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ＯＦＤＭＡに基づくセルラーコグニティブ無

線ネットワークのためのリソース割り当てに

関する研究 

 

論文概要 

 

無線通信の急速な発展に伴い、周波数不足の問題が深刻になってきている。

無線ネットワークの増え続けるサービスとアプリケーションに対応するため、

セカンダリユーザ（SU: Secondary User）とプライマリーユーザ（PU: Primary 
User）との周波数共有を可能にするコグニティブ無線(CR: Cognitive Radio)は、

深刻な周波数不足を緩和する有望な技術の１つとして期待されている。CR の

端末はダイナミックな無線環境を認知し、その結果に適応することで、無線

アクセスの柔軟性を提供できると同時に、限られた周波数資源の利用効率を

最大化することができる。CR 端末の主な特徴は、無線ネットワーク環境を認

知して、伝送パワー、搬送周波数、変調策略や上位レイヤーのプロトコルパ

ラメータなどのシステムパラメータを適当に調整することである。 

CR の基本的な考え方は単純であるが、従来の無線システムと比べて、効

率の高い CR ネットワーク（CRN: Cognitive Radio Network）の設計には新たな

課題がある。CRN には、システムのアーキテクチャを設計する際の基本課題

だけではなく、システムに対する情報理論に基づく解析及び各層でコグニテ

ィブ・プロトコルなどの課題も考慮する必要がある。この技術に対して、ス

ペクトルポリシーも含めて、学界と産業界とともに関心が高まっている。PU
と SU の共存問題、適応可能な物理層パラメータ設計、リンク適応技術、直

交周波数分割多重接続（OFDMA: Orthogonal Frequency Division Multiple Access）
コグニティブ無線、超広帯域コグニティブ無線、コグニティブ媒体アクセス

制御（MAC: Medium Access Control）プロトコル、スペクトル検出技術、ダイ

ナミックスペクトルアクセス方式などのさまざまのコグニティブ無線通信技

術の分野に対する研究は、世界中に広がっている。 

従来の無線通信システムに比べて、CRN の資源配分には二つ新たな課題が

ある。一つは、PU と SU の間の干渉管理である。SU から PU への干渉電力が

干渉温度限界以下に保つ必要がある。もう一つは、スペクトルの可用性によ

るダイナミックな変化への対応である。SU の利用可能なスペクトルは、PU
のスペクトルの利用に依存しており、時間的に変化するものとなる。CRN 内

の SU の無線リソース割り当ては、システム間の干渉を回避しながらダイナ



ミックに周波数資源を配分する必要があることから難しい課題となっており、

PU の性能を保証しつつ、SU の通信品質（QoS: Quality of Service）を高めるこ

とが求められる。PU と SU 間のスペクトル共有と周波数資源を効率的に複数

SU に割り当てることを柔軟に実現するため、本研究では、OFDMA に基づく

セルラーCRN 上の効率的なリソース割り当てを検討対象とする。OFDMA は、

マルチユーザ CRN のような柔軟なネットワークのアクセスのための魅力的な

技術である。このネットワークでは、CR 端末である SU はスペクトルオーバ

レイ（非アクティブの PU 帯域共有）あるいはスペクトルアンダーレイ（全

PU 帯域共有）のどちらかを使用して、適応通信（opportunistic communication）
により、PU のプライマリー帯域にアクセスすることができる。  

本論文の研究は、セルラープライマリーネットワーク（PN: Primary 
Network）と共存する単一セル・マルチユーザの CRN から検討始め、前記２

つのスペクトル共有方法（スペクトルオーバレイとスペクトルアンダーレイ）

により CRN を実現する。この共存システムには、CR セルの SU とプライマリ

ーセルの PU の間の距離が近い可能性があるため、同じサブチャネルを使用

している場合、高い同一チャネル干渉が生じることになる。この場合、同一

チャネル干渉を回避することが難しい。そこで、効果的にスペクトルを共有

するため、コグニティブ基地局（CBS: Cognitive Base Station）は、同一チャネ

ル干渉回避が困難である場合に同じサブチャネルを使用しないようにするか、

同一チャネル干渉を制限するために、送信電力を制御する必要がある。しか

し、いずれの場合でも、CBS 側は、プライマリースペクトル配分状況や PU の

活動状況などのプライマリー情報を保持する必要がある。ここでは、プライ

マリーからの補助情報を基にした共存アーキテクチャを構築し、プライマリ

ー基地局（PBS: Primary Base Station）は目標信号に対する干渉と雑音の比率

（SINR: Signal to Interference plus Noise Ratio）およびシステム中断確率による

PU 干渉閾値を決め、電力制御を実施するため、その情報をセカンダリシステ

ムにブロードキャストする。PBS と CBS の距離と PU の干渉閾値情報によって、

スペクトルオーバレイあるいはスペクトルアンダーレイのどちらかに適応し

たスペクトル共有を実現する。さらに、マルチユーザ CRN では、SU のサー

ビル品質を保持しながら、マルチユーザ CRN の総スループットを最大化する

ために、制約付きの２変数非線形最適化問題（OP: Optimization Problem）を

定式化する。この最適化問題を解決するために、(1) クロスレイヤー近似に基

づいて MAC 層から物理層までの QoS 制約を変化して、OP を簡略化する。(2) 
ラグランジュ双対性に基づく技術を使用して、前述の簡略化された OP を解

決し、最適な電力とサブチャネルの配分法を見つける。この OP を解決した

上で、ダイナミックなサブチャネルと電力配分を実現するためにクロスレイ

ヤーの資源配分と干渉回避を同時に実現するアルゴリズムを提案し、数値解

析とコンピュータシミュレーションで有効性を検証する。結果、従来の設計

と比較して、本提案アルゴリズムは、スループットを大幅に高めることが可

能であり、期待されている PU が必要とする SINR と SU の QoS を同時に保証

できる。また、単純なスペクトルオーバレイ共有法と比較して、ハイブリッ



ドスペクトルオーバレイ・アンダーレイ共有法は、極めて高いスペクトル効

率が達成できる。 

次に、本論文では、マルチセル PN をオーバレイしたマルチセル・マルチ

ユーザシステムの CRN 上の資源配分を研究する。マルチセルの場合、同一

チャネル干渉およびセル内干渉の原因のより、単一セルより複雑な適応制御

が必要である。そのため、マルチセルの場合、共存アーキテクチャとスペク

トル共有方法が非常に重要となる。また、CBS は全ての干渉チャネル情報を

取得するのが難しいため、マルチセルの環境では、干渉回避のために分散的

な手法が望ましい。そこで、プライマリーからの補助情報を基にした共存ア

ーキテクチャと、セル間のスペクトルオーバレイおよびセル内のスペクトル

アンダーレイによる共有方法を提案する。これらのアーキテクチャには、干

渉チャネルの評価と電力制御のため、PBS はパイロット信号と干渉閾値を

CRN にブロードキャストする。提案するスペクトル共有方法によって、セカ

ンダリー基地局（CBS）はセル内干渉と同一チャネル干渉を容易に回避する

ことが可能となる。本研究の目標は、プライマリーシステムの性能を確保す

る同時に、スペクトル効率とコグニティブ無線ネットワーク性能（総スルー

プットと SUs の QoS）を最大化することである。PN での干渉閾値を制限条

件として、セカンダリセルの間で同一チャネルの干渉を考えるため、セカン

ダリシステム性能を表すユーティリティ（ペイオフ）関数を定義する。提案

する分散型資源配分手法は、プライマリーの性能を保証し、CBS の協力がな

い状況でも干渉量を考慮しながらセカンダリのスループットを最大化するこ

とができる。また、各 SU の瞬時データレートは定められた最小レートより

も大きいことが保証されている。この資源配分問題は、サブチャネル配分と

分散型パワー配分ゲーム（DPAG: Distributed Power Allocation Game）の二つ

のサブ問題に分割することができる。本研究では、この DPAG 問題に対して、

唯一のナッシュ均衡が存在することを証明した。さらに、限られた環境で、

この DPAG 問題はパレート最適となる。つまり、CBS に対して、ほかの CBS
の性能を損なわない前提で、これ以上の性能向上はできないということを確

かめた。さらに、シミュレーションによって、提案アルゴリズムは、数回の

反復計算で均衡に収束することが確認されている。これらのことから、マル

チセルの CRN における提案方式は、大きなオーバーヘッドがなくても効果

的に分散リソース分配が可能となる。 

このように本論文では、OFDMA に基づくセルラーCRN に適用できる有

効なリソース割り当てアルゴリズムと、プライマリーネットワークとセカン

ダリネットワーク上に実用できる共存アーキテクチャを提案した。また、次

世代無線ネットワークにとって、より高いネットワークスループットと QoS
の達成は欠かせない要件であり、本論文ではこれら二つの要件を考慮しなが

ら、良好な性能を達成できるアルゴリズムを提案した。本論文の研究では、

セルラーコグニティブ無線ネットワークを中心とした検討となっているが、

今後の課題として、様々な共存システムにおける有効な資源配分スキームに

ついての検討を行う必要がある。  



Abstract

Rapid growth of wireless communications has been worsening the

spectrum shortage problem. Cognitive radio (CR) has emerged as

a promising technology that can alleviate the severe spectrum short-

age problem by making it possible for secondary (unlicensed) users

(SUs) to share frequency bands with primary (licensed) users (PUs).

A CR transceiver is able to intelligently recognize and adapt itself

to the dynamic radio environment to maximize the utilization of the

limited radio resources and provide flexibility in wireless access. The

key features required to a CR transceiver are awareness of the radio

environment and adaptation of system parameters such as transmit

power, carrier frequency, modulation strategy, and higher-layer pro-

tocol parameters.

Even though the basic idea of CR is simple, efficient design of

CR networks (CRNs) imposes new challenges compared to the con-

ventional wireless networks. It is necessary to consider not only the

problems in designing network architectures but also the information-

theoretic analysis of cognitive radio networks and cognitive proto-

cols. There is an increasing interest on CR technology among the

researchers in academia, industry and the spectrum policy makers. A

rich set of research works on cognitive radio wireless communication

networks includes co-existence issues, adaptive physical layer proto-

cols, link adaptation techniques, orthogonal frequency division mul-

tiple access (OFDMA) and ultra wide band (UWB) based cognitive

radio, cognitive medium access control (MAC) protocols, spectrum

sensing, dynamic spectrum access methods and so on.



In wireless communication networks, the field of resource allo-

cation is a versatile area that covers a broad range of issues. For

example, resource allocation across various network layers encoun-

ters different design constraints and parameters; different networking

scenarios have different performance goals and service objective; and

different formulations of resource allocations need to employ different

optimization tools. The basics of resource allocation involve power

control, rate adaptation, multiple access and spectrum access, and

cross-layer optimization. Compared to the conventional wireless com-

munication networks, two new issues emerged for resource allocation

in CRNs. The first one is the interference management between PUs

and SUs. The interference power to the PUs should be kept below

primary interference temperature limits. Another one is the dynamic

spectrum availability. The available spectrum for SUs depends on the

spectrum utilization of PUs and is time-varying. Moreover, to flex-

ibly implement spectrum sharing between PUs and SUs, coexistent

architectures and spectrum sharing methods of these two networks

also have significant importance.

In this dissertation, we study coexistent architectures of primary &

secondary networks, different spectrum sharing methods and resource

allocation for OFDMA-based cellular CRNs. OFDMA is an attractive

access technology for such flexible networks because it is possible for

CRNs to implement dynamic spectrum allocation, which is considered

in the proposals proposed in this dissertation. Usually, the SUs with

CR capability can access the primary bands using either spectrum

overlay sharing (non-active PU bands sharing) or spectrum underlay

sharing (whole PU bands sharing) for communications. We compare

these two sharing methods in Chapter 4, and it shows that the lat-

ter one can obtain better performance. Hence, it is better to utilize

the spectrum underlay or hybrid spectrum overlay/underlay sharing

methods in the CRNs. The studied resource allocation problems in

this dissertation mainly focus on interference management between

PUs and SUs. Since we assume the primary spectrum utilization



is static during one scheduling time (i.e., one resource allocation).

Therefore, in our studies, dynamic spectrum availability is not con-

sidered. However, it is not difficult to add this dynamic feature if we

assume arbitrary distributions for PUs’ activities.

First, we consider a single-cell multi-user CRN, which coexists with

a cellular primary network (PN). In the coexistent system, the SUs

in the CR cell may be near to the PUs in the primary cell. In this

situation, it is difficult to avoid co-channel interference because it is

too high when SUs and PUs use the same subchannels. In order to

share the spectrum effectively, the cognitive base station (CBS) needs

to avoid using the same subchannels if the co-channel interference

is hard to be avoided, or to control the transmission power on these

subchannels to limit the co-channel interference. No matter which sit-

uation it is, primary spectrum information is necessary for the CBS.

Therefore, we develop a primary-assistance based coexistent architec-

ture, where the primary base station (PBS) broadcasts the interfer-

ence margins at PUs according to its target signal to interference plus

noise ratio (SINR) and outage probability, to the secondary network

for power control. Here, the sharing method is either spectrum under-

lay or spectrum overlay based on the distance between the PBS and

the CBS and the interference margins at PUs. In the multi-user CRN,

to provide the SUs with satisfactory quality of service (QoS), and to

optimize the sum rate of the CRN as well, a constrained two-variable

nonlinear optimization problem (OP) is formulated. We solve this OP

by (i) transforming the QoS constraints from MAC layer to physical-

layer based on a cross-layer approximation to simplify the OP and (ii)

using the Lagrangian duality based technique to solve the simplified

OP and find the optimal power and subchannel allocation. A joint

cross-layer resource allocation and interference avoidance algorithm

is proposed for dynamic subchannel and power allocation. The ef-

fectiveness of the proposed algorithm is verified by numerical analysis

and computer simulations. Simulation results show that, compared to

the conventional designs, our algorithm achieves significantly higher



throughput and can guarantee the required SINR for PUs and the

QoS for SUs. Moreover, compared to the spectrum overlay sharing

method, the hybrid spectrum underlay & overlay sharing can provide

substantially higher spectrum efficiency.

Next, we study resource allocation for a multi-cell multi-user CRN,

which coexists with a multi-cell PN. Due to the co-channel interfer-

ence and the inter-cell interference, the multi-cell case is more com-

plicated than single-cell. It is difficult for the CBSs to obtain all the

interference channel information. Therefore, in the multi-cell environ-

ment, distributed operation is preferred for interference avoidance. To

manage the coexistence, a primary-willingness based coexistent archi-

tecture and a novel intra-cell spectrum overlay and inter-cell spectrum

underlay sharing method are proposed. In this architecture, the PBSs

are assumed to broadcast pilot signals and interference margins to as-

sist the CRN for interference channel evaluation and power control.

Our objective in this study is to guarantee primary performance (i.e.,

received SINR) and, at the same time, maximize both spectrum effi-

ciency and network performance (i.e., total throughput, and QoS of

SUs). Subject to the interference margins imposed by the PN, we

introduce a utility (payoff) function that can represent the secondary

system performance while taking into account the co-channel inter-

ference among the secondary cells. A distributed resource allocation

scheme is devised to guarantee the primary performance and, at the

same time, maximize the secondary utility function without coopera-

tion among CBSs. QoS among SUs is considered in this proposal so

that the instantaneous data rate for each SU is larger than a given

minimum rate. The resource allocation problem is decomposed into

two subproblems: subchannel allocation and distributed power allo-

cation game (DPAG). We prove that there exists a Nash equilibrium

in the DPAG and the equilibrium is unique. Moreover, we prove that

the DPAG is also Pareto optimal if the transmission power from CBSs

to SUs is limited, that is, no CBS can further improve its performance

without impairing others. Through simulations, the effectiveness of



our algorithm is shown. The solution turns out to converge within a

small number of iterations. The QoS for SUs also can be satisfied well.

Compared to the centralized algorithm, the proposed distributed al-

gorithm has great advantages, i.e., good system performance without

large signaling overhead and without coordination among CBSs.

This dissertation provides effective subchannel and power alloca-

tion algorithms that are suitable for OFDMA-based cellular CRNs,

and devises practical coexistent architectures for the overlaid/mixed

primary and secondary networks. For the next generation wireless

networks, high network throughput and QoS are important require-

ments. Our algorithms consider these two aspects and can achieve

good performance. Moreover, our researches provide some new direc-

tions for the coexistence of primary and secondary networks. How-

ever, in this dissertation, only cellular CRNs are focused. There still

exist many other coexistent scenarios and other directions on design

of effective resource allocation schemes and coexistent architectures

for the next generation wireless networks.
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Chapter 1

Introduction

This dissertation represents studies on resource allocation algorithms for OFDMA-

based cellular cognitive radio networks (CRNs). In this chapter, the research

background and scope are introduced first. Then, the problems existed in re-

source allocation of CRNs are reviewed. Research motivation and objectives are

also presented. Finally, the overview of the dissertation is given with the descrip-

tion of each chapter.

1.1 Background

Recently, advances in reconfigurable hardware have paved the way to the flexible

radios (or software-defined radios (SDR) [1]) that can adapt their air interface

and communication protocol to use existing standards or access technologies. The

merits for users are twofold. First, it is now possible to use lots of applications,

relying on different wireless communication techniques, in a single portable de-

vice. Second, users can now seamlessly and opportunistically roam across various

wireless access networks in the search for more throughput or cheaper bandwidth.

However, the realization of true seamless handover requires a tight coupling

of the hardware flexibility with the protocol layers. Intelligent schemes for envi-

ronment awareness, hand-off and distributed Quality-of-Service (QoS) control are

preferable. The combination of flexibility and increased protocol intelligence has

recently led to the novel concept of cognitive radio (CR) that adapts terminals to

the current environment and spectrum use [1]. It was first presented by Mitola [2]
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1. INTRODUCTION

as a novel wireless communications approach with the ability to sense the external

radio environment, to learn from its history, and to make intelligent decisions in

adjusting its transmission parameters based on the current environment. It is an

innovative technology to exploit the available flexibility leveraging reconfigurabil-

ity, increased awareness and intelligent control. In a more restricted definition,

cognitive devices use their increased flexibility and awareness to control channel

access dynamically, i.e., to achieve a dynamic spectrum access (DSA).

With the ever increasing demand for mobile and wireless applications, the

static assignment of radio resources to licensed holders has become a limiting fac-

tor in efficient spectrum utilization. In many countries, there is little spectrum

left for exclusive allocation [3]. However, studies have shown that a large por-

tion of the assigned spectrum is used only sporadically, and the report from the

Federal Communications Commission (FCC) has shown that most of the licensed

spectrum is currently under-utilized [4].

Recognizing the special ability of CR, to alleviate the looming spectrum short-

age problem, the FCC has suggested the use of CR technology to allow secondary

users (i.e., unlicensed users) to share radio resources with primary users (i.e.,

licensed users) while not unduly interfering with them [5]. It is an excellent

candidate for improving spectrum utilization.

The underutilized frequency bands of the radio spectrum, legally owned by

primary users (PUs), are referred to as spectrum holes, which are formally defined

as [6]:

“A spectrum hole is a band of frequencies owned by a primary network, but at

a particular time and specific geographic location, the band is not being utilized

by any primary user.”

Orthogonal frequency division multiplexing (OFDM) is a frequency division

multiplexing scheme that uses a large number of closely spaced orthogonal sub-

carriers to carry data. It has been considered as an appropriate modulation

technology for cognitive radio networks [7] because of its high spectral efficiency

and low interference between adjacent subcarriers. Furthermore, the orthogo-

nal frequency division multiple access (OFDMA) technique is also an attractive
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Figure 1.1: Active subbands of PUs, spectrum holes, and OFDM subcarriers of

SUs.

access scheme for CRNs because it enables CRNs to allocate radio resources to

multiple users dynamically and efficiently [7].

Figure 1.1 shows an example of the spectrum in a typical OFDM-based CRN.

The frequency bands that are currently used by PUs are the shadowed areas. The

remaining areas, not occupied by the PUs, are spectrum holes at this time. When

CRNs only utilize the spectrum holes of primary networks (PNs), we refer this

sharing method to spectrum overlay sharing or protective sharing. When both

spectrum holes and PU active subbands are shared by CRNs, it is referred to as

spectrum underlay sharing or aggressive sharing.

In this dissertation, the studies are about cognitive radio technology and

OFDMA-base cognitive radio networks.

1.2 Scope

To implement CR, a wide range of tasks are involved [6], [8], which include

the challenges in radio-scene analysis (information-theoretic analysis of the sys-

tems, radio environment estimation and spectrum detection), channel identifi-

cation (channel-state information estimation and channel capacity prediction),

dynamic spectrum management and transmission power control, and system ar-

chitecture design. The fundamental issues in CRNs are discussed in detail in Sect.

3.3. In this dissertation, we focus on the last two tasks and aim to design practi-

cal coexistent architectures and efficient resource allocation (RA) algorithms for

OFDMA-based cellular CRNs.
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Figure 1.2: Two kinds of spectrum sharing methods: (a) Spectrum overlay; (b)

Spectrum underlay.

1.3 Resource Allocation Problems in Cognitive

Radio Networks

Although a CRN is allowed to share primary bands to maximize the spectrum

efficiency, the utilization by secondary users (SUs) should not cause degradation

of services for the PUs. Thus, SUs should monitor and keep the generated inter-

ference to PUs to an acceptable level. This level is referred to as the interference

temperature limit by the FCC Spectrum Policy Task Force [4]. The definition

of the interference temperature limit for a PU is a maximum allowed level of

interference power. SUs can use PU bands as long as the total interference power

to the PUs is kept below this limit.

Compared to the conventional wireless communication systems, for the RA in

CRNs, two new issues arise, namely,

• The interference power to the PU bands should be kept below the interfer-

ence temperature limit. So, the interference management is more compli-

cated in the coexistent primary and secondary networks, compared to the

traditional wireless communications.

• The available spectrum, depending on the spectrum utilization of PNs, is

time-varying in CRNs. Good quality-of-service (QoS) should be provided to

SUs in spite of the time-varying available spectrum. So, effective resource

allocation algorithms are necessary.

At first, we analyze the interferences in the coexistent system. As we have

introduced before, there are two kinds of spectrum sharing methods: spectrum

4
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overlay sharing and spectrum underlay sharing, as shown in Figure 1.2. In spec-

trum sharing, two types of interferences will be generated by SUs to PUs. One

is the cross-channel interference from the adjacent channels used by SUs (Figure

1.2 (a)), and the other is the co-channel interference generated by SUs using the

PU active frequency bands (Figure 1.2 (b)).

For an OFDM based CRN, due to the orthogonality, inter-carrier interference

among SUs can be ignored. However, since PNs may not be using OFDM, there

could be cross-channel interference between PU bands and SU subcarriers. To

avoid the cross-channel interference, appropriate guard bands can be utilized

between adjacent channels, as shown in Figure 1.2 (a). To avoid large co-channel

interference, power control is necessary at secondary transmitters on PU active

subbands. Hence, when designing RA algorithms for CRNs, if the spectrum

underlay sharing method is implemented, not only the cross-channel interference

but also the co-channel interference need to be considered. For the spectrum

overlay sharing, the interference from SUs to PUs is unnecessary to be considered.

So, the overlay sharing model can greatly simplify RA design in CRNs.

Even though interference to PUs does not need to be considered in spectrum

overlay sharing, it does not mean that RA schemes designed for the conven-

tional OFDM systems can be applied directly to OFDM-based CRNs. In a CRN,

besides the fading characteristics of transmission channels, the available transmis-

sion spectrum also changes over time. RA schemes designed for the conventional

OFDM or OFDMA systems assumed fixed available spectrum, which is not the

case in CRNs. Thus, new RA algorithms that take into account both the fad-

ing characteristics of the transmission channels and the time-varying spectrum

sharing are needed.

In OFDMA based CRNs, power and spectrum allocation results are different

in each time slot. So the resource allocation can be implemented one time slot

by one time slot. Moreover, although the available spectrum is time-varying in

CRNs during a long time, it can be assumed to be fixed during a very short

time, i.e., one time slot. In this dissertation, we assume that the PUs’ activities

are static during one resource allocation for simplicity. Therefore, even though

the available spectrum is time-varying for a long period, it can be assumed to

be fixed in a short time. It is also not difficult to consider this dynamics in
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resource allocation problems of CRNs if we assume arbitrary distributions for

PUs’ activities. Generally, the PUs’ activities can be characterized by the Markov

chain model.

When SUs share both spectrum holes and PU active subbands, the achievable

capacity of CRNs is higher than the use of spectrum hole only. So, it can achieve

higher spectrum utilization by spectrum underlay sharing. However, in some

practical situations, underlay sharing may not be possible. This can happen, for

example, when the CRN is co-located with a broadcast PN, in which there are so

many primary receivers that it is impossible to keep the interference power below

the specified interference limit at every primary receiver. In such situations, PU

active bands may not be shared in order to avoid excessive co-channel interference.

In a fading environment, however, a SU signal may undergo deep fading and be

received with very little power at the primary receiver. So, for SUs in fading

environments, it may be possible to share both the spectrum holes and PU active

frequency bands opportunistically if the received interference power at the PU is

below the specified interference limit.

Note that RA algorithms designed for spectrum underlay sharing systems also

can be applied to spectrum overlay sharing systems by setting the PU interference

power threshold at each active primary receiver equals to 0. However, due to the

simplicity of the overlay sharing, many studies have been done for spectrum

overlay sharing CRNs, and only few researches focused on the spectrum underlay

sharing or hybrid spectrum overlay/underlay sharing. Thus, new RA algorithms

for spectrum underlay or hybrid spectrum overlay/underlay sharing systems are

needed.

The QoS for SUs is also important. In a CRN, the available resources are

limited and depend on the utilization of PNs. To provide good QoS for SUs,

effective RA algorithms should be devised.

1.4 Motivation and Objectives

The overall objective of this research is to enable spectrum sharing between pri-

mary users and secondary users and design effective RA algorithms by using both

6
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spectrum overlay and spectrum underlay sharing methods for OFDMA-based cel-

lular CRNs.

Until now, there are many works based on the two spectrum sharing methods

separately. They have not been considered jointly. For the spectrum overlay

sharing, it is unnecessary to consider the co-channel interferences. However, for

the spectrum underlay sharing, both cross-channel and co-channel interferences

need to be considered. To ensure the PUs’ normal operation, in the hybrid

spectrum overlay/underlay sharing systems, the total interference power to each

PU has to be kept below a specified interference power threshold. Therefore,

transmission power control has to be taken into account in RA, especially when

the PUs do not use OFDM.

In this dissertation, our objectives are as followings:

For the single-cell CRN:

• Different coexistent architectures for CR-cell and primary cell are consid-

ered. The performance of the two sharing methods is evaluted for different

architectures in order to find the optimal sharing method.

• To devise efficient RA algorithms to allocate subchannels and power for

multiple SUs in OFDMA-based single-cell CRN, which share both the spec-

trum holes and PU active frequency bands with PUs, while guaranteeing

that the total generated interference power at PUs does not exceed the

specified interference margins.

• The QoS support for different SUs is guaranteed in a fading environment

with time-varying spectrum.

For the multi-cell CRN:

• A novel intra-cell spectrum overlay and inter-cell spectrum underlay sharing

method is proposed for the coexistence of CRN/PN.

• A QoS-guaranteed distributed resource allocation algorithm for a multi-cell

CRN is designed by using the proposed intra-cell spectrum overlay and

inter-cell spectrum underlay sharing method.
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1.5 Overview of the Dissertation

This dissertation includes our research works on resource allocation algorithms

for cellular cognitive radio networks. The dissertation consists of six chapters as

described below.

Chapter 1 introduces the research background, scope, resource allocation

problems in CRNs, research motivation and objectives.

Chapter 2 This chapter presents the basics of resource allocation methods,

optimization techniques and related previous resource allocation algorithms for

the traditional wireless networks.

Chapter 3 The basics of the CR technology and CR networks with applica-

tions are described. Moreover, the fundamental challenges and issues in CRNs

and the previous RA algorithms for OFDM-based CRNs are also introduced.

Chapter 4 A joint cross-layer resource allocation and interference avoid-

ance algorithm with QoS support for a multi-user cognitive radio network is

presented. In this chapter, the performances of both primary networks and sec-

ondary networks are considered jointly. A constrained two-variable nonlinear

optimization problem (OP) is formulated. A cross-layer design and convex opti-

mization methodology are utilized to achieve the objectives in this chapter.

Chapter 5 A distributed resource allocation algorithm is proposed for a

multi-cell cognitive radio network. In the algorithm, the resource allocation prob-

lem is decomposed into subchannel allocation and distributed power allocation

game (DPAG). The DPAG is explained in details in this chapter. The existence

and uniqueness of nash equilibrium point, and pareto optimality of DPAG are

proved.

Chapter 6 The proposed RA algorithms designed for cellular CRNs are sum-

marized. The main contributions of the dissertation and suggestions for future

8
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research work are also presented.
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Chapter 2

Resource Allocation for Wireless

Networks

This chapter presents an overview of resource allocation for wireless networks.

Starting from an introduction of wireless networks and the basic principles of

resource allocation, such as power control, rate adaptation, multiple access and

cross-layer design, to the optimization techniques, then, related works, i.e. pre-

vious resource allocation algorithms for the traditional OFDM-based wireless

networks are also discussed. This chapter will help us to understand the basics

and the importance of wireless resource allocation.

2.1 Introduction

Over the past decade, there has been a significant advance in the design of wireless

networks, ranging from physical (PHY) layer algorithm development and MAC

layer protocol design to network and system level optimization. Many wireless

standards have been proposed to suit the demands of various applications. For

wireless networks, because of fading channels, user mobility, energy/power re-

sources, and many other factors, one cannot optimize wireless networks as has

been traditionally done for wired networks, in which one can simply focus on

and optimize each networking layer without paying much attention to the effects

of other layers. For wireless networks, cross-layer optimization is a central issue

11
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to ensure overall system performance. Resource allocation is one of the most

important issues for cross-layer optimization of wireless networks.

Resource allocation is used to assign the available resources in an economic

way. The purpose of resource allocation for wireless networks is to intelligently al-

locate the limited resources, e.g. total transmission power and available frequency

bandwidth, among users to meet users’ service requirements.

Due to the number of degrees of freedom and many different parameters,

resource allocation is the issue covering a wide range of problems. Therefore, the

optimization tools that can be employed vary a lot. Besides the commonly used

convex optimization in communication system design, many resource allocation

problems are nonlinear and nonconvex. When it comes to channel allocation and

scheduling, sometimes the problems become integer, combinatorial, or both. If

one takes into account time-varying conditions, then the problem evolves into one

of dynamic optimization. When allocation among distributed and autonomous

users is considered, game theory can be employed to find the optimal strategy

and solution. It is fair to say that there is no single optimization tool available

to solve all resource allocation problems at once.

What makes resource allocation more challenging is that, in fact, when it

comes to the applications, different wireless networks aim at different service

goals, and therefore have different design specifications. One network can be

severely energy sensitive and power constrained, whereas the other can be band-

width limited and throughput hungry. In some situations, a network may have

a high degree of mobility with opportunistic access, whereas in other cases a

network has an ultrawide bandwidth to share with others but little mobility.

As such, different networks face different resource allocation problems; dif-

ferent characteristics of problems employ different optimization techniques; and

joint considerations of different layers encounter different constrained optimiza-

tion issues.

2.2 Basics of Resource Allocation

Wireless network refers to a telecommunications network whose interconnections

between nodes are implemented without the use of wires. There is great growth

12
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Figure 2.1: Wireless standards comparison.

during the past few decades and it will continuously evolve in the future.

There are many existing wireless standards. Figure 2.1 shows different stan-

dards for different communication rates and different communication ranges.

These standards will fit different needs of various applications, and the same

techniques can be utilized by multiple standards in different situations. Accord-

ing to the decreasing order of the coverage areas, there are four types of wireless

networks: cellular networks, wireless metropolitan area networks (WMAN), wire-

less local area networks (WLAN), and wireless personal area networks (WPAN).

Besides the above wireless networks, there are some wireless networks without

specified standards, such as wireless ad hoc networks, wireless sensor networks,

and cognitive radio networks. Different networks can be applied to different

environments. The details of cognitive radio networks will be explained in the

next chapter.

For different wireless networks, there are different resource allocation algo-

rithms. However, the basics of resource allocation are the same. In wireless

networks, the resources allocated to multiple users always consist of power re-
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source and space/time/spectrum resource. Multiple users in wireless networks

will share the limited resources under different practical constraints. We will ex-

plain the basic principles of resource allocation following the four aspects: power

control, rate adaptation, multiple access and spectrum access, and cross-layer

designs [9].

2.2.1 Power Control

In wireless communications, transmission power is an important resource. Power

control is a significant design problem in modern wireless networks. It serves

several purposes, including combating fading channel, reducing co-channel in-

terference (CCI), managing data quality, maximizing cell capacity, minimizing

handset mean transmission power and so on. In wireless networks, two impor-

tant detrimental effects that decrease network performance are the time-varying

nature of the channels and CCI. The average channel gain is primarily determined

by large-scale path-loss factors such as propagation loss and shadowing. The in-

stant channel gain is also affected by small-scale fading factors such as multipath

fading. Because the available bandwidth is limited, the channels are shared for

different transmissions. The channel sharing increases the network capacity but

causes CCI. Power control is an effective resource-allocation method to combat

these detrimental effects. The transmission power is adjusted according to the

channel condition so as to maintain the received signal quality. Power control

is not a single user’s problem because a user’s transmission power causes other

users’ interferences. The objective of power control is to control the transmission

power to guarantee a certain link quality and reduce CCI.

In wireless networks, there are the following difficulties in power control:

• There is a trade-off for each link’s power. The increase in transmission

power will increase the link’s signal to interference plus noise ratio (SINR),

but, on the other hand, the increased power will interfere with other links

and cause degradation of other links.

• For the uplink or multi-cell case, to reduce network overhead, it is bet-

ter to implement power control in a distributed way. That is to say, all

14
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Figure 2.2: Example of multi-cell case.

users should use their local information to control the power so that the

limited power resources can be effectively utilized to improve the system

performance while maintaining the users’ QoS.

• It is necessary to have a simple implementation of power control without

causing too much communication overhead and burden.

• To combat fading channels, the convergence speed for a power-control al-

gorithm should be fast enough compared with the changing speed of the

fading channels.

• The power control scheme should be able to accommodate heterogeneous

QoS requirements.

Hence, the efficient management of the power resource has become an impor-

tant research issue in the recent years.

For different scenarios, such as single-cell case and multi-cell case, uplink and

downlink, power control schemes are different. Figure 2.2 illustrates an example of

a multi-cell communication network. A set of transmitter-receiver pairs share the

same channel in different cells. The channels between different cells are referred as

interference channels, i.e., the dotted lines shown in Figure 2.2. The interferences
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Figure 2.3: Example of single-cell case.

are referred to as co-channel interferences. If the cells sharing the same channels

are separated far enough, the interferences may be much less than the thermal

noise. Under this condition, the power control problem becomes a single-user

optimization problem and can be easily solved. However, if the channel-sharing

cells are close to each other, we need to control the users’ transmission power in

the different cells. Moreover, the estimation of interference channels is difficult.

So distributed power control using only local information is preferred to multi-cell

power control implementation.

In Figure 2.3, it shows an example of a single-cell communication network.

In contrast to the multi-cell case, there is only one base station in the network.

Multiple users are distributed in one cell. When the multiple users share the

same spectrum, the interferences might be much larger compared with those

in the multi-cell case. So power control is always necessary for all users every

time. Since the users access to the same base station, the interference channel

information can be obtained easily. Consequently, centralized power control can

be possibly implemented in the single-cell case.

Power control schemes can be classified according to how to measure the

power, what the available measurements are, what the constraints are, and how

much time delay can be accepted [9]. Based on the directions of communications,

the power control schemes can be classified as uplink and downlink power control.

According to what is measured to determine power, power control techniques can
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be classified into the strength of arriving signal based, received SINR based and

bit-error-rate (BER) based power control. Depending on whether feedbacks exist,

power control techniques can be classified as closed-loop, open-loop and combined

closed/open-loop power control.

In addition, according to network infrastructures, there exist two main clas-

sifications: centralized and distributed power control. The centralized power

control is limited by the overhead of channel estimation. So, it can work well in

a system with a small number of users and a centralized topology. On the other

hand, the distributed power control can provide practical implementation. The

disadvantages are low convergent speed and possible infeasibility.

2.2.2 Rate Adaptation

Rate adaptation is one of the most important resource allocation issues. Wireless

networks can adapt the users’ rates so that the limited resources can be efficiently

utilized. Compared with power control, rate adaptation gives a new dimension of

freedom to change the transmission rate over time, i.e., power control maintains

the desired link quality, whereas rate adaptation adjusts this link quality.

According to the different layers of the OSI (Open System Interconnection)

model, rate adaptation can be classified into three different types: source rate

adaptation in the application layer, rate control for data communication in the

network/MAC layer, and channel protection adaptation in the PHY layer. They

are briefly summarized in the following:

Source Rate Adaptation

This type of adaptation adjusts the quality of transmitting information at

source nodes. Because the structures of coders for different services (such as

voice and video) are different, the design concerns for source adaptation are dif-

ferent. That is, different types of services have different source encoders to control

the source rates. For example, the voice encoder can change the information rate

according to the talking period and the silence period, as it is useless to have a

high data rate for the silence period. For video transmission, the data is very

bursty over time, because of the different video scenarios and different frames.
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Because the capacity to deliver the information is limited by the communication

systems, the wireless networks can utilize the limited system resources effectively

by the source rate adaptation.

Rate control for network/MAC layer

The network/MAC layer utilizes buffers to accommodate the rate differences

between rates of source coders and rates that channel can provide. Rate control

is critical to optimize the buffer behaviors and maintain the QoS.

For data transmission over wireless networks, one of the important QoS tar-

gets is the average delay required for delivering a packet from the source to the

destination. The delay is influenced by the packet arrival rate, service rate and

others. Moreover, the maximum buffer size is also an important issue for practi-

cal implementation. Therefore, there are the following two kinds of rate control

problems:

• The first one is delay-constrained. For different applications, the delay

constraints are different. For example, for the voice packet, the delay re-

quirement is very strict, because the delayed packets can significantly reduce

voice quality, whereas for services like e-mail, the delay can be arbitrarily

long. So the problem formulation is usually constrained by the maximum

delays for the specific types of applications. The optimization is performed

by adapting the service rate from the link or the incoming packet rate from

the source.

• The second one is maximum-buffer-size-constrained. The buffer size of the

communication system is limited. So this kind of problem has the constraint

on the maximum buffer size. The resource allocation scheme tries to prevent

buffer overflow. If the buffer does overflow, some packets will be selectively

dropped.

For the multiple-user case, the multiple-access nature of the wireless channels

requires rate control for different users.

Rate Adaptation for PHY layer
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The wireless channel gains and phases fluctuate over time, which causes fading

in the communication links. To combat the fading, channel adaptation schemes,

such as adaptive channel coding and adaptive modulation schemes, should be

considered. In channel adaptation schemes, rate adaptation can be implemented

to protect the channel from transmission errors according to the channel state.

In specific wireless networks, different types of rate adaptation can be applied

or combined together. In addition, rate control can be combined with power con-

trol to further improve the system performance. With regard to implementation,

both rate adaptation and power control impose practical challenges. For rate

adaptation, different modulation and coding schemes have to be implemented.

There shall be a reliable channel to feed back the selected rate without any delay.

For power control, the link quality shall also be monitored and fed back. In the

most of current standards, the power control is utilized much more frequently

than the rate adaptation.

2.2.3 Multiple Access and Spectrum Access

Multiple access considers the problem of allocating limited radio resources, such

as spectrum, time and space, to multiple users. Spectrum access decides whether

an indicidual user can access the spectrum.

Multiple Access

Multiple access is a general accessing strategy to allocate the limited resources,

such as space, bandwidth and time, to guarantee the basic QoS, improve the

system performances, and reduce the cost for the network infrastructures.

The basic idea of the multiple access is to combine several signals at the trans-

mitter by a multiplexor and split up at the receiver by a de-multiplexor. Based on

how to divide the limited radio resources to multiple users, the multiple-access

schemes can be classified as time-division multiple access (TDMA), frequency-

division multiple access (FDMA), code-division multiple access (CDMA), space-

division multiple access (SDMA), and others. For multiple users’ communication,

TDMA, FDMA, CDMA, SDMA, frequency-hopped multiple access (FHMA) and

19



2. RESOURCE ALLOCATION FOR WIRELESS NETWORKS

orthogonal frequency-division multiple access (OFDMA) are major access tech-

niques [10].

Based on how to coordinate access for multiple users, multiple-access schemes

can be classified into scheduling and random access. In scheduling, there is a

centralized control, i.e., the base station, to control which user can transmit by

using specific resources such as the bandwidth at different times. In random ac-

cess, there is no such centralized control. Users access and utilize the resources

in a distributed way. If conflicts of resource usage occur, certain mechanisms are

employed to avoid conflicting in the future. These two types of schemes are em-

ployed in different scenarios depending on the networks’ situations. For example,

in cellular networks, it is possible for centralized control where scheduling can be

employed. On the other hand, in the WLAN, mobile users distributively share

the limited bandwidth. As a result, radom-access schemes are widely deployed.

Spectrum Access

For spectrum access, there are two kinds of methods: channel allocation and

opportunistic spectrum access.

Because the radio spectrum is limited, a given radio spectrum is to be divided

into a set of disjointed channels that can be used simultaneously while minimizing

interference in adjacent channels by allocating channels appropriately (especially

for traffic channels). Frequency allocation should be carefully planned to avoid

degradation caused by CCI.

With the control of a central processor, the channel allocation schemes can

be coordination-based. Coordination-based channel allocation schemes can be

divided in general into fixed channel allocation schemes (FCA), dynamic channel

allocation schemes (DCA), and hybrid channel allocation schemes (HCA, com-

bining both FCA and DCA techniques).

Besides the coordination-based approach, there are also distributed measurement-

based methods, which can alleviate the processing time of the central processor

greatly.

Opportunistic spectrum access enables the dynamic management of radio re-

sources within a single-user access system or between different radio-access sys-

tems. The conventional fixed spectrum allocation results in low utilization of
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the allocated spectrum. Opportunistic spectrum access can improve spectral effi-

ciency, increase capacity and improve ease of access to the spectrum. In addition,

the FCC has investigated a novel cognitive radio technology to improve spectrum

utilization by allowing SUs to borrow unused radio spectrum from PUs. The

cognitive radio technology will be introduced in detail in the next chapter.

2.2.4 Cross-Layer Designs

In wireless networks, the different layers of the OSI model interact in a nontrivial

manner in order to support information transfer. Due to the time varying nature

of a wireless network (either fading channels or user mobility), it is difficult to

capture the network nature and control the network in real-time only by single-

layer information. Cross-layer designs from the PHY to transport layer in wireless

networks are with significant importance.

In cross-layer designs of wireless networks, a number of PHY and MAC layer

parameters are jointly controlled and in synergy with higher layer functions like

transport and routing. In general, cross-layer operation terminology refers to “any

violation of the layered architecture” [11], in order to adapt to the dynamics of the

wireless environment in terms of the traffic pattern, the service demand, mobility

and other variations in environment. Considering cross-layer design proposals in

the references, they can be summarized into the following categories:

• Air interface-centric: In this category of cross-layer optimization, the main

focus is on efficient utilization of the scarce wireless radio resources through

adaptation to the time-variant channel, based on throughput efficiency, fair-

ness and QoS. Therefore, the problem is generally modeled between the

PHY and MAC layers while the upper layers of protocol stack (Applica-

tion/Transport) contribute mainly to the traffic pattern. This imposes ad-

ditional constraints on the original problem. Two main examples of this

approach are opportunistic scheduling in cellular single-hop networks [12]

and joint congestion-control and scheduling in multi-hop wireless networks

[13].
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• User-centric: In this approach, the main concern is the adaptation of upper

layer protocols to the time-variant, unreliable channel in wireless environ-

ment to achieve a certain level of user satisfaction in terms of the end-to-

end throughput, delay, and power consumption. Hence, the emphasis is on

the upper layer protocols whereas channel characteristics are modeled us-

ing simplified assumptions with less consideration of the air interface tech-

nology, radio resource management policy or interference modeling. The

proposals for improving the performance of Transmission Control Protocol

(TCP) [14] in wireless networks can be categorized as user-centric cross-

layer operation.

• Route-centric: Recently, there has been much activity on cross-layer routing

in multi-hop wireless networks. The cross-layer routing designs effectively

couple the network layer and the PHY or MAC layer to select the best

routing. Some examples of this approach can be found in [15], [16].

In thisdissertation, the main focus is on air interface-centric cross-layer re-

source allocation designs. Typical PHY and MAC layer functions include power

control and channel allocation.

2.3 Optimization Formulation of Resource Al-

location Problems

A standard problem in network design deals with the question of how the avail-

able resources should be shared between competing users to meet some share

objectives. One possible objective is to allocate resources to a set of users so as

to maximize the total throughput. The main drawback of this objective is that it

may be quite unfair in the sense that some users may be denied access to the links.

For this reason, another objective that must be considered is the issue of fairness.

However, the “perfect fairness” is usually at the expense of a considerable drop

in efficiency (i.e., total throughput). Therefore, there seems to be a fundamental

trade-off between throughput and fairness, with the throughput-optimal policy

and perfect fair policy being two extremes of this trade-off [17].
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Except for throughput and fairness, QoS (e.g., service delay)is another im-

portant objective. In order to achieve different objectives, there exist different

resource allocation problems in wireless networks. A common approach to bal-

ance these objectives is to maximize the aggregate (overall) utility of resource

allocations subject to different constraints.

In this section, we discuss how to formulate a resource allocation optimization

issue. Specifically, we need to know what the resources are, what the parameters

are, what the practical constraints are, and what the optimized performances

across the different layers are. For multi-user scenarios, the trade-offs between

the different optimization goals and different users’ interests are also needed to

be considered.

2.3.1 Constrained Optimization

Many wireless resource allocation problems can be formulated as constrained

optimization problems, which can be optimized from the network point of view

or from the individual point of view. The general formulation can be written as

min
x∈Ω

f(x), (2.1)

Ω :

{
gi(x) ≤ 0, for i = 1, . . . , I,
hj(x) = 0, for j = 1, . . . , J.

(2.2)

where x is the parameter vector for resource allocation, Ω is the feasible range of

the parameter vector, and f(x) is utility function that represents the performance

or cost. Here, gi(x) and hj(x) are the inequality and equality constraints for

the parameter vector, respectively. The optimization process finds the solution

x∗ ∈ Ω that satisfies all inequality and equality constraints.

If the optimization goal, the inequality constraints, and the equality con-

straints are all linear functions of the parameter x, then the problem in (2.1)-(2.2)

is called a linear program. There is a global optimal point that is very easy to

obtain by linear programming. However, most of the practical problems in wire-

less networking and resource allocation are nonlinear. If either the optimization
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goal or the constraint functions are nonlinear, the problem is called a nonlinear

programming. In general, there are multiple local optima in a nonlinear program

and to find the global optimum is not an easy task. Furthermore, if the feasible

set Ω consists of integers, the problem is an integer programming. Most integer

programs are nondeterministic-polynomial-hard (NP-hard) problems that cannot

be solved in polynomial time.

One special kind of nonlinear programming is the convex optimization problem

in which the feasible set Ω is a convex set [18], and the optimization goal and

the constraints are convex/concave/linear functions. The advantages of convex

optimization for wireless networking and resource allocation problems are shown

as follows [9]:

• Computation time is usually quadratic. Problems can then be solved ef-

ficiently, using interior-point methods or other special methods for convex

optimization.

• Solution methods are reliable enough to be embedded in a computer-aided

design or analysis tool, or even a real-time reactive or automatic control

system.

The challenges of convex optimization are to recognize and model the problem

as a convex optimization. There are many tricks for transforming problems into

convex forms.

The basics of constrained optimization problems are discussed above. In wire-

less networking and resource allocation, the parameters, utility functions, and

constrains in (2.1)-(2.2) can have the following physical meanings:

• Parameters:

1. PHY layer: transmission power, modulation level, channel-coding rate,

channel/code selection, and others.

2. MAC layer: transmission time/frequency, service rate, priorities for

transmission, and others.

3. Network layer: route selection, routing cost, and others.
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4. Application layer: source-coding rate, buffer priority, packet arrival rate,

and others.

• Optimization goals:

1. PHY layer: minimize overall power, maximize throughput, maximize

rate per link, minimize BER, and others.

2. MAC layer: maximize overall throughput, minimize buffer overflow prob-

ability, minimize delay, and others.

3. Network layer: minimize cost, maximize profit, and others.

4. Application layer: minimize distortion, minimize delay, and others.

• Constraints:

1. PHY layer: maximum user transmission power, available modulation

constellation, available channel-coding rate, limited energy, and others.

2. MAC layer: contentions, limited time/frequency slot, limited information

about other users, and others.

3. Network layer: maximum hops, security concerns, and others.

4. Application layer: the base-layer transmission, limited source rate, strict

delay requirement, security, and others.

After formulating the constrained optimization problem for resource alloca-

tion, we need to get the solution by using some optimization techniques, which

will be introduced in the next section.

2.4 Optimization Techniques

Usually, the resource allocation issues in wireless networks can be formulated as

optimization problems with different objective goals, different resources, param-

eters, and several constraints. Various optimization techniques can be applied to

wireless resource allocation problems.
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2.4.1 Mathematical Programming

If the optimization problem is to find the best objective function within a con-

strained feasible region, such a formulation is sometimes called a mathematical

programming, which has the following forms:

• given: a function f : A → R from a certain set A to the real numbers;

• find: an element x0 in A such that f(x0) ≤ f(x), ∀x ∈ A (minimization),

or such that f(x0) ≥ f(x), ∀x ∈ A (maximization).

Typically, A is a certain subset of the Euclidean space �n, often specified by

a set of constraints, equalities, or inequalities that the members of A have to

satisfy. The domain A of f is called the search space. The elements of A are

called feasible solutions. The function f is called an objective (utility) function,

or cost function. A feasible solution that minimizes or maximizes the objective

function is called an optimal solution.

There are four major subfields of mathematical programming: linear program-

ming, convex programming, nonlinear programming and dynamic programming.

• Linear programming (LP) studies the case in which the objective function

f is linear and the set A is specified using only linear equalities and in-

equalities.

• Convex programming studies the case in which the constraints and the

optimization goals are all convex or linear.

• Nonlinear programming (NLP) studies the general case in which the objec-

tive function or the constraints or both contain nonlinear parts.

• Dynamic programming studies case in which the optimization strategy is

based on splitting the problem into smaller subproblems or considers the

optimization problems over time.

In general, mathematical programming can be solved using the following ap-

proaches:

For twice-differentiable functions, unconstrained problems can be solved by

finding the points where the gradient of the objective function is 0 (i.e., the
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stationary points) and then using the Hessian matrix to decide whether the point

is local optimal. If the objective function is convex over the region of interest,

the local optimal point will also be a global optimal point.

There exist robust and fast numerical techniques for optimizing twice differen-

tiable convex functions. Besides, constrained problems can often be transformed

into unconstrained problems with the help of Lagrangian multipliers.

The details of the mathematical programming can be found in [18] and [19]. In

Chapter 4, Lagrangian method-based convex optimization problem is investigated

for resource allocation in multi-user CRNs.

2.4.2 Integer/Combinatorial Optimization

Combinatorial optimization problems are problems of choosing the best combi-

nation out of all possible combinations. Most combinatorial problems can be for-

mulated as integer programming. In wireless resource allocation, many variables,

such as channel allocation, have a combinatorial nature. Integer/combinatorial

optimization is the process of finding one or more best (optimal) solutions in a

well-defined discrete problem space. For example, in a WLAN, the time slots

are occupied by different users. The allocation of time is restricted to a discrete

nature. In WiMAX or any OFDM systems, the distinct time-frequency slot is

also allocated to the admitted users. Moreover, for practical implementation,

the coding rate and adaptive modulation can have only discrete values. To de-

sign future wireless networks, it is with significant importance to study integer

optimizations.

The general problem formulation can be given by:

min
x,y,z∈Ω

f(x,y,z), (2.3)

Ω :

⎧⎨⎩
gi(x,y,z) ≤ 0, for i = 1, . . . , I,
hj(x,y,z) = 0, for j = 1, . . . , J,
x ∈ �,y ∈ {0, 1}, z ∈ I.

(2.4)

where, function f is the objective function, gi is the inequality constraint, hi is

the equality constraint, the component of vector x is a real value variable, y is
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a variable of either 0 or 1, and z is a integer value in a space I. If y = 0 and

z = 0, it becomes a nonlinear optimization. If z = 0, the problem is referred to

a pure 0–1 integer programming problem. If y = 0, it is called a pure integer

programming problem. Otherwise, the problem is a mixed integer programming

problem.

For wireless networking and resource allocation, there are many potential

applications of integer optimization, such as routing and network graph problems,

scheduling problems, assignment problems (i.e., a number of tasks should be

allocated to different agents). Knapsack problem [20] is one special case of this

kind of optimization problem.

There are at least three different approaches for solving integer programming.

They include relaxation and decomposition techniques, enumeration techniques,

and cutting-plane approachs based on polyhedral combinatorics [21], [22]. The

three approaches also can be combined into a “hybrid” method in computational

practice. In Chapter 4, relaxation method is utilized to simplify the optimization

problem, and transfer it as a convex optimization.

2.4.3 Game Theory

Game theory [23], [24] is a branch of applied mathematics that uses models to

study interactions with formalized incentive structures. It studies the mathemat-

ical models of conflict and cooperation among intelligent and rational decision

makers. “Intelligent” means that each individual understands everything about

the structure of the situation, including the fact that others are intelligent, ra-

tional decision makers. “Rational”means that each individual’s decision-making

behavior is consistent with the maximization of subjective expected utility.

In wireless networks, to obtain information such as channel conditions, sig-

naling is performed so that resource allocation can be conducted in an optimal

way. However, signaling has considerable overhead for communications. Most

of the current wireless networks have more than 50% of overhead. Reducing the

overhead can increase the spectrum utilization, increase the number of users, and

improve the network performance. One way to reduce overhead is to do resource
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optimization by using only local information. This is very important, especially

if the system topology is distributive.

In some wireless network scenarios, it is hard for an individual user to know

the channel conditions of the other users. The users cannot cooperate with each

other. They can act selfishly to maximize their own performances in a distributive

way. Such a fact motivates us to adopt game theory. Resouce allocation can

be modeled as a game that deals with how rational and intelligent individuals

interact with each other in an effort to achieve their own goals. In the game,

each user is self-interested and trying to optimize its utility function, in which

the utility function represents the user’s performance and controls the outcomes

of the game. There are many advantages of applying game theory to wireless

networking and resource allocations:

• Reducing network overhead: The individual user observes the outcome of

the game and adjusts only its own resources in response to optimize its

benefit. So, there is no need to collect all the information and conduct

constrained optimization in a centralized way.

• More robust outcome: If the information for optimization is not quite ac-

curately obtained, the optimized results can be far from optimality. In

contrast, local information is more accurate, so the outcome of distributed

game approaches is more robust.

• Combinatorial nature: The traditional optimization techniques are hard to

handle combinatorial problems. For game theory, it is natural to discuss

the problem in a discrete form. In problems such as discrete modulation

levels and channel-coding rates, analyzing the combinatorial problems by

game theory is considerably convenient.

• Rich mathematics for optimization: There are many mathematics tools

to analyze the outcome of the game. Specifically, if the game is played

noncooperatively, the static game can be studied. If the game is played

multiple times, dynamic game theory is employed. If some contracts and

mutual benefits can be obtained, cooperative game explains how to divide

the profits. Auction theory studies the behaviors of both seller an bidder.
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In general, there are four types of games, namely, the noncooperative game,

repeated game, cooperative game and auction theory. In Chapter 5 of the theis, a

noncooperative game based dynamic resource allocation algorithm for multi-cell

CRNs is studied.

2.5 Previous Resource Allocation Algorithms for

the Traditional OFDM-based Wireless Net-

works

In thisdissertation, resource allocation for OFDMA-based Cellular Cognitive Ra-

dio Networks is studied. Therefore, related previous works on resurce allocation

algorithms for traditional OFDM-based wireless networks are presented here.

Centralized Physical Layer Approach

The bit and power loading problem for single-user OFDM systems can be

solved by using the well-known water-filling [25] algorithm if we assume that the

number of bits to be loaded is a real number, or implement a greedy approach

that assigns one bit at a time to the subcarrier that requires the least additional

power for the integer bit case. To reduce computational complexity for the integer

bit case, various low complexity algorithms have been proposed, for both optimal

(e.g. [26]) and suboptimal solutions (e.g., [27]).

In the case of the downlink transmission from a BS to multiple users, the

subchannels need to be assigned to users exclusively [28]. Therefore, RA involves

subchannel assignment in addition to power and bit allocation. When the goal

is to maximize system throughput, the problem can be solved in two separate

steps [28], namely, assigning each subchannel to the user with the best channel

condition, followed by power and bit allocation.

When there are QoS or fairness requirements, subchannel, bit, and power

allocation becomes more complicated. Since optimal solutions are generally com-

putationally complex, various sub-optimal solutions have been proposed. In [29],

suboptimal solutions are proposed to minimize the total transmit power while
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satisfying rate and BER requirements for real-time (RT) services. For non-real-

time (NRT) services, maximizing system throughput while guaranteeing a certain

level of fairness among users is a reasonable goal [30].

Most of these suboptimal solutions use the divide-and-conquer approach, in

which the subcarrier, power, and bit allocation problem is broken down into two

steps, i.e., allocate subcarriers to users and load appropriate power and bits to

each subcarrier. During the first step, power is often assumed to be the same

across all subcarriers so as to simplify the problem.

Centralized MAC Layer Approach

RA also occurs in the MAC layer, which is responsible for packet scheduling.

Almost all existing studies extend opportunistic scheduling strategies from the

single carrier case to the multiuser OFDM case with multiple subcarriers. For

NRT services, some schemes (e.g., [31]) extend the proportional fair (PF) rule,

while others (e.g., [32]) extend the modified-largest weighted delay first rule [33]

for RT traffic. An urgency and efficiency based packet scheduling algorithm is

proposed in [34] for both RT and NRT services using an urgency factor that re-

flects the urgency of meeting QoS requirements combined with the PF rule to

maximize system throughput.

Centralized Cross-Layer Approach

Some researchers have adopted a cross-layer design approach in allocating

system resources. In [35] and [36], sub-optimal algorithms for NRT services are

proposed and algorithms for both RT and NRT services are studied in [37] and

[38]. In [37], the QoS for RT applications is improved by giving high priority

to users whose head-of-line packet deadlines are approaching. In [38], the MAC

layer QoS requirement for each user is converted to a PHY layer fixed rate re-

quirement based on the average user packet arrival rate and delay constraint. An

optimal subchannel and power allocation strategy is proposed that maximizes

system throughput subject to a total transmit power limit and user delay re-

quirements.

Distributed Approach
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While centralized RA is suitable for single-cell systems, distributed algorithms

may be more appropriate for multi-cell cellular systems or ad hoc systems. Al-

though distributed dynamic channel allocation (DCA) has been studied for multi-

ple cell cellular networks for voice services, it cannot be easily ported to multiuser

OFDM systems. This is because traditional DCA schemes assume homogeneous

applications with a pre-determined SINR threshold, and may not efficiently sup-

port services with different requirements.

To dynamically allocate resources in a multi-cell system or an ad hoc system,

subcarriers may be simultaneously shared among served users in order to improve

system performance. In this case, co-channel interference has to be considered.

In [39], other users’ signals are treated as noise, and the power allocation prob-

lem is viewed as a non-cooperative game. A distributed iterative water-filling

(IWF) algorithm is proposed for digital subscriber line (DSL) systems in [39]. To

achieve the optimal power allocation solution, the achievable target rates must

be known. This is not a big problem for DSL systems, but is unrealistic for time-

varying wireless channels. To make IWF suitable for wireless systems, a scheme

is proposed in [40] for multi-cell wireless systems in which a virtual referee is

introduced to displace some users out of certain subchannels when necessary, to

allow ITWF to converge to good solutions.

Power and bit allocation for multiuser OFDM systems with co-channel inter-

ference have been formulated as a constrained nonlinear programming problem

in [41]. To reduce the complexity of finding a solution, a distributed algorithm is

proposed that allocates one bit per iteration.

2.6 Chapter Summary

We introduce the basics of resource allocation for wireless networks in this chap-

ter. The optimization formulation and techniques used in resource allocation

are also presented. Related previous works on resource allocation for traditional

OFDM-based wireless networks are also discussed.

Different wireless network scenarios always have different design objectives, so,

the overall utility functions, which need to be optimized in resource allocation,

are always distinctive. Due to different features of the optimization problems,
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different optimization techniques (i.e., solving methods) will be applied to ob-

tain the optimal/sub-optimal solution. In thisdissertation, two different resource

allocation problems using different optimization techniques are investigated for

single-cell and multi-cell multi-user CRNs in chapter 4 and chapter 5, respectively.
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Chapter 3

Cognitive Radio Networks

Cognitive Radio (CR) technology provides a new and promising solution to im-

prove the spectrum utilization. Some basic concepts about the CR technology,

cognitive radio networks (CRNs), and its applications are intoduced in this chap-

ter. The fundamental challenges and issues in designing CRNs are also presented.

Researches on CRNs are mainly focused on technologies for PHY and MAC lay-

ers. Resource allocation is one of the most important topics for dynamic spectrum

access in CRNs. The related previous works on resource allocation for CRNs are

also reviewed in this chapter.

3.1 Cognitive Radio Technology

Cognitive radio [1] has emerged as a promising technology for alleviating the se-

vere spectrum shortage problem while accommodating the increasing amount of

services and applications in wireless networks. Haykin [6] defines cognitive radio

as:

“Cognitive radio is an intelligent wireless communication system that is aware

of its surrounding environment (i.e., outside world), and uses the methodology

of understanding-by-building to learn from the environment and adapt its inter-

nal states to statistical variations in the incoming RF (radio frequency) stimuli

by making corresponding changes in certain operating parameters (e.g., transmit-

power, carrier frequency, and modulation strategy) in real-time, with two primary
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Figure 3.1: Spectrum sharing process.

objectives in mind: (1) highly reliable communications whenever and wherever

needed; (2) efficient utilization of the radio spectrum.”

A CR transceiver is able to adapt itself to the dynamic radio environment to

maximize the utilization of the limited radio resources while providing flexibility

in wireless access. A CR transceiver is able to aware of the radio environment, in

terms of spectrum usage, power spectral density of transmitted/received signals,

wireless protocol signaling, etc. and intelligently configure its system parameters,

such as transmit-power, carrier frequency, physical-layer modulation strategy,

and higher-layer protocol parameters. This intelligence is achieved through its

learning ability.

Due to this ability of CR, the use of CR technology to allow SUs (i.e., unli-

censed users) to share radio resources with PUs (i.e., licensed users) is suggested

by FCC [5] to improve spectrum efficiency. Therefore, the SUs equipped with CR

have the following functionalities in a spectrum sharing process [8], as shown in

Figure 3.1:

• Spectrum sensing: monitoring the available spectrum bands to detect spec-

trum holes. It is also useful to monitor other information in the wireless

communication environment, such as, the activities of PUs, and higher layer

information in the transmission protocol stack. The main challenges are

energy-limit and hardware cost.

• Spectrum analysis: Based on the measurements obtained through spec-

trum sensing, it is required to determine which portion of the spectrum is

available for SUs and build a spectrum available model. Due to hardware
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Figure 3.2: An example of centralized cognitive radio networks.

and energy limitations, it is difficult to build a full spectrum scene and

an accurate primary communication network. To improve the accuracy,

cooperation between nodes can be implemented at the cost of increased

communication overhead. Also, techniques for local spectrum analysis are

important to build the utilization model of primary spectrum.

• Spectrum decision: It is about how to access the spectrum, including se-

lecting the best available channel and coordinating access to this channel

with PUs (e.g., power control to avoid interferences to PUs). The spectrum

decision is an optimization problem using the model built during spectrum

analysis. This optimization problem can have a local or a global optimiza-

tion goal.

Even though the SUs have these functionalities, it is unnecessary for each SU

to perform all the functionalities at the same time. This depends on the type of

cognitive radio networks and the coexistent architectures of CRNs and primary

networks (PNs).

3.2 Cognitive Radio Networks and its Applica-

tions

Devices with cognitive abilities can create cognitive radio networks. The general

examples of CRNs distinguish two types of users sharing the common spectrum
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Figure 3.3: An example of distributed cognitive radio networks.

portion with different rules: PUs and SUs. PUs have priority in spectrum uti-

lization within the band they have licensed, and SUs must access the spectrum

in a non-intrusive manner. PUs use the traditional wireless communication sys-

tems with static spectrum allocation. SUs are equipped with CR tranceivers and

exploit spectrum opportunities to sustain their communication activities without

interfering with PU transmissions. Figures 3.2 and 3.3 illustrate examples of cen-

tralized and distributed CRNs, respectively, where the SUs share spectrum bands

with PUs.

Cognitive radio networks changes their configurations based on the spectral

environment. This capability opens up the possibility of designing flexible and

dynamic spectrum access strategies with the purpose of opportunistically reusing

portions of the spectrum temporarily vacated by licensed primary users. On the

other hand, the flexibility in the spectrum access phase comes with an increased

complexity in the design of communication protocols at different layers. Most

of the researches on CRNs focuses on tackling PHY layer and/or MAC layer

issues, including the definition of effective spectrum sensing, spectrum decision

and spectrum sharing techniques.

With the ability to learn from and adapt users’ need to their surrounding

environment, cognitive radio networks offer a great number of benefits in all kinds

of application markets: military, government, public safety, and commercial [42].

In general, the applications can be summarized as the following cases:
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• Leased network [8]: The primary network can provide a leased network

by allowing opportunistic access to its licensed spectrum with the agreement

with a third party without sacrificing the service quality of the primary

users. For example, the primary network can lease its spectrum access

right to a mobile virtual network operator. Also the primary network can

provide its spectrum access rights to a regional community for the purpose of

broadband access. To implement the leased network, devices with cognitive

abilities are important.

• Emergency network [42]: Public safety and emergency networks are

another area in which cognitive radio networks can be implemented. In the

case of natural disasters, which may temporarily disable or destroy existing

communication infrastructure, emergency personnel working in the disaster

areas need to establish emergency networks. Since emergency networks deal

with the critical information, reliable communication should be guaranteed

with minimum latency. In addition, emergency communication requires a

significant amount of radio spectrum for handling huge volume of traffic

including voice, video and data. Cognitive radio networks can enable the

usage of the existing spectrum without the need for an infrastructure and

by maintaining communication priority and response time.

• Military Network [42]: One of the most interesting potential applica-

tions of an xG network is in a military radio environment.Cognitive radio

networks can enable the military radios to choose arbitrary, intermediate

frequency bandwidth, modulation schemes, and coding schemes, adapting

themselves to the variable radio environment of battlefield. Military net-

works also have a strong need for security and protection of the communica-

tion in hostile environment. Cognitive radio networks could allow military

personnel to perform spectrum handoff to find secure spectrum band for

themselves and their allies.

• Cognitive ad-hoc/mesh network [43]: Wireless ad-hoc/mesh net-

works are emerging as a cost-effective technology for providing broadband
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connectivity. However, as the network density increases and the applica-

tions require higher throughput, ad-hoc/mesh networks require higher ca-

pacity to meet the requirements of the applications. Cognitive ad-hoc/mesh

networks can further improve the network throughput by enabling the ac-

cess to larger amount of spectrum. Cognitive ad-hoc/mesh networks can

be used to deploy in dense urban areas, where there is the possibility of

significant contention.

3.3 Fundamental Issues in Cognitive Radio Net-

works

Cognitive radio offers a novel way of solving spectrum underutilization problems.

To implement CR technology, a wide range of research issues are involved. For a

single-user case (i.e., a transmitter linked to a receiver), the main technical chal-

lenges rooted in signal-processing and communication technologies. These techni-

cal challenges are further compounded by the fact that the spectrum holes come

and go in a stochastic manner. For a multi-user case (i.e., multiple transmitter-

receiver links), multi-user CRNs would have to be flexible enough. So, except for

the radio-scene issues, the fundamental challenges in designing system architec-

tures also need to be studied. Moreover, there would have to be a paradigm shift

from traditional transmitter-centric wireless communications to a new receiver-

centric mode in CRNs, so as to control the interference from SUs.

The fundamental issues in CRNs are the followings [8]:

• Radio-scene analysis: this encompasses the information-theoretic analysis

of the systems; estimation of interference temperature of the radio environ-

ment around a primary receiver; detection of spectrum holes.

• Channel identification: this encompasses the estimation of channel-state

information and prediction of channel capacity.

• Dynamic spectrum management and transmission power control: this refers

to decision-making and action taken by the secondary transmitter in re-
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Figure 3.4: Basic cognitive cycle.

sponse to the analysis of RF stimuli picked up by the secondary receiver

and includes spectrum access, interference avoidance, and so on.

• System architecture design: coexistent architectures decide how the SUs

should share spectrum with PUs and which spectrum sharing method is

better.

The first two issues are solved in the receiver, and the third one is performed

in the transmitter, as depicted in the basic cognitive cycle in Figure 3.4 [8]. Ev-

ery node of the network is equipped with a transceiver (i.e., transmitter/receiver

combination), and each user can either be a transmitter or a receiver. The cog-

nitive module in the transmitter must work in a harmonious manner with the

cognitive module in the receiver. In order to maintain this harmony between the

CR transmitter and receiver at all times, a feedback channel is necessary to con-

nect the receiver to the transmitter as shown in Figure 3.4. Through the feedback

channel, the receiver is enabled to convey the following two information to the

transmitter:

• Information on the performance of the link for adaptive modulation;

• Information on the spectral state of the radio environment in the area the

receiver located.
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The cognitive radio is therefore, an example of a feedback control system.

Cognitive radio technology has different degrees of cognition. On one hand,

the user may simply pick one spectrum hole and build its cognitive cycle around

that hole. On the other hand, the user may employ multiple implementation

technologies to build its cognitive cycle around a wideband spectrum hole or a

set of narrowband spectrum holes to provide the best expected performance in

terms of spectrum management, transmit-power control, data rate and reliable

communication and to do all this in a secure manner.

The last issue is a system-level coexistent problem, which should be studied

by considering the network structure of PNs to enable the coexistence, which is

discussed in detail in the following section.

3.4 Coexistence and Spectrum Sharing

Various dynamic spectrum access approaches are possible to make the spectrum

management more adaptive, as shown in Figure 3.5 [8]. The dynamic spectrum

sharing or coexistence is one of them. Coexistence or dynamic sharing allows such

sharing, in theory, on a packet-per-packet basis, since it licenses spectrum and

networks simultaneously while relying on in-network spectrum sharing techniques

to avoid conflicts.

Coexistence scenarios can be of two types: horizontal coexistence and vertical

coexistence. In the former case, all of the users have equal regulatory status to
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access the radio spectrum, where the nodes may use similar wireless access tech-

nology (i.e., homogeneous networks, e.g., 802.11a based unlicensed ISM and the

U-NII 5GHz frequency band) or different wireless access techniques (i.e., hetero-

geneous networks, e.g., 802.11b and 802.15.1, 802.11b and 802.16a networks).

In case of vertical coexistence, the radio spectrum is licensed to the PUs

only, while the SUs can access the spectrum opportunistically without affecting

the PUs’ performance. Two approaches for spectrum access to minimize the

interference caused to the PUs by the SUs’ communication are spectrum overlay

and spectrum underlay (as shown in Figure 1.2).

For the vertical coexistence, considering how primary and secondary users

cooperate with each other, on one extreme, the primary and secondary users

may have completely isolated networks (i.e., without cooperation), and on the

other extreme, primary and secondary users may fully cooperate to form a single

network where access rights between PUs and SUs transfer with packets. Based

on this consideration, there are the following spectrum sharing scenarios:

• Isolated networks (noncooperative networks): A network built to support

municipal services such as police or emergency dispatch may allow the same

spectrum to be used on a secondary basis when there is no demand for

the primary user. In this case, the primary network should be completely

isolated from secondary networks.

• Secondary Market(cooperative networks): The primary user may sell sec-

ondary access rights to his spectrum and may even allow the secondary

user to access to his infrastructure through the cooperative networking ap-

proach. In this way, primary users and secondary users can support the

development and maintenance costs of the infrastructure together, without

sacrificing PUs’ access rights.

• Broadband Access Development (opportunistic secondary utilization or fee-

based primary utilization): Since it may not be financially viable for a

provider to build infrastructure and support access in some regions, the

same equipments for primary networks can be used by local communities
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or neighborhoods to build their own networks and wireless broadband ac-

cess on a secondary basis or fee-based primary use. Even though the service

provider decides to develop infrastructure and provide services in this re-

gion, users still can continue using the network on a secondary basis or pay

for the primary use and its associated services.

In spite of the type of coexistent scenarios, three functionalities, namely, spec-

trum sensing, spectrum analysis, and spectrum decision, are fundamental for any

CRNs to share spectrum with other PNs. For a multi-user CRN, a centralized or

a distributed network architecture can be used for spectrum analysis and spec-

trum decision, as shown in Figure 3.2 and Figure 3.3. That is, spectrum decision

can be taken in a cooperative way (i.e., global optimization) or a non-cooperative

way (i.e., local optimization). By cooperation (either through a distributed or a

centralized way), the cognitive nodes can share network information among each

other or at a cognitive base station to achieve a coordinated and efficient spectrum

management. However, the exchanges of information may cause high overhead.

Moreover, in a distributed network (without central controller), it may require

synchronization among the nodes, which results in a more complex network de-

sign. In contrast, a competitive or non-cooperative approach may simplify the

distributed network design at the expense of network performance.

3.5 Previous Resource Allocation Algorithms for

OFDM-based CRNs

Related previous works on resurce allocation algorithms for OFDM-based CRNs

are reviewed below.

Algorithms Dealing with Cross-Channel Interference

Cross-channel interference is considered in [44] and [45]. In [44], the bit and

power loading problem is studied for the downlink of an OFDM-based CR system,

in which the PU channel located in the middle of a frequency band is available

to SUs. An optimal scheme based on a Lagrange formulation and two subopti-

mal schemes are proposed assuming that there is only one SU in the system. A

44



3.5 Previous Resource Allocation Algorithms for OFDM-based CRNs

similar model is used in [45] to study subcarrier, power, and bit allocation for

multiple SUs. Greedy algorithms are proposed based on minimum SU power and

minimum PU interference considerations.

Algorithms Dealing with Co-Channel Interference

Different optimization problems are formulated and solved based on various

interference temperature limit considerations. In [46], to simplify the problem,

this limit is converted to a power constraint in each PU band by defining a pro-

tection area for the PUs. The power constraint is calculated based on a path

loss factor and the distance between the protection area and the SU transmitter.

The optimization problems, formulated in [47] for a multiple-SU and multiple-

PU system, use two interference temperature models proposed in [48]. The first

model, which assumes a unified interference temperature limit on each subchan-

nel, is translated into an average interference power threshold at the measurement

point. The second model, which assumes different interference temperature limits

on different PU active frequency bands, is translated into an average interference

power threshold at each PU receiver. The authors in [49] proposed an uplink RA

algorithm to maximize the system throughput in a centralized manner.

Instead of the interference temperature limit, some other means of protection

for PU signals are considered in [50], [51] and [52]. Minimum average rate is

guaranteed in [50], by assuming that PUs are willing to be cooperative in RA.

PU outage probability is ensured in [51]. In [52], the average PU transmission

rate is maintained using SU cooperation.

The above-mentioned algorithms, designed for multiple SUs, assume that each

subchannel can only be used by at most one SU at any given time. In some situ-

ations, e.g., in an ad hoc system or a multicell cellular network, allowing multiple

SUs to share each subchannel can result in a higher spectrum utilization. In [53],

CRNs with one channel are considered in which all SUs access the channel at the

same time, while keeping the total generated interference below the predefined

interference temperature limit at a single measurement point. Two co-located

cellular systems, consisting of one PU system and one SU system, are studied in

[54], in which the average interference from the SUs to the PUs is ensured to be

below the interference temperature limit. In [55], the interference to the PUs is
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limited by a per channel power mask, which specifies the highest power that can

be used by a SU on each channel. In [56], two distributed fair subcarrier and

power allocation schemes for both the downlink and uplink of CRNs have been

proposed.

Algorithms Making Use of Spectrum Holes

Studies assuming the use of spectrum holes appear in [57],[58], where a game

theoretic approach is utilized to solve the channel allocation problem based on the

observation that users in CRNs may not be willing to cooperate with others but

rather may selfishly try to maximize their own performance. A dynamic channel

allocation scheme based on a potential game [59] approach is proposed for ad hoc

networks in [57]. In [58], a non-cooperative game formulation is used to model

the multi-channel allocation problem.

In [60], cross-layer based MAC protocols are proposed to allow SUs to share

the spectrum holes, which are detected by integrated PHY layer spectrum-sensing

policies. The authors in [61] minimized SU throughput variance in a single-

user CRN. A spectrum overlay sharing method based distributed subchannels,

bits, and power allocation has been proposed in [62] for an OFDM-based CRN.

Subchannels adjacent to PU bands are assumed not to be used by SUs. As a

result, the authors in [62] do not consider cross-channel or co-channel interference.

A non-active PU bands access based spectrum overlay sharing was considered in

[63], [64] for resource allocation in OFDM-based CR systems.

3.6 Chapter Summary

The cognitive radio networks is a new emerging fields. The applications and

fundamental issues of the Cognitive radio networks are presented in this chap-

ter. Then, an overview of the various types of coexistence and spectrum sharing

scenarios is also given. In addition, related works, i.e., previous resource alloca-

tion algorithms for OFDM-based CRNs are also discussed. Few studies focused

on multi-cell multi-user CRNs, especially with the utilization of hybrid over-

lay/underlay spectrum sharing method.
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In this dissertation, considering both spectrum overlay and spectrum underlay

sharing methods, two new subchannel allocation and power control algorithms

are proposed for single-cell and multi-cell multi-user CRNs, respectively.
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Chapter 4

Cross-layer Resource Allocation

with QoS Support for Multi-user

Cognitive Radio Networks

A cross-layer resource allocation algorithm for a single-cell multi-user cognitive

radio network is presented in this chapter. To implement the coexistence of a

primary cell and the cognitive radio cell, a primary-assistance based coexistent

architecture is proposed. In the coexistent system, primary base station (PBS)

will provide interference margins of PUs to cognitive base station (CBS) for sec-

ondary power control and interference management. In the proposed algorithm,

joint resource allocation and interference avoidance with QoS support for multiple

SUs is considered. The objectives are formulated as a constrained two-variable

nonlinear optimization problem (OP), which is solved by using convex optimiza-

tion.

This chapter is organized as follows. Section 4.1 is a brief introduction of

background and the proposed algorithm. Related works are presented in Sec-

tion 4.2. In Section 4.3, system models and related assumptions are described,

which include the system architecture, the wireless propagation model, and the

interference to SUs. The constrained resource allocation problem is defined in

Section 4.4. A joint cross-layer optimization is elaborately considered in Section

4.5. The efficiency and accuracy of the proposed method is verified by computer

simulations, which are presented in Section 4.6. The results show that the joint
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cross-layer design has significant improvement compared to two conventional de-

signs. Compared to the spectrum overlay sharing, the spectrum underlay sharing

can provide a substantial performance improvement due to the higher spectrum

efficiency. Finally, Sect. 4.7 concludes this chapter.

4.1 Introduction

Cognitive devices like SUs can use their increased flexibility and awareness to

control channel access dynamically, i.e., to achieve a dynamic spectrum access.

Even though the basic idea of CR is simple, the efficient design of CRNs imposes

new challenges compared to the conventional wireless networks.

Considering the two new issues mentioned in Sect. 1.3, the resource allocation

problem in CRNs involves mutual interference (MI) [65] between PUs and SUs,

QoS, fairness, and so on. In this chapter, to flexibly implement spectrum sharing

between PUs and SUs, the coexistence of an OFDMA-based single-cell multi-

user CRN and a single-cell PN is studied. To enhance the spectrum efficiency,

a dynamic resource allocation (DRA) algorithm for multiple SUs in the CRN is

proposed.

So far, the coexistence and optimization of a multiuser cognitive radio (MCR)

network considering the MI, QoS support and the different spectrum sharing

schemes still have not been well studied. Several technical difficulties are in-

volved. First, SU-to-PU interference as well as PU-to-SU interference exist in the

CRN/PN. Furthermore, the interference information should be obtained using

very limited information. The CRN has to maximize the sum rate of all SUs and,

at the same time, make sure that the SU-to-PU interference at each PU receiver

does not exceed a limit. Second, to account for the MI, limited transmission

power and satisfactory QoS, a large number of constraints are involved in the

optimization procedure. Simplified and fast update algorithms are needed.

For the CRN/PN coexistence, we consider a novel infrastructure-based dy-

namic system architecture, in which the CRN can be either independent of or

overlapped with the primary cell. Moreover, a primary-assistance based joint

spectrum underlay/overlay method is proposed for the spectrum sharing and

real-time SU-to-PU interference control. The PBS determines the interference
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limits at each PU receiver based on its target performance, such as predefined

signal to interference plus noise ratio (SINR), system outage probability, and so

on. Then, the PBS broadcasts the interference limits and pilot signals for SU-

to-PU interference channel estimation. According to the interference limits and

geographic location of the CRN, the CBS decides available spectrum resources in

the CRN and utilizes adaptive power control to limit the SU-to-PU interference.

For DRA in the CRN, we propose a Lagrangian duality-based optimization

framework under transmit power and QoS constraints for downlink transmissions.

Our considered scenario can be modelled as a constrained two-variable non-linear

optimization problem. In order to solve the problem and achieve our objectives,

we develop near-optimal and low-complexity problems. Based on the transmission

power of the CBS and the interference limits of PU receivers, a joint power control

and interference avoidance method is analyzed to simplify the constraints and

guarantee the performance in the PS with priority. Then, a cross-layer design

and the Lagrangian duality based technique are considered to transform the QoS

requirements in MAC layer to PHY-layer, so as to provide QoS support for the

SUs during each scheduling time. Finally, a modified iterative water-filling (IWF)

algorithm is implemented to solve the problem.

4.2 Related Works

As we have introduced in Sect. 3.5, various resource allocation methods have been

developed for OFDM-based CRNs. In [45], [54], the fair resource allocation of

subcarrier, bit, and power in PHY layer to maximize the system throughput while

guaranteeing the interference power limited is studied for OFDM-based CRNs.

However, these algorithms cannot dynamically adjust their rate requirement to

different SUs. Moreover, in [54], the authors assume that the PN and the CRN

are both OFDM-based systems. It is impractical that the PN always uses OFDM.

Currently, to the best of our knowledge, there are few studies on QoS support in

OFDMA-based CRNs. The QoS designs in [60] and [61] for CRNs only considered

non-real-time applications.
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Figure 4.1: An example of system model.

4.3 System Model and Interference to SUs

4.3.1 OFDMA-based Multiuser Cognitive Radio Network

We consider an OFDMA-based MCR network with K SUs and a CBS as the

controller to share the spectrum with a PN, which is also an infrastructure-based

cellular system with one PBS and N PUs, see Figure 4.1.

In practical applications, it is possible that uplink transmission power of PUs

is too small. Then, the SUs cannot access primary bands in order to protect the

PUs. Therefore, with considering the feasibility of the coexistent architecture,

we assume that, in the PN, uplink and downlink transmissions use the time-

division duplex (TDD) mode, meanwhile, in the MCR network, the frequency-

division duplexing (FDD) is employed. Hence, in the worst case, both uplinks

and downlinks of the MCR network can access primary bands when the PN is on

downlink transmissions.

In this study, we consider downlink transmissions in both the CR cell and

primary cell. The whole spectrum, which is originally licensed to PUs, is divided

intoM subcarriers in the CRN. Active subbands allocated to the PUs and OFDM

subcarriers of the SUs are shown in Figure 4.2, where the bandwidth of subband
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n is denoted by Bn, which is allocated to PU n, and Δf is the subcarrier spacing

in the CRN. The time slot duration in the CRN is equal to one OFDM symbol

period Ts and the subcarriers are modelled in discrete time with the time-varying

gain. The set of the SUs, the PUs, the subcarriers and the time slots are denoted

by K = {1, . . . ,K}, N = {1, . . . ,N}, M = {1, . . . ,M}, and T = {1, . . . ,T},
respectively.

4.3.2 Physical Layer and Propagation Model

For all the links in the MCR network, the channels are subject to frequency

selective fading. The channel gain is given by:

Gk,m,t=gk,m,t · μ(dk/d0)−α, ∀k ∈ K, ∀m ∈ M, ∀t ∈ T, (4.1)

where
√
gk,m,t is the small-scale fading being modelled as a Rayleigh distribution.

μ is the free-space factor of the channel gain, which can be calculated from μ=

Gs(
λ

4πd0
)2, where Gs denotes the transmit and receive antenna gain, λ is the wave

length, d0 is a reference distance set to be d0 = 100 m [66]. dk denotes the

distance between the CBS and SU k. α is the path loss exponent. For any link,

the power gains Gk,m,t are independent and identically distributed (i.i.d.) random

variables. Furthermore, we assume the channel is block fading, i.e., gk,m,t is fixed

during each time slot, which is much longer than the total duration of information

collecting and reporting.
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4.3.3 Interference to SUs

In the coexistent system, we consider two kinds of MI: the interference from the

PBS to SUs and that from the CBS to PUs. The first interference is discussed

here. The second one will be introduced in Sect. 4.4.1.

In the CRN, we assume that the interference from primary transmitters to

SUs can be measured properly. Therefore, after the interference limits and the

pilot signals from the PBS have been collected, the channel information between

two systems can be known at the CBS.

According to Figure 4.2, the interference power from the primary transmitters

(i.e., the PBS on downlink, or PUs on uplink) to SU k at subcarrier m and time

slot t can be given by

Ik,m,t=

{
P

(d)
p Gps

k,m,t

∫ mΔf

(m−1)ΔfΦp(f)df, if downlinks in the PN∑N
n=1P

(u)
n Gn

k,m,t

∫ mΔf

(m−1)ΔfΦn(f)df, if uplinks in the PN,
(4.2)

where P
(d)
p is the downlink transmit power at the PBS, Gps

k,m,t is the power gain

from the PBS to SU k, Φp(f) is the equivalent baseband power spectral density

(PSD) of the PBS’s signal when the transmission power is normalized to one

watt. P
(u)
n is the uplink transmit power at PU n, Gn

k,m,t is the power gain from

PU n to SU k, Φn(f) is the normalized equivalent baseband PSD of the PU n’s

signal.

We now make further assumptions about channel gain information. We as-

sume that the transmission power and PSD Φp(f) and Φn(f) are known to SUs.

Based on these, the SUs can estimate the mean channel gains from the primary

transmitters to themselves. Due to the reciprocal characteristic of the wireless

channel, the mean channel gains from the SUs to the primary transmitters would

be equal to these values. Similarly, the mean channel gains from the CBS to

primary transmitters also can be estimated.
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4.4 Constraints and Problem Definition

4.4.1 Power Limits for SUs

In the study of this chapter, we use a predefined SINR value γp and an interference

violation probability δ(p) together as the primary targets. First, the received SINR

at each PU must be no less than the predefined value γp. Let γn,t denote the SINR

experienced by PU n at subband n. Therefore, we must have:

γn,t =
P PBS
n,t Gp

n,t

N0 + In
≥ γp, ∀n ∈ N, (4.3)

where P PBS
n,t is the transmission power from the PBS to PU n. Gp

n,t is the channel

gain between the PBS and PU n, which is frequency selective over subband n.

N0 is the complex Gaussian noise power. In is the interference from the CBS to

PU n. According to (4.3), the interference limit Imax
n of PU n can be obtained

as follows:

Imax
n =

P PBS
n,t Gp

n,t

γp
−N0, (4.4)

where the set {Imax
n , n ∈ N} is the interference power limits at the PUs.

Assume that Bn is a multiple of Δf , which is from frequency fn to frequency

fn+Bn, as shown in Figure 4.2. Let x be the beginning subcarrier index of

subband n, so fn = (x − 1)Δf . The SU-to-PU interference In, which should be

no larger than the interference limit Imax
n , can be given by:

In=
S+x∑
m=x

Pk,m,tG
sp
n,m,t

∫ mΔf

(m−1)Δf
Φs(f)df≤Imax

n , (4.5)

where S is the total secondary subcarrier number by which PU subband n is

affected, Pk,m,t is the allocated transmission power from the CBS to SU k on

subcarrier m and time slot t, Gsp
n,m,t is the channel gain from the CBS to PU n on

subcarrier m. Φs(f) is the normalized equivalent baseband PSD of the secondary

OFDM signal. Here, we only consider the main lobe power of the OFDM signal,

because the interference power caused by the side lobes of the OFDM signal is

very low, only 4.922% of the transmit power without multiplying the path loss

[65]. Hence, we can assume Pk,m,t

∫mΔf

(m−1)ΔfΦs(f)df ≈ Pk,m,t for simplicity. Moreover,
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as long as the interference power on any subcarrier m has been controlled no

larger than the average limit Imax
n /S, the predefined SINR at each PU can be

guaranteed. Let I limm = Imax
n /S denote the interference limit for subcarrier m.

Therefore, Eq. (4.5) can be rewritten as:

Im=Pk,m,tG
sp
n,m,t ≤I limm , (4.6)

where {I limm = (Imax
n /S)+, n ∈ N,m ∈ M} is a mapping of the interference limits

from primary subband n to S secondary subcarriers, where, (x)+ = max(0, x).

In the CRN, the adaptive power control is used to manage the interference

from the CBS to PUs. Since the instantaneous interference level In may exceed

the tolerable limit Imax
n , and violate the absolute interference constraint, we define

the interference violation probability asPr{In > Imax
n }, wherePr{A} denotes the

probability of event A, which should be no larger than the value δ(p). Therefore,

considering the simplification from (4.5) to (4.6), there is a constraint on the

interference violation probability δ(p) as follows:

Pr{Pk,m,tG
sp
n,m,t > I limm } ≤ δ(p), ∀m ∈ M. (4.7)

Similar to Eq.(1), Gsp
n,m,t = gspn,m,t · μ(dspn,t/d0)−α, where gspn,m,t is the small scale

fading between the CBS and PU n on subcarrier m and has been characterized

as a Rayleigh distribution with the probability density function (PDF) f(x; σ) =
x
σ2 e

(−x2/2σ2) and the cumulative distribution function (CDF) F (x) = 1−e(−x
2/2σ2),

where x ∈ [0,∞), σ > 0. dspn,t is the distance between the CBS and PU n.

From (4.7), we have the following proposition for power control at the CBS.

Propositon 1: At the CBS, the allocated power for each subcarrier should

be controlled no larger than the following value:

Pmax
m,t =

I limm

μ(dspn,t/d0)
−αF−1(1− δ(p))

, ∀m ∈ M, (4.8)

where F−1(·) is the inverse function of the CDF of the Rayleigh distribution.

Assume that location information of the PUs is available to the CBS, where a

resource allocation algorithm is executed. A variety of location-awareness tech-

niques are introduced in [67] and the references therein. The location-based

primary protection and resource allocation methods can be found in [68],[70].
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However, the methods proposed in [68] and [70] cannot guarantee the QoS for

each SU, and they ignored the small-scale fading totally.

Proof: In (4.7), the CDF of gspn,m,t is given by F (x) = Pr{X ≤ x} = 1 −
e(−x

2/2σ2), x ∈ [0,∞), σ > 0. Then, for Eq. (4.7), there is the following derivation:

Pr{Pk,m,tg
sp
n,m,t · μ(dspn,t/d0)−α > I limm }

= Pr{gspn,m,t >
I limm

Pk,m,tμ(d
sp
n,t/d0)

−α}

= 1−Pr{gspn,m,t ≤
I limm

Pk,m,tμ(d
sp
n,t/d0)

−α}

= 1− F (
I limm

Pk,m,tμ(d
sp
n,t/d0)

−α ) ≤ δ(p). (4.9)

Then, from (4.9), we has the following inequality:

F (
I limm

Pk,m,tμ(d
sp
n,t/d0)

−α ) ≥ 1− δ(p). (4.10)

Due to the monotone non-decreasing property of cumulative distribution func-

tions, from (4.10), the following power constraint on subcarrierm can be obtained:

I limm

Pk,m,tμ(d
sp
n,t/d0)

−α ≥ F−1(1− δ(p)). (4.11)

From (4.11), the power limits for secondary subcarriers can be derived based

on the primary performance targets and the channel characteristics:

Pk,m,t ≤ I limm

μ(dspn,t/d0)
−αF−1(1− δ(p))

, (4.12)

where Pk,m,t can be written as Pm,t instead.

Then, the interference constraint (4.6) for PUs can be replaced by the following

power limit for SUs:

Pk,m,t ≤ Pmax
m,t , ∀m ∈ M, (4.13)

where Pmax
m,t is the maximum power that can be allocated to subcarrier m. This

power-limited access control method is based on the assumptions and system

models in this chapter.
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4.4.2 QoS Constraints for SUs

At MAC layer, a cross-layer resource allocation algorithm is proposed to support

both real-time (RT) and non-real-time (NRT) services in the CRN. Assume that

the first i users from K are with RT service, denoted by I = {1, . . . , i}; and the

other K-i users are with NRT service, denoted by J = {i+ 1, . . . , K}.
RT Service is the services such as MPEG or streaming video or audio. It

provides guarantees on throughput and latency, that is, each packet, which has a

length of lRTi , needs to be received by SU i within dRTi time slots after the packet

has been transmitted.

NRT Service provides guarantees on throughput, can tolerate longer delays,

and is insensitive to delay jitter. So it is suitable for FTP applications. Its average

data rate that the system needs to provide is RNRT
j .

The instantaneous rate for SU k at subcarrier m and time slot t can be given

by:

Rk,m,t=Δf log2(1+βk,m,tPk,m,t), ∀k∈K, (4.14)

where βk,m,t =
Gk,m,t

N0+Ik,m,t
, Ik,m,t is defined in Section 2.3, Pk,m,t is limited by Eq.

(4.13).

In order to provide satisfactory QoS for the SUs, there are following constraints

for different services:

tDi − tSi ≤ dRT
i , ∀i ∈ I, (4.15)

dRT
i∑
t=1

M∑
m=1

Ri,m,t ≥ lRT
i , ∀i ∈ I,m ∈ M, t ∈ T, (4.16)

R̄j=
1

T

T∑
t=1

M∑
m=1

Rj,m,t≥RNRT
j , ∀j∈J,m∈M, t∈T, (4.17)

where for RT SUs, tDi is the arriving time slot when the data arrived at the

destination (i.e. SU i), and tSi is the sending time slot from the source node (i.e.

the CBS). Inequality (4.15) indicates that the duration time slots from the CBS
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to SU i should be no larger than the delay of RT SUs dRT
i . In (4.16), the packet

length lRT
i needs to be received by SU i within dRT

i time slots, that is , Equation

(4.16) is another form of (4.15). Equation (4.17) is the MAC-layer QoS constraint

for NRT SUs, where, R̄j is the average rate of SU j from time slot 1 to time slot

T, and should be no smaller than RNRT
j .

4.4.3 Optimization Problem

In this study, our objective is to maximize the system throughput under sev-

eral constraints while ensuring that the RT services can be provided within their

specified deadlines, as well as the average data rates for NRT can satisfy the re-

quirements. Let L = {Lk,m,t, k ∈ K,m ∈ M, t ∈ T} denote the allocation results

of the continuous instantaneousM subcarriers in the time slot t. Therefore, based

on the above system models, the optimization problem (OP) can be formulated

as follows:

OP-1:

max
T∑
t=1

M∑
m=1

K∑
k=1

Rk,m,tLk,m,t (4.18)

s.t.

tDi − tSi ≤ dRT
i , (4.19)

dRT
i∑
t=1

M∑
m=1

Ri,m,t ≥ lRT
i , (4.20)

R̄j=
1

T

T∑
t=1

M∑
m=1

Rj,m,t≥RNRT
j , (4.21)

Pk,m,t ≤ Pmax
m,t , (4.22)

K∑
k=1

M∑
m=1

Pk,m,t ≤ P0, (4.23)
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K∑
k=1

Lk,m,t ≤ 1, Lk,m,t = {0, 1}, (4.24)

0 ≤ Rk,m,t ≤ Rmax. (4.25)

Constraints (4.19)–(4.22) are introduced before. In (4.23), P0 is the total

allowed power in the CBS per time slot. Equations (4.24) are the constraints to

guarantee that there is only one connection on one subcarrier. To protect the

PS better, besides the interference limits from the PBS, we consider a maximum

link rate Rmax to limit the transmit power from the CBS further. The (4.25)

indicates that the actual link capacity on each subcarrier should be no more than

Rmax, where Rmax= rmaxΔf and rmax is the maximum number of bits that can

be allowed per subcarrier.

4.5 Joint Cross-layer Resource Allocation and

Interference Avoidance with QoS Support

The OP-1 in Section 4.4.3 is difficult to be solved directly both in mathemati-

cally and in practical consideration. Since it involves an optimization over T time

slots, M subcarriers, K users and with MAC-layer QoS requirements, there may

be many local optimal points and the problem feasibility cannot be guaranteed.

In addition, the CBS should be able to allocate the subcarriers and power to K

SUs at the beginning of T time slots based on the solution of OP-1, therefore,

in OP-1, the knowledge of future channel gains (i.e., the channel gain at future

time slots) is required. However, it is impossible for the CBS to obtain future

channel information. Therefore, we need to simplify the OP1 and find reasonable

approximation, so as to solve the multi-variable resource allocation problem op-

timally and accurately. In the following section, we formulate a problem OP-2,

which is a power minimization problem to find the minimum transmit power that

can guarantee the QoS requirements for SUs during τ time slots (τ <T ), so as to

transform the MAC-layer QoS constraints over T time slots to less time slots.
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4.5.1 Transform the MAC-layer QoS Constraints to PHY-

layer

Consider the QoS requirements in τ time slots, Eqs. (4.15) and (4.16) can be

rewritten as:

τ∑
t=1

M∑
m=1

Ri,m,tLi,m,t ≥ rReq
i,τ , ∀i ∈ I, τ ∈ 1, 2, . . . , T , τ < dRT

i , (4.26)

where τ is the number of time slots considered in the resource allocation algo-

rithm, which is less than T. rReq
i,τ is the packet length that needs to be transmitted

in τ time slots for RT SU i.

Eq. (4.17) can be rewritten as:

τ∑
t=1

M∑
m=1

Rj,m,tLj,m,t ≥ rReq
j,τ , ∀j ∈ J, τ ∈ 1, 2, . . . , T , (4.27)

where rReq
i,τ is the total bit rate that needs to be transmitted in τ time slots for

NRT SU j.

Combining (4.26) and (4.27) together, the QoS requirements in (4.15)–(4.17)

can be rewritten as a rate constraint during τ time slots, that is:

τ∑
t=1

M∑
m=1

Rk,m,tLk,m,t ≥ rReq
k,τ , τ ∈ 1, 2, . . . , T , τ < dRT

i , (4.28)

where rReq
k,τ is the required number of bits that needs to be transmitted in τ time

slots.

We consider the minimum required power used for QoS support. There is the

following optimization problem:

OP-2:

min
τ∑

t=1

M∑
m=1

K∑
k=1

(2
Rk,m,t

Δf − 1)
Lk,m,t

βk,m,t

(4.29)

s.t.

τ∑
t=1

M∑
m=1

Rk,m,tLk,m,t = rReq
k,τ , ∀k ∈ K, (4.30)
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Figure 4.3: The minimum QoS-guaranteed power per time slot when K=3, τ =1,

3, 5, 8

K∑
k=1

Lk,m,t ≤ 1, Lk,m,t = {0, 1}, (4.31)

0 ≤ Rk,m,t ≤ Rmax. (4.32)

The objective of OP-2 is to minimize the required power and satisfy the QoS

requirements at the same time. For the solution of OP-2, there is the following

proposition:

Propositon 2: As M → ∞, for ∀t ∈ T, the optimal solution {R∗k,m,t, L
∗
k,m,t}

for OP-2 satisfies

M∑
m=1

R∗k,m,tL
∗
k,m,t = rReq

k,t , ∀t ∈ T, (4.33)

where rReq
k,t =

{
lRTi /dRTi , ∀i ∈ I

RNRT
j Ts, ∀j ∈ J

, is the required bit rate at each time slot.
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Proof: Details are provided in Appendix A.

In Proposition 2, we assumed that M → ∞, and Equation (4.33) shows that

the required rate needed to be transmitted at each time slot is the same for

any allocation time. However, in this paper, M is finite, in order to utilize the

Proposition 2 to simplify the OP-1, we evaluated the average minimum QoS-

guaranteed power per time slot with different τ , which is shown in Figure 4.3.

In this simulation, we assume that all the SUs are with RT service, the subcar-

rier spacing is 16 KHz, and the required data rate is Rk = 800kbps, so the packet

length is rReq
k,τ = RkTsτ . Let the SU number be 3, and the value of τ is 1, 3, 5, 8

respectively. From Figure 4.3, we can see that for different value of τ , the average

QoS-guaranteed power is different. When the number of available subcarriers per

time slot M is increased, the effect of τ value over the QoS-guaranteed power is

smaller. When M = 64, the difference between the values of ordinate is less than

0.05; when M increased to 128, the difference is only 0.027. It means that when

M becomes large, enough selectivity and diversity can be obtained for the system

to achieve nearly the same minimum power for different τ values. Thus, based

on Proposition 2, a reasonable approximation can be provided to transform the

QoS constraints during τ time slots to one time slot with a reasonable number of

subcarriers M [71].

Therefore, the MAC-layer QoS constraints (4.15)–(4.17) in OP-1 can be re-

placed by the following PHY-layer constraint in one time slot:

M∑
m=1

Rk,m,tLk,m,t ≥ rReq
k . (4.34)

Assume that there are enough subcarriers to satisfy the requirements of mul-

tiple services at each time slot. In order to derive the solutions, we introduced

the surplus variable λk [18] into the constraint (4.34), then, (4.34) is replaced by:

M∑
m=1

Rk,m,tLk,m,t=rReq
k +λk, λk≥0, (4.35)

where λk is the surplus variable for SU k and represents the amount by which

the total allocated rate is exceeded. Moreover, the larger the value of λk, the
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higher the value of the system throughput; thus, λk should be maximized in each

time slot, then, the system utility function (4.18) in OP-1 can be replaced by the

maximization of λk.

4.5.2 QoS-guaranteed Resource Allocation Algorithm

Due to the analysis and the simplifications above, we can describe the algorithm

as following. Since the problem only depends on the parameters in the current

time slot, the time index t can be removed for simplicity. Therefore, the OP of

joint cross-layer resource allocation (RA) can be described as:

OP-3:

max

K∑
k=1

λk (4.36)

s.t.

0 ≤ Pk,m ≤ Pmax
m ,

K∑
k=1

M∑
m=1

Pk,m ≤ P0, (4.37)

K∑
k=1

Lk,m ≤ 1, Lk,m = {0, 1}, (4.38)

0 ≤ Rk,m ≤ Rmax, (4.39)

M∑
m=1

Rk,mLk,m=rReq
k +λk, λk≥0. (4.40)

OP-3 is a constrained nonlinear programming problem, and in general, is

intractable. It is shown in Appendix B that Problem OP-3 can be decomposed

into three subproblems. The following optimal solution can be obatined using

Lagrangian duality based technique [18], [72].

Let R∗k,m, P
∗
k,m, L

∗
k,m, k

∗, λ∗k, ξ
∗
k,m,ϕ

∗, η∗k, ς
∗
k be an optimal solution set, where

ξk,m, ϕ, ηk, ςk, k ∈ K, m∈M are the non-negative Lagrange multipliers [18] (see

details in Appendix B). Here, Rk,m is replaced by R̂k,mΔf , so, R̂max = Rmax/Δf

in the following equations.
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Solution S∗: The optimal solution S∗ = {P ∗k,m, L∗k,m, k∗} for Problem OP-3

has the following properties.

1)For a given SU k, if the subcarrier allocation L∗k,m = 1, the optimal power

allocation strategy is:

P ∗k,m=

⎧⎪⎪⎨⎪⎪⎩
0, ωk<

ln(2)
Δfβk,m

ωkΔf
ln(2)

− 1
βk,m

, ln(2)
Δfβk,m

≤ωk≤ 2
̂Rmaxln(2)
Δfβk,m

2
̂Rmax−1
βk,m

, ωk>
2
̂Rmaxln(2)
Δfβk,m

(4.41)

where ωk =
η∗kL

∗
k,m

ξ∗k,m+ϕ∗ , represents the update of the multipliers and can be viewed as

the iterative water-filling (IWF) level for SU k and will be discussed later. From

(4.41), the rate allocation R∗k,m and R̂∗k,m can be obtained by using (4.14).

2)The subcarrier allocation strategy for subcarrier m is:

L∗k,m =

{
1, k = k∗ and m ∈ M

0, otherwise
(4.42)

k∗ = argmax η∗kR̂
∗
k,m (4.43)

For a given t and m, if the values of η∗kR̂
∗
k,m are the same for multiple SUs,

we will choose one SU arbitrarily.

3)IWF level ωk is:

ωk =

{
ωB, λ∗k > 0
(1 + ς∗k)ωB, λ∗k = 0

(4.44)

where ωB = 1/(ξ∗k,m + ϕ∗), ξ∗k,m > 0, ϕ∗ > 0.

Proof : Details are provided in Appendix B.

We can know from the above optimal values, if the water-filling levels {ωk} for

all SUs can be found, the optimal power and subcarrier allocation are obtained

from (4.41) and (4.42).

In the system, we assume the primary bandwidth is large enough for SUs

to guarantee the QoS, that is, according to Figure 4.3, M > 64. There are

two phases in our algorithm. The first one is to provide QoS support for all

SUs. Then, it is the system throughput maximization. According to (4.41) and

(4.14), the higher the value of water-filling level ωk, the higher the number of
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allocated bit rate for SU k. So, at the starting point, ωB should be set to be

the lowest water-filling level among all SUs. At each iteration, ωB is increased

to the next level that is higher than before. Based on the water-filling levels,

the allocation algorithm is performed according to (4.41), (4.42) and (4.43). The

process will stop when
∑K

k=1

∑M
m=1 P

∗
k,m ≥P0 or the subcarriers have been used

out. If
∑K

k=1

∑M
m=1 P

∗
k,m>P0, the algorithm will use (4.41) to find an appropriate

value of ωk that satisfies the KKT condition (B.9), see Appendix B.

A brief description of the procedure is given as follows:

(i) Initialize the water-filling level ωk, ωB.

(ii) In Phase I, for m = 1, ...,M , do the following:

• For k = 1, ..., K, do subcarrier and power allocation using (4.41), (4.42)

and (4.43).

• Check if the QoS requirements have been satisfied. If for all SUs,
∑M

m=1R
∗
k,mL

∗
k,m≥

rReq
k , go to step (iii). If no, find the SUs whose bit rates less than rReq

k as

set K−, and find the SUs whose bit rates greater than rReq
k as set K+. Ad-

just ωk for SUs in set K− and K+, and reset L∗k,m = 0, k ∈ K− ∪ K+,

reallocate the left subcarriers and power to SUs in K− and K+, until∑M
m=1 R

∗
k,mL

∗
k,m=rReq

k or m = M , then go to step (iii).

(iii) Check if the transmit power and the power limits have been fulfilled.

First, check if P ∗k,m ≤ Pmax
m . If no, update ωk until P ∗k,m ≤ Pmax

m . Next, compare∑K
k=1

∑M
m=1P

∗
k,m with P0. If

∑K
k=1

∑M
m=1P

∗
k,m=P0, the algorithm will be finished.

If
∑K

k=1

∑M
m=1P

∗
k,m<P0, go to step (iv). If

∑K
k=1

∑M
m=1P

∗
k,m>P0, adjust the base

water-filling level ωB to a smaller one, then back to step (ii).

(iv) In Phase II, the power has not been used out. We need to adjust ωB to

a higher value, and allocate all the resource to the SUs using (4.41), (4.42) and

(4.43) to maximize the system throughput.

4.6 Simulation Results

In this section, simulations are performed for the downlink OFDMA-based MCR

network to evaluate the effectiveness of the proposed algorithm. The simulation
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Table 4.1: SIMULATION PARAMETERS

Parameters Value

Number of PUs N 8

Number of SUs M 10

System Bandwidth Bw 2 MHz

System center frequency fc 1.9 GHz

Total power at the PBS 10 W

Total power at the CBS P0 13 W

Predefined SINR of PUs in dB γdB
p 10 dB

Interference violation probability σ(p) 0.01

antenna gain Gs 8 dBi

Number of subcarriers M 128

Path loss exponent α 4

Number of RT SUs I 5

Number of NRT SUs J 5

Delay of RT service dRT
i (time slots) 90

Symbol period Ts 40 μs

Real-time Data Rate RRT(kbps) [100,600]

Required average data rate RNRT
j 300 kbps

Max.number of bits per subcarrier rmax 8 bits

parameters are summarized in Table 4.1. The simulation area is 2km*2km with

the CBS located at the positions dsp far away from the PBS, where dsp is the

distance between two BSs and varies from 0 to 1km. It is assumed that the

channel gain is constant during 1ms periods, thus resource allocation is performed

once every 1ms, which is also called one scheduling time. The WINNER Phase II

channel model [69] is utilized to implement the channels in the simulations. We

assume the wireless propagation environment is urban area, and the cell radius is

500m. PUs and SUs are randomly located in its own cell area at each scheduling

time. All performance results are obtained by over 1000 simulation runs.

Moreover, we assume the PS is always downlink transmissions in the simu-
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lation. So, the impact of TDD frame ratio will not be considered here, since

the performance with considering the frame ratio is proportional to the evaluate

value, and not difficult to deduce.

4.6.1 Effectiveness of the Proposed Design

Firstly, we consider the worst case that all the primary bandwidth has been

uniformly allocated to PUs, and each with 250 kHz bandwidth, that means there

is no non-active PU bands in the PS. The transmit power at the PBS is uniformly

allocated to 8 PUs. In this case, if the CRN is overlapped with primary system,

the interference power limits I limm may be very small, even zero. In order to

share the bandwidth with the PS, the distance between two BSs dsp should be

large enough, then, the SU-to-PU interference can be controlled. Here, we set dsp

=1000 m at first.

For comparison, we study two conventional resource allocation schemes: chan-

nel greedy with power control and proportional fairness (PF) with equal power.

For traditional OFDMA systems, channel greedy scheduling with water-filling/equal

power allocation in [73], and PF scheduling with water-fill/equal power allocation

in [74], have been proposed. However, OFDMA-based CRNs are different from

traditional ones. Here, we would like to compare the proposed design to these

two schemes to indicate that our proposed scheme is more suitable for CRNs.

The first conventional scheme allocates the subcarriers to the SU who has the

largest SINR on the considered subcarrier, and allocates the power based on the

power limits to control the interference. The second one assigns the subcarriers

uniformly to all SUs for fairness, and equal power to all subcarriers.

Figures 4.4 and 4.5 are cumulative probability of achieved SINR and relative

interference power of PU 1, which is located at the cell edge of the PS, respec-

tively. The relative interference power is defined as Isiml/I
max
n , where Isiml is

the simulated interference power. 10log10(I
max
n /Isiml) (dB) is the dB-value of the

reciprocal of relative interference. From Figures 4.4 and 4.5, we can see that the

PF scheme cannot provide the PUs with predefined SINR because of the high

interference. Compared to Greedy scheme and PF scheme, the proposed method
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Figure 4.4: Cumulative probability of SINR of PU 1, RRT=600kbps

not only achieves the highest SINR, which is much higher than predefined value,

but also controls the SU-to-PU interference well.

In Figures 4.6 and 4.7, the simulation results of QoS support for RT and NRT

SUs are shown respectively. In Figure 4.6, we set d2 = 500m, d5 = 100m, where,

d2 and d5 are the distances from SU 2 and SU 5 to the CBS, respectively. We

can see from this figure that SU 2, which is the cell edge user with great channel

fading, can only obtain the basic QoS-guaranteed data rate 600kbps; however,

SU 5, which is near to the CBS with good channel state, can achieve much higher

rate so as to maximize the system throughput. Figure 4.7 shows the average

data rate of NRT SUs versus different RT data rate. Compared to conventinal

schemes, the proposed design can achieve much higher average data rate.

Figure 4.8 shows the sum rate of the CRN. Compared to the other two resource

allocation schemes, it yields a significant higher sum rate. For different RT data

rate, the sum rate of CRN is almost the same due to the same available CBS

power and spectrum resource. For the Greedy scheme, even though it can control

the SU-to-PU interference, the spectrum efficiency is really low. From Figure 4.8,
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Figure 4.5: Cumulative probability of the reciprocal of relative interference of PU

1 in dB: 10log10(I
max
n /Isiml), R

RT=600kbps

we can see the proposed design has the best performance.

4.6.2 Performance Comparision between Spectrum Un-

derlay and Overlay

In practical application, two networks may be overlapped with each other, and

the primary bandwidth may not be used out, that is, the probability of non-active

PU bands satisfies Pnon−active≥0.

When CBS and PBS are too close to each other and the primary bands are

all in use, it is difficult to control the mutual interference with power control, or

to provide satisfactory QoS to all SUs. Figure 4.9 is the CDF of λk at different

CBS-PBS distance dsp, which has been changed from 350m to 650m. Here, the

simulation parameters are the same with Section 4.6.1 and Pnon−active= 0. We

define Pr{λk< 0}= δ(s), which is the secondary QoS-unsatisfactory probability.

When δ(s)>0.01, we consider that the CRN cannot guarantee the QoS for all SUs.

From Figure 4.9, we can see that in order to limit the interference at the PUs and
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Figure 4.6: QoS support for RT SUs

provide the QoS for 10 SUs as well, dsp cannot be very small. When dsp=650m,

δ(s) is only 0.005; while dsp decreased to 550m, δ(s) increased to 0.029. Then, we

consider that when dsp =550m the CRN cannot satisfy the requirements for all

SUs at the same time. In this situation, we should choose other better sharing

methods for the coexistence.

Therefore, in order to improve the effectiveness of the coexistent system, we

compared the performance between spectrum underlay and spectrum overlay

sharing methods.

Figures 4.10 and 4.11 are the average maximum number of SUs and the sum

rate of the CRN, respectively. In these two figures, we consider two different

sharing schemes: spectrum overlay (only available non-active subbands can be

utilized), and spectrum underlay & overlay (the whole primary bands can be

utilized, and control the interference level to the active subbands). We set the

probability of non-active PU bands to be Pnon−active=0 or 20%. When Pnon−active=

0, only the spectrum underlay sharing can be utilized for the CRN; while, when

Pnon−active=20%, both the spectrum underlay and spectrum overlay are available
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Figure 4.7: Average throughput for NRT SUs

for the CRN to share the spectrum with PS.

From Figures 4.10 and 4.11, we can see that the maximum RT/NRT SU

number and the sum rate of the CRN are increasing with the distance between

the CBS and the PBS when utilizing the spectrum underlay scheme for both

Pnon−active=0 and 20%. However, the performance of the spectrum overlay shar-

ing scheme is almost the same, and only related to Pnon−active, which is the avail-

able spectrum resource. Compared the performance of these sharing schemes in

Figures 4.10 and 4.11, the spectrum underlay has substantial higher spectrum ef-

ficiency and can be utilized for both Pnon−active=0 and 20%. When Pnon−active>0,

the spectrum underlay & overlay sharing method is the best candidate for CR

systems to access unlicensed spectrum.
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Figure 4.8: Sum rate of CRN

4.7 Chapter Summary

A combined cross-layer resource allocation and interference avoidance optimiza-

tion design for downlink OFDMA-based MCR networks has been proposed. We

utilize a predefined SINR and an interference violation probability at the pri-

mary receivers for the power allocation and interference control. QoS constraints

transformation and IWF method have been analyzed to maximize the system

throughput for the CRN and provide satisfactory QoS support for different ser-

vices of the SUs. To obtain optimal solution, we developed a convex optimization

problem to solve the system utility function.

Compared to the conventional resource allocation schemes, the proposed cross-

layer design with the spectrum underlay sharing method could share the spectrum

with the PUs more effectively. Simulation results illustrate that our proposed

design has a significant performance gain. On the other hand, the comparision

between the spectrum underlay and overlay has shown that if there are available

subbands in the PN, it has the best spectrum efficiency with both the spectrum

underlay and overlay sharing methods.
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Chapter 5

Distributed Resource Allocation

for Multi-cell Cognitive Radio

Networks

In this chapter, we consider a multi-cell cognitive radio network, which overlays

a multi-cell primary network. To manage the coexistence, a primary-willingness

based coexistent architecture and a novel intra-cell spectrum overlay and inter-

cell spectrum underlay sharing method are proposed. In the system, primary base

stations will broadcast pilot signals and interference margins to assist the CRN

for interference channel evaluation and power control. Subject to the interference

margins imposed by the primary network, we define a utility (payoff) function

that can represent the secondary system performance while taking into account

the co-channel interference among secondary cells. A distributed resource allo-

cation scheme is devised to guarantee the primary performance, and at the same

time, maximize the secondary utility without any cooperation among cognitive

base stations. QoS among SUs is also considered by the scheme such that the

instantaneous data rate for each secondary user is larger than a given minimum

rate. The resource allocation problem can be decomposed into two subproblems:

subchannel allocation and distributed power allocation game (DPAG). We prove

that there exists a Nash equilibrium in the DPAG and the equilibrium is unique.

Moreover, the DPAG is also Pareto optimal in some constrained environments,

that is, no CBS can further improve its performance without impairing others.
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The proposed algorithm turns out to converge to an equilibrium within a small

number of iterations.

This chapter is organized as follows. Related works are described in section

5.2. System model and problem description are defined in section 5.3. Section 5.4

explains the power control and interference avoidance in the CRN. In section 5.5,

a distributed resource allocation is defined. The existance, uniqueness, and pareto

optimality of DPAG are proved, and a distributed resource allocation algorithm is

also described in this section. Simulation results are shown in sect. 5.6. Finally,

section 5.7 summarizes the chapter.

5.1 Introduction

As we have introduced before, cognitive radio is utilized to alleviate the severe

spectrum shortage problem by making it possible for SUs to share frequency

bands with PUs in some geographical locations. The SUs can access the licensed

frequency using either spectrum overlay or spectrum underlay sharing methods.

Efficient designs for CRNs imposes new challenges compared to conventional

wireless systems. To implement a practical multi-cell CRN, one of the major

issues is that the secondary utilization should not degrade the service in PN.

The other one is how to maximize the performance by controlling the co-channel

interference among the neighboring cells.

Here, we consider an OFDMA-based multi-cell CRN, which overlays with a

multi-cell PN. Both spectrum overlay and underlay sharing methods are utilized

to encourage CRN/PN coexistence. Each CR cell utilizes different subchannels

from the colocated primary cell (i.e., intra-cell spectrum overlay), but the same

subchannels allocated to the neighboring primary cells (i.e., inter-cell spectrum

underlay). To obtain necessary information from PNs, a primary-willingness

based intra-cell overlay and inter-cell underlay method is proposed. First, PBSs

determine the interference margins that can be accepted at each primary receiver

based on its targets, such as predefined SINR, outage probability, etc. Then,

the PBSs broadcast the interference margins on occupied subchannels and pilot
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signals for secondary-to-primary interference estimation. According to the infor-

mation collected from the PBSs and its own SUs, each CBS decides subchannel

and power allocation for its own SUs distributedly.

In this chapter, a noncooperative scheme for the downlink resource allocation

in multi-cell CRNs is presented. We first define a utility (payoff) function that

represents the sum data rate and the power consumption in a cell. Then, the

problem is decomposed into two subproblems: subchannel allocation and dis-

tributed power allocation game. The defined utility can be maximized under the

total power constraint at the CBS, interference margins at primary receivers, and

QoS constraint for each SU, in a distributed manner. In this scheme, a CBS

in each cell individually controls the assignment of subchannels to the SUs and

the power allocation to each subchannel to maximize its utility. For the power

allocation game, the existence and uniqueness of Nash Equilibrium (NE) point

are investigated. Moreover, there is no CBS can further improve its performance

without impairing others in some condition (i.e., Pareto optimality). The pro-

posed algorithm turns out to converge to an equilibrium within a small number

of iterations, and can substantially improve the total utility without requiring

any coordination among CBSs.

5.2 Related Works

In the related works introduced in Sect. 3.5, many previous studies on resource

allocation methods for CRNs have assumed the single-cell or ad hoc model. The

interference limited underlay spectrum sharing resource allocation techniques for

OFDMA-based single-cell CRNs have been presented in [47],[49],[54],[56]. In [47],

the weighted sum rate for several SU links was optimized using Lagrangian duality

tool and both centralized and distributed algorithms were designed. The authors

in [49],[54] focus on throughput maximization in a centralized manner. In [56],

two distributed fair subcarrier and power allocation schemes by using Colonel

Blotto game for both the downlink and uplink of CRNs have been proposed. A

white space access based distributed subchannels, bits, and power allocation was

proposed in [62] for an ad hoc or multi-cell CRN. Hybrid overlay/underlay sys-

tems were considered in [75],[76], where SUs were classified into several sets to
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determine whether overlay or underlay should be applied, and optimal power al-

location and access control for ad hoc CRNs was studied. However, these schemes

are not applicable for multi-cell multi-user utilization. Moreover, the hybrid over-

lay/underlay in [75],[76] is different from the intra-cell overlay and inter-cell un-

derlay introduced above, which is proposed specially for the multi-cell CRN/PN

coexistence in this paper. In [77], a multiple access channel is assumed for a

two-cell CRN model. Based on the spectrum overlay sharing, a Nash equilibrium

based sum rate maximization resource allocation algorithm has been proposed.

The authors in [78] considered the weighted sum rate optimization for multi-cell

CRNs in a centralized way. The inter-cell iterative water-filling method has been

implemented to control the inter-cell interference. However, such an approach

induces signaling overhead and also requires efforts for cell planning. Therefore,

in multi-cell environment, distributed operation is a preferred approach for the

co-channel interference management.

5.3 System Model and Problem Description

5.3.1 System Model and Assumptions

We consider a cellular CRN in this chapter, which is supposed to be deployed over

cellular PNs in the following ways. First, the future broadband cellular technol-

ogy, such as 3rd Generation Partnership Project (3GPP) Long Term Evolution

Advanced (LTE-Advanced), requires up to 100 MHz per channel [79], but the

amount of spectrum is limited. The CRN can enable bandwidth aggregation by

sharing spectrum owned by other cellular operators to solve this data explosion

problem. Second, in the current cellular networks, the BS has only a RF unit.

A digital unit for all communication functionalities is implemented in a separate

central server [80]. As a result, the cost of BSs will be cheap enough for anybody

to install anywhere. This allows a new type of a mobile virtual operator based on

CR, which can operate its own BSs in a current primary cell without spectrum

licenses. Therefore, an example of CRN/PN coexistent model is shown in Figure

5.1. The similar network architectures also can be found in [54] and [56].
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Figure 5.1: System model.

Assume that a CRN can recognize some essential information about a PN in

advance, e.g., range of frequency bandwidth, frequency reuse factor, frequency

allocation, etc. A primary-willingness based coexistent architecture is considered,

so, PBSs will report interference margins and pilot signals to CBSs periodically

for power control. This can be easily implemented among wired infrastructure-

based base stations, especially when CBSs are colocated with PBSs. The detail

of how to use pilot signals are out of the scope of this paper, which has been

introduced in [81].

Both CRN and PN are assumed that the time-division duplexing (TDD) mode

is employed for uplink and downlink transmissions. We consider uplink transmis-

sions in primary cells (P-cells) and downlink transmissions in cognitive radio cells

81



5. DISTRIBUTED RESOURCE ALLOCATION FOR MULTI-CELL
COGNITIVE RADIO NETWORKS

Secondary available subchannels

available subchannel set 

unavailable subchannel set

1N

2N

3N

MN

C
o

gn
it

iv
e 

ra
d

io
 c

el
ls

1S

2S

3S

MS

P
ri

m
ar

y 
ce

ll
s

Primary subchannel assignment

0 B 0 B

1 1

2

3

M

2

3

M

Figure 5.2: Available subchannels for P-cells and CR-cells.

(CR-cells), because it is much easier to evaluate the interference level when PBSs

as primary receivers and CBSs as secondary transmitters due to their fixed loca-

tions. We assume that all CR-cells are in a quasi-synchronous mode and either

all in uplink or all in downlink.

A M -cell system model is given in Figure 5.1, M = 7. Each cell has one CBS,

one PBS, K SUs, and J PUs. The OFDMA technique is used for both CRN

and PN. Therefore, the intra-cell interference in the network can be neglected by

using different subchannels, but the inter-cell interferences (CBS-to-PBS, CBS-

to-SU and PU-to-SU interferences) need to be considered. Besides, only the

interferences from first-tier neighboring cells are taken into account and that from

far-away neighbors will be viewed as an additive white Gaussian noise (AWGN)

[66]. Therefore, this one-tier system model can be easily extended to multiple

tiers situation.

Here, we assume that the total bandwidth B is divided into N subchannels,

which are assigned to M P-cells fixedly. The non-overlapping subchannel sets

for M P-cells are S1, S2,· · ·, SM , respectively. As introduced in Sect. 1, the

available subchannel set for CR-cell m can be denoted by Nm=
∑M

m
′
=1,m

′�=mSm
′ .

The primary subchannel assignment and the secondary available subchannels for

each CR-cell are shown in Figure 5.2. From this figure, we can see that CR-

cells can avoid generating intra-cell interference to the colocated P-cell by using

subchannels allocated to other P-cells.
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We denote by pm = (pm1 , · · · , pmNm
) the transmission power vector of CBS

m, with pmn denoting the transmission power on subchannel n at CBS m. P=

[p1p2 · · ·pM ] is the network power vector, a concatenation of the transmission

power matrices of the M CBSs. We let P−m denote the interference power vector

of CBS m. We assume that the total transmission power (i.e.,
∑Nm

n=1 p
m
n ) of each

CBS is constrained to be less than Pm
max, which is the maximum power of CBS m.

Since each subchannel can only be assigned to one SU, let Am=[amk,n]K×N denote

the subchannel allocation matrix, where amk,n is 1 if subchannel n is assigned to

SU k and 0 otherwise.

Let gmk,n denote the channel gain between SU k and CBS m on subchannel n.

Then the SINR of SU k in cell m for a given power vector P can be expressed by

γm
k,n(P) =

gmk,np
m
n

Im
′

n (P−m) +N0

, (5.1)

where Im
′

n (P−m)=
∑M

m
′
=1,m

′�=m

(
gj→k
n pm

′
j,n+gm

′→k
n pm

′
n

)
is the interference on subchan-

nel n from primary and secondary transmitters in cell m
′
, gj→k

n and gm
′→k

n are

interference channel gains from PU j and CBS m
′
. pm

′
j,n and pm

′
n are the primary

and secondary transmission power. N0 is the background complex Gaussian noise

power on subchannel n.

The achievable data rate of SU k is given by

Rm
k,n(P) = Bnlog2

(
1 + γm

k,n(P)
)
, (5.2)

where Bn is the bandwidth of each subchannel.

The total data rate allocated to SU k, which not only depends on the power

allocation in other cells P−m, but also the subchannel allocation Am and the

power allocation in the corresponding cell pm, is given as follows:

Rk(P,Am) =
Nm∑
n=1

amk,nR
m
k,n(P). (5.3)

5.3.2 Problem Description

The authors in [54],[49]-[78] only considered the sum data rate maximization.

If the transmission power of the CBS increases, the sum data rate increases,
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but it causes an increase of co-channel interference in the neighboring cells too.

Consequently, the transmission power increase leads to conflicting interests among

multiple CR-cells. Therefore, it is not enough for considering the sum data rate

as utility function only. Here, the sum data rate is viewed as the reward obtained

by consuming power resource. The allocated total power is as the cost. The

utility function is defined to be the reward minus the cost. In order to protect

the primary performance and guarantee the QoS of SUs, the utility function is

subject to several constraints. The allocated power on each subchannel should be

less than the power limit. QoS in this paper is defined as achieving data rate for

each SU no less than Rk
min, the minimum data rate. Therefore, we can formulate

the problem as follows:

max
P,Am

um (P,Am)=
K∑
k=1

Rk(P,Am)−c
Nm∑
n=1

Pm
n , (5.4)

subject to

Nm∑
n=1

amk,nR
m
k,n(P) ≥ Rk

min, (5.5)

K∑
k=1

amk,n − 1 ≤ 0, amk,n = {0, 1}, (5.6)

pmn ≤ plimn,m, (5.7)

Nm∑
n=1

pmn ≤ Pm
max, (5.8)

where c is the price per unit power, having the unit bps/W. The power price

represents the cost imposed on each CBS for the co-channel interference generated

by it. Therefore, the utility function (5.4) encourages each CBS to maximize

the sum data rate but using minimum power, i.e., causing minimum co-channel

interference to other cells. Equation (5.5) guarantees a minimum level of QoS
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requested by SUs. Note that the allocated data rate for each SU depends on

the network power vector P. Constraints in (5.6) are to guarantee that there is

only one connection on one subchannel. In Eq. (5.7), plimn,m is the power limit

on subchannel n, which will be described in Sect. 3. The allocated transmission

power on subchannel n should be less than this limit. The total transmission

power of CBS is limited as constraint (5.8).

To solve (5.4)-(5.8) by centralized algorithms, all the channel information is

required, especially the interference channel information shown in (5.1), which

causes computational complexity and large amount of channel estimation over-

head when the number of cells and number of users are large. In a multi-cell

CRN, noncooperation between CBSs can be a realistic situation. In the subse-

quent sections, we are going to solve this problem in a distributed manner by

using a game theoretical approach.

5.4 Power Control and Interference Avoidance

In this section, we will introduce the location-based [68] power control and inter-

ference avoidance method, to avoid CBS-to-PBS interference and guarantee the

performance in primary networks.

As we have mentioned before, a primary-willingness based coexistent architec-

ture is considered. So, firstly, each PBS will dertermine its interference margins

based on its targets. In this paper, we consider a predefined SINR value γp and

an interference violation probability δ(p)(i.e., primary SINR outage probability),

as primary targets. Considering the uplink transmissions in P-cell m
′
. The re-

ceived SINR experienced by PBS m
′
on subchannel n should be no less than the

predefined SINR γp. That is:

γm
′

j,n =
gm

′
j,np

m
′

j,n∑M
m=1,m �=m′ pmn g

m→m
′

n +N0

≥ γp, (5.9)

where gm
′

j,n, p
m

′
j,n are the channel gain and transmission power from PU j to PBS

m
′
. pmn is the transmission power on subchannel n at CBS m, gm→m

′
n is the

interference channel gain between CBS m and PBS m
′
.
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We define the interference margin level on subchannel n at PBS m
′
as I th

n,m
′ .

From (5.9), we have the following equation:

M∑
m=1,m �=m′

pmn g
m→m

′

n ≤ I th
n,m

′ =
gm

′
j,np

m
′

j,n

γp
−N0. (5.10)

From (5.10), the PBSs can estimate the interference margin on each sub-

channel to guarantee the predefined SINR γp. Then, the interference margins

{I th
n,m′}n,m′ on all subchannels at each PBS will be broadcast to the CRN for

power control at CBSs.

Equation (5.10) is a sum interference constraint for all neighboring CR-cells

around PBS m
′
. To obatin individual power limits for each neighboring CBS, we

assume that the power limit is the same for all neighboring cells. Therefore, from

(5.10), for CR-cell m, on subchannel n, we have:

pmn g
m→m

′

n ≤
I th
n,m

′

M−1
, m∈ [1,M ],m �=m

′
. (5.11)

If the above constraint has been guaranteed in any neighboring CR-cell m,

the interference margin at PBS m
′
will not be exceeded. However, it is difficult to

satisfy (5.11) perfectly. Therefore, to avoid the instantaneous interference level

exceeding the interference margin, we need to control the interference violation

probability no larger than δ(p). We formulate as follows:

Pr

{
pmn g

m→m
′

n >
I th
n,m

′

M−1

}
≤ δ(p), (5.12)

where Pr{A} denotes the probability of event A.

Here, we consider the average interference channel gain to neglect the small-

scale fading in gm→m
′

n , therefore, the interference channel gain can be written

as gm→m
′

n =PL · ϕ−1 =μ(dm→m
′
/d0)

−χϕ−1 [66], where, PL denotes the distance-

dependent path loss part, μ is a constant, depends on the antenna characteristics

and the average channel attenuation; dm→m
′
is the distance between secondary

transmitter CBS and primary receiver PBS; d0 is a reference distance; χ is the

path loss exponent; ϕ is a log-normal distributed random variable with mean zero

and variance σ2
ϕ, denotes the shadowing fading part. So, pmn g

m→m
′

n in Eq. (5.12)
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can be considered as a log-normal distribution due to shadowing effect. The left

part of Eq. (5.12) can be written as:

Pr

{
pmn g

m→m
′

n >
I th
n,m′

M−1

}

=1−Q

(
pmndB+PLdB−I th

n,m′
dB
+10log10(M−1)

σϕdB

)
, (5.13)

where Q(x) = 1√
2π

∫∞
x

exp
(
−t2
2

)
dt is the Gaussian-Q function and a monotone

decreasing function. Therefore, from (5.12) and (5.13), the dB-valued power limit

on subchannel n of CR-cell m can be calculated as:

pm,lim
n dB=I th

n,m
′
dB
−10log10(M−1)−PLdB+σϕdB

Q−1(1−δ(p)), (5.14)

where I th
n,m′ is the interference margin received from PBSs. The distance dm→m

′

in PL can be evaluated from pilot signals. Q−1(·) is the inverse-Q function.

Here, from the dB-valued power limit pm,lim
n dB, we can obtain the power limit

plimn,m mentioned in (5.7).

5.5 Distributed Resource Allocation

From Sect. 5.3.2, the resource allocation problem is a constrained nonlinear

programming problem, and is intractable. To simplify the problem, it can be

decomposed into two subproblems in each CR-cell: subchannel allocation and

power allocation. In (5.4), each CBS maximizes its own utility function subject

to the constraints (5.5)-(5.8) for a given interference power from all the other

cells. Here, we consider the interferences in a distributed manner, without any

cooperation among CBSs, that is, the interference power is obtained according

to the feedback information from its SUs in each cell.
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5.5.1 Subchannel Allocation

First, we consider the problem of optimizing the subchannel assignment for a

given network power vector P0, which is given by

max
Am

um (P0,A
m)=

K∑
k=1

Rk(P0,A
m), (5.15)

which is subject to (5.5) and (5.6). Compared to (5.4), note that the cost term

is suppressed as it depends only on the transmission power vector, which is the

same for all SUs in the same CR-cell. Moreover, the constraints (5.7) and (5.8)

are also unnecessary for the given transmission power vector pm
0 .

The problem in (5.15) is a multi-user nonlinear optimization problem with

equality and inequality constraints. In order to utilize the method of Lagrangian

multipliers and Karush-Kuhn-Tucker (KKT) conditions [18] to find the optimal

solutions, the constraints amk,n = {0, 1} in (5.6) should be relaxed as 0 ≤ amk,n ≤ 1.

So, the Lagrangian function associated with the optimization problem (5.15) can

be written as:

Lm

(
P0,A

m, φm
k , ψ

m
n , ζ

m
k,n, υ

m
k,n

)
=

K∑
k=1

Nm∑
n=1

amk,nR
m
k,n(P0)+

K∑
k=1

φm
k

(
Nm∑
n=1

amk,nR
m
k,n(P0)−Rk

min

)

−
Nm∑
n=1

ψm
n

(
K∑
k=1

amk,n−1

)
−

K∑
k=1

Nm∑
n=1

ζmk,n
(
amk,n−1

)
+

K∑
k=1

Nm∑
n=1

υm
k,na

m
k,n

=
K∑
k=1

Nm∑
n=1

amk,n
(
(1 + φm

k )R
m
k,n(P0)− ψm

n − ζmk,n + υm
k,n

)
−

K∑
k=1

φm
k R

k
min+

Nm∑
n=1

ψm
n +

K∑
k=1

Nm∑
n=1

ζmk,n,

(5.16)

where φm
k , ψ

m
n , ζ

m
k,n, υ

m
k,n are non-negative Lagrangian multipliers in CR-cell m for

the QoS constraint, subchannel allocation constraints, respectively.
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Let am∗k,n, φ
m∗
k , ψm∗

n , ζm∗k,n , υ
m∗
k,n be an optimal solution set, then the KKT condi-

tions [18] state that:

φm∗
k ≥ 0, ψm∗

n ≥ 0, ζm∗k,n ≥ 0, υm∗
k,n ≥ 0, (5.17)

φm∗
k

(
Nm∑
n=1

am∗k,nR
m
k,n(P0)−Rk

min

)
= 0, (5.18)

− ψm∗
n

(
K∑
k=1

am∗k,n−1

)
= 0, (5.19)

− ζm∗k,n

(
am∗k,n−1

)
= 0, υm∗

k,na
m∗
k,n = 0, (5.20)

(1 + φm∗
k )Rm

k,n(P0)− ψm∗
n − ζm∗k,n + υm∗

k,n = 0, (5.21)

where equation (5.21) is obtained by setting ∂Lm/∂a
m
k,n = 0.

According to (5.6), for any subchannel n, there is only one SU k∗ with a

nonzero value of am∗k∗,n = 1. Hence, for SU k∗, according to (5.20), we have

ζm∗k∗,n ≥ 0, and υm∗
k∗,n = 0, so, from (5.21), we have:

ψm∗
n = (1 + φm∗

k∗ )R
m
k∗,n(P0)− ζm∗k∗,n. (5.22)

For any SU k �= k∗, am∗k,n = 0, so, according to (5.20), we have ζm∗k,n = 0, and

υm∗
k,n ≥ 0, combined with (5.21), we have:

ψm∗
n = (1 + φm∗

k )Rm
k,n(P0) + υm∗

k,n. (5.23)

Compare (5.22) and (5.23), we have that (1+φm∗
k∗ )R

m
k∗,n(P0)≥(1+φm∗

k )Rm
k,n(P0),

so, for the given network power vector P0, we can obtain the optimal subchannel

allocation strategy by assigning subchannel n to the SU who yields the maximum

weighted data rate. That is, for each subchannel

am∗k,n=

{
1, if k∗=argmaxk(1+φm∗

k )Rm
k,n(P0),

0, otherwise.
(5.24)

where φm∗
k is the optimal Lagrangian multiplier (i.e., the weight) for the QoS

constraint, which can be determined by sub-gradient search method.
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5.5.2 Distributed Power Allocation Game

According to (5.24), when the network power vector P is determined, the optimal

subchannel allocation matrix A∗m(P) can be determined. Therefore, for a de-

cidedA∗m(P), the distributed resource allocation problem turns into a distributed

power allocation, which can be constructed as a distributed power allocation game

(DPAG) G= [M, {Pm} , {um(P,A∗m(P))}], where, M= {1, 2, · · · ,M} is the in-

dex set of CBSs, i.e., the players, and P
m is the power allocation strategy space

of CBS m, defined by P
m=

{
pm|0≤∑Nm

n=1 p
m
n ≤min{∑Nm

n=1 p
lim
n,m, P

m
max}

}
. So, the

DPAG is as follows:

max
pm∈Pm

um

(
pm,P−m,A∗m(P)

)
=

Nm∑
n=1

max
k

[
(1+φm∗

k )Rm
k,n(P)

]−c
Nm∑
n=1

pmn

=
Nm∑
n=1

(1+φm∗
k∗ )R

m
k∗,n(P)−c

Nm∑
n=1

pmn , (5.25)

which is subject to (5.7) and (5.8). k∗ is the optimal SU on subchannel n.

The game DPAG involving M players based on utility function (5.25) is ex-

pected to achieve a Nash Equilibrium (NE), which is defined as:

Definition 1: A strategy vector P∗∈P is a Nash equilibrium, if for all players

m∈M and each alternate strategy qm∈P
m, we have that

um

(
pm,P∗−m,A∗m(P∗)

)≥um

(
qm,P∗−m,A∗m(Q)

)
, (5.26)

where Q = [p1· · ·pm−1qmpm+1· · ·pM ].

In other words, assuming that all other players stick to the strategies they

have chosen in P∗, no player m can change its chosen strategy from pm to qm

and thereby improve its utility.

Theorem 1: For the DPAG in (5.25), a Nash equilibrium exists.

Proof : In [23], it is established that if for all m ∈ M, the following two con-

ditions are satisfied, a Nash equilibrium exists in game G=[M, {Pm} , {um (P)}]:

• P
m is a nonempty, convex and compact subset of some Euclidean space

ΩK×Nm ;
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• um(P) is continuous in P and quasi-concave in pm.

For the first condition, the strategy space P
m of each CBS is defined by a set

of power vectors pm, and all the power value elements in pm is between zero and

the maximum power limit on each subchannel. Thus, it is obvious that the first

condition is satisfied.

From (5.25), the utility function um(P) is obviously a continuous function of

P. From (5.1) and (5.2), Rm
k∗,n

(
pmn ,P

−m) is a monotonically increasing function

of pmn on subchannel n. So, for any given α > 0, the sub-level power set Sm
n ≡

{x|Rm
k∗,n(x) ≥ α} is given by {x|x ≥ (

Rm
k∗,n

)−1
(α)}. Since Sm

n is a convex set,

Rm
k∗,n is a quasi-concave function of pmn . Then, the utility function is a sum of

quasi-concave functions in the corresponding pmn . Therefore, we can prove that

the utility function um(P) is quasi-concave in pm.

The transmission power vector of a CBS that maximizes the utility function in

the strategy space is called the best response (or, optimal solution) to the trans-

mission power chosen by other CBSs. Let pm∗n (P−m) denote the best response

of CBS m on subchannel n to a given interference power allocation P−m. As

we have proved above that, in the DPAG, the utility is a convex function of pm,

so the problem is also a convex optimization problem. The Lagrangian function

associated with the optimization problem (5.25) can be written as:

Lm (P,Am∗, ηmn , λ
m)

=
Nm∑
n=1

(1+φm∗
k∗ )R

m
k∗,n(P)−c

Nm∑
n=1

pmn −
Nm∑
n=1

ηmn
(
pmn −plimn,m

)−λm

(
Nm∑
n=1

pmn − Pm
max

)

=
Nm∑
n=1

(
(1+φm∗

k∗ )R
m
k∗,n(P)−ωm

np
m
n

)
+

Nm∑
n=1

ηmn p
lim
n,m+λmPm

max, (5.27)

where ωm
n = c + ηmn + λm. ηmn , λ

m are non-negative Lagrangian multipliers in

CR-cell m for the power limit, and total power constraint.

Therefore, for a given subchannel allocation Am
0 , we can obtain the best re-

sponse of CBS m as follows, by using the Lagrangian function and KKT condi-

tions [18]. The details are omitted here, please refer to [18] and Sect. 5.5.1.

pm∗n (P−m)=

[
(1+φm∗

k∗ )Bn

ωm∗
n ln 2

− Im
′

n (P−m) +N0

gmk∗,n

]+

, (5.28)
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− ηm∗n

(
pm∗n −plimn,m

)
= 0, (5.29)

− λm∗
(

Nm∑
n=1

pm∗n − Pm
max

)
= 0, (5.30)

where [x]+ = x if x ≥ 0 and 0 otherwise. Equation (5.28) is the best power

response, and ωm∗
n =c+ηm∗n +λm∗, ηm∗n and λm∗ are the optimal Lagrangian multi-

pliers for the best response pm∗n (P−m). Equations (5.29) and (5.30) are the KKT

conditions. In the algorithm, the sub-gradient search method is implemented to

update the Lagrangian multipliers to achieve best response. From (5.28), we can

see the best power response is a modified water-filling allocation with the water

level determined by the power price and the multipliers of power limit and total

power.

Based on (5.24) and (5.28), the proposed distributed resource allocation (DRA)

algorithm is devised as follows. It determines the subchannel and power allocation

iteratively:

1. Initially, assume the initialized power allocation as: P0 = {Pm
max

Nm
}, which

means each CBS distributed the total power Pm
max to each subchannel

equally. The initialized Lagrangian multipliers are set to zero.

2. Each SU measures the SINR for all the available subchannels for the given

transmit power allocation of other CBSs in the previous iteration. Note

that, at the beginning, the given transmission power is P0.

3. Each SU feeds back the measured values to the CBS associated with it.

Note that, only the SUs feed back SINR information to its corresponding

CBS. There is no any cooperation among CBSs.

4. Each CBS performs subchannel assignment according to (5.24), and obtains

the optimal weight value φm∗
k according to (5.18).

5. Then, each CBS performs power allocation according to (5.28) on each

subchannel. The multiplier updation is also implemented.
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6. Iterate step 2 – 5 until the resource allocation converges to an equilibrium.

In the above DRA algorithm, not only the interference from other CR-cells,

but also the power and subchannel allocation are updated through iterations.

Each CBS will maximize its own utility function by using only local information

(i.e., SINR) received from the SUs and does not need the transmission power

information in other cells. Therefore, the DRA algorithm operates in a distributed

way.

We can see from the above process that the DRA algorithm includes both

subchannel allocation performed in step 4 and power allocation performed in step

5. In each iteration, CBSs obtain the best power response pm∗n (P−m) according

to (5.28), and then allocate subchannels to maximize the utility based on the

best power response until the DRA algorithm converges. We proved that a Nash

equilibrium exists in the DPAG. Once all the players (i.e., CBSs) are in a Nash

equilibrium, it means that the power strategy pm is stable and will not change to

another alternate one. Hence, for this given NE power stategy, the subchannel

allocation is also stable. Therefore, it is obvious that if the DRA algorithm

converges, it will converge to a NE point.

The uniqueness of NE point and Pareto optimality of DPAG will be discussed

in the following subsections.

5.5.3 Uniqueness of Nash Equilibrium Point

From Sect. 5.5.2, the optimal solution S∗(P) of the DPAG can be written as

S∗(P) = [p1∗(P)p2∗(P) · · ·pM∗(P)], where pm∗(P) = [pm∗n (P−m)]. Let S∗2(P) ≡
S∗ (S∗(P)), that is, using solution S∗(P) as the initial power to achieve the power

allocation at next iteration. For the uniqueness of the NE point in the DPAG,

we have the following theorem:

Theorem 2: The DPAG has a unique Nash equilibrium if the best response

S∗(P) satisfies the following properties [23],[24]:

• Positivity. There exist m and n such that pm∗n (P) > 0 for any network power

vector P, where pm∗n (P) is the optimal power allocated to subchannel n in

CR-cell m.
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• Monotonicity. If P ≥ Q, then S∗2(P) ≥ S∗2(Q).

• Scalability. If pm∗n (P) > 0, then for all α > 1, there is αpm∗n
2(P) >

pm∗n
2(αP).

The following proof is to explain that the best response of the DPAG can satisfy

the properties described in Theorem 2.

Proof : Let βm
k,n(P

−m) =
gmk,n

Im
′

n (P−m)+N0

be the ratio of channel gain to inter-

ference plus noise power. Thus, the power solution on each subchannel in Eq.

(5.28) can be rewritten as:

pm∗n (P−m)=

[
(1+φm∗

k∗ )Bn

ωm∗
n ln 2

− 1

βm
k∗,n(P

−m)

]+

. (5.31)

• Positivity. According to (5.31), we can know that when βm
k∗,n(P

−m) is very

high on some subchannel, the allocated power on this subchannel will def-

initely be larger than 0. Therefore, it is realistic that there exist m and n

that pm∗n (P) > 0 for any network power vector P.

• Monotonicity. Let y = βm
k∗,n(P

−m). It is obvious that function y is monoton-

ically decreasing with P−m, but pm∗n (y)=
[
(1+φm∗

k∗ )Bn

ωm∗
n ln 2

− 1
y

]+
is monotonically

increasing with y. Hence, pm∗n (P−m) is monotonically decreasing with P−m.

Therefore, if P ≥ Q, we have pm∗(P) ≤ pm∗(Q), so, S∗(P) ≤ S∗(Q).

Therefore, we have S∗ (S∗(P)) ≥ S∗ (S∗(Q)), that is S∗2(P) ≥ S∗2(Q).

• Scalability. Assume that the noise power N0 is much smaller than the

co-channel interference Im
′

n

(
P−m

)
, this is reasonable in interference-limit

cellular systems. Thus, from Eq. (5.31) and its monotonicity proved above,

we have:

αpm∗n (αP) > pm∗n (P), (5.32)

pm∗n (
1

α
P) < αpm∗n (P). (5.33)

From (5.32), there is:

pm∗n (pm∗n (αP)) < pm∗n

(
1

α
pm∗n (P)

)
. (5.34)
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The right side of (5.34) satisfies pm∗n

(
1
α
pm∗n (P)

)
< αpm∗n (pm∗n (P)) by using

(5.33). Therefore, we have pm∗n
2(αP)<αpm∗n

2(P).

5.5.4 Pareto Optimality

Pareto optimality [24] is defined as an allocation upon which no player can be

made better off in utility without making any other player worse off. Define P∗=

[p1· · ·pm· · ·pj· · ·pM ] is the Nash Equilibrium; Q=[p1· · ·pm−1qmpm+1· · ·pj· · ·pM ]

is another power allocation strategy that can improve the utility of player m.

The mathematical definition of Pareto optimality is given as following:

Definition 2: A game is Pareto optimal, if the Nash Equilibrium P∗ ∈ P

satisfies,

∃Q �=P∗, um(Q)>um(P
∗)⇒∃j∈M, uj(Q)<uj(P

∗).

Namely, if player m can get better utility by changing power allocation from

pm to qm, and there exists player j whose utility is made worse due to the

changed power allocation of player m, we say that the Nash Equilibrium P∗ is

Pareto optimal.

Theorem 3: The DPAG in (5.25) is Pareto optimal if the transmission power

from CBSs to SUs is limited smaller than Bm
n

cln2
− 1

βm
k∗,n

, where βm
k∗,n is the ratio of

channel gain to interference plus noise.

The following proof is to explain that the condition in Theorem 3 can always

be satisfied in our CRN/PN system.

Proof : From the Definition 2, if ∃Q �=P∗, we have um(Q)>um(P
∗).

Suppose 1: There is no CBS will be impaired. That is, ∀j ∈ M − m, we

have uj(Q)≥uj(P
∗).

From (5.1), (5.2) and (5.25), we have

um(P
∗)=

Nm∑
n=1

Bm
n log2

(
1+

gmk∗,np
m
n

Im
′

n (P∗−m)+N0

)
−c

Nm∑
n=1

pmn , (5.35)

um(Q)=
Nm∑
n=1

Bm
n log2

(
1+

gmk∗,nq
m
n

Im
′

n (Q−m)+N0

)
−c

Nm∑
n=1

qmn , (5.36)

where Bm
n =(1+φm∗

k∗ )Bn.
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Similarly, for CBS j, we have

uj(P
∗)=

Nj∑
n=1

Bj
nlog2

(
1+

gjk∗,np
j
n

Ij
′

n (P∗−j)+N0

)
−c

Nj∑
n=1

pjn, (5.37)

uj(Q)=

Nj∑
n=1

Bj
nlog2

(
1+

gjk∗,nq
j
n

Ij
′

n (Q−j)+N0

)
−c

Nj∑
n=1

qjn, (5.38)

where Bj
n=(1+φj∗

k∗)Bn.

From the definition of Q and P∗, we know that Q−m = P∗−m. Moreover,

the network condition and channel information are the same, therefore, we have

Im
′

n (Q−m) = Im
′

n (P∗−m) on subchannel n. Let βm
k∗,n =

gm
k∗,n

Im
′

n (·)+N0

denote the ratio

of channel gain to interference plus noise. Due to um(Q) > um(P
∗), for any

subchannel n in CR-cell m, there is the following inequality:

Bm
n log2

(
1+βm

k∗,nq
m
n

1+βm
k∗,np

m
n

)
> c (qmn − pmn ) , (5.39)

where the parameters Bm
n > 0, c > 0, βm

k∗,n > 0, and variables qmn ≥ 0, pmn ≥ 0.

Moreover, the function log2(·) is monotonically increasing, therefore, from (B.11),

we have

1+βm
k∗,nq

m
n

2
c

Bm
n

qmn
>

1+βm
k∗,np

m
n

2
c

Bm
n

pmn
. (5.40)

Let f(x) =
1+βm

k∗,nx

2
c

Bm
n

x , x≥0, the derivative of function f(x) is

∂f(x)

∂x
=

βm
k∗,n− cln2

Bm
n
(1+βm

k∗,nx)

2
c

Bm
n

x
. (5.41)

If 0 ≤ x < Bm
n

cln2
− 1

βm
k∗,n

, we have ∂f(x)
∂x

> 0, so, f(x) is a monotonically increasing

function. From (5.40), we have qmn > pmn for any subchannel n in CR-cell m, i.e.,

qm > pm. Compare Ij
′

n (P∗−j) = Ij
′

n (p1· · ·pm· · ·pj−1pj+1· · ·pM) and Ij
′

n (Q−j) =

Ij
′

n (p1· · ·qm· · ·pj−1pj+1· · ·pM) in (5.37) and (5.38), the interferences on subchan-

nel n from CR-cellm are increased due to qm > pm, that is, Ij
′

n (Q−j) > Ij
′

n (P∗−j).

Moreover, from the definition of Q and P∗, we know pj = qj. Hence, there exists

player j whose utility is made worse, i.e., uj(Q) < uj(P
∗). This is contradictive
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to Suppose 1. Therefore, if the transmit power from CBSs to SUs is limited

smaller than Bm
n

cln2
− 1

βm
k∗,n

, no CBS can further improve its utility without impairing

other players, and the DPAG is Pareto optimal.

If x > Bm
n

cln2
− 1

βm
k∗,n

, we have ∂f(x)
∂x

< 0, so, f(x) is a monotonically decreasing

function. The similar as stated before, if x is larger than or equal to Bm
n

cln2
− 1

βm
k∗,n

,

we cannot say that the DPAG is Pareto optimal.

Consider the CRN/PN system in our paper. When the carrier to interference

and noise ratio βm
k∗,n ≈ 1, the value Bm

n

cln2
− 1

βm
k∗,n

in our system is approximate 8W

(this is impossible for CBSs to transmit on one subchannel by using 8W power).

Moreover, from Sect. 3, we know that the transmit power on each subchannel is

limited by primary targets. Since the transmit power of PUs is only 10mW in our

coexistent system, from (13), the power limit plimn,m at CBSs on each subchannel is

no larger than 15mW under the parameters defined in next Section. Therefore,

the variable x in function f(x) can always satisfy 0 ≤ x < Bm
n

cln2
− 1

βm
k∗,n

, and we can

summarize that the DPAG is Pareto optimal in some constrained environment,

and in our system, it can satisfy this condition with high probability.

5.6 Performance Evaluation

In this section, simulations are performed for the downlink OFDMA-based multi-

cell CRN/PN to evaluate the effectiveness of the proposed algorithm. The sim-

ulation parameters are summarized in Table 5.1. It is assumed that the channel

gain is constant during 1ms period, thus the algorithm is performed once every

1ms, which is also called one scheduling time. The WINNER Phase II channel

model [69] is utilized to implement the channels in the simulations. We assume

the wireless propagation environment is urban area, and both CRN and PN have

the same cell radius R, with reference distance d0 and center frequency fc.

Consider K SUs and J PUs in each cell. SUs are randomly located in its

cell area at each scheduling time, but the distance from SU to CBS should be

larger than the reference distance. In each P-cell, the subchannels are uniformly

allocated to J PUs. Consider a pessimistic assumption that all PUs are located

at cell-edge area (i.e., 900m–1000m) from its PBS, then, the tolerable interference

power margins at PBSs will not be very large. We assume all CR-cells are in a
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Table 5.1: SIMULATION PARAMETERS

Parameters Value

Number of cells M 7

Cell radius R 1000 m

Number of PUs per P-cell J 8

Number of SUs per CR-cell K 10

Number of subchannels per P-cell 16

Subchannel Bandwidth Bn 17 KHz

System center frequency fc 2.4 GHz

Reference distance d0 100 m

Total power at each CBS Pm
max 20–40 dBm

Predefined SINR of PUs in dB γdB
p 10 dB

Interference violation probability σ(p) 0.01

antenna gain 8 dB

Path loss exponent 4

Shadowing standard deviation σϕdB
6 dB

Noise power spectral density -174 dBm/Hz

Power price c 3 kbps/W

Required minimum data rate for each SU Rk
min 100–600 kbps/W

quasi-synchronous mode, and there is no coordination among CBSs in resource

allocation.

5.6.1 Simulation Results of Three-cell Case

In this subsection, in order to evaluate the performance of the algorithm, we

consider a simple three-cell case at first, i.e., the cell 1,2,3 shown in Figure 5.1.

So, the available subchannels for each CR-cell is Nm = 32.

In the coexistant system, the transmission power of primary transmitters has

significant importance for the spectrum utilization in the CRN, since the primary

interference power limit on each subchannel cannot be exceeded in order to guar-
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Figure 5.3: Sum data rate per CR-cell vs. the number of iterations.

antee the primary performance targets. Thus, when the targets are defined, if

primary transmission power is higher, the allowable interference power limit will

also be higher, so, the throughput of each secondary cell should be higher. How-

ever, the higher transmission power will also cause larger inter-cell interference.

In order to evaluate the influence of primary transmission power, we have the

results in Figures 5.3–5.5.

Firstly, the convergence behavior of the proposed algorithm is demonstrated in

Figure 5.3, which is the sum rate of each CR-cell vs. the number of iterations for

different PU transmission power PPU=10dBm and 25dBm, respectively. It shows

that for different PPU , the sum rate converges in about three to four iterations. We

can know from the result that the algorithm is effective and can get the NE point

in each CR-cell fast. Moreover, from Figure 5.3, when PPU increased from 10dBm

to 25dBm, the sum rate only increased by an insignificant amount compared to the

consumed transmission power, i.e., 0.04 Mbps in CR-cell 1, 0.15 Mbps in CR-cell

2, 0.03 in CR-cell 3. Furthermore, Figures 5.4 and 5.5 show the resulting power
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Figure 5.4: Transmission power allocation for the same subchannels in CR-cells

when PPU=10dBm.

allocation at the Nash equilibrium in each CR-cell when PPU=10dBm and 25dBm,

respectively. We can see the maximum allocated power in Figure 5.5 is more than

30 times than that in Figure 5.4. Higher transmission power results in higher

interference, such that the sum rate cannot be increased so much. Therefore, it is

not practical and economical for PPU=25dBm. So, for the following evaluations,

the primary transmission power is set to be PPU=10dBm. The sum rate result

in fourth iterations will be utilized as optimal resource allocation solution.

In Figure 5.6, the instantaneous data rate of cell-edge SU in each CR-cell

is evaluated. Here, the cell-edge user is also defined as the user who is in the

range from 900m to 1000m. The required minimum data rate for each SU is

Rk
min=100kbps. From Figure 5.6, we can see that the cell-edge SU in each CR-

cell can obtain its minimum data rate when Rk
min is proper. However, when Rk

min

is too large, the system resources may not be enough for real-time services.

Then, we evaluate the performance of the proposed DRA algorithm in com-
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Figure 5.5: Transmission power allocation for the same subchannels in CR-cells

when PPU=25dBm.

parison with the centralized resource allocation algorithm, that is, each CBS

knows the power allocation in other CR-cells and interference channel informa-

tion well. Figures 5.7 and 5.8 show the average sum data rate with different QoS

requirement and different CBS total power, respectively. Each average data rate

is obtained by over 1000 simulation runs. From Figures 5.7 and 5.8, we can see

that the average sum rate of centralized resource allocation algorithm is higher

than that of distributed one, but the difference is not so significant. In Figure

5.7, the total power Pm
max at CBSs is 40dBm. When the required minimum data

rate increases, the average data rate decreases, because the system needs more

resources to guarantee the QoS for each SU, even the cell-edge SUs, when Rk
min

increases. However, when Rk
min is large, the difference between two algorithms

becomes larger. Since then, in order to guarantee the QoS, the allocated data rate

to each subchannel increases, the interference increases as well, the centralized

algorithm can manage the interference better than the distributed algorithm due
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Figure 5.6: Instantaneous data rate of cell-edge SU in CR-cells vs. scheduling

time.

to signaling exchanging and cooperation.

The similar result is shown in Figure 5.8, where, Rk
min is 100kbps. When

Pm
max increases, the difference between two algorithms becomes larger. Moreover,

we can see that if Pm
max is too large, i.e., more than 35dBm, in order to control

large inter-cell interference, the sum rate in each cell is much more different from

each other by using the proposed algorithm. This is because, they try to get an

equlibrium to avoid large interference. On the other hand, for the centralized

algorithm, there is not so much difference. Eventhough the performance of the

proposed distributed method is a little worse than that of the centralized method,

it is still a good choice due to its distribution and flexibility when the number of

cells and users becomes very large, especially for cognitive radio networks.
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Figure 5.7: Average sum data rate per CR-cell vs. Rk
min.

5.6.2 Simulation Results of Seven-cell Case

The performance of seven-cell case, i.e., one-tier model, is evaluated in this sub-

section. The available subchannels for each CR-cell is Nm = 96. The primary

transmission power is set to be PPU = 10dBm for the following results.

In Figures 5.9 and 5.10, the sum rate of seven cells and three cells compared

with the centralized algorithm is evaluated. Figures 5.9 and 5.10 show the average

sum data rate with different Rk
min and different Pm

max, respectively. In Figure

5.9, Pm
max at CBSs is 40dBm, and in Figure 5.10, Rk

min is 100kbps. We can see

that centralized algorithm outperforms the distributed one, but the difference is

not significant. Compared to the three-cell case, the sum rate of the seven-cell

case is much higher, because the available subchannels for each CR-cell is much

more than three-cell case. Moreover, the variation tendency of these two figures

is similar to figures 5.7 and 5.8 respectively, and the reasons of the variation

tendency are described in Section 5.1, which will be omitted here.

Figure 5.11 shows that the outage probability of primary networks is always
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Figure 5.8: Average sum data rate per CR-cell vs. Pm
max.

zero even though the QoS requirement and the total power at CBSs are dif-

ferent. It also indicates that the interference constraints are satisfied, and the

performance of PN can be guaranteed well.

5.7 Chapter Summary

In this chapter, we proposed a novel distributed resource allocation scheme for

downlink transmission in OFDMA-based multi-cell cognitive radio networks. In

the DRA algorithm, each CBS tries to maximize its sum rate while minimizing

the co-channel interference to other CR-cells and without causing unacceptable

interference to primary receivers. QoS for each SU is also considered. A primary-

willingness based coexistent architecture is devised for CRN/PN. A novel intra-

cell spectrum overlay and inter-cell spectrum underlay sharing method is utilized

for primary and secondary spectrum share. According to the analysis of the

DRA problem, it can be solved by two steps: subchannel allocation and power

104



5.7 Chapter Summary

100 150 200 250 300 350 400 450 500 550 600

60

70

80

90

100
A

v
er

ag
e 

su
m

 d
at

a 
ra

te
 o

f 
C

R
N

 (
M

b
p
s)

 

 

7−cell case, Distributed RA

7−cell case, Centralized RA

100 150 200 250 300 350 400 450 500 550 600

8

10

12

14

16

QoS requirement R
min

k
 (kbps)

 

 

3−cell case, Distributed RA

3−cell case, Centralized RA

Figure 5.9: Average sum data rate of CRN vs. Rk
min.

allocation, and finally reduced into a distributed power allocation game. The

Nash equilibrium point of the DPAG is obtained by using the Lagrangian duality

based technique and KKT conditions. It was proven that the Nash equilibrium

exists in the power allocation game, and is unique and Pareto optimal with high

probability in our system. Through the simulation, the efficiency of our algo-

rithm is shown, which has good convergent performance. Moreover, the QoS for

cell-edge SU can be satisfied well. Compared to the centralized algorithm, the

proposed algorithm shows its advantages, i.e., good system performance without

large signaling overhead and without any coordination among CBSs.
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Chapter 6

Conclusions

This chapter concludes our research work based on the study of resource alloca-

tion schemes for cellular cognitive radio networks, which is a key technology to

alleviate the severe spectrum shortage problem for the next generation wireless

networks. First, we describe the advantages and contributions of the proposed

resource allocation schemes. Secondly, the potential future research direction is

discussed.

6.1 Contributions and Discussions

Cognitive radio is a promising technology for alleviating the severe spectrum

shortage problem by allowing secondary users to share spectrum with primary

users. Devices equipped with CR can be networked to create cognitive radio

networks. With the ability to learn from and adapt to both their surrounding

environment and user needs, cognitive radio networks have a great number of

benefits in all kinds of applications, such as, military, government, public safety,

and commercial areas. Considering how secondary users share spectrum with

primary users, there are different spectrum sharing scenarios, such as, noncoop-

erative networks, cooperative networks, and opportunistic utilization.

When implementing cognitive radio, many challenges occur throughout all

layers of networks, especially PHY and MAC layers. Spectrum sensing, spectrun

analysis and spectrum decision are the core functionalities of SUs equipped with

CR. The spectrum decision is about whether and how to access the spectrum.
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The optimal spectrum access option is the one that maximizes the application

or user requirements with the given radio environment or spectrum constraints.

It is different from spectrum access in traditional wireless networks due to the

inter-system interferences and time-varying available spectrum. The interference

power from SUs to PUs should be kept below a certain threshold. The interfer-

ence management is more complicated during spectrum sharing. Moreover, The

available spectrum is time-varying in CRNs, because it depends on the spectrum

utilization in PNs. Nevertheless, good QoS still should be provided to SUs. Con-

sidering these problems, in this thesis, we focus on spectrum decision process and

aim at designing operable spectrum sharing architectures and efficient resource

allocation algorithms for cellular cognitive radio networks.

First, we carry out our study on single-cell multi-user CRNs, which coexist

with a cellular PN. We develop a primary-assistance based coexistent architec-

ture, where, the PBS determines the interference margins at PUs according to

its target performance; then, the interference margins on occupied subchannels

and pilot signals will be broadcast to secondary network for power control. Two

different spectrum sharing methods, i.e., the spectrum underlay and spectrum

overlay, are implemented in the study. The sharing method can be adapted to

one of them based on the distance between the PBS and the CBS and the inter-

ference margins at PUs. Furthermore, a joint cross-layer resource allocation and

interference avoidance algorithm is proposed for dynamic resource allocation in

multi-user CRNs, based on the primary-assistant sharing architecture. The effec-

tiveness of our proposed algorithm is verified by numerical analysis and computer

simulations. Two conventional resource allocation schemes have also been stud-

ied : channel greedy access with power control and proportional fairness access

with equal power. Compared to the conventional schemes, our algorithm achieves

significant higher throughput and can guarantee the required SINR of the PUs

and the QoS of the SUs well. Moreover, compared to the spectrum overlay shar-

ing method, the spectrum underlay sharing could share the spectrum with the

PUs more effectively. In addition, if there are non-active subbands in the PN,

the hybrid spectrum underlay & overlay sharing can provide substantial higher

spectrum efficiency.
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Our next research work is for the multi-cell multi-user cognitive radio net-

works. Due to the co-channel interference and the inter-cell interference, the

multi-cell case is much more complicated than single-cell. To manage the coexis-

tence, a primary-willingness based coexistent architecture and a novel intra-cell

spectrum overlay and inter-cell spectrum underlay sharing method are proposed.

Then, for this spectrum sharing scenario, a distributed resource allocation scheme

is devised to guarantee the primary performance, and at the same time, maximize

the secondary utility without any cooperation among CBSs. Through the simula-

tion, the efficiency of our algorithm is shown. The proposed algorithm turns out

to converge to the equilibrium only within a small number of iterations. Com-

pared to the centralized algorithm, the proposed distributed algorithm shows its

advantages, i.e., good system performance without large signaling overhead and

without any coordination among CBSs. Moreover, QoS among SUs is also con-

sidered by the scheme such that the instantaneous data rate for each secondary

user is larger than a given minimum rate. The QoS for SUs can be satisfied well

in the scheme.

Our investigation of resource allocation algorithms for CRNs provides some

new research directions and practical applications for next generation networks.

Although many researches have been done on resource allocation for CRNs, our

research works focus on the hybride overlay/underlay spectrum sharing method

and interference avoidance to primary networks. These research works signifi-

cantly improve the spectrum efficiency and system throughput of CRNs.

6.2 Future Work

So far, very few researches have been done on multi-cell case for the cognitive

radio networks. Therefore, in this thesis, coexistent architectures and resource

allocation schemes on cellular cognitive radio networks are considered. However,

there still exist lots of research scopes for future works not only about the cen-

tralized CRNs but also distributed CRNs.

First, to achieve the dynamic characteristics and implement CR technology,

the information from only one layer is far from enough, so the information ex-

change and information fusion of multiple layers have significant importance. A
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very prominent example of such information exchange is the spectrum sensing

information that requires cooperation of PHY and MAC layers to obtain. Also,

in dynamic spectrum management and transmission power control, information

from multiple layers is necessary not only in centralized CRNs but also distributed

ones. Hence, cross-layer designs are nontrivial for CRNs ranging from the PHY

layer to transport layer.

Second, in previous works, spectrum availability in CRNs all depends on the

activities of PUs, which are assumed as simple structures (such as ON/OFF mod-

els). However, the mobility of secondary users is rarely considered in spectrum

management of CRNs. It is still a new topic, and also should be considered

in the future RA algorithm designs, especially for the vehicular cognitive radio

networks (vehicular ad-hoc cognitive radio networks, or central-controlled vehic-

ular CRNs), where the moving routes of the SUs are fixed and can be known

beforehand.

As for future work, designing an effective cross-layer RA scheme for CRNs in

mobility environment is an interesting research topic. This could lead to inter-

esting and useful applications in the future wireless broadband access.
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Appendix A

Proof of Proposition 2 in

Chapter 4

From OP-2, we have the following optimization problem:

OP-A:

min
τ∑

t=1

M∑
m=1

K∑
k=1

(2
Rk,m,t
Δf −1)

Lk,m,t

βk,m,t

(A.1)

s.t.

K∑
k=1

Lk,m,t−1≤0, Lk,m,t−1≤0, −Lk,m,t≤0 (A.2)

Rk,m,t −Rmax ≤ 0, −Rk,m,t ≤ 0 (A.3)

rReq
k,τ −

τ∑
t=1

M∑
m=1

Rk,m,tLk,m,t = 0 (A.4)

The functions (A.1) in OP-A are convex functions in convex set C = {Lk,m,t=

{0, 1}, Rk,m,t∈ [0, Rmax]}. The largrangian function [18] of the above convex opti-

mization OP-A is:

L=
τ∑

t=1

M∑
m=1

K∑
k=1

(2
Rk,m,t
Δf −1)Lk,m,t

βk,m,t

+
τ∑

t=1

M∑
m=1

am,t(
K∑
k=1

Lk,m,t−1)+
τ∑

t=1

M∑
m=1

K∑
k=1

bk,m,t(Lk,m,t−1)

115



APPENDIX

−
τ∑

t=1

M∑
m=1

K∑
k=1

ck,m,tLk,m,t+
τ∑

t=1

M∑
m=1

K∑
k=1

ek,m,t(Rk,m,t −Rmax)−
τ∑

t=1

M∑
m=1

K∑
k=1

fk,m,tRk,m,t

+
K∑
k=1

hk(r
Req
k,τ −

τ∑
t=1

M∑
m=1

Rk,m,tLk,m,t) (A.5)

where {am,t, bk,m,t, ck,m,t, ek,m,t, fk,m,t, hk},t=1, 2, ..., τ , k∈K,m∈M are the Lagrange

multipliers, and each multiplier should be no less than zero.

Let {R∗k,m,t, L
∗
k,m,t, a

∗
m,t, b

∗
k,m,t, c

∗
k,m,t, e

∗
k,m,t, f

∗
k,m,t, h

∗
k} be an optimal solution. Then

the Karush-Kuhn-Tucker (KKT) conditions are as following:

a∗m,t≥0, b∗k,m,t≥0, c∗k,m,t≥0, e∗k,m,t≥0, f ∗k,m,t≥0, h∗k≥0 (A.6)

a∗m,t(
K∑
k=1

L∗k,m,t−1) = 0 (A.7)

b∗k,m,t(L
∗
k,m,t−1) = 0 (A.8)

c∗k,m,tL
∗
k,m,t = 0 (A.9)

e∗k,m,t(R
∗
k,m,t −Rmax) = 0 (A.10)

f ∗k,m,tR
∗
k,m,t = 0 (A.11)

h∗k

(
rReq
k,τ −

τ∑
t=1

M∑
m=1

R∗k,m,tL
∗
k,m,t

)
= 0 (A.12)

L∗k,m,tln(2)2
R∗
k,m,t
Δf

βk,m,tΔf
+e∗k,m,t−f ∗k,m,t−h∗kL

∗
k,m,t=0 (A.13)

(2
R∗
k,m,t
Δf −1)

βk,m,t

+a∗m,t+b∗k,m,t−c∗k,m,t+h∗kR
∗
k,m,t=0 (A.14)
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Equations (A.13) and (A.14) are obtained by setting ∂L/∂Rk,m,t = 0 and

∂L/∂Lk,m,t=0 respectively.

From (A.13), when L∗k,m,t �=0, we have

R∗k,m,t=Δf log2{
(h∗kL

∗
k,m,t+f

∗
k,m,t−e∗k,m,t)βk,m,tΔf

ln(2)L∗k,m,t

} (A.15)

According to (A.10) and (A.11), e∗k,m,t and f ∗k,m,t cannot be positive at the

same time. Therefore, when R∗k,m,t = 0, e∗k,m,t =0,f ∗k,m,t ≥ 0, then, according to

(A.15), h∗k ≤ ln(2)
βk,m,tΔf

; when R∗k,m,t= Rmax, e
∗
k,m,t ≥ 0,f ∗k,m,t = 0, then, according to

(A.15), h∗k≥ 2
Rmax
Δf ln(2)
βk,m,tΔf

; when 0<R∗k,m,t<Rmax, e
∗
k,m,t=0,f

∗
k,m,t=0, then, according to

(A.15), ln(2)
βk,m,tΔf

<h∗k <
2
Rmax
Δf ln(2)
βk,m,tΔf

. To summarize, the optimal rate allocation R∗k,m,t

at time slot t can be:

R∗k,m,t=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, h∗k≤ ln(2)

βk,m,tΔf

Δf log2(
h∗
kβk,m,tΔf

ln(2)
), ln(2)

βk,m,tΔf
<h∗k<

2
Rmax
Δf ln(2)
βk,m,tΔf

Rmax, h∗k≥ 2
Rmax
Δf ln(2)
βk,m,tΔf

(A.16)

Suppose that subcarrier m has been allocated to more than one SU, that is,

there exists 0<L∗k,m,t< 1 for SUs k1, k2, ..., kB, B > 1. From (A.8) and (A.9), we

have b∗k,m,t = 0 and c∗k,m,t = 0. Then, from (A.14), we have

(2
R∗
k,m,t
Δf −1)

βk,m,t

+h∗kR
∗
k,m,t= −a∗m,t (A.17)

We define hk,m,t=(2
R∗
k,m,t
Δf −1)/βk,m,t+h∗kR

∗
k,m,t, therefore, we have hk,m,t = −a∗m,t

for all k = k1, k2, ..., kB, that is hk1,m,t=hk2,m,t= ...=hkB ,m,t.

However, for the left side in (A.17), unless βk,m,t is equal for SUs k1, k2, ..., kB,

it is highly impossible that any of the two hk,m,t values will be equal. Since βk,m,t

are channel state information, modeled as independent and random variables.

Therefore, we conclude that for any time slot t and subcarrier m, there is only

one SU k∗, that is L∗k∗,m,t=1 if subcarrier m has been allocated. The method how

to find this SU, which is similar to that analyzed in Appendix B, will be omitted

here.
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Now, the proof of Proposition 2 will continue. We consider L∗k,m,t=1 for SU k.

The allocated rates for SU k during τ time slots rk can be calculated as following

by using (A.16):

rk=
τ∑

t=1

M∑
m=1

R∗k,m,t (A.18)

We define some probabilities:

Pr{a given subcarrier is allocated to SU k}= pk;

Pr{the power gain of the allocated subcarrier satisfies ln(2)
βk,m,tΔf

<h∗k<
2
Rmax
Δf ln(2)
βk,m,tΔf

}=
pak;

Pr{the power gain of the allocated subcarrier satisfies h∗k≥ 2
Rmax
Δf ln(2)
βk,m,tΔf

}= pbk.

Equation (A.18) can be calculated as:

rk=
∑

ln(2)
βk,m,tΔf

<h∗
k<

2

Rmax
Δf ln(2)
βk,m,tΔf

Δf log2(
h∗kβk,m,tΔf

ln(2)
) +

∑
h∗
k≥2

Rmax
Δf ln(2)
βk,m,tΔf

Rmax

=
τ∑

t=1

m(t)pkp
a
kΔf log2(

h∗kβk,m,tΔf

ln(2)
)+

τ∑
t=1

m(t)pkp
b
kRmax (A.19)

where m(t) is the available subcarrier number at time slot t.

Similarly, at time slot t, the optimal number of bit rate allocated to SU k is

obtained:

M∑
m=1

R∗k,m,tL
∗
k,m,t= m(t)pk{pakΔf log2(

h∗kβk,m,tΔf

ln(2)
)+pbkRmax} (A.20)

From (A.19) and (A.20), we have

M∑
m=1

R∗k,m,tL
∗
k,m,t=

m(t)∑τ
t=1 m(t)

rk (A.21)

Suppose that the allocation can achieve the QoS requirements for SU k, there-

fore, the allocated bit rates during τ time slots satisfied rk = rReq
k,t τ , where, rReq

k,t is

the required bit rate at each time slot. So, equation (A.21) can be rewritten as:

M∑
m=1

R∗k,m,tL
∗
k,m,t=

m(t)τ∑τ
t=1 m(t)

rReq
k,t (A.22)
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Due to primary interference limits, not all the subcarriers are available for

SUs. If the available bandwidth m(t) is considerably small, only few bit rates can

be allocated to SU k at time slot t. Then, it is difficult to satisfy the required

bit rate rReq
k,t at each time slot, and the required bit rate during τ time slots

also cannot be satisfied, since rk < rReq
k,t τ due to limited primary bandwidth. To

guarantee the QoS requirments, M needs to be large enough. AssumeM → ∞, so

that at each time slot, there are m(t) ≥ mreq that can achieve SUs’ requirements,

where, mreq is the minimum number of required subcarrier. Therefore, for OP-A,

to achieve the QoS and minimize the transmit power, m(t) should be equal to

mreq at each time slot. If M → ∞,
∑τ

t=1 m(t)=τmreq, and we can have:

M∑
m=1

R∗k,m,tL
∗
k,m,t=rReq

k,t (A.23)
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Proof of Solution S∗ in Chapter 4

In Problem OP-3, if we replace Rk,m by Rk,m = R̂k,mΔf , which can be obtained

from (4.10-refeq:5). The following duality optimization problem is obtained:

OP-B:

min
K∑
k=1

−λk (B.1)

s.t.

Pk,m − Pmax
m ≤ 0,

K∑
k=1

M∑
m=1

Pk,m − P0 ≤ 0 (B.2)

K∑
k=1

Lk,m − 1≤0, Lk,m − 1≤0, −Lk,m≤0 (B.3)

R̂k,mΔf −Rmax ≤ 0, −R̂k,mΔf ≤ 0 (B.4)

rReq
k + λk −

M∑
m=1

R̂k,mΔfLk,m = 0, −λk ≤ 0 (B.5)

where Pk,m=
2
̂Rk,m−1
βk,m

.

The Lagrangian function [18], [72] associated with the above duality problem

OP-B can be written as:

L(R̂k,m,Lk,m,λk,ξk,m,ϕ,ψm,φk,m,υk,m,ζk,m,εk,m,ηk,ςk)
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=
K∑
k=1

(−λk) +
K∑
k=1

M∑
m=1

ξk,m(
2
̂Rk,m − 1

βk,m

− Pmax) + ϕ(
K∑
k=1

M∑
m=1

2
̂Rk,m−1

βk,m

−P0)

+
M∑

m=1

ψm(
K∑
k=1

Lk,m−1) +
K∑
k=1

M∑
m=1

φk,m(Lk,m − 1)−
K∑
k=1

M∑
m=1

υk,mLk,m

+
K∑
k=1

M∑
m=1

ζk,m(R̂k,mΔf−Rmax)−
K∑
k=1

M∑
m=1

εk,mR̂k,mΔf

+
K∑
k=1

ηk(r
Req
k + λk −

M∑
m=1

R̂k,mΔfLk,m)−
K∑
k=1

ςkλk (B.6)

where ξk,m, ϕ, ψm, φk,m, υk,m, ζk,m, εk,m, ηk, ςk, k ∈ K, m∈Mare the Lagrange mul-

tipliers.

Let R̂∗k,m, L
∗
k,m, λ

∗
k, ξ∗k,m,ϕ

∗, ψ∗m,φ
∗
k,m,υ

∗
k,m, ζ∗k,m, ε∗k,m, η∗k, ς∗k , be an optimal

solution set, then the Karush-Kuhn-Tucker (KKT) conditions state that [18]:

ξ∗k,m≥0, ϕ∗≥0, ψ∗m≥0, φ∗k,m≥0, υ∗k,m≥0,

ζ∗k,m≥0, ε∗k,m≥0, η∗k≥0, ς∗k ≥0 (B.7)

ξ∗k,m(
2
̂R∗
k,m − 1

βk,m

− Pmax) = 0 (B.8)

ϕ∗(
K∑
k=1

M∑
m=1

2
̂R∗
k,m − 1

βk,m

− P0) = 0 (B.9)

ψ∗m(
K∑
k=1

L∗k,m − 1) = 0 (B.10)

φ∗k,m(L
∗
k,m − 1) = 0, −υ∗k,mL

∗
k,m = 0 (B.11)

ζ∗k,m(R̂
∗
k,mΔf−Rmax)=0, ε∗k,mR̂

∗
k,mΔf=0 (B.12)
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η∗k(r
Req
k + λ∗k −

M∑
m=1

R̂∗k,mΔfL∗k,m) = 0 (B.13)

ς∗kλ
∗
k = 0 (B.14)

(ξ∗k,m+ϕ∗)
2
̂R∗
k,mln(2)

Δfβk,m

−η∗kL
∗
k,m=ε∗k,m−ζ∗k,m (B.15)

ψ∗m + φ∗k,m − υ∗k,m − η∗kR̂
∗
k,mΔf = 0 (B.16)

− 1 + η∗k − ς∗k = 0 (B.17)

Equations (B.15)-(B.17) are obtained by setting ∂L/∂R̂k,m=0, ∂L/∂Lk,m=0,

and ∂L/∂λk=0 respectively.

In order to analyze the KKT consitions and get the optimal solution, we have

the following steps to solve Problem OP-B:

1) Step 1: Power Allocation

From (B.15), the following equation can be obtained:

2
̂R∗
k,m

ln(2)

Δfβk,m

− η∗kL
∗
k,m

ξ∗k,m + ϕ∗
=

ε∗k,m − ζ∗k,m
ξ∗k,m + ϕ∗

(B.18)

According to (B.7) and (B.12), we know that ζ∗k,m and ε∗k,m cannot be both

positive and they are all nonnegative. So the optimal values of ζ∗k,m and ε∗k,m can

only be one of the following cases:

ε∗k,m > 0, ζ∗k,m = 0

ε∗k,m = 0, ζ∗k,m > 0

ε∗k,m = 0, ζ∗k,m = 0

Here, we set ωk=
η∗kL

∗
k,m

ξ∗k,m+ϕ∗ , therefore, if ωk < 2
̂R∗
k,m

ln(2)
Δfβk,m

, that means we must

have ε∗k,m>0, ζ
∗
k,m=0. So, according to (B.12), we must have R̂∗k,m = 0.

If 2
̂R∗
k,m

ln(2)
Δfβk,m

≤ωk≤2 ̂Rmax ln(2)
Δfβk,m

, that means 0≤ R̂∗k,m≤ R̂max, where, R̂max=
Rmax

Δf
, we must have ε∗k,m=0, ζ∗k,m=0. So, according to (B.18), we can get that

R̂∗k,m=log2(
ωkΔfβk,m

ln(2)
).
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If ωk> 2
̂Rmax ln(2)

Δfβk,m
, we must have ε∗k,m=0, ζ∗k,m> 0. According to (B.15), we

must have R̂∗k,m= R̂max.

Therefore, to summarize, the optimal value of R̂∗k,m is:

R̂∗k,m=

⎧⎪⎪⎨⎪⎪⎩
0, ωk<

ln(2)
Δfβk,m

log2(
ωkΔfβk,m
ln(2)

), ln(2)
Δfβk,m

≤ωk≤ 2
̂Rmaxln(2)
Δfβk,m

R̂max, ωk>
2
̂Rmaxln(2)
Δfβk,m

(B.19)

The following optimal power allocation P ∗k,m = 2
̂R∗
max−1
βk,m

can be obtained:

P ∗k,m=

⎧⎪⎪⎨⎪⎪⎩
0, ωk<

ln(2)
Δfβk,m

ωkΔf
ln(2)

− 1
βk,m

, ln(2)
Δfβk,m

≤ωk≤ 2
̂Rmaxln(2)
Δfβk,m

2
̂Rmax−1
βk,m

, ωk>
2
̂Rmaxln(2)
Δfβk,m

(B.20)

where ωk =
η∗kL

∗
k,m

ξ∗k,m+ϕ∗ , represents the update of the multipliers and is viewed as the

iterative water-filling level for the SU k and will be discussed later.

2) Step 2: Subcarrier Allocation

For simplicity and in order to maximize the system throughput, L∗k,m is set

to be either 0 or 1, and one subcarrier must be allocated to any user. So, for any

given time slot t and subcarrier m, there is only one SU k∗ with a nonzero value

of L∗k∗,m and L∗k∗,m= 1 according to (B.3). Now, we’ll discuss how to determine

the SU k∗.

For SU k∗, according to (B.11), we have φ∗k∗,m≥0, and υ∗k∗,m=0, and it follows

from (B.16) that

ψ∗m = η∗k∗R̂
∗
k∗,mΔf − φ∗k∗,m (B.21)

For any other SU k �=k∗, L∗k,m=0, according to (B.11), we have φ∗k,m=0, and

υ∗k,m≥0, combined with (B.16), we have

ψ∗m = υ∗k,m + η∗kR̂
∗
k,mΔf (B.22)

Compare (B.21) with (B.22), we have

η∗k∗R̂
∗
k∗,m ≥ η∗kR̂

∗
k,m (B.23)
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The subcarrier allocation strategy for any subcarrier m is

L∗k,m =

{
1, k = k∗ and m ∈ M

0, otherwise
(B.24)

k∗ = argmax η∗kR̂
∗
k,m (B.25)

where R̂∗k,m is the optimal value from (B.19). Suppose that for a given t and

m, the values of η∗kR̂
∗
k,m are the same for several users, we will choose one SU

arbitrarily.

3) Step 3: Iterative Water-filling Level

For all SUs, according to KKT conditions, when λ∗k>0, according to (B.14),

ς∗k =0 and according to (B.17), η∗k =1, so ωk =
L∗
k,m

ξ∗k,m+ϕ∗ . When λ∗k =0, then ς∗k ≥ 0

and η∗k=1+ς∗k , so ωk=
(1+ς∗k )L

∗
k,m

ξ∗k,m+ϕ∗ . The initial value of L∗k,m in ωk can be set to 1.

Let ωB= 1
ξ∗k,m+ϕ∗ be the base water-level for all SUs.

From (B.7)- (B.9), if the optimal value ϕ∗> 0, that means all the power has

been used to optimize the system throughput. Therefore, the initial value of ϕ∗

and ξ∗k,mshould be set to ϕ∗ > 0 and ξ∗k,m > 0 to obtain the maximum system

throughput. Therefore, to summarize, the water-filling level ωk is:

ωk =

{
ωB, λ∗k > 0
(1 + ς∗k)ωB, λ∗k = 0

(B.26)

where ωB = 1/(ξ∗k,m + ϕ∗), ξ∗k,m > 0, ϕ∗ > 0.
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