulation-sound non-interactive zero-knowledge proof system and an enhanced trapdoor

permutation. Although the BMW model has made a great contribution towards the modeling

of GS, it has the shortcoming of only considering the static group setting, i.e., the number

of members is decided in the initial setup phase, and new members cannot be added later.

In addition, since the group manager (GM) in the BMW model generates all secret signing

keys, the GM can construct a signature such that the opening procedure identifies an honest

user as the signer, even though this user never signed the given message, and there is further-

more no way for a user to verify whether the claimed result of an opening performed by the

GM is true or not. To address this, Bellare, Shi, and Zhang [BSZ05] proposed a more general

functionality of GS schemes which allows users to join dynamically and the correctness of an

opening result to be publicly verifiable, and defined a corresponding set of security require-
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ments (anonymity, traceability, and non-frameability) which are strong enough to capture all

existing security requirements.

2.3.2 Definitions of the BSZ Model

In the BSZ model, the GM is split into two separated entities: the issuing manager (IM) and

the opening manager (OM). The IM is provided with an issuer key ik, and is responsible

for running the interactive joining algorithm with a user who, at the end of the interaction,

will obtain a group signing key which can be used to sign messages on behalf of the group.

The OM is provided with an opening key ok, and is responsible for running the opening

algorithm which reveals which group member constructed a given signature. The opening

algorithm furthermore provides a proof which shows that the given group member was indeed

the signer, and which is verifiable through a new algorithm called Judge. This functionality

is important to handle a situation in which the OM might be corrupted or malicious. In the

following, we introduce the formal definition of a GS scheme in the BSZ model.

In this section, we briefly review the model and the security notions of group signatures,

presented by Bellare, Shi, and Zhang [BSZ05]. A group signature scheme consists of the

following seven algorithms:

GKg: This is the group key generation algorithm which, on input 1k, returns the keys

(gpk, ik, ok), where gpk is a group public key, ik is an issuing key, and ok is an opening

key.

UKg: This is the user key generation algorithm which, on input gpk, returns a personal

public and private key pair (upk, usk). Each user i will generate a personal key pair

(upki, uski) before engaging in the joining protocol which is described below. It is

assumed that anyone can obtain an authentic copy of the public key of any user. (This

might be implemented via a standard public key infrastructure.)

Join/Issue: This is the pair of interactive algorithms which implement the joining protocol

run by a user i and the issuer. The algorithm Join, which is run by the user, takes

(gpk, upk, usk) as input, whereas Issue, which is run by the issuer, takes (gpk, upk, ik)
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as input. Upon successful completion of the protocol, Join outputs a private signing

key gski for user i, and Issue outputs the registration information of user i which is

stored in reg[i], where reg is a registration table maintained by the issuer.

GSig: This is the group signing algorithm run by a user i, which, on input gpk, a signing

key gski, and a message m, returns a group signature Σ.

GVf: This is the group signature verification algorithm which, on input (gpk,m,Σ), returns

1 to indicate that Σ is a valid signature on m, or 0 otherwise.

Open: This is the opening algorithm run by the opener, which, on input (gpk, ok, reg,m,Σ),

returns (i, τ), where i specifies that the originator of the signature Σ is the user i, and τ

is a non-interactive proof of this. In case the algorithm fails to identify the originator

of the signature, it outputs i = 0. Note that Open requires access to the registration

table reg.

Judge: This is the judge algorithm which, on input (gpk, i, upki,m,Σ, τ), outputs either 1 or

0 indicating that the proof τ is accepted as valid or invalid, respectively.

The model in [BSZ05] introduces four requirements for a group signature scheme, namely,

correctness, anonymity, non-frameability, and traceability. The correctness notion requires

that honestly generated signatures will be accepted as valid by the verification algorithm, can

be opened by the opening algorithm, and that the judging algorithm will accept the resulting

proof as valid. The anonymity notion requires that no information about the identity of a

signer is leaked from a group signature, even if the signing keys of all group members and

the issuer are exposed. The non-frameability notion requires that no adversary corrupting

both the opener and the issuer, can produce a signature and an opening proof that identify

an uncorrupted group member as the signer, when the uncorrupted group member did not

produce the signature in question. The traceability notion requires that an adversary corrupt-

ing the opener and controlling a group of malicious group members, cannot produce a valid

signature that cannot be opened correctly.

The formal definitions of the four notions are given as follows. We first define several

oracles needed for security notions:
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AddU(i): The add-user oracle runs UKg(gpk) and Join/Issue protocol to add an honest user.

It returns the user public key upk of the user. The oracle add i to the set HU.

RReg(i): The read-registration-table oracle reveals the content of the registration table

reg[i].

SndToU(i,M): The send-to-user oracle at first sets up a user public/secret key pair by

(upki, uski)← UKg(gpk) and add i to the set HU. The oracle then allows the adversary

to engage a group-joining protocol of the user i on the behalf of the corrupted issuer.

The message M is sent to the user i who follows the protocol Join(gpk, upki, uski). The

response of the user is returned to the adversary.

WReg(i,M): The write-registration-table oracle updates reg[i] to M.

USK(i): The user-secret-keys oracle reveals the secret keys (uski, gski) of the user i to the

adversary.

CrptU(i,M): The corrupt-user oracle sets the user public key of the user i to M and add i to

the set CU.

Open(m,Σ): The open oracle returns the opening (i, τ)← Open(gpk, ok,m,Σ) of the signa-

ture Σ under the message m.

Chb(m, i0, i1): The challenge oracle returns a challenge Σ∗ ← GSig(gpk, gskib ,m). The

users i0 and i1 needs to be in the set HU.

GSig(i,m): The signing oracle returns a signature Σ ← GSig(gpk, gski,m) on the message

m of the user i, who needs to be in the set HU.

SndToI(i,M): The send-to-issuer oracle allows the adversary to engage a group-joining pro-

tocol on behalf of the corrupted user i. The message M is sent to the issuer who follows

the protocol Issue(gpk, upki, ik). The response of the issuer is returned to the adver-

sary. If the protocol is successfully completed, the output of Issue will be recorded at

reg[i]. The user i needs to be in the set CU.

The correctness and security requirements for a group signature scheme are as follows:
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Definition 2.8. A group signature scheme is said to have correctness if

Pr[(gpk, ik, ok)← GKg(1k); (i,m)← AAddU,RReg(gpk);

Σ← GSig(gpk, gski,m); ( j, τ)← Open(gpk, ok, reg,m,Σ)

: GVf(gpk,m,Σ) = 0 ∨ i , j ∨ Judge(gpk, i, upki,m,Σ, τ) = 0]

is negligible in k for any adversaryA.

Definition 2.9. A group signature scheme is said to have anonymity if

Pr[b← {0, 1}; (gpk, ik, ok)← GKg(1k);

b′ ← ASndToU,WReg,USK,CrptU,Open,Chb (gpk, ik) : b = b′] − 1
2

is negligible in k for any probabilistic polynomial-time adversaryA.

Definition 2.10. A group signature scheme is said to have non-frameability if

Pr[(gpk, ik, ok)← GKg(1k); (m,Σ, i, τ)← ASndToU,WReg,USK,CrptU,GSig(gpk, ok, ik)

: GVf(gpk,m,Σ) = 1 ∧ i ∈ HU ∧ Judge(gpk, i, upki,m,Σ, τ) = 1

∧ A queried neither USK(i) nor GSig(i,m)]

is negligible in k for any probabilistic polynomial-time adversaryA.

Definition 2.11. A group signature scheme is said to have traceability if

Pr[(gpk, ik, ok)← GKg(1k); (m,Σ)← ACrptU,SndToI,AddU,USK,RReg(gpk, ok);

(i, τ)← Open(gpk, ok, reg,m,Σ) : GVf(gpk,m,Σ) = 1

∧ (i = 0 ∨ Judge(gpk, i, upki,m,Σ, τ) = 0)]

is negligible in k for any probabilistic polynomial-time adversaryA.
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2.4 Threshold Encryption

Threshold encryption is an extension of public-key encryption [DF90]. This primitive enables

to store the decryption key in a distributed form among several decryption servers, in order for

protection against (possibly accidental) key exposure. The following syntax and definitions

are adopted from Shoup and Gennaro [SG02], Boneh, Boyen, and Halevi [BBH06], and

Galindo et al. [GLF+10]. The primitive consists of the following five algorithms.

ThKg. The key-generation algorithm ThKg takes as input the security parameter 1λ, the

number n of decryption servers, and the threshold k where 1 ≤ k ≤ n and outputs a

triple (pk, vk, (ski)i∈[n]) where pk is the public key, vk is the verification key, and ski is

the decryption key for the i-th decryption server. The public key ek implicitly specifies

the message spaceMpk, which determines the set of plaintexts that can be encrypted

under that public key.

ThEnc. The encryption algorithm ThEnc takes as input a public key pk and a plaintext

m ∈ Mpk and outputs a ciphertext C.

ThDec. The partial decryption algorithm ThDec takes as input the public key pk, the index

i of a server, the decryption key ski for the i-th server, and a ciphertext C and outputs

a decryption share µ = (i, µ̂).

ThVerify. The share verification algorithm ThVerify takes as input the public key pk, the

verification key vk, a ciphertext C, and a decryption share µ and outputs ⊤ or ⊥.

ThCombine. The combining algorithm ThCombine takes as input the public key pk, the

verification key vk, a ciphertext C, and k decryption shares µ1, . . ., µk and outputs a

plaintext m or ⊥.

A threshold encryption scheme is required to satisfy the following correctness conditions.

For all λ ∈ N, any integers n and k (1 ≤ k ≤ n), any (pk, vk, (ski)i∈[n]) ← ThKg(1λ, n, k), it

holds that

1. for any plaintext m ∈ Mpk and any k-subset {ι1, . . . , ιk} ⊂ [n], if we let
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C ← ThEnc(pk,m) and µi ← ThDec(pk, ιi, skιi ,C) for all i ∈ [k], it holds that

ThCombine(pk, vk,C, µ1, . . . , µk) = m, and

2. for any C and any ι ∈ [n], ThVerify(pk, vk,C,ThDec(pk, ι, skι,C)) outputs ⊤.

There are two basic security requirements for threshold encryption schemes: chosen-

ciphertext security and decryption consistency. Chosen-ciphertext security is a natural thresh-

old variant of the chosen-ciphertext security of public-key encryption. Decryption consist-

ency requires even malicious server cannot control the result of entire decryption by submit-

ting a maliciously generated decryption share. Formal definitions are as follows.

Chosen-ciphertext security of a threshold encryption scheme is defined by the following

experiment.

Exp(k, n)-CCA
(A1,A2,A3)(λ):

b← {0, 1}
(S , state1)← A1(1λ, n, k)
(pk, vk, (ski)i∈[n])← ThKg(1λ, n, k)
(m0,m1, state2)← A2

ThDec(pk,sk(·),·)(pk, vk, (ski)i∈S , state1)
C∗ ← ThEnc(pk,mb)
b′ ← A3

ThDec(pk,sk(·),·)(C∗, state2)
return b = b′

In the experiment, the adversary (A1,A2,A3) is required to output m0 and m1 with |m0| =
|m1|. Furthermore, S output byA1 is required to be cardinality k − 1, andA3 is required not

to submit any query of the form (i,C∗), regardless of i.

Definition 2.12. A threshold encryption scheme (ThKg,ThEnc,ThDec,ThVerify,

ThCombine) is chosen-ciphertext secure if for any integer k and n (0 ≤ k ≤ n) and

any probabilistic polynomial-time adversary (A1,A2,A3) the advantage Adv(k, n)
(A1,A2,A3)(λ) =

Pr[Exp(k, n)-CCA
(A1,A2,A3)(λ) = 1] is negligible in λ.

The formal definition of decryption consistency is as follows. This definition is actually

the “known secret key” variant, which is originally defined by Galindo et al. [GLF+10]. The

experiment for the formal definition is as follows.
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Exp(k, n)-Consistent
A (λ):

(pk, vk, (ski)[n])← ThKg(1λ, n, k)
(C, ((ιi, µ̂i))i∈[k], ((ι′i , µ̂

′
i))i∈[k])← A(pk, vk, (ski)[n])

return 1 if the following conditions are satisfied:
ι1, . . ., ιk are mutually distinct
ThVerify(pk, vk,C, (ιi, µ̂i)) = ⊤valid for all i ∈ [k]
ι′1, . . ., ι′k are mutually distinct
ThVerify(pk, vk,C, (ι′i , µ̂

′
i)) = ⊤valid for all i ∈ [k]

ThCombine(pk, vk,C, ((ι1, µ̂1))i∈[k]) , ThCombine(pk, vk,C, ((ι′1, µ̂
′
1))i∈[k])

return 0 otherwise

Definition 2.13. A threshold encryption scheme (ThKg,ThEnc,ThDec,ThVerify,

ThCombine) has decryption consistency with known secret keys if for any integer k

and n (1 ≤ k ≤ n) and any probabilistic polynomial-time adversary A the advantage

Adv(k, n)-Consistent
A (λ) = Pr[Exp(k, n)-Consistent(λ) = 1] is negligible in λ.

2.5 Target Collision-Resistant Hash Functions

A family of functions is called target collision-resistant if no algorithms, which firstly chooses

an input and then is given a description of a function in the family, can find another input that

produces the same output to the first input. The formal definition we need is as follows: A

function generator HashGen(1ℓ) takes as input a security parameter and outputs a function

H . The family of functions is said to be target collision-resistant when Pr[(x, s) ← A;H ←
HashGen(1ℓ); x′ ← A(H , s) : H(x) = H(x′) ∧ x , x′] is negligible for any polynomial-time

algorithmA.

2.6 Commitment

A commitment scheme consists of the three algorithms ComKg, Commit, and ComVerify.

The algorithm ComKg takes the security parameter 1λ and outputs a parameter ck. The

commitment algorithm takes as input the parameter ck and a string m, and outputs a pair

(c, r), where c is the commitment string for m and r is the corresponding decommitment
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string. The decommitment algorithm ComVerify takes as input the security parameter 1λ, a

commitment string c, a string m, and a decommitment string r and outputs 0 or 1, indicating

the decommitment is valid or invalid. It is required that for any ck output by ComKg(1λ), any

m ∈ {0, 1}∗, and any (c, r) output by Commit(ck,m), it holds that ComVerify(ck, c,m, r) = 1.

As the hiding property it is required that for any probabilistic polynomial-time adversary A

the probability |Pr[b ← {0, 1}; ck ← ComKg(1λ); b′ ← AOb (ck) : b = b′] − 1/2| is negligible

in λ, where the oracle Ob, when receives a pair (m0,m1) as input, runs Commit(ck,mb) to

obtain (c, r) and returns c. As the binding property it is required that for any probabilistic

polynomial-time adversaryA the probability Pr[ck ← ComKg(1λ); (c,m, r,m′, r′)← A(ck) :

m , m′ ∧ ComVerify(ck, c,m, r) = 1 ∧ ComVerify(ck, c,m′, r′) = 1] is negligible in λ.

2.7 Non-interactive Proofs

A non-interactive proof system for an NP-relation R ∈ {0, 1}∗ × {0, 1}∗ defining

L = {x|(x, w) ∈ R for some w} consists of three algorithms (K, P,V), which satisfy the

following correctness and soundness conditions: For correctness, it is required that for

any security parameter ℓ ∈ N, any common reference string crs ← K(1ℓ), and any pair

(x, w) ∈ R, it holds that V(1ℓ, crs, x, P(1ℓ, crs, x, w)) = ⊤; for soundness, it is required

that for any ℓ ∈ N and any probabilistic polynomial-time algorithm A, the probability

Pr[crs ← K(1ℓ); (x, π) ← A(1ℓ, crs) : V(1ℓ, crs, x, π) = ⊤ ∧ x < L] is negligible. We

will later use three types of proof systems, one which is witness indistinguishable [FS90],

one which is zero-knowledge [MDSMP91, FLS90] and one which is simulation-sound

zero-knowledge [Sah99].

2.8 Number-theoretic Assumptions

Let G be a probabilistic polynomial-time algorithm that on input 1λ generates gk =

(p,G1,G2,GT , g1, g2, e) where p is a prime, G1, G2, and GT are groups of order p,

e : G1 × G2 → GT is a non-degenerate bilinear map, and g1 and g2 are generators of G1 and

G2, respectively. We call such an algorithm by an asymmetric bilinear group generator. In
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the case that G1 = G2 and g1 = g2 we abuse the notation as gk = (p,G,GT , g, e) and call this

bilinear group generator as a symmetric bilinear group generator.

Occasionally we will employ groups without efficiently computable bilinear maps. For

such groups we further assumes that we can generate such a group with specified order.

Formally, we assume that we have a probabilistic polynomial-time algorithm Gddh which on

input a prime p outputs a pair (G, ĝ) of (a description of) a group with order p and a generator

of the group. We call such an algorithm by a group generator.

On these group generators, we state the following complexity-theoretic assumptions.

Definition 2.14. We say that the decision linear assumption on a symmetric bilinear group

generator G if for any probabilistic polynomial-time algorithm A, we have that |Pr[gk =

(p,G,GT , g, e) ← G(1λ); u, v ← G;α, β ← Zp : A(gk, u, v, g, uα, vβ, gα+β) = 1] − Pr[gk =

(p,G,GT , g, e) ← G(1λ); u, v ← G;α, β, γ ← Zp : A(gk, u, v, g, uα, vβ, gγ) = 1]| is negligible

in λ.

Definition 2.15. We say that the decision bilinear Diffie-Hellman assumption on a symmetric

bilinear group generatorG if for any probabilistic polynomial-time algorithmA, we have that

|Pr[gk = (p,G,GT , g, e) ← G(1λ);α, β, γ ← Zp : A(gk, gα, gβ, gγ, e(g, g)αβγ) = 1] − Pr[gk =

(p,G,GT , g, e)← G(1λ);α, β, γ, δ← Zp : A(gk, gα, gβ, gγ, e(g, g)δ) = 1]| is negligible in λ.

2.9 Useful Constructions of Cryptographic Primitives

2.9.1 Kiltz’s Tag-based Encryption Scheme

In this paper we use Kiltz’s construction of tag-based encryption [Kil06], which is explained

below. The scheme can be built on bilinear groups. Let gk = (p,G,GT , e, g) be a group

description. The key generation algorithm chooses random integers ϕ, η ← Zp and random

elements K, L ← G, and sets pk = (F,H,K, L) where F = gϕ and H = gη and dk = (ϕ, η).

A ciphertext of a plaintext m under a tag t is computed as y = (y1, y2, y3, y4, y5) = (Fr,

Hs,mgr+s, (gtK)r, (gtL)s). The decryption algorithm decrypts a ciphertext (y1, y2, y3, y4, y5)

under a tag t by checking e(F, y4) = e(y1, g
tK) and e(H, y5) = e(y2, g

tL) and outputs y3/y
ϕ
1y

η
2
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if the two equations hold, otherwise outputs ⊥. This encryption scheme is secure against

selective-tag weak chosen-ciphertext attacks if the decisional linear assumption holds [Kil06].

Another interesting property is that the scheme has public verifiability in the sense that it can

be efficiently checked whether a given five-tuple (y1, y2, y3, y4, y5) lies in the range of the

encryption algorithm under a given public key pk and a given tag t by checking the two

equations e(F, y4) = e(y1, g
tK) and e(H, y5) = e(y2, g

tL).

2.9.2 BB and BBS+ signatures

Here we describe the BB signature, the BBS+ signature, and their related definitions, which

are used as important components in the proposed constructions presented in the following

section.

Definition 2.16. Bilinear groups are a tuple (p,G,GT , e, g) such that G and GT are cyclic

groups of prime order p, g ∈ G is a generator of G, and e is an efficiently computable

bilinear map e : G × G → GT with the following properties: for all g, g′, h, h′ ∈ G,

e(gg′, h) = e(g, h)e(g′, h) and e(g, hh′) = e(g, h)e(g, h′), and e(g, g) is not the unit of GT .

The description of the BB signature [BB08] is as follows:

SgKgBB(1κ): Choose X ∈R Zp and g̃ ∈ G, computes Y = g̃X , and outputs a verification key

vk = (g̃,Y) ∈ G2 and a private signing key sigk = X.

SgSignBB(pk, sk,M): Output a signature F = g̃
1

X+M .

SgVerifyBB(pk, F): Check whether e(F, Y g̃M) ?
= e(g, g).

In our RPKE scheme, to prove M ∈ [1,N] we apply the BB signature whose signatures are

represented as SgSignBB(1), SgSignBB(2), . . ., SgSignBB(N). To prove the knowledge of a

BB signature Fk = SgSignBB(k) is as follows: Let g5 ∈ G (we use g5 for the same purpose in

our RPKE, and therefore for the sake of clarity we use it here). Choose β ∈ Zp and compute

C = Fkg
β
5. Then, C satisfies the relation: e(C,Y)/e(g̃, g) = e(g5,Y)βe(g5, g)θ/e(C, g)k where

θ = βk. Therefore, we prove the knowledge of DLs β and θ to prove the knowledge of

SgSignBB(k). This relation is appeared in the REnc algorithm of our RPKE scheme for the
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relations of C2, C3, C4, and C5. Note that, for C3 and C5, we use the notation ġ instead of g̃

in our RPKE scheme.

The BBS+ Signature [ASM06, BBS04, FI06] can be described as follows:

SgKgBBS+(1κ, L) Choose X ∈R Zp and g, g1, . . . , gL+1 ∈ G, where L is the length of mes-

sages. Computes Y = gX , and outputs a verification key vk = (g, g1, . . . , gL+1,Y) ∈
GL+3 and a private signing key sigk = X.

SgSignBBS+(pk, sk, (m1, . . . ,mL)) Choose y, z ∈R Zp, compute B = (gm1
1 · · · g

mL
L g

y
L+1g)

1
X+z ,

and output a signature (B, y, z).

SgVerifyBBS+(pk, (B, y, z)) Check whether e(B,Ygz) ?
= e(gm1

1 · · · g
mL
L g

y
L+1, g).

In our RPKE scheme, to restrictive message space, we apply BBS+ signature with L = 3

whose signatures are represented as SgSignBBS+(t,m0,m1), SgSignBBS+(t,m1,m2), . . .,

SgSignBBS+(t,mr,mr+1), where (m1,m2, . . . ,mr) are prohibited messages, (m0,mr+1) =

(0,N + 1), and t is the serial number. To prove the knowledge of a BBS+ signature

SgSignBBS+(t,m j,m j+1) := (B j, y j, z j) is as follows: Let g5 ∈ G. Choose α ∈ Zp and compute

C = B jg
α
5 . Then, C satisfies the relation:

e(g5,Y)αe(g5, g)ζe(g1, g)te(g2, g)m j e(g3, g)m j+1 e(g4, g)y j

e(C, g)z j
=

e(C, Y)
e(g, g)

where ζ = αz j. Therefore, we prove the knowledge of DLs α, ζ, m j, m j+1, y j, and z j to

prove the knowledge of SgSignBBS+(t,m j,m j+1). Note that proving of the knowledge of t is

not necessary, since t is just used as a serial number in our RPKE scheme. This relation is

appeared in the REnc algorithm of our RPKE scheme for the relation of C1.

2.9.3 Groth-Sahai Proofs

Groth and Sahai [GS08] introduced a framework for very efficient non-interactive proof for

the satisfiability of relations in bilinear groups, including pairing product equations. The

proof system consists of algorithms (KNI, P,V, X). The algorithm KNI(gk) takes a group pa-

rameter gk as input and outputs (crs, xk), where crs is a common reference string and xk is

a trapdoor extraction key for extracting a witness from a proof. The algorithm P(crs, x, w)
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outputs a proof π for an equation described by x whose witness is w. A proof π is verified by

running V(crs, x, π). The algorithm Xxk(x, π) extracts a witness from the proof π which passes

the verification algorithm.

There are two types of Groth-Sahai proof systems, (KNI, PNIWI,VNIWI, X) and

(KNI, PNIZK,VNIZK, X), which respectively provide witness-indistinguishability and zero-

knowledge. The two types of proof systems have identical common reference string

generation algorithms, and can share a single common reference string. Furthermore, there

are two types of reference strings: one yields perfect soundness, and the other yields perfect

witness indistinguishability or perfect zero-knowledge, depending on the type of proof

system. For further details see [GS08].

The proof system has two types of the common reference string, the soundness string and

the witness-indistinguishability string. For both types the string consists of three vectors f⃗1,

f⃗2, and f⃗3 of G3, in which f⃗1 = ( f1, 1, g), f⃗2 = (1, f2, g) with random f1, f2 ∈ G \ { 1 } for

both types. For the soundness string, the last vector f⃗3 is set to f⃗3 = f⃗1ζ1 f⃗2ζ2 , whereas for the

witness-indistinguishability string, it is set to f⃗3 = f⃗1ζ1 f⃗2ζ2 (1, 1, g)−1. On the soundness string,

the Groth-Sahai proof system provides perfect soundness of the proof system, while on the

witness-indistinguishability string the proof system can provide a zero-knowledge simulation

for certain types of a statement (that include the statement that we used in this paper).

Instead, the common reference string can be seen as eight group elements crs = (F,H,U,

V,W,U′,V ′,W ′). It should be noted that F and H essentially serve as a public key of a linear

encryption scheme [BBS04]. This property is exploited in the Groth group signature scheme

(and therefore also in our modification of that scheme). For further details see [GS08].

2.9.4 Σ-protocol [Dam, Cra96]

Let R ⊂ {0, 1}∗ × {0, 1}∗ be a binary relation. For (x, ω) ∈ R, we call ω is a witness of x.

We assume that the following 3-round form, where x is common input of a prover P and a

verifier V , and ω (such that (x, ω) ∈ R)) is private input to P. First, P sends a message a to V .

V sends a random bit string e′. Finally, P sends a reply z, and V decides whether the proof

is accepted or not. We say that a 3-round protocol ⟨P,V⟩ is a Σ-protocol for relation R if the
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following hold:

Completeness: If P and V follow the protocol, then V always accepts.

Special soundness: From any common input x and any pair of accepting conversations on

input x, (a, e′, z) and (a, e′′, z′′) where e′ , e′′, one can efficiently compute ω such that

(x, ω) ∈ R.

Special honest verifier zero-knowledge: There exists a polynomial-time simulator, which

on input x and a random challenge string e′, outputs an accepting conversation of

the form (a, e′, z), with the same probability distribution as conversations between the

honest P, V on input x.

In our RPKE construction, we convert the underlying Σ-protocol into NIZK proof of knowl-

edge by applying Fiat-Shamir heuristic [FS87]. Therefore, we require random oracles in our

construction. We denote such a converted proof as NIZK{ω : (x, ω) ∈ R} where x is an

instance of the language and ω is its witness.
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Part II

Applying Public-key Encryption

with Non-interactive Opening to

Secure Group Signature and

Threshold Encryption





Chapter 3

Opening Soundness of Dynamic

Group Signature Schemes

In this chapter, we propose a new security notion for the group signature primitive, which we

call opening soundness. As discussed below, this security notion captures practical threats

that will occur in typical use cases of group signature.

The contribution of this chapter falls into the category (II) of our contribution discussed in

Sect. 1.1.3. Namely, the opening soundness notion is obtained by translating the committing

notion for PKENO to a notion for group signature, through a generic construction of group

signature using public-key encryption (together with other primitives).

3.1 Introduction

Group signatures, introduced by Chaum and van Heyst [CvH91], allow a group member

to anonymously sign a message on behalf of the group. More specifically, anyone will be

able to verify that a signature originates from a group member, but the signature does not

reveal the identity of the signer, not even to other members of the group. Group membership

is controlled by an authority called the issuer, who handles enrollment of users through an

interactive join protocol. To prevent misuse of the signing capabilities obtained by group

members, another authority called the opener can revoke the anonymity of a signature and
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identify the signer of the message.

Following the introduction of group signatures, a series of different security requirements

were proposed for this primitive, each of which aims at addressing a specific security con-

cern by augmenting or refining previous notions, e.g. unforgeability, exculpability, trace-

ability, coalition resistance, framing resistance, anonymity and unlinkability. These security

notions were later consolidated in the security model proposed by Bellare, Micciancio, and

Warinschi [BMW03] who introduce two strong security requirements, full-anonymity and

full-traceability, which imply all of the previously proposed notions of security.

However, a drawback of the model by Bellare, Micciancio, and Warinschi [BMW03] is that

only static group signature schemes are considered i.e. the set of group members is fixed, and

the private key material of each group member is generated in the setup phase of the scheme.

Furthermore, the authority controlling the group (which acts as both the issuer and opener) is

considered to be fully trusted. To address this, Bellare, Shi, and Zhang [BSZ05] extended the

model of [BMW03] to capture dynamic group signature schemes in which a user can dynam-

ically join the group by engaging in a join protocol with the issuer. Furthermore, to reduce

trust in the opener, the model adopts the approach by Camenisch and Michels [CM98], and

requires that the opener produces a non-interactive and publicly verifiable proof that a given

signature was produced by a given signer. The model introduces three formal security no-

tions: anonymity, traceability, and non-frameability. The former two notions are adaptations

of the full-anonymity and full-traceability notions to the dynamic group signature setting.

The latter notion, non-frameability, requires that even if a malicious opener and issuer col-

lude, they cannot frame an honest user by producing a signature and corresponding opening

which identify the honest user as the signer, when the honest user did not produce the signa-

ture in question.

Limitations of Non-Frameability. While non-frameability is a strong security notion, it

only partly covers the security properties one would intuitively expect to gain when the

opener is required to produce a non-interactive and publicly verifiable proof of an opening.

More specifically, the non-frameability notion only ensures that the opener cannot frame an

uncorrupted user by constructing a proof that the user is the signer of a signature he did not
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produce. However, no guarantee is given regarding an opening involving a corrupted user.

This leaves open the possibility that an opening showing that a malicious or corrupted user is

the signer of a signature produced by an honest user, can be constructed. Furthermore, this

might not require the opener to be corrupted or malicious, in which case a malicious user

might be able to independently forge a proof showing that he is the signer of any signature of

his choice.

Depending on the concrete scenario in which a dynamic group signature scheme is used,

the ability to forge an opening proof might become a real security concern. We highlight

several potential threats that this ability gives rise to:

• Signer impersonation. The most obvious threat is signer impersonation. This is a

problem if a group signature scheme is used for an anonymous auction as suggested

in [ACJT00]. In this scenario, the bidders correspond to group members, and when

submitting a bid, a group member will attach a group signature on his bid. The opener

serves as the auctioneer, and will make the opening of the signature on the highest bid

public. This will enable anyone to verify who the winner of the auction is. However,

a malicious bidder may forge a proof of ownership of the signature on the highest bid

and may insist that he/she is the winner.

A similar situation occurs if a dynamic group signature scheme is used to implement

an authentication scheme with identity escrow [KP98]. In this case, a malicious group

member can claim to be the user who authenticated himself to a server (and provide a

proof thereof) when this is not the case.

• Proxy confession. The ability to open a group signature is introduced to keep the

group members accountable of the messages signed on behalf of the group. However,

assume that a signature on some message causes a dispute, but the real signer wants to

avoid being blamed for this. Then the real signer asks (or intimidates) another group

member to forge a proof of ownership of the signature and take the blame.

• Key exposure. Consider the case in which a group member’s private key is exposed

and falls into the hands of a malicious user. This will not only allow the malicious

user to construct future signatures on any message of this choice, but will furthermore
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allow him to claim (and prove) that the original user is the signer of any previously

generated signature.

Our Contribution. We highlight the above described potential weakness of the security

guarantee provided by the formal model of Bellare, Shi, and Zhang [BSZ05]. Furthermore,

we show that this is not only a property of the security model, but that the most efficient

dynamic group signature schemes enable a malicious group member to forge a proof of own-

ership of a signature.

To address this, we propose a new security notion for dynamic group signatures which we

denote opening soundness. We consider two variants of this notion, weak opening soundness

and (ordinary) opening soundness. The former is intended to address the above highlighted

security threats in an intuitive and straightforward manner, and will rule out the possibility

that a malicious group member can produce a proof of ownership of a signature generated by

an honest user. The latter considers a stronger adversary who has access to the private key

of the opener, and who is only required to produce two different openings of a maliciously

constructed signature. The notion of opening soundness implies the notion of weak opening

soundness.

As a positive result, we prove that the generic construction of a dynamic group signature

scheme by Bellare, Shi, and Zhang [BSZ05] achieves opening soundness. We furthermore

propose a modification of the scheme by Groth [Gro10] which allows us to prove opening

soundness of the modified scheme. In contrast, we show that the original scheme does not

provide weak opening soundness. In addition, we briefly discuss opening soundness of the

random oracle scheme [FI05, BCN+10]. A summary of our results regarding opening sound-

ness of the above mentioned schemes can be seen in Table 3.1.

Related Work. Since the first proposal of group signature by Chaum and van Heyst, many

efficient constructions have been proposed, most of which are relying on the random ora-

cle model [ACJT00, BBS04, CL04, KY05, FI05, DP06, BCN+10]. Many initial schemes

were based on the strong-RSA assumption. The first group signature schemes based on as-

sumptions of the discrete-logarithm type were achieved independently by Camenisch and
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Table. 3.1 Summary of the results. The mark “?” means it is an open question whether

the scheme has the given property or not. The rightmost column denotes the section in

which the security of the corresponding scheme is discussed.

Opening Soundness
(Ordinary) Weak

Our Variant of [Gro10] Yes Yes (§3.4.1)
Bellare-Shi-Zhang [BSZ05] Yes Yes (§3.3)
Furukawa-Imai [FI05] No ? (§3.3)
Bichsel et al. [BCN+10] No ? (§3.3)
Groth (full version) [Gro10] No No (§3.3)

Lysyanskaya [CL04], and Boneh, Boyen, and Shacham [BBS04]. The former scheme is

based on the LRSW assumption, while the latter is based on the q-strong Diffie-Hellman as-

sumption. Kiayias, Tsiounis, and Yung proposed the notion of traceable signature [KTY04],

which can be seen as an extension of group signature with additional anonymity-revocation

functionalities. One of these functionalities is that of allowing a group member to claim the

authorship of a signature, however, its security requirement does not care about the possi-

bility in which a malicious member falsely claims the authorship of an honestly generated

signature by another.

Constructions which are provably secure without random oracles were only recently

achieved. Besides the generic construction relying on non-interactive zero-knowledge

(NIZK) proofs for general NP languages, Groth constructed the first concrete group

signature scheme with constant signature size by exploiting the properties of bilinear

groups [Gro06], though signatures are extremely large. Boyen and Waters proposed group

signature schemes [BW06, BW07] whose signature sizes are quite compact. In particular

the latter scheme has signatures consisting only of six group elements of a composite

order group. The drawback of these schemes is that they only achieve weaker security

guarantees, that is, they only provide so called CPA-anonymity in the security model of

Bellare, Micciancio, and Warinschi [BMW03]. Groth proposed another group signature

scheme [Gro07, Gro10] which has constant signature size (roughly one or two kilobytes)
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and which is provably secure in the dynamic group signature model of Bellare, Shi, and

Zhang [BSZ05] without relying on random oracles.

3.2 Opening Soundness

In this section we give a formal definition of opening soundness. Specifically, we introduce

two variants of opening soundness, weaker and stronger definitions.

The weaker definition, named weak opening soundness, is intended to address the security

concerns discussed in the introduction in a straightforward manner, and will rule out the

possibility that a malicious user can claim ownership of a signature produced by an honest

user by forging an opening proof. The definition is as follows:

Definition 3.1. A group signature scheme is said to have weak opening soundness if

Pr[(gpk, ik, ok)← GKg(1k); (m, i, i∗, s)← AAddU(·)(gpk);

Σ← GSig(gpk, gski,m); τ∗ ← AAddU(·)(s,Σ, gski∗)

: i , i∗ ∧ i, i∗ ∈ HU ∧ Judge(gpk, i∗, upki∗ ,m,Σ, τ
∗) = 1]

is negligible for all polynomial time adversaries A, where the oracle AddU is defined as

follows:

AddU: On a query i ∈ N, the oracle runs (upki, uski)← UKg(gpk), then executes the proto-

col (gski, regi)← ⟨Join(gpk, upki, uski), Issue(gpk, ik)⟩, adds i to a setHU, and lastly

returns upki.

Note that the adversary is only allowed to receive the secret signing key of a single user

i∗. Hence, this definition will not rule out attacks involving a corrupted opener, and therefore

cannot contribute towards reducing trust in this entity.

In contrast, the stronger definition, named opening soundness, is intended to rule out the

possibility that an adversary can produce two different openings of a signature, even if he is

allowed to corrupt the opener and all the users in the system, and furthermore generate the

signature in question maliciously. The definition is as follows:
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Definition 3.2. A group signature scheme is said to have opening soundness if

Pr[(gpk, ik, ok)← GKg(1k); (m,Σ, i1, τ1, i2, τ2)← ACrptU,WReg(gpk, ok, ik)

: GVf(gpk,m,Σ) = 1 ∧ i1 , i2 ∧ Judge(gpk, i1, upki1 ,m,Σ, τ1) = 1

∧ Judge(gpk, i2, upki2 ,m,Σ, τ2) = 1]

is negligible for all polynomial time adversariesA, where the oracle CrptU(i,M) sets the user

public key of the user i to be M, and the oracle WReg(i,M) sets reg[i] to M.

While the weaker definition provides a minimum level of protection against the type of at-

tacks described in the introduction, we believe that, when applied to the scenarios mentioned

in the introduction, any dynamic group signature scheme should provide (ordinary) opening

soundness to prevent any type of attack which exploits ambiguity of openings, or involves

a corrupted opener. Furthermore, we will show that this level of security can be achieved

efficiently by showing that our modified version of the scheme by Groth provides opening

soundness (See Sect. 3.4 for details).

3.3 Opening Soundness of Existing Schemes

We will now take a closer look at some of the existing dynamic group signature schemes,

and highlight the level of opening soundness (ordinary, weak or none) achieved by these.

Note that since the Bellare-Shi-Zhang security model for dynamic group signatures does not

considers opening soundness, a security proof in this model will not allow us to make any

conclusions regarding the opening soundness of existing schemes.

In this section, we will focus on the standard model scheme by Groth described in [Gro10]

(note that the updated scheme in [Gro10] is slightly different from the scheme described in

[Gro07]) and the generic construction of a dynamic group signature scheme by Bellare, Shi,

and Zhang [BSZ05]. More specifically, we will show that the scheme by Groth does not have

weak opening soundness whereas the generic construction by Bellare, Shi and Zhang has

opening soundness. We further show that the random oracle model schemes by Furukawa

and Imai [FI05] and Bichsel et al. [BCN+10] do not have opening soundness. Interestingly,
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while these schemes do not provide opening soundness, there seems to be no obvious attack

against the weak opening soundness of these.

The Groth Scheme. Figure 3.1 shows a description of the Groth scheme. Below, we will

expand on the description given in the figure. However, before discussing the implementation

GKg(1k):
gk ← G(1k);H ← HashGen(1k)
( f , h, z)← G; T = e( f , z)
(crs, xk)← KNI(gk)
(F,H,U,V,W,U′,V′,W′)← crs
K, L← G; pk ← (F,H,K, L)
(gpk, ik, ok)
← ((gk,H , f , h,T, crs, pk), z, xk)

Join/Issue(User i: gpk; Issuer: gpk, ik):
Run the coin-flipping protocol in [Gro10]

The user obtains vi = g
xi and xi

and the issuer obtains vi

Issuer: r ← Zp

(ai, bi)← ( f −r , (vih)rz)
set reg[i]← vi

send (ai, bi) to the user
User: If e(ai, hvi)e( f , bi) = T ,

set gski ← (xi, ai, bi)

Open(gpk, ok, reg,m,Σ):
(b, v, σ)
← Xxk(crs, (gpk, a,H(vksots)), π)

Return (i, σ) if there is i so v = reg[i],
else return (0, σ)

GSig(gpk, gski,m):
(vksots, sksots)← KeyGensots(1

k)
(Repeat untilH(vksots) , −xi)

ρ← Zp; a← ai f −ρ; b← bi(hvi)ρ

σ← g1/(xi+H(vksots))

π← PNIWI(crs, (gpk, a,H(vksots)), (b, vi, σ))
y← Epk(H(vksots), σ)
ψ← PNIZK(crs, (gpk, y, π), (r, s, t))
σsots ← Signsksots (vksots,m, a, π, y, ψ)
Return Σ = (vksots, a, π, y, ψ, σsots)

GVf(gpk,m,Σ):
Return 1 if the following holds:

1 = Vervksots ((vksots,m, a, π, y, ψ), σsots),
1 = VNIWI(crs, (gpk, a,H(vksots)), π),
1 = VNIZK(crs, (gpk, π, y), ψ), and
1 = ValidCiphertext(pk,H(vksots), y),

else return 0

Judge(gpk, i, reg[i],m,Σ, σ):
Return 1 if

i , 0 ∧ e(σ, vig
H(vksots)) = e(g, g),

else return 0

Figure. 3.1 The Groth group signature scheme [Gro10].

details of the Groth scheme, we note that the scheme diverge slightly from the description of

a dynamic group signature scheme given in the Bellare-Shi-Zhang model [BSZ05]. Specif-

ically, in [BSZ05], a user is assumed to independently generate a public/private key pair

(upki, uski), and then afterwards obtain a group signing key gski by interacting with the is-

suer in the Join protocol. In the Groth scheme [Gro10], on the other hand, a user generates

a public/private key pair jointly with the issuer in the Join protocol. The public key for user
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i will be stored in reg[i] by the issuer, and the corresponding private key will be the group

signing key gski of user i. This intuitively corresponds to a scheme in which the user key gen-

eration algorithm UKg is merged with the Join protocol. Note that in this setup it is assumed

that user i and the issuer agree upon the content of reg[i]. To ensure this, it is suggested in

[Gro10] that the user signs the content of reg[i], using a separate signing key, and that an

entry in reg is only considered to be valid if the content is signed by the corresponding user.

To model the security of this type of scheme, a few minor changes are required to the

security model presented in Sect. 2.3. Specifically, the public key upki of user i is simply

defined as the content of reg[i], and we no longer consider the write-registration-table oracle

WReg in the security definitions, but only the corrupt oracle CrptU which allows the adver-

sary to set the public key upki (i.e., the content of reg[i]) to a given value, i.e., the WReg

oracle is simply removed from the security definitions. Furthermore, since the issuer is the

only party which can insert the public key of a user in reg, and the issuer will only do so

upon successful completion of the Join protocol, we no longer consider the corrupt oracle

CrptU in the traceability security definition, but only SndToI which allows the adversary to

interact with the (honest) issuer in the Join protocol, i.e., the CrptU oracle is removed from

the definition. Lastly, the oracles AddU and SendToU will no longer run the algorithm UKg

since this algorithm is not defined for the scheme. With these changes, we obtain a security

model equivalent to the model presented by Groth [Gro10].

We will now return to the implementation details of the Groth scheme. In the group key

generation algorithm GKg, the elements f , h,T correspond to a verification key of the Zhou-

Lin signature scheme [ZL06], whereas z corresponds to the signing key. Furthermore, pk is a

public key of Kiltz’s tag-based encryption scheme. Note that the first two elements of pk and

the common reference string crs for the non-interactive Groth-Sahai proofs are identical.

In the group signing algorithm GSig, a group member constructs two non-interactive

Groth-Sahai proofs. The first proof π, constructed via PNIWI, shows knowledge of a

signature σ, a verification key v and a part b of a (re-randomized) certificate (a, b)

which satisfy e(a, hv)e( f , b) = T ∧ e(σ, vgH(vksots)) = e(g, g). The first part a of the

certificate can be safely revealed as part of the group signature since it does not leak
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any information about the identity of the member due to the re-randomization. The

second proof ψ, constructed via PNIZK, demonstrates that the plaintext of y is same as

the witness σ used in π. More specifically, the tag-based encryption y has the form

(y1, y2, y3, y4, y5) = (Fry ,Hsy , gry+syσ, (gH(vksots)K)ry , (gH(vksots)L)sy), while the Groth-Sahai

proof π contains a commitment c = (c1, c2, c3) = (Frc U t,Hsc V t, grc+sc W tσ). The proof

demonstrates that there exists (r, s, t) such that (c1y
−1
1 , c2y

−1
2 , c3y

−1
3 ) = (FrU t,HsV t, gr+sW t).

When y and c encrypt the same message, there exists (r, s, t) that satisfies above equation,

but if y and c encrypt different messages, no such tuple (r, s, t) exists.

The verification algorithm GVf will, in addition to the verification of the two non-

interactive proofs and the one-time signature, verify that the ciphertext y is a valid ciphertext,

using the algorithm ValidCiphertext. This algorithm is easily implemented for the tag-based

encryption scheme by Kiltz (see Sect. 2.9.1 for details).

We will now show how a malicious group member can forge a opening proof which shows

that he is the signer of any signature Σ produced by user i. As described above, an opening

proof consists of a certified signature σ on vksots which is part of Σ. To verify the opening

proof, it is only verified that σ is a valid signature on vksots under the verification key vi of the

user in question.

Hence, a malicious user i′ who wants to impersonate the signer of the group signature Σ

on m, simply uses his own private signing key xi′ to construct a new signature σ′ on vksots,

and publicizes this as an opening proof together with his own identity i′. This proof will be

accepted by the Judge algorithm since σ′ is a valid signature in vksots.

We formally state this as a theorem:

Theorem 3.3. The Groth group signature scheme does not provide weak opening soundness.

Proof. We describe an algorithm for producing a forged proof: When the adversary receives

the security parameter 1ℓ and a group public key gpk, it firstly issues two queries AddU(1)

and AddU(2) in order to add two members 1 and 2 the group. The adversary then requests

the challenge by outputting (i, i∗,m) = (1, 2, 0ℓ), and receives a tuple (Σ, gsk2), where Σ =

(vksots, a, π, y, ψ, σsots) and gsk2 = (x2, a2, b2). The adversary forges a proof of ownership

by computing σ∗ = g1/(x2+H(vksots)) and outputs σ∗ (Notice that vksots is taken from the group
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signature Σ).

One can easily verify that Judge(gpk, reg, 2,m,Σ, σ∗) actually outputs 1, which means that

the algorithm successfully breaks the opening soundness. □

The Bellare-Shi-Zhang Scheme. Below, we will give an intuitive description of the generic

construction of a dynamic group signature scheme by Bellare, Shi, and Zhang [BSZ05].

In the Bellare-Shi-Zhang construction, each group member i has a key pair (vki, ski) of an

EUF-CMA secure signature scheme. The issuer also possesses his own key pair (ak, ck) of

the signature scheme. The issuer signs the message ⟨i, vki⟩ to obtain the signature certi, and

sends certi to the user i. A group signature on a message m by the user i is a pair (C, π): here

C is an encryption of ⟨i, vki, certi, s⟩, s is a signature on m under the key pair (vki, ski), and

the NIZK proof π proves that the plaintext encrypted in C is of the form ⟨i, vk, cert, s⟩ and

that cert and s are a valid certificate on vki and a valid signature on the message in question,

respectively. The opener attributes a group signature Σ = (C, π) to the user i by providing an

NIZK proof τ for another statement (i.e., different from that of π), which shows the existence

of a decryption key that corresponds to the opener’s public key and that under that key C is

decrypted to ⟨i, vki, certi, s⟩.
This simple scheme provides opening soundness. Intuitively, this is due to the correct-

ness of the public key encryption used to encrypt the signature and the certificate, and the

soundness of the NIZK proof system for τ. The correctness condition of public key encryp-

tion ensures that given a public key pk and a ciphertext C, the decryption of C is determined

uniquely. Now, let us assume that an adversary of the opening soundness game outputs a

tuple (m,Σ, i1, τ1, i2, τ2) where Σ = (C, π) and wins the game. The proof τ1 proves that C

decrypts to ⟨i1, vk, cert, s⟩ for some vk, cert, and s, whereas τ2 proves that C decrypts to a

different plaintext ⟨i2, vk′, cert′, s′⟩ for some vk′, cert′, and s′. However, this should not be

possible since the decryption of C under a fixed public key is unique. Hence, the adversary

breaks the soundness of the NIZK proof system.

We show the detailed description of the BSZ scheme in Fig. 3.2. The construction is a ge-

neric construction from a EUF-CMA secure signature scheme (SKg,Sign,Ver), a IND-CCA

secure public-key encryption scheme (EKg,Enc,Dec), a simulation-sound zero-knowledge
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non-interactive proof system (K1, P1,V1), and a zero-knowledge non-interactive proof system

(K2, P2,V2). The proof system (K1, P1,V1) is for the relation

((pk, ak,m,C), (i, vk′, cert, σ, r)) ∈ R1

⇐⇒ Verak(⟨i, vk′⟩, cert) = 1 ∧ Vervk′(m, s) = 1 ∧ Encpk(⟨i, vk′, cert, s⟩; r) = C,

while the proof system (K2, P2,V2) is for the relation

((pk,C, i, vk, cert, σ), (dk,R)) ∈ R2

⇐⇒ EKg(1k; R) = (pk, dk) ∧ Dec(dk,C) = ⟨i, vk, cert, σ⟩.

The theorem on the opening soundness is stated bellow.

Theorem 3.4. The Bellare-Shi-Zhang construction (Fig. 3.2) provides opening soundness,

assuming that the non-interactive proof systems (P1,V1) and (P2,V2) provide soundness with

negligible soundness error.

Proof. Let (GKg,UKg, Join, Issue,GSig,GVf,Open, Judge) be the Bellare-Shi-Zhang con-

struction. Let us consider an adversary A that is run in the environment of the opening

soundness experiment, and let succ be the event thatA breaks the opening soundness of the

scheme.

We will show that the probability Pr[succ] is negligible. Toward this end we define

three events invalid, non-trace1, and non-trace2. The event invalid is that A outputs

(M,Σ, i, τ, i′, τ′) such that the group signature Σ = (c, π) contains a ciphertext c that has

no corresponding plaintext m and randomness r which satisfy c = Epk(m; r). The event

non-trace1 denotes that, for the ciphertext c output by A, there exists no decryption key dk

that satisfies pk = G(1k, dk) and Ddk(c) = ⟨i1, vk, cert, s⟩ for some vk, cert, and s, and finally

non-trace2 denotes the same event for i2.

– 44 –



GKg(1k):
crs1 ← K1(1ℓ); crs2 ← K2(1ℓ)
R← {0, 1}k; (pk, dk)← EKg(1k; R)
(ak, ck)← SKg(1k)
gpk := (1k, crs1, crs2, pk, ak)
ok := (dk,R); ik := ck
Return (gpk, ok, ik)

UKg(1k):
(upk, usk)← SKg(1k)
Return (upk, usk)

Join/Issue :
Join(gpk, upki, uski):

(vki, ski)← SKg(1k); si ← Signuski
(vki)

Send (vki, si) to the issuer
Issue(gpk, upki, ik):

If Verupki (vki, si) = 1 then
certi ← Signck(⟨i, vki⟩)
reg[i] := (vki, si),

Else certi := ε
Send certi to the user

User:
gski := (i, vki, ski, certi)

GSig(gpk, gski,m):
Parse gpk as (1k, crs1, crs2, pk, ak)
Parse gski as (i, vki, ski, certi)
σ← Signski

(m)
r ← {0, 1}k; C ← Encpk(⟨i, vki, certi, σ⟩; r)
π1 ← P1(1k , (pk, ak,m,C),

(i, vki, certi, σ, r), crs1)
Return Σ := (C, π);

GVf(gpk, reg,m,Σ):
Parse gpk as (1k, crs1, crs2, pk, ak)
Parse Σ as (C, π1)
Return V1(1k, (pk, ak,m,C), π1, crs1)

Open(gpk, ok, reg,m,Σ):
Parse gpk as (1k, crs1, crs2, pk, ak)
Parse ok as (dk,R)
Parse Σ as (C, π1)
M ← Decdk(C)
Parse M as ⟨i, vk, cert, σ⟩
If reg[i] , ε then

Parse reg[i] as (vki, si)
Else vki := ε; si := ε
π2 ← P2(1k, (pk,C, i, vk, cert, σ), (dk,R), crs2)
If V1(1k , (pk, ak,m,C), π1, crs1) = 0 then

Return (0, ε)
If vk , vki or reg[i] = ε then

Return (0, ε)
τ := (vki, si, i, vk, cert, σ, π2)
Return (i, τ)

Judge(gpk, reg, i, upki,m,Σ, τ):
Parse gpk as (1k, crs1, crs2, pk, ak)
Parse Σ as (C, π1)
If (i, τ) = ε then

Return V1(1k, (pk, ak,m,C), π1, crs1) = 0
Parse τ as (v̄k, s̄, i′, vk′, cert′, σ′, π2)
If V2(1k , (C, i′, vk′, cert′, σ′), π2, crs2) = 0 then

Return 0
If i = i′ and Verupki(v̄k, s̄) = 1

and p̄k = pk′ then
Return 1

Else Return 0

Figure. 3.2 The Bellare-Shi-Zhang group signature scheme [BSZ05].

By the union bound, we obtain an upper bound for Pr[succ] as

Pr[succ] ≤ Pr[succ ∧ ¬invalid ∧ ¬non-trace1 ∧ ¬non-trace2]

+ Pr[succ ∧ invalid] + Pr[succ ∧ non-trace1] + Pr[succ ∧ non-trace2].
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The last three terms Pr[succ∧invalid], Pr[succ∧non-trace1], and Pr[succ∧non-trace2] are

all negligible due to the soundness of the underlying zero-knowledge proof systems which are

assumed to have negligible soundness error i.e. if the event invalid occurs, it is straightforward

to construct an algorithm which breaks the soundness of (K1, P1,V1), and likewise, if either

of the events non-trace1, or non-trace2 occur, it is straightforward to construct algorithms

which break the soundness of (K2, P2,V2).

The remaining part is to show that Pr[succ ∧ ¬invalid ∧ ¬non-trace1 ∧ ¬non-trace2] is

negligible. This term is in fact exactly equal to zero, due to the correctness of the public key

encryption scheme used. The condition ¬invalid ∧ ¬non-trace1 ∧ ¬non-trace2 means that

there are two different decryption keys dk1 and dk2 that correspond to the same public key

pk (i.e., there are random tapes ρ1 and ρ2 such that (pk, dk1) = EKg(1k; ρ1) and (pk, dk2) =

EKg(1k; ρ2)) but which produce different decryption results for a single valid ciphertext c.

The correctness condition requires that if a ciphertext c is honestly generated under a public

key pk, two decryption keys which are different but correspond to the same public key pk,

produce the same decryption results. Since the above situation contradicts this requirement,

the probability Pr[succ ∧ ¬invalid ∧ ¬non-trace1 ∧ ¬non-trace2] is equal to zero. □

The Furukawa-Imai Scheme. The Furukawa-Imai group signature scheme [FI05] does not

have opening soundness, which we will show in the following.

The scheme makes use of a group G (with generator g) in which the decisional Diffie-

Hellman assumption holds, in addition to bilinear groups (G1,G2,GT ) with an asymmetric

bilinear map e : G1 × G2 → GT . In the scheme, each group member i has a public key

Qi = gxi and the corresponding secret key xi. The public key Qi is encrypted in a group

signature with (a kind of) ElGamal encryption. Let (R,V) = (Qig
r, S r) be the ciphertext that

appears in a group signature, where S = gs is the public key of the ElGamal encryption. The

opener possesses the decryption key s, and identifies the signer by decrypting the ciphertext.

An opening contains a proof of knowledge of w such that Qi = R/V1/w, where Qi is the public

key of the specified member (The opener uses s as the witness for the above equation).

If the adversary corrupts the opener and two different members i and j, the adversary can

construct two different openings of a single signature, each of which attributes the signature
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to user i and user j, respectively. The adversary proceeds as follows: At first the signature

is honestly generated by the user i. Let (R,V) = (gxi+r, S r) be the ciphertext contained in

this signature. The first opening is also honestly generated by the opener to attribute the

signature to i. The second proof is generated by computing a proof of knowledge w that

satisfies Q j = R/V1/w with the witness w = sr/(xi+ r− x j). This proof attributes the signature

to the user j. Note that the randomness r for the encryption is reused to forge the second

proof. This is the reason why the adversary needs to corrupt the user i, not only the user j

and the opener.

The Bichsel et al. Scheme. In the Bichsel et al. scheme [BCN+10], a group member re-

ceives a Camenisch-Lysyanskaya signature on a random message ξ from the issuer. To gen-

erate a group signature, the member rerandomizes this certificate and computes a “signature

of knowledge” of ξ on the message m in question. This rerandomized certificate on ξ and the

signature of knowledge of ξ on m constitute the group signature.

The issuer should not know the random message ξ, because otherwise non-frameability is

compromised. For this reason, in the group-joining protocol, ξ is jointly generated by the

user and the issuer as follows: The user i chooses a random exponent τi and sends r̃ = x̃τi

to the issuer, while the issuer also chooses a random κi and computes w̃ = r̃ · x̃κi = x̃τi+κi .

This τi + κi will be used as the random message ξ mentioned above. To establish a publicly

verifiable connection between this ξ and the user i, the user i generates an (ordinary) signature

on ki = e(g, r̃) with a key pair which is previously registered in a public key infrastructure.

To open a signature, the opener uses w̃ to identify the user which corresponds to the reran-

domized certificate in the group signature, which is a Camenisch-Lysyanskaya signature on

the user’s ξ. However, since w̃ makes the Camenisch-Lysyanskaya signature publicly verifi-

able, it cannot be used as an opening. Instead, the opener produces a non-interactive zero-

knowledge proof of w̃ and κi such that ki = e(g, w̃)/e(g, x̃)κi and provides the signature on ki.

To verify this opening, a third party simply verifies the non-interactive zero-knowledge proof

and the signature.

Unfortunately this scheme does not satisfy opening soundness. Assume a malicious signer

obtains a group signature by an honest user, and further obtains an honestly generated opening
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of the signature. The proof of ownership contains ki and a signature on this by the honest user.

The malicious signer replaces the signature on ki with his own signature on ki. This forged

opening passes the verification.

3.4 Achieving Opening Soundness

In this section we present a variant of the Groth scheme, which provides opening soundness

(besides anonymity, non-frameability, and traceability).

3.4.1 The Modified Groth Scheme

The High-Level Idea. Let us first consider a general approach for achieving opening sound-

ness.

The opener, who has the secret opening key, will always be able to determine the correct

opening of a group signature. To provide opening soundness, the opener needs to convince

others that a given opening is correct. The easiest way to do that is to make the opening

key public, but this will compromise the anonymity of the scheme. Instead, the opener can

provide an NIZK proof of the correctness of an opening, to convince any third party. This is,

in fact, the approach used in the Bellare-Shi-Zhang construction.

If the opening algorithm essentially corresponds to a “decryption” of a ciphertext contained

in the group signature (this is the case for many existing schemes), we might be able to take

a different and more efficient approach. In particular, if the encryption scheme provides

randomness recovering, the opener can simply release the randomness used for the ciphertext

in question instead of an expensive zero-knowledge proof. Any third party will then be able

to verify the correctness of an opening by re-encrypting the relevant information with the

randomness provided by the opener, and then confirm that the resulting ciphertext is the same

as the one contained in the signature.

In the Groth scheme, an opening essentially corresponds to the decryption of a linear en-

cryption scheme. While linear encryption is not randomness-recovering, the opener is able to

release related values which, together with the use of a bilinear map, will allow a third party
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to confirm that the decryption was done correctly. This property will allow us to add opening

soundness to the original scheme. More specifically, in our variant of the Groth scheme, the

opener, given a ciphertext (c1, c2, c3) = (Fr,Hs, vgr+s), reveals gr and gs as a part of an open-

ing. Using the properties of the bilinear map, these values can replace the exact randomness

r and s when checking the correspondence between a ciphertext and a decryption: If a third

party, given gr and gs, wants to check the correspondence between a ciphertext (c1, c2, c3) and

a decryption v, he simply checks whether the equations e(F, gr) = e(c1, g), (H, gs) = e(c2, g),

and v = c3/(grgs) hold. If this is the case, he accepts the decryption as valid.

The above described modification to the Groth scheme will ensure that a verifier running

the Judge algorithm is able to verify that the public user key vi, given as part of an opening, is

the same as the public user key used in the proof π which is contained in the group signature.

This will ensure that two different openings containing different public user keys cannot both

be accepted as valid for a single group signature. While this property is very close to opening

soundness, it will not address the possibility that two different user have the same public

key. To rule this out, we make the following additional change to the Groth scheme: we

let both the verification algorithm GVf and the judge algorithm Judge take the registration

table reg as input i.e. we assume that reg is made public (note that this is allowed in the

original scheme [Gro10]). With this change, the Judge algorithm can simply check whether

the public key, given as part of an opening, corresponds to the public key of more than one

user, and reject the opening if this is the case. However, to ensure that the scheme remains

traceable, the verification algorithm will have to implement a similar check. Hence, we will

simply reject any signature or opening in the case the registration table reg contains repeated

public keys. Note that to preserve correctness, this change also requires us to ensure that no

honest execution of the Join protocol generates repeated public keys.

We note that the used approach to the verification of a decryption result is essentially the

same as that used by Galindo et al. [GLF+10] in the context of public key encryption with

non-interactive opening (PKENO). Furthermore, we note that in [GLF+10], the application

of PKENO schemes to group signature is briefly discussed as a mechanism for simplifying

the construction of an opening. Here, we will show that this approach is able to ensure the
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opening soundness of group signature schemes.

Description of our variant. The Groth scheme can achieve opening soundness with the

small modification shown in Fig. 3.3.

Join/Issue(User i: gpk; Issuer: gpk, ik):
Run the coin-flipping protocol in [Gro10]

The user obtains vi = g
xi and xi

and the issuer obtains vi

(Repeat until vi , reg[ j] for all j)
Issuer: r ← Zp

(ai, bi)← ( f −r , (vih)rz)
set reg[i]← vi

send (ai, bi) to the user
User: If e(ai, hvi)e( f , bi) = T

set gski ← (xi, ai, bi)

GVf(gpk, reg,m,Σ):
Return 1 if the following holds:

1 = Vervksots ((vksots,m, a, π, y, ψ), σsots),
1 = VNIWI(crs, (gpk, a,H(vksots)), π),
1 = VNIZK(crs, (gpk, π, y), ψ),
1 = ValidCiphertext(pk,H(vksots), y),
and reg[i] , reg[ j] for all i , j

else return 0

Open(gpk, ok, reg,m,Σ):
If GVf(gpk, reg,m,Σ) = 0, return (0,⊥)
(b, v, σ)← Xxk(crs, (gpk, a,H(vksots)), π)
(dF , dH)← xk; (y1, . . . , y5)← y

τF := y1/dF
1 ; τH := y1/dH

2
Return (i, (σ, τF , τH))

if there is i so v = reg[i],
else (0,⊥)

Judge(gpk, i, reg,m,Σ, (σ, τF , τH)):
vi ← reg[i]
Return 1 if the following holds:

GVf(gpk, reg,m,Σ) = 1,
i , 0, e(σ, vig

H(vksots)) = e(g, g),
e(F, τF ) = e(y1, g), e(H, τH) = e(y2, g),
and στFτH = y3,

else return 0

Figure. 3.3 The proposed modification of the Groth group signature scheme. The algo-

rithms that do not appear in the figure are exactly the same as in Fig. 3.1.

Theorem 3.5. The modified Groth scheme shown in Fig. 3.3 provides opening soundness.

Proof. Let us consider the game in Definition 3.2, and let gpk be the group public key in

the game, where the key is parsed as (F,H, · · · ), and let (m,Σ, i, τ, i′, τ′) be the output of the

adversary. Furthermore, let Σ, τ, and τ′ be parsed as follows: Σ = (vksots, a, π, y, ψ, σsots) in

which y = (y1, y2, y3, y4, y5), τ = (σ, τF , τH) and τ′ = (σ′, τ′F , τ
′
H).

We hereafter show that given a fixed Σ, it must hold that i = i′: Given a fixed Σ (in particular

y1, y2, and y3), the verification equations

e(F, τF) ?
= e(y1, g) ∧ e(H, τH) ?

= e(y2, g) ∧ στFτH
?
= y3
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uniquely determine τF , τH , and σ. Since both τ = (σ, τF , τH) and τ′ = (σ′, τ′F , τ
′
H) are

accepted by Judge and hence must satisfy the verification equations, we must have that

(σ, τF , τH) = (σ′, τ′F , τ
′
H). Now, since σ = σ′ and the equation e(σ, vgH(vksots)) = e(g, g)

uniquely determines v given fixed σ and H(vksots), that vi and vi′ satisfy e(σ, vig
H(vksots)) =

e(g, g) and e(σ, vi′g
H(vksots)) = e(g, g) respectively, must imply that vi = vi′ . Hence, since

vi = reg[i] , reg[ j] = v j for all i , j, we conclude that i = i′. □

The changes shown in Fig. 3.3 yields a scheme which is secure in the Bellare-Shi-Zhang

model i.e. the anonymity, the non-frameability, and the traceability of the original Groth

scheme are maintained. This will be shown in the following.

Theorem 3.6. The modified Groth scheme provides anonymity if the decisional linear as-

sumption holds in G, the one-time signature scheme is strongly unforgeable, and the hash

function is target collision-resistant.

Proof. Let A be an adversary that have the advantage ε in the anonymity game. To bound

the probability ε we gradually modify the game played byA. In the following S i denotes the

event that the adversary A successfully guesses the bit b = b′ interacting with the environ-

ment of Game i.

Game 0. Game 0 is identical to the game in the definition of anonymity. In this game we

have that Pr[S 0] = 1/2 + ε.

Game 1. We modify the behavior of the Open oracle as follows: If the Open oracle receives

a valid signature which reuses the verification key vk∗sots from the challenge Σ∗, then

the game aborts. Due to the strong unforgeability of the one-time signature scheme

(KeyGensots,Signsots,Versots), this modification does not change the success probabil-

ity ofA with more than a negligible amount, that is, we have that |Pr[S 0] − Pr[S 1]| is

negligible.

Game 2. We further modify the Open oracle to abort when a queried signature contains a

one-time signature verification key vksots that, when applying the hash functionH , col-

lides with the challenge verification key vk∗sots i.e. H(vksots) = H(vk∗sots). This causes

at most a negligible change in the probability in whichA successfully guess the chal-
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lenge bit due to the collision resistant property ofH .

Game 3. We then modify how the Open oracle obtains a signer identity i: When the Open

oracle is required to open a group signature, it first extracts a witness (b, v, σ) from the

proof π using the extraction key xk. However, in Game 3, instead of then searching

for i such that reg[i] = v (which is done until Game 2), the Open oracle searches for i

such that

e(σ, vig
H(vksots)) = e(g, g)

that is, σ is a valid signature on vksots under vi. Note that the above verification equa-

tion uniquely defines vi given a signature σ and a message H(vksots). Furthermore,

since the perfect soundness of π guarantees that σ is a valid signature on H(vksots)

under the extracted v, the vi identified in the above procedure must be identical to v,

and hence, the user identity i returned by the oracle does not vary between Game 2

and Game 3.

Game 4. We now modify how the Open oracle obtains the signature σ: Specifically, in

Game 4, the Open oracle obtains σ by decrypting y with xk, instead of extracting σ

from the proof of knowledge π. Due to the perfect soundness of ψ, this modification

produces the same σ as in Game 3.

Game 5. Now we change how (σ, τF , τH) is computed. Instead of decrypting y with xk

(recall that xk consists of logg F and logg H), we proceed as follows: In the generation

of the public key of the tag-based encryption, K and L are constructed as K := Fκ

and L := Hλ. The Open oracle then uses κ and λ to compute (σ, τF , τH) as τF :=

(y4/y
κ
1)1/H(vksots), τH := (y5/y

λ
2)1/H(vksots), and σ := y3/τFτH . As shown in Lemma 3.7,

this will not change the behavior of the oracle.

Game 6. In this game we switch the common reference string from a string providing per-

fect soundness to a string providing perfect witness-indistinguishability and perfect

zero-knowledge, respectively, for the two types of proof systems used in the scheme.

Since to two types of reference strings are computationally indistinguishable under the

decisional linear assumption, the success probability of the adversary will not change

by more than a negligible amount. Note that this change is possible because the Open
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oracle no longer needs the extraction key xk. Furthermore, in this game, all proofs ψ

are simulated with the zero-knowledge trapdoor.

Game 7. Finally we change the component y3 in the challenge to a random element in G.

As shown in Lemma 3.8, this will not introduce more than a negligible change in the

success probability of the adversary assuming the decisional linear assumption holds.

In Game 7 we can conclude that Pr[S 7] = 1/2, because the view of the adversary is inde-

pendent from the challenge bit b. Specifically, the challenge (vk∗sots, a, π, y, ψ, σ
∗
sots) contains

no information on b. Indeed, vk∗sots is independently generated in the setup, a is distributed

uniformly due to rerandomization, the perfectly witness-indistinguishable proof π distributes

independently from the witness and hence the bit b, y is merely a random encryption, ψ does

not contain the information on b since it is computed from y and the zero-knowledge trapdoor,

and finally σ∗sots is a signature on ⟨vk∗sots,m, a, π, y, ψ⟩, which are all independent of b as seen

above. The oracles (Open, SndToU, WReg, USK and CrptU) also behave independently of

b.

Finally we prove that the changes in Game 5 and Game 7 will only introduce a negligibly

change in the success probability of the adversary.

Lemma 3.7. Pr[S 4] = Pr[S 5].

Proof (of Lemma 3.7). We will show that the response of the Open oracle does not change

between Game 4 and Game 5.

Consider a group signature Σ = (vksots, a, π, y, ψ, σsots) submitted to the Open oracle. If

the ciphertext y, which is a part of Σ, does not pass the validity check ValidCiphertext, the

oracles in both games simply outputs ⊥.

Hence, we consider the case in which the ciphertext y passes the validity check. In this case

we can assume that there exist r and s in Zp such that y1 = Fr, y2 = Hs, y4 = (gH(vksots)K)r, and

y5 = (gH(vksots)L)s. We now show that the three equations τF = g
r, τH = g

r and σ = y3/g
r+s

hold in both games, and hence, the openings (τF , τH , σ) returned by Open in Game 4 and

Game 5 are identical.

Consider the first two equations. In Game 4, τF and τH are computed as τF := y1/dF
1 and
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τH := y1/dH
2 . Since F = gdF and H = gdH , τF = y1/dF

1 = (Fr)1/dF = gr and τH = y1/dH
2 =

(Hs)1/dH = gs hold. In Game 5, τF and τH are computed as τF := (y4/y
κ
1)1/H(vksots) and

τH := (y5/y
λ
2)1/H(vksots), where K = Fκ and L = Hλ. Thus

τF =

(
y4

y1
κ

)1/H(vksots)

=

(
(gH(vksots)K)r

(Fr)κ

)1/H(vksots)

= gr

and

τH =

(
y5

y2
λ

)1/H(vksots)

=

(
(gH(vksots)L)s

(Hs)λ

)1/H(vksots)

= gs.

Lastly, consider the third equation σ = y3/g
r+s. Note that σ is computed as σ :=

y3/y
1/dF
1 ydH

3 in Game 4, whereas it is computed as σ := y3/(y4/y
κ
1)1/H(vksots)(y5/y

λ
2)1/H(vksots)

in Game 5. Since we have already established that y1/dF
1 = (y4/y

κ
1)1/H(vksots) = gr and

y1/dH
2 = (y5/y

λ
2)1/H(vksots) = gs, we can conclude that the two computations yield the same

value y3/g
r+s. □

Lemma 3.8. |Pr[S 6] − Pr[S 7]| is negligible if the decisional linear assumption holds.

Proof (of Lemma 3.8). To see this we construct a simulator that distinguishes a linear tuple

from a random tuple, given that |Pr[S 6]−Pr[S 7]| is non-negligible for someA. The simulator

receives the description of bilinear groups gk and a tuple (F,H, g, Fr,Hs,R) where R is gr+s

or a random group element, and simulates either Game 6 or Game 7, respectively.

Given gk and (F,H, g, Fr,Hs,R), the simulator constructs a witness-indistinguishable com-

mon reference string on the top of g, F, H together with a zero-knowledge trapdoor, which

can be done because the trapdoor consists of only the discrete logarithms of U′, V ′, W′

with respect to F, H, and g. Then the simulator sets up K, L as K := Fc1g−H(vk∗sots), L :=

Hc2g−H(vk∗sots) where c1, c2 are randomly chosen from Zp. The rest of the public verification

key gpk is honestly generated, and the adversaryA is run with input gpk and ik.

When the adversaryA issues an oracle query, the simulator responds as follows: User join-

ing queries, both corrupted and uncorrupted, is dealt with by simply following the real proto-

col. The challenge request (i0, i1,m) is handled by picking a random bit b, computing a and π

correctly from the signing key xib of user ib, computing a ciphertext y as (y1, y2, y3, y4, y5) :=
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(Fr,Hs,Rσ, (Fr)c1 , (Hs)c2 ), generating a simulated proof ψ from the zero-knowledge trap-

door, and generating a one-time signature σsots on (vk∗sots,m, a, π, y, ψ). When the simulator

receives an open query (vksots, a, π, y, ψ, σsots), the simulator first verifies the signature, and if

the signature does not pass the verification, it returns ⊥. In the case the signature is valid, the

simulator computes

τF := (yc1
1 /y4)1/(H(vk∗sots)−H(vksots)), τH := (yc2

2 /y5)1/(H(vk∗sots)−H(vksots)), σ := y3/τFτH ,

finds i for which σ is a valid signature on the message vksots under vi = reg[i], and outputs

(i, (σ, τF , τH)). If no such i is found, output (0,⊥).

Finally the adversary outputs a bit b′ and halts. The simulator outputs 1 if b = b′, and

outputs 0 if b , b′.

In the above simulation, if R in the tuple given to the simulator is equal to gr+s, the sim-

ulated oracle response is identical to that of Game 6. On the other hand, if R is randomly

chosen, the simulation is identical Game 7. Hence if |Pr[S 6] − Pr[S 7]| is non-negligible, the

simulator’s advantage in distinguishing linear tuples is also non-negligible. □

These two lemmas complete the proof of Theorem 3.6. □

Non-frameability and traceability can be proven more easily since these security notions

do not require simulation of the Open oracle. For non-frameability, once an opening of the

modified scheme that compromises the non-frameability notion is produced, one can obtain

an opening for the original scheme (by simply dropping the extra components of τF and

τH) which will compromise the non-frameability of the original scheme. The proof of the

following theorems are essentially identical to the original proofs given in [Gro10], and are

therefore not given here.

Theorem 3.9. The modified Groth scheme provides non-frameability assuming the q-SDH

assumption [BB08] holds, the one-time signature scheme is existentially unforgeable under a

weak chosen message attack, and that the hash function is collision resistant.

Theorem 3.10. The modified Groth scheme provides traceability assuming the q-U assump-

tion [Gro10] holds.
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3.5 Conclusion

We have identified an overlooked security concern for dynamic group signatures, namely,

the possibility that a false opening proof can be produced by a corrupt user. To address this

concern, we defined (two variants of) a new security notion denoted opening soundness, and

furthermore discussed the opening soundness of several existing schemes. As a result, we

have shown that the Bellare-Shi-Zhang construction [BSZ05] provides opening soundness

as it is, and that small modifications to the Groth scheme (of the full version) [Gro10] al-

low this scheme to provide opening soundness as well. We have also briefly discussed the

opening soundness of some of the random oracle schemes [FI05, BCN+10], but leave further

investigation of these schemes as future work.
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Chapter 4

On Necessity of Public-key

Encryption with Non-interactive

Opening for Group Signature

Schemes

In this chapter, we proposed a generic construction of public-key encryption with non-

interactive opening (PKENO) from any group signature scheme satisfying the opening

soundness notion.

This contribution is the type (I) of our contribution (Sect. 1.1.3). Namely, by showing

the generic construction, this contribution clarifies a necessity condition for constructing a

group signature scheme satisfying opening soundness. This contribution evidences that for

obtaining a group signature scheme with opening soundness it is necessary to use PKENO

as a building block or to use a complexity theoretic assumption strong enough to construct a

PKENO scheme.
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4.1 Introduction

4.1.1 Background

Group signatures, introduced by Chaum and Heyst [CvH91], are a popular type of anony-

mous signatures. In a group signature (GS) scheme, a group manager (GM) issues a group

signing key to each member in the group, and by using this key, a member can generate a

group signature on behalf of the group. This signature is similar to an ordinary digital signa-

ture in that it is publicly verifiable using the public key of the group manager, but a verifier

cannot identify the member within the group who constructed the signature. Hence, whereas

it can be verified that a signature originates from a group member, the actual signer will

remain anonymous. To prevent misuse, the GM is able to revoke this anonymity and iden-

tify the group member who constructed a given signature. Besides being interesting from a

theoretical point of view, GS schemes provides functionalities which are applicable in many

practical scenarios, which have led to a rigorous study of both the GS primitive and its appli-

cations in the literature. For example, in a biometric-based authentication scheme [BCPZ08],

a user can be anonymously authenticated by using a user’s biometric trait as a secret key of

a GS scheme. In an identity management scheme for outsourcing business [IMS+06], with

the help of GS scheme, the outsourcee does not have to manage the list of identities of users.

In an anonymous survey system [NS03], the dealer can collect statistical information without

revealing the identity of users by applying a GS scheme.

However, due to its sophisticated functionalities, designing practical GS schemes is gener-

ally not easy, and hence, only a limited number of such constructions are known [ACJT00,

BBS04, DP06, FI06, Gro07]. In principle, a GS scheme can be constructed from any en-

hanced trapdoor permutation [BMW03, BSZ05], but this fact does not immediately imply

that it is possible to construct a practical GS scheme from such a cryptographic primitive.

Similar gaps exist for ordinary digital signatures and pseudorandom generators, for which

there are well-known generic constructions based on any one-way function [Gol01, Gol04,

Rom90, BMG07]. However, these constructions are far from efficient, and stronger assump-
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tions are required to construct practical schemes. Hence, investigating the difficulty of de-

signing practical GS schemes goes beyond determining the theoretical minimal assumption

on which group signatures can be built.

The motivation of the present work is to clarify the relative strength of the GS primitive

by investigating the relationship of GS with another primitive of public-key encryption with

non-interactive opening (PKENO). Since PKENO is recognized to be a very powerful crypto-

graphic tool, a close relationship with these will highlight the difficulty of constructing group

signature schemes.

4.1.2 Our Contribution

In this paper, we analyze the difficulty of constructing group signatures by showing an impli-

cation result. More specifically, we show that PKENO [DHKT08, Gal09] can be constructed

from an arbitrary GS scheme which is secure in the dynamic group setting and provides

opening soundness [SSE+12a]. While opening soundness is not part of the security model

defined by Bellare et al. [BSZ05], it has recently been introduced in [SSE+12a] as an ar-

guably essential security requirement for group signatures when considering security against

a potentially malicious group manager(s), as done in [BSZ05]*1. Our result implies that this

type of GS is a very strong cryptographic primitive, since PKENO is already a stronger prim-

itive than standard public key encryption (PKE), which itself is recognized as a very powerful

cryptographic tool. Moreover, our transformation is relatively practical, as the resulting ci-

phertext consists of only a small number of group signatures, assuming the message space of

the PKENO scheme is restricted to short messages. This shows that constructing an efficient

*1 Intuitively, opening soundness guarantees that, for a given message/signature pair (m, σ), the group manager

cannot convince a verifier that σwas constructed by one signer while, at the same time, being able to convince

another verifier that σ was constructed by a different signer. We note that similar security requirements are

considered for other types of signature schemes providing signer anonymity (e.g. partial signatures [BD09]

and convertible undeniable signatures [PKO10]), and that the generic construction of a GS scheme presented

in [BSZ05] provides opening soundness. Note, however, that not all GS scheme which are secure in the model

of [BSZ05] provides this property e.g. [Gro07] does not. See Section 2.3.2 for a formal definition of opening

soundness.
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group signature (in terms of signature size) is as hard as constructing a PKENO scheme with

small ciphertext overhead and a message space consisting of short messages. Furthermore, in

our transformation, not all functionalities of a GS scheme are utilized to construct a PKENO

scheme. This provides further evidence that GS is stronger than PKENO (We stress, however,

that our result does not imply impossibility of designing practical GS schemes.)

From a technical point of view, we do not merely rewrite the functionality of a GS scheme

to that of a PKENO scheme, but develop a dedicated multiple encryption technique for our

conversion which simultaneously enhances efficiency and security. Specifically, in our ap-

proach, we obtain as an intermediate result a PKE scheme with single-bit plaintexts, and

need to extend the plaintext space of this scheme to support sufficiently large message. To

resolve this issue, we make use of our specific multiple encryption technique. We notice

that the existing multiple encryption techniques cannot be applied to our approach since,

for example, the Dodis-Katz multiple encryption technique [DK05] requires that the com-

ponent encryption scheme already has a sufficiently large plaintext space, and the approach

by Zhang-Hanaoka-Shikata-Imai [ZHSI04] requires random oracles which are known be to

problematic [CGH98]. Furthermore, the Myers-Shelat technique [Ms09] cannot be applied to

extend the plaintext space of our intermediate encryption scheme as the converted encryption

scheme by [Ms09] loses special properties of the intermediate scheme which are important

for constructing PKENO. However, our multiple encryption technique is based on the spe-

cific functionality of GS, and therefore, can only be applied in limited situations (like our

conversions). More specifically, our multiple encryption technique exploits that a collection

of group signatures can easily be bound to a tag by including the tag as part of the mes-

sage being signed by each signature. This property plays a crucial role in achieving a secure

encryption scheme with a larger message space while maintaining a reasonable level of effi-

ciency. However, while the property follows straightforwardly from the functionality of GS,

not many cryptographic primitives provide a similar property, which limits the applications

of our technique.
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4.1.3 Related Works

The relationship between GS and PKE has previously been studied in the literature. More

specifically, Abdalla and Warinschi [AW04] gave a generic construction of chosen-plaintext

(CPA) secure PKE (with multi-bit plaintext space) [AW04] from a GS scheme. This result

was extended to generic constructions of chosen-ciphertext (CCA) secure PKE from GS with

an appropriate level of security [CG05, OFHO09]. Our construction are obtained by extend-

ing these results and combining them with our multiple encryption technique to obtain the

functionality of PKENO.

The concept of PKENO was first proposed by Damgård, Hofheinz, Kiltz, and Thor-

bek [DHKT08]. This type of scheme allows a receiver of a ciphertext to prove that the

decryption result corresponds to a given message, without compromising his decryption key.

The functionality of a PKENO can, for example, be used to construct a secure authenticated

message transmission system with non-repudiation (introduced in [GLF+10]). If a standard

PKE is used, then there is no way to provide a non-repudiable proof of the origin of a

received message unless the receiver reveals his own decryption key. By replacing PKE with

PKENO, the receiver can provide such a proof.

Concrete PKENO constructions have also been proposed [DHKT08, Gal09, GLF+10,

LDLK10]. A generic construction of PKENO based on identity-based encryption (IBE) has

been proposed [DHKT08] by following the IBE-to-PKE transformation by Canetti, Halevi,

and Katz [CHK04]. Another generic construction proposed by Galindo et al. [GLF+10]

is based on (robust) threshold encryption scheme. However, unlike group signatures, the

building blocks for these constructions (identity-based encryption and threshold encryption,

respectively) are widely recognized as very powerful cryptographic primitives. Further-

more, these constructions will not allow us to draw any conclusion about the difficulty of

constructing efficient group signature schemes.
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4.2 Public Key Encryption with Non-interactive Opening

from Group Signatures

In this section, we propose a generic construction of a PKENO scheme based on a GS scheme

which is secure in the BSZ model and provides opening soundness.

4.2.1 Proposed GS-based PKENO

We will now present our GS-based PKENO construction. The basic idea behind our con-

struction is similar to that of Abdalla and Warinschi [AW04] and Ohtake et al. [OFHO09].

More specifically, we let a ciphertext consist of a collection of group signatures. Each group

signature will correspond to single bit of the plaintext and is constructed using one of two

signing keys, which will be part of the public key, depending on whether the plaintext bit

is 0 or 1. The receiver will then use the opening key to determine which signing key was

used to construct the signature and will thereby learn the corresponding bit of the plaintext.

Furthermore, due to the functionality of the group signature scheme, the receiver will also

obtain a publicly verifiable proof of this correspondence, which will be used to implement

the non-interactive opening property of the PKENO. To avoid malleability, the group signa-

tures in a ciphertext will all be signatures on a verification key vksots of a one-time signature

scheme, and the corresponding sksots will be used to construct a one-time signature which

binds the group signatures together. However, this approach requires a somewhat counter-

intuitive measure to ensure that the scheme provides the strong correctness requirement that

a receiver can provide a publicly verifiable proof of the decryption result of any ciphertext.

More specifically, if a ciphertext in the above construction outlined above contains a group

signature which verifies but cannot be traced to one of the two signer keys in the public key,

the ciphertext will be invalid, but the receiver will not obtain a publicly verifiable proof of

this fact. In this case, we let the receiver reveal his private key as a proof of the invalidity of

the ciphertext. Note, however, that if the underlying GS scheme satisfies traceability, such
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group signature will be computationally hard to construct, and this measure will not harm the

security of the scheme.*2 The message space of our PKENO construction is assumed to be

MPKENO = {0, 1}t. The construction is defined as follows:

NOKg(1λ): Given a security parameter 1λ (λ ∈ N), run (gpk, ik, ok) ← GKg(1λ). For

i = 1, 2, run (upki, uski) ← UKg(1λ), and the interactive algorithms Join(gpk, upki,

uski) and Issue(gpk, ik) to obtain gski and reg[i]. Output an encryption key pk =

(gpk, gsk1, gsk2, upk1, upk2) and a decryption key sk = (ok, reg).

NOEnc(pk,m): For a t-bit plaintext m, let mi ∈ {0, 1} be the i-th bit of m. Generate a key

pair (vksots, sksots) ← SgKgsots(1
λ). For all i ∈ [1, t], run σi ← GSig(gpk, gskmi+1,

vksots), compute σsots ← SgSignsksots
((σ1, . . . , σt)), and output C := (σsots, vksots,

(σ1, . . . , σt)). Note that σi is a GS of the signed message vksots under the signing

key gskmi+1.

NODec(pk, sk,C): Parse C = (σsots, vksots, (σ1, . . . , σt)). If SgVerifyvksots
(σsots, (σ1, . . . ,

σt)) , 1, then output ⊥. Otherwise, for all i ∈ [1, t], if there exists σi such that

0 ← GVf(gpk, vksots, σi), then output ⊥. Otherwise, run ( ji, τi) ← Open(gpk, ok,

vksots, σi, reg). If ji < {1, 2} or Judge(gpk,mi + 1, upkmi+1, vksots, σi, τi) = 0 for any

i ∈ [1, t], then output ⊥. Otherwise, set mi = ji − 1, and output m = m1∥ · · · ∥mt.

NOProve(pk, sk,C): Parse C as (σsots, vksots, (σ1, . . . , σt)). If SgVerifyvksots
(σsots, (σ1, . . . ,

σt)) , 1 or if GVf(gpk, vksots, σi) , 1 for any i ∈ [1, t], then output the proof π = ∅
indicating an invalid ciphertext. Otherwise, run ( ji, τi) ← Open(gpk, ok, vksots, σi,

reg) for all i ∈ [1, t]. If ji < {1, 2} or Judge(gpk,mi + 1, upkmi+1, vksots, σi, τi) = 0 for

any i, the ciphertext is invalid, but this cannot be publicly verified. In this case, output

sk = (ok, reg) as a proof. Otherwise, output the proof π = (τ1, . . . , τt).

*2 One might think that it is sufficient to output a special symbol, e.g. ⊥, to indicate that (some of) the signatures

are untraceable. However, this is not the case. In a construction where this approach is taken, a malicious

receiver will be able to claim that a ciphertext, which is actually valid, is invalid by outputting ⊥. Since a

verifier cannot distinguish between traceable and untraceable signatures, he will not be able to detect that the

claim made by the receiver is incorrect, and if ⊥ is accepted as a valid proof, the verifier would be convinced

that the ciphertext in question is invalid when this might not the case.
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NOVerify(pk,C,m, π): Parse C as (σsots, vksots, (σ1, . . . , σt)) and consider the following

cases:

m = ⊥, π = ∅: If SgVerifyvksots
(σsots, (σ1, . . . , σt)) , 1 or if GVf(gpk, vksots, σi) , 1

for any i ∈ [1, t], then output 1. Otherwise, output 0.

m = ⊥, π = sk: Compute ( ji, τi) ← Open(gpk, ok, vksots, σi, reg) for all i ∈ [1, t]. If

ji < {1, 2} or Judge(gpk, ji, upk ji , vksots, σi, τi) = 0 for any i, output 1. Otherwise,

output 0.

m = ⊥, π = (τ1, . . . , τt) or m , ⊥, π , (τ1, . . . , τt): Output 0.

m , ⊥, π = (τ1, . . . , τt): Parse m→ m1∥ · · · ∥mt. If Judge(gpk,mi + 1, upkmi+1, vksots,

σi, τi) = 1 for all i ∈ [1, t], output 1. Otherwise, output 0.

Note that in the above construction, the dynamic aspects of the group signature scheme is

actually not required since a user will run GKg, UKg, and the (interactive) Join, Issue proto-

col by himself as part of the NOKg algorithm. However, the functionality provided by Open

and Judge, which is normally not defined for a static group signature scheme [BMW03], is

crucial for the construction.

4.2.2 Security Analysis

In the following, we prove that our GS-based PKENO construction satisfies the functionality

and security requirements outlined in above. The correctness of our PKENO construction

easily follows from the correctness of the underlying group signature scheme, so we leave

out the details of this observation.

Theorem 4.1. Our GS-based PKENO scheme satisfies correctness.

Proof. This can be seen by considering the output produced by NODec and NOProve when

given a ciphertext with different properties, and how NOVerify will respond to this.

Firstly, consider the case in which the ciphertext C = (σsots, vksots, (σ1, . . . , σt)) has the

property that

SgVerifyvksots
(σsots, (σ1, . . . , σt)) , 1
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or

GVf(gpk, vksots, σi) , 1

for at least one i ∈ [1, t]. In this case, C corresponds to an invalid ciphertext (which can

be publicly verified), NODec will output m = ⊥, NOProve will output π = ∅, and hence

NOVerify(pk,C,m, π) will output 1. In the following cases, we assume SgVerifyvksots
(σsots,

(σ1, . . . , σt)) = 1 and GVf(gpk, vksots, σi) = 1 for all i ∈ [1, t].

Secondly, consider the case in which C has the property that there exists an index i∗ ∈ [1, t]

for which ( ji∗ , τi∗ )← Open(gpk, ok, vksots, σi∗ , reg) and either

ji∗ < {1, 2}

or

Judge(gpk, ji∗ , upk ji∗ , vksots, σi∗ , τi∗) = 0

holds. This implies that C is an invalid ciphertext (although this cannot be publicly veri-

fied) and NODec will output ⊥. Furthermore, NOProve will output (sk, reg) as a proof, and

NOVerify will run Open and Judge to confirm the invalidity of C, and lastly return 1 since

m = ⊥.

Lastly, consider the case in which ( ji, τi)← Open(gpk, ok, vksots, σi, reg) and both

ji ∈ {1, 2}

and

Judge(gpk,mi∗ + 1, upkmi∗+1, vksots, σi∗ , τi∗) = 1

hold for all i ∈ [1, t]. Note that in this case, C is a valid ciphertext, NODec will always output

a message m , ⊥ and NOProve will always output a proof of the form π = (τ1, . . . , τt).

Furthermore, since Open and Judge are deterministic and are executed with the same input,

if we run NODec, NOProve, and NOVerify, the output of NOVerify will be 1.

Since a ciphertext C must fall in one of the above described cases, we conclude that our

proposed PKENO scheme must be correct. □
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Theorem 4.2. Our GS-Based PKENO scheme is chosen-ciphertext secure if the underlying

GS scheme satisfies anonymity and the one-time signature scheme is OT-sUF-CMA secure.

Proof. The roadmap of our proof is as follows. For a fixed pair of challenge messages, m0

and m1, we define the sequences of games [Sho04] G0,G1, . . . ,Gt′ , where t′ := |{i | m0,i ,

m1,i}| is the number of different bits between m0 and m1. Let (i1, i2, . . . , it′ ) be the set of the

positions such that m0,iℓ , m1,iℓ (ℓ ∈ [1, t′]). The first game, G0, is defined to be identical

to Expind-ccpa
PKENO,A(1λ) with an exception that the challenge ciphertext is computed using m0 as

a plaintext. In Gℓ, the iℓ-th bit of m0 is changed to m1,iℓ , and the challenge ciphertext is

computed using this plaintext. In other words, Gℓ−1 and Gℓ are identical except the iℓ-th bit

of the challenge message is different. The last game, Gt′ , corresponds to Expind-ccpa
PKENO,A(1λ) in

which the challenge ciphertext is computed using m1 as the plaintext. We claim that for every

1 ≤ ℓ ≤ t′, if there exists an adversaryA that can distinguish between playing game Gℓ−1 and

game Gℓ with non-negligible probability, then we can construct an algorithm that can break

anonymity of the underlying GS scheme. If this is the case, we can conclude that the output

of any chosen-ciphertext adversary A will only be different with negligible probability if A
is given an encryption of m1 instead of an encryption of m0 as a challenge ciphertext. This

implies that the GS scheme is chosen-ciphertext secure.

LetA be an chosen-ciphertext adversary playing either game Gℓ−1 or game Gℓ, and let ϵA

denote the difference between the probability thatA outputs 1 in game Gℓ−1 and in game Gℓ.

We assume that ϵA is non-negligible. Using A, we construct an algorithm B that breaks the

anonymity of the underlying GS scheme.

B interacts in the anonymity experiment for the GS scheme, and initially receives the

public group key gpk and the issuer key ik. First B queries the identities 1 and 2 to the

SndToU oracle, interacts with the oracle running Issue(gpk, ik), and also queries USK(1) and

USK(2) to obtain (upk1, usk1, gsk1) and (upk2, usk2, gsk2). In addition, B generates (vk∗sots,

sk∗sots)← SgKgsots(1
λ). B then runsA with input pk = (gpk, gsk1, gsk2, upk1, upk2).

When a decryption query C = (σsots, vksots, (σ1, . . . , σt)) is submitted by A, B answers as

follows: B checks whether all (one-time and group) signatures are valid or not. If there is an

invalid signature, then B returns ⊥. Otherwise, we consider the following two cases:
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vksots = vk∗sots: We call this case the forge event. B outputs a random bit, and aborts.

vksots , vk∗sots: For all i ∈ [1, t],B sends (vksots, σi) to the opening oracle, and obtains ( ji, τi).

If

ji < {1, 2}

or

Judge(gpk, ji, upk ji , vksots, σi, τi) = 0,

then B returns ⊥. Otherwise, B sets mi = ji − 1, and returns m := m1∥ · · · ∥mt.

When a proof query C = (σsots, vksots, (σ1, . . . , σt)) is submitted by A, B responds as in a

decryption query, except that when the indices and proofs ( ji, τi) are obtained, B checks that

ji ∈ {1, 2} and Judge(gpk, ji, upk ji , vksots, σi, τi) = 1 for all i ∈ [1, t]. If this is not the case, B
aborts, and we denote this event non-trace. Otherwise, B returns π = (τ1, . . . , τt).

In the challenge phase, A submits two challenge messages (m0,m1). B responds as fol-

lows:

Recall that, in game Gℓ, the bit at index iℓ in the plaintext used to construct the chal-

lenge ciphertext is changed from m0,iℓ to m1,iℓ . For all k ∈ [1, iℓ − 1], B computes σ∗k ←

GSig(gpk, gskm1,k+1, vk∗sots). For k = iℓ, B submits the identities m0,iℓ and m1,iℓ , and the

message vk∗sots as his challenge values, and obtains σ∗k ← GSig(gpk, gskmb,iℓ+1, vk∗sots) (note

that m0,iℓ , m1,iℓ and that the bit b is unknown to B). For all k ∈ [iℓ + 1, t], B computes

σ∗k ← GSig(gpk, gskm0,k+1, vk∗sots). Lastly, B computes σ∗sots ← SgSignsk∗sots
((σ∗1, . . . , σ

∗
t )), and

sends C∗ := (σ∗sots, vk∗sots, (σ
∗
1, . . . , σ

∗
t )) as the challenge ciphertext toA.

After the challenge phase, A can ask additional decryption and proof queries which B
responds to as above (note that since B aborts when vksots = vk∗sots, B will never submit the

illegal query (vk∗sots, σ
∗
iℓ

) to the opening oracle).

At some point,A will output a bit b′ which B forwards as his own guess in the anonymity

experiment of the underlying GS scheme. Note that if B’s challenge bit b is 0, then B will be

simulating game Gℓ−1 toA, whereas if b = 1, B will be simulating game Gℓ toA. Since the

simulation is perfect assuming B does not abort, B breaks the anonymity of the GS scheme
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with probability at least

Advanon
GS,B ≥ |ϵA − Pr[forge] − Pr[non-trace]|

Recall that ϵA is assumed to be non-negligible. To complete the proof, we show that Pr[forge]

and Pr[non-trace] are negligible assuming the used one-time signature scheme is OT-sUF-

CMA secure and the GS scheme satisfies traceability. This implies that B will break the

anonymity of the GS scheme with non-negligible probability.

We first show that Pr[forge] is negligible by constructing an algorithm B′ which interacts

with A and breaks the OT-sUF-CMA security of the one-time signature scheme if forge

occurs. B′ is constructed as follows.

Initially, B′ is given a verification key vk from the OT-sUF-CMA experiment,

which B′ will use as vk∗sots in the interaction with A. Firstly, B′ generates (pk, sk)

← NOKg(1λ) and runs A with input pk. Note that since A knows sk, all decryption and

proof queries can trivially be answered. If forge occurs before the challenge phase, A will

submit a decryption or proof query C = (σsots, vksots, (σ1, . . . , σt)) for which vksots = vk∗sots

and σsots is a valid signature on (σ1, . . . , σt) under vk∗sots. Hence, B′ outputs σsots and

m = (σ1, . . . , σt), and breaks the OT-sUF-CMA security of the one-time signature scheme.

Otherwise, A will submit two challenge messages, m0 and m1. B′ picks b ← {0, 1},

computes σ∗i ← GSig(gpk, gskmb,i+1, vk∗sots) for i ∈ [1, t], and submits (σ∗1, . . . , σ
∗
t ) to his

one-time signing oracle to obtain σ∗sots. Lastly, B′ forwards C∗ = (σ∗sots, vk∗sots, (σ
∗
1, . . . , σ

∗
t ))

to A. If, after the challenge phase, forge occurs, B′ breaks the OT-sUF-CMA security as

above. Note that the forgery output by B′ will be a valid forgery since C , C∗ implies that

(σsots, (σ1, . . . , σt)) , (σ∗sots, (σ
∗
1, . . . , σ

∗
t )).

Hence, B′ will break the OT-sUF-CMA security of the one-time signature scheme when-

ever forge occurs.

Lastly, we show that Pr[non-trace] is negligible by constructing an algorithm B′′ which

interacts with A and breaks the traceability of the GS scheme whenever non-trace occurs.

B′′ is constructed as follows.

Initially, B′′ is given (gpk, ok) as input and have access to the oracles O = {SndToU(·, ·),

AddU(·),RReg(·),USK(·),CrptU(·, ·)}. B makes queries AddU(1), AddU(2), RReg(1),
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RReg(2), USK(1), and USK(2) to its oracles to obtain (upk1, usk1, gsk1), (upk2, usk2, gsk2)

and reg. Then B sets pk ← (gpk, gsk1, gsk2, upk1, upk2), sk ← (ok, reg), and runs A with

input pk. Note that B′′ can trivially answer all decryption and proof queries since B′′

knows sk. If non-trace occurs, A submits a decryption or proof query C = (σsots, vksots,

(σ1, . . . , σt)) such that if we compute ( ji, τi)← Open(gpk, ok, vksots, σi, reg), then exists an i

such that either ji < {1, 2} or Judge(gpk,mi + 1, upkmi+1, vksots, σi, τi) = 0. This is exactly the

winning condition in the traceability experiment, and B′′ returns m = vk∗sots and σi to break

the traceability of the GS scheme.

This completes the proof. □

Theorem 4.3. Our GS-Based PKENO scheme satisfies proof soundness if the underlying

GS scheme satisfies opening soundness and correctness, and the one-time signature scheme

satisfies correctness.

Proof. LetA be an adversary who breaks proof soundness of our GS-based PKENO scheme.

Using A, we construct an algorithm B that breaks opening soundness of the underlying GS

scheme. B is constructed as follows.

Initially, B receives gpk, ok, and ik from the opening soundness experiment of the under-

lying GS scheme. B then makes (upk1, usk1, gsk1), (upk2, usk2, gsk2), and reg using ik, and

makes four queries CrptU(1, upk1), CrptU(2, upk2), WReg(1, reg[1]), and WReg(2, reg[2]).

Lastly, B sets pk = (gpk, gsk1, gsk2, upk1, upk2) and sk = (ok, reg), and runs A with input

(pk, sk).

At some point, A sends a challenge message m to B which parses m as m := m1∥ · · · ∥mt.

B then generates (vksots, sksots) ← SgKgsots(1
λ), and computes σi ← GSig(gpk,

gskmi+1, vksots) for all i ∈ [1, t]. Lastly, B computes σsots ←
SgSignsksots

((σ1, . . . , σt)), and sends the ciphertext C := (σsots, vksots, (σ1, . . . , σt)) to

A.

After receiving C, A will output a message m′ and a proof π′. The definition of proof

soundness requires that the output of a successful adversary satisfies NOVerify(pk,C,m′, π′) =

1 and m , m′. We first consider the case in which (m′, π′) = (⊥, ∅). Note that due to the

correctness of the one-time signature scheme and the group signature scheme, it must be the
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case that SgVerifysksots
(σsots, (σ1, . . . , σt)) = 1 and GVf(gpk, vksots, σi) = 1 for all i ∈ [1, t].

Hence, due to the definition of NOVerify, A will have advantage 0 in this case. Likewise,

in the case (m, π′) = (⊥, sk)*3, where sk = (ok, reg), we note that the correctness of the

group signature scheme implies that computing ( ji, τi)← Open(gpk, ok, vksots, σi, reg) yields

ji ∈ {1, 2} and Judge(gpk, ji, upk ji , vksots, σi, τi) = 1 for all i ∈ [1, t], and hence, A will have

advantage 0 due to the definition of NOVerify.

This leaves the case m′ , ⊥ and π′ , {∅, sk}. In this case, B parses m′ and π′ as m′ :=

m′1∥ · · · ∥m′t and π′ := (τ′1, . . . , τ
′
t). Recall that the definition of proof soundness requires

that the output of a successful adversary satisfies m , m′. Hence, there must exist at least

one index i ∈ [1, t] such that m′i , mi. For such an i, B computes ( j, τi) ← Open(gpk,

ok, vksots, σi). Due to the correctness of the GS scheme, it must hold that Judge(gpk,mi +

1, upkmi+1, vksots, σi, τi) = 1. Furthermore, since NOVerify(pk,C,m′, π′) = 1, it must also hold

that Judge(gpk,m′i + 1, upkm′i+1, vksots, σi, τ
′
i) = 1. Hence, by returning the message vksots, the

signature σi, the identities mi + 1 and m′i + 1, and the proofs τi and τ′i , B breaks the opening

soundness of the underlying GS scheme.

□

4.2.3 Concrete Implementations

A generic construction of a GS scheme secure in the BSZ model was introduced in [BSZ05]

based on an existential unforgeable digital signature, a CCA-secure PKE, and a simulation-

sound non-interactive zero-knowledge proof system. In addition, there are several GS

schemes secure in the BSZ model such as e.g., the Delerablée-Pointcheval scheme [DP06]

and the Groth schemes [Gro06, Gro07]. The Delerablée-Pointcheval scheme is efficient

but only secure in the random oracle model. Although the first scheme by Groth [Gro06]

is secure in the standard model, each group signature consists of a large number of group

elements. The second scheme by Groth [Gro07] provides a reasonable constant-size group

*3 Notice that in this case, outputting the secret key sk as a proof will play a crucial role in proving the soundness

of the proposed scheme. See the first paragraph of Section 4.2.1 for details.
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signature, and is secure in the standard model. As for the latter Groth scheme [Gro07],

although the original scheme does not provide opening soundness as it is, it will provide

opening soundness with a slight modification [GLF+10, SSE+12a]*4.

4.3 Conclusion

In this paper, we have shown that PKENO can be constructed from group signatures which

are secure in the BSZ model and provide opening soundness. These results imply that this

type of group signatures are a stronger primitive than PKENO which itself is already a very

strong primitive compared to ordinary CCA-secure public key encryption. Furthermore, as-

suming the used group signature scheme is efficient, the PKENO scheme derived from our

constructions are also relatively efficient. Hence, we can interpret our result as evidence of

the thesis that designing group signatures is significantly harder than designing many other

ordinary cryptographic primitives.

*4 Actually the Groth GS scheme (and its variant by Sakai et al. [SSE+12a]) adopt a different syntax from the

BSZ model, thus the security definitions under which the security of the schemes are proven also need to be

modified from the BSZ model (See [SSE+12b] for further discussion). Fortunately these security definitions

are sufficiently strong to instantiate our generic constructions with the Groth scheme.
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Chapter 5

Threshold Encryption with

Decryption Consistency from

Public-key Encryption with

Non-interactive Opening

In this chapter, we propose a generic construction of threshold public-key encryption with

decryption consistency from any PKENO scheme.

This contribution is understood as a contribution of type (I) in Sect. 1.1.3. Combining the

result by Galindo et al. [GLF+10], the contribution shows equivalence of between existence of

a PKENO scheme and a threshold encryption scheme. It shows that for designing a threshold

encryption scheme it is promising to design a PKENO scheme and then extend it to support

threshold decryption.
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5.1 Introduction

5.1.1 Dynamic threshold encryption.

Threshold public-key encryption (TPKE) [CG99, DF90, DSDFY94, SG02] is an extension

of ordinary public-key encryption which distributes the secret key among several (say, n) de-

cryption servers such that arbitrary k servers are needed to cooperate to successfully decrypt

a ciphertext. In this paper, we consider TPKE schemes to be non-interactive, which means

that each decryption server is able to produce its “decryption share” without interacting with

other parties, and any (honestly generated) k decryption shares from k different servers can

be combined successfully to produce the correct plaintext.

In addition to (a threshold variant of) the chosen-ciphertext security, TPKE schemes are

required to satisfy decryption consistency [BBH06, SG02]. The decryption consistency re-

quires that even if a sender and the decryption servers collude, they cannot create two differ-

ent sets of k decryption shares which respectively produce different plaintexts when honestly

combined. This property forces a sender to commit to the message being encrypted. More

specifically, decryption consistency prevents a malicious sender from creating “equivocal”

ciphertexts essentially corresponding to the encryption of two different messages, and then,

at a later stage, deciding what message the ciphertext should decrypt to by forcing a specific

set of servers to participate in the decryption process.

Many TPKE schemes have a limitation that restricts the set of authorized decryption

servers (i.e. the servers allowed to participate in the decryption process) and the threshold

to be fixed at the setup of the scheme. In addition, decryption servers cannot join the system

after the system is set up. This restricts the flexibility of TPKE schemes, and potentially

limits the applications of TPKE.

To address these restrictions, Delerablée and Pointcheval proposed dynamic TPKE [DP08].

A dynamic TPKE scheme allows a decryption server to join the system after the setup, and

also allows a sender to choose the threshold k and the authorized set of servers, among which

any k servers can successfully decrypt the ciphertext when they cooperate. Delerablée and
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Pointcheval [DP08] formalized syntax and a security notion of dynamic TPKE, and proposed

a concrete dynamic TPKE scheme from an assumption called the multi-sequence of exponent

Diffie-Hellman (MSE-DDH) assumption.

The Delerablée-Pointcheval scheme is currently the only known dynamic TPKE scheme,

and thus, until now, there have been no dynamic TPKE schemes that avoid q-type assump-

tions*1. Furthermore, their scheme depends on a random oracle to achieve decryption con-

sistency, and hence there is no known dynamic TPKE schemes in the standard model that

provides decryption consistency regardless of the underlying assumption.

5.1.1.1 Our contribution.

To overcome these drawbacks, we propose new dynamic TPKE schemes supporting decryp-

tion consistency without depending on any q-type assumptions or random oracles. More

precisely we propose two constructions of dynamic TPKE, both of which use public-key en-

cryption with non-interactive opening (PKENO) as a core component of the constructions.

PKENO [DHKT08] is an extension of the ordinary public-key encryption that allows the

receiver to prove the validity of the decryption result without revealing the decryption key.

The first scheme uses a PKENO scheme in a purely black-box manner, it is a generic,

or more precisely black-box, construction of a dynamic TPKE scheme from PKENO. The

construction combines the multiple encryption technique [DK05] and a technique of verifi-

able secret sharing [BKP11, BOGW88] to ensure the decryption consistency. However, this

generic construction archives relatively weaker notion of decryption consistency, compared

with several previous (non-dynamic) TPKE schemes (More concretely, the definition of de-

cryption consistency that the first scheme satisfies is slightly weaker than the definition that,

for example, the Boneh-Boyen-Halevi scheme [BBH06] satisfies).

The second proposed scheme overcomes this weakness of the first proposed scheme, by

deviating from being a generic construction. This scheme combines a specific PKENO

*1 A q-type assumption is an assumption for which the size of the instance is parameterized by a polynomial

q in the security parameter. Usually the polynomial q bounds the number of an adversary’s queries the

scheme can resists. Also note that q-type assumptions allow a more efficient generic attack on the underlying

problem [Che06, SHI+12] than static (non q-type) assumptions.
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construction and the Groth-Sahai proof [GS08], to achieve the stronger decryption consist-

ency than the first scheme, which is in precise as strong as that of the Boneh-Boyen-Halevi

scheme [BBH06]. Furthermore, this specific construction archives asymptotically shorter

ciphertext overhead than the first generic construction, as the first scheme has the cipher-

text overhead proportional to n2 in which n is the number decryption servers involved in the

ciphertext, while the second scheme has the overhead of proportional to n.

Our results highlight usefulness of PKENO to construct threshold PKE schemes, as both

of the above two result make use of that as a central building block. We highlight that the

usability of PKENO for constructing TPKE has been conjectured by Galindo et al. [GLF+10],

but this conjecture is not investigated in detail.

We revisit their conjecture, and show that there exists some subtlety in decryption consist-

ency. In particular, as Galindo et al. suggested, our construction uses multiple encryption

of PKENO. In addition, we show that for achieving decryption consistency we need another

technique to detect a maliciously generated ciphertext. In the first construction we use a tech-

nique of verifiable secret sharing for this purpose. However, it cannot achieve the highest

notion of decryption consistency, as mention above. If we admit deviating from a black-box

construction, we can obtain as strong decryption consistency as achieved by several previous

works, as shown in the second construction.

To further study the Galindo et al. conjecture, we lastly investigate the possibility of a

black-box construction of TPKE from PKENO keeping the higher notion of decryption con-

sistency. In fact, introducing another technique to ensure the validity of a ciphertext, we pro-

vide a affirmative answer by a black-box construction of TPKE scheme that provides strong

decryption consistency. Drawbacks of this scheme is that it is no longer dynamic TPKE,

and that the number of decryption servers the scheme can support is only logarithmic in the

security parameter, rather than an arbitrary polynomial.

5.1.1.2 Our technique.

Our approach is based on the Dodis-Katz multiple encryption technique and further enhanc-

ing the ability to detect malicious behavior of both a sender and decryption servers. This

is because, the Dodis-Katz multiple encryption scheme already can serve as dynamic TPKE
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except decryption consistency, as each decryption servers generate their own key pair by their

own to join the system, and to specify the authorized set dynamically a sender simply picks

the public keys of the servers that the sender wants to be authorized. Thus, to construct

a dynamic TPKE scheme with decryption consistency, we need to improve the Dodis-Katz

scheme to provide decryption consistency.

One of the possible (and simple) approach is to replace the underlying secret sharing

scheme with a more enhanced scheme with some kind of cheating detection. However, this

approach is not straightforward because most of the secret sharing scheme with cheating de-

tection assumes that the shares are distributed honestly, and in such a case it is able to detect

malicious share holders. In contrast, our setting of decryption consistency, even the shares

are generated maliciously, as the shares are generated by a potentially malicious sender.

Instead, we need another mechanism to ensure the consistency between the multiple shares.

Further difficulty is that these shares are encrypted as the Dodis-Katz scheme does. In this

case, any single decryption servers cannot verify the consistency of the shares, as the server

can only see a single share which is directed to that server. In particular, if we combine

Shamir’s k-out-of-n scheme with the Dodis-Katz multiple encryption, encrypted n shares

should consist of degree-(k − 1) curve, otherwise different k shares result in different decryp-

tion results, and thus the decryption consistency will be violated. For decryption consistency,

we need to extend the Dodis-Katz scheme to allow decryption servers to detect such a mali-

ciously generated ciphertext.

To this end, we take three different approaches for each proposed scheme.

The first scheme combines the Dodis-Katz scheme with a technique from verifiable secret

sharing [BOGW88, BKP11]. This is a classical technique to provide consistency between

shares of Shamir’s secret sharing scheme, and extensively studied mainly in the context of

multiparty computations. We bring this technique to the context of non-interactive TPKE to

construct a TPKE scheme with decryption consistency.

The second scheme is fairly simple. We use an non-interactive zero-knowledge proof to

ensure consistency between the encrypted shares. This simplicity will be obtained at the

cost of the non-black-box construction or quite restricted efficient instantiations. That is, the
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only known efficient instantiation of non-interactive zero-knowledge proof is restricted to the

bilinear groups (especially the Groth-Sahai proof [GS08]), or at least this construction is no

longer a black-box construction, as we need to employ the non-interactive zero-knowledge

proof for general NP-languages.

The third scheme takes slightly different approach. This scheme uses the technique of

multiple-assignment secret sharing [ISN93], which is originally developed for constructing

secret sharing schemes supporting general access structure. Interestingly, as shown in this

paper, this technique is also useful to ensure decryption consistency of a TPKE scheme. The

key technique is instantiating a multiple-assignment scheme with n-out-of-n secret sharing.

A useful property of n-out-of-n sharing is that any combination of n shares can be a set of

honestly generated shares, whereas in k-out-of-n sharing (k < n) there are invalid, and thus

potentially dangerous for decryption consistency, combinations of n shares. If we want to use

k-out-of-n sharing for constructing a TPKE scheme, we need to exclude such a potentially

dangerous combination of shares with some additional mechanism. In contrast, if we only

use an n-out-of-n sharing scheme, no such dangerous combination exists, thus we have no

need to manage such mechanism for detecting dangerous ciphertexts anymore.

5.1.1.3 Related work.

Our first proposed scheme includes a commitment in the ciphertext to achieve certain kind

of decryption consistency. Similar techniques of including a commitment in the ciphertext

are often proposed in the literature, for various purpose. Abdalla, Bellare, and Neven pro-

posed robustness notion of the ordinary public-key encryption [ABN10], which requires that

a single ciphertext should not be decrypted successfully decrypted by two or more decryption

keys, and used a similar technique to achieve this robustness. This technique is reminiscent

of the improvement of the Canetti-Halevi-Katz transformation by Boneh and Katz [BK05],

which uses an encapsulation scheme (a commitment scheme to a random string) instead of a

normal commitment scheme.

Shoup and Gennaro formalized decryption consistency and proposed two schemes that

achieve this notion [SG02]. These schemes are respectively based on the computational and

decision Diffie-Hellman assumption, together with using random oracles. Boneh, Boyen, and
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Halevi proposed a TPKE scheme with decryption consistency which is no longer relying on

random oracles [BBH06]. Their scheme is proved under the decision bilinear Diffie-Hellman

assumption.

Dodis and Katz proposed the multiple encryption technique that preserves chosen-

ciphertext security of the underlying encryption scheme, and applies this technique to

construct TPKE scheme [DK05]. They formalized several notions of message privacy named

MCPA, wMCCA, MCCA, and sMCCA. These four security notions are in fact concen-

trated on the secrecy of the plaintext, rather than resilience of decryption process against

maliciously behaved sender and receivers (decryption servers), and thus are independent

notions from decryption consistency. In the same paper the authors also discuss decryption

robustness. This notion is more related to decryption consistency, however, it ensures that

under the assumption that a ciphertext is a honestly generated encryption of M, how many

honestly derived decryption shares are sufficient to recover the M successfully, even when

that honest shares are mixed with maliciously generated shares. In contrast, decryption

consistency requires that even when a ciphertext and its decryption shares are generated

maliciously, the result of combining shares should be uniquely determined.

Emura, Hanaoka, and Sakai [EHS10] claimed that group signature can be transformed to

PKENO and TPKE. However, their first approach is not quite matured, and is revised by

the same authors. They finally showed that the underlying group signature scheme needs to

have an additional property called opening soundness [SSE+12a], and gave a rigorous proof

of the fact that any group signature scheme with opening soundness can be transformed to a

PKENO scheme [EHSS13].

5.2 New Definitions

In this section we introduce new definitions used in the rest of this chapter. The definitions

includes a dynamic extension of the threshold encryption, a weaker variant of decryption

consistency, and a labeled variant of the PKENO primitive.
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5.2.1 Threshold Public-Key Encryption

First we define an extension of the threshold encryption primitive that allows dynamic joining

of decryption servers. We then define an weaker variant of decryption consistency which

allows a decryption server to claim, in a publicly verifiable way, the ciphertext is partially

invalid so that it is impossible to provide a decryption share which can be securely combined.

Intuitively this weaker decryption consistency allows each decryption servers to be unable

to verify the entire ciphertext. In fact we give two different variant of decryption consistency,

namely the weak and strong decryption consistency. While the “strong” notion exactly fol-

lows the definition in [BBH06], the “weak” notion is introduced to capture the decryption

consistency achieved by one of our proposed scheme. More detailed discussion on this weak

notion is given in the paragraphs after Definition 5.1.

To define the relaxed version of decryption consistency, at first we allow the share verifi-

cation algorithm to have a ternary output (rather than the binary ⊤ and ⊥).

ThVerify. The share verification algorithm ThVerify takes as input the public key pk, the

verification key vk, a ciphertext C, and a decryption share µ. It outputs either ⊤valid,

⊤invalid, or ⊥.

The second correctness condition is also modified correspondingly: for all λ ∈ N, any

integers n and k (1 ≤ k ≤ n), any (pk, vk, (ski)i∈[n])← ThKg(1λ, n, k), it holds that

• for any C and any ι ∈ [n], ThVerify(pk, vk,C,ThDec(pk, ι, skι,C)) outputs either ⊤valid

or ⊤invalid.

The definition of chosen-ciphertext security is unchanged.

Finally, the definition of decryption consistency will be changed with replacing the winning

condition of the adversary as follows. After outputting a tuple (C, ((ιi, µ̂i))i∈[k], ((ι′i , µ̂
′
i))i∈[k]),

the adversary is declared to win the game if one of the following two conditions holds:

• The following three conditions holds (i) ι1, . . ., ιk are mutually distinct, and
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ThVerify(pk, vk,C, (ιi, µ̂i)) = ⊤valid; (ii) the same holds for ((ι′i , µ̂
′
i))i∈[k]; and

(iii) ThCombine(pk, vk,C, ((ιi, µ̂i))i∈[k]) , ThCombine(pk, vk,C, ((ι′i , µ̂
′
i))i∈[k]).

• There exists ι, µ̂, µ̂′ that satisfy (ι, µ̂), (ι, µ̂′) ∈ {(ι1, µ̂1), . . . , (ιk, µ̂k), (ι′1, µ̂
′
1), . . . , (ι′k, µ̂

′
k)},

ThVerify(pk, vk,C, (ι, µ̂)) = ⊤valid, and ThVerify(pk, vk,C, (ι, µ̂′)) = ⊤invalid.

We denote this modified experiment by Exp(k, n)-wConsistent(λ).

Definition 5.1. A threshold encryption scheme (ThKg,ThEnc,ThDec,ThVerify,

ThCombine) (with the extended syntax) has weak decryption consistency if for any

integer k and n (0 ≤ k ≤ n) and any probabilistic polynomial-time adversaryA the advantage

Adv(k, n)-wConsistent
A (λ) = Pr[Exp(k, n)-wConsistent(λ) = 1] is negligible in λ.

Note that in the above definition, the adversary is provided with all the secret keys of the

decryption servers, rather than those of only k servers. This stronger type of definition was

introduced by Galindo et al. [GLF+10], in order to prove a generic construction of PKENO

from TPKE. Our result can be seen as the converse of [GLF+10].

The ThVerify algorithm has three possible outputs ⊤valid, ⊤invalid, and ⊥ rather than just

binary values ⊤ and ⊥. In particular, if the ciphertext is not publicly verifiable, it might be

the case that some servers receive a valid share, while the other servers are unable to obtain

any valid shares. Furthermore, due to the lack of public verifiability of the ciphertext, a

server that receives a valid share cannot convince himself that the other servers also receive a

valid share, and a server that does not receive a valid share cannot convince himself that the

other servers also do not receive a valid share. This situation make it harder to agree on the

validity/invalidity of the entire ciphertext among the servers.

Our definition of the weak decryption consistency tries to relax this difficulty by allowing

each servers to claim the validity/invalidity of their received shares individually. That is, a

server that receives a valid share is required to produce a publicly verifiable proof for the

validity of the share, while a server that receives an invalid share is required to produce a

publicly verifiable proof for the invalidity of the share. The ThVerify algorithm verifies these

proofs and outputs ⊤valid if the server’s claim of validity is (considered to be) true, ⊤invalid if

the server’s claim of invalidity is true ⊥ if the server’s claim is simply false. The definition
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of the weak decryption consistency requires that if servers’ claim of validity are verified as

correct, any combination of such shares should be agree on the decryption result. However,

if a server claims that the received share is invalid (and the claim is verified by ThVerify), we

no longer require this server to produce any shares that can be securely combined.

We further introduce a stronger definition of decrytption consistency called strong decrytp-

tion consistency. It requires the ThVerify algorithm to output either ⊤valid or ⊥ but never

output ⊤invalid. The strong decrytption consistency is actually equivalent to the decrytption

consistency defined by Boneh, Boyen, and Halevi [BBH06] except for the “known secret

key” extension. The formal definition is as follows.

Definition 5.2. A TPKE scheme is said to have strong decryption consistency if in

addition to the weak decryption consistency it satisfies the following condition: for any

(pk, vk, (ski)1≤i≤n) ← ThKg(1λ, n, k), any ciphertext C ∈ {0, 1}∗, and any decryption shares µ,

ThVerify(pk, vk,C, (µi)1≤i≤k) outputs either ⊤valid or ⊥.

5.2.2 Dynamic Threshold Public-key Encryption

We then give a formal definition of the dynamic TPKE. The definition basically follows the

definition given by Delerablée and Pointcheval [DP08] again with the known-secret-keys

extension. However the description of the security game is modified to the public-key setting

rather than the identity-based setting.

A dynamic TPKE scheme consists of the following probabilistic polynomial-time algo-

rithms:

DSetup. The setup algorithm DSetup takes as input the security parameter 1λ and outputs

the public parameter pk and the master secret key mk. The public parameter pk implic-

itly specifies the message spaceMpk, which determines the set of plaintext that can be

encrypted under that public key.

DJoin. The join algorithm takes as input the public parameter pk and the master secret key

mk, and outputs a pair (upk, usk) of the public and secret keys for a new user. We

assume that the user public key upk is made publicly available.

– 82 –



DEnc. The encryption algorithm DEnc take as input the public parameter pk, n public keys

upk1, . . ., upkn, the threshold k, and the plaintext m to be encrypted and outputs a

ciphertext C.

DDec. The partial decryption algorithm DDec takes as input the public parameter pk, the

public and secret keys of some user, and a ciphertext C and outputs the decryption

share (upk, µ).

DVerify. The verification algorithm DVerify takes as input the public parameter pk, the pub-

lic key upk of some user, a ciphertext C, and its decryption share µ by (the owner of)

upk and outputs either ⊤valid, ⊤invalid, or ⊥.

DCombine. The combining algorithm DCombine takes as input the security parameter pk,

a ciphertext C and k decryption shares µ1, . . ., µk and outputs a plaintext m or ⊥.

We require dynamic TPKE schemes to satisfy the following correctness conditions: for any

integer n and k (n ≥ k), any honestly generated (pk,mk) ← DSetup(1λ), and any n honestly

generated users’ key pair (upk1, usk1) ← DJoin(pk,mk), . . ., (upkn, uskn) ← DJoin(pk,mk),

it is required that

• for any plaintext m, honestly generated ciphertext C ← DEnc(π, upk1, . . . , upkn, k,m),

and any size-k subset {ι1, . . . , ιk} ⊂ [n], if one honestly computes decryp-

tion shares as µi ← DDec(pk, upkιi , uskιi ,C) (1 ≤ i ≤ k), then we have that

DCombine(pk,C, µ1, . . . , µk) = m, and

• for an arbitrary ciphertext C and any 1 ≤ i ≤ n, if one honestly computes a decryption

share µ ← DDec(pk, upki, uski,C), then we have that DVerify(pk, upk,C, µ) is either

⊤valid or ⊤invalid.

The security requirements for dynamic TPKE are defined by extending those of (non-

dynamic) TPKE. We firstly describe the secrecy requirement by the following game between

a challenger and an adversary:
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Expdynamic-CCA
(A1,A2) (λ):

b← {0, 1}
(pk,mk)← DSetup(1λ)
(upki, uski)← DJoin(pk,mk) (i ∈ [N])
( ˜upki, ˜uski)← DJoin(pk,mk) (i ∈ [Ñ])
(m0,m1, S , state)← ADDec(pk,upk·,usk·,·)(pk, (upki)i∈[N], ( ˜upki, ˜uski)i∈[Ñ])

where S = {upk∗1, . . . , upk∗n} ⊂ {upk1, . . . , upkn, ˜upk1, . . . , ˜upk∗n}
and S include (at most) k − 1 corrupted keys from { ˜upk1, . . . , ˜upkÑ}

C∗ ← DEnc(pk, upk∗1, . . . , upk∗n, k,mb))
b′ ← ADDec(pk,upk·,usk·,·)

2 (C∗, state)
return (b = b′)

In the experiment, the adversary (A1,A2) is required to output m0 and m1 with |m0| = |m1|,

Furthermore,A2 not to submit any query (i,C∗) with arbitrary i.

Definition 5.3. A dynamic TPKE scheme (DSetup,DJoin,DEnc,DDec,DVerify,

DCombine) is chosen-ciphertext secure if for all probabilistic polynomial-time adversary

(A1,A2) and any N, Ñ ∈ N the advantage Advdynamic-CCA
(A1,A2) (λ) = |2 · Pr[Expdynamic-CCA

(A1,A2) (λ) =

1] − 1| is negligible in λ.

We then define the decrytption consistency requirement by the following game.

Expdynamic-Consistent
A (λ): (pk,mk)← DSetup(1λ)

( ˜upki, ˜uski)← DJoin(pk,mk) (i ∈ [Ñ])
(C, ((ι j, µ̂ j)) j∈[k], ((ι′j, µ̂

′
j)) j∈[k])← A(pk, ( ˜upk, ˜usk)i∈[Ñ])

return 1 if one of the following two conditions holds.

Here the winning condition is defined by the following two condition:

1. Both S and S ′ consists of k decryption shares from k distinct servers, in which we as-

sume the threshold associated with a ciphertext can be publicly determined and denote

this by k, S and S ′ are not equal to each other as sets, all shares µ ∈ S ∪ S ′ satisfy

DVerify(pk, upk,C, µ) = ⊤valid where upk is the user public key of the corresponding

decryption servers of µ, and DCombine(pk,C, S ) , DCombine(pk,C, S ′).

2. There exists µ, µ′ ∈ S ∪ S ′ which are both attributed to the same decryption server,

DVerify(pk, upk,C, µ) = ⊤valid, and DVerify(pk, upk,C, µ′) = ⊤invalid, in which upk is
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the user public key of the decryption server of µ and µ′.

The adversary wins if one of the above two conditions hold.

Definition 5.4. A dynamic TPKE scheme (DSetup,DJoin,DEnc,DDec,DVerify,

DCombine) is weak decryption consistency if for all probabilistic polynomial-time adversary

A and any Ñ ∈ N the advantage Advdynamic-Consistency
A (λ) = |2 · Pr[Expdynamic-Consistency

A (λ) =

1] − 1| is negligible in λ.

As in the non-dynamic version of decryption consistency, this definition is given in the

“known secret keys” manner. Also as in the previous, we can define the strong decryp-

tion consistency of a dynamic TPKE scheme. The exact definition of the strong decryption

consistency is given quite similarly to the non-dynamic version, hence we omit the formal

definition.

5.2.3 Public-Key Encryption with Non-Interactive Opening

As mentioned in the introduction, our generic construction is based on public-key encryption

with non-interactive opening. Actually, we require the underlying scheme to support labels

(or to be tag-based) [MRY04, Kil06], whose formal definition is as follows.

We define syntax and security of public-key encryption with non-interactive opening. A

public-key encryption scheme with non-interactive opening consists of the following five

algorithms.

NOKg. The key-generation algorithm NOKg takes as input a security parameter 1λ and out-

puts a pair (ek, dk) of the encryption key and the decryption key. The public parameter

pk implicitly specifies the message spaceMpk, which determines the set of plaintext

that can be encrypted under that public key.

NOEnc. The encryption algorithm NOEnc takes as input the encryption key ek, a label L,

and a plaintext m. It outputs a ciphertext c.

NODec. The decryption algorithm NODec takes as input the decryption key dk, a label L,

and a ciphertext c. It outputs a plaintext m or a special symbol ⊥.
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NOProve. The proof algorithm NOProve takes as input the decryption key dk, a label L,

and a ciphertext c. It outputs a proof π.

NOVerify. The verification algorithm NOVerify takes as input the encryption key ek, a label

L, a ciphertext c, a plaintext m, and a proof π, and outputs a bit 1 or 0, indicating the

proof is respectively valid or invalid.

As the correctness condition, the labeled PKENO scheme is required to satisfy the follow-

ing conditions.

• For any (ek, dk) ← NOKg(1λ), any plaintext m ∈ Mpk and any label L ∈ {0, 1}∗, it

holds that NODec(dk, L,NOEnc(pk, L,m)) = m.

• For any (ek, dk) ← NOKg(1λ), any ciphertext c ∈ {0, 1}∗, and any label L ∈ {0, 1}∗, it

holds that NOVerify(ek, L, c,NODec(dk, L, c),NOProve(dk, L, c)) = 1.

Notice that in the latter conditions the ciphertext c is not restricted to the legitimate output of

the encryption algorithm NOEnc(ek, L,m) with some L and m, and hence NODec(dk, L, c)

potentially would be ⊥.

We require the labeled PKENO scheme to be selective-label weak chosen-ciphertext secure

and strongly committing. Although the former requirement for PKENO schemes has not been

formally stated in the literature, it is a straightforward adoption of the similar requirement for

ordinary (tag-based) public-key encryption schemes formalized by Kiltz [Kil06]. The latter

requirement is originally formalized by Galindo et al. [GLF+10]. More precisely our defini-

tion is a slightly weaker variant than that of Galindo et al.[GLF+10], as our definition requires

the target key pair to be generated honestly. It is also worth noting that the requirement of

proof soundness, which is defined by Damgård et al., is implied by our definition.

The requirement of selective-label weak chosen-ciphertext security is defined by the fol-

lowing game between challenger and the adversaryA.
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ExpPKENO-sLabel-wCCA
(A1,A2,A3) (λ):

b← {0, 1}
(L∗, state1)← A1(1λ)
(ek, dk)← NOKg(1λ)
(m0,m1, state2)← A1

NODec(dk,·,·),NOProve(dk,·,·)(state1, ek)
c∗ ← NOEnc(ek, L∗,mb)
b′ ← A2

PDec(dk,·,·),NOProve(dk,·,·)(state2, c∗)
return b = b′

In the experiment, the adversary (A1,A2,A3) is required to output m0 and m1 with |m0| =
|m1|, and not to submit (L∗, c) to its both oracles regardless of c throughout the experiment.

Definition 5.5. A PKENO scheme (NOKg,NOEnc,NODec,NOProve,NOVerify) is

selective-label weakly chosen-ciphertext secure if for all probabilistic polynomial-time adver-

sary (A1,A2,A3) the advantage AdvPKENO-sLabel-wCCA
(A1,A2,A3) (λ) = |2 · Pr[ExpPKENO-sLabel-wCCA

(A1,A2,A3) (λ) =

1] − 1| is negligible in λ.

The committing requirement is defined by the following game.

ExpPKENO-Label-Commit
A (λ):

(ek, dk)← NOKg(1λ)
(c, L,m, π,m′, π′)← A(ek, dk)
return (NOVerify(ek, c, L,m, π) = ⊤) ∧ (NOVerify(ek, c, L,m′, π′) = ⊤)

∧ (m , m′)

In the experiment, the plaintexts m and m′ are required to be inMek ∪ {⊥}.

Definition 5.6. A PKENO scheme (NOKg,NOEnc,NODec,NOProve,NOVerify)

is committing if for all probabilistic polynomial-time adversary A, the advantage

AdvPKENO-Label-Commit
A (λ) = Pr[AdvPKENO-Label-Commit

A (λ) = 1] is negligible in λ.

5.3 Generic Construction of Dynamic Threshold PKE

In this section we present the first proposed construction, which can provide the dynamic

TPKE functionality.

First we revisit the Galindo et al. conjecture [GLF+10], on which the first proposed scheme

– 87 –



is based. The conjecture is that TPKE with decryption consistency can be constructed from

the Dodis-Katz transformation with labeled PKENO. However, below we explain that it is

not enough to achieve the decrytption consistency. Let m be a plaintext to be encrypted, and

f (x) be a k − 1 degree polynomial with the constant term m. Then, a sender computes n

PKENO ciphertexts of f (i) for all i ∈ [n] whose label is a verification key of an one-time

signature. Finally, the sender makes a signature whose signed messages are all ciphertexts.

By using the Prove algorithm of PKENO, the TVerify algorithm can be implemented. So,

this construction seems to have decryption consistency, since m can be obtained from any k

of ciphertexts. One problem of this construction is, however, that a sender may not encrypt

f (i). That is, it is not guaranteed that all corresponding plaintexts are on the same polynomial

f . A trivial attack is as follows. Let k = 2 and n = 3 for the simplicity. Then, a sender chooses

two degree-1 polynomial f and g where f (2) = g(2), computes PKENO ciphertexts for f (1),

f (2), and g(3), respectively. As in the case that all ciphertexts, say C1,C2,C3, are correctly

generated, all PKENO ciphertexts are valid in the sense of the TVerify algorithm. However,

the TCombine algorithm outputs f (0) from (C1,C2), and outputs g(0) from (C2,C3), which

contradicts decryption consistency. Namely, even if all decryption shares are valid, there is

no guarantee that any combinations of k decryption shares yield the same plaintext.

The problem explained above is that a sender may not encrypt plaintexts which are on

the same polynomial. In our construction, we adopt a technique from verifiable secret shar-

ing [BKP11, BOGW88] to resolve this problem.

DSetup(1λ). Generate the commitment parameter ck as ck ← ComKg(1λ), set pk = ck and

mk = ∅, and output (pk,mk).

DJoin(pk,mk). Generate the public and secret keys (ek, dk) of the PKENO scheme by run-

ning (ek, dk)← NOKg(1λ). Set (upk, usk) = (ek, dk) and output (upk, usk).

DEnc(pk, upk1, . . . , upkn, k,m). Let ck be pk and eki be upki for all i ∈ [n], and proceed as

follows:

• Generate a key pair (vksots, sksots)← SgKg(1λ) for the one-time signature scheme.

• Choose a random bivariate polynomial f (x, y) =
∑k−1

i=0
∑k−1

j=0 ai, jxiy j of degree k−1

with a0,0 = m and f (i, j) = f ( j, i) for all i and j.
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• Compute commitments and their decommitments of f (i, j) for 1 ≤ i ≤ j ≤ n as

(ci, j, ri, j)← Commit(ck, f (i, j)).

• Let c j,i = ci, j and r j,i = ri, j for 1 ≤ i < j ≤ n.

• Compute PKENO ciphertext as Ci = NOEncpki
(vksots, ⟨ f (i, 1), . . . , f (i, n), ri,1, . . . ,

ri,n⟩) for i = 1, . . . , n.

• σsots ← SgSignsksots
(⟨k, (upki)1≤i≤n, (ci, j)1≤i≤ j≤n, (Ci)1≤i≤n⟩).

• Output C = (vksots, k, (upki)1≤i≤n, (ci, j)1≤i≤ j≤n, (Ci)1≤i≤n, σsots).

DDec(pk, upk, usk,C). Parse C as (vksots, k, (upki)1≤i≤n, (ci, j)1≤i≤ j≤n, (Ci)1≤i≤n, σsots) and find

i such that upki = upk. If no such i is found, output (upk,⊥). Otherwise, proceed as

follows.

• Output (upk,⊥) if SgVerifyvksots
(⟨k, (upki)1≤i≤n, (ci, j)1≤i≤ j≤n, (Ci)1≤i≤n⟩) = 0.

• Decrypt Ci as m̂← NODecusk(vksots,Ci).

• Compute a proof π as π← NOProveusk(vksots,Ci).

• Output µi = (upk, (m̂, π)).

DVerify(pk, vk,C, µ). Parse C as (vksots, k, (upki)1≤i≤n, (ci, j)1≤i≤ j≤n, (Ci)1≤i≤n, σsots) and parse

µ as (upk, µ̂). Find i satisfying upk = upki. If no such i exists, output ⊥ immediately. If

such i exists, run SgVerify(vksots, ⟨k, (upki)1≤i≤n, (ci, j)1≤i≤ j≤n, (Ci)1≤i≤n⟩, σsots) to verify

the one-time signature σsots and proceeds as follows.

• If the one-time signature is invalid and µ̂ = ⊥, output ⊤valid.

• If the one-time signature is valid, µ̂ is parsed as (m̂, π), and NOVerify(upki,Ci, m̂,

π) = 1, further verify the following three conditions:

– m̂ is parsed as ⟨ f1, . . . , fn, r1, . . . , rn⟩,
– ComVerify(ck, ci, j, f j, r j) = 1 (or ComVerify(ck, c j,i, f j, r j,i) = 1 for j < i) for

all j ∈ [n], and

– ( f1, . . . , fn) defines a degree-(k − 1) polynomial.

If all of the three conditions holds, output ⊤valid. Otherwise output ⊤invalid.

• If neither two conditions hold, output ⊥.

DCombine(pk, vk,C, µ1, . . . , µk). Parse C as (vksots, k, (upki)1≤i≤n, (ci, j)1≤i≤ j≤n, (Ci)1≤i≤n,

σsots) and µi as ( ˆupki, µ̂i) for all 1 ≤ i ≤ k.
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• If there is at least one µi that is ⊥, output ⊥.

• Otherwise if all µ̂i are parsed as (( fi,1, . . . , fi,1, ri,1, . . . , ri,n), πi), proceed as fol-

lows:

– find ti satisfying upkti =
ˆupki for all i,

– interpolate (t1, fti,t1 ), . . ., (tk, fti,tk ) to obtain a polynomial gti (x) for all i,

– interpolate (t1, gt1 (0)), . . ., (tk, gtk (0)) to obtain a polynomial g(y), and

– output g(0).

Security. Security of the above scheme is described as follows.

Theorem 5.7. The construction is chosen-ciphertext secure if the PKENO scheme is

selective-label weakly chosen-ciphertext secure, the commitment scheme is (computation-

ally) hiding, and the one-time signature scheme is strongly unforgeable.

Proof. Let A be an adversary of having the advantage ε in the chosen-ciphertext security

game. We bound this advantage to be negligible by gradually changing the game as follows.

In the following description, we denote by S i the event in which the adversary correctly guess

the bit in Game i.

Game 0. This is exactly same as in the original chosen-ciphertext security game.

Game 1. In this game, the decryption oracle is modified to reject any decryption query

which reuses the one-time signature verification key from the challenge ciphertext

regardless of validity of the one-time signature in the queries.

Game 2. Then we modify how the challenge ciphertext is computed, by replacing the

uncorrupted ciphertexts with garbage. Let C∗ = (vk∗sots, (upk∗i )1≤i≤n, (c∗i, j)1≤i≤ j≤n,

(C∗i )1≤i≤n, σ
∗
sots) be the challenge ciphertext. In this game, the components C∗i are
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computed as follows:

C∗i ←



NOEnc(upk∗i , vk∗sots, ⟨ f (i, 1), . . . , f (i, n), ri,1, . . . , ri,n⟩)

if upk∗i ∈ { ˜upk1, . . . , ˜upkÑ},

NOEnc(upk∗i , vk∗sots, ⟨0, . . . , 0, 0|ri,1 |, . . . , 0|ri,n |⟩)

if upk∗i ∈ {upk1, . . . , upkN}.

With this modification the advantage of the adversary only changes negligibly. See

Lemma 5.9 for details.

Game 3. Finally we replace the commitments in the challenge ciphertext with garbage.

More concretely we replace the commitments whose decommitment are not included

in the corrupted ciphertexts. This modification does not introduce more than negligible

difference on the advantage of the adversary. See Lemma 5.10 for detail.

Lemma 5.8. If the one-time signature scheme is strongly unforgeable, |Pr[S 0] − Pr[S 2]| is
negligible.

Proof (of Lemma 5.8). It can be shown by a standard argument using the difference lemma.

The two games differs only when a ciphertext C = (vksots, k, (upki)1≤i≤n, (ci, j)1≤i≤ j≤, (Ci)1≤i≤n,

σsots) with the following property is queried: (1) it reuses the verification key vk∗sots from

the challenge ciphertext, and (2) the one-time signature σ∗sots is valid. Whenever we receive

such a query from the adversary, we can obtain a strong forgery of the underlying one-time

signature scheme. This fact proves that the difference |Pr[S 0] − Pr[S 2]| is bounded by the

probability that a polynomial-time algorithm outputs such a forgery, which is negligible by

the assumption of the lemma. □

Lemma 5.9. If the labeled PKENO scheme is selective-label weakly chosen-ciphertext se-

cure, |Pr[S 1] − Pr[S 2]| is negligible.

Proof (of Lemma 5.9). The proof further proceeds with a sequence of (sub)games G1,0, G1,1,

. . ., G1,N , in which G1,0 is identical to Game 1 and G1,N is identical to Game 2. In the game

G1,l, the ciphertexts with public key upk1, . . ., upkl−1, or upkl are replaced with garbage, while
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these with upkl+1, . . ., upkN−1, upkN are kept untouched. More formally, when the adversary

submits the set S = {upk∗1, . . . , upk∗n} (together with the threshold k and two messages m0 and

m1), then in the game G1,l the ciphertext Ci in the challenge ciphertext is computed as:

Ci ←



NOEnc(upk∗i , vksots, ⟨ f (i, 1), . . . , f (i, n), ri,1, . . . , ri,n⟩)

if upk∗i ∈ { ˜upk1, . . . , ˜upkÑ},

NOEnc(upk∗i , vksots, ⟨0, . . . , 0, 0|ri,1 |, . . . , 0|ri,n |⟩)

if upk∗i ∈ {upk1, . . . , upkl},

NOEnc(upk∗i , vksots, ⟨ f (i, 1), . . . , f (i, n), ri,1, . . . , ri,n⟩)

if upk∗i ∈ {upkl+1, . . ., upkN}.

Noticing that G1,0 is equivalent to Game 1 and G1,n−k+1 is to Game 2, we can conclude

Lemma 5.9 by showing that for all l ∈ {1, . . . ,N}, |Pr[S 1,l−1] − Pr[S 1,l]| is negligible.

Now we will show that |Pr[S 1,l−1] − Pr[S 1,l]| is negligible for all l ∈ {1, . . . ,N}. To prove

this we construct a simulator Bl which runs in the chosen-ciphertext security game of the

PKENO scheme. The description of B is as follows:

Setup. The simulator B first chooses a key-pair (vk∗sots, sk∗sots) of the one-time signature

scheme. Then it outputs vk∗sots as the label for the challenge. The simulator receives an

encryption key ek of the PKENO scheme. To set up the TPKE scheme, the simulatorB
sets upkl = ek. For all the other upki (i < [N] \ {l}), it generates (eki, dki)← NOKg(1λ)

for all i , ιl and sets pki = eki. Furthermore, for all ˜upki (i ∈ [Ñ]) the simulator

again generates (ẽki, d̃ki) ← NOKg(1λ) and sets ( ˜upki, ˜uski) = (ẽki, d̃ki). The simula-

tor also runs ComKg(1λ) to get a commitment key ck. Finally it sets pk = ck and sends

(pk, (upki)i∈[N], ( ˜upki, ˜uski)i∈[Ñ]) to the adversaryA.

Query I. When the adversaryA issues a decryption query (upk′,C), the simulator responds

as follows. First it parses C as (vksots, k, (upk′i)1≤i≤n, (ci, j)1≤i≤ j≤n, (Ci)1≤i≤n, σsots).

• If vksots = vk∗sots or SgVerify(vksots, ⟨k, (ci, j)1≤i≤ j≤, (Ci)1≤i≤n⟩, σsots) = 0, the simu-

lator responds with (upk′,⊥).

• Let i′ ∈ [n] be the integer that satisfies upk′ = upk′i′ . The simulator obtains the
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decryption of Ci′ as follows. If upk′ = upkl, to which the simulator embeds the

target PKENO scheme, the simulator issues a decryption query (vksots,Ci′ ) to its

own decryption-and-prove oracle and receives a pair (m, π) of a message and a

proof. The simulator responds with (upk′, (m, π)).

• If upk′ = upki (i , l), the simulator runs NODec(dki, vksots,Ci) to obtain m

and runs NOProve(dki, vksots,Ci) to obtain π. The simulator responds with

(upk′, (m, π)).

Challenge. When the adversaryA requests the challenge ciphertext by submitting two mes-

sages m0 and m1, an authorized set S = {upk∗1, . . . , upk∗n}, and a threshold k, the sim-

ulator B chooses a random bit b, choose a random symmetric bivariate polynomial

f (x, y) =
∑k−1

i=0
∑k−1

j=0 ai, jxiy j of degree k − 1 with a0,0 = mb, computes commitments

and decommitments (ci, j, ri, j) ← Commit(ck, f (i, j)) for 1 ≤ i ≤ j ≤ n, and sets

c j,i = ci, j and r j,i = ri, j for 1 ≤ i < j ≤ n. If upkl = upk∗i∗ with some i∗, then

the simulator submits two plaintexts M0 = ⟨ f (i∗, 1), . . . , f (i∗, n), ri∗,1, . . . , ri∗,n⟩ and

M1 = ⟨0, . . . , 0, 0|ri∗ ,1 |, . . . , 0|ri∗ ,n |⟩ to the challenger of the PKENO game. Receiving

the challenge ciphertext c∗, B computes n ciphertexts of the PKENO scheme as fol-

lows:

C∗i ←



NOEnc(upk∗i , vk∗sots, ⟨ f (i, 1), . . . , f (i, n), ri,1, . . . , ri,n⟩)

if upk∗i ∈ { ˜upk1, . . . , ˜upkÑ},

NOEnc(upk∗i , vk∗sots, ⟨0, . . . , 0, 0|ri,1 |, . . . , 0|ri,n |⟩)

if upk∗i ∈ {upk1, . . . , upkl−1},

c∗ if upk∗i = upkl,

NOEnc(upk∗i , vk∗sots, ⟨ f (i, 1), . . . , f (i, n), ri,1, . . . , ri,n⟩)

if upk∗i ∈ {upkl+1, . . . , upkN}.

Finally B generates a one-time signature σ∗sots ← SgSign(sk∗sots, ⟨k, (upk∗i )1≤i≤n,

(ci, j)1≤i≤ j≤n, (Ci)1≤i≤n⟩). If upkl < S, the simulator B ignores the PKENO challenge

ciphertext c∗ and computes the challenge ciphertext for the TPKE scheme as in the

game l (or the game l − 1. The choice now does not matter since upkl < S). In any
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case, the challenge ciphertext C∗ = (vk∗sots, k, (upk∗i )1≤i≤n, (ci, j)1≤i≤ j≤n, (Ci)1≤i≤n, σsots)

is sent to the adversaryA.

Query II. After receiving the challenge ciphertext, A again issues decryption queries,

which are responded as in the first query phase by the simulator B.

Guess. Finally the adversaryA outputs a guess bit b′ and halts. The simulator then outputs

1 if b = b′, otherwise outputs 0.

In the above simulation, if the simulator Bl receives a ciphertext of M0, the view of the

adversaryA is equivalent to G1,l−1, and otherwise it is equivalent to G1,l. Hence we have that

Pr[S 1,l−1] − Pr[S 1,l] = Pr[Bl → 1|b = 0] − Pr[Bl → 1|b = 1].

The right-hand side is negligible because of the assumption that the PKENO scheme is

selective-label weak chosen-ciphertext secure. □

Lemma 5.10. Suppose that the commitment scheme is (computationally) hiding. Then

|Pr[S 2] − Pr[S 3]| is negligible.

Proof (of Lemma 5.10). To prove the lemma we construct a simulator B which runs in the

left-or-right game of the commitment scheme. The description of B is as follows.

Setup. The simulator B starts with receiving the commitment key ck form the challenger.

The simulator generates N keys of the PKENO scheme as (eki, dki) ← NOKg(1λ) for

all i ∈ [N] and Ñ keys of the same PKENO scheme as (ẽki, d̃ki) ← NOKg(1λ). The

simulator also generates a key (vk∗sots, sk∗sots) by running SgKg(1λ). The simulator sets

pk = ck, (upki, uski) = (eki, dki) for all i ∈ [N], and ( ˜upki, ˜uski) = (ẽki, d̃ki) for all

i ∈ [Ñ], and run the adversaryA with (pk, (upki)i∈[N], ( ˜upki, ˜uski)i∈[Ñ]) as input.

Query I. To a share-decryption query (upk′,C) B responds as described by Game 2 (or 3).

It can be done since B knows the user secret keys usk1, . . ., uskN of all the uncorrupted

user public keys upk1, . . ., upkN .

Challenge. When the adversary A outputs two messages m0 and m1 together with an au-

thorized set S = {upk∗1, . . . , upk∗n} and a threshold k, the simulator B proceeds as

follows. It first chooses a random bit b, a random symmetric bivariate polynomial
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f (x, y) =
∑k−1

i=0
∑k−1

j=0 ai, jxiy j with a0,0 = mb. Then computes commitments ci, j (1 ≤

i ≤ j ≤ n) as follows. For all (i, j) with either upk∗i or upk∗j corrupted, the simulator

runs Commit(ck, f (i, j)) to obtain the commitment ci, j together with its decommit-

ment ri, j. For all (i, j) with both upk∗i and upk∗j uncorrupted, the simulator submits

(M0,M1) = ( f (i, j), 0) to the left-or-right oracle to obtain a commitment ci, j of either

f (i, j) or 0. The simulator further computes PKENO ciphertexts C1, . . ., Cn as follows:

Ci ←


NOEnc(upk∗i , vk∗sots, ⟨ f (i, 1), . . . , f (i, n), ri,1, . . . , ri,n⟩) if upk∗i is corrupted,

NOEnc(upk∗i , vk∗sots, ⟨0, . . . , 0, 0 · · · 0, . . . , 0 · · · 0⟩) if upk∗i is uncorrupted.

Finally the simulator Bl runs SgSign(sk∗sots, ⟨k, (upk∗i )1≤i≤n, (ci, j)1≤i≤ j≤n, (Ci)1≤i≤n⟩) to

obtains σ∗sots, sets C∗ = (vk∗sots, k, (upk∗i )1≤i≤n, (ci, j)1≤i≤ j≤n, (Ci)1≤i≤n, σ
∗
sots), and sends

the adversary C∗.

Query II. In this phase the adversary again issues decryption queries, which are responded

as in the Query I phase.

Guess. Finally the adversary A outputs a guess b′ and halts. The simulator Bl outputs 1 if

b = b′ and outputs 0 if b , b′.

In this simulation, if the simulator receives commitments of m0’s, the adversary’s view is

identical to G2, and if the simulator receives those of m1’s, the view is identical to G3.

Hence we have that |Pr[S 2] − Pr[S 3]| = |Pr[B → 1|the commitments are of m0’s] − Pr[B →
1|the commitments are of 0’s]|, whose right-hand side is negligible. □

Lemma 5.11. Pr[S 3] = 1/2.

Proof (of Lemma 5.11). To see the lemma, we argue that for any view of the adversary, the

number of polynomials consistent to the view with the constraint f (0, 0) = m0 is equal to

that of polynomial consistent to the view with the constraint f (0, 0) = m1. Actually there is

a single polynomial for each constraints f (0, 0) = m0 and f (0, 0) = m1, which we will show

below.

In Game 3, the information on the polynomial f included in the adversary’s view is the set

{ fi, j = f (i, j) | i ∈ S or j ∈ S } of evaluations of f , in which S ⊂ [n] is the set of the corrupted
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servers. The constraints of fi, j = f (i, j) and f (0, 0) = m0 uniquely determines a symmetric

degree-(k − 1) polynomial as seen below. Let us denote the set S by {i1, . . . , ik−1}. From the n

equations fi1,1 = f (i1, 1), . . ., fi1,n = f (i1, n) there exists a degree-(k−1) univariate polynomial

fi1 such that f (x) = f (i1, x) for all x. Similar things hold for i2, . . ., ik−1, that is, there exist

degree-(k − 1) polynomials fi2 , . . ., fik−1 such that fi2 (x) = f (i2, x), . . ., fik−1 (x) = f (ik−1, x) for

all x. Furthermore, from n equations f1,i1 = f (1, i1), . . ., fn,i1 = f (n, i1), we can determine the

evaluation f (0, i1). Similar thing can be applied to i2, . . ., ik−1, that is, we can determine the

evaluation of f (0, i2), . . ., f (0, ik−1). Together with the assumption that f (0, 0) = m0, we can

further determine a degree-(k − 1) polynomial f0 such that f0(x) = f (0, x) for all x. These k

polynomials fi1 , . . ., fik−1 , and f0 determine the entire bivariate polynomial f (x, y) uniquely.

The same thing holds for the case that f (0, 0) = m1. □

These lemmas conclude the proof of the main theorem. □

Theorem 5.12. The construction has the weak decryption consistency if the PKENO scheme

is strongly committing and that the commitment scheme is (computationally) binding.

Proof. Let A be an adversary of the decryption consistency game, (pk, ( ˜upki, ˜uski)i∈[Ñ]) be

the input to A, and (C, S , S ′) be the output of A. Let C be parsed as (vksots, k, (upk∗i )1≤i≤n,

(ci, j)1≤i≤ j≤n, (Ci)1≤i≤n, σsots). Let succ1 and succ2 be the events in whichA successfully out-

puts two sets S and S ′ that meet the conditions 1. and 2. defined in the game for decrytption

consistency, respectively. Let us denote S and S ′ as S = {(upk1, µ̂1), . . . , (upkk, µ̂k)} and

S ′ = {(upk′1, µ̂
′
1), . . . , (upk′k, µ̂

′
k)}. To prove the theorem, we show that both Pr[succ1] and

Pr[succ2] is negligible.

We first bound Pr[succ2]. In this case, the output of the adversary contains two decryption

share (upk, µ̂) and (upk, µ̂′) of the same server upk. From these decryption shares we can

obtain two proofs (of the PKENO scheme) which violate the committing property of the

PKENO scheme. This enables us to construct a reduction algorithm that internally runs the

adversary A and breaks the committing property of the PKENO. Let (upk, µ̂) be verified as

⊤valid and (upk, µ̂′) be as ⊤invalid. Regarding to (upk, µ̂) we have the two possibilities that

µ̂ = ⊥ and that µ̂ is parsed as (m̂, π). However, since (upk, µ̂′) is verified as ⊤invalid, which
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implies that the one-time signature included in C is valid, we can exclude the first possibility

and thus we have that µ̂ is parsed as (m̂, π) and NOVerify( ˜upki, vksots,Ci, m̂, π) = 1 for some i.

Regarding to (upk, µ̂′), since it is verified as ⊤invalid, we also have that µ̂′ is parsed as (m̂′, π′)

and NOVerify( ˜upki, vksots,Ci, m̂′, π′) = 1 for the same i as before. Furthermore, since (upk, µ̂)

is verified as ⊤valid, m̂ satisfies all of the three conditions described by the DVerify algorithm.

In contrast to this, m̂′ does not satisfy at least one of the same conditions, because (upk, µ̂′)

is verified as ⊤invalid. Hence m̂ must differ from m̂′, thus the tuple (vksots,Ci, m̂, π, m̂′, π′)

violates the committing property of the underlying PKENO scheme. More formally, we need

to construct a simulator that receives a target key pair of the PKENO scheme and outputs a

tuple that breaks the committing property. Such a simulator will choose random i∗ ∈ [Ñ] and

sets ( ˜upki∗ , ˜uski∗) to be the target keys received. When the adversary A outputs (C, S , S ′),

the simulator will compute a tuple (vksots,Ci, m̂, π, m̂′, π′) as described above and will output

it. The simulator successfully breaks the committing property with probability Pr[succ2]/Ñ,

which is negligible due to the committing property of the PKENO scheme.

Then we will bound Pr[succ1]. Let

I = {i ∈ [n] | (upk∗i , µ̂) ∈ S for some µ̂}

and

I′ = {i ∈ [n] | (upk∗i , µ̂) ∈ S ′ for some µ̂}.

We denote I = {i1, . . . , ik} and I′ = {i′1, . . . , i′k}. Using this notations we can denote S as

{(upk∗i1 , µ̂1), . . . , (upk∗ik , µ̂k)}, and S ′ as {(upk∗i′1 , µ̂
′
1), . . . , (upk∗i′k , µ̂

′
k)}. Since these decryption

shares are verified as ⊤valid, we have two possibilities that µ̂1 = · · · = µ̂k = µ̂′1 = µ̂′k = ⊥
and that none of µ̂1, . . ., µ̂k, µ̂′1, . . ., µ̂′k is ⊥. Since in the former case the decryption consist-

ency will never break, we assume that the latter case occurs in the following. In the latter case

we can further assume that µ̂ℓ is parsed as (⟨ fiℓ ,1, . . . , fiℓ ,n, riℓ ,1, . . . , riℓ ,n⟩, πℓ) for all ℓ ∈ [k] and

µ̂′ℓ′ is parsed as (⟨ f ′i′
ℓ′ ,1
, . . . , f ′i′

ℓ′ ,n
, r′i′

ℓ′ ,1
, . . . , r′i′

ℓ′ ,n
⟩, π′ℓ′) for all ℓ ∈ [k].

We first define an event bad1 by the following condition: there exist integers ℓ ∈ [k] and

ℓ′ ∈ [k] such that the ℓ-th decryption share in S and ℓ′-th decryption share in S ′ are both
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generated by the same server and these shares do not agree in the k− 1 curve. More formally,

there exist two integer ℓ and ℓ′ such that iℓ = i′ℓ′ and ( fiℓ ,1, . . . , fiℓ ,n) , ( f ′i′
ℓ′ ,1
, . . . , f ′i′

ℓ′
).

We further define an event bad2 as follows. Intuitively the event bad2 captures the case

that the decryption shares submitted by the adversary do not constitute a symmetric bivariate

polynomial. To state this more formally we will introduce some notations. Let us denote the

union I ∪ I′ to be I ∪ I′ = { j1, . . . , jt}. Notice that t is either equal to 2k or smaller than 2k

(The latter case occurs when some servers are involved in both S and S ′). If we assume the

event bad1 does not occur, we can define the following t × t matrix:
f ∗j1, j1 f ∗j1, j2 · · · f ∗j1, jt
f ∗j2, j1 f ∗j2, j2 · · · f ∗j2, jt
...

...
. . .

...

f ∗jt , j1 f ∗jt , j2 · · · f ∗jt , jt


, (5.1)

where f ∗u,v is defined as

f ∗u,v =


fu,v (u ∈ I \ I′)

f ′u,v (u ∈ I′ \ I)

fu,v = f ′u,v (u ∈ I ∩ I′).

We say that the event bad2 occurs if bad1 does not occur and the above matrix is not sym-

metric.

Noticing that Pr[succ1] = Pr[succ1 ∧ (bad1 ∨ bad2)] + Pr[succ1 ∧ ¬(bad1 ∨ bad2)] it

is sufficient to show that the two terms are negligible for proving the theorem. The first

term Pr[succ1 ∧ (bad1 ∨bad2)] is bounded by a standard reduction argument constructing an

adversary that breaks the committing property of the PKENO scheme or the binding property

of the commitment scheme. The other term Pr[succ1 ∧ ¬(bad1 ∨ bad2)] is actually equal to

zero, which will be discussed below.

Denote by g j the result of the interpolation from n points f ∗j,1, . . ., f ∗j,n, which is actually the

share submitted by the server j. To see that Pr[succ1 ∧¬(bad1 ∨ bad2)], it is sufficient to see
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that the column vector

g⃗ =


g j1

g j2
...

g jt


(5.2)

is degree-(k−1). If this column vector is degree-(k−1), any choice of k points (out of t) results

in the same point through the interpolation from k points. It ensures that the adversary has no

chance to satisfy the conditions that DCombine(pk, vk,C, S ) , DCombine(pk, vk,C, S ′).

To see that the vector g⃗ is degree-(k − 1) we proceed as follows. Observing the fact that

the n points f ∗j,1, . . ., f ∗j,n is degree-(k − 1), we first claim that even though g j’s are defined as

the interpolation from the n points f ∗j,1, . . ., f ∗j,n, interpolation from k points coincides in the

result of interpolation. Particularly g j can be written as the Lagrange interpolation from the

k points f ∗j, j1 , . . ., f ∗j, jt as

g j = λ j1 f ∗j, j1 + λ j2 f ∗j, j2 + · · · λ jt f ∗j, jt .

Furthermore, g⃗ can be represented as the following linear combination:
g j1

g j2
...

g jt


= λ j1


f ∗j1, j1
f ∗j2, j1
...

f ∗jt , j1


+ λ j2


f ∗j1, j2
f ∗j2, j2
...

f ∗jt , j2


+ · · · + λ jt


f ∗j1, jt
f ∗j2, jt
...

f ∗jt , jt


. (5.3)

This equation shows that if all of the t column vectors in the right-hand side of the linear

combination is degree-(k − 1), so is the vector in the left-hand side. Since the matrix in

Eq. (5.1) is symmetric and every column vectors of that matrix are degree-(k − 1) as verified

by DVerify, every row vectors are also degree-(k − 1). The t vectors appear in Eq. (5.3) is

actually the row vectors of the matrix in Eq. (5.1), hence the vector g⃗ is degree-(k − 1). □

Instantiating the Generic Construction. To instantiate this generic construction, we need

to have a “labeled” scheme of PKENO. Fortunately, to extend some known PKENO scheme

to support labels is relatively straightforward. In particular, the PKENO scheme proposed by

Galindo et al. [GLF+10] can be easily extended to the labeled scheme. For completeness, we
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provide the description of the labeled scheme and its security proof, together with its variant

from the decision bilinear Diffie-Hellman assumption, in Appendix 5.6.

If we instantiate the generic construction with the PKENO scheme form the decision linear

assumption, we can obtain the first dynamic TPKE scheme from a static assumption which

archives the weak decryption consistency without relying random oracles. In addition, re-

garding the result by Emura et al. showing that a PKENO scheme can be constructed from an

arbitrary group signature scheme (with a sufficiently but reasonably strong security notion)

as a generic and black-box construction [EHSS13], interestingly we can obtain an (even dy-

namic) TPKE with the weak decryption consistency from an arbitrary group signature scheme

as a generic construction. It would be of independent interest that these apparently unrelated

two primitives of group signature and threshold encryption can be related only by means of

generic constructions.

However, we need to admit our generic construction of dynamic TPKE is not as efficient as

the Delerablée-Pointcheval scheme, as our construction has the ciphertext size proportional to

the square of the number of the authorized servers, while the Delerablée-Pointcheval scheme

has a constant size ciphertext. Furthermore, our scheme only achieves the weak decryption

consistency rather than the strong notion.

In the next section we present a specific construction of dynamic TPKE that provides a

more shorter, linear to the number of the authorized servers, ciphertext and the strong de-

cryption consistency. The security of this specific construction comes from only the decision

linear assumption.

5.4 Dynamic Threshold PKE from the Decision Linear

Assumption

In this section we present a dynamic TPKE scheme with the strong decryption consistency.

Security of this scheme solely comes from the decision linear assumption, while the Deler-

ablée-Pointcheval scheme relies on a q-type assumption which is called MSE-DDH assump-

tion. We also remark that the strong decryption consistency of our scheme does not require
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random oracles.

The description of the proposed scheme is as follows.

DSetup(1λ). Run G(1λ) to set up the bilinear group parameter (p,G,GT , e, g). Choose

a common reference string ( f⃗1, f⃗2, f⃗3) ∈ (G3)3 for the binding setting, where f⃗1 =

( f1, 1, g), f⃗2 = (1, f2, g), and f⃗3 = f⃗1ζ1 f⃗2ζ2 for random f1, f2 ∈ G \ { 1 } and random ζ1,

ζ2 ∈ Zp. Set pk = (p,G,GT , e, g, f⃗1, f⃗2, f⃗3) and mk = ∅, and output (pk,mk).

DJoin(pk,mk). Generate public and secret keys of the PKENO scheme described in

Sect. 5.6.2 by choosing random x, y ← Zp and random U, V ← G and setting u = gx

and v = gy. Set upk = (u, v,U,V) and usk = (x, y) and output (upk, usk).

DEnc(pk, upk1, . . . , upkn, k,m). Parse upki as (ui, vi,Ui,Vi) for all i ∈ [n]. Generate verifica-

tion and signing keys (vk, sk) for a one-time signature scheme by running SgKg(1λ).

Choose random integers r1, . . ., rn, s1, . . ., sn, a1, . . ., ak−1 ← Zp and computes ci,1 ←
ui

ri , ci,2 ← vi
si , ci,3 ← (gvkUi)ri , ci,4 ← (gvkVi)si , and ci,5 ← gri+si mga1i+a2i2+···+ak−1ik−1

for all i ∈ [n]. Then compute a Groth-Sahai proof πzk which demonstrates that the

equations

ci,1 = ui
ri ,

ci,2 = vi
si ,

ci,5 = g
rigsi (gik−1

)ak−1 · · · (gi2 )a2 (gi)a1 m

for all i ∈ [n] with witness m ∈ G and r1, . . ., rn, s1, . . ., sn, a1, . . ., ak−1 ∈ Zp.

Finally compute a one-time signature σ by running SgSign(sk, ⟨(upki)i∈[n], k,

(ci,1, . . . , ci,5)i∈[n], π
zk⟩) and output C = (vk, (upki)i∈[n], k, (ci,1, . . . , ci,5)i∈[n], π

zk, σ).

DDec(pk, upk, usk,C). Parse C as (vk, (upki)i∈[n], k, (ci,1, . . . , ci,5)i∈[n], π
zk, σ). Find i ∈ [n]

such that upk = upki and output (upk,⊥) if no such i exists. Otherwise proceed as

follows. Firstly verify that the one-time signature σ is valid, the Groth-Sahai proof

πzk is valid, and for all i ∈ [n] the equations e(ui, ci,3) = e(ci,1, g
vkUi) and e(vi, ci,4) =

e(ci,2, g
vkVi) hold. If any of the above does not holds, output (upk,⊥) immediately. If

all of them holds, compute π(u) = c1/x
i,1 , π(v) = c1/y

i,2 , and m̂ = ci,5/π
(u)π(v), and outputs

µ = (upk, (m̂, π(u), π(v))).
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DVerify(pk, upk,C, µ). Parse C as (vk, (upki)i∈[n], k, (ci,1, . . . , ci,5)i∈[n], π
zk, σ). Then verify the

following conditions: no i ∈ [n] does not satisfy upk = upki, the one-time signature σ

is invalid, the Groth-Sahai proof πzk is invalid, or for some i ∈ [n] one of e(ui, ci,3) =

e(ci,1, g
vkUi) and e(vi, ci,4) = e(ci,2, g

vkVi) does not hold. If at least one of the above

does not hold and µ is parsed as (upk,⊥), output ⊤valid. Otherwise, if all of the above

do hold, µ is parsed as (upk, (m̂, π(u), π(v))), and the three equations e(u, π(u)) = e(ci,1, g),

e(v, π(v)) = e(ci,2, g), and ci,5 = m̂π(u)π(v) hold, output ⊤valid. In any other cases, output

⊥.

DCombine(pk,C, µ1, . . . , µk). Parse C as (vk, (upki)i∈[n], k, (ci,1, . . . , ci,5)i∈[n], π
zk, σ). If

there is at least one µi that is parsed as (upk,⊥), output ⊥. Otherwise, parse µi

as ( ˆupki, (m̂i, π̂
(u)
i , π̂(v)

i )), find ti satisfying upkti =
ˆupki for all i ∈ [k], compute

m = m̂1
λ1 · · · m̂k

λk in which λi =
∏

j∈[k]\{ i } −t j/(ti − t j), and output m.

Security. This scheme is proven to be secure under the decision linear assumption.

Theorem 5.13. The construction is chosen-ciphertext secure if the decision linear assump-

tion holds on G.

Chosen-ciphertext security of this scheme is in fact relatively easily derived from the zero-

knowledge property of the Groth-Sahai proof system and the labeled PKENO scheme pre-

sented in Sect. 5.6.2, as the proposed scheme is built on these two building blocks. However,

for completeness we present a bit detailed proof for the chosen-ciphertext security.

Proof (of Theorem 5.13). Let A be an adversary having the advantage ε in the game of the

chosen-ciphertext security. To bound the advantage ε we consider the following sequence of

games:

Game 0. This is the original game defined in the definition of chosen-ciphertext security.

Game 1. In this game the common reference string set in the public parameter pk is changed

to be generated by the simulation algorithm.

Game 2. In this game the Groth-Sahai proof included in the challenge ciphertext is replaced

with the simulated proof.
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Game 3. In this game the decryption oracle is changed to reject any query that reuse the

verification key vk of the one-time signature scheme from the challenge ciphertext.

Game 4. In this game, all ciphertexts of the uncorrupted public keys in the challenge ci-

phertext are replaced with ciphertexts that encrypt random group elements.

In the following we denote by S i the event in which the adversary correctly guess the bit

flipped by the challenger in Game i.

Lemma 5.14. If the decision linear assumption on G holds, |Pr[S 0] − Pr[S 1]| and |Pr[S 1] −

Pr[S 2]| are negligible.

Proof. The change introduced by Game 1 will not affect the behavior of the adversary A,

since the soundness string and the witness-indistinguishable string of the Groth-Sahai proof

is computationally indistinguishable, which itself proved from the decision linear assumption

on G. The change by Game 2 is also indistinguishable, since on a witness-indistinguishable

string a real proof and a simulated proof (with the trapdoor behind the string) has the same

distribution, thus the change by Game 2 is perfectly indistinguishable. □

Lemma 5.15. If the one-time signature scheme is strongly unforgeable, |Pr[S 2] − Pr[S 3]| is
negligible.

Proof. The proof will be done by applying the difference lemma. The game differs when the

adversary queries a ciphertext that includes the same verification key to the challenge cipher-

text, and is not responded with ⊥ by the original decryption oracle. In that case the query

contains a valid signature on the queried ciphertext. Furthermore, whenever the adversary

issues such a query, from this query we can extract a strong forgery of the one-time signature

scheme, which enable us to construct a simulator that attacks the strong unforgeability of the

one-time signature scheme. □

Lemma 5.16. If the decision linear assumption on G holds, |Pr[S 3] − Pr[S 4]| is negligible.

Proof. The proof basically follows the proof of the Dodis-Katz transformation. We first

introduce the subgames G3,0, . . ., G3,N of the following:
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Game G3,ℓ. In this game, if the challenge ciphertext includes a PKENO ciphertexts of the

keys upk1, . . ., upkℓ (the public keys upk1, . . ., upkN are the keys given to the adversary

at the first phase of the game), these PKENO ciphertexts are replaced with ciphertexts

of random group elements.

We also note that the game G3,0 is identical to Game 3, and the game G3,N is identical to

Game 4, and thus it is sufficient for proving the lemma to prove that |Pr[S 3,ℓ−1] − Pr[S 3,ℓ]| is

negligible.

To prove this inequality we construct an algorithm B that attacks the chosen-ciphertext

security of the DLIN-based PKENO scheme presented in Sect. 5.6.2. We briefly describe

this algorithm.

Setup. The algorithm B firstly generates verification/signing keys vk∗ and sk∗ of the one-

time signature scheme, and sends the verification key vk∗ as the target label to the

PKENO challenger. Then B receives a public key (u, v,U,V) of the PKENO scheme,

and uses this key as upkℓ. All the other public keys upki (i , ℓ) and ˜upki and the

witness-indistinguishable common reference string ( f⃗1, f⃗2, f⃗3), together with the trap-

door for simulating the Groth-Sahai proof, are generated by B itself.

Query I. Decryption queries (upk′,C) are responded as follows. Let C = (vk, (upk′i)i∈[n], k,

(ci,1, . . . , ci,5)i∈[n], π
zk, σ). If vk = vk∗, B returns (upk′,⊥) toA. This is a valid simula-

tion due to the change introduced in Game 3. Otherwise, if upk′ , upkℓ, B responds

to the query by using the decryption key corresponding to upk, which is known to

B. If upk′ = upkℓ, B proceeds as follows for responding to the query. Firstly B
verifies the one-time signature σ, the zero-knowledge proof πzk. In addition B also

verifies validity of all n ciphertext (c1,1, . . . , c1,5), . . ., (cn,1, . . . , cn,5) by checking the

equations e(ci,1, g
vkUi) = e(ui, ci,3) and e(ci,2, g

vkVi) = e(vi, ci,4) hold for all i ∈ [n].

If any of the above verification fails, B immediately returns (upkℓ,⊥) to A. Other-

wise, B sends the ciphertext (ci,1, . . . , ci,5) where i satisfies upk′i = upkℓ together with

the tag vk to the PKENO challenger and obtains the decryption result m̂ and a proof

(π(u), π(v)). Notice that in this query B certainly obtains the decryption result and the
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proof rather than ⊥, because (i) vk , vk∗, thus the query is not forbidden, and (ii) the

ciphertext (ci,1, . . . , ci,5) is valid in the sense that it satisfies e(ci,1, g
vkUi) = e(ui, ci,3)

and e(ci,2, g
vkVi) = e(vi, ci,4), and thus it will not rejected due to the invalidity of the

ciphertext. After receiving m̂, π(u), and π(v), B sends (upkℓ, (m̂, π
(u), π(v)) toA.

Challenge. When A requests the challenge ciphertext by issuing (S, k,m0,m1) where

S = { upk∗1, . . . , upk∗n }, B proceeds as follows. If for some i∗, upk∗i∗ = upkℓ, then

B chooses a random bit b and random integers a1, . . ., ak−1 ∈ Zp, and sends

M0 = mbg
i∗a1+(i∗)2a2+···+(i∗)k−1ak−1 and M1 = Rℓ to the PKENO challenger to receive a

PKENO ciphertext (c∗1, . . . , c
∗
5). Then B computes PKENO ciphertext (c∗i,1, . . . , c

∗
i,5)

for all i ∈ [n] as

(c∗i,1, . . . , c
∗
i,5)←



(ui
ri , vi

si , (gvkUi)ri , (gvkVi)si , gri+si mbg
ia1+···+ik−1ak−1 )

if upk∗i ∈ { ˜upk1, . . . , ˜upkÑ }

(ui
ri , vi

si , (gvkUi)ri , (gvkVi)si , gri+si Ri)

if upk∗i ∈ { upk1, . . . , upkℓ−1 }

(c∗1, . . . , c
∗
5) if upk∗i = upkℓ

(ui
ri , vi

si , (gvkUi)ri , (gvkVi)si , gri+si mbg
ia1+···+ik−1ak−1 )

if upk∗i ∈ { upkℓ+1, . . . , upkN },

in which ri, si (i ∈ [n] \ { i }) is random elements in Zp and Ri (i ∈ [ℓ − 1]) is random

elements in G. Furthermore, B computes a simulated proof πzk using the trapdoor

for the Groth-Sahai proof and a one-time signature σ∗ using the signing key sk∗, then

sends (vk∗, (ci,1, . . . , ci,5)i∈[n], π
zk, σ∗) as the challenge ciphertext to the adversaryA.

Query II. After receiving the challenge, A again issues decryption queries. These queries

are responded to as in the Query I phase.

Guess. WhenA outputs a guess b′ and halts, B outputs 1 if b = b′ and 0 if b , b′.

Noticing that when B receives the PKENO challenge ciphertext with the plaintext M0,

the view of the adversary A is identical to that of G3,ℓ−1, and when B receives the

challenge of M1, the view is identical to that of G3,ℓ. Hence Pr[S 3,ℓ−1] − Pr[S 3,ℓ] =
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Pr[B → 1|the challenge is of M0] − Pr[B → 1|the challenge is of M1], whose right-hand

side is negligible, due to the assumption that the PKENO scheme is selective-label weak

chosen-ciphertext secure. □

The above lemmas complete the proof of Theorem 5.13. □

Theorem 5.17. The construction satisfies the strong decryption consistency.

Proof. Let a ciphertext C = (vk, (upk∗i )i∈[n], k, (ci,1, . . . , ci,5), πzk, σ) and two sets of decryption

shares S = { (upk1, µ̂1), . . . , (upkk, µ̂k) }, and S ′ = { (upk′1, µ̂
′
1), . . . , (upk′k, µ̂

′
k) } be the output of

the decryption-consistency adversary. In the following we will argue that assuming every 2k

decryption shares are verified as ⊤valid, the two sets S and S ′ are combined to the same result,

regardless of the form the shares.

Firstly, due to the construction of the DVerify algorithm, we can assume that we only have

one of the following two cases:

• µ̂1 = · · · = µ̂k = µ̂
′
1 = · · · = µ̂′k = ⊥, or

• µ̂1, . . ., µ̂k, µ̂′1, . . ., µ̂′k are all parsed as (m̂1, π
(u)
1 , π(v)

1 ), . . ., (m̂k, π
(u)
k , π(v)

k ), (m̂′1, τ
(u)
1 , τ(v)

1 ),

. . ., (m̂k, τ
(u)
k , τ(v)

k ), respectively.

For the first case, both S and S ′ are combined to ⊥, hence in this case the adversary never

violate the decryption consistency of the scheme. For the second case, due to the perfect

soundness of the Groth-Sahai proof system, there exists r1, . . ., rn, s1, . . ., sn, a1, . . ., ak−1 ∈
Zp, and m ∈ G that satisfies

ci,1 = ui
ri ,

ci,2 = vi
si ,

ci,5 = g
rigsi (gik−1

)ak−1 · · · (gi2 )a2 (gi)a1 m,

where ui and vi is the part of the user public key upki = (ui, vi,Ui,Vi). Furthermore, due to

the committing property of the PKENO scheme, we have that for all j ∈ [k]

m̂ j = (gik−1
)ak−1 · · · (gi2 )a2 (gi)a1 m
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with i satisfying upk j = upk∗i , and similarly for all j ∈ [k]

m̂′j = (gik−1
)ak−1 · · · (gi2 )a2 (gi)a1 m

with i satisfying upk′j = upk∗i . These equations ensure that the two sets S and S ′ contain

shares which are honestly derived from the common polynomial ak−1Xk−1+ · · ·+a1X+logg m,

which further ensures that S and S ′ will be combined to the same decryption result. □

5.5 Generic Construction of TPKE with the Strong

Decryption Consistency

In this section, we present the third proposed scheme, which achieves the strong decrytption

consistency or the decrytption consistency defined by Boneh, Boyen, and Halevi [BBH06].

Let us consider the k-out-of-n setting. The basic idea behind this construction is that if

k servers (but not n servers) cooperating in decryption are able to recover all the shares,

it is possible to ensure the stronger decrytption consistency. This is because in this way

we can avoid the following situation: even though some k servers receive apparently valid

shares, that is, they lie on a common degree-(k−1) polynomial, another coalition of k servers

receives obviously invalid shares, namely, shares that lie on a higher-degree polynomial. This

situation was unavoidable in the construction in Sect. 5.3 and had it suffer the weaker notion

of decrytption consistency. However, if a construction allows a coalition of k servers to

recover all the shares, they are able to convince themselves that any coalition other than them

also recovers the same set of shares and that they will agree on the (in)validity of the shares

in particular.

Obviously, if we use Shamir’s secret sharing scheme (or even its variation) it is not very

straightforward to achieve the two properties that (i) cooperating k servers are able to recover

all the shares, and (ii) any coalition of k−1 servers gains no information on the original secret.

Fortunately, such a structure of distributing shares is studied in a different context, which is

also useful in our current purpose. Ito, Saito, and Nishizeki showed the possibility of realizing

an arbitrary (monotone) access structure by showing that such a scheme is constructed form
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an t-out-of-t secret sharing scheme [ISN93]. Their scheme first generates t-out-of-t shares

of the secret and assigns different subsets of t shares to different parties, in such a way that

no unauthorized coalition of the parties cannot complete the t shares whereas any authorized

coalition can do that.*2

We adopt this technique for distributing decryption keys among the decryption servers,

instead of distributing shares. Namely, at the setup, our scheme generates t instances of the

PKENO scheme and assigns different subsets of t decryption keys to different decryption

servers in the exactly same manner as the Ito-Saito-Nishizeki scheme assigns t shares to the

parties. The ciphertext just consists of t ciphertexts of PKENO which respectively encrypts t-

out-of-t shares of the actual plaintext. In this way, any coalition of k servers is able to recover

the entire shares and is able to confirm that another coalition of k servers will recover the

same set of shares.

The description of the scheme is as follows. Let n and k be integers with n ≥ k ≥ 1. Let

[n] = {1, . . . , n}. We denote byU the family of all size-(k−1) subsets of [n] and byUi its sub-

family that contains only the sets that does not contain i, that is,U = {U ⊆ [n] | |U | = k−1 },

andUi = {U ⊆ [n] | |U | = k − 1, i < U }.*3

ThKg(1λ, n, k). Generate
(

n
k−1

)
pairs of PKENO keys by running (pkU , dkU) ← NOKg(1λ)

for U ∈ U and set pk = (pkU)U∈U , vk = ∅, and ski = (dkU)U∈Ui .

ThEnc(pk,m). Run SgKg(1λ) to obtain a pair (vksots, sksots) of the one-time signature

scheme. Let pk be parsed as (pkU)U∈U . Generate
(

n
k−1

)
-out-of-

(
n

k−1

)
shares of m

such that m =
⊕

U∈U mU and encrypt each shares as CU ← NOEnc(pkU , vksots,mU)

for all U ∈ U. Then run SgSign(sksots, ⟨CU⟩U∈U) to obtain σsots. Finally output

C = (vksots, (CU)U∈U , σsots) as the ciphertext.

*2 More formally this assignment will be done as follows. Let A be the family of all maximum unauthorized

sets. The dealer divides the original message into |A| shares by |A|-out-of-|A| and associates each share

respectively with different unauthorized set A ∈ A. Each party i receives all the shares associated to the

unauthorized set that does not contain i.
*3 For example, if (k, n) = (2, 3), these sets is represented as U = {1, 2, 3}, U1 = {2, 3}, U2 = {1, 3}, and

U3 = {1, 2}.
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ThDec(pk, i, ski,C). Let dki and C be parsed as (skU)U∈Ui and (vksots, (CU)U∈U , σsots), re-

spectively. If SgVerify(vksots, ⟨CU⟩U∈U , σsots) = 0, output (i,⊥). Otherwise compute

mU ← NODec(dkU , vksots,CU) and πU ← NOProve(dkU , vksots,CU) for all U ∈ Ui,

and then output (i, (mU , πU)U∈Ui ).

ThVerify(pk, vk,C, µ). Parse C as (vksots, (CU)U∈U , σsots) and µ as (i, µ̂). Output ⊤valid if one

of the following conditions holds.

1. It holds that µ̂ = ⊥ and SgVerify(vksots, (CU)U∈U , σsots) = 0, or

2. µ̂ is parsed as (mU , πU)U∈Ui and NOProve(pkU , vksots,CU , πU) = 1 for all U ∈ Ui.

Otherwise output ⊥.

ThCombine(pk, vk,C, µ1, . . . , µk). Parse µ j as (i j, µ̂ j) for all j ∈ [n]. Output ⊥ if µ̂ j = ⊥
for some j. Otherwise parse µ̂ j as µ̂ j = (m j,U , π j,U)U∈U j for all j ∈ [k]. Output ⊥ if

m j,U = ⊥ for some j and U. Output⊥ if m j,U , m j′,U for some j, j′, and U. Otherwise,

output m =
⊕

U∈U mU in which mU = m j,U with arbitrary j ∈ [k] (the choice of j’s

does not affect the output).

Extension to Arbitrary Access Structures. The scheme is easily extended to support any

(monotone) access structure. The extension is done by simply replacing the assignment of

decryption keys to each decryption server with that described by the Ito-Saito-Nishizeki con-

struction. The security proof is done in a quite similar way to the threshold version. Thus

we omit the proof for the general access structure case but only present the proof for the

threshold case.

Security. Security of the proposed scheme is described as the following theorems. We

emphasize that contrary to the scheme in the previous section, the construction in this section

provides the strong decrytption consistency.

Theorem 5.18. The construction is chosen-ciphertext secure if the PKENO scheme is

selective-label weakly chosen-ciphertext secure and the one-time signature scheme is

strongly unforgeable.

Proof. The proof proceeds with the following sequence of games.
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Game 0. Game 0 is identical to the game for the definition of the chosen-ciphertext security

of TPKE.

Game 1. In Game 1, the decryption oracle is changed to reject any decryption queries that

reuse the verification key from the challenge ciphertext.

Game 2. Let U∗ be the set of corrupted servers. In this game, the ciphertext CU∗ in the

challenge ciphertext is replaced with an encryption of the all-zero string.

Let S i be the event that in Game i the adversary successfully guess the bit flipped by the

challenger. In the following lemmas we prove that the changes described above changes the

probability of the successful guess by the adversary.

Lemma 5.19. Provided that the one-time signature scheme is strongly unforgeable, we have

that Pr[S 0] − Pr[S 1] is negligible.

Proof (of Lemma 5.19). The proof will be done in a similar way to that of Lemma 5.8. In

this case we also employ the difference lemma with the event F defined to the case in which

the adversary issues a legitimate (i.e., different from the challenge) decryption query which

reuses the verification key of the one-time signature scheme from the challenge and includes

a valid one-time signature. By the difference lemma we obtain that |Pr[S 0]−Pr[S 1]| < Pr[F].

Finally due to the strong unforgeability of the one-time signature scheme we conclude Pr[F]

is negligible. □

Lemma 5.20. Provided that the labeled PKENO scheme is selective-label weakly chosen-

ciphertext secure, we have that Pr[S 1] − Pr[S 2] is negligible.

Proof (of Lemma 5.20). Let A be an arbitrary adversary of the proposed scheme. To prove

this lemma we construct a simulator B that interacts with A and tries to break the chosen-

ciphertext security of the PKENO scheme. The construction of B is as follows.

Initialize. The simulatorB receives the set U∗ of servers to be corrupted from the adversary

A.

Setup. The simulator B generates keys (vk∗sots, sk∗sots) of the one-time signature scheme by

running SgKg(1λ), sends vk∗sots for its own challenger as the target label, and receives a
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public key ek∗ from the challenger. Then the simulator B generates
(

n
k−1

)
− 1 key pairs

by running (ekU , dkU) ← NOKg(1λ) for all U ∈ U \ {U∗}. Finally, the simulator sets

ekU∗ ← ek∗, pki ← (ekU)U∈Ui for all i ∈ [n], vk = ∅, ski = (dkU)U∈Ui for all i ∈ U∗ and

sends pk = (ekU)U∈U , vk, and (ski)i∈U∗ to the adversaryA.

Query I. When the adversary A issues a query (i,C) where C = (vksots, (CU)U∈U , σsots),

the simulator responds as follows. If vksots = vk∗sots, the simulator responds with (i,⊥).

Otherwise, for all U ∈ Ui the simulator B computes mU and πU by either running

NODec(dkU , vksots,CU) and NOProve(dkU , vksots,CU) for U , U∗ or querying CU

with label vksots to the decryption-and-proof oracle for U = U∗. The simulator re-

sponds with (i, (mU , πU)U∈Ui ).

Challenge. When the adversary A submits two messages m0 and m1, the simulator pro-

ceeds as follows. The simulator first chooses a random bit b ∈ {0, 1} and
(

n
k−1

)
− 1,

also chooses random messages mU for all U ∈ U \ {U∗}, and encrypts these mU by

running NOEnc(ekU , vk∗sots,mU) to obtain CU . The simulator submits M0 = mb ⊕⊕
U∈U\{U∗}mU and M1 = 0|mb | to receive the challenge ciphertext. When the simulator

then receives the challenge ciphertext C∗, which is an encryption of either the correct

share of mb or garbage under the label vk∗sots, the simulator sets CU∗ to be C∗, computes

a one-time signature σ∗sots of ⟨CU⟩U∈U by running SgSign(sk∗sots, ⟨CU⟩U∈U), and sends

(vk∗sots, (CU)U∈U , σ
∗
sots) back to the adversaryA.

Query II. Again the adversary A issues decryption queries, which are responded as in the

previous phase by the simulator B.

Guess. Finally the adversaryA outputs a bit b′ and halts. The simulator outputs 1 if b = b′

and 0 otherwise.

In this simulation, if B receives the challenge ciphertext C∗ of M0 the adversary’s view is

identical to that of Game 1, while of M1 that is identical to Game 2. This fact shows that

Pr[S 1] − Pr[S 2] = Pr[B → 1|b = 0] − Pr[B → 1|b = 1]. It is negligible because of the

assumption that the PKENO scheme is selective-label weakly chosen-ciphertext secure. □

Finally we show that in the last game the adversary has no advantage on guessing the
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challenger’s bit.

Lemma 5.21. Pr[S 2] = 1/2.

Proof (of Lemma 5.21). In Game 2, regardless of the bit generated by the challenger of the

TPKE scheme, all the PKENO ciphertexts are ciphertexts of either a randomly-chosen string

or the all-zero string. Thus the behavior of the challenger is independent from the bit b, and

it is information-theoretically hidden from the adversary. □

These three lemmas completes the proof of the actual theorem. □

Theorem 5.22. The construction has the strong decryption consistency if the PKENO scheme

is strongly committing.

Proof. Let A be an adversary that attacks the decrytption consistency property of the above

generic construction. We construct a simulator B that breaks the committing property of the

PKENO scheme by interacting withA. The description of is as follows:

Setup. The simulator B receives a encryption/decryption key pair (ek, dk) of the PKENO

scheme from its own challenger. Then B sets up the TPKE scheme as follows: B

chooses random U∗ from the family U and sets ekU∗ ← ek and dkU∗ ← dk. For all

U ∈ U \ {U∗}, B runs NOKg(1λ) to obtain (ekU , dkU). Then B sets pk ← (ekU)U∈U ,

vk ← ∅, and ski ← (dkU)U∈Ui for all i ∈ [n], and sends pk, vk, sk1, . . ., skn to the

adversaryA.

Forge. When the adversary outputs a triple (C, S , S ′), the simulator B proceeds as fol-

lows. The simulator B first verifies that (C, S , S ′) satisfies the winning condition

of the decrytption consistency game. If the condition does not satisfied, the simu-

lator aborts. Notice that if B does not abort, we have that ThCombine(pk, vk,C, S ) ,

ThCombine(pk, vk,C, S ′), since the ThVerify algorithm of our construction concerned

never outputs ⊤invalid. Then the simulator B finds tuple (L, c,m, π,m′, π′) that breaks

the committing property of the PKENO scheme as follows: (i) when both S and S ′

claim non-⊥ result, we have that
⊕

U∈U mU ,
⊕

U∈U m′U . It implies that for some

U we have that mU , m′U with valid proofs πU and π′U to a single ciphertext CU .
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Let U′ be the set satisfying this condition. In this case B outputs (L, c,m, π,m′, π′) =

(vksots,CU′ ,mU′ , πU′ ,m′U′ , π
′
U′ ). (i) The other case is that only one of S and S ′ claims

⊥ and the other claims a non-⊥ plaintext. Let S claims m as the decryption result and

S ′ claims ⊥. In this case, for all U ∈ U it holds that mU , ⊥ and for some U ∈ U
it holds that m′U = ⊥. Let U′ be the set such that m′U = ⊥. The simulator B outputs

(L, c,m, π,m′, π′) = (vksots,CU′ ,mU′ , πU′ ,⊥, π′U′).

The simulator B successfully breaks the committing property of the PKENO scheme when

the adversary A breaks the decrytption consistency property and U∗ = U′. Since the distri-

bution of U∗ is independent from the view ofA, the success probability of B is the advantage

ofA divided by
(

n
k−1

)
, which is even negligible by the assumption of the committing property

of the PKENO scheme. □

5.6 Instantiating PKENO Supporting Labels

In this section we present two specific instantiations of labeled PKENO for completeness.

The schemes can be easily obtained by tweaking the TPKE schemes by Arita and Tsuru-

dome [AT09]. We also note that Galindo et al. have already showed a generic construction

of PKENO from TPKE with appropriate security [GLF+10] and that our instantiations are al-

most obtained by instantiating their generic construction with the Arita-Tsurudome schemes.

Despite this we present concrete descriptions of our instantiations because our schemes ex-

plicitly treat the “label” functionality, which is not carried out by Galindo et al.

5.6.1 Instantiation from the Decision Bilinear Diffie-Hellman Assump-

tion

The first instantiation is based on the decision bilinear Diffie-Hellman assumption. The con-

crete construction is as follows:

NOKg(1λ). Run G(1λ) to obtain the bilinear-groups parameter (p,G,GT , e, g). Choose ran-
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dom x ← Zp and random elements v, z ← G, sets u = gx, ek = (p,G,GT , e, g, u, v, z)

and dk = x. Output (ek, dk).

NOEnc(ek, L,m). Choose a random integer r ← Zp. Computes c1 ← gr, c2 ← (uLv)r, and

c3 ← e(u, z)rm. Output (c1, c2, c3).

NODec(dk, L, c). Parse c as (c1, c2, c3). Verify that the equation e(g, c2) = e(c1, uLv) holds,

otherwise output ⊥. If the equation holds, output c3/e(c1
x, z).

NOProve(dk, L, c). Parse c as (c1, c2, c3). Verify that the equation e(g, c2) = e(c1, uLv) holds,

otherwise output ⊥. If the equation holds, output c1
x.

NOVerify(pk, L,m, c, π). Parse c as (c1, c2, c3). If m = ⊥, π = ⊥, and e(g, c2) , e(c1, uLv),

output 1. If m , ⊥ and π , ⊥, then output 1 when e(g, π) = e(c1, u), e(g, c2) =

e(c1, uLv), and c3/m = e(π, z). Otherwise, output 0.

The scheme is proven to be secure under the decision bilinear Diffie-Hellman assumption.

Theorem 5.23. The above construction is selective-label weakly chosen-ciphertext secure

provided the decision bilinear Diffie-Hellman assumption holds.

Proof. Let A be the adversary which attacks the DBDH-based instantiation with advantage

ϵ. We construct a simulator B that solves the decision bilinear Diffie-Hellman problem with

the same advantage. The description of B is as follows.

Initialize. Given a problem instance (g, gα, gβ, gγ,T ), in which T is either e(g, g)αβγ or a

random element from GT , B runsA with input the security parameter 1λ and receives

a label L∗.

Setup. The simulator B then sets up the public key ek = (g, u, v, z) for the scheme, where

u← gβ, v← u−L∗gt with random t ∈ Zp, and z← gγ. The simulator B sends ek to the

adversaryA.

Query I. When A issues a decryption-and-proof query (L, c) where c = (c1, c2, c3), B re-

sponds as follows. If the query does not satisfy the equation e(g, c2) = e(c1, uLv), B
responds with (⊥,⊥). Otherwise B computes π← (c2/c1

t)1/(L−L∗) and m← c3/e(π, z),

and returns (m, π) toA. The simulation is perfect, that is,A’s view in interaction with

B is identical to the view in interaction with the challenger in the security definition.
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Actually, given that the equation (g, c2) = (c1, uLv) holds, we have that c1 = gr and

c2 = (uLv)r for some r ∈ Zp. Furthermore, since A is restricted to issue queries that

satisfy L , L∗, from a simple calculation we also have that π = ur. From this it follows

that the simulation is perfect.

Challenge. WhenA issues a pair (m0,m1), B generates the challenge ciphertext (c∗1, c
∗
2, c
∗
3)

by letting c∗1 ← gα, c∗2 ← (gα)t, and c∗3 ← T · mb with random b ← {0, 1}. Then B
returns c = (c1, c2, c3) to A. The simulation is again perfect except the distribution

of c∗3, which is perfect under the condition that T = e(g, g)αβγ. This follows from

corresponding α to the randomness r in the (challenge) ciphertext and noticing that

the ciphertext is generated under the label L∗. We also note that if T is a random

element no information on b is given to the adversary in a information-theoretical

sense.

Query II. In this phase A again issues decryption-and-proof queries, to which B responds

as in the previous phase.

Guess. Finally the adversaryA outputs a guess b′. The simulator B outputs 1 if b = b′ and

outputs 0 otherwise.

The above description shows that if T = e(g, g)αβγ, B outputs 1 with probability 1/2 + ϵ,

whereas if T is a random element outputs 1 with probability 1/2. This shows that the ad-

vantage of B in solving the DBDH problem is (1/2 + ϵ) − 1/2 = ϵ, which completes the

proof. □

Theorem 5.24. The DBDH-based construction is strongly committing.

Proof. Given two message-proof pairs (m, π) and (m′, π′) for a ciphertext c = (c1, c2, c3) and

a common label L, we argue that if two proofs π and π′ are both valid, two messages are

equal (with probability 1). Firstly, the case that only one of m and m′ is ⊥ and the other is

not, will never occur. This is simply because that the proof for ⊥ implies that the equation

e(g, c2) = e(c1, uLv) dose not hold and the proof for non-⊥ implies that the equation does hold.

Hence we assume that neither m nor m′ are⊥. Since the equations e(g, π) = e(c1, u) = e(g, π′),

which are verified to hold in the NOVerify algorithm of the construction, we have that π = π′
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due to the non-degenerate (and bijective when one argument is fixed) property of the bilinear

map e. It finally implies that m = c3/e(π, z) = c3/e(π′, z) = m′, in which the first and third

equations come from the equations verified in the NOVerify algorithm, and the second from

the fact π = π′. □

5.6.2 Instantiation from the Decision Linear Assumption

The other instantiation is based on the decision linear assumption. The construction is as

follows:

NOKg(1λ). Run G(1λ) to obtain the bilinear-groups parameter (p,G,GT , e, g). Choose ran-

dom x, y ← Zp and random elements U, V ← G, sets u = gx, v = gy, ek =

(p,G,GT , e, u, v,U,V) and dk = (x, y). Output (ek, dk).

NOEnc(ek, L,m). Choose a random integer r, s ← Zp. Computes c1 ← ur, c2 ← vs,

c3 ← (gLU)r, c4 ← (gLV)s, and c5 ← gr+sm. Output (c1, c2, c3, c4, c5).

NODec(dk, L, c). Parse c as (c1, c2, c3, c4, c5). Verify the equation e(c3, u) = e(gLU, c1)

and e(c4, v) = e(gLV, c2) hold, otherwise output ⊥. If the equation holds, output

c5/c1
1/xc2

1/y.

NOProve(dk, L, c). Parse c as (c1, c2, c3, c4, c5). Verify that the equation e(c3, u) =

e(gLU, c1) and e(c4, v) = e(gLV, c2) hold, otherwise output ⊥. If the equation holds,

output π = (π(u), π(v)) = (c1
1/x, c2

1/y).

NOVerify(pk, L,m, c, π). Parse c as (c1, c2, c3, c4, c5). If m = ⊥, π = ⊥, and either e(c3, u) ,

e(gLU, c1) or e(c4, v) , e(gLV, c2) hold, output 1. If m , ⊥ and π is parsed as (π(u), π(v)),

then output 1 when e(c1, g) = e(u, π(u)), e(c2, g) = e(v, π(v)), e(c3, u) = e(gLU, c1),

e(c4, v) = e(gLV, c2), and c5/m = π(u)π(v). Otherwise output 0.

Security proofs can be done in a similar way to the DBDH-based construction. Since the

security proof for this scheme will be done almost similarly to the DBDH-based scheme, we

omit the formal proof for the DLIN-based instantiation.

Theorem 5.25. The DLIN-based construction is selective-label weakly chosen-ciphertext
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secure provided the decision linear assumption holds.

Theorem 5.26. The DLIN-based construction is strongly committing.

5.7 Conclusion

We presented three constructions of TPKE with decryption consistency. The first and second

scheme is in fact dynamic TPKE. The first scheme is actually a generic construction from

PKENO with the weak decryption consistency. The second scheme deviates from a generic

construction, while providing a shorter ciphertext length than the first scheme and the strong

decryption consistency. These two schemes are the first dynamic TPKE with the (weak or

strong) decryption consistency which do not rely on neither q-type assumptions or random

oracles. The third scheme puts forward the possibility of a generic construction of TPKE with

the strong decryption consistency, and show that it is possibly at cost of being a non-dynamic

scheme and allowing only a smaller (logarithmic) number of decryption servers.
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Part III

Applying Group Signature to a

New Extension of Public-key

Encryption





Chapter 6

Restrictive Public-key Encryption

In this chapter, we present a new extension of public-key encryption, which we name restric-

tive public-key encryption scheme. This extension has several useful application, to name a

few, multiparty computation secure against malicious adversary.

This contribution is categorized as the type (II) in the Sect. 1.1.3. The notion of restrictive

PKE is obtained by translating the revocation extension*1 (and its related security notion) of

group signature to those of public-key encryption, via the generic construction of (ordinary)

public-key encryption from group signature.

6.1 Introduction

6.1.1 Background and Motivation

Public key encryption schemes are required to hide even partial information of plaintexts.

This strong requirement is formalized as the notion of semantic security [GM84], and it is

currently considered as even one of the lowest requirement for encryption scheme.

As a consequence of the strong secrecy requirement of semantic security, no one can detect

the ciphertext which encrypts some particular plaintexts. This paper considers how to add

*1 The revocation extension of group signature allows the group manager to revoke the membership of group

member securely. Once the membership of a group member is revoked, the member no longer able to generate

a signature that verified as valid by the verification algorithm.

– 121 –



such a functionality to public key encryption without losing reasonable secrecy of encrypted

plaintexts. To formally treat this functionality, we define the notion of restrictive public

key encryption (RPKE). RPKE allows a trusted third party to specify a set of prohibited

messages, and anyone can detect a ciphertext which encrypts one of the prohibited messages.

Moreover, this verification process is required not to leak information about the encrypted

plaintext except whether it is a prohibited messages or not.

Such a functionality can be realized using well-known NIZK technique, like a general

NIZK through the Hamilton path problem. In this paper, we explore further efficient construc-

tion, and proposes a scheme that achieves shorter ciphertext whose length does not increase

as the number of allowed messages increase.

One of the application of RPKE is a countermeasure against abuse of a public key infras-

tructure by terrorists. This is achieved by disallowing encryption of crime-related messages,

and forbid terrorists from using a public key infrastructure to planning terrorism or sending

instruction for terrorist activities. Another application may be a format-checking in electronic

voting, by disallowing encryption of irregular format ballots. In this application, only encryp-

tions of correctly-formatted voting is allowed, and gateways can dispose any encrypted ballot

of irregular format without violating privacy of voters. Parental control and SPAM-mail

filtering are further potential application of RPKE. Restrictive PKE would be also useful in

multiparty computation in which parties sends ciphertexts whose plaintexts should have some

specific formats. In such a case a malicious participants sends encryption of irregular-format

plaintexts which will cause several security issues. A RPKE scheme allows honest parties to

detect such irregular ciphertexts.

6.1.2 Contributions

In this paper, we give a formal definition of RPKE. We also give efficient constructions of

RPKE. The definition even captures very strong security of chosen-ciphertext security. The

construction utilizes the techniques of Teranishi et al. [TFS09], Boudot [Bou00], and Nakan-

ishi et al. [NFHF10], which techniques are all developed in the context of group signature

with revocation, in order to obtain an efficient construction. The construction also has a
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capability of updating the message space specified by the authority. We again emphasize

that the construction given in this paper is quite more efficient than the trivial construc-

tion employing the general NIZK technique through the Hamilton path problem and even

more efficient than a simple OR-proof based construction. More concretely, the encryp-

tion cost, the verification cost, and the ciphertext length is constant (independent from the

number of allowed messages and the number of prohibited messages), whereas in the OR-

proof construction they all linearly increase as allowed messages increase. This efficiency is

achieved by the use of techniques of Teranishi et al. [TFS09], Boudot [Bou00], and Nakan-

ishi et al. [NFHF10]. The proposed construction uses the BB signature [BB08] and the BBS+

signature [ASM06, BBS04, FI06] and further uses non-interactive proofs proving possession

of the signature. This non-interactive proofs are constructed from novel algebraic properties

of the BB signature and the BBS+ signature. Furthermore, we also briefly discuss the OR-

proof construction as an alternative construction suitable for the case of small number of the

permitted messages.

6.1.3 Related Work

Verifiable encryption [CD00, CS03a, TV09] is one of the most widely known ways to restrict

contents under the secret channel and enables anyone to verify whether encrypted messages

satisfy certain restrictions or not without leaking other information about plaintexts. How-

ever, verifiable encryption does not have the capability of disallowing to encrypt some spec-

ified messages. Fuchsbauer and Pointcheval [FP09] proposed a techniques to verify whether

an encrypted plaintext satisfies some pairing-product equation, but it also lacks a capability

of restricting the message space. Searchable encryption [BDCOP04] seems to be a promis-

ing technique to construct RPKE, that is, once the authority publicizes trapdoor information

corresponding to some prohibited keyword, anyone can detect ciphertexts that encrypt one of

the prohibited keyword. However, in order to update the message space publicized by the au-

thority, this approach requires to revoke the trapdoor previously publicized. Since all known

searchable encryption schemes does not have such a capability, searchable encryption cannot

be directly adopted to the RPKE context. Another approach is publicizing all trapdoors for
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allowed messages, in order to recover encrypted message by using this trapdoor information

and detecting prohibited messages. However, this approach is also inappropriate, because the

information of encrypted message is completely leaked due to the trapdoor information publi-

cized by the authority. González Nieto et al. [GNMP+12] proposed a primitive called publicly

verifiable ciphertexts [GNMP+12], in which the consistency check of chosen-ciphertext se-

cure encryption can be outsourced from the receiver, and a ciphertext can be converted into

another form which still guarantees chosen-plaintext security.

There are several recent development on the techniques for efficient NIZK proof applica-

ble to broad classes of languages (such as the Groth-Sahai proofs [GS08]). These techniques

can achieve quite high security level (as its security can be proved without relying on ran-

dom oracles from standard assumption), without loosing fairly practical efficiency. However,

these techniques do not achieve really practical performance comparing to the techniques

developed in the random oracle model such as the Fiat-Shamir transformation.

6.2 Restrictive Public Key Encryption

6.2.1 Motivating Discussion

First, to control the contents under secure communications, we consider a scenario as follows.

Let us consider four entities: a message restriction authority (MRA), a verifier, a sender, and

a receiver. The MRA indicates a restricted message space MS (a set of allowed messages),

and publicizes the corresponding public verification key to verifiers and senders. A verifier

(which is assumed to be a gateway) inspects whether a ciphertext sent by the sender is an

encryption of a value belonging to the message space MS. We require that any information

about a plaintext is not revealed from a ciphertext, except the above information. In addition,

a verifier inspects all ciphertext, and disposes it if it does not pass the verification process.

In this scenario, the MRA can control the encrypted contents without compromising user

privacy.
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6.2.2 Formal Definitions

Definition 6.1. A restrictive public key encryption (RPKE) consists of six algorithms

(MRASetup,RKeyGen,MSSetup,REnc,VerifyMS,RDec) such that:

MRASetup: The key generation algorithm for the MRA takes as input a security parameter

κ ∈ N, and returns a public key pkMRA and a private key skMRA.

RKeyGen: The receiver key generation algorithm takes as input pkMRA, and returns a public

key pkdec and a private key skdec.

MSSetup: The public verification key generation algorithm takes as inputs pkMRA, skMRA,

and MS , and returns the public verification key pkMS.

REnc: The encryption algorithm takes as inputs pkMRA, pkdec, MS , pkMS, and a message

M, and returns a ciphertext C. If M < MS , then the algorithm returns ⊥.

VerifyMS: The public verification algorithm takes as inputs pkMRA, pkd, MS , pkMS, and C,

and returns a bit 1 or 0.

RDec: The decryption algorithm takes as inputs pkMRA, pkd, skd, MS , pkMS, and C, and

returns M or ⊥.

As a correctness, a RPKE scheme has to satisfy that for any κ ∈ N, any restric-

tive message space MS, any message M ∈ MS, (pkMRA, skMRA) ← MRASetup(1κ),

(pkd, skd) ← RKeyGen(pkMRA), pkMS ← MSSetup(pkMRA, skMRA,MS ), and C ←
REnc(pkMRA, pkd,MS , pkMS,M), it holds that RDec(pkMRA, pkd, skd,MS , pkMS,C) = M

and VerifyMS(pkMRA, pkd,MS , pkMS,C) = 1.

Here, we describe an implementation of a scenario to control the contents under se-

cure communications (presented in Sect. 6.2.1) using RPKE notations. The MRA runs

MRASetup(1κ), publicizes its public key pkMRA, and keeps its secret key skMRA. The MRA

indicates an allowed message space MS , runs MSSetup(pkMRA, skMRA,MS ), and publicizes

pkMS. A receiver runs RKeyGen(pkMRA) and publicizes its public key pkdec, and keeps

its corresponding secret key skdec. For a plaintext M, a sender computes a ciphertext C
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by running REnc(pkMRA, pkd,MS , pkMS,M), and sends C to a verifier (which is assumed

to be gateway). By using only public values pkMRA, pkdec, and pkMS, a verifier checks

whether M ∈ MS or not without decrypting C. In addition, this procedure should be done

without any interaction with other entities. If VerifyMS(pkMRA, pkd,MS , pkMS ∗ ,C) = 1

(i.e., M ∈ MS ), then the verifier forwards C to the corresponding receiver. Otherwise, if

VerifyMS(pkMRA, pkd,MS , pkMS ∗ ,C) = 0 (i.e., M < MS or C is an ill-formed value), the

verifier disposes C. The receiver runs RDec(pkMRA, pkd, skd,MS , pkMS,C), and obtains M.

The receiver does not have to consider MS for decrypting C. In the above scenario, The

MRA and the verifier cannot obtain any information about a plaintext M from a ciphertext,

except whether M ∈ MS or not. If MS is changed updated to MS ′, then the MRA runs

MSSetup(pkMRA, skMRA,MS ′), and publicizes pkMS ′ again. And then pkMS′ is broadcasted

to all users.

Here we define verification soundness, which requires that all dishonestly-generated ci-

phertext never passes the verification process of VerifyMS. Furthermore, this notion requires

even a ciphertext which is honestly-generated with MS not to pass the verification process

with a different message space MS′. The latter prevents a sender from reusing a previous

public verification key pkMS. To guarantee that even a receiver cannot produce such a in-

valid (dishonestly-generated but passing the verification) ciphertext, we allow A to obtain

(pkd, skd).

Definition 6.2. A RPKE is said to satisfy verification soundness if the advantage

Pr[(pkMRA, skMRA)← MRASetup(1κ);

(pkdec, skdec)← RKeyGen(pkMRA);

(MS ∗, pkMS ∗ ,C∗)← AMSSetup(pkMRA,skMRA,·)(pkMRA, pkdec, skdec);

: VerifyMS(pkMRA, pkd,MS ∗, pkMS ∗ ,C∗) = 1

∧ RDec(pkMRA, pkd, skd,MS ∗, pkMS ∗ ,C∗) < MS ∗

∧ pkMS ∗ is received from MSSetup oracle by query MS∗]

is negligible for any PPT adversaryA.
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Next, we define indistinguishability with restrictive message space under chosen ciphertext

attack (IND-MSR-CCA). To guarantee that even the MRA cannot decrypt a ciphertext, we

assume thatA can obtain (pkMRA, skMRA).

Definition 6.3. A RPKE is said to satisfy IND-MSR-CCA if the advantage

Pr[(pkMRA, skMRA)← MRASetup(1κ);

(pkdec, skdec)← RKeyGen(pkMRA);

(M∗0,M
∗
1,MS∗)← ARDec(pkMRA,pkdec,skdec,·,·,·)(pkMRA, skMRA, pkd);

b← {0, 1}; pkMS∗ ← MSSetup(pkMRA, skMRA,MS∗);

C∗ ← REnc(pkMRA, pkd,MS∗, pkMS∗ ,Mb);

b′ ← ARDec(pkMRA,pkdec,skdec,·,·,·)(s,C∗) : b = b′] − 1/2

is negligible for any PPT adversary A which satisfies the following conditions: (1) The

adversaryA does not query the decryption oracle RDec(pkMRA, pkd, skd, ·, ·, ·) with the query

(MS∗, pkMS∗ ,C
∗) after receiving the challenge ciphertext C∗ and (2) M∗0, M∗1, and MS ∗ output

by the adversaryA always satisfy that M∗0, M∗1 ∈ MS ∗.

6.3 Useful Techniques

In this section, we explain the techniques used in the main scheme presented in Sect. 6.4,

which are Teranishi et al., Boudot, and Nakanishi et al. [Bou00, NFHF10, TFS09]. For ease

of understanding at first we explain the proposed scheme in a somewhat abstract manner, and

then we describe the scheme in detail.

Let [1,N] = {1, . . . ,N} be a set of all possible messages (may or may not be prohibited)

and r be the number of all prohibited messages. We say that the sequence (m1, . . . ,mr) is the

consecutive prohibited messages of MS when {m1, . . . ,mr} is the all prohibited messages of

MS and it holds that m1 < · · · < mr. Later (m1, . . . ,mr) denotes the consecutive prohibited

messages of MS, where MS is the allowed message space implicit in the context.

From the highest perspective, the proposed construction is to encrypt a plaintext M by
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computing c = PEnc(pkd,M; u) and adding a non-interactive proof π that proves that M ∈

MS, and constitute a whole ciphertext (c, π) as c = PEnc(pkd,M; u) and

π = NIZK{ (M, u) : c = PEnc(pkd,M; u) ∧ M ∈ MS }.

For example, π is a OR-proof (through Fiat-Shamir heuristics) as NIZK{M : (M = M1) ∨
· · · ∨ (M = MN−r)}, however, the efficiency might linearly depend on the number of allowed

messages N−r. Or, when using inequality proof with OR-proof to construct a proof π, the ef-

ficiency increases linearly depends on the number of prohibited messages r. These construc-

tion does not provide satisfiable efficiency. To improve the efficiency of the construction, we

employ a technique developed by Nakanishi et al. [NFHF10]. Before explaining the Nakan-

ishi et al. technique, we explain two other technique developed by Teranishi et al. [TFS09]

and Boudot [Bou00], which are used as building blocks in the Nakanishi et al. technique.

6.3.1 Teranishi et al. Technique [TFS09]

Using the technique of Teranishi, Furukawa, and Sako [TFS09], we can reduce the compu-

tational complexity just mentioned above. Briefly speaking, Teranishi et al. technique is an

NIZK proof of knowledge that proves a secret knowledge ω is in the interval [1,N]. This

technique involves a signature scheme (SgKg,SgSign,SgVerify), and its NIZK proof has

the form of NIZK{(S , ω) : SgVerify(ω, S ) = 1} (where the witness is (S , ω)). This proof

system can be efficiently constructed by using an appropriate signature scheme (the BB sig-

nature [BB08] is used indeed) and its algebraic property.

When applying this technique to the RPKE construction, we get the following improve-

ment: In the setup, the MRA generates a verification/signing key pair and secretly possesses

the signing key. The MRA then publicizes signatures for all allowed messages. To encrypt a

message M, a sender uses the signature S publicized by the MRA and compute a ciphertext

c = PEnc(pkd,M; u) and a proof of knowledge

π = NIZK{ (M, u, S ) : c = PEnc(pkd,M; u) ∧ SgVerify(M, S ) = 1 }, (6.1)

which is attached to the ciphertext c. In this way, if a sender wants to encrypt an allowed
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message M ∈ MS, he can generate an acceptable π using SgSign(M) publicized by the

MRA. In contrast, if a sender wants to encrypt a prohibited message M′ < MS, he can-

not generate an acceptable proof π of the form above. This is because the MRA does not

publicize SgSign(M′), nor the sender cannot generate SgSign(M′) by himself (due to the

unforgeability of the signature), and thus the sender cannot generate the proof of knowledge

NIZK{(M′, S ) : SgVerify(M′, S ) = 1} due to the lack of the knowledge needed.

Furthermore, the computational cost of verification of the proof does not depend on

the number of allowed messages, because the proof of knowledge NIZK{(M, u, S ) : c =

PEnc(pkd,M; u)∧SgVerify(M, S ) = 1} used here does not depend on the number of allowed

messages.

6.3.2 Boudot Technique [Bou00]

The construction discussed above requires the MRA to publicize |MS| signatures. Mo-

tivated to reduce this large size of the public parameter, we then introduce Boudot’s

technique [Bou00]. Although the technique itself is not directly applied to our context of

the set-membership proof, it was shown to be applicable to this context by Nakanishi et

al. [NFHF10].

The technique is proving a relationship between hidden integers. The relationship proved

by this technique is the form ω = ω1
2 + ω2 in which ω, ω1, and ω2 are integers hidden

as witness. This technique can potentially reduce the size of the public parameter of our

construction.

The point is that when an arbitrary integer ω ∈ [1,N] is expressed as ω = ω1 + ω2, ω1 and

ω2 run the smaller ranges of [1,N1] = ⌊
√

N⌋ and [1,N2] = ⌊2
√

N⌋ respectively. Utilizing this

fact, if we want to prove that an encrypted plaintext is in the range [1,N] of this specific form,

we can directly apply the Boudot technique. Instead of publicizing N signatures of messages

1, . . ., N (as in the Teranishi et al. technique), the authority publicizes signatures on messages

1, . . ., N1 = ⌊
√

N⌋ and signature on 1, . . ., N2 = ⌊2
√

N⌋ (by a different signing key). A sender

who wants to prove his ciphertext encrypts a message ω is in the range [1,N] can construct

an non-interactive proof as follows: First he decomposes the message ω as ω = ω1
2 + ω2 in
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which ω1 ∈ [1,N1] and ω2 ∈ [1,N2]. Then prove the knowledge of the signatures on ω1 and

ω2 and simultaneously proves the relationship ω = ω1
2+ω2 between the two signed message

and the encrypted message.

This technique can only prove membership of a single interval [a, b], but it is not able to

prove membership of union of several intervals [a1, b1]∪[a2, b2]∪· · ·∪[an, bn]. The latter type

of proof system can be used for our purpose of constructing RPKE. Teranishi et al. provided

a technique for the set-membership proof of this type, which is explained in the next section.

6.3.3 Nakanishi et al. Technique [NFHF10]

The proposed scheme is obtained by combining Nakanishi et al.’s technique with the Boudot

techniques. Nakanishi et al.’s technique utilizes the fact that if all the prohibited messages are

denoted as m1, . . ., mr, and m1 < · · · < mr holds, then any allowed message M ∈ MS has a

unique “position” j such that m j < M < m j+1 holds, and any prohibited message M < MS has

no such position. Another fact that the technique relies on is that when N < p/2 holds, y > x

is logically equivalent to y − x mod p ∈ [1,N] for any x, y ∈ [1,N]. Using these properties,

one can prove the fact M ∈ MS by proving the existence of j such that m j < M < m j+1

instead, and prove m j < M < m j+1 itself by proving M − m j ∈ [1,N] ∧ m j+1 − M ∈ [1,N].

To prove M −m j ∈ [1,N], one can further apply the Boudot technique as proving knowledge

of signatures SgSign(δ1) and SgSign(δ2) such that M − m j = δ1
2 + δ2 to reduce the size

of the public parameter that the MRA has to prepare. More precisely, in order to ensure

that m j and m j+1 used to prove M − m j ∈ [1,N] are the prohibited messages, a sender also

proves knowledge of signatures SgSign(m j,m j+1). This technique is originally developed by

Nakanishi et al. [NFHF10] in the context of revocable group signature. We further apply the

technique of Nakanishi et al., in order to construct an efficient RPKE scheme.

Putting all together, the ciphertext of the proposed construction has the form of (c, π), and
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each of components are computed as

c = PEnc(pkd,M; u),

π = NIZK



(M, u, S ′′, S 1, S ′1, S 2, S ′2,
δ1, δ2, ϵ1, ϵ2,m j,m j+1)
: SgVerify((m j,m j+1), S ′′) = 1
∧ SgVerify(δ1, S 1) = 1
∧ SgVerify(ϵ1, S ′1) = 1
∧ SgVerify′(δ2, S 2) = 1
∧ SgVerify′(ϵ2, S ′2) = 1
∧ M − m j = δ1

2 + δ2 mod p
∧ m j+1 − M = ϵ1

2 + ϵ2 mod p
∧ c = PEnc(pkd,M; u)



. (6.2)

We again emphasize that π, a non-interactive proof of knowledge, can be instantiated ef-

ficiently, which is obtained from algebraic properties of the involved public key encryp-

tion scheme and signature scheme (More concretely, algebraic property of the BB signa-

ture [BB08] and the BBS+ signature [ASM06, BBS04, FI06] is used, and for the detailed

description of these two signature scheme see Sect. 6.4.3).

6.3.4 Updating pkMS

The above idea does not provide the functionality of updating the message space, but a sim-

ple modification (which will be explained below) enables us to obtain such a functionality.

To update the message space specified by the MRA from MS to MS′ where the prohibited

messages of MS and MS′ are {m1, . . . ,mr} and {m′1, . . . ,m′r′ } respectively, one may think that

just re-publicizing signatures SgSign′′(m′i ,m
′
i+1) for all i ∈ {0, . . . , r′} is suffice to do that

(where m′0 = 0 and m′r′+1 = N + 1 as in the construction). However, in this way, a malicious

sender will re-use some old signature SgSign′′(mi,mi+1) and try to fool the verification pro-

cess, which inspects whether a ciphertext encrypts a value belonging to a new message space

MS′. A simple way to avoid the above attack is to publicize signatures SgSign(t,mi,mi+1)

where t is a serial number, instead of SgSign(mi,mi+1). In this case a malicious sender is no

longer able to re-use old signatures to fool the verification process.
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6.4 Constructions

In this section we describes the main proposed scheme. The proposed scheme borrow the

ideas described in the previous section, which have been developed in the context of revoca-

ble group signature. Noticing the similarity between requirement of revocation and that of

RPKE, in which the former demands that a group signature hides all partial information of

the member’s identity and makes the fact that the signer is not one of the revoked members

publicly verifiable, whereas the latter demands a ciphertext to hide all partial information

of the plaintext whereas it also claims the encrypted plaintext is not one of the prohibited

messages in a publicly-verifiable form, we decide to borrow the idea from revocable group

signature schemes to construct efficient RPKE schemes.

6.4.1 High Level Description of the Proposed Scheme

Using the ideas we mentioned above, we show a construction of RPKE. In order to give a

high-level overview of the proposed scheme, we first show the proposed scheme in the form

of generic construction. Then we present the specific construction of RPKE in a later section.

The generic construction is based on an IND-CCA secure PKE, an EUF-CMA secure signa-

ture, and a Σ-protocol for Eq. (6.2). In the following, let [1,N] = {1, . . . ,N} be a set of whole

possible messages (they may or may not be prohibited), r be the number of prohibited mes-

sages. Let (PKg,PEnc,PDec) be an IND-CCA secure public key encryption scheme, (SgKg,

SgSign,SgVerify), (SgKg′,SgSign′,SgVerify′), and (SgKg′′,SgSign′′,SgVerify′′) be EUF-

CMA secure signature schemes. The construction is as follows:

MRASetup(1κ): Run (Ks,Kv) ← SgKg(1κ), (K′s,K
′
v) ← SgKg′(1κ), and (K′′s ,K

′′
v ) ←

SgKg′′(1κ). For k ∈ [1, ⌊
√

N⌋], compute σ1,k ← SgSign′(K′s, k). For k ∈ [0, ⌊2
√

N⌋],

compute σ2,k ← SgSign′′(K′′s , k). Output pkMRA = (Kv,K′v,K
′′
v , {σ1,k}⌊

√
N⌋

k=1 ,

{σ2,k}⌊2
√

N⌋
k=0 ) and skMRA = (Ks,K′s,K

′′
s ).

RKeyGen(pkMRA): Run (pk, sk)← PKg(1κ), and output pkd = pk and skd = sk.

MSSetup(pkMRA, skMRA,MS ): Let MS = [1,N] \ {m1, . . . ,mr} where m1 < · · · < mr, m0 =
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0, and mr+1 = N + 1. Choose a current serial number t ∈ Zp. For ℓ ∈ [0, r], compute

σℓ ← SgSign(Ks, t,mℓ,mℓ+1). Output pkMS = (t, {σℓ}rℓ=0).

REnc(pkMRA, pkd,MS , pkMS,M): For M ∈ MS , find the position j such that m j < M <

m j+1. If there is no such m j (which means M < MS ), output ⊥. Otherwise, find σ j

from pkMS, compute δ1, ϵ1 ∈ [1, ⌊
√

N⌋], and δ2, ϵ2 ∈ [0, ⌊2
√

N⌋], where M − m j =

δ1
2 + δ2 and m j+1 − M = ϵ1

2 + ϵ2 and find σ1,δ1 , σ2,δ2 , σ1,ϵ1 , and σ2,ϵ2 from pkMRA.

Compute c = PEnc(pkd,M; u), and π of the following relations:

NIZK



(M, u, σ j, σ1,δ1 , σ2,δ2 , σ1,ϵ1 , σ2,ϵ2 ,

δ1, δ2, ϵ1, ϵ2,m j,m j+1)
: σ j = SgSign(t,m j,m j+1)
∧ SgVerify′(δ1, σ1,δ1 ) = 1
∧ SgVerify′′(δ2, σ2,δ2 ) = 1
∧ SgVerify′(ϵ1, σ1,ϵ1 ) = 1
∧ SgVerify′′(ϵ2, σ2,ϵ2 ) = 1
∧ M − m j = δ1

2 + δ2 mod p
∧ m j+1 − M = ϵ1

2 + ϵ2 mod p
∧ c = PEnc(pkd,M; u)


Finally, output C = (c, π).

VerifyMS(pkMRA, pkd,MS , pkMS,C): Output 1 if π is a valid proof, and 0, otherwise.

RDec(pkMRA, pkd, skd,MS , pkMS,C): Verify the ciphertext as above and output

PDec(skd,C) if the verification succeeds, otherwise output ⊥.

The above construction, especially the zero-knowledge proof of Eq. (6.1), can be quite

efficiently instantiated when one adopts appropriate digital signatures and Teranishi et al.,

Boudot, and Nakanishi et al. techniques. More concretely, the BBS+ signature [ASM06,

BBS04, FI06] is applied for SgSign, and two instance of the BB signature [BB08] are ap-

plied for SgSign′ and SgSign′′. When applying the BBS+ signature and the BB signature,

adopting the techniques of [BBS04, NFHF10], the zero-knowledge proof of Eq. (6.1) is ef-

ficiently constructed, and the entire RPKE construction becomes drastically more efficient

than the construction employing the general NIZK technique. We choose these two schemes

because of the following reasons: the BB signature is chosen due to suitability for construct-
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ing higher-level protocols and additionally its efficiency. The BB scheme, which is not only

one of the most efficient signature schemes in the discrete-log type schemes, but also al-

lows us to construct efficient zero-knowledge protocols [BBS04] of proving the knowledge

of the signature. We also employ the BBS+ scheme, in addition to the BB scheme, in or-

der to sign sequences of integers without destroying algebraic property of the integers to be

signed (like hashing integers into a single one), which property is utilized in constructing the

zero-knowledge proof involving the BBS+ signatures. We choose the BBS+ scheme for this

domain-extension purpose because this scheme is a natural extension of the BB scheme, and

thus we do not need any additional assumption to that of the BB scheme. Other type of sig-

natures is also known to allows this domain extension and to be able to provide appropriate

zero-knowledge protocols (to name a few, the Camenisch-Lysyanskaya signature also allows

this kind of domain extension [CL03, CL04]). However, these signature schemes require

extra assumptions and may reduce simplicity of the resulted RPKE scheme.

A drawback of this construction is that the plaintext space has to be small. More concretely,

[1,N], the set of all possible (prohibited or allowed) messages, has to be just a polynomially

(not exponentially) large. Due to the construction of NIZK proof, a message M ∈ [1,N]

have to be encoded into the underlying group as gM , and hence a receiver must compute

a discrete logarithm of gM in order to recover the message M. This constraint causes an

inefficient decryption. However, it can be bypassed by restricting N to be sufficiently small

to compute a discrete logarithm efficiently. When one can use Pollard’s lambda method, M

can be recovered from gM in O(
√

N) computation time.

6.4.2 Security Analysis

The above construction satisfies the security requirement of verification soundness and IND-

MSR-CCA security.

Theorem 6.4. The construction given above satisfies verification soundness if the under-

lying signature scheme (SgKg,SgSign,SgVerify) is EUF-CMA secure, signatures (SgKg′,

SgSign′, SgVerify′) and (SgKg′′, SgSign′′, SgVerify′′) are EUF-wCMA secure, and the
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NIZK proof is constructed from Σ-protocol by using the Fiat-Shamir heuristics.

Proof. The NIZK proof has an extractor of the proved secret knowledge: given two accepting

protocol views, where commitments are the same but challenges are different. By σ∗ =

SgSign(·, ·, ·) extracted from the output of A, we consider two cases (1) σ∗ < pkMS ∗ , and

(2) σ∗ ∈ pkMS ∗ . Let M∗ := RDec
(
pkMRA, pkd, skd,C∗

)
. From the definition of verification

soundness, M∗ ∈ {m1,m2, . . . ,mr}.

Case 1: We construct an algorithm B that forges one of the underlying signature scheme

(SgKg, SgSign, SgVerify). Let C be the challenger of unforgeability game of this signature.

C sends a public value for verification Kv to B. B computes other public values, and sends

pkMRA to A. By using the signing oracle of the unforgeability game, B can answer message

space queries sent from A. A outputs C∗. Since VerifyMS
(
pkMRA, pkd, pkMS ∗ ,C∗

)
= 1,

using the extractor of the NIZK, B obtains σ∗ and the corresponding signed messages. Since

σ∗ < pkMS ∗ , σ∗ is not an answer of the signing oracle. Therefore,B outputs a forged signature

σ∗ and wins.

Case 2: We construct an algorithm B′ that forges one of the underlying signature scheme

(SgKg′, SgSign′, SgVerify′). Let C′ be the challenger of unforgeability game of this signa-

ture under the weakly chosen message attack [BB08]. First, B′ sends messages 1, . . . , ⌊
√

N⌋

to C′. Although, we describe the attack of signaturesσ1,∗, the attack of signaturesσ2,∗ is simi-

larly described, and therefore we omit this part (in this case B′ sends messages 0, . . . , ⌊2
√

N⌋
to C′). C′ sends a public value for verification K′v to B′. B′ obtains {σ1,k}⌊

√
N⌋

k=1 from A,

computes other public values, and sends pkMRA to A. Since B′ has a signing key Ks of

the underlying signature scheme (SgKg,SgSign,SgVerify), B′ can answer message space

queries. A outputs C∗. Since VerifyMS
(
pkMRA, pkd, pkMS ∗ ,C∗

)
= 1, using the extractor of

the NIZK, B′ obtains σ∗ and the corresponding signed messages. Since σ∗ ∈ pkMS ∗ , let

σ∗ := SgSign(t,m j∗ ,m j∗+1). Using the extractor of the NIZK, B′ obtains δ1, δ2, σ1,δ1 , σ2,δ2 ,

ϵ1, ϵ2, σ1,ϵ1 , and σ2,ϵ2 , with the conditions M∗−m j∗ mod p = δ1
2+δ2 and m j∗+1−M∗ mod p =

ϵ1
2+ϵ2. Next, we show that m j∗+1 ≤ M∗ or m j∗ ≥ M∗ holds as follows: Since M∗ < MS ∗ from

the definition of verification soundness, there exists m j′ such that j′ ∈ [1, r] and M∗ = m j′ .
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For all mℓ < m j′ , mℓ < M∗ and mℓ+1 ≤ M∗ hold. In addition, for all mℓ ≥ m j′ , mℓ ≥ M∗

and mℓ+1 > M∗ hold. Therefore, for the consecutive m j∗ and m j∗+1, m j∗+1 ≤ M∗ or m j∗ ≥ M∗

holds*2. This means m j∗+1 − M∗ ≤ 0 or 0 ≥ M∗ − m j∗ in Z. If 0 ≥ M∗ − m j∗ , then set

δ := M∗ − m j∗ mod p, δ(1) := δ1, δ(2) := δ2, σ1,δ := σ1,δ1 , and σ2,δ := σ2,δ2 . Otherwise, If

m j∗+1 − M∗ ≤ 0, then set δ := m j∗+1 − M∗ mod p, δ(1) := ϵ1, δ(2) := ϵ2, σ1,δ := σ1,ϵ1 , and

σ2,δ := σ1,ϵ2 . Under the assumption ⌊
√

N⌋2 + ⌊2
√

N⌋ < p/2, δ ∈ [p/2, p − 1] holds, and

therefore δ(1) < [1, ⌊
√

N⌋] or δ(2) < [0, ⌊2
√

N⌋] hold. If δ(2) < [0, ⌊2
√

N⌋], then B′ aborts.

Note that the case δ(2) < [0, ⌊2
√

N⌋] can be captured in the attack of the signature scheme

(SgKg′′,SgSign′′,SgVerify′′). Now we assume that δ(1) < [1, ⌊
√

N⌋]. B′ outputs a forged

signature and message pair (δ(1), σ1,δ(1)), and wins, since δ(1) is not an input of the signing

oracle. □

Theorem 6.5. The construction given above is IND-MSR-CCA secure if the underlying PKE

scheme is IND-CCA secure and the NIZK proof is constructed from Σ-protocol by using Fiat-

Shamir heuristics.

Proof. Due to the zero-knowledge-ness of NIZK proof, any information is not revealed from

π. Therefore, we can reduce the IND-MSR-CCA game to the IND-CCA game of the un-

derlying PKE scheme. Let A be an adversary who breaks the IND-MSR-CCA security of

our RPKE scheme, and C the challenger of the IND-CCA game of the corresponding PKE

scheme. Then, we can construct an algorithm B that breaks the IND-CCA security of the

underlying PKE scheme. First, C gives a public key of the PKE scheme pk to B. B sets pk

to pkd, and sends pkd toA. WhenA issues a decryption query C = (c, π), B checks whether

C is a valid ciphertext or not. If C is valid, then B simply forwards the corresponding part of

this query c to C as a decryption query of the IND-CCA game. WhenA sends the challenge

messages M∗0 and M∗1, B forwards M0 and M1 to C as the challenge messages. C returns

the challenge ciphertext c∗. B computes the challenge ciphertext of RPKE by applying the

simulated NIZK proofs, say π∗. B sends the challenge ciphertext of RPKE (c∗, π∗) toA. IfA
issues a valid (which means the VerifyMS algorithm returns 1) decryption query C = (c∗, π),

*2 Note that both cases M∗ < m1 and mr < M∗ are included in these two cases.
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then we can construct an algorithm B′ who extracts signed messages m j, δ1, and δ2 from C,

computes Mb = δ1
2 + δ2 +m j, outputs b, and wins. For other decryption queries, B can apply

the decryption oracle of the underlying PKE scheme. Finally,A outputs the guessing bit, and

B also outputs the same bit as the guessing bit of the IND-CCA game. □

6.4.3 Concrete Construction

6.4.3.1 Construction

In this section, we give a concrete instantiation of RPKE. From the viewpoint of efficiency,

we apply BB [BB08] and BBS+ [ASM06, BBS04, FI06] signatures to implement Teran-

ishi/Nakanishi proof system. In addition, we apply an ElGamal type double encryption

DoubleEnc to implement the building PKE scheme.

In the following scheme, (g, g1, g2, g3, g4,Y1) is a verification key of BBS+ signatures

{(B j, y j, z j)}r−1
j=1, (g̃,Y2) is a verification key of BB signatures {F1,k}⌊

√
N⌋

k=1 , (ġ, Y3) is a verifi-

cation key of BB signatures {F2,k}⌊2
√

N⌋
k=0 , and pkd = ( f̂ , ĝ1, ĝ2, ĥ) is a public key of the double

encryption scheme DoubleEnc. For a plaintext M′ ∈ G′ and a random number u ∈ Zp,

DoubleEncpkd (M′; u) = (ĝu
1, ĝ

u
2,M

′ · ĥu). Other parameters are for computing NIZK proofs.

These NIZK proofs work for exponent in Zp so we need to encrypt M by f̂ M for some gen-

erator f̂ . Therefore, to apply this proving system to PKE, we require that a plaintext of the

building PKE scheme PEnc(·) is f̂ M , and the knowledge of M need to be proved from a

ciphertext PEnc( f̂ M) by using NIZK system. When receiver obtains f̂ M by using own skd,

receiver needs to solve the DL problem to obtain M from f̂ M . Therefore, as in Boneh et

al. [BGN05] and Okamoto et al. [OT08], we assume N is small with the condition that the

DL problem ( f̂ , f̂ M) can be solved efficiently (e.g., by using baby-step-giant-step algorithm

or Pollard’s lambda method with expected time O(
√

N)). For our purpose the lambda method

is particularly more suitable than the (for example) rho method. This is because the running

time of the former method is proportional to the square root of the size of a previously known

range in which the discrete logarithm lies, whereas that of the latter is proportional to the

square root of the order of the group. That is, if one previously knows that the discrete loga-
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rithm x to be computed is in a certain interval [a, b], which holds in the current context, the

lambda method requires roughly 2
√

b − a multiplications.

The concrete construction we propose is as follows:

MRASetup(1κ): Let (G,GT ) be a bilinear group with a κ-bit prime order p and e : G×G→
GT be a bilinear map. In addition, let G′ be a DDH-hard group with the same order

p. Let H : {0, 1}∗ → Zp be a hash function for NIZK proofs. Choose generators

g, g̃, ġ, g1, g̃1, g2, g3, g4, g5 ∈ G, f̂ ∈ G′, a signing key of BBS+ signatures X1 ∈ Zp,

and signing keys of BB signatures X2, X3 ∈ Zp, and compute the a verification key of

BBS+ signatures Y1 = g
X1 , and verification keys of BB signatures Y2 = g

X2 and Y3 =

gX3 . For k ∈ [1, ⌊
√

N⌋], compute SgSign′BB(k) := F1,k = g̃
1

X2+k . For k ∈ [0, ⌊2
√

N⌋],

compute SgSign′′BB(k) := F2,k = ġ
1

X3+k . Output pkMRA =
(
p, e,G,GT ,G

′,H, Y1, Y2, Y3,

{F1,k}k=1, {F2,k}⌊2
√

N⌋
k=0 , f̂

)
, and skMRA = (X1, X2, X3).

RKeyGen(pkMRA): Choose ĝ1, ĝ2 ∈ G′ and z ∈ Zp, and compute ĥ = ĝz
1. Output a public

key of an ElGamal type double encryption scheme pkd = (ĝ1, ĝ2, ĥ) and the corre-

sponding secret key skd = z.

MSSetup(pkMRA, skMRA,MS ): Let (m1,m2, . . . ,mr) be consecutive prohibited mes-

sages, m0 = 0, and mr+1 = N + 1. Choose a current serial number t ∈ Zp.

For ℓ ∈ [0, r], compute BBS+ signatures of three signed messages (t,mℓ,mℓ+1)

SgSignBBS+(t,mℓ,mℓ+1) := (Bℓ, yℓ, zℓ), where Bℓ = (gt
1g

mℓ

2 gmℓ+1
3 g

yℓ
4 g)

1
X1+zℓ , and yℓ,

zℓ ∈ Zp. Output pkMS = (t, {(mℓ, mℓ+1, Bℓ, yℓ, zℓ)}rℓ=0).

REnc(pkMRA, pkd,MS , pkMS,M): For M ∈ MS , find the position j such that m j < M <

m j+1. If there is no such m j (which means M < MS ), output ⊥. compute δ1, ϵ1 ∈
[1, ⌊
√

N⌋], and δ2, ϵ2 ∈ [0, ⌊2
√

N⌋], where M −m j = δ1
2 + δ2 and m j+1 −M = ϵ1

2 + ϵ2

and find SgSign′BB(δ1) = F1,δ1 , SgSign′′BB(δ2) = F2,δ2 , SgSign′BB(ϵ1) = F1,ϵ1 , and

SgSign′′BB(ϵ2) = F2,ϵ2 from pkMRA. Compute c = DoubleEncpkd ( f̂ M; u), and π of the
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following relations:

π = NIZK



(M, S ′′, S 1, S ′1, S 2, S ′2, δ1, δ2, ϵ1, ϵ2)
: S ′′ = SgSignBBS+(t,m j,m j+1)
∧ SgVerify′BB(δ1, S 1) = 1
∧ SgVerify′′BB(δ2, S 2) = 1
∧ SgVerify′BB(ϵ1, S ′1) = 1
∧ SgVerify′′BB(ϵ2, S ′2) = 1
∧ M − m j = δ1

2 + δ2 mod p
∧ m j+1 − M = ϵ1

2 + ϵ2 mod p
∧ c = DoubleEncpkd ( f̂ M; u)


Concretely, choose α, β1,1, β1,2, β2,1, β2,2, u, ξ1, ξ′1, ξ2, ξ′2 ∈ Zp, compute C1 = B jg

α
5 ,

C2 = F1,δ1g
β1,1

5 , C3 = F2,δ2g
β1,2

5 , C4 = F1,ϵ1g
β2,1

5 , C5 = F2,ϵ2g
β2,2

5 , C6 = g̃δ1 g̃
ξ1
1 , C7 =

g̃δ1
2
g̃
ξ′1
1 , C8 = g̃

ϵ1 g̃
ξ2
1 , C9 = g̃

ϵ1
2
g̃
ξ′2
1 , ξ′′1 := ξ′1 − ξ1δ1, ξ′′2 := ξ′2 − ξ2ϵ1, C10 = ĝ

u
1, C11 = ĝ

u
2,

C12 = f̂ M ĥu, ζ = αz j, θ1,1 := β1,1δ1, θ1,2 := β1,2δ2, θ2,1 := β2,1ϵ1, and θ2,2 := β2,2ϵ2. In
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addition, compute

π = NIZK



(M, ζ, α, y j, z j,m j,m j+1,

δ1, δ2, ϵ1, ϵ2, θ1,1, θ1,2, θ2,1, θ2,2,

β1,1, β1,2, β2,1, β2,2, ξ1, ξ
′
1, ξ
′′
1 , ξ2, ξ

′
2, ξ
′′
2 , u)

: e(C1,Y1)/e(g, g) =
e(g5,Y1)αe(g5, g)ζe(gt

1, g)
e(g2, g)m j e(g3, g)m j+1

e(g4, g)y j/e(C1, g)z j

∧ e(C2,Y2)/e(g̃, g) =
e(g5,Y2)β1,1 e(g5, g)θ1,1/e(C2, g)δ1

∧ e(C3,Y3)/e(ġ, g) =
e(g5,Y3)β1,2 e(g5, g)θ1,2/e(C3, g)δ2

∧ e(C4,Y2)/e(g̃, g) =
e(g5,Y2)β2,1 e(g5, g)θ2,1/e(C4, g)ϵ1

∧ e(C5,Y3)/e(ġ, g) =
e(g5,Y3)β2,2 e(g5, g)θ2,2/e(C5, g)ϵ2

∧C6 = g̃
δ1 g̃

ξ1
1 ∧C7 = Cδ1

6 g̃
ξ′′1
1

∧C7 = g̃
−δ2+M−m j g̃

ξ′1
1

∧C8 = g̃
ϵ1 g̃

ξ2
1 ∧C9 = Cϵ1

8 g̃
ξ′′2
1

∧C9 = g̃
−ϵ2+m j+1−M g̃

ξ′2
1

∧C10 = ĝ
u
1 ∧C11 = ĝ

u
2 ∧C12 = f̂ M ĥu


(Detailed NIZK proofs are described in the following). Output a ciphertext C =

(C1, . . . ,C12, π).

VerifyMS(pkMRA, pkd,MS , pkMS,C): Output 1 if π is a valid proof, and 0, otherwise.

RDec(pkMRA, pkd, skd,MS , pkMS,C): Verify the ciphertext C under pkMS. If the verification

succeeds, compute f̂ M = C12/Cz
10, solve the DL problem ( f̂ , f̂ M), and output M. If

the verification fails, output ⊥.

If MS is changed (let MS ′ be a new message space), then MRA chooses t′ (t′ , t for all

previous t), and opens BBS+ signatures SgSignBBS+(t′,m′ℓ,m
′
ℓ+1) for all ℓ ∈ [0, r′] as pkMS ′ ,

where (m′1,m
′
2, . . . ,m

′
r′ ) is the new consecutive prohibited messages, m′0 = 0, and m′r = N.
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6.4.3.2 Detailed NIZK Proofs

Here, we show the detailed proof π of our RPKE scheme. Concretely, π is computed as

follows. Note that all pairing values are pre-computable.

1. Choose rM , rζ , rα, ry j , rz j , rm j , rm j+1 , rδ1 , rδ2 , rϵ1 , rϵ2 , rθ1,1 , rθ1,2 , rθ2,1 , rθ2,2 , rβ1,1 , rβ1,2 , rβ2,1 ,

rβ2,2 , rξ1 , rξ′1 , rξ′′1 , rξ2 , rξ′2 , rξ′′2 , ru ∈ Zp.

2. Compute

R1 = e(g5,Y1)rαe(g5, g)rζ−αrz j e(g1, g)t

e(g2, g)rm j e(g3, g)rm j+1 e(g4, g)ry j /e(B j, g)rz j ,

R2 = e(g5,Y2)rβ1,1 e(g5, g)rθ1,1−β1,1rδ1 /e(F1,δ1 , g)rδ1 ,

R3 = e(g5,Y3)rβ1,2 e(g5, g)rθ1,2−β1,2rδ2 /e(F2,δ2 , g)rδ2 ,

R4 = e(g5,Y2)rβ2,1 e(g5, g)rθ2,1−β2,1rϵ1 /e(F1,ϵ1 , g)rϵ1 ,

R5 = e(g5,Y3)rβ2,2 e(g5, g)rθ2,2−β2,2rϵ2 /e(F2,ϵ2 , g)rϵ2 ,

R6 = g̃
rδ1 g̃

rξ1
1 ,

R7 = C
rδ1
6 g̃

rξ′′1
1 ,

R8 = g̃
−rδ2+rM−rm j g̃

rξ′1
1 ,

R9 = g̃
rϵ1 g̃

rξ2
1 ,

R10 = C
rϵ1
8 g̃

rξ′′2
1 ,

R11 = g̃
−rϵ2+rm j+1−rM g̃

rξ′2
1 ,

R12 = ĝ
ru
1 ,

R13 = ĝ
ru
2 ,

R14 = f̂ rM ĥru .

3. Compute c = H(R1, . . . ,R14,C1, . . . ,C12, pkMRA, pkMS, pkd)

4. Compute sM = rM + cM, sζ = rζ + cζ, sα = rα + cα, sy j = ry j + cy j, sz j = rz j + cz j,

sm j = rm j + cm j, sm j+1 = rm j+1 + cm j+1, sδ1 = rδ1 + cδ1, sδ2 = rδ2 + cδ2, sϵ1 = rϵ1 + cϵ1,

sϵ2 = rϵ2+cϵ2, sθ1,1 = rθ1,1+cθ1,1, sθ1,2 = rθ1,2+cθ1,2, sθ2,1 = rθ2,1+cθ2,1, sθ2,2 = rθ2,2+cθ2,2,
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sβ1,1 = rβ1,1+cβ1,1, sβ1,2 = rβ1,2+cβ1,2, sβ2,1 = rβ2,1+cβ2,1, sβ2,2 = rβ2,2+cβ2,2, sξ1 = rξ1+cξ1,

sξ′1 = rξ′1 + cξ′1, sξ′′1 = rξ′′1 + cξ′′1 , sξ2 = rξ2 + cξ2, sξ′2 = rξ′2 + cξ′2, sξ′′2 = rξ′′2 + cξ′′2 , and

su = ru + cu.

5. Output C = (C1, . . . ,C12, π), where π = (c, sM , sζ , sα, sy j , sz j , sm j , sm j+1 , sδ1 , sδ2 , sϵ1 ,

sϵ2 , sθ1,1 , sθ1,2 , sθ2,1 , sθ2,2 , sβ1,1 , sβ1,2 , sβ2,1 , sβ2,2 , sξ1 , sξ′1 , sξ′′1 , sξ2 , sξ′2 , sξ′′2 , su).

Next, we show the verification of the above π. Note that all pairing values are pre-

computable, except the followings e(C1, g
sz j Yc

1), e(C2, g
sδ1 Yc

2), e(C3, g
sδ2 Yc

3), e(C4, g
sϵ1 Yc

2),

and e(C5, g
sϵ2 Yc

3).

1. Compute

R′1 = e(g5,Y1)sαe(g5, g)sζe(g1, g)t

e(g2, g)sm j e(g3, g)sm j+1 e(g4, g)sy j

e(g, g)c/e(C1, g
sz j Yc

1),

R′2 = e(g5,Y2)sβ1,1 e(g5, g)sθ1,1 e(g̃, g)c/e(C2, g
sδ1 Yc

2),

R′3 = e(g5,Y3)sβ1,2 e(g5, g)sθ1,2 e(ġ, g)c/e(C3, g
sδ2 Yc

3),

R′4 = e(g5,Y2)sβ2,1 e(g5, g)sθ2,1 e(g̃, g)c/e(C4, g
sϵ1 Yc

2),

R′5 = e(g5,Y3)sβ2,2 e(g5, g)sθ2,2 e(ġ, g)c/e(C5, g
sϵ2 Yc

3),

R′6 = g̃
sδ1 g̃

sξ1
1 C−c

6 ,

R′7 = C
sδ1
6 g̃

sξ′′1
1 C−c

7 ,

R′8 = g̃
−sδ2+sM−sm j g̃

sξ′1
1 C−c

7 ,

R′9 = g̃
sϵ1 g̃

sξ2
1 C−c

8 ,

R′10 = C
sϵ1
8 g̃

sξ′′2
1 C−c

9 ,

R′11 = g̃
−sϵ2+sm j+1−sM g̃

sξ′2
1 C−c

9 ,

R′12 = ĝ
su
1 C−c

10 ,

R′13 = ĝ
su
2 C−c

11 ,

R′14 = f̂ sM ĥsuC−c
12 .
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2. Check c ?
= H(R′1, . . . ,R

′
14,C1, . . . ,C12, pkMRA, pkMS, pkd).

The security of the above construction is described as follows. A proof of the theorem can

be obtained with a similar way to the proof of Theorem 6.4 and 6.5.

Theorem 6.6. The construction has verification soundness in the random oracle model when

the q-strong Diffie-Hellman assumption holds on the bilinear group (G,GT ). The construction

is IND-MSR-CCA secure in the random oracle model, when the DDH assumption holds on

G′.

6.5 Alternative Constructions for Small Message Space

In this section we describe alternative constructions of RPKE, which is suitable for a small

set of permitted message space. Comparing with the construction in the previous section, the

constructions here have an advantage in terms of performance, when a very few message is

allowed by the MRA.

Such a small message space frequently appears in several application. Recently, Nuida

et al. proposed privacy-preserving database search protocols [NSA+12], whose search

queries consist of bit-string which is encrypted in a bit-by-bit manner (with some additive-

homomorphic encryption scheme). In order to protect the database from information

leakage, it is important to prohibit a (possibly malicious) client from sending a query which

encrypts neither 0 nor 1. These bit-by-bit encryption is also used in a different context.

One of the example is the non-interactive proof system proposed by Gorth, Ostrovsky,

and Sahai [GOS12]. The proof system, which is for circuit satisfiability, encrypts all the

assignments for the wires for each wire, and demonstrates that for all (NAND) gates, the

wires that are connected to the gate satisfies NAND relation.

The construction presented below is based on the OR-proof technique [CDS94], which is

able to prove that one of pre-specified statements are holds without revealing which state-

ments actually holds (in fact in a zero-knowledge manner). Utilizing this functionality, the

ciphertext of the scheme includes a non-interactive proof which shows that the encrypted
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message is one of the permitted messages, which are constructed by the OR-proof technique.

For simplicity we only present a construction for the single-bit message space of {0, 1}, but it

would be straightforward to extend it a more general message space.

The underlying intuition behind the OR-proof is that two (interactive) proofs for the two

pre-specified statements are executed in parallel in which only one of these proofs is in fact

performed with a real witness, while the other is simulated by the zero-knowledge simulator.

This feature is achieved by allowing the prover to control (part of) the challenge message.

The OR-proof construction, which runs two protocol instances in parallel, allows the prover

to control the challenge message of one of the two protocol instances, while the construction

gives the full control of the challenge message of the other protocol instance to the verifier.

This allows the prover to convince the verifier without knowing the witness for one protocol

instance, while it also enforce the prover to know the witness for the other protocol instance.

With this feature the entire protocol ensures that the prover (who convince the verifier) knows

at least one of the witnesses of the pre-specified statements.

The following RPKE construction proves the following statement using the OR-proof tech-

nique: given a ciphertext (C1,C2,C3) and a public key ĝ1, ĝ2, ĥ, and f̂ , there exists u (ran-

domness of the ciphertext) such that either

(C1,C2,C3) = (ĝu
1, ĝ

u
2, ĥ

u f̂ 0)

(which suggests that the plaintext is 0) or

(C1,C2,C3) = (ĝu
1, ĝ

u
2, ĥ

u f̂ 1)

(which suggests the plaintext is 1). In this way it achieves the functionality of RPKE

with message space {0, 1}. The components C1 and C3 constitute the ElGamal encryption,

while the component C2 establishes chosen-ciphertext security (in combination with the

zero-knowledge proof). The mechanism behind the chosen-ciphertext security is quite

similar to the well-known Cramer-Shoup encryption [CS03b].

MRASetup(1κ). Choose a DDH-hard G′ of prime order p of length κ and a random element

f̂ ∈ G′. Output pkMS = (G′, f̂ ,H) and skMRA = ∅, where H is a hash function (modeled

– 144 –



as the random oracle).

MSSetup(pkMRA,MS). As mentioned above, we here only consider the case of MS = {0, 1}.
In this case the algorithm simply output pkMS = (m1, . . . ,mn). For a more general case

in which MS = {m1, . . . ,mn}, it outputs pkMS = (m1, . . . ,mn).

RKeyGen(pkMRA). Choose a random integer z ∈ Zp and random elements ĝ1 ĝ2 ∈ G′.

Compute ĥ = ĝz
1 and output pkdec = (ĝ1, ĝ2, ĥ) and skdec = z.

REnc(pkMRA, pkdec,MS, pkMS,M). To encrypt M ∈ {0, 1}, choose a random integer u ∈
Zp and compute (C1,C2,C3) = (ĝu

1, ĝ
u
2, ĥ

u f̂ M). Further compute an NIZK proof, by

choosing random rM , c1−M , s1−M from Zp, compute

RM,1 = ĝ
rM
1 , (6.3a)

RM,2 = ĝ
rM
2 , (6.3b)

RM,3 = ĥrM , (6.3c)

R1−M,1 = ĝ
s1−M
1 /Cc1−M

1 , (6.3d)

R1−M,2 = ĝ
s1−M
2 /Cc1−M

2 (6.3e)

R1−M,3 = ĥs1−M/(C3/ f̂ 1−M)c1−M . (6.3f)

Then compute c = H(R0,1,R0,2,R0,3,R1,1,R1,2,R1,3,C1,C2,C3, pk). Finally compute

cM = c − c1−M and sM = rM + cMu, and output C = (C1,C2,C3, c0, c1, s0, s1) as the

ciphertext.

VerifyMS(pkMRA, pkdec,MS, pkMS,C). Compute

R′0,1 = ĝ
s0
1 /C

c0
1 ,

R′0,2 = ĝ
s0
2 /C

c0
2 ,

R′0,3 = ĥs0/Cc0
3 ,

R′1,1 = ĝ
s1
1 /C

c1
1 ,

R′1,2 = ĝ
s1
2 /C

c1
2 ,

R′1,3 = ĥs1/(C3/ f̂ )c0 ,

then verify whether the equation c0 + c1 = H(R′0,1,R
′
0,2,R

′
0,3,R

′
1,1,R

′
1,2,R

′
1,3,C1,C2,C3,
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pk) holds.

RDec(pkMRA, pkdec, skdec,MS, pkMS,C). Verify the ciphertext as above, and output ⊥ if the

verification fails. Otherwise compute C3/Cz
1 and output 0 if it is equal to 1, output 1 if

equal to f̂ , otherwise output ⊥.

In the above construction, Eqs. (6.3) show how the OR-proof is constructed. Eqs. (6.3a)-

(6.3c) is computing the proof with the real witness u, whereas Eqs. (6.3d)-(6.3f) is computing

the simulated proof without the corresponding valid witness. The relation cM = c − c1−M en-

forces the prover to arbitrary choose only one of cM and c1−M (in this case the prover chooses

c1−M by itself for a successful simulation), as the value c is determined by the output of the

random oracle. This fact is crucial for constructing a secure OR-proof. More concretely, the

fact that the prover can control c1−M allows the prover to construct the simulated proof, and

the fact that the prover cannot control cM ensures soundness (the property that no adversar-

ial provers cannot construct a proof that passes the verification for a ciphertext that encrypts

neither 0 nor 1).

Security of this construction is described as below.

Theorem 6.7. The construction has verification soundness in the random oracle model. Pro-

vided the DDH assumption, the construction is IND-MSR-CCA secure in the random oracle

model.
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Part IV

Conclusion





Chapter 7

Conclusion

The thesis consists of the following two contributions:

(I) Providing guidelines for constructing new cryptographic primitives, and

(II) providing a more comprehensive approach for detecting overlooked threats.

In particular, we presented the following four example of the above approach. As contri-

butions from the viewpoint (II), Chap. 3 and Chap 6 proposed two new security notion and

extension of cryptographic primitives. Chap. 3 showed that a new security notion for group

signature is obtained from a security notion (and its corresponding security notion) for public-

key encryption called PKENO, while Chap. 6 showed that a new extension of public-key

encryption is obtained from an extension of group signature called revocable group signa-

ture. In addition, from the viewpoint (I), Chap. 4 showed a necessity condition for obtaining

a group signature scheme with the new security notion by presenting a generic construction

of cryptographic primitives. Finally, Chap. 5 showed that a slightly different extension of

public-key encryption called threshold encryption, is in fact tightly related to the PKENO

extension.

In particular, our approach is providing guidelines for designing cryptographic schemes

by showing generic constructions of some primitive with some security notions from other

primitive(s) with other security notions. The existence of such a generic construction not only

shows that it is sufficient to construct the latter primitives for obtaining the former scheme,
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but also shows that it is unavoidable to rely on an complexity theoretic assumption strong

enough to construct the latter primitives. In other words, the generic construction suggests

that the latter primitives themselves can be a crucial building block for the former primitive.

In addition, when one tries to obtain such a generic construction, it might be possible that

there are no known security notions for some primitive that exactly corresponds to the security

notion of the other primitive. In that case one can define a new security notions to complement

the correspondence. We argued that such a new security notion can capture some overlooked

practical threats, as the corresponding old security notion is defined to capture some natural

and practical threats.

Following these approach, this thesis present the following contributions.

In Chap. 3, we identified the relationship between an extension of public-key encryption

called PKENO and an anonymous authentication primitive called group signature. There

exists an relationship between group signature and public-key encryption [BMW03, BSZ05,

AW04, OFHO09], in which the CCA security for public-key encryption roughly corresponds

to the anonymity notion for group signature. However, there had been no known notions

for group signature that corresponds to the security notions achieved by PKENO, and thus

we defined this as opening soundness. We further discussed on the practical importance

of opening soundness, and present concrete scenarios in which opening soundness serves a

crucial role. We also presented group signature schemes with opening soundness, relying on

techniques used in the PKENO context. These constructions of group signature with opening

soundness do not fall into the category of generic construction in the exact sense. Providing

such a generic construction is one of the interesting research topics.

In Chap. 4, we showed that it is essentially unavoidable to use PKENO for constructing a

group signature scheme with opening soundness. It was showed by following our approach

(I), that is, we showed that any group signature scheme with opening soundness can be gener-

ically transformed to a secure PKENO scheme.

In Chap. 5, we showed that any secure PKENO scheme can be transformed to a robust

threshold encryption scheme. The other direction, a generic construction of PKENO from

robust threshold encryption, was already shown by Galindo et al.[GLF+10], but that direction
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was not clearly and rigorously stated ever. This result establishes an equivalence between

PKENO and threshold encryption in a rigorous sense (although an informal similarity was

already observed by several authors), and presents useful suggestion for constructing practical

PKENO and threshold encryption schemes.

In Chap. 6, we extended the relationship between group signature and public-key encryp-

tion to revocable group signature. Following the viewpoint (II), we obtained a new extension

of public-key encryption, which corresponds to revocable group signature, called restrictive

public-key encryption. Furthermore, we also presented an efficient construction of restrictive

public-key encryption scheme, using techniques of revocable group signature. Unfortunately,

as in Chap. 3, this construction is not a generic construction in a rigorous sense. It is another

interesting open problem for investigating possibility of a generic construction of restrictive

public-key encryption from revocable group signature.

This research contributes, by the aforementioned results, to clarifying the relationship

between various sophisticated cryptographic primitives, namely, PKENO, group signature,

threshold encryption, revocable group signature, and restrictive public-key encryption, and

to providing useful guidelines for constructing efficient schemes of these primitives. We can

expect the same approach is promising for clarifying relationships of more other primitives

and for providing guidelines to construct efficient schemes of these primitives.
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