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GLOSSARY

ADC Analog to digital converter.

ANC Active noise control.

ANP Auxiliary-noise-power.

CEMFxLMS Computationally efficient modified filtered-x-least-mean-square.

DAC Digital to analog converter.

DSP Digital signal processing.

EMFN Even mirror Fourier non-linear.

FBPM Feedback path modeling.

FBPN Feedback path neutralization.

FBPMN Feedback path modeling and neutralization.

FDAF Frequency domain adaptive filter.

FFT Fast Fourier transform.

FIR Finite impulse response.

FN Fourier non-linear.

FsLMS Filtered-s-least-mean-square.

FxLMS Filtered-x-least-mean-square.



IIR Infinite impulse response.

LMS Least-mean-square.

MFxLMS Modified filtered-x-least-mean-square.

MFxNLMS Modified filtered-x-normalized-least-mean-square.

MNR Mean-noise-reduction.

MSE Mean-square-error.

NLMS Normalized-least-mean-square.

NRP Noise-reduction-performance.

OSPM Online secondary path modeling.

PPSEQ Perfect-periodic-sequences.

SNR Signal to noise ratio.

SPM Secondary path modeling.

VFxLMS Volterra filtered-x-least-mean-square.

VSS Variable step-size.

WGN White Gaussian noise.



SYMBOLS

d(n) Desired response/ Unwanted noise at the summing junction.

E[·] Mathematical expectation operator.

Eq Energy of signal q(n).

e(n) Residual error signal.

eq(n) Error signal of any adaptive filter Q(z).

f Signal frequency.

F (z) Feedback path transfer function with impulse response f(n).

F̂ (z) Estimate of F (z) with impulse response f̂(n).

G(n) Time-varying gain.

G(n) Diagonal gain matrix.

G−1(n) Inverse of diagonal gain matrix.

k Frequency index.

Lq Length of any filter Q(z) and its estimate Q̂(z).

n Time index.

P (z) Primary path transfer function with impulse response p(n).

Pq Power of signal q(n).



Q(z) Filter transfer function with impulse response q(n).

Q−1(z) Inverse filter of Q(z) with impulse response q−1(n).

Q̂(z) Estimate of filter Q(z) with impulse response q̂(n).

Q̂o(z) Optimal value of the estimate Q̂(z).

Q̂−1(z) Inverse filter of Q̂(z) with impulse response q̂−1(n).

q(n) Vector of length Lq containing tap-weights of filter Q(z)

Q(k) Complex conjugate of Q(k).

r(n) Noise from a noise source at reference microphone.

Rqq(n) Autocorrelation function of a signal q(n)

Rpq(n) Cross-correlation function of signal p(n) with q(n).

S(z) Secondary path transfer function with impulse response s(n).

Ŝ(z) Estimate of S(z) with impulse response ŝ(n).

v(n) Auxiliary WGN used for system identification.

vd(n) Measurement noise.

vg(n) Output of White noise generator.

vf (n) Output of F (z) corresponding to input v(n).

vf̂ (n) Output of F̂ (z) corresponding to input v(n).

vs(n) Output of S(z) corresponding to input v(n).

vŝ(n) Output of Ŝ(z) corresponding to input v(n).

x(n) Input excitation signal/ Noise signal from a noise source.

xq(n),x(n)(n) Input signal vector of filter Q(z) with input x(n) at iteration n

yq(n) Output signal of any adaptive filter Q(z).

ypq(n) Output of series combination of filters P (z) and Q(z) with

input signal filtered first through P (z) and then through Q(z).

∗ Convolution operator.



∆ Delay.

∆Dq(n) Relative modeling error of filter Q(z).

δ(n) Unit sample function.

∆X Mean-square-error in the signal r(n).

|| · ||2 Square of the Euclidean norm.

λ Forgetting factor.

µ Fixed step-size parameter for an adaptive filter.

µq(n) Time-varying step-size parameter for adaptive filter Q(z).

µq(n) Diagonal matrix of time-varying step-size parameters for

adaptive filter Q(z).



概　　要

アンチノイズ信号を生成して音響ノイズをキャンセルする非常に興味深い
手法は，1936 年に P. Lueg によって提案された．フィードフォワード型アク
ティブノイズコントロール (ANC) システムでは，アンチノイズ信号は，基準
マイクとエラーマイク，ANC フィルタに基づく適応 FxLMS (Filtered-x-Least-
Mean-Square) アルゴリズム及び電気音響二次経路により生成される．ANC シ
ステムが安定に動作するには，FxLMS アルゴリズムが二次経路の推定が必要
である．スピーカーで生成されたアンチノイズ信号が基準マイク信号と干渉を
引き起こす．この干渉はスピーカーと基準マイクの間にフィードバック経路と
呼ばれる電気音響経路が存在することに起因する．よって，このフィードバッ
ク経路の影響を中和する必要があり，フィードバック経路の推定が必要である．
二次経路とフィードバック経路のオンラインモデリングのために，付加的な

補助ノイズが注入される．この補助ノイズは，残留誤差を招き，ANCシステム
のノイズ低減性能 (NRP) を劣化させる．NRP を改善するために，ゲインスケ
ジューリング手法が使われ，注入された補助ノイズの電力を変化させる．ゲイ
ンスケジューリングの目的は，二次経路とフィードバック経路のモデル推定値
が実際の未知経路とかけ離れているとき，大きい補助ノイズを注入して高速に
収束させることである．推定値が実際の未知経路に近いときは，補助ノイズを
小さい値に低減させる．したがって，ゲインスケジューリングは，二次経路と
フィードバック経路のモデル推定に役に立つと同時に，定常状態では NRP を
改善できる．本論文では，二つの重要な問題：オンライン二次経路モデリング
(OSPM) と、オンラインフィードバック経路モデリングとニュートラリゼショ
ン (FBPMN) について，ゲインスケジューリングの幾つか異なる方法を提案す
る．
第１章では，まず ANC システムの基礎となる物理的原理と構成について

概説する．異なるシステム同定において，ANC システム，すなわち，適応フィ
ルタの基本構成ブロックの適用について議論し，ANC システムの中で最もよ
く使われている適応アルゴリズム，すなわち，FxLMS アルゴリズムを一般的
な二次経路のために導出する．また，ANC システムにおける二つの基本的な
問題：OSPM とオンライン FBPMN について説明し，システム同定のための
最適な励起信号，すなわち，完全スイープ信号の使用についても述べる．
第２章では，分散値を固定した補助ノイズを使用した条件でゲインス

ケジューリングなしの OSPM について，既存の手法を解説し，修正された
FxLMS (MFxLMS) と OSPM のための簡単な構造を持つ適応アルゴリズムを
提案する．提案した簡単な構造の利点は，ANC システムの性能を維持しなが
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ら，MFxLMS アルゴリズムに基づく OSPM の計算量を低減できることである．
また，シミュレーションを行い，その結果を用いて既存の方法と性能を比較す
る．
第３章では，まず，ゲインスケジューリングを用いた OSPM について，既

存の手法を解説する．既存のゲインスケジューリング手法の利点と欠点を分析
し，新しいゲインスケジューリング手法を提案し，SPM フィルタのモデリング
精度および ANC システムの NRP を改善する．既存の方法では，ANC システ
ムの収束状態の情報のみを持つ残差信号の電力に基づいてゲインを変動させ
る．一方，提案法では，SPM フィルタのエラー信号の電力に基づいてゲインを
変動させている．SPM フィルタのエラー信号の電力は ANC システムと SPM
フィルタの両方の収束状態に関する情報を持つため，ゲインを制御するより望
ましい手法である．また，シミュレーションを行い，その結果を用いて既存の
方法と性能を比較する．
第４章では，ANC システムのフィードフォワード構成に関連するオンライ

ン FBPMN の問題について議論する．はじめに，ゲインスケジューリングを使
用しないオンライン FBPMN について，既存の方法とそれらの問題点を説明
する．つぎに，ゲインスケジューリングを使用しないオンライン FBPMN のた
めの新しい構造を提案し，シミュレーションを行い，既存の方法と性能を比較
する．新しい構造では，既存構造の特長が組み合わせられ，予測器を使って適
応 FBPMN フィルタのエラー信号から予測可能な干渉項を除去する．加えて，
FBPM フィルタと FBPN フィルタが単一の FBPMN フィルタとして結合され
る．既存構造に比較して，新しい構造の利点は，ANC フィルタの入力信号に
フィードバックカップリングする作用をより良く中和でき，ANC システムの
収束性を改善することができる．後半では，ANC システムの NRP を改善す
るために，ゲインスケジューリング手法を提案する．また，FBPMN フィルタ
のステップサイズが一致する自己同調 ANP スケジューリング手法も提案する．
この自己同調 ANP スケジューリング手法では，チューニングパラメータを必
要とせず，ANC システムの NRP をさらに改善できる．
第５章では，本論文の結論と今後の研究課題等について述べる．
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ABSTRACT

The idea of cancelling the acoustic noise by generating an anti-noise signal is
very fascinating, and was first proposed by P. Lueg in 1936. In feedforward active
noise control (ANC) systems, the anti-noise signal is generated with the help of
reference and error microphones, an adaptive filtered-x-LMS (FxLMS) algorithm
based ANC filter, and an electro-acoustic path named as the secondary path. For
stable operation of ANC systems, the FxLMS algorithm needs an estimate of
the secondary path. The anti-noise signal generated by the loudspeaker (part of
secondary path) causes interference with the reference microphone signal. This
interference is due to the presence of electro-acoustic path, named as feedback
path, between the loudspeaker and the reference microphone. It is required to
neutralize the effect of this feedback path, and hence an estimate of the feedback
path is required.

For online modeling of the secondary and feedback paths, an additional aux-
iliary noise is injected. This auxiliary noise contributes to the residual error, and
thus degrades the noise-reduction-performance (NRP) of ANC system. In order
to improve the NRP, a gain scheduling strategy is used to vary the variance of
the injected auxiliary noise. The purpose of the gain scheduling is that when the
model estimates of the secondary and the feedback paths are far from the actual
unknown paths, auxiliary noise with large variance is injected. Once the model
estimates are closer to the actual unknown paths, the variance of auxiliary noise
is reduced to a small value. In this way, on one hand the gain scheduling can
help us to achieve the required model estimates of secondary and feedback paths,
and on the other hand to improve the NRP at the steady-state. In this thesis,
we discuss the two most important issues, i.e., 1) online secondary path modeling
(OSPM), and 2) online feedback path modeling and neutralization (FBPMN) with
gain scheduling.

In chapter 1, the basic underlying physical principle and configurations of
active noise control (ANC) systems are explained. The application of the basic
building block of an ANC system i.e. An adaptive filter, in different system iden-
tification scenarios is discussed. The most popular adaptive algorithm for ANC
system, i.e., FxLMS algorithm is derived for the general secondary path. A brief
overview is given for the two fundamental issues in ANC systems, i.e., 1) OSPM
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and 2) online FBPMN. The use of optimal excitation signal, i.e., Perfect sweep
signals for system identification is described.

In chapter 2, the existing methods for OSPM without gain scheduling, where
the auxiliary noise with fixed variance is used in all operating conditions, are dis-
cussed. In this chapter a simplified structure for OSPM with the modified FxLMS
(MFxLMS) adaptive algorithm is proposed. The advantage of the simplified struc-
ture is that it reduces the computational complexity of the MFxLMS algorithm
based OSPM without having any compromise on the performance of ANC system.

In chapter 3, the existing methods for OSPM with gain scheduling are dis-
cussed. The drawbacks with the existing gain scheduling strategies are highlighted,
and some new gain scheduling strategies are proposed to improve the modeling ac-
curacy of SPM filter and the NRP of an ANC system. In existing methods, the
gain is varied based on the power of residual error signal which carries information
only about the convergence status of ANC system. In the Proposed methods the
gain is varied based on the power of error signal of SPM filter. This is more de-
sirable way of controlling the gain because the power of error signal of SPM filter
carries information about the convergence status of both the ANC system and the
SPM filter. The performance comparison is carried out through the simulation
results.

In chapter 4, the second most important issue associated with the feedforward
configuration of ANC system, i.e., the issue of online FBPMN is deal with. In the
first part, the existing methods for online FBPMN without gain scheduling are dis-
cussed. A new structure is proposed for online FBPMN without gain scheduling.
The performance of the existing methods is compare with the proposed method
through the simulation results. In the new structure the good features from the
existing structures are combined together. The predictor is used in the new struc-
ture to remove the predictable interference term from the error signal of adaptive
FBPMN filter. In addition to this, the action of FBPM filter and the FBPN fil-
ter is combined into a single FBPMN filter. The advantage of the new structure
over the existing structures is that it can better neutralize the effect of feedback
coupling on the input signal of ANC filter, thus improves the convergence of ANC
system. In the second part, a gain scheduling strategy is proposed to improve the
NRP of ANC system. In addition to this, a self-tuned ANP scheduling strategy
with matching step-size for FBPMN filter is also proposed that requires no tuning
parameters and further improves the NRP of ANC systems.

In chapter 5, the concluding remarks and some future research directions are
given.
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Chapter 1

Introduction

1.1 Active Noise Control (ANC)

Noise is an unwanted or an undesired signal. The unintended and undesired sound

in the acoustic domain is called acoustic noise. The major sources of the acoustic

noise include industries, and transportation. Broadly speaking the acoustic noise

can be classified into two major types; 1) Narrow band noise, having energy con-

centrated at specific frequencies, e.g., noise from rotating machines and engines

etc., and 2) Broad-band noise, having energy distribution over a broad range of

audible frequencies, e.g., pink noise, white noise etc [1]-[5].

The traditional approach for acoustic noise cancellation is to use the passive

techniques. These techniques include the use of sound absorbing materials, si-
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Noise

Anti-Noise

Residual Noise

Figure 1.1: Physical concept of active noise cancellation.

lencers, enclosures, barriers, and mufflers [1, 2] for noise attenuation. These pas-

sive techniques are effective at high frequencies, and become ineffective, large in

size, and costly at low frequencies (for f < 500Hz). The alternate solution at low

frequency is to use active techniques for noise cancellation [3]- [5].

Physical concept of ANC: The basic building block of an ANC system is

an adaptive filter [6]-[8], and the underlying physical concept is the principle of

superposition. In feedforward configuration of ANC systems, using the reference

microphone signal, the electrical adaptive controller followed by the secondary

path will generate an anti-noise signal. The anti-noise signal will interfere destruc-

tively with the unwanted noise signal at the summing junction, and will cancel

the original noise. The better cancellation will be achieved if the magnitude of

the anti-noise is same and phase is exactly opposite to that of original unwanted

noise. The idea of noise cancellation with an anti-noise signal is shown in Fig. 1.1.

It is difficult to achieve the desired performance with analog circuits, hence it is

required for the controller of ANC system to be digital [4].

The idea of using the microphones and the secondary source (loudspeaker) to

generate the anti-noise signal was first proposed by P. Lueg in 1936 [9]. Since

the characteristics of the unwanted noise, and the acoustic paths are time-varying,

therefore the idea presented in [9] did not have the practical applications until the
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development of adaptive signal processing algorithm and DSP hardware. The idea

became practically realizable with the development of adaptive signal processing

algorithm and DSP hardware in 1980. The application of adaptive signal process-

ing to cancel the noise in a duct was proposed in [10]-[12], where the adaptive

filters adjust its coefficients to minimize some cost functions.

Basic configurations of ANC systems: Based on the structure, the ANC

systems can be classified into following two types: 1) Feedforward Single/Multi

channel ANC system, and 2) Feedback Single/Multi channel ANC system. The

feedforward ANC system can be used to cancel both the narrow-band (predictable)

as well as the broad-band (unpredictable) noise signals, whereas the feedback ANC

system is used to cancel only the narrow-band signal. The feedback ANC system

can not be employed for the cancellation of broad-band noise signal due to inherent

delay associated with the feedback configuration. The details for the feedforward

and feedback ANC system can be found in [3]- [5].

ANC applications: When the unwanted noise to be canceled is at high fre-

quency, the need of high sampling rate will limit the use of active techniques,

so passive techniques are the best choice. However on the other hand, when the

unwanted noise is at low frequency, active techniques are the obvious choice due

to size and cost constraints. ANC has found many applications such as in cars,

locomotives, air-planes, particularly hi-tech propeller driven air crafts, helicopters,

ships, and boats to cancel the unwanted noise coming from an engine. ANC can

be employed in smart-phones, earphones, and blue-tooth head sets to cancel the

background noise and allow the user to hear a clean audio of a song, or news etc.

The most popular applications of ANC systems are in ventilations, air condition-

ing ducts used in seminar rooms, hospitals, concert halls and meeting rooms [4].
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In this thesis, our focus will be on the application of ANC in acoustic duct.

1.2 Adaptive Filtering in ANC

The adaptive filter is one of the basic building block of an adaptive ANC system.

An adaptive filter can be realized using FIR or IIR structure. In this thesis, the

FIR structure will be used for the implementation of an adaptive filter. In an

adaptive filter, the coefficients are adjusted automatically such that a certain cost

function is minimized. The adaptive filtering finds many applications in area of an

unknown system identification [7], prediction [13], and inverse filtering.

System identification: The block diagram for an unknown system identifi-

cation using an adaptive filter is shown in Fig. 1.2, where W (z) is the transfer

function of an unknown system, Ŵ (z) is an adaptive filter and represents an esti-

mate of W (z), yw(n) and yŵ(n) are the outputs of W (z) and Ŵ (z), respectively,

corresponding to input excitation signal x(n), vd(n) is a measurement noise and

usually modeled as additive white Gaussian noise (WGN), d(n) is the desired re-

sponse of adaptive filter, and eŵ(n) is the error signal of adaptive filter Ŵ (z).

The adaptive filter updates its coefficient at each iteration such that the certain

cost function is minimized. Acoustic echo cancellation [14] is one of the practical

application where system identification is required.

Prediction: The general block diagram of an adaptive linear predictor is

shown in Fig. 1.3. It is called predictor because the current value of the in-

put x(n) is predicted from the past sample values of x(n). If it is assumed that the

adaptive filter has length Lw, then the output yŵ(n) can be written as the linear
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Figure 1.2: Adaptive system identification.

Figure 1.3: Adaptive linear prediction.

combination of the past sample values of x(n), and is computed as

yŵ(n) = ŵ(n) ∗ x(n−∆) = ŵT (n)xŵ(n),x(n−∆)(n), (1.1)

where ŵ(n) is the impulse response of Ŵ (z), x(n−∆) is the delayed version of x(n),

ŵ(n) = [ŵ0(n), ŵ1(n), · · · , ŵLw−1(n)]
T is the impulse response coefficient vector of

adaptive filter Ŵ (z) at time n, xŵ(n),x(n−∆)(n) = [x(n−∆), x(n−∆−1), · · · , x(n−

∆−Lw+1)]T is the input signal vector of Ŵ (z) with input x(n−∆) at time n, and

∆ represents the delay. This technique is useful in some applications where it is

required to separate the predictable signal from the unwanted random background

noise.
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(a)

(b)

Figure 1.4: Adaptive inverse filtering: (a) Unknown system followed by an adaptive

filter, (b) Adaptive filter followed by an unknown system.

Inverse filtering: The general block diagram for inverse filtering in two sce-

narios is shown in Fig. 1.4. In inverse filtering, the coefficients of the adaptive

filter Ŵ (z) are updated in such a way that the overall impulse response is the unit

sample function, i.e, ŵ(n) ∗ ŵ−1(n) = δ(n), where ŵ(n) is the impulse response of

Ŵ (z), ŵ−1(n) is the impulse response of Ŵ−1(z), and δ(n) is the unit sample func-

tion. The block diagram in Fig. 1.4(a) is used in communication systems, where

it is required to equalize the effect of the channel on the transmitted signal. The

block diagram in Fig. 1.4(b) has found application in ANC, where the controller

is required to equalize the effect of the secondary path [4].
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Figure 1.5: LMS adaptive algorithm based ANC for acoustic duct: An example of

indirect system identification.

Direct VS Indirect system identification: In direct system identification

the output of an adaptive filter is subtracted from the desired response d(n), as

shown in Fig. 1.2 ∼ Fig. 1.4(a), whereas in indirect system identification, the

output of an adaptive filter has to pass through some filters before being subtracted

from the desired response, as shown in Fig. 1.4(b). The practical example of an

indirect system identification is an ANC system, where the electrical adaptive

controller is followed by an electro-acoustic secondary path.

ANC for acoustic duct (an example of indirect system identification):

The block diagram of a single channel feedforward LMS adaptive algorithm based

ANC system for acoustic duct is shown in Fig. 1.5. Here x(n) is the unwanted noise

to be canceled. This unwanted noise travels through an electro-acoustic path P (z).

The transfer function P (z) represents the combination of the transfer functions

P ′(z) and R(z), i. e., P (z) = P ′(z)R(z). The transfer function P ′(z) includes

the transfer function of the acoustic path from the reference microphone to the

summing junction, and R(z) is the residual transfer function from the summing

junction to the residual error signal e(n). The transfer function R(z) includes

not only the transfer function of the acoustic path from the summing junction to

the error microphone, but also the transfer functions of error microphone, pre-
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amplifier, anti-aliasing filter, and analog to digital converter (ADC). The signal

x(n) is also picked-up by the reference microphone and is given to the controller

W (z). The output yw(n) of W (z) is applied to secondary path transfer function

S(z) to generate yws(n) (estimate of d(n)). Similar to P (z), the secondary path

transfer function S(z) also represents the combination of the transfer functions

S ′(z) and R(z). The transfer function S ′(z) includes the transfer function from

the controller output yw(n) to the summing junction [4]. The transfer functions

P (z) and W (z)S(z) will transform the signal x(n) to d(n) and yws(n), respectively.

The signal d(n) and its estimate yws(n) will interfere with each other destructively

(note the negative sign at the error microphone in Fig. 1.5 to reduce the noise at

the summing junction.

In Fig. 1.5, the controller W (z) will simultaneously identify P (z) (indirect

system identification) and equalize S(z), i.e., W (z) = P̂ (z)Ŝ−1(z), where P̂ (z)

and Ŝ−1(z) are the estimate of P (z), and inverse transfer function of S(z). If it

is assumed that the secondary path is linear, then the filters W (z), and S(z) can

commute. With this commutation the problem of indirect system identification

is now transformed to direct system identification and is shown in Fig. 1.6. It is

clear from Fig. 1.6 that the input signal x(n) is filtered through the secondary

path before being applied to the adaptive algorithm of W (z). Therefore, the

assumption of the linearity of the secondary path led to the foundation of the most

popular filtered-x-LMS (FxLMS) algorithm [15]. The FxLMS algorithm was also

derived independently by Burgess and Widrow in [10], and [16], respectively. The

equivalent block diagram of FxLMS algorithm based single channel feedforward

ANC system for duct is shown in Fig. 1.7, where Ŝ(z) represents the estimate of

S(z).
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Figure 1.6: Block diagram of ANC system with secondary path followed by con-

troller.
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Figure 1.7: FxLMS algorithm based single channel feedforward ANC system for

duct.

1.2.1 FxLMS Algorithm for General Secondary Path

In the case of ANC systems the secondary path can be linear or nonlinear. In

this section, at first the expression of FxLMS algorithm is derived for general

secondary path. After that, the assumption of the linearity of the secondary path

is incorporated into the general expression to have an expression for the FxLMS

with linear secondary path. From Fig. 1.7, the residual error signal e(n) is given

by

e(n) = d(n)− yws(n), (1.2)
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where

d(n) = p(n) ∗ x(n) = pT (n)xp(n),x(n)(n), (1.3)

and

yws(n) = s(n) ∗ yw(n) = sT (n)xs(n),yw(n)(n), (1.4)

where d(n) is the unwanted noise at the summing junction, p(n) is the impulse

response of the primary path, p(n) = [p0(n), p1(n), · · · , pLp−1(n)]
T is the impulse

response coefficient vector of primary path at time n, xp(n),x(n)(n) = [x(n), x(n −

1), · · · , x(n − Lp + 1)]T is the input signal vector of filter P (z) with input x(n)

at time n, Lp is the tap-weight length of the primary path, yws(n) is the esti-

mate of d(n) at the summing junction, s(n) = [s0(n), s1(n), · · · , sLs−1(n)]
T is the

impulse response coefficient vector of secondary path at time n, xs(n),yw(n)(n) =

[yw(n), yw(n− 1), · · · , yw(n−Ls+1)]T is the input signal vector of filter S(z) with

input yw(n) at time n, Ls is the tap-weight length of the secondary path, and yw(n)

is controller output being computed as

yw(n) = w(n) ∗ x(n) = wT (n)xw(n),x(n)(n), (1.5)

where w(n) is the impulse response of W (z), w(n) = [w0(n), w1(n), · · · , wLw−1(n)]
T

is the impulse response coefficient vector of W (z) at time n, xw(n),x(n)(n) =

[x(n), x(n− 1), · · · , x(n− Lw + 1)]T is the input signal vector of filter W (z) with

input x(n) at time n, and Lw is the tap-weight length of W (z). At each iteration

the weight of controller are adjusted in such away as to minimize the cost function

given by

J(w(n))(n) = E{e2(n)} = E{(d(n)− yws(n))
2}, (1.6)

where the cost function J(w(n))(n) is a quadratic w.r.t the filter coefficients. Using

the steepest descent method, the weight update equation for the controller W (z)
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can be written as

w(n+ 1) = w(n)− 1

2
µE

{
∂J(w(n))(n)

∂w(n)

}
= w(n) + µE

{
e(n)

∂yws(n)

∂w(n)

}
, (1.7)

where µ is the step-size parameter, and it control the convergence and stability of

the adaptive algorithm, and

∂yws(n)

∂w(n)
=

Ls−1∑
m=0

∂yws(n)

∂yw(n−m)

∂yw(n−m)

∂w(n)
, (1.8)

where ∂yws(n)
∂yw(n−m)

is the I/O gradient of the secondary path. Using (1.5), yw(n−m)

can be written as

yw(n−m) = wT (n−m)xw(n−m),x(n−m)(n−m). (1.9)

Assuming that w(n) is slowly varying, the term ∂yw(n−m)
∂w(n)

in (1.8) can be written

as
∂yw(n−m)

∂w(n)
≈ xw(n),x(n−m)(n−m). (1.10)

Define the signal

g(n,m) =
∂yws(n)

∂yw(n−m)
. (1.11)

Using (1.8), (1.10), and (1.11), and approximating the expectation with the in-

stantaneous values, the weight update equation in (1.7) can be written as

w(n+ 1) ≈ w(n) + µe(n)
Ls−1∑
m=0

g(n,m)xw(n),x(n−m)(n−m)). (1.12)

This update equation was derived in [17]. In [18] the concept of virtual secondary

path, s̃(n), is introduced and is given by

s̃(n) = [g(n, 0), g(n, 1), · · · , g(n, Ls − 1)]T

=

[
∂yws(n)

∂yw(n)
,

∂yws(n)

∂yw(n− 1)
, · · · , ∂yws(n)

∂yw(n− Ls + 1)

]T
. (1.13)
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Now if it is assumed that the secondary path S(z) is known exactly, i.e., Ŝ(z) =

S(z) and is linear then from (1.4) and (1.13) it can be concluded that

s̃(n) = ŝ(n) = s(n) = [ŝ0(n), ŝ1(n), · · · , ŝLs−1(n)]
T = [s0(n), s1(n), · · · , sLs−1(n)]

T .

(1.14)

Using (1.13) and (1.14) in (1.12), the FxLMS algorithm weight update equation

for linear secondary path is given by

w(n+1) ≈ w(n) + µe(n)[Xw(n),x(n)(n)ŝ(n)] = w(n) + µe(n)xLMS,yŝ(n)(n), (1.15)

where Xw(n),x(n)(n) =
∑Ls−1

m=0 ŝm(n)xw(n),x(n−m)(n − m) is a matrix of dimension

Lw × Ls with mth column represented by xw(n),x(n−m)(n−m) = [x(n−m), x(n−

m − 1), · · · , x(n − m − Lw + 1)]T for m = 0, 1, · · · , Ls − 1, ŝ(n) is the impulse

response coefficient vector of secondary path Ŝ(z) having coefficients ŝm(n), and

xLMS,yŝ(n)(n) = Xw(n),x(n)(n)ŝ(n) = [yŝ(n), yŝ(n − 1), · · · , yŝ(n − Lw + 1)]T is the

input signal vector of adaptive LMS algorithm of W (z) at time n and is referred

as the filtered reference signal vector.

The FxLMS algorithm is the most popular adaptive algorithm for ANC system

due to its simplicity of implementation and robustness. It is found in [15] that

the ANC system will remain stable as long as the phase error between S(z) and

its estimate Ŝ(z) is within ±90◦. The effect of the error, between S(z) and its

estimate Ŝ(z), on the stability of the FxLMS algorithm implemented in the time

domain was also studied by Snyder and Hansen in [19]. They found that the phase

error effect is not symmetric about the 0◦ phase error point and may cause the

stability of the algorithm to increase for some values of error. They concluded that

while a maximum phase error of ±90◦ is a bound for stability, there is no simple

relationship between error and stability within this region.
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1.2.2 Modified FxLMS Algorithm

In the case of FxLMS algorithm the maximum value of the step-size µ for which

the algorithm in (1.15) will be stable is given by [20]

µ =
2

(Lw +∆)Pyŝ(n)
, (1.16)

where Lw is the tap-weight length of controller W (z), Pyŝ(n) ≈ E{y2ŝ(n)} is the

power or mean-square value of the signal yŝ(n), and ∆ is the delay due to the

presence of the secondary path. The value of delay ∆ is equal to the tap-weight

length of S(z). Therefore the long filter length of S(z) will result in a large value

of ∆. From (1.16), it is clear that the large value of ∆ will reduce the maximum

allowable value of the step-size for which the algorithm will be stable, and hence

will result in slow convergence of the adaptive filter W (z). The solution to the

problem is to use modified FxLMS (MFxLMS) algorithm [5]. The block diagram

of MFxLMS algorithm for single channel feedforward ANC system is shown in Fig.

1.8. In the case of MFxLMS algorithm, two extra filters W (z) and Ŝ(z) are used

to generate the estimate yŝw(n) of the desired response d̂(n) for W (z), and thus

transforming the problem of indirect system identification to the problem of direct

system identification. For MFxLMS algorithm, the allowable maximum value of

the step-size is given by

µ =
2

LwPyŝ(n)
. (1.17)

From the comparison of (1.16) and (1.17), it is clear that the maximum allowable

value of step-size for stable operation of ANC system is higher for MFxLMS algo-

rithm compared to FxLMS algorithm, and thus can result in fast convergence of

controller W (z). The disadvantage of the MFxLMS algorithm is that the compu-

tational complexity is higher than the FxLMS algorithm. This is due to the use
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Figure 1.8: MFxLMS algorithm based single channel feedforward ANC system for

duct.

of two extra filters in MFxLMS algorithm.

1.3 Secondary Path Modeling

For stable operation of FxLMS and MFxLMS adaptive algorithms, the estimate

of the secondary path is required to filter the reference signal. If the secondary

path S(z) is assumed to be time-invariant, then the estimate can be obtained,

prior to the operation of ANC system, using the offline modeling techniques. The

detail of offline modeling techniques can be found in [4]. In actual practice, the

secondary path is time-varying as it includes the acoustic path transfer function

and the transfer functions of many electronic components whose characteristics

may change with temperature, ageing etc. Therefore, in order to keep the phase

error between S(z) and Ŝ(z) to within ±90◦ bound, online modeling of S(z) is

required.
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Direct secondary path modeling: The block diagram for direct online sec-

ondary path modeling (OSPM) [6] is shown in Fig. 1.9. The LMS algorithm based

adaptive filter Ŝ(z) is connected in parallel with S(z). The output of controller

W (z) is used as an excitation signal for the adaptive filter Ŝ(z). Based on the

input excitation signal yw(n), and the error signal eŝ(n), the coefficients of Ŝ(z)

are updated in order to minimize the mean-square vale of the error signal eŝ(n).

The error signal eŝ(n) can be written in the z domain as

Eŝ(z) = −E(z)− Ŝ(z)Yw(z) = −[P (z)X(z)− S(z)Yw(z)]− Ŝ(z)Yw(z). (1.18)

Assuming that Ŝ(z) is of sufficient order, and x(n) is a persistent excitation signal,

the error signal eŝ(n) will converge to zero. Therefore from (1.18) the steady-state

solution Ŝo(z) is given by

Ŝo(z) = S(z)− P (z)X(z)

Yw(z)
= S(z)− P (z)

W (z)
. (1.19)

It is clear from (1.19) that Ŝo(z) = S(z) only if P (z) = 0 (i.e. d(n) = 0), otherwise

this technique will result in a biased solution. From Fig. 1.9 the optimal value of

controller is Wo(z) = P (z)S−1(z), and hence from (1.19) it is clear that this optimal

value of controller will result in the vale of Ŝo(z) = 0 (undesirable solution). This

shows that the estimation of S(z) is affected by the adaptation of W (z), which is

undesirable.

Online secondary path modeling with additive white noise: The block

diagram of Eriksson’s method [21] for OSPM is shown in Fig. 1.10. Here an

additional auxiliary noise v(n) being modeled as white noise is injected for OSPM.

The signal v(n) is uncorrelated with the original unwanted noise x(n). The use

of white noise as an excitation signal for system identification is well known due

to having flat power spectrum over entire frequency range. In Fig. 1.10, the
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Figure 1.9: Online secondary path modeling [6].

signal v(n) together with controller output yw(n) will derive the loudspeaker. The

output of the loudspeaker will interfere destructively with the original noise at the

summing junction. The remaining residual error picked-up by the error microphone

is given by

e(n) = [d(n)− yws(n)] + vs(n), (1.20)

where vs(n) = s(n) ∗ v(n) is the response of S(z) corresponding to the auxiliary

noise v(n). In e(n), the first term [d(n) − yws(n)] is the desired error signal for

adaptation of W (z), and acts as an interference for adaptation of SPM filter Ŝ(z).

The output of the SPM filter vŝ(n) is computed as

vŝ(n) = ŝ(n) ∗ v(n) = ŝT (n)xŝ(n),v(n)(n), (1.21)

where ŝ(n) = [ŝ0(n), ŝ1(n), · · · , ŝLs−1(n)]
T is the impulse response coefficient vector

of Ŝ(z) at time n, xŝ(n),v(n)(n) = [v(n), v(n − 1), · · · , v(n − Ls + 1)]T is the input

signal vector of filter Ŝ(z) with input v(n) at time n, ŝ(n) is the impulse response

of SPM filter Ŝ(z), and Ls is the tap-weight length of Ŝ(z). The output of Ŝ(z) is

subtracted from e(n) to compute eŝ(n) as

eŝ(n) = e(n)− vŝ(n) = [d(n)− yws(n)] + [vs(n)− vŝ(n)]. (1.22)
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Figure 1.10: Block diagram of Eriksson’s method for online secondary path mod-

eling [21].

Using LMS algorithm, the SPM filter will update its weights based on the the error

signal eŝ(n) and input signal vector xŝ(n),v(n)(n) as

ŝ(n+1) = ŝ(n)+µ[vs(n)−vŝ(n)]xŝ(n),v(n)(n)+µ[d(n)−yws(n)]xŝ(n),v(n)(n), (1.23)

where µ is the step-size parameter. The last term µ[d(n) − yws(n)]xŝ(n),v(n)(n) in

the weight update equation of Ŝ(z) acts as an interference and thus will degrade

the convergence of Ŝ(z).

1.4 Feedback Path Modeling and Neutralization

In ANC systems, the anti-noise signal generated by the loudspeaker will not only

propagate downstream to cancel the original noise at the summing junction but

also radiate upstream and corrupt the reference signal. This is the well known

feedback effect in ANC system. For stable operation of ANC system it is required

to neutralize this feedback effect using the feedback path neutralization (FBPN)

filter.
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Figure 1.11: Block diagram of single channel feedforward ANC system with feed-

back coupling.

Need for feedback path neutralization: A block diagram of single channel

feedforward ANC system with feedback coupling is shown in Fig. 1.11. Here F (z)

is the feedback path transfer function from the output of W (z) to the reference mi-

crophone. It includes the transfer functions of digital to analog converter (DAC),

smoothing filter, power amplifier, loudspeaker, acoustic path from the loudspeaker

to the reference microphone, pre-amplifier, anti-aliasing filter, and ADC [4]. From

Fig. 1.11, the reference signal (corrupted) c(n) picked-up by the reference micro-

phone is given by

c(n) = r(n) + ywf (n) = r(n) + (f(n) ∗ yw(n)), (1.24)

where r(n) is the original noise at the reference microphone, ywf (n) is the feedback

coupling signal and represents the response of the filter F (z) corresponding to

input yw(n). The objective of ANC system is to cancel the unwanted noise at the

summing junction, i.e., to reduce the mean-square value of the error signal e(n).

In order to see the effect of feedback coupling on the error signal e(n), consider

the z-transform of the error signal which is given by the expression

E(z) = P (z)R(z)− S(z)
W (z)R(z)

1−W (z)F (z)
. (1.25)
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Fixed feddback path neutralization

Figure 1.12: Block diagram of single channel feedforward ANC system with fixed

feedback path neutralization.

It is clear from (1.25) that ANC system may become unstable if at some frequency

W (z)F (z) = 1. It is therefore necessary to neutralize the effect of this feedback.

This neutralization can be done either by using the offline modeling or online

modeling of F (z). The block diagram of single channel feedforward ANC system

with fixed FBPN is shown in Fig. 1.12. The fixed FBPN filter F̂ (z) can be

obtained offline, i.e., prior to operation of ANC system. Here z−1 is the inherent

delay associated with the feedback path F (z). In order to neutralize the effect of

F (z) it is required that F̂ (z)z−1 = F (z). The output ywf̂ of F̂ (z) is subtracted from

the reference microphone signal, c(n), in order to generate the desired reference

signal for W (z) as

x(n) = c(n)−ywf̂ = x(n)−(f̂(n)∗yw(n−1)) = x(n)−(f̂T (n))xf̂(n),yw(n−1)(n−1)),

(1.26)

where f̂(n) is the impulse response of F̂ (z), f̂(n) = [f̂0(n), f̂1(n), · · · , f̂Lf−1(n)]
T

is the impulse response coefficient vector of F̂ (z) at time n, xf̂(n),yw(n−1)(n− 1) =
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[yw(n − 1), yw(n − 2), · · · , yw(n − Lf )]
T is the input signal vector of filter F̂ (z)

with input yw(n − 1) at time n, and Lf is the tap-weight length of F̂ (z). The

detail for the offline modeling of F (z) can be found in [4]. The procedure of

offline modeling works well if the acoustic paths are time invariant, however in

actual practice, the acoustic paths are time-varying, and hence online modeling

is needed to track variations in feedback path. In this thesis, our focus will be

the online feedback path modeling and neutralization (FBPMN). One of the basic

online methods, proposed by Warnaka [12], is shown in Fig. 1.13. The purpose of

adaptive FBPMN filter F̂ (z) is to cancel only the feedback part of the reference

microphone signal c(n) using yw(n) as the input excitation signal. However, as the

signal yw(n) is highly correlated with the original unwanted noise r(n), therefore

the filter F̂ (z) will adapt in such away as to incorrectly cancel the original primary

noise as well along with the feedback signal. Thus this structure will not allow

filter W (z) to receive the signal r(n) at its input. This is the major problem with

this structure and hence more sophisticated techniques, in which an additional

auxiliary noise being modeled as white noise is injected for system identification

of unknown feedback path [4, 5], are used for online FBPMN.

1.5 NLMS Adaptive Algorithm and Optimal Ex-

citation Signal

NLMS adaptive algorithm: It is shown in [22] that for LMS adaptive algorithm

in Fig. 1.2, the convergence of the mean-square-error (MSE) is guaranteed if the

step-size is selected within the bounds given by

0 < µ <
2

3LwPx(n)
(1.27)
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Online feedback path modeling and neutralization

Figure 1.13: Block diagram of single channel feedforward ANC system with online

feedback path modeling and neutralization.

where Px(n) is the power of input excitation signal of an adaptive algorithm. It is

clear from (1.27) that in the case of LMS adaptive algorithm, the prior knowledge of

the input signal power is required for the selection of step-size within the stability

bounds. If the power of the input signal is time-varying, then the selection of

a constant (fixed) step-size may drive the algorithm unstable. The solution to

the problem is to use normalized LMS (NLMS) algorithm [6]. The popularity

of NLMS algorithm is due to its simplicity and automatic adjustment of initially

selected step-size corresponding to varying input signal power. Considering Fig.

1.2 the weight update equation for NLMS algorithm is given by

ŵ(n+ 1) = ŵ(n) + µ
e(n)xŵ(n),x(n)(n)

xT
ŵ(n),x(n)(n)xŵ(n),x(n)(n)

, (1.28)

where ŵ(n) = [ŵ0(n), ŵ1(n), · · · , ŵLw−1(n)]
T is the impulse response coefficient

vector of Ŵ (z) at time n, and xŵ(n),x(n)(n) = [x(n), x(n− 1), · · · , x(n−Lw + 1)]T

is the input signal vector of filter Ŵ (z) with input x(n) at time n. If the weight

error vector is defined as ew(n) = w − ŵ(n), where w = [w0, w1, · · · , wLw−1]
T is
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Figure 1.14: Geometrical interpretation of (1.30).

the impulse response coefficient vector of unknown system W (z), then using (1.28),

ew(n+ 1) can be written as

ew(n+ 1) = ew(n)− µ
e(n)xŵ(n),x(n)(n)

xT
ŵ(n),x(n)(n)xŵ(n),x(n)(n)

= ew(n)− µ
e(n)xŵ(n),x(n)(n)

||xŵ(n),x(n)(n)||2
.

(1.29)

From Fig. 1.2, with v(n) = 0, the update equation for ew(n) can be written as

ew(n+1) = ew(n)−µ
(w − ŵ(n))T xŵ(n),x(n)(n)

||xŵ(n),x(n)(n)||
xŵ(n),x(n)(n)

||xŵ(n),x(n)(n)||
= ew(n)−µe∥

w(n),

(1.30)

where xŵ(n),x(n)(n)

||xŵ(n),x(n)(n)||
is a unit vector, and e

∥
w(n) is the component of vector ew(n)

parallel to input vector xŵ(n),x(n)(n). The geometrical interpretation of (1.30) is

shown in Fig. 1.14. It is clear from Fig. 1.14 that the e
∥
w(n) component of ew(n)

can contribute to its desirable reduction for

0 < µ < 2, (1.31)

where the range of step-size µ in (1.31) is the stability criterion for NLMS algo-

rithm. The convergence of NLMS algorithm degrades for correlated input signal

having large eigenvalue ratio [8]. Therefore, for better convergence of NLMS algo-

rithm the selection of the optimal input excitation signal is very important.
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Optimal excitation signal: From the theory of signal processing, it is known

that the cross-correlation Rxy(n) between input x(n) and output y(n) of a linear

filter is equal to the convolution of the autocorrelation of input Rxx(n) with system

impulse response w(n), and is computed as

Rxy(n) = Rxx(n) ∗ w(n). (1.32)

For input excitation signal with impulse like autocorrelation function, i.e., Rxx(n) =

δ(n), the cross-correlation is the measure of the impulse response of system. There-

fore it is required that the input excitation signal must have the ideal impulse like

autocorrelation function. The selection of the excitation signal for adaptive filter

depends upon specific applications. When the designer is provided with a choice

for the selection of input excitation signal, one choice could be the random white

noise due to having wide range of frequency components and flat power spectrum

over the entire frequency range. However, it is shown in [23]-[29] that the optimal

excitation signal that shows high energy efficiency and improves the convergence

of NLMS algorithm is a deterministic Perfect-Periodic-Sequences (PPSEQ) having

period equal to the tap-weight length of adaptive filter and shows desired autocor-

relation properties given by

Rxx(i) =
Lw−1∑
n=0

x(n)x(n+ i) =

 Ex (if i = 0 (mod Lw))

0 (Otherwise)
, (1.33)

where Ex is the energy of one period of the signal. Furthermore, in [30] it is shown

that in the practical set-ups, due to the presence of nonlinearities, the property of

high energy efficiency associated with PPSEQ can not be achieved. Therefore a

new class of excitation signals referred as perfect-sweeps are introduced in [31]. The

perfect-sweep signal is a time-stretched pulse [32] having the desired properties of

23



PPSEQ along with high immunity against distortions. For perfect-sweep signal,

the general construction formula is given

P (k) =

 exp
(

−j4mπk2

L2
w

)
(0 ≤ k ≤ Lw

2
)

P (Lw − k) (Lw

2
< k < Lw)

, (1.34)

where k is the frequency index, Lw is the length of one period of signal, m de-

termines the stretch of the time-stretched pulse, and P (k) represents the complex

conjugate of P (k). The signal in the time domain is obtained by taking the inverse

transform of P (k).

The geometric interpretation of NLMS algorithm in Fig. 1.14 shows that for

µ = 1 the parallel component e
∥
w(n) can be completely eliminated. Similarly all

the Lw components of ew(n) can be compensated if the Lw consecutive input

vectors to an adaptive filter Ŵ (z) are orthogonal. In the case of random white

noise input excitation signal x(n), the Lw consecutive input vectors of infinite

length, denoted by x
′

ŵ(n),x(n)(n),x
′

ŵ(n),x(n−1)(n−1), · · · ,x′

ŵ(n),x(n−Lw+1)(n−Lw+1),

are orthogonal in the infinite vector space. The vectors of length Lw, denoted

by xŵ(n),x(n)(n),xŵ(n),x(n−1)(n − 1), · · · ,xŵ(n),x(n−Lw+1)(n − Lw + 1), represents,

respectively, the projection of vectors denoted by x
′

ŵ(n),x(n)(n),x
′

ŵ(n),x(n−1)(n −

1), · · · ,x′

ŵ(n),x(n−Lw+1)(n − Lw + 1) onto the Lw dimensional vector space. For

the projected vectors in the Lw dimensional space the orthogonality is not guaran-

teed, therefore it can be concluded that the random white noise is not an optimal

excitation signal [26]. For the PPSEQ, it is clear from the autocorrelation property

given in (1.33) that the Lw consecutive vectors are orthogonal and thus represents

the optimal excitation signal. As stated earlier, in practical set-ups the presence of

nonlinear distortion can limit the performance of PPSEQ. Therefore, in this case

the perfect-sweep excitation signal, having all the desired properties of PPSEQ
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Figure 1.15: Simulation results for Case 1 (SNR=30 dB): (a) Relative modeling

error, ∆Dw(n)(dB), (b) Mean-square-error, MSE (dB).

and shows improved performance with nonlinear distortion, can be the best choice

for system identification [33]. The simulation results of NLMS algorithm based

system identification for Case 1: with SNR=∞ dB, i.e., v(n) = 0, and Case 2:

with SNR=30 dB, are shown, respectively, in Fig. 1.15 and Fig. 1.16. The perfor-

mance comparison is carried out on the basis of following performance measures.

• Relative modeling error ∆Dw(n) in dB, being defined as

∆Dw(n) = 10log10

||w(n)− ŵ(n)||2

||w(n)||2
dB. (1.35)

• MSE E[e2(n)] in dB.

For the simulation results, the data for the unknown system is selected from [4], the

length of unknown system and adaptive filters is selected as Lw = 200. The acoustic

paths are perturbed in the middle of simulation, and all the results are averaged

over 10 independent realizations. The rest of the simulation parameters are the
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Figure 1.16: Simulation results for Case 2 (SNR=∞ dB i.e v(n) = 0): (a) Relative

modeling error, ∆Dw(n)(dB), (b) Mean-square-error, MSE (dB).

same as in [33]. It is clear from Fig.1.15(a) and Fig. 1.16(a) that with perfect-

sweep input excitation signal the system can be identified in Lw iterations, while

the convergence of the system with white noise input is slow and requires more than

Lw iterations. The curves for the MSE in Case 1 and Case 2, respectively, are shown

in Fig.1.15(b) and Fig. 1.16(b). From these curves it is clear that identification

with perfect-sweep excitation signal results in lower steady-state MSE.

1.6 Need of Gain Scheduling of Auxiliary Noise

For stable operation of ANC systems, the estimates (identification) of the unknown

secondary path and the feedback path are required [4]. In order to obtain these

estimates, an additional auxiliary noise is required to be injected into the ANC

system [21]. On one hand, the injection of auxiliary noise into the ANC system

is useful to get the required estimates of secondary and feedback path, but on the

other hand, the injection of auxiliary noise contributes to the residual error (which
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we want to minimize) and will degrade the noise-reduction-performance (NRP)

of ANC system. The solution, for improving the NRP, is to use gain scheduling

strategy to vary the variance of auxiliary noise. At the start (when ANC system is

far from steady-state), it is required that the gain scheduling strategy must allow

the auxiliary noise to have large variance to obtain the better estimates of the

unknown secondary and feedback paths. At the steady-state, it is required that

the gain scheduling strategy must reduce the variance of auxiliary noise to a small

value to improve the NRP of ANC system.

From [33], it can be concluded that the perfect sweep signal can be the optimal

auxiliary input excitation signal for system identification purpose. However, in

ANC literature [4, 5] the most common choice of auxiliary input excitation signal

for system identification is the WGN. In this thesis the WGN will be used as an

auxiliary noise signal for OSPM and online FBPMN.

1.7 Summary

In this introductory chapter, the underlying physical principle used for acoustic

noise cancellation is explained. In order to show the importance of this idea,

some practical examples where this idea can be employed are given, and the brief

overview of the most popular application of ANC system for acoustic duct is pro-

vided.

The idea of direct and indirect system identification is discussed, and the deriva-

tion of the most popular adaptive FxLMS algorithm for ANC systems is described.

The idea of MFxLMS algorithm to convert the problem of indirect system identi-

fication in ANC system to a problem of direct system identification is explained.

The two fundamental issues in ANC systems, i.e., OSPM and online FBPMN
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are discussed. A brief overview of some basic techniques used for OSPM and online

FBPMN is given, while the detail will be given in the coming chapters.

The role of the input excitation signal for NLMS algorithm based identification

of an unknown system is explained, and it is found that perfect-sweep excitation

signal is the optimal choice. Finally the need of gain scheduling of auxiliary noise

has been discussed.

In the following chapter 2 and chapter 3 the focus is on OSPM. In chapter

2, the existing methods for OSPM without gain scheduling (auxiliary noise with

fixed variance is used in all operating conditions) will be discussed. In chapter

3, the existing methods of OSPM using gain scheduling of auxiliary noise are

explained. In addition to this, new strategies for gain scheduling of auxiliary noise

are proposed. In existing methods, the gain is varied based on the power of residual

error signal which carries information only about the convergence status of ANC

system. In the proposed methods the gain is varied based on the power of error

signal of SPM filter. This is more desirable way of controlling the gain because

the power of error signal of SPM filter carries information about the convergence

status of both the ANC system and SPM filter. The simulations are carried out

to show that the proposed gain scheduling strategies improve both the modeling

accuracy of SPM filter and the NRP of overall ANC systems.

In chapter 4, the issue of online FBPMN with and without gain scheduling of

auxiliary noise is explained. In the first part of this chapter, the existing meth-

ods for online FBPMN without gain scheduling are discussed. A new structure

is proposed that combines the good features of the existing structures to better

neutralize the effect of the feedback coupling and to improve the convergence of

ANC system. In the second part of this chapter, a gain scheduling strategy is
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proposed, for online FBPMN, to improve the NRP of ANC system. In addition

to this, a self-tuned ANP scheduling strategy with matching step-size for FBPMN

filter is also proposed that requires no tuning parameters and further improves the

NRP of ANC systems.

In chapter 5, the concluding remarks and the future research directions are

given.
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Chapter 2

Online Secondary Path Modeling
Without Gain Scheduling

With the invention of high speed digital hardware and the development of

adaptive signal processing algorithms, the field of active noise control (ANC) has

found a great attention of the researchers since the last three decades. The basic

crux of ANC system is the principle of superposition in which the acoustic waves

of the original unwanted noise interfere destructively with the acoustic waves gen-

erated by the combination of ANC filter followed by the secondary path. In order

for the ANC systems to converge properly, it is necessary to compensate for the

effects of the secondary path. For some applications the secondary path can be

estimated offline, i.e., prior to the operation of an ANC system. However, for most

of the practical applications the secondary path is time-varying and therefore on-
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line secondary path modeling (OSPM) is required, i.e., when ANC system is in

operation.

OSPM with higher modeling accuracy and faster convergence is desirable in

ANC systems to ensure large stability margins. There are two different approaches

for OSPM in ANC systems. The first approach models the secondary path using

the output of ANC filter W (z) as an input excitation signal of secondary path

modeling (SPM) filter. The second approach involves injection of additional ran-

dom noise into the output of W (z), and utilizes a system identification method to

model the secondary path. The additional noise injected is uncorrelated with the

original unwanted noise. The comparison of the two approaches for OSPM can be

found in [34], where it is concluded that the second approach is superior to the

first one when compared in terms of convergence rate, and speed of response to

changes in original unwanted noise. In this chapter, the use of second approach

is considered for OSPM, however additional noise with fixed variance is injected,

i.e., no gain scheduling is used.

In the first part of this chapter, various existing methods using filtered-x-LMS

(FxLMS) adaptive algorithm for ANC filter W (z), are briefly explained for OSPM.

In the second part of this chapter, a method using modified-filtered-x-LMS

(MFxLMS) adaptive algorithm [5] for ANC filter W (z), is explained for OSPM.

In this second part, a new computationally efficient MFxLMS (CEMFxLMS) al-

gorithm is proposed. The proposed structure is simple than the original structure

using MFxLMS algorithm for OSPM. The performance of the MFxLMS algorithm

based ANC system with OSPM is compared with the proposed CEMFxLMS al-

gorithm through computer simulations. We will see that the performance of the

proposed CEMFxLMS algorithm is same as obtained with the original MFxLMS al-
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gorithm. However, CEMFxLMS algorithm has lower computational requirements

compared to MFxLMS algorithm.

2.1 FxLMS Algorithm Based ANC Systems

For OSPM without gain scheduling an additional white Gaussian noise (WGN),

here after called as auxiliary noise, with fixed variance is injected in all operat-

ing conditions. In this section a brief overview of Eriksson’s method [21], Kuo’s

method [35], Bao’s method [36], Zhang’s method [37], and Akhtar’s method [38]

is given. This section also describes a variable step-size (VSS) method [39] for

OSPM without gain scheduling. In all these methods FxLMS algorithm is used for

ANC filter W (z), and auxiliary noise with fixed variance is injected for SPM filter.

The performance of all previously mentioned methods are compared through the

simulation results, and it is found that the VSS approach in [39] outperforms in

terms of improving the modeling accuracy of SPM filter compared to other existing

methods.

2.1.1 Eriksson’s Method

The block diagram of Eriksson’s structure [21] for OSPM is shown in Fig. 2.1.

Here G(n) = 1 shows that no gain scheduling is used, and auxiliary noise with

fixed variance is injected in all operating conditions. From Fig. 2.1, the error

signal is given by

e(n) = [d(n)− yws(n)] + vs(n). (2.1)

In Eriksson’s method, the signal e(n) acts both as an error signal for W (z) and as

a desired response of SPM filter. The following are the problems associated with

the Eriksson’s structure.
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Figure 2.1: Block diagram of Eriksson’s method for ANC systems with online

secondary path modeling [21].

• In e(n), the first term in square brackets acts as an interference for SPM

filter, and thus may affect the convergence of SPM filter.

• The last term vs(n) in e(n) acts as an interference for ANC filter W (z), thus

affects its convergence.

2.1.2 Kuo’s Method

The block diagram of Kuo’s structure [35] for OSPM is shown in Fig. 2.2. In

addition to ANC filter W (z) and SPM filter Ŝ(z), a third adaptive filter K(z)

(termed as the prediction error filter) is used to remove the interference from the

desired response of the Ŝ(z). Here, the error signal ek(n) of adaptive filter K(z)

acts as a desired response of SPM filter and is computed as

ek(n) = e(n)− yk(n), (2.2)

where yk(n) is the output of prediction error filter K(z), and is computed as

yk(n) = k(n) ∗ e(n−∆) = kT (n)xk(n),e(n−∆)(n−∆), (2.3)
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Figure 2.2: Block diagram of Kuo’s method for ANC systems with online secondary

path modeling [35].

where k(n) is the impulse response of K(z), ∆ is the delay, e(n − ∆) is the de-

layed version of e(n), k(n) = [k0(n), k1(n), · · · , kLk−1(n)]
T is the impulse response

coefficient vector of K(z) at time n, and xk(n),e(n−∆)(n − ∆) = [e(n − ∆), e(n −

∆− 1), · · · , e(n−∆−Lk +1)]T is the input signal vector of filter K(z) with input

e(n−∆) at time n.

From the theory of adaptive filtering, it is known that the adaptive filter output

converges to that part of its desired response which is correlated with the input

excitation signal. It is shown in [35], for ∆ ≥ Ls the term vs(n −∆) in e(n −∆)

becomes uncorrelated with the term vs(n) in e(n). As a result, at the steady-state,

yk(n) → [d(n) − yws(n)], and ek(n) → vs(n). Thus the Kuo’s structure is capable

of removing the interference term [d(n)− yws(n)] from the desired response, ek(n),
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Figure 2.3: Block diagram of Bao’s method for ANC systems with online secondary

path modeling [36].

of SPM filter. The problem with Kuo’s structure are as follows

• We need to know the length of the secondary path, Ls, in order to select the

proper value of the decorrelation delay ∆.

• The prediction error filter will work properly only if the original unwanted

noise is predictable such as narrow-band noise.

• The term vs(n) in e(n) (see (2.1)) acts as an interference for ANC filter W (z),

and for prediction error filter K(z), thus affects the convergence of overall

ANC system.
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2.1.3 Bao’s Method

The block diagram of Bao’s structure [36] for OSPM is shown in Fig. 2.3. An

additional adaptive filter, represented by B(z), is used to remove the interference

term [d(n)−yws(n)] from the desired response, eb(n), of SPM filter, where the signal

eb(n) is computed as

eb(n) = e(n)− yb(n), (2.4)

where yb(n) is the output of adaptive filter B(z) corresponding to input x(n), and

is computed as

yb(n) = b(n) ∗ x(n) = bT (n)xb(n),x(n)(n), (2.5)

where b(n) is the impulse response of B(z), x(n) is the original unwanted noise

picked-up by the reference microphone, b(n) = [b0(n), b1(n), · · · , bLb−1(n)]
T is

the impulse response coefficient vector of B(z) at time n, and xb(n),x(n)(n) =

[x(n), x(n − 1), · · · , x(n − Lb + 1)]T is the input signal vector of filter B(z) with

input x(n) at time n. When ANC system converges, yb(n) → [d(n)− yws(n)], and

hence the desired response of SPM filter eb(n) → vs(n). Thus the filter B(z) is

capable of removing the interference [d(n) − yws(n)] from the desired response of

SPM filter. Unlike Kuo’s method, the Bao’s method works well both for narrow-

band and broad-band original unwanted noise. The problem with Bao’s method

are as follows

• The term vs(n) in e(n) (see (2.1)) acts as an interference for ANC filter W (z),

and for filter B(z), thus affects the convergence of overall ANC system.
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2.1.4 Zhang’s Method

The block diagram of Zhang’s structure [37] for OSPM is shown in Fig. 2.4. In this

method, three cross updated adaptive filters are used to reduce the perturbation

effect of the original unwanted noise on SPM filter. The method not only removes

the interference [d(n)− yws(n)] from the desired response, dŝ(n), of SPM filter but

also reduces the perturbation effect of injected random noise vs(n) on convergence

of adaptive filters H(z), and W (z). The signal dh(n) acts both as a desired response

of H(z) and as an error signal of ANC filter W (z), and the interference term vs(n)

is removed from the signal dh(n) by subtracting the output of SPM filter from

e(n), i.e., dh(n) = e(n) − vŝ(n) . In this method, as the ANC system converges

all the error signals of adaptive filters will converge towards zero. This is because

as ANC system converges [d(n) − yws(n)] → 0, yh(n) → [d(n) − yws(n)], dh(n) →

[d(n) − yws(n)], eh(n) → 0, dŝ(n) → vs(n), and eŝ(n) → 0. This shows that in

Zhang’s method a perturbation free error signals for all the three adaptive filters

are obtained.

In Kuo’s, Bao’s and Zhang’s structures, three adaptive filters are used for

OSPM. In [38], and [40, 41] a two adaptive filter based structure (almost similar

to Eriksson’s structure) is proposed by Akhtar. In [40, 41] adaptive filtering with

averaging based FxLMS algorithm is used for W (z), and improved performance,

in terms of modeling accuracy of SPM filter and the noise-reduction-performance

(NRP) of ANC system, is realized compared to previous methods. However, the

improved performance is attained with higher computational complexity compared

to previous methods. In [38] a new VSS adaptive algorithm is proposed by Akhtar

for SPM filter. The brief detail of the method in [38] is given below.
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Figure 2.4: Block diagram of Zhang’s method for ANC systems with online sec-

ondary path modeling [37].

2.1.5 Akhtar’s Method

The block diagram of Akhtar’s structure [38] for OSPM is shown in Fig. 2.5.

The main features of Akhtar’s method are: 1) Similar to Eriksson structure, only

two adaptive filters are used to remove the effects of interference terms on the

convergence performance of adaptive filters in ANC systems, however, as opposed

to Eriksson’s structure same error signal, eŝ(n), is used to update the coefficients

of both the SPM filter and the ANC filter, and 2) a VSS is used for SPM filter. In

Akhtar’s method the variable step-size for SPM filter, µs(n), is computed as

µs(n) = ρ(n)µmin + (1− ρ(n))µmax, (2.6)
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Figure 2.5: Block diagram of Akhtar’s method for ANC systems with online sec-

ondary path modeling [38].

where the tuning parameters µmin and µmax are, respectively, the minimum and

the maximum values of µs(n), and ρ(n) is a parameter being computed as

ρ(n) =
Peŝ(n)

Pe(n)
=

P[d(n)−yws(n)] + P[vs(n)−vŝ(n)]

P[d(n)−yws(n)] + Pvs(n)

, (2.7)

where Peŝ(n) and Pe(n) are estimates of power of error signals eŝ(n) and e(n),

respectively and are given by

Peŝ(n) = λPeŝ(n− 1) + (1− λ)e2ŝ(n)), (2.8)

Pe(n) = λPe(n− 1) + (1− λ)e2(n)), (2.9)

where λ is a forgetting factor (0.9 < λ < 1). It is clear from (2.7) that ρ(0) ≈ 1

and as n → ∞, P[d(n)−yws(n)] → 0, P[vs(n)−vŝ(n)] → 0, Pvs(n) >> P[d(n)−yws(n)] and

ρ(n) → 0. The basic idea of the Akhtar’s VSS algorithm stems from the fact that

the disturbance signal in the desired response of the modeling filter is decreasing

in nature (ideally converging to zero). Hence, initially when the power of the

disturbance signal is large a small step-size is used for SPM filter, and later at the
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steady-state when the power of the disturbance signal is reduced to a small value,

large value of step-size is selected for SPM filter.

The problem with Akhtar’s method is that the step-size variation of SPM filter

is such that it is minimum at the start-up of ANC system and increases to a

maximum value as the ANC system converges. For LMS-based adaptive SPM

filter with input v(n), the excess mean-square-error (MSE) is given by [4]

ξexcess ≈ 0.5µsLsPvξmin, (2.10)

where µs is the fixed step-size parameter, Pv is the power of input signal of Ŝ(z),

and ξmin is the minimum MSE corresponding to Weiner solution. It is very easy

to conclude from (2.10) that in Akhtar’s method the large value of step-size in the

steady-state will result in large excess MSE, and thus affects the convergence of

SPM filter. In order to over come this difficulty a new VSS adaptive algorithm is

given for SPM filter in [39], the detail of which is given below

2.1.6 Variable Step-size Method

The structure of the VSS method [39] is exactly the same as that of Akhtar’s

method shown in Fig. 2.5. Assuming that W (z) is an FIR filter, the output yw(n)

is given as

yw(n) = w(n) ∗ x(n) = wT (n)xw(n),x(n)(n), (2.11)

where w(n) is the impulse response of W (z), w(n) = [w0(n), w1(n), · · · , wLw−1(n)]
T

is the impulse response coefficient vector of W (z) at time n, and xw(n),x(n)(n) =

[x(n), x(n− 1), · · · , x(n− Lw + 1)]T is the input signal vector of filter W (z) with

input x(n) at time n. The weight update equation for ANC filter W (z) is given as

w(n+ 1) = w(n) + µweŝ(n)xLMS,yŝ(n)(n), (2.12)
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where µw is the step-size parameter, eŝ(n) is the error signal of both the SPM filter

and ANC filter, and xLMS,yŝ(n)(n) = [yŝ(n), yŝ(n − 1), · · · , yŝ(n − Lw + 1)]T is the

input signal vector of adaptive LMS algorithm of W (z) at time n and is referred

as the filtered reference signal vector. The reference signal x(n) filtered through

Ŝ(z) is computed as

yŝ(n) = ŝ(n) ∗ x(n) = ŝT (n)xŝ(n),x(n)(n), (2.13)

where ŝ(n) is the impulse response of Ŝ(z), ŝ(n) = [ŝ0(n), ŝ1(n), · · · , ŝLs−1(n)]
T

is the impulse response coefficient vector of Ŝ(z) at time n, and xŝ(n),x(n)(n) =

[x(n), x(n−1), · · · , x(n−Ls+1)]T is the input signal vector of filter Ŝ(z) with input

x(n) at time n. The residual error signal e(n) picked-up by the error microphone

is given by (2.1). The output of SPM filter is subtracted from e(n) to compute

eŝ(n) as

eŝ(n) = e(n)− vŝ(n), (2.14)

where the signal vŝ(n) is computed as

vŝ(n) = ŝ(n) ∗ v(n) = ŝT (n)xŝ(n),v(n)(n), (2.15)

where ŝ(n) is the impulse response of Ŝ(z), ŝ(n) = [ŝ0(n), ŝ1(n), · · · , ŝLs−1(n)]
T

is the impulse response coefficient vector of Ŝ(z) at time n, and xŝ(n),v(n)(n) =

[v(n), v(n − 1), · · · , v(n − Ls + 1)]T is the input signal vector of filter Ŝ(z) with

input v(n) at time n. Using eŝ(n), the SPM filter Ŝ(z) is adapted as

ŝ(n+ 1) = ŝ(n) + µs(n)eŝ(n)xŝ(n),v(n)(n), (2.16)

where µs(n) is the VSS step-size parameter, and is computed as

µs(n) = (1− ρ(n))µ(n), (2.17)
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where ρ(n) is given by (2.7) for Akhtar’s method, and µ(n) is another variable

step-size [42] being computed as

µ(n) =


µmin (β(n) < µmin)

β(n) (µmin ≤ β(n) ≤ µmax) ,

µmax (β(n) > µmax)

(2.18)

where µmin and µmax are, respectively, the minimum and the maximum values of

µ(n), chosen to guarantee tracking capability and stability, and β(n) is recursively

computed as

β(n) = αβ(n− 1) + (1− α)e2ŝ(n), (2.19)

where α is a control parameter. The step-size µ(n) in (2.17) is bounded by µmin

and µmax, and in between this limit the step-size µ(n) is proportional to e2ŝ(n) (see

(2.18) and 2.19). It is shown in [42], when adaptive filter Ŝ(z) is far from S(z),

the large value of eŝ(n) will cause the step-size µ(n) to increase to provide faster

convergence while a small value of eŝ(n), when adaptive filter Ŝ(z) is close to S(z),

will result in a decrease in the step-size µ(n) to yield small excess MSE.

• purpose of factor (1− ρ(n)) in (2.17)

Using (2.1) and (2.15), the instantaneous value of the error signal eŝ(n) of SPM

filter can be written as

eŝ(n) = (d(n)− yws(n))− vŝ(n). (2.20)

In VSS method [39], if µs(n) = µ(n), then at the start when ANC system is far

from steady state, the large value of the disturbance term (d(n)− yws(n)) in eŝ(n)

causes the value of step-size µs(n) to be large, and thus may cause the ANC system

to become unstable. In order to avoid this the factor (1− ρ(n)) (which is close to
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zero when ANC system is far from steady state) is multiplied with µ(n) to keep the

overall step-size µs(n) small. This will result in small value of step-size µs(n) at

the start as in Akhtar’s method. However, in Akhtar’s method large value of the

step-size, µs(n), at the steady state will not allow the weights of the modeling filter

to converge to their optimum value (see (2.10)). In order to avoid this problem, it

is required that the step-size should be small in the steady state. In VSS method

[39], at steady-state, the factor (1− ρ(n)) → 1 and µs(n) ≈ µ(n). It is clear from

(2.18) that µ(n) has a decreasing trend and hence the overall step-size µs(n) will

also have a decreasing trend and will settle down to a small value at the steady-

state. Therefore, in VSS method [39] (see (2.17)) the step-size variation is such

that µs(n) has small value both at the start as in Akhtar’s method and at the

steady state as in [42]. The algorithm for the VSS method [39] is shown in Table.

2.1.

2.1.7 Simulation Results

In this subsection, simulation results are presented, for FxLMS algorithm based

ANC systems with OSPM, to compare the performance of the VSS method [39]

with Eriksson’s method [21], Kuo’s method [35], Bao’s method [36], Zhang’s method

[37], and Akhtar’s method [38]. The performance comparison is carried out on the

basis of following performance measures.

• Relative modeling error of the secondary path S(z) being defined as

∆Ds(n) = 10log10

||s− ŝ(n)||2

||s||2
dB. (2.21)

• Mean-noise-reduction (MNR) at the error microphone being defined as

MNR(n) = 10 log10

E[e2(n)]

E[d2(n)]
dB. (2.22)
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Table 2.1: Algorithm for the VSS method [39].

d(n) = pT (n)xp(n),x(n)(n); yw(n) = wT (n)xw(n),x(n)(n)

v(n) = G(n)vg(n)

yws(n)− vs(n) = sT (n)xs(n),(yw(n)−v(n))(n)

e(n) = d(n)− yws(n) + vs(n)

vŝ(n) = ŝT (n)xŝ(n),v(n)(n); eŝ(n) = e(n)− vŝ(n)

yŝ(n) = ŝT (n)xŝ(n),x(n)(n)

Peŝ(n) = λPeŝ(n− 1) + (1− λ)e2ŝ(n))

Pe(n) = λPe(n− 1) + (1− λ)e2(n))

ρ(n) =
Peŝ

(n)

Pe(n)

β(n) = αβ(n− 1) + (1− α)e2ŝ(n)

µ(n) is computed using (2.18)

µs(n) = (1− ρ(n))µ(n)

ŝ(n+ 1) = ŝ(n) + µs(n)eŝ(n)xŝ(n),v(n)(n)

w(n+ 1) = w(n) + µweŝ(n)xLMS,yŝ(n)(n)

Using data from [4], the acoustic paths P (z), and S(z) are modeled as FIR

filters of tap-weight lengths 48, 16, respectively. The adaptive filters W (z), Ŝ(z),

K(z), B(z) and Z(z) are selected as FIR filters of tap-weight length 32, 16, 16,

16, and 16, respectively. The ANC filter W (z), the filter K(z), the filter B(z)

and the filter H(z) are initialized by null vectors. In all methods, −5dB offline

modeling is used for Ŝ(z). The original unwanted noise signal x(n), at the reference

microphone, is a multi-tonal input with frequencies 100, 200, 300, and 400 Hz, and
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Table 2.2: Simulation parameters for filtered-x-LMS algorithm based active noise

control systems: Online secondary path modeling without gain scheduling.

Parameters

Eriksson’s method [21] µw = 5× 10−4, µs(n) = µs = 1× 10−2.

Kuo’s method [35] µw = 5× 10−4, µs(n) = µs = 1× 10−2, µk = 1× 10−2,

∆ = 16.

Bao’s method [36] µw = 5× 10−4, µs(n) = µs = 1× 10−2, µb = 1× 10−2.

Zhang’s method [37] µw = 5× 10−4, µs(n) = µs = 1× 10−2, µh = 1× 10−2.

Akhtar’s method [38] µw = 5× 10−4, µsmin = 7.5× 10−3, µsmax = 2.5× 10−2,

Pe(0) = Peŝ(0) = 1.

VSS method [39] µw = 5× 10−4, µsmin = 7.5× 10−3, µsmax = 5× 10−2,

Pe(0) = Peŝ(0) = β(0) = 1, α = 0.999.

its variance is adjusted to 1. A zero-mean WGN with variance 0.001 is added

with x(n) to account for any measurement noise. The modeling excitation signal

vg(n) is a zero-mean WGN with variance 0.05. As no gain scheduling is used,

therefore in all the methods G(n) = 1 and vg(n) = v(n). The sampling frequency

is 2kHz, and the forgetting factor is selected as 0.99. The step-size parameters

are experimentally adjusted for fast and stable convergence for various methods.

The step-sizes and other simulation parameters for various methods are given in

Table. 2.2. The jumps in the middle of all the simulation results is due to the

perturbation in the impulse responses of the acoustic paths P (z) and S(z). The

impulse responses of P (z) and S(z) are perturbed from their nominal values by
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Figure 2.6: (a) Relative modeling error, ∆Ds(n)(dB), (b) Step-size variation for

secondary path modeling filter, µs(n).

adding random WGN. All the simulation results are averaged over 10 independent

realizations.

In Fig. 2.6(a) the curves for relative modeling error, as defined in (2.21), are

plotted in dB for different methods. It is clear from Fig. 2.6(a) that the VSS

method not only gives fast initial convergence as in Akhtar’s method but it also

gives much lower steady state value of ∆Ds(n) in comparison with other existing

methods. As mentioned before, the reason of getting the improved modeling accu-

racy of SPM filter is due to different step-size variation for Ŝ(z) as plotted in Fig.

2.6(b). In the VSS method a smaller step-size is used at the start because of larger

disturbance and then step-size is increased accordingly to allow fast convergence of

SPM filter. Finally, at the steady-state, the step-size in the VSS method is brought

back to minimum value to allow the excess MSE to a small value. This will lead

to faster convergence at the start as in Akhtar’s method and also provides better

performance in steady state. The step-size for modeling filter in case of Akhtar’s
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Figure 2.7: (a) Variation of ρ(n) = Peŝ/Pe(n), (b) Variation of (1− ρ(n)) in VSS

method (see (2.17)).

method is small at the start but it remains high in the steady state as shown in

Fig. 2.6(b). The variation of ρ(n) in Akhtar and VSS methods are plotted in Fig.

2.7(a). It is clear from Fig. 2.7(a), that ρ(n) is close to one when ANC system is

far from steady-state and ρ(n) → 0 as ANC system converges. The two factors,

(1 − ρ(n)) and µ(n), of µs(n) in VSS method [39] are plotted in Fig. 2.7(b) and

Fig. 2.8(a), respectively. It is clear from Fig. 2.8(a) that the value of µ(n) is

large when ANC system is far from steady-state and decreases towards µmin as

ANC system converges. The overall step-size of SPM filter, µs(n), is the product

of factor (1 − ρ(n)) and µ(n). In Fig. 2.8(b) the curves for MNR, as defined in

(2.22), are plotted in dB for different methods. It is clear from Fig. 2.8(b) that the

performance of all the methods is almost the same in terms of MNR value. From

this we can conclude that when the estimation of the secondary-path reaches to

certain level of accuracy (−15dB in this case), further improvement of modeling

accuracy does not necessarily contribute to the further reduction of MNR value in
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Figure 2.8: (a) Variation of µ(n) in VSS method (see (2.17)), (b) Mean-noise-

reduction, MNR(n) (dB).

a significant way. All the methods discussed in this paper can achieve the desired

modeling accuracy of −15 dB, so the performance of all the methods in terms

of MNR value is almost same. However, the advantage of having the improved

modeling accuracy of SPM filter is that this will increase the stability margins of

ANC systems.

2.2 MFxLMS Algorithm Based ANC Systems

2.2.1 MFxLMS Algorithm

The block diagram of MFxLMS algorithm based single channel feedforward ANC

system is shown in Fig. 2.9. In case of MFxLMS algorithm two extra filters

W (z) and Ŝ(z) are used to generate the estimate yŝw(n) of the estimated desired

response d̂(n) (estimate of d(n)) of W (z), and thus transforming the problem

of indirect system identification in ANC system to the problem of direct system
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Figure 2.9: Modified-filtered-x-LMS algorithm based ANC system with online

secondary path modeling.

identification. For MFxLMS algorithm the allowable maximum value of step-size,

for stable operation of ANC system, is higher than FxLMS algorithm [5], and

thus can results in fast convergence of ANC filter W (z). The disadvantage of

the MFxLMS algorithm is that the computational complexity is higher than the

FxLMS algorithm. This is due to the use of two extra filters in MFxLMS algorithm.

In [43], a simplified structure for MFxLMS algorithm based ANC systems is

proposed, hereafter referred as CEMFxLMS algorithm. In [43] the variance of

auxiliary noise is also made variable. However, in this chapter since we are dealing

with OSPM without gain scheduling. Therefore, in this chapter, we will assume

G(n) = 1 for CEMFxLMS algorithm.
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Figure 2.10: Proposed structure: Computationally efficient modified-filtered-x-

LMS algorithm based ANC system with online secondary path modeling.

2.2.2 CEMFxLMS Algorithm

The block diagram of CEMFxLMS algorithm based ANC system with OSPM is

shown in Fig. 2.10. From comparison of Fig. 2.7, and Fig. 2.8, it is clear that

the CEMFxLMS algorithm based ANC system is structurally simpler than the

MFxLMS algorithm based ANC system. This is because the action of filter Ŝ(z)

with input yw(n) (see Fig. 2.7) and filter Ŝ(z) with input v(n) (see Fig. 2.7) is

combined into one filter Ŝ(z) with input (v(n) − yw(n)) (see Fig. 2.8). This will

results in a computational saving of Ls multiplications and (Ls − 1) additions per

iteration. In Fig. 2.8, the same error signal eŝ(n) is used to update both the

coefficients of Ŝ(z) and W (z). The signal eŝ(n) is computed as

eŝ(n) = d̂(n)− yŝw(n), (2.23)
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where yŝw(n) is computed as

yŝw(n) = w(n) ∗ yŝ(n) = wT (n)xw(n),yŝ(n)(n), (2.24)

where w(n) is the impulse response of W (z), w(n) = [w0(n), w1(n), · · · , wLw−1(n)]
T

is the impulse response coefficient vector of W (z) at time n, and xw(n),yŝ(n)(n) =

[yŝ(n), yŝ(n− 1), · · · , yŝ(n−Lw +1)]T is the input signal vector of filter W (z) with

input yŝ(n) at time n. The signal d̂(n) (estimate of d(n)) in (2.23) is computed as

d̂(n) = e(n)− vŝ(n) + ywŝ(n) = d(n)− (yws(n)− ywŝ(n)) + (vs(n)− vŝ(n)), (2.25)

where ywŝ(n) is the output of Ŝ(z) corresponding to input yw(n). As the ANC

system converges, the terms (yws(n) − ywŝ(n)) → 0 and (vs(n) − vŝ(n)) → 0,

d̂(n) → d(n), yŝw(n) → d̂(n) → d(n), and eŝ(n) → 0. For CEMFxLMS algorithm

based ANC system, the weight update equation for ANC filter W (z) is given as

w(n+ 1) = w(n) + µweŝ(n)xw(n),yŝ(n)(n), (2.26)

where µw is the step-size parameter, eŝ(n) is the error signal of both the SPM

filter and ANC filter, and xw(n),yŝ(n)(n) = [yŝ(n), yŝ(n− 1), · · · , yŝ(n−Lw +1)]T is

the input signal vector of filter W (z) with input yŝ(n) at time n. In the proposed

method, the weight update equation for SPM filter Ŝ(z) is given as

ŝ(n+ 1) = ŝ(n) + µseŝ(n)xLMS,v(n)(n), (2.27)

where µs is the fixed step-size parameter, and xLMS,v(n)(n) = [v(n), v(n−1), · · · , v(n−

Ls + 1)]T is the input signal vector of adaptive LMS algorithm of Ŝ(z) at time n.

The CEMFxLMS algorithm [43] for G(n) = 1 is shown in Table. 2.3.

2.2.3 Simulation Results

In this subsection simulation results are presented to compare the performance of

ANC system using CEMFxLMS algorithm [43] and original MFxLMS algorithm.
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Table 2.3: CEMFxLMS algorithm with G(n) = 1 ∀ n [43].

d(n) = pT (n)xp(n),x(n)(n)

yw(n) = wT (n)xw(n),x(n)(n)

v(n) = G(n)vg(n)

yws(n)− vs(n) = sT (n)xs(n),(yw(n)−v(n))(n)

e(n) = d(n)− yws(n) + vs(n)

vŝ(n)− ywŝ(n) = ŝT (n)xŝ(n),(v(n)−yw(n))(n)

d̂(n) = e(n)− vŝ(n) + ywŝ(n)

yŝ(n) = ŝT (n)xŝ(n),x(n)(n)

yŝw(n) = wT (n)xw(n),yŝ(n)(n)

eŝ(n) = d̂(n)− yŝw(n)

ŝ(n+ 1) = ŝ(n) + µseŝ(n)xLMS,v(n)(n)

w(n+ 1) = w(n) + µweŝ(n)xw(n),yŝ(n)(n)

The performance comparison is carried out on the basis of 1) Relative modeling

error, ∆Ds(n), of the secondary path S(z) as defined in (2.21), and 2) Mean-noise-

reduction (MNR) at the error microphone as defined in (2.22).

Using data from [4], the acoustic paths P (z), and S(z) are modeled as FIR

filters of tap-weight lengths 48, 16, respectively. The adaptive filters W (z), and

Ŝ(z) are selected as FIR filters of tap-weight length 32, and 16, respectively. The

ANC filter, W (z), is initialized with null vectors, and −5dB offline modeling is used

for Ŝ(z). The original unwanted noise signal x(n), at the reference microphone, is

a multi-tonal input with frequencies 100, 200, 300, and 400 Hz, and its variance

is adjusted to 1. A zero-mean WGN with variance 0.001 is added with x(n) to
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account for any measurement noise. The modeling excitation signal vg(n) is a zero-

mean WGN with variance 0.05. As no gain scheduling is used, therefore G(n) = 1

and vg(n) = v(n). The step-size parameters are experimentally adjusted for fast

and stable convergence and are given as: µw = 5 × 10−4; µs = 1 × 10−2. The

jumps in the middle of the simulation results is due to the perturbation in the

impulse responses of the acoustic paths P (z) and S(z). The impulse responses of

P (z) and S(z) are perturbed from their nominal values by adding random WGN.

The sampling frequency is 2kHz. All the simulation results are averaged over 10

independent realizations.

In Fig. 2.11(a), the curves for relative modeling error, as defined in (2.21), are

plotted in dB for original MFxLMS algorithm based ANC system and for CEM-

FxLMS algorithm based ANC system. Similarly in Fig. 2.11(b) the curves for

MNR, as defined in (2.22), are plotted in dB. It is clear from Fig. 2.11(a) and Fig.

2.11(b) that the performance of CEMFxLMS algorithm is almost same as that of

original MFxLMS algorithm. However, the advantage of the CEMFxLMS algo-

rithm is that the same performance is achieved with less computational complexity.

As mentioned earlier that the CEMFxLMS algorithm reduces Ls multiplications

and (Ls − 1) additions per iteration.

2.3 Computational Complexity Comparison

The computational complexity requirements of all the methods discussed in this

chapter are given in Table. 2.4. In case of FxLMS algorithm based ANC systems,

Eriksson’s method has the lowest computational complexity. In case of MFxLMS

algorithm based ANC systems, the CEMFxLMS has the lower computational com-

plexity.
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Figure 2.11: (a) Relative modeling error, ∆Ds(n)(dB), (b) Mean-noise-reduction,

MNR(n) (dB).

2.4 Summary

In this chapter, some methods using auxiliary WGN as an excitation signal for

OSPM are discussed. In all the methods auxiliary noise with fixed variance is

injected, i.e., G(n) = 1, and vg(n) = v(n).

In the first part of this chapter, FxLMS algorithm based methods for OSPM

without gain scheduling are discussed. It is found through the simulation results

that the VSS method [39] performs better compared to other existing methods in

terms of improving the modeling accuracy of SPM filter. It is also concluded from

the simulation results that higher modeling accuracy of SPM filter does not mean

less MNR value. The modeling accuracy up to certain extent is required to keep

the ANC system stable. Any further improvement in the modeling accuracy can

only improve the stability margins and may not affect (improve) the MNR value

of ANC systems.

In the second part of this chapter, a computationally efficient structure is pro-
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Table 2.4: Computational complexity comparison (Number of computations per

iteration)

Name × + ÷

FxLMS algorithm based ANC systems

Eriksson [21] 2Lw + 3Ls + 2 2Lw + 3Ls − 1 −

Kuo [35] 2Lw + 2Lk + 3Ls + 3 2Lw + 2Lk + 3Ls − 1 −

Bao [36] 2Lw + 2Lb + 3Ls + 3 2Lw + 2Lb + 3Ls − 1 −

Zhang [37] 2Lw + 2Lh + 3Ls + 3 2Lw + 2Lh + 3Ls + 1 −

Akhtar [38] 2Lw + 3Ls + 10 2Lw + 3Ls + 4 1

Proposed [39] 2Lw + 3Ls + 12 2Lw + 3Ls + 5 1

MFxLMS algorithm based ANC systems

MFxLMS 3Lw + 4Ls + 2 3Lw + 4Ls − 1 −

CEMFxLMS [43] 3Lw + 3Ls + 2 3Lw + 3Ls −

posed for ANC system using MFxLMS adaptive algorithm. It is found through the

simulation results that the CEMFxLMS algorithm achieves almost the same per-

formance as that of original MFxLMS algorithm. However the computational com-

plexity of the CEMFxLMS algorithm is lower than that of the original MFxLMS

algorithm.

The goal of an ANC system is to reduce the unwanted noise at the summing

junction. In order to compensate for the secondary path effects and to keep the

ANC system stable, an additional auxiliary noise injected into the ANC system.

This auxiliary noise contributes to the residual error at the summing junction. This
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contribution of auxiliary noise will degrades the NRP of ANC system especially at

steady-state when the original unwanted noise is reduced to a small value due to

the convergence of an ANC system. In all the methods, discussed in this chapter,

auxiliary noise with fixed variance is injected. In the next chapter the methods for

OSPM with gain scheduling are discussed. In these methods, instead of injecting

the auxiliary noise with fixed variance, the time-varying gain G(n) is used to

change (decrease) the variance of auxiliary noise with the convergence status of

ANC system. This gain scheduling will reduce the contribution of auxiliary noise

to the residual error and thus improves the NRP of ANC systems.
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Chapter 3

Online Secondary Path Modeling
With Gain Scheduling

In the last chapter the methods, for on-line secondary path modeling (OSPM),

in which an additional auxiliary noise with fixed variance is injected in all op-

erating conditions were discussed. The objective of active noise control (ANC)

system is to reduce the residual noise at the summing junction. The auxiliary

noise injected for OSPM contributes to the residual error, and hence degrades

the noise-reduction-performance (NRP) of ANC system. In this chapter, instead

of injecting auxiliary noise with fixed variance, a gain scheduling scheme is used

to vary the power of auxiliary noise. The auxiliary noise power is varied in ac-

cordance with the convergence status of ANC system. When ANC system is far

from steady-state, the gain scheduling strategy is such that to allow injection of
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auxiliary noise with large variance. This will result in fast convergence of SPM

filter. At early stages of adaptation of ANC system, the large variance of auxiliary

noise is masked by the large variance of the residual unwanted noise, and hence the

contribution corresponding to auxiliary noise remains unnoticeable by the subject

(observer). However, with the convergence of ANC system the original unwanted

noise is reduced due to cancellation by the anti-noise, and is not able to mask the

large value of auxiliary noise. Therefore, it is desirable that as the ANC system

converges the gain scheduling strategy will allow the power of auxiliary noise to

decrease. This will reduce the contribution of auxiliary noise to the residual error,

and thus improves the NRP fo ANC system.

In this chapter we will discuss the existing methods for OSPM with gain

scheduling. It includes Akhtar’s method [44] and the best know Carini’s method

[45, 46]. In addition to these existing methods our proposed strategies [43], [47]-

[49] for gain scheduling were discussed and compared with the existing methods

through the simulation results.

3.1 Existing Methods

3.1.1 Akhtar’s Method

The block diagram of Akhtar’s method [44] for OSPM with gain scheduling is

shown in Fig. 3.1. Here the signal vd(n) is used to model the background noise, and

is assumed to be equal to zero unless otherwise stated. In order to compensates

for the secondary path effects, a modified filtered-x-LMS (MFxLMS) adaptive

algorithm is used for ANC filter W (z). A variable step-size (VSS) LMS adaptive

algorithm is used for SPM filter Ŝ(z). The weight update equation for ANC filter
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Figure 3.1: Block diagram of Akhtar’s method for Online secondary path modeling

with gain scheduling [44].

W (z) is given as

w(n+ 1) = w(n) + µwew(n)xLMS,yŝ(n)(n), (3.1)

where µw is the fixed step-size parameter, ew(n) is the error signal of ANC filter

W (z), and xLMS,yŝ(n)(n) = [yŝ(n), yŝ(n−1), · · · , yŝ(n−Lw+1)]T is the input signal

vector of adaptive LMS algorithm of W (z) at time n and is referred as the filtered

reference signal vector. The reference signal x(n) filtered through Ŝ(z) is computed

as

yŝ(n) = ŝ(n) ∗ x(n) = ŝT (n)xŝ(n),x(n)(n), (3.2)

where ŝ(n) is the impulse response of Ŝ(z), ŝ(n) = [ŝ0(n), ŝ1(n), · · · , ŝLs−1(n)]
T

is the impulse response coefficient vector of Ŝ(z) at time n, and xŝ(n),x(n)(n) =
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[x(n), x(n − 1), · · · , x(n − Ls + 1)]T is the input signal vector of filter Ŝ(z) with

input x(n) at time n. The weight update equation for SPM filter is given by

ŝ(n+ 1) = ŝ(n) + µs(n)eŝ(n)xŝ(n),v(n)(n), (3.3)

where µs(n) is the VSS, eŝ(n) is the error signal of SPM filter, and xŝ(n),v(n)(n) =

[v(n), v(n−1), · · · , v(n−Ls+1)] is the input signal vector of filter Ŝ(z) with input

v(n) at time n.

VSS for SPM Filter in Akhtar’s Method [44]: In Akhtar’s method, the

VSS, µs(n), in the weight update equation of SPM filter (see (3.3)) is computed

as

µs(n) = ρ(n)µsmin + (1− ρ(n))µsmax , (3.4)

where µsmin and µsmax are minimum and maximum values of µs(n), respectively,

selected for fast and stable convergence of ANC system. At the start, when ANC

system is far from steady-state, the term ρ(n) ≈ 1 and hence µs(n) = µsmin . As the

SPM filter and ANC system converges ρ(n) → 0 and µs(n) = µsmax . The variation

of ρ(n) in Akhtar’s method is explained below

Variation of ρ(n) in Akhtar’s Method [44]: From Fig. 3.1, the term ρ(n)

is defined as

ρ(n) =
Peŝ(n)

Pe(n)
=

E[(d(n)− yws(n))
2] + E[(vs(n)− vŝ(n))

2]

E[(d(n)− yws(n))2] + E[(vs(n))2]
, (3.5)

where E [·] is the expectation operator and

Pq(n) = λPq(n− 1) + (1− λ)q2(n), (3.6)

where q(n) is the signal of interest, and 0.9 < λ < 1 is a forgetting factor. At the

start-up of ANC system, Peŝ(0) ≈ Pe(0), ρ(0) = Peŝ(0)/Pe(0) = 1, and as the SPM
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filter converges ŝ(n) → s(n) ⇒ vŝ(n) → vs(n). In Akhtar’s method [44], at steady-

state E[(vs(n))
2] > E[(d(n) − yws(n))

2] and E[(vs(n))
2] >> E[(vs(n) − vŝ(n))

2],

and hence from (3.5) ρ(n) → 0.

Gain Scheduling in Akhtar’s Method [44]: The input signal vector xŝ(n),v(n)(n)

in the weight update equation of SPM filter (see (3.3)) can be written as

xŝ(n),v(n)(n) = [v(n), v(n− 1), · · · , v(n− Ls + 1)]T

= [G(n)vg(n), G(n− 1)vg(n− 1), · · · , G(n− Ls + 1)vg(n− Ls + 1)]T

= G(n)xŝ(n),vg(n)(n), (3.7)

where G(n) = diag[G(n), G(n − 1), · · · , G(n − Ls + 1)] is a diagonal matrix of

dimensions Ls × Ls, xŝ(n),vg(n)(n) = [vg(n), vg(n − 1), · · · , vg(n − Ls + 1)]T is a

vector of length Ls, vg(n) is a random WGN signal, v(n) = G(n)vg(n) is the input

excitation signal of SPM filter, and G(n) is the time-varying gain. In Akhtar’s

method [44], the gain G(n) is computed as

G(n) =
√
ρ(n)σ2

max + (1− ρ(n))σ2
min, (3.8)

where σ2
min and σ2

max are experimentally determined parameters. In Akhtar’s

method, the value of the parameter ρ(n) is never zero in steady-state and σ2
max

in (3.8) contributes to the steady-state value of auxiliary-noise-power (ANP) and

hence degrades the NRP of ANC system.

3.1.2 Carini’s Method

The block diagram of Carini’s method for OSPM with gain scheduling [45] and with

optimal normalized LMS (NLMS) adaptive algorithms for ANC and SPM filters

[46] is shown in Fig. 3.2. A delay coefficient technique [50] is used to compute the

optimal normalized step-size parameter, µs(n), for SPM filter. For this purpose an
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Figure 3.2: Block diagram of Carini’s method for Online secondary path modeling

with gain scheduling [46].

artificial delay z−∆ is used as shown in Fig. 3.2. The SPM filter Ŝc(z) of length

(∆+Ls) has to model the series combination of z−∆ followed by S(z), where ∆ is

the length of delay. The impulse response coefficient vector of Ŝc(z) is given by

ŝc(n) = [ŝT0 (n) ŝT (n)]T , (3.9)

where ŝ0(n) = [ŝ0(n), ŝ1(n), · · · , ŝ∆−1(n), ]
T is a vector of the first ∆ samples of

ŝc(n), and ŝ(n) = [ŝ∆(n), ŝ∆+1(n), · · · , ŝ∆+Ls−1(n), ]
T is a vector of the last Ls

samples of ŝc(n).

Gain Scheduling in Carini’s Method [45]: In [45], a self-tuned gain

scheduling (to vary ANP) strategy is proposed by Carini and Malatini. The gain
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scheduling strategy is such that the ratio R(n) given by

R(n) =
E [(d(n)− yws(n))

2]

E [(vs(n))2]
= constant∀n, (3.10)

is kept constant in every operating conditions, where E [·] is the expectation op-

erator. From Fig. 3.2, the power of residual error signal, E[e2(n)], can be written

as

E[e2(n)] = E[(d(n)− yws(n))
2] + E[(vs(n))

2]

= E[(d(n)− yws(n))
2] +G2(n)||s(n)||2E[(vg(n))

2], (3.11)

Where E[(vg(n))
2] = 1, as vg(n) is a zero mean, unit variance random WGN,

and ||s(n)||2 is the square of the Euclidean norm of impulse response of unknown

secondary path. Using E[(vg(n))
2] = 1 in (3.11) we get

E[e2(n)] = E[(d(n)−yws(n))
2]+E[(vs(n))

2] = E[(d(n)−yws(n))
2]+G2(n)||s(n)||2.

(3.12)

Dividing both sides of (3.12) with E[(vs(n))
2] and using R(n) from (3.10) we get

E[e2(n)]

E[(vs(n))2]
= R(n) + 1 =

E[e2(n)]

G2(n)||s(n)||2
≈ Pe(n)

G2(n)Ps(n)
, (3.13)

where Pe(n) is the power estimate of the error signal e(n) being computed using

(3.6). Since the secondary path is unknown, therefore the term Ps(n) can not be

computed exactly. However, its estimate can be computed using the coefficients of

SPM filter as

Pŝ(n) = λPŝ(n− 1) + (1− λ)ŝT (n)ŝ(n), (3.14)

where Pŝ(n) is the estimate of Ps(n), ŝ(n) is the same as defined in (3.9), and

0.9 < λ < 1 is a forgetting factor. Using (3.14) in (3.13) and rearranging the

equation the time-varying gain G(n) in Carini’s method is computed as

G(n) =

√
Pe(n)

(R(n) + 1)Pŝ(n)
. (3.15)
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Optimal Normalized Step-size Computation for W (z) and Ŝ(z) in

Carini’s Method [46]: A heuristic approach is used to estimate the optimal

normalized step-size parameter, µw(n), for W (z) and is given by

µw(n) =
N̂w(n)

Pew(n)
(
xT

NLMS,yŝ(n)(n)xNLMS,yŝ(n)(n)
) , (3.16)

where Pew(n) is the power estimate of the error signal ew(n) being computed using

(3.6), xNLMS,yŝ(n)(n) = [yŝ(n), yŝ(n − 1), · · · , yŝ(n − Lw + 1)]T is the input signal

vector of adaptive NLMS algorithm of W (z) with input yŝ(n) at time n, and N̂w(n)

is computed as

N̂w(n) = λN̂w(n− 1) + (1− λ)ew(n)m̂
T (n)xNLMS,yŝ(n)(n), (3.17)

where m̂(n) is computed as

m̂(n) = λ̂m̂(n− 1) +
(1− λ̂)ew(n)xNLMS,yŝ(n)(n)

xT
NLMS,yŝ(n)(n)xNLMS,yŝ(n)(n)

, (3.18)

and λ̂ is selected in the range [0.6, 0.9].

Finally, the optimal normalized step-size parameter µs(n) for SPM filter Ŝc(z)

is computed as

µs(n) =


N̂s(n)

Peŝ
(n)

(
xT
ŝc(n),v(n)

(n)xŝc(n),v(n)(n)
) ( N̂s(n)

Peŝ
(n)

> µsmin)

µsmin
xT
ŝc(n),v(n)

(n)xŝc(n),v(n)(n)
(Otherwise)

, (3.19)

where xŝc(n),v(n)(n) = [v(n), v(n − 1), · · · , v(n − Ls −∆ + 1)]T is the input signal

vector of adaptive NLMS algorithm of Ŝc(z) with input v(n) at time n, and N̂s(n)

is computed as

N̂s(n) = λN̂s(n− 1) +
1− λ

∆

(
ŝT0 (n)ŝ0(n)x

T
ŝc(n),v(n)(n)xŝc(n),v(n)(n)

)
, (3.20)

where ŝ0(n) = [ŝ0(n), ŝ1(n), · · · , ŝ∆−1(n), ]
T represents the first ∆ coefficients of

ŝc(n) (see (3.9)).
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In Carini’s method [46], the weight update equation for W (z) is almost same

as used in Akhtar’s method [44] (see (3.1)). In Carini’s method, instead of µw,

an optimal normalized step-size, µw(n), given by (3.16), is used for the weight

updation of W (z). In Carini’s method, the SPM filter is represented by Ŝc(z), and

has the weight update equation given by

ŝc(n+ 1) = ŝc(n) + µs(n)eŝ(n)xŝc(n),v(n)(n), (3.21)

where µs(n) (see (3.19)) is the optimal step-size parameter for Ŝc(z) computed

using the delay coefficient technique [50], and xŝc(n),v(n)(n) is the input signal vector

of Ŝc(z) with input v(n) at time n.

Few Remarks Regarding Carini’s method:

1. The first part of ŝc(n), i.e., ŝ0(n), is to model the artificially introduced

delay z−∆, so after the convergence of ANC system, the term
(
ŝT0 (n)ŝ0(n)

)
in (3.20) is very small (ideally zero) ⇒ N̂s(n) ≈ 0 . The perturbation in

acoustic paths would cause an increase in the power of eŝ(n), so the term

Peŝ(n) in the denominator of (3.19) will drive the condition N̂s(n)/Peŝ(n) >

µsmin to be false, and hence the step-size for ŝc(n) will be determined by

µsmin/
(
xT
ŝc(n),v(n)

(n)xŝc(n),v(n)(n)
)

. This means that in Carini’s method once

the ANC system converges, the step-size for SPM filter will stay at small

value even if there is a perturbation in the acoustic paths. The small value

of step-size, even when the acoustic paths are perturbed, is undesirable and

thus resulting in a poor tracking performance. Here µsmin is used to avoid

freezing completely the adaptation in these conditions.

2. The overall computational complexity of Carini’s method is very high. The

high computational cost is mainly due to the online estimation of optimal

normalized step-size parameters for ANC filter and SPM filter.
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3. The ratio R(n) in (3.10) is constant in all operating conditions (The value

of the constant is selected as 1 for Carini’s method). This means, that

E[(vs(n))
2] = G2(n)||s(n)||2E[v2g(n)] = E[(d(n)−yws(n))

2] is always satisfied.

As E[v2g(n)] = 1, and at steady-state the term ||s(n)||2 is almost constant,

therefore gain G(n) at steady-state is proportional to
√

E[(d(n)− yws(n))2].

After the convergence of ANC system: 1) the step-size for ŝc(n) is determined

by second part of (3.19) (step-size stays small), and 2) the input signal power

for ŝc(n) is determined by the E[(d(n) − yws(n))
2]. These two conditions

results in slow convergence of SPM filter, when there is a perturbation in the

acoustic paths.

4. The presence of uncorrelated disturbance vd(n) (used to model the back-

ground noise) at the error microphone contributes to the power of residual

error signal, Pe(n). The signal vd(n) with large variance results in large value

of the gain G(n) (see (3.15)), thus degrades the NRP of ANC system.

3.2 Proposed Methods

3.2.1 Proposed Method-1

. The block diagram of proposed method-1 [47] is shown in Fig. 3.3. Here fixed

step-size LMS adaptive algorithm is used for both the SPM filter and ANC filter.

The use of fixed step-size LMS adaptive algorithms, instead of optimal NLMS adap-

tive algorithms, reduces the computational complexity of the proposed method-1

compared to Carini’s method. In order to solve the first of the above mentioned

problems with Carini’s method [46], i.e., to efficiently track the time-varying sec-

ondary path even after the convergence of ANC system, a new gain scheduling
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Figure 3.3: Block diagram of proposed method-1 for Online secondary path mod-

eling with gain scheduling [47].

strategy based on the error signal, eŝ(n), of the Ŝ(z) is proposed. The time-varying

gain G(n) in proposed method-1 [47] is computed as

G(n) =

 Px/Pvg (β(n) > Px)

β(n)/Pvg (Otherwise)
, (3.22)

where Px and Pvg , respectively, are the powers of the reference signal, x(n), and

auxiliary noise vg(n) which can be estimated using (3.6), and the time-varying

term β(n) can be computed as

β(n) = αβ(n− 1) + γe2ŝ(n), (3.23)

where 0 < α < 1 and γ > 0 are controlling parameters, and eŝ(n) is the error

signal of SPM filter.
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At the start-up, when ANC system is far from steady-state, the error signal

eŝ(n) is large, therefore setting the gain G(n) to a higher value, upper bounded

by the Px/Pvg . This will increase the convergence speed of Ŝ(z). The error signal

eŝ(n) is decreasing in nature. As the ANC system converges the signal eŝ(n) and

hence the gain G(n) decreases, thereby reducing the contribution of the auxiliary

noise in residual error signal e(n). In the case of perturbation in acoustic paths

the error signal eŝ(n) will increase, setting the gain, G(n), again to a larger value,

allowing the SPM filter to converge quickly, and hence can efficiently track the

perturbation in the acoustic paths.

In proposed method-1, the weight update equations for ANC filter and SPM

filter are the same as used for Akhtar’s method [44] (see (3.1) and (3.3)) with two

exceptions. First fixed step-size µs, instead of VSS µs(n), is used in the weight

update equation of SPM filter, and second, instead of using (3.8), the gain in

proposed method-1 is computed using (3.22) and (3.23). The algorithm for the

proposed method-1 is given in Table. 3.1

3.2.2 Proposed Method-2

In proposed method-1, MFxLMS adaptive LMS algorithm is used for ANC filter.

In chapter 2 (see Fig. 2.10) a computationally efficient structure is proposed for

MFxLMS algorithm based ANC system. In proposed method-2 the structure of

Fig. 2.10 is used in combination with the time-varying gain computed using (3.22)

and (3.23). The proposed method-2 is computationally efficient than proposed

method-1 and can save (2Ls − 1) computations per iteration. It will be shown in

the simulation results that the performance of proposed method-2 is almost same

as that of proposed method-1.
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Table 3.1: Algorithm for the proposed method-1 [47].

d(n) = pT (n)xp(n),x(n)(n); yw(n) = wT (n)xw(n),x(n)(n)

v(n) = G(n)vg(n) (G(n) = 1 for first iteration)

yws(n)− vs(n) = sT (n)xs(n),(yw(n)−v(n))(n)

e(n) = d(n)− yws(n) + vs(n)

vŝ(n) = ŝT (n)xŝ(n),v(n)(n); eŝ(n) = e(n)− vŝ(n)

ywŝ(n) = ŝT (n)xŝ(n),yw(n); d̂(n) = eŝ(n) + ywŝ(n)

yŝ(n) = ŝT (n)xŝ(n),x(n)(n); yŝw(n) = wT (n)xw(n),yŝ(n)(n)

ew(n) = d̂(n)− yŝw(n)

ŝ(n+ 1) = ŝ(n) + µseŝ(n)xŝ(n),v(n)(n)

w(n+ 1) = w(n) + µwew(n)xLMS,yŝ(n)(n)

Using (3.6) compute Px, and Pvg

β(n) = αβ(n− 1) + γe2ŝ(n)

Compute G(n) using (3.22)

The weight update equations of W (z) and Ŝ(z) are same as in proposed method-

1 with two exception. The vector xLMS,v(n)(n) = [v(n), v(n−1), · · · , v(n−Ls+1)]T

is used in the update equation of SPM filter, and instead of using ew(n), in proposed

method-2 the signal eŝ(n) is used in the weight update equation of W (z). The

algorithm for the proposed method-2 is given in Table. 3.2
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Table 3.2: Algorithm for the proposed method-2.

d(n) = pT (n)xp(n),x(n)(n); yw(n) = wT (n)xw(n),x(n)(n)

v(n) = G(n)vg(n) (G(n) = 1 for first iteration)

yws(n)− vs(n) = sT (n)xs(n),(yw(n)−v(n))(n)

e(n) = d(n)− yws(n) + vs(n)

vŝ(n)− ywŝ(n) = ŝT (n)xŝ(n),(v(n)−yw(n))(n)

d̂(n) = e(n)− vŝ(n) + ywŝ(n)

yŝ(n) = ŝT (n)xŝ(n),x(n)(n); yŝw(n) = wT (n)xw(n),yŝ(n)(n)

eŝ(n) = d̂(n)− yŝw(n)

ŝ(n+ 1) = ŝ(n) + µseŝ(n)xLMS,v(n)(n)

w(n+ 1) = w(n) + µweŝ(n)xLMS,yŝ(n)(n)

Using (3.6) compute Px, and Pvg

β(n) = αβ(n− 1) + γe2ŝ(n)

Compute G(n) using (3.22)

3.2.3 Simulation Results

In this section, simulation results are presented, to compare the the performance

of MFxLMS based ANC system without gain scheduling, Akhtar’s method [44],

Carini’s method [46], proposed method-1 [47], and proposed method-2. The per-

formance comparison is carried out on the basis of following performance measures.

• Relative modeling error of the secondary path S(z) being defined as

∆Ds(n) = 10log10

||s− ŝ(n)||2

||s||2
dB. (3.24)
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• Mean-noise-reduction (MNR) at the error microphone being defined as

MNR(n) = 10 log10

E[e2(n)]

E[d2(n)]
dB. (3.25)

Using data from [4], the acoustic paths P (z), and S(z) are modeled as FIR

filters of tap-weight lengths 48, 16, respectively. The adaptive filters W (z), Ŝ(z)

and Ŝc(z) (in Carini’s method) are selected as FIR filters of tap-weight length 32,

16 and 16 + ∆ respectively. The value of ∆ and other simulation parameters are

given in Table 3.3. The step-size parameters are experimentally adjusted for fast

and stable convergence of ANC system. In all methods, the adaptive filter weights

are initialized by null vectors. In Carini’s method the coefficients of the first part of

ŝc(n), i.e., ŝ0(n) are initialized by all ones. The original unwanted noise signal x(n),

at the reference microphone, is a multi-tonal input with frequencies 100, 200, 300,

and 400 Hz, and its variance is adjusted to 2. A zero-mean WGN with variance

0.002 is added with x(n) to account for any measurement noise. The modeling

excitation signal vg(n) is a zero-mean WGN with variance 1 for all methods.

For stable operation of MFxLMS/MFxNLMS algorithm based ANC system the

phase error between s(n) and SPM filter must be within the bound of ±900 [15],

[19]. Since the secondary path s(n) is unknown, therefore one option could be the

offline modeling (d(n) = 0) of the secondary path to satisfy the ±900 bound at

the start-up of ANC system. The other option (with d(n) present) is to keep ANC

filter in sleep state for a while and only the SPM is adapted. In this chapter, the

second option is used and ANC filter is in sleep state from n = 0 to n = 5000 as

did by Carini and Malatini in [45, 46]. In all the simulation results the background

noise, vd(n), is assumed to be zero. The sampling frequency is 2kHz, and the

forgetting factor is selected as 0.99. The jumps in the middle of all the simulation

results is due to the perturbation in the impulse responses of the acoustic paths
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Table 3.3: Simulation parameters for online secondary path modeling 1) without

gain scheduling (modified filtered-x-LMS algorithm) and 2) with gain scheduling (All

other methods).

Parameters

MFxLMS µw = 5× 10−5, µs(n) = µs = 1× 10−2.

Akhtar’s method [44] µw = 5× 10−5, µsmin = 1× 10−3, µsmax = 1× 10−2,

σmin = 0.001, σmiax = 1.

Carini’s method [46] µsmin = 4× 10−3, ∆ = 8, λ̂ = 0.6, R(n) = 1

Proposed method-1 [47] µw = 5× 10−5, µs(n) = µs = 7× 10−3,

α = 0.9985, γ = 0.004.

Proposed method-2 µw = 5× 10−5, µs(n) = µs = 7× 10−3,

α = 0.9985, γ = 0.004.

P (z) and S(z). The data for the perturbed acoustic paths is also taken from [4].

All the simulation results are averaged over 10 independent realizations.

In Fig. 3.4(a) the curves for relative modeling error, as defined in (3.24), are

plotted in dB for different methods. It is clear from Fig. 3.4(a) that Carini’s

method results in poor modeling accuracy of SPM filter. Since in Carini’s method,

after the convergence of ANC system, the step-size for SPM filter freezes to a

small value, therefore slower convergence of SPM filter is observed in Carini’s

method after acoustic path perturbation. All other methods including the pro-

posed method-1 and proposed method-2 performs almost similarly, and results in

improved modeling accuracy of SPM filter compared to Carini’s method.
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Figure 3.4: (a) Relative modeling error, ∆Ds(n)(dB), (b) Mean-noise-reduction,

MNR(n) (dB).

As stated earlier, higher modeling accuracy does not mean less residual error.

However, improved modeling accuracy is desirable to have large stability margins.

In Fig. 3.4(b) the curves for MNR, as defined in (3.25), are plotted in dB for

different methods. It is clear from Fig. 3.4(b), that MFxLMS algorithm with-

out gain scheduling degrades the NRP of ANC system. Akhtar’s method gives

improved NRP compared to MFxLMS algorithm without gain scheduling. This

improved NRP performance of Akhtar’s method is due to gain scheduling strat-

egy given in (3.8). However, for Akhtar’s method the value of ρ(n) is never zero

in steady-state, and σ2
max will affect the NRP of ANC system. Although Carini

method has poor modeling accuracy, but the gain scheduling strategy of Carini’s

method is efficient than Akhtar’s method, and hence results in improved NRP of

ANC system. The performance of proposed method-1 and proposed method-2 is

almost similar. Both the proposed method-1 and proposed method-2 gives model-

ing accuracy almost equal to the one achieved by Akhtar’s method, and NRP as

achieved by Carini’s method.
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3.2.4 Effect of γ on ∆Ds(n) and MNR(n)

From (3.22) and (3.23) it is clear, that the large value of γ will result in large

value of β(n). The gain at steady-state is determined by β(n)/Pvg(n) (see (3.23)).

The large value of β(n) at steady-state will result in large gain and thus degrades

the NRP of ANC system. However, if we select a small value of γ, then it means

that we are giving less weightage to the error signal eŝ(n) (see 3.23). The small

value of γ thus results in poor modeling accuracy of SPM filter. In order to meet

the conflicting requirements of having good tracking capability of SPM filter and

improved NRP, it is desirable that the parameter γ is made time-varying. When

SPM filter is far from steady-state, the large value of γ is required to give more

weightage to the error signal eŝ(n) and thus allow the SPM filter to converge

properly. The small value of γ is required at steady-state to reduce the gain to

a lower steady-state value, and hence to improve the NRP of ANC system. In

order to show the effect of using different values of γ on ∆Ds(n) and MNR(n), a

simulation experiment is performed for proposed method-1 with same simulation

parameters as in Table. 3.3 and with values of γmax = 0.01 and γmin = 0.001. The

simulation results are shown in Fig. 3.5. It is clear from Fig. 3.5(b) that with

γ = γmin improved NRP is achieved. This is because, with small value of γ the

gain drops quickly and settles to a lower steady-state value. This quick drop of

the gain G(n) will reduce the variance of input excitation signal of SPM filter, and

thus freezing the adaptation of SPM filter. In this case the SPM filter may not

converge to the optimal value. On the other hand, the large value of γ = γmax

will not allow the gain to drop very quickly, thus avoids freezing of the adaptation

process of SPM filter. It is clear form Fig. 3.5(b) that for γ = γmax the SPM filter

continues adaptation and settles to a lower steady state value. However, it is clear

74



0 5 10

x 10
4

−50

−40

−30

−20

−10

0

Iteration (n)

∆D
s (

n)
, (

dB
)

 

 
γ
 max

=0.01

γ
 min

=0.001

(a)

0 5 10

x 10
4

−40

−30

−20

−10

0

10

M
N

R
(n

),
 (

dB
)

Iteration (n)

 

 
γ
 max

=0.01

γ
 min

=0.001

(b)

Figure 3.5: In proposed method-1, the effect of γ on (a) Relative modeling error,

∆Ds(n)(dB), (b) Mean-noise-reduction, MNR(n) (dB).

from Fig. 3.5(b) that γ = γmax degrades the MNR(n) value.

The above discussion of the effect of using different values of γ on ∆Ds(n) and

MNR(n) in proposed method-1 is equally applicable to proposed method-2 as well.

3.2.5 Remarks Regarding Proposed Method-1 and Method-

2

1. In proposed method-1 and proposed method-2, LMS adaptive algorithm is

used for ANC filter and SPM filter. For LMS adaptive algorithm the allow-

able range of step-size parameter, µ, for which the algorithm remains stable

is given by [4]

0 < µ <
2

3LPx

, (3.26)

where L is the length of adaptive filter, Px is the power of the input excitation

signal of adaptive filter. It is clear from (3.26), that the LMS adaptive
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algorithm is not suitable for non-stationary input excitation signal. This is

because the time-varying variance of the input excitation signal may drive the

initially selected stable step-size parameter µ out of the allowable stable range

of operation. For non-stationary input signal it is desirable that the step-size

parameter µ should adjust its value to stay with in the allowable range. The

solution to the problem is to use normalized LMS (NLMS) algorithm [51]-

[54].

2. In proposed method-1 and proposed method-2 fixed value of γ is used for

gain scheduling. As discussed previously, in order to meet the conflicting

requirements of good modeling accuracy of SPM filter and improved NRP of

ANC system, the value of γ should be time-varying.

3. At steady-state, The NRP of proposed method-1 and proposed method-2 is

inferior to that of Carini’s method. This is clear from Fig. 3.4(b), that the

MNR(n) curves of proposed methods have already converged to steady-state

value, while that of Carini’s method has a decreasing trend and can settle to

lower steady state value if the time duration of simulation is increased.

In order to address the above mentioned problems, a new gain scheduling strategy

with time-varying parameter γ is proposed. In addition to this, NLMS adaptive

algorithm is used for both the ANC filter and the SPM filter to deal with non-

stationary input excitation signals.

3.2.6 Proposed Method-3

The structure of the proposed method-3 [48] is almost the same as given in Fig. 3.3,

with two exceptions: 1) NLMS adaptive algorithm is used for ANC filter and SPM
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filter to deal with non-stationary input excitations signals, and 2) For time-varying

γ, two parameters γmin and γmax are given as an input to the gain computation

block in Fig. 3.3.

The normalized step-size for ANC filter is computed as µw(n)

µw(n) =
µw

xT
NLMS,yŝ(n)(n)xNLMS,yŝ(n)(n) + δ

, (3.27)

where µw is the fixed step-size parameter, δ is a small positive number to avoid

division by zero, and xNLMS,yŝ(n)(n) is the input signal vector of NLMS adaptive

algorithm for W (z) as defined in (3.16). Similarly the normalized step-size for

SPM filter is computed as µs(n)

µs(n) = min
(

µs

xT
ŝ(n),v(n)(n)xŝ(n),v(n)(n)

, µs

)
, (3.28)

where µs is the fixed step-size parameter, and xŝ(n),v(n)(n) = [G(n)vg(n), G(n −

1)vg(n− 1), · · · , G(n− Ls + 1)vg(n− Ls + 1)]T is the input signal vector of SPM

filter. The gain G(n) in proposed method-3 is computed as

G(n) =

 Px(n)/Pvg (β(n) ≥ Px(n)/Pvg)

β(n) (Otherwise)
, (3.29)

where Px(n) (the index n is used to emphasize that now the power of input exci-

tation signal is time-varying) and Pvg , respectively, are the powers of the reference

signal x(n) and auxiliary noise vg(n) both of which can be estimated using (3.6),

and the time-varying term β(n) can be computed as

β(n) = αβ(n− 1) + γ(n)
Peŝ(n)

Px(n) + Pvg

, (3.30)

where 0 < α < 1 and γ(n) > 0 are controlling parameters, and eŝ(n) is the

error signal of SPM filter. The value of the time-varying parameter γ(n) can be

computed as

γ(n) = ρ(n)γmin + ((1− ρ(n))γmax), (3.31)
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where γmin and γmax are minimum and maximum values of γ(n), respectively, that

are selected by trial and error method. It is important to note that the variation

of ρ(n) in proposed method is different from that of Akhtar’s method. This is

because of using different gain scheduling strategies in these methods. In proposed

method, when SPM filter is far from steady-state ρ(n) ≈ 0 ⇒ γ(n) = γmax, and

after the convergence of SPM filter and ANC system ρ(n) → 1 ⇒ γ(n) = γmin.

The variation of ρ(n) in proposed method-3 is explained in the next section.

The weight update equations for ANC filter and SPM filter are same as for

proposed method-1 with following exceptions: 1) Instead of µw, µw(n) (see (3.27))

is used for ANC filter, 2) Instead of µs, µs(n) (see (3.28)) is used for SPM filter,

and 3) The gain is computed using (3.29)-(3.31). Also it is important to note

that the step-size µs(n) for the SPM filter is upper bounded by µs (see (3.28)) to

avoid very large value of step-size. The reason behind the large value of step-size

is the small value of the denominator term (xT
ŝ(n),v(n)(n)xŝ(n),v(n)(n)) in (3.28) due

to proposed gain scheduling. The algorithm for the proposed method-3 is given in

Table. 3.4

Variation of ρ(n) in proposed Method-3 [48]: For convenience, the equa-

tion for ρ(n) as defined in (3.5) is repeated here, and is given by

ρ(n) =
Peŝ(n)

Pe(n)
=

E[(d(n)− yws(n))
2] + E[(vs(n)− vŝ(n))

2]

E[(d(n)− yws(n))2] + E[(vs(n))2]
, (3.32)

It is important to note that the same equation is used to compute the parame-

ter ρ(n) in Akhtar’s method and proposed method-3. However, the variation of

the parameter ρ(n) is different for Akhtar’s and proposed method-3. This is due

to different gain scheduling strategies of Akhtar’s and proposed method-3. The

variation of ρ(n) for Akhtar’s method is already explained, and it is clear form

that explanation that when ANC system is far from steady-state ρ(n) ≈ 1, and
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Table 3.4: Algorithm for the proposed method-3 [48].

d(n) = pT (n)xp(n),x(n)(n); yw(n) = wT (n)xw(n),x(n)(n)

v(n) = G(n)vg(n) (G(n) = 1 for first iteration)

yws(n)− vs(n) = sT (n)xs(n),(yw(n)−v(n))(n)

e(n) = d(n)− yws(n) + vs(n)

vŝ(n) = ŝT (n)xŝ(n),v(n)(n); eŝ(n) = e(n)− vŝ(n)

ywŝ(n) = ŝT (n)xŝ(n),yw(n); d̂(n) = eŝ(n) + ywŝ(n)

yŝ(n) = ŝT (n)xŝ(n),x(n)(n); yŝw(n) = wT (n)xw(n),yŝ(n)(n)

ew(n) = d̂(n)− yŝw(n)

µw(n) and µs(n) are computed, respectively, using (3.27), (3.28)

ŝ(n+ 1) = ŝ(n) + µs(n)eŝ(n)xŝ(n),v(n)(n)

w(n+ 1) = w(n) + µw(n)ew(n)xLMS,yŝ(n)(n)

Using (3.6) compute Px(n), Peŝ(n), Pe(n), and Pvg

Compute ρ(n), γ(n), and β(n), respectively, using (3.5), (3.31), and (3.30).

Compute G(n) using (3.29)

ρ(n) → 0 as SPM filter and ANC system converges.

The variation of ρ(n) in proposed method-3 is almost apposite to that of

Akhtar’s method. In proposed method-3 when SPM filter is far from steady-state

ρ(n) ≈ 0 and ρ(n) → 1 as SPM filter and ANC system converges. When SPM filter

is far from steady state, the gain scheduling of the proposed method-3 is such that

it results in E[(vs(n))
2] >> E[(d(n)−yws(n))

2] and ρ(n) ≈ 0. After SPM filter and

ANC system converges, the gain scheduling strategy of proposed method-3 reduces

the gain G(n) to very small value ensuring E[(d(n) − yws(n))
2] >> E[(vs(n))

2],

79



and hence ρ(n) → 1.

3.2.7 Simulation Results

In this section simulation results are presented to compare the performance of the

proposed method-3, with Akhtar’s [44] and Carini’s method [46]. The original

unwanted noise signal x(n) is assumed to be non-stationary. The signal x(n) is

a multi-tonal input with frequencies 100, 200, 300, and 400 Hz, and initially its

variance is adjusted to 2. The variance of the signal x(n) is changed to 6, 5, and

1, respectively, at n = 20000, n = 50000, and n = 70000. A zero-mean WGN

with variance 0.002 is added with x(n) to account for any measurement noise. The

simulation parameters for the proposed method-3 are given by: µw = 5 × 10−1,

µs = 7× 10−3, α = 0.995, γmin = 0.02, and γmax = 0.1. The rest of the simulation

parameters are the same as used for the simulation results of Fig. 3.4. The jumps

in the middle of all the simulation results is due to: 1) acoustic paths perturbation,

and 2) change in the variance of x(n) from 6 to 5. All the simulation results are

averaged over 10 independent realizations.

In Fig. 3.6(a), the curves for relative modeling error, as defined in (3.24)

are plotted in dB for different methods. It is clear from Fig. 3.6(a) that the

performance of proposed method-3 is almost same as that of Crini’s method. As

stated earlier that higher modeling accuracy does not mean less MNR value. The

objective of ANC system is to reduce the noise at the summing junction. It is

clear from Fig.3.6(b) that the proposed method-3 outperforms than Akhtar’s and

Carini’s method in terms of improving the MNR value at the steady-state.

Fig. 3.7(a) shows the variation of parameter ρ(n) in Akhtar’s and proposed

method-3. Due to different gain scheduling strategies of Akhtar’s and proposed
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Figure 3.6: (a) Relative modeling error, ∆Ds(n)(dB), (b) Mean-noise-reduction,

MNR(n) (dB).

method-3, the variation of ρ(n) is different. In Akhtar’s method, when ANC system

is far from steady-state ρ(n) ≈ 1, and ρ(n) → 0 as the SPM filter and ANC system

converges. In proposed method-3, the variation of ρ(n) is such that it is close to

zero when SPM filter is far from steady-state and ρ(n) → 1 as SPM filter and

ANC system converges.

Fig. 3.7(b) shows the variation of parameter γ(n) in proposed method-3 as

defined in (3.21). When ANC system is far from staedy-state ρ(n) ≈ 0 ⇒ γ(n) =

γmax. As the ANC system converges ρ(n) → 1 ⇒ γ(n) → γmin.

Fig. 3.8(a) and 3.8(b), respectively shows the plot of normalized step-size µs(n)

and µw(n). As stated earlier, instead of offline modeling of SPM filter, the ANC

filter is in sleep state from n = 0 to n = 5000 and only the SPM filter is allowed to

update its coefficients. Therefore the step-size parameter µw(n) is not allowed to

update during this period, and this can be observed form Fig. 3.8(b) where µw(n)

is not defined for n = 0 to n = 5000
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Figure 3.7: (a) Variation of parameter ρ(n) as defined in (3.5), (b) Variation of

parameter γ(n) as defined in (3.31).

3.2.8 Remarks Regarding Proposed Method-3

1. In proposed method-3, NLMS adaptive algorithms are used for adaptive

filters, so it can work fine with non-stationary input excitation signals.

2. The gain scheduling strategy of proposed method-3 is such that it improves

the MNR(n) value of ANC system at steady-state, however the modeling

accuracy of SPM filter is degraded compared to proposed method-1 and

proposed method-2. It is desirable to have both the good modeling accuracy

to increase the stability margins, and lower MNR(n) value at steady-state.

3. The gain in proposed method-1, proposed method-2, and proposed method-

3 is upper bounded by the power ratio (Px(n)/Pvg) (see (3.22), and (3.29)),

where Px(n) and Pvg , respectively, are the powers of original unwanted noise

signal x(n) sensed by the reference microphone, and auxiliary random WGN

signal. The term (d(n)−yws(n)) in the error signal e(n) acts as an interference
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Figure 3.8: (a) Time-varying step-size parameter µs(n) as defined in (3.28), (b)

Time-varying step-size parameter µw(n) as defined in (3.27).

for SPM filter, while the term vs(n) (function of G(n), see (3.12)) in e(n) is

the desired signal for SPM filter. In case of strong perturbation in acoustic

paths, the interference term of SPM filter (d(n)− yws(n)) may be very large.

Under this scenario, if the gain is upper bounded by the ratio (Px(n)/Pvg),

than it may result in a very low SNR, (vs(n)/(d(n) − yws(n))), value for

SPM filter, and ANC system may become unstable. The simulation results

with strong perturbation in acoustic paths are shown in Fig. 3.9. All the

simulation conditions are the same as used for Fig. 3.6 except that instead of

mild perturbation in acoustic paths, a strong perturbation is introduced in

the middle of simulation. The strong perturbation is simulated by giving 2

samples right circular shift to the impulse response of original acoustic paths.

It is clear from Fig. 3.9, that the proposed method-3 is unstable after the

acoustic paths perturbation in the middle of simulation.

4. The gain G(n) in all the existing methods and in the proposed methods
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Figure 3.9: Proposed method-3 with strong perturbation in acoustic paths: (a)

Relative modeling error, ∆Ds(n)(dB), (b) Mean-noise-reduction, MNR(n) (dB).

depends either on the signal e(n) or on the signal eŝ(n). The uncorrelated

WGN disturbance vd(n) (to model the background noise) at the error mi-

crophone (see Fig. 3.3) directly contributes to both e(n) and eŝ(n). This

means that the large value of vd(n) results in large value of gain G(n). At

the steady-state, the large value of G(n) degrades the NRP of ANC system

which is undesirable.

In order to solve the above mentioned problems a new gain scheduling strategy is

proposed in [49].

3.2.9 Proposed Method-4

The block diagram of the proposed method-4 [49] is shown in Fig. 3.10. Here a

new gain scheduling strategy is proposed which

• improves the convergence speed of SPM filter,

• improves the NRP of ANC system at steady-state,
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• improves the performance of ANC system in the presence of uncorrelated

WGN at error sensor,

• makes the ANC system more robust, so that it should remain stable even for

very strong perturbations in acoustic paths, and

• reduces the computational cost of the algorithm compared to Carini’s method.

Assuming vd(n) = 0 in Fig. 3.10, it is evident from (3.11) that the time-varying

gain G(n) can be employed to control the contribution of E[(vs(n))
2] to E[e2(n)]. In

the proposed approach the gain G(n) is computed such that the ratio R(n) (defined

in (3.10)) is time-varying. As long as ŝ(n) is away from s(n), the ratio R(n) is lower

than 0 dB, i.e., E[(vs(n))
2] > E[(d(n)−yws(n))2], guaranteeing fast convergence of

SPM filter. The fast convergence of SPM filter is desirable, because accurate model

of s(n) is needed for modified filtered-x normalized least-mean-square (MFxNLMS)

algorithm-based adaptation of ANC filter. After convergence of the SPM filter,

R(n) becomes greater than 0 dB ensuring that E[(vs(n))
2] < E[(d(n)− yws(n))

2],

which in turn improves the NRP.

Gain Scheduling Strategy of the proposed Method-4: In proposed

method-4 [49], a new two-stage gain scheduling strategy is proposed to compute

the time-varying gain, G(n). The two stages are described as

Stage 1: When the ANC system is very far from steady-state i.e, when Peŝ(n) >

Px(n). This situation can occur

• at the start-up of ANC system, and

• when there is a strong perturbation in the acoustic paths.

Stage 2: When the ANC system is close to steady-state i.e, when Peŝ(n) ≤

Px(n).
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Figure 3.10: Online secondary path modeling with gain scheduling, proposed

method-4 [49].

The subsequent discussion will explain the computation of G(n) for each of these

stages one by one.

Stage 1: Peŝ(n > Px(n), When the ANC System is Very Far From

Steady-State. From Fig. 3.10 the error signal, eŝ(n) can be computed as

eŝ(n) = [d(n)− yws(n)] + [vs(n)− vŝ(n)], (3.33)

where the first part (d(n) − yws(n)) carries information about the convergence of

the ANC filter w(n), and acts as an interference to the adaptation of the SPM

filter. The second part (vs(n) − vŝ(n)) plays exactly the reverse role, i.e., carries

information about the convergence of ŝ(n) and acts as an interference for w(n).
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The power of the error signal of ŝ(n), can be written as:

Peŝ(n) = Pd−yws(n) + Pvs−vŝ(n), (3.34)

where Pd−yws(n) denotes the estimate of the power of interference term (d(n) −

yws(n)) in the error signal of ŝ(n), and Pvs−vŝ(n) denotes the estimate of the power

of the desired term (vs(n) − vŝ(n)) in the error signal of ŝ(n). At this stage, the

interference term (d(n) − yws(n)) for ŝ(n) is strong, therefore the gain G(n) is

varied in accordance with 1) the convergence status of w(n) (power of interference

term Pd−yws(n)), 2) the convergence status of ŝ(n). At this stage the gain G(n)

is computed by making the power Pvs(n) to be equal to the power Peŝ(n− 1). In

the case of ANC systems, the signal vs(n) is not accessible, therefore the following

condition

Pvŝ(n) = Peŝ(n− 1), (3.35)

is forced to be satisfied, where Peŝ(n − 1)) is estimated online using (3.6), and

Pvŝ(n) can be expressed as

Pvŝ(n) ≈ G2(n)||ŝ(n)||2E[v2g(n)] = G2(n)||ŝ(n)||2, (3.36)

where E[v2g(n)] = 1. Equating the right hand sides of (3.35) and (3.36), and solving

for G(n), we get

G(n) =

√
Peŝ(n− 1)

||ŝ(n)||2
=

√
Pd−yws(n− 1) + Pvs−vŝ(n− 1)

||ŝ(n)||2
. (3.37)

As long as ŝ(n) is away from s(n), the gain G(n) will keep on increasing due to the

presence of the term Pvs−vŝ(n− 1) in Peŝ(n− 1). This will ensure fast convergence

of ŝ(n) and result in the ratio R(n) < 0 dB. When ŝ(n) → s(n), vŝ(n) → vs(n),

and eŝ(n) → (d(n)− yws(n)), the positive feedback scenario for the gain G(n) will

automatically breakup and the ratio R(n) → 0 dB.
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Stage 2: Peŝ(n) ≤ Px(n), When the ANC System is Close to Steady-

State. If only (3.37) is used for computing gain, G(n), then the maximum per-

formance we can achieve in steady-state can result in R(n) = 0 dB. However, to

have improved NRP at steady-state, it is desirable to have R(n) > 0 dB. When

the condition Peŝ(n) ≤ Px(n) is satisfied, the ANC system is close to steady-state,

and in this case the gain G(n) is computed as

G(n) =


√

Px(n)
Pvg

(β(n) > Px(n)
Pvg

)

β(n) (Otherwise)
, (3.38)

where Px(n) and Pvg , respectively, are the powers of the reference signal, x(n),

and auxiliary noise vg(n) which can be estimated using (3.6), and the time-varying

term β(n) can be computed as

β(n) = αβ(n− 1) + γ(n)

(
Peŝd(n)

Pvg

)2

, (3.39)

where 0 < α < 1 and γ(n) > 0 (will be explained later in this section) are

controlling parameters, and Peŝd(n) is computed as

E[eŝ(n)eŝ(n− 1)] ≈ Peŝd(n) = λPeŝd(n− 1) + (1− λ)eŝ(n)eŝ(n− 1), (3.40)

where E[eŝ(n)eŝ(n− 1)] is the autocorrelation between eŝ(n) and eŝ(n− 1). When

switching occurs from first stage of gain scheduling to second stage, the condition

(β(n) > (Px(n)/Pvg)) may be true. In such a situation, if we make G(n) = β(n)

then a large value of β(n) will result in large value of G(n), thus resulting in a

large value of the interference term (vs(n) − vŝ(n)) in the error signal of w(n).

This may result in the divergence of w(n), and hence the whole ANC system may

become unstable. In order to avoid such a situation the value of the G(n) is upper

bounded by (
√

Px(n)
Pvg

) (see 3.38), until the condition (β(n) > (Px(n)/Pvg)) is false;

otherwise the gain will follow the variation of β(n).
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In the presence of an uncorrelated disturbance vd(n) at the error microphone

E[eŝ(n)eŝ(n− 1)] can be expressed as

E[eŝ(n)eŝ(n− 1)] = E[(d(n)− yws(n))(d(n− 1)− yws(n− 1))] +

E[(vs(n)− vŝ(n))(vs(n− 1)− vŝ(n− 1)] +

E[vd(n)vd(n− 1)]. (3.41)

where E[vd(n)vd(n− 1)] = 0 as vd(n) is assumed as uncorrelated zero mean WGN.

Thus the correlation E[eŝ(n)eŝ(n−1)] ≈ Peŝd(n) is independent of the uncorrelated

disturbance signal vd(n). In (3.41) a delay of at least Ls (length of secondary

path) samples is needed for correlation term corresponding to v(n) (second term

on R.H.S of (3.41)) to vanish [35]. It is worth mentioning that, in the presence of

an uncorrelated disturbance vd(n), the gain G(n) computed using instantaneous

energy of the signal eŝ(n) has large steady-state value [55]. Therefore, in proposed

method-4, employing Peŝd(n) in computing β(n) and hence the gain G(n) results

in small steady-state gain even in the presence of vd(n) at the error microphone.

For a typical simulation the effect of γ(n) on the relative modeling error ∆Ds(n)

and ANP, E[(vs(n))
2], is studied in Fig. 3.11. If there is a perturbation in the

acoustic paths, large value of γ(n) is desirable to have good modeling accuracy.

However a large value of γ(n) at steady-state would result in a large value for

E[(vs(n))
2], and thus degrades the NRP (see (3.11)). On the other hand, a small

value of γ(n) reduces the contribution of E[(vs(n))
2], but the performance is not

good in terms of ∆S(n). In order to meet the conflicting requirements of a small

steady-state value for E[(vs(n))
2], and a good modeling accuracy, the value of γ(n)

in (3.39) is made adaptive and is computed as

γ(n) = ρ(n)γmin + (1− ρ(n))γmax, (3.42)
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Figure 3.11: Proposed method-4: Effect of different values of γ on (a) Relative

modeling error, ∆Ds(n)(dB), (b) Auxiliary-noise-power, ANP (dB): γmax = 0.9,

γmin = 0.3, and γ(n) as defined (3.41).

where ρ(n) = Peŝ(n)/Pe(n) (see (3.32)), and is varying between 0 and 1. The

variation of ρ(n) in proposed method-4 is same as explained in proposed method-

3. When SPM filter is far from steady-state ρ(n) ≈ 0 ⇒ γ(n) = γmax. After the

convergence of SPM filter and ANC system ρ(n) → 1 ⇒ γ(n) = γmin.

Step-Size Variation: In contrast to Carini’s method, in the proposed method-

4 normalized step-sizes (instead of optimal normalized step-sizes) are employed for

w(n) and ŝ(n). This reduces the computations required to estimate the optimal

step-size parameters. In proposed method-4, the normalized step-size parameter,

µw(n), for ANC filter is computed as

µw(n) =
µw

xT
NLMS,yŝ(n)(n)xNLMS,yŝ(n)(n) + Pew(n)

, (3.43)

where µw is the fixed step-size parameter, xNLMS,yŝ(n)(n) is the input signal vector

of adaptive NLMS algorithm of W (z) at time n as defined in (3.16), and Pew(n) is

the power of error signal of ANC filter (can be estimated using (3.6)). It is shown
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Table 3.5: Algorithm for the proposed method-4 [49].

d(n) = pT (n)xp(n),x(n)(n); yw(n) = wT (n)xw(n),x(n)(n)

v(n) = G(n)vg(n) (G(n) = 1 for first iteration)

yws(n)− vs(n) = sT (n)xs(n),(yw(n)−v(n))(n); e(n) = d(n)− yws(n) + vs(n)

vŝ(n) = ŝT (n)xŝ(n),v(n)(n); eŝ(n) = e(n)− vŝ(n)

ywŝ(n) = ŝT (n)xŝ(n),yw(n); d̂(n) = eŝ(n) + ywŝ(n)

yŝ(n) = ŝT (n)xŝ(n),x(n)(n); yŝw(n) = wT (n)xw(n),yŝ(n)(n); ew(n) = d̂(n)− yŝw(n)

µw(n) and µs(n) are computed, respectively, using (3.43), (3.44)

ŝ(n+ 1) = ŝ(n) + µs(n)eŝ(n)xŝ(n),v(n)(n)

w(n+ 1) = w(n) + µw(n)ew(n)xLMS,yŝ(n)(n); Using (3.40) compute Peŝd(n)

Using (3.6) compute Px(n),Peŝ(n), Peŝ(n− 1), Pe(n), and Pvg

Compute ρ(n), γ(n), and β(n), respectively, using (3.5), (3.42), and (3.39)

if
(
Peŝ(n) > Px(n)

)
G(n) =

√
Peŝ

(n−1)

||ŝ(n)||2 else compute G(n) using (3.38)

in [56] that the term Pew(n) in (3.43) plays a very important role. In the case of

perturbation terms, vd(n) and (vs(n) − vŝ(n)), in the error signal, ew(n), of ANC

filter, the step-size decreases to a small value thus preventing ANC system from

divergence. The normalized step-size parameter for ŝ(n), µs(n), is computed as

µs(n) =
µs

xT
ŝ(n),v(n)(n)xŝ(n),v(n)(n) + Pywŝ

(n)
, (3.44)

where µs is another fixed step-size parameter, and xŝ(n),v(n)(n) is the input signal

vector of SPM filter as defined in (3.28). The term Pywŝ
(n) (estimated using

estimator like (3.6)) is employed to have some upper bound on µs(n). This upper

bound in (3.44) is needed to avoid the possibility of very large step-size value, when
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Table 3.6: Simulation parameters for online secondary path modeling with gain

scheduling.

Parameters

Akhtar’s method [44] µw = 5× 10−4, µsmin = 1× 10−3, µsmax = 1× 10−2,

σmin = 0.001, σmax = 0.1.

Carini’s method [46] µsmin = 4× 10−3, ∆ = 8, λ̂ = 0.6, R(n) = 1

Proposed method-4 [49] µw = 3× 10−1, µs = 8× 10−2,

α = 0.997, γmin = 0.3, γmax = 0.9.

the term (xT
ŝ(n),v(n)(n)xŝ(n),v(n)(n)) becomes very small in steady-state due to the

proposed gain scheduling.

In proposed method-4, the weight update equations for ANC filter and SPM

filter are the same as used for Akhtar’s method [44] (see (3.1) and (3.3)) with

following exceptions. First normalized step-sizes µw(n) (see (3.43)) and µs(n) (see

(3.44)), respectively, are used for ANC filter and SPM filter, and second the gain

G(n) in proposed method-4 is computed using (3.38) -(3.40) and (3.42). The

algorithm for the proposed method-4 is given in Table. 3.5.

3.2.10 Simulation Results

In this section, extensive simulation results for four different cases are presented

to compare the performance of the proposed method-4 with Akhtar’s [44], and

Carini’s method [46]. The performance comparison is carried out on the basis of

following performance measures.
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• Relative modeling error of secondary path, ∆Ds(n), as defined in (3.24)

• Mean-squared error (MSE) at the error microphone, E[e2(n)].

• Steady-state value of the time-varying gain, G(n).

For all the four cases, the simulation parameters used are shown in Table. 3.6. The

selection of step-size parameter for adaptive filter depends upon the adaptation

method, power of input signal of adaptive filter (except for NLMS algorithm),

and the power of interference term in the error signal of the adaptive filter. The

adaptation strategies for ANC filter and SPM filter in Akhtar’s, Carini’s, and the

proposed method-4 are different. In addition to this, a different gain scheduling

strategy results in different power of input signal for ŝ(n), and different power of

the interference term in the error signal ew(n) of ANC filter, therefore, the step-size

parameters are tuned for each method to achieve the fast and stable convergence

of the adaptive filters. In all methods, the adaptive filter weights are initialized

by null vectors (in the proposed method-4 ŝ(n), and in Carini’s method ŝ0(n) are

initialized by all ones). All other simulation parameters are same as used for the

simulation results of Fig. 3.4.

For stable operation of MFxNLMS algorithm based ANC system the phase

error between s(n) and ŝ(n) must be within the bound of ±900 [15], [19], [57]-[59].

Since the secondary path s(n) is unknown, therefore offline modeling (d(n) = 0)

of the secondary path can be used to satisfy the ±900 bound at the start-up of

ANC system. The other option (with d(n) present) is to keep ANC filter in sleep

state for a while and only the modeling filter ŝ(n) is adapted. As stated earlier, in

this chapter, the second option is used in which ANC filter is in sleep state from

n = 0 to n = 5000 as done in [45], and [46]. In all plots for simulation results, the

vertical line at n = 5000 marks the end of this phase.
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Case 1: Multi-Tonal Input With Time-Varying Power: In this case,

the reference signal, x(n), is a multi-tonal input with frequencies 100, 200, 300,

and 400 Hz. Initially variance of x(n) is selected as 2, and then changed to 6,

and 1 at time n = 25000, and n = 75000, respectively. A WGN with zero-mean

and variance 0.002 is added to x(n) to account for any measurement noise. The

simulation results for Case 1 are presented in Fig. 3.12, Fig. 3.13 and Fig. 3.14.

• Fig. 3.12(a) shows the plots for Peŝ(n)/Px(n), Px(n)/Pvg , and β(n). These

time-varying quantities are involved in the selection of (3.37) or (3.38) for

gain G(n) computation. The horizontal line (dashed-dotted) with amplitude

1 is plotted as a reference line to show that as long as Peŝ(n) > Px(n) ⇒
Peŝ

(n)

Px(n)
> 1, (3.37) is used for computing G(n). It is found from Fig. 3.12(a)

that from n = 0 to n = 5247 the ratio Peŝ(n)/Px(n) > 1, therefore (3.37)

is used for G(n). After n = 5247 the condition Peŝ(n)/Px(n) > 1 is false

and the G(n) is computed using (3.38). It is clear from Fig. 3.12(a) that

at the start of second stage (Peŝ(n)/Px(n) ≤ 1) of gain scheduling strategy

the value of β(n) is greater than Px(n)/Pvg and the gain is determined by

the input reference signal power, otherwise the gain follows the variation of

β(n). After convergence of the ANC system the change in the variance of the

input reference signal, x(n), changes the error signal eŝ(n), therefore causing

a change in Peŝd(n) and β(n).

• The plot for the time-varying gain G(n) is shown in Fig. 3.12(b). In Akhtar’s

method the value of ρ(n) is never zero, and hence G(n) is higher in steady-

state. In Carini’s method the gain is determined by E[(d(n) − yws(n))
2] in

all operating conditions, while in the proposed method the gain, at steady-

state, is varied on the basis of the correlation estimate of the two adjacent
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values of the error signal eŝ(n) of SPM filter. This results in a much smaller

steady-state value of G(n) as compared to that of Carini’s method. After

convergence of ANC system the change in the variance of the input reference

signal x(n) changes the signal eŝ(n), therefore causing a change in G(n).

• As E[(vs(n))
2] = G2(n)||s(n)||2, so a small value of the gain G(n) results in

a small ANP at the error microphone. The curves for the mean-square value

of the auxiliary noise at the error microphone are shown in Fig. 3.12(c). The

change in the variance of x(n) changes Peŝ(n). The change in Peŝ(n) causes

a change in G(n) and therefore changes E[(vs(n))
2].

• Fig. 3.13(a) shows the plot of relative modeling error ∆Ds(n), as defined

in (3.24). To explain the fast convergence of the SPM filter in the proposed

method consider n ≥ 5247 where the gain G(n) is computed using (3.38).

As stated earlier, as long as in the second stage of gain scheduling the value

of β(n) > Px(n)/Pvg the gain is determined by the input reference signal

power and is higher than Akhtar’s and Carni’s methods (see Fig. 3.12(b)).

This large value of the gain G(n) results in a large power of input signal,

E[(v(n))2], for ŝ(n) and hence a large value for E[e2(n)]. This results in

the fast convergence of the SPM filter ŝ(n). It is shown in [60] that after

the convergence of ANC system the norms of the adaptive filters ŝ(n) and

w(n) should remain insensitive to changes in input reference signal power. In

Fig. 3.13(a), we observe that there is no change in ∆Ds(n) in the proposed

method even when the variance of the input reference signal x(n) changes.

This is in accordance with the theory mentioned in [60].

• In Fig. 3.13(b) MSE curves are plotted for various methods. For changes
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in the input reference signal variance at time n = 25000 and n = 75000,

the value of E[e2(n)] in the proposed method is almost same as in Carini’s

methods. When ANC system is in early stages of adaptation or when the

acoustic paths are perturbed, in both these situation fast convergence of ŝ(n)

is desirable. The proposed gain scheduling scheme is such that as far as ŝ(n)

is away from s(n) the ratio R(n) < 0 dB, E[(vs(n))
2] > E[(d(n)− yws(n))

2]

and hence resulting in large E[e2(n)] in early stages of adaptation, and in

situations when acoustic paths are perturbed. We observe that the proposed

method improves steady-state noise-reduction performance as compared to

the existing methods. The reason for an improved noise-reduction perfor-

mance is the proposed strategy for gain scheduling which results in a small

contribution of E[(vs(n))
2] in E[e2(n)] at steady-state.

• The variation of R(n) in the Carini’s and the proposed methods is shown in

Fig. 3.13(c). It is clear that ratio R(n) = constant∀ n in Carini’s method,

where as R(n) is allowed to vary in the proposed method. As long as ŝ(n) is

away from s(n), R(n) < 0 dB, and R(n) > 0 dB as ŝ(n) converges to s(n).

After ANC system converges, the change in the variance of input reference

signal results in an increase in the gain G(n). The increase in G(n) causes

the value of E[(vs(n))
2] to increase and therefore the value of R(n) decreases.

• The time-varying step-size for SPM filter, µs(n), in Akhtar’s, Carini’s and the

proposed methods is plotted in Fig. 3.14(a). In Akhtar’s method, the step-

size µs(n) is set to a minimum value at the start-up and later increased to a

maximum value. In Carini’s method the variation of step-size µs(n) depends

upon the distance of ŝ0(n) from [0, 0, ...0]T , and the step-size µs(n) increases

because of decrease of term xT
ŝc(n),v(n)

(n)xŝc(n),v(n)(n) in the denominator of
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(3.19). In proposed method-4, normalized step-size, as defined in (3.44), is

used for SPM filter. It is clear from Fig. 3.14(a) that as the ANC system

converges the step-size for SPM filter increase. This is because of the decrease

in the denominator term (xT
ŝ(n),v(n)(n)xŝ(n),v(n)(n)) due to gain scheduling.

• The time-varying step-size for ANC filter, µw(n), is plotted in Fig. 3.14(b).

As the normalization factor is involved in computing µw(n), therefore the

large input signal power results in small step-size and vice versa.

• Fig. 3.14(c) shows the variation of ρ(n) in Akhtar’s and the proposed meth-

ods. In Akhtar’s method the value of ρ(n) decrease from one to zero, where

as in the proposed method the value of ρ(n) is almost one in steady-state.

Case 2: Multi-Tonal Input and Strong Acoustic Path Perturbation:

The existing methods work fine for slight variations in the acoustic paths. In

actual practice significant changes in the acoustic paths may be encountered due

to the movement of the error microphone or the loudspeaker. In this case study

a strong perturbation in the acoustic paths is simulated by giving two sample

right circular shift to the truncated impulse responses of p(n) and s(n) [49]. The

simulation results for this case study are presented in Fig. 3.15 Fig. 3.16, and Fig.

3.17, where jumps at n = 5× 104 indicate a perturbation in the acoustic paths.

• From Fig. 3.15(a), it is clear that just before the acoustic paths perturbation

the gain in the proposed method is following the variations of β(n), and

is computed using (3.38). The perturbation in acoustic paths results in

Peŝ(n) > Px(n) and the gain is computed using (3.37) until the condition

Peŝ(n) > Px(n) is false.

• The variation of the gain G(n) is shown in Fig. 3.15(b). In Akhtar’s method,
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Figure 3.12: Simulation results in Case 1: (a) Variation of Peŝ(n)/Px(n),

Px(n)/Pvg , and β(n) in the proposed method-4, (b) The time-varying gain G(n)(dB),

(c) Mean-squared auxiliary noise, E[(vs(n))
2](dB).
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Figure 3.13: Simulation results in Case 1: (a) Relative modeling error,

∆Ds(n)(dB), (b) Mean-square-error, MSE (dB), (c) The ratio R(n)(dB).
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Figure 3.14: Simulation results in Case 1: (a) The time-varying step-size parameter

µs(n), (b) The time-varying step-size parameters µw(n), (c) The variation of the

parameter ρ(n) as defined in (3.32).
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the gain G(n) is not able to increase in accordance with the power of the

interference term E[(d(n) − yws(n))
2], so the strong perturbation results in

a large interference (d(n) − yws(n)) in the error signal eŝ(n) of SPM filter,

resulting in the divergence of SPM and hence the overall ANC system. In

Carini’s method, the step-size µw(n) jumps to higher value after perturbation

(see Fig. 3.17(b)). The large value of the step-size in the presence of a strong

perturbation term (vs(n)−vŝ(n)) results in the divergence of ANC filter, thus

resulting in very large value of E[(d(n)−yws(n))
2]. To keep the ratio R(n) = 0

dB, the gain G(n) also increases to a very large value. Only the proposed

method is convergent and gain G(n) reduces to a small value even after the

perturbation in the acoustic paths.

• Fig. 3.15(c) shows the plot of E[(vs(n))
2]. As expected, a large value of G(n)

results in a large value of E[(vs(n))
2] and vice versa.

• Fig. 3.16(a) show the curves for ∆Ds(n). In the proposed method a fast

convergence of the SPM filter is obtained before and after the acoustic path

perturbation. The reason for the fast convergence is the same as explained

in Case 1. The fast convergence of SPM filter quickly neutralizes the effect of

the perturbation term (vs(n)−vŝ(n)) from the error signal k(n) of ANC filter

w(n), and thus the ANC system remains stable even for a strong perturbation

in the acoustic paths. The behavior of ∆Ds(n) for Carini’s method is quite

interesting. The ANC filter is diverged, but the modeling filter still manages

to converge. The reason is quite simple, a large value of E[(d(n)− yws(n))
2]

results in a large E[(vs(n))
2] to keep the ratio R(n) constant, thus resulting

in a very small step-size (see Fig. 3.17(a) for variation in µs(n)). A very

small value of the step-size allows SPM filter to converge even for a very
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strong perturbation term (d(n)− yws(n)) in the error signal eŝ(n) of SPM

filter.

Case 3: Multi-Tonal Input and the Uncorrelated WGN at Error Sensor:

In this case study a zero-mean WGN vd(n) with variance 0.05; uncorrelated with

the reference and auxiliary noise; is assumed to be present at the error microphone.

The noise at the error microphone contributes to the residual error signal e(n),

thus the gain in Carini’s method (see (3.15)) will be higher as compared with the

gain for vd(n) = 0. This large value of the gain G(n) results in E[(vs(n))
2] >

E[(d(n) − yws(n))
2]], thus making R(n) < 0 dB ∀n. In the proposed method the

gain G(n) in steady-state depends upon β(n), however β(n) itself depends upon

the estimate of autocorrelation of eŝ(n) and eŝ(n − 1), therefore the gain G(n) is

independent of error sensor noise vd(n) (see (3.41)).

The simulation results for Case 3 are shown in Fig. 3.18, Fig. 3.19, and Fig.

3.20, where we observe that the performance of the proposed method is better

than the existing methods in terms of modeling accuracy of the SPM filter, the

power of the residual error signal at the error microphone, and steady-state value

of the time-varying gain G(n).

Case 4: Broad-Band Input: The practical example of the broad-band feed-

forward ANC system is the control of acoustic noise in long, narrow ducts, such

as exhaust pipes and ventilation systems [4]. The objective of this case study is

to compare the performance of the proposed algorithm for broad-band input ref-

erence signal x(n). The broad-band input signal x(n) is generated by filtering a

WGN signal with variance 2 through a bandpass FIR filter of order 128 with a

passband of [100 500] Hz. An uncorrelated WGN with zero-mean and variance

0.002 is added with x(n) to account for the measurement noise. The simulation
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Figure 3.15: Simulation results in Case 2: (a) Variation of Peŝ(n)/Px(n),

Px(n)/Pvg , and β(n) in the proposed method-4, (b) The time-varying gain G(n)(dB),

(c) Mean-squared auxiliary noise, E[(vs(n))
2](dB).
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Figure 3.16: Simulation results in Case 2: (a) Relative modeling error,

∆Ds(n)(dB), (b) Mean-square-error, MSE (dB), (c) The ratio R(n)(dB).
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Figure 3.17: Simulation results in Case 2: (a) The time-varying step-size parameter

µs(n), (b) The time-varying step-size parameters µw(n), (c) The variation of the

parameter ρ(n) as defined in (3.32).
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Table 3.7: Computational complexity comparison (Number of computations per

iteration)

Name × + ÷ √

MFxLMS 3Lw + 4Ls + 2 3Lw + 4Ls − 1 − −

Akhtar [44] 3Lw + 4Ls + 13 3Lw + 4Ls + 4 1 1

Carini [46] 7Lw + 6Ls + 4∆ + 19 6Lw + 6Ls + 4∆− 1 6 1

Proposed-1 [47] 3Lw + 4Ls + 11 3Lw + 4Ls + 3 2 −

Proposed-2 3Lw + 3Ls + 11 3Lw + 3Ls + 4 2 −

Proposed-3 [48] 4Lw + 5Ls + 18 4Lw + 5Ls + 6 5 −

Proposed-4 [49] 4Lw + 6Ls + 29 4Lw + 6Ls + 7 5 1

results for Case 4 are shown in Fig. 3.21, Fig. 3.22, and Fig. 3.23. As in previous

cases, the proposed method performs better than the existing methods.

3.3 Computational Complexity Comparison

The computational complexity requirements of all the methods discussed in this

chapter are given in Table. 3.7. The computational complexity of Carini’s method

[46] is higher than all the other methods. This is because of computation of opti-

mal normalized step-sizes for ANC filter and SPM filter in Carini’s method. The

proposed method-2 uses the proposed simplified structure of MFxLMS algorithm

(see Fig. 2.10), and has the lowest computational complexity than all the other

methods using ANP scheduling.
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Figure 3.18: Simulation results in Case 3: (a) Variation of Peŝ(n)/Px(n),

Px(n)/Pvg , and β(n) in the proposed method-4, (b) The time-varying gain G(n)(dB),

(c) Mean-squared auxiliary noise, E[(vs(n))
2](dB).
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Figure 3.19: Simulation results in Case 3: (a) Relative modeling error,

∆Ds(n)(dB), (b) Mean-square-error, MSE (dB), (c) The ratio R(n)(dB).

108



0 2 4 6 8 10

x 10
4

10
−3

10
−2

10
−1

µ s( 
n)

Iteration ( n)

 

 
Akhtar
Carini
Proposed4

(a)

0 2 4 6 8 10

x 10
4

0

0.5

1

1.5
x 10

−3

µ w
( 

n)

Iteration ( n)

 

 
Carini
Proposed4

(b)

0 2 4 6 8 10

x 10
4

0

0.5

1

1.5

ρ(
 n

)

Iteration ( n)

 

 
Akhtar
Proposed4

(c)

Figure 3.20: Simulation results in Case 3: (a) The time-varying step-size parameter

µs(n), (b) The time-varying step-size parameters µw(n), (c) The variation of the

parameter ρ(n) as defined in (3.32).
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Figure 3.21: Simulation results in Case 4: (a) Variation of Peŝ(n)/Px(n),

Px(n)/Pvg , and β(n) in the proposed method-4, (b) The time-varying gain G(n)(dB),

(c) Mean-squared auxiliary noise, E[(vs(n))
2](dB).
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Figure 3.22: Simulation results in Case 4: (a) Relative modeling error,

∆Ds(n)(dB), (b) Mean-square-error, MSE (dB), (c) The ratio R(n)(dB).
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Figure 3.23: Simulation results in Case 4: (a) The time-varying step-size parameter

µs(n), (b) The time-varying step-size parameters µw(n), (c) The variation of the

parameter ρ(n) as defined in (3.32).
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3.4 Summary

The goal of an ANC system is to reduce the unwanted noise at the summing

junction. For online SPM, an additional auxiliary noise is injected. This auxiliary

noise contributes to the residual error, and thus degrades the NRP of ANC system.

In this chapter, various existing gain scheduling strategies were discussed. The

drawbacks with the existing gain scheduling strategies were highlighted, and var-

ious new gain scheduling strategies were proposed. The proposed schemes were

compared with the existing methods through the simulation results, and it is found

that the proposed method-4 is better than the existing methods in terms of im-

proving the modeling accuracy of SPM filter and in improving the NRP of ANC

system
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Chapter 4

Online Feedback Path Modeling
and Neutralization With Gain
Scheduling

The two important issues in feedforward configuration of active noise control

(ANC) systems are: 1) online secondary path modeling (OSPM), 2) online feedback

path modeling and neutralization (FBPMN). The details about OSPM with and

without gain scheduling are discussed in the previous chapters. In this chapter the

second important issue of feedforward ANC system, i.e., online FBPMN will be

discussed.

The objective of an ANC system is to reduce the unwanted noise at the sum-

ming junction. The original unwanted noise at the summing junction is reduced by

generating an anti-noise signal through the cancelling loudspeaker. In feedforward
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ANC systems, the anti-noise signal generated by the loudspeaker will not only

travel down stream to reduce the original unwanted noise, but will also propagates

upstream through electro-acoustic feedback path and will corrupt the signal sensed

by the reference microphone (see Fig. 1.11). The electro-acoustic feedback path,

hereafter referred as feedback path for simplicity, includes the transfer functions of

digital to analog converter (DAC), smoothing filter, power amplifier, loudspeaker,

acoustic path from the loudspeaker to the reference microphone, pre-amplifier,

anti-aliasing filter, and analog to digital converter (ADC) [4]. In the presence of

feedback path, the reference signal picked-up by the reference microphone, here-

after referred as the corrupted reference signal, has two parts: 1) corresponding

to original unwanted noise, 2) corresponding to anti-noise (due to the presence of

feedback path). The presence of the feedback path may cause the ANC system to

become unstable (see (1.25)). It is, therefore necessary to neutralize the effect of

the feedback path.

There are various types of strategies that have been reported in the literature

to solve the problem of the feedback path in the ANC systems. These include 1)

directional (array of) microphones and speakers [61, 62], 2) non-acoustic sensors

such as tachometer to acquire the reference signal [63, 64], 3) adaptive feedback

ANC employing only the error microphone [65, 66], 4) adaptive IIR filter based

feedback path compensation [67, 68], 5) fixed feedback path neutralization (FBPN)

filter (obtained through offline modeling) [4], [12], and 6) adaptive FBPN using

an FIR filter [69]-[75]. The structure-based approaches mentioned in (1)-(3) are

either expensive or have limited applicabilities. Among the signal processing based

approaches (4)-(6), the IIR filter based methods have an inherent problem of stabil-

ity. Moreover, the IIR filter may converge to a local minimum. The FBPN based
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on fixed filter offers a simplest solution (see Fig. 1.12). However in actual practice

the feedback path may be time-varying, and hence online modeling is required to

track variation in the feedback path. In online modleing techniques, the FBPMN

filter is made adaptive. The coefficients of the FBPMN filter are adjusted accord-

ing to some criterion (depending upon the adaptive algorithm), using, generally,

random WGN (auxiliary noise) as an input excitation signal of adaptive filter. As

discussed in previous chapters, the auxiliary noise injected for online FBPMN will

contribute to the residual error and thus degrades the noise-reduction-performance

(NRP) of ANC system. The solution to this problem is to use gain scheduling to

reduce the contribution of auxiliary noise to the residual error at steady-state.

In the first part of this chapter existing methods [70], and [75] for online

FBPMN without gain scheduling are discussed. In [76] a new structure is pro-

posed, hereafter referred as proposed method-1, for online FBPMN. The perfor-

mance of the proposed method-1 is compared with the existing methods through

the simulation results.

In the second part of this chapter online FBPMN with gain scheduling are

discussed. A new gain scheduling strategy is proposed for online FBPMN. The

gain scheduling strategy when combined with Akhtar’s structure [75] will result

in method referred as proposed method-2 [77]. The same gain scheduling strategy

when combined with the structure of proposed method-1 will result in a method

referred as proposed method-3 [76]. In addition to this, in the second part of this

chapter, a self tuned gain scheduling strategy with matching step-size is introduced

and combined with the structure of proposed method-1. This will lead to a method

referred as proposed method-4 [78]. The performance of the proposed strategies

116



White Noise 

Generator

Figure 4.1: Block diagram of Kuo’s method for online feedback path modeling and

neutralization [70].

are compared with the existing methods through the simulation results.

4.1 Online FBPMN Without Gain Scheduling

4.1.1 Kuo’s Method

The block diagram of Kuo’s method [70] for single channel feedforward ANC system

with online FBPMN is shown in Fig. 4.1. Here no gain scheduling is used, there-
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fore G(n) = 1 in all operating conditions. It consists of filtered-x-LMS (FxLMS)

adaptive algorithm based ANC filter W (z), the adaptive LMS algorithm based

linear prediction filter H(z), adaptive FBPM filter F̂ (z), and static FBPN filter

F̂ (z). The weights of adaptive FBPM filter are copied to static FBPN filter. On-

line FBPM is achieved by additive auxiliary noise v(n) = vg(n) (as G(n) = 1)

being modeled as white Gaussian noise (WGN). The same signal v(n) can also

been employed for OSPM; however, in this chapter we mainly concentrate on on-

line FBPMN. Assuming that W (z) is an FIR filter, its output yw(n) is computed

as

yw(n) = w(n) ∗ x(n) = wT (n)xw(n),x(n)(n), (4.1)

where w(n) is the impulse response of W (z), w(n) = [w0(n), w1(n), · · · , wLw−1(n)]
T

is the impulse response coefficient vector of W (z) at time n, and xw(n),x(n)(n) =

[x(n), x(n− 1), · · · , x(n− Lw + 1)]T is the input signal vector of filter W (z) with

input x(n) at time n. The weight update equation for ANC filter W (z) is given as

w(n+ 1) = w(n) + µwe(n)xLMS,yŝ(n)(n), (4.2)

where µw is the step-size parameter, and xLMS,yŝ(n)(n) = [yŝ(n), yŝ(n), · · · , yŝ(n−

Lw+1)]T is the filtered reference signal vector at time n. The reference signal x(n)

filtered through Ŝ(z) is computed as

yŝ(n) = ŝ(n) ∗ x(n) = ŝT (n)xŝ(n),x(n)(n), (4.3)

where ŝ(n) is the impulse response of Ŝ(z), ŝ(n) = [ŝ0(n), ŝ1(n), · · · , ŝLs−1(n)]
T

is the impulse response coefficient vector of Ŝ(z) at time n, and xŝ(n),x(n)(n) =

[x(n), x(n − 1), · · · , x(n − Ls + 1)]T is the input signal vector of filter Ŝ(z) with

input x(n) at time n. From Fig. 4.1, the residual error signal e(n) picked-up by
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the error microphone is given by

e(n) = d(n)− yws(n)− vs(n), (4.4)

where d(n) = p(n) ∗ r(n), p(n) is the impulse response of P (z), and r(n) is the

original unwanted noise at the reference microphone; yws(n) = s(n) ∗ yw(n), s(n)

is the impulse response of S(z); and vs(n) = s(n) ∗ v(n) denotes the contribution

of the additive auxiliary noise at the error microphone. The corrupted reference

signal c(n) picked-up by the reference microphone given as

c(n) = r(n) + ywf (n) + vf (n), (4.5)

where ywf (n) = f(n)∗yw(n−1), f(n) is the impulse response of F (z), and yw(n−1)

is one sample delayed (inherent delay associated with the feedback path) version

of yw(n); and vf (n) = f(n)∗v(n) denotes the contribution of the additive auxiliary

noise at the reference microphone. In Fig. 4.1, the output of the FBPN filter F̂ (z)

is subtracted from c(n) to compute the desired response, c′(n), of linear prediction

filter H(z) as

c′(n) = c(n)− ywf̂ (n), (4.6)

where the signal ywf̂ (n) (estimate of ywf (n)) is the output of FBPN filter, and is

computed as

ywf̂ (n) = f̂(n) ∗ yw(n− 1) = f̂T (n) ∗ xf̂(n),yw(n−1)(n), (4.7)

where f̂(n) is the impulse response of F̂ (z), f̂(n) = [f̂0(n), f̂1(n), · · · , f̂Lf−1(n)]
T

is the impulse response coefficient vector of F̂ (z) at time n, and xf̂(n),yw(n−1)(n) =

[yw(n−1), yw(n−2), · · · , yw(n−Lf )]
T is the input signal vector of filter F̂ (z) with

input yw(n − 1) at time n. In Fig. 4.1, the signal c′(n) acts both as the desired
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response and as an input excitation signal of H(z). The output of H(z) can be

computed as

yh(n) = h(n) ∗ c′(n−∆) = hT (n)xh(n),c′(n−∆)(n), (4.8)

where h(n) is the impulse response of H(z), h(n) = [h0(n), h1(n), · · · , hLh−1(n)]
T

is the impulse response coefficient vector of H(z) at time n, xh(n),c′(n−∆)(n) =

[c′(n−∆), c′(n−∆−1), · · · , c′(n−∆−Lh+1)]T is the input signal vector of filter

H(z) with input c′(n) at time n, and ∆ is the decorrelation delay. The output of

H(z) is subtracted form its desired response c′(n) to compute its error signal eh(n)

as

eh(n) = c′(n)− yh(n). (4.9)

The filter H(z) is adapted using LMS algorithm as

h(n+ 1) = h(n) + µheh(n)xh(n),c′(n−∆)(n), (4.10)

where µh is the step-size parameter for weight updation of H(z). In Fig. 4.1, the

signal eh(n) is subtracted from c′(n) to generate the interference (due to presence

of feedback path) free signal, x(n), for ANC filter and is computed as

x(n) = c′(n)− eh(n) = c′(n) + yh(n)− c′(n) = yh(n). (4.11)

The signal eh(n) also acts as the desired response of FBPM filter. The output of

FBPM filter vf̂ (n) can be computed as

vf̂ (n) = f̂(n) ∗ v(n) = f̂T (n)xf̂(n),v(n)(n), (4.12)

where xf̂(n),v(n)(n) = [v(n), v(n− 1), · · · , v(n−Lf +1)]T is the input signal vector

of FBPM filter F̂ (z) at time n. The output of FBPM filter vf̂ (n) is subtracted

from eh(n) to compute its error signal ef̂ (n) as

ef̂ (n) = eh(n)− vf̂ (n). (4.13)
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The weight update equation for FBPM filter is given by

f̂(n+ 1) = f̂(n) + µfef̂ (n)xf̂(n),v(n)(n), (4.14)

where µf (n) is the step-size parameter for FBPM filter.

4.1.2 Remarks Regarding Kuo’s Method

The following are the problems with Kuo’s method

• The basic purpose of FBPN filter is to neutralize the effect of feedback path

to have x(n) = r(n). In Kuo’s structure if we assume F̂ (z) = F (z), then the

output yh(n) (see (4.8)) can also be written as

yh(n) = [h(n) ∗ r(n−∆)] + [h(n) ∗ vf (n−∆)]. (4.15)

From above equation we can conclude that even for ideal case, i.e., for F̂ (z) =

F (z) and for (h(n)∗r(n−∆)) = r(n), the second term (h(n)∗vf (n−∆)) ̸= 0.

The term (h(n) ∗ vf (n − ∆)) in eh(n) (desired response of FBPM filter)

and in x(n) will act as an interference, respectively, for FBPM filter and

ANC filter. For ANC systems without gain scheduling, the interference term

(h(n)∗vf (n−∆)) severely degrades the convergence of both the FBPM filter

and ANC filter, and thus degrades the overall noise-reduction-performance

(NRP) of ANC system.

• Information about the tap-weight length of F (z) is required to select the

proper value of decorrelation delay ∆

• Separate filters are used for FBPM and FBPN, this increases the computa-

tional complexity of Kuo’s method.
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Figure 4.2: Block diagram of Akhtar’s method for online feedback path modeling

and neutralization [75].

• In Kuo’s method linear prediction filter H(z) is used which works only for

narrow band predictable noise sources. Its performance will be degraded for

broad-band input signals.

• As no gain scheduling is used, therefore the auxiliary noise, injected for online

FBPMN, will degrade the NRP of ANC system at steady-state.

4.1.3 Akhtar’s Method

The block diagram of Akhtar’s method [75] is shown in Fig. 4.2. As no gain

scheduling is used, therefore G(n) = 1 in all operating conditions. Here the action
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of FBPN and FBPM filter is combined into a single FBPMN filter. It is claimed in

[75] that the structure will work both for narrow-band and brad-band input signals.

Also no decorrelation delay is required in Akhtar’s structure. In addition to this,

variable step-size (VSS) LMS adaptive algorithm is used for FBPMN filter. In Fig.

4.2, the output of the FBPMN filter F̂ (z) is subtracted from c(n) to compute x(n)

as

x(n) = c(n)− ywf̂ (n)− vf̂ (n) = [r(n) + ywf (n)− ywf̂ (n)] + [vf (n)− vf̂ (n)], (4.16)

where the signals c(n), and ywf̂ (n), respectively, are given by (4.5) and (4.7), and

the signal vf̂ (n) is computed as

vf̂ (n) = f̂(n) ∗ v(n) = f̂T (n) ∗ xf̂(n),v(n)(n), (4.17)

where xf̂(n),v(n)(n) = [v(n), v(n− 1), · · · , v(n−Lf +1)]T is the input signal vector

of filter F̂ (z) with input v(n) at time n. In Fig. 4.2, the signal x(n) acts both as

an input excitation signal of FxLMS adaptive algorithm based ANC filter and as

the desired response of H(z). The weight update equation of W (z) is the same as

given in (4.2). The one sample delayed version of the output of ANC filter acts as

an input excitation signal of H(z). The output of H(z) can be computed as

yh(n) = h(n) ∗ yw(n− 1) = hT (n)xh(n),yw(n−1)(n), (4.18)

where xh(n),yw(n−1)(n) = [yw(n− 1), yw(n− 2), · · · , yw(n−Lw)]
T is the input signal

vector of filter H(z) with input yw(n − 1) at time n. The output of H(z) is

subtracted form its desired response x(n) (see Fig. 4.2) to compute its error signal

ef̂ (n) (also used as an error signal of FBPMN filter) as

ef̂ (n) = x(n)− yh(n) = [r(n) + ywf (n)− ywf̂ (n)− yh(n)] + [vf (n)− vf̂ (n)]. (4.19)
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The filter H(z) is adapted using LMS algorithm as

h(n+ 1) = h(n) + µhef̂ (n)xh(n),yw(n−1)(n). (4.20)

The signal ef̂ (n) is also used as an error signal of FBPMN filter. The weight update

equation for FBPMN filter is given by

f̂(n+ 1) = f̂(n) + µf (n)ef̂ (n)xVSS−LMS,v(n)(n), (4.21)

where xVSS−LMS,v(n)(n) = [v(n), v(n − 1), · · · , v(n − Lf + 1)]T is the input signal

vector of VSS-LMS adaptive algorithm at time n, and µf (n) is the VSS parameter

computed as

µf (n) = µfminρ(n) + µfmax(1− ρ(n)), (4.22)

where µfmin and µfmax are experimentally determined upper and lower bounds for

µf (n), and time-varying parameter ρ(n) is computed as

ρ(n) =
Pe

f̂
(n)

Px(n)
; ρ(0) = 1, lim

n→∞
ρ(n) → 0, (4.23)

where Pef̂
(n), and Px(n) can be estimated online using a low pass estimator as

Pq(n) = λPq(n− 1) + (1− λ)q2(n), (4.24)

where q(n) is the signal of interest, and 0.9 < λ < 1 is a forgetting factor. In

(4.19), the first term in square brackets acts as an interference, while the second

term (vf (n)− v̂f (n)) is the desired error signal for F̂ (z) . The interference term

is decreasing in nature, therefore the step-size for FBPMN filter is small when

interference is large, and subsequently increased to a higher value when interference

becomes small (due to convergence of H(z)).
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4.1.4 Remarks Regarding Akhtar’s Method

• For LMS based adaptive filter with input v(n), the excess mean-square-error

(MSE) is given by [4]

ξexcess ≈ 0.5µfLPvξmin, (4.25)

where µf is the step-size parameter, Pv is the input signal power of adaptive

filter which can be estimated using (4.24), ξmin is the minimum MSE corre-

sponding to Weiner solution. It is very easy to conclude from (4.25) that,

in steady state, the large value of step-size (µf = µfmax) results in large ex-

cess MSE, and the small value of step-size will slow down the convergence of

FBPMN filter. Therefore the proper selection of µfmax , in Akhtar’s method,

is very important.

• As no gain scheduling is used, therefore the auxiliary noise, injected for online

FBPMN, will degrade the NRP of ANC system at steady-state.

The solution to the above problems is to use: 1) VSS that has decreasing trend,

i.e., the step-size should converge to small value as the ANC system converges,

2) Gain scheduling strategy to reduce the contribution of auxiliary noise to the

residual error and improve the NRP of ANC system.

4.1.5 Proposed Method-1

The block diagram of proposed structure [76] is shown in Fig. 4.3. In [76], this

structure is used along with gain scheduling of auxiliary-noise-power. However,

since in this section online FBPMN without gain scheduling is discussed. There-

fore, for fair comparison of the existing structures with the proposed structure it
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is assumed that G(n) = 1 ∀ n, and the discussion about gain scheduling strategy

will be deferred till the next section.

The proposed structure is similar to Kuo’s structure except that in the proposed

structure the action of FBPM and FBPN filter combined into a single FBPMN

filter as did by Akhtar [75]. The weight update equation for W (z) is the same as in

(4.2). The weight update equation for H(z) and F̂ (z) are the same as in (4.20) and

(4.21), respectively, but with the following exceptions: 1) the vector xh(n),yw(n−1)(n)

in (4.20) is replaced by vector xh(n),x(n−∆)(n) = [x(n−∆), x(n−∆−1), · · · , x(n−

∆ − Lh + 1)]T , 2) the VSS parameter µf (n) in (4.21) is replaced by a fixed step-

size parameter µf , and 3) The vector xVSS−LMS,v(n)(n) is replaced by a vector

xLMS,v(n)(n), where the vector xLMS,v(n)(n) = [v(n), v(n− 1), · · · , v(n− Lf + 1)]T .

The algorithm for the proposed method-1 is given in Table. 4.1

The advantage of the proposed structure over Kuo’s structure is that for F̂ (z) =

F (z) the interference term (h(n) ∗ vf (n −∆)) (see (4.11) and (4.15)) in x(n) will

be equal to zero. This will improve the convergence of ANC system in proposed

method-1 compared to Kuo’s method. A similar structure is proposed in [74], but

instead of using the delay of ∆ samples, a one sample delay is used. However,

it is shown in [35] that for delay ∆ < Lf , the filter H(z) will incorrectly cancels

the desired term (vf (n)− vf̂ (n)) from the error signal ef̂ (n) of FBPM filter. This

means that for delay ∆ < Lf the filter F̂ (z) will not receive the desired error signal

(vf (n)− vf̂ (n)) for its weight updation. We believe that same is the problem with

Akhtar’s structure [75], because in Akhtar structure also there is only one sample

delay (∆ = 1) between the desired response and the output of filter H(z). It is

because of this problem that the performance of Akhtar’s structure is inferior to

that of proposed structure (It will be clear from the simulation results presented
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White Noise 

Generator

Figure 4.3: Block diagram of proposed method for online feedback path modeling

and neutralization [76].

onward in Fig. 4.4 and Fig. 4.5).

4.1.6 Purpose of Decorrelation Delay

It is well known from the theory of signal processing that for random WGN signal

v(n), its autocorrelation function is defined as

E[v(n)v(n− l)] =

 Pv (l = 0)

0 (Otherwise)
, (4.26)

where E[·] denotes the mathematical expectation, Pv is the power of signal v(n)

which can be estimated using (4.24), and l represents the delay between the two
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Table 4.1: Algorithm for the proposed method-1

v(n) = G(n)vg(n) (G(n) = 1 ∀n)

ywf (n) + vf (n) = fT (n)xf(n),(yw(n−1)+v(n))(n)

c(n) = r(n) + ywf (n) + vf (n)

ywf̂ (n) + vf̂ (n) = f̂T (n)xf̂(n),(yw(n−1)+v(n))(n)

x(n) = c(n)− ywf̂ (n)− vf̂ (n)

yh(n) = hT (n)xh(n),x(n−∆)(n); ef̂ (n) = x(n)− yh(n)

yw(n) = wT (n)xw(n),x(n)(n)

yws(n) + vs(n) = sT (n)xs(n),(yw(n)+v(n))(n)

d(n) = pT (n)xp(n),x(n)(n); e(n) = d(n)− yws(n)− vs(n)

yŝ(n) = ŝT (n)xŝ(n),x(n)(n)

h(n+ 1) = h(n) + µhef̂ (n)xh(n),x(n−∆)(n)

f̂(n+ 1) = f̂(n) + µfef̂ (n)xLMS,v(n)(n)

w(n+ 1) = w(n) + µwe(n)xLMS,yŝ(n)(n)

samples. It is clear form (4.26) that for random WGN signals the consecutive

samples are uncorrelated. It is shown in [35] that for a WGN signal filtered through

filter F (z) of tap-weight length Lf , i.e., vf (n) = f(n) ∗ v(n), a delay of at least Lf

samples are needed for the two samples to be uncorrelated, i.e.,

E[vf (n)vf (n− l)] = 0 ∀ l ≥ Lf . (4.27)

It is known from the theory of adaptive signal processing that the output of

adaptive filter will converge to that part of its desired response which is correlated
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with its input signal. In Fig. 4.3, the signal x(n − ∆) acts as an input, and the

signal x(n) (given by (4.16)) acts as the desired response of H(z). It is required

that the output yh(n) should converge to (r(n) + ywf (n) − ywf̂ (n)), leaving the

desired signal (vf (n)− vf̂ (n)) in the error signal ef̂ (n) of FBPMN filter. However

from (4.27), it can be concluded that the signal x(n) (desired response of H(z) in

[74]) and x(n−1) (input of H(z) in [74]) are correlated, and a delay of one sample,

as used in [74], will not be able to decorrelate the term (vf (n)−vf̂ (n)) in x(n) from

the term (vf (n−1)−vf̂ (n−1)) in x(n−1). Therefore the output yh(n) will not only

cancel the interference term (r(n) + ywf (n)− ywf̂ (n)), but will also start canceling

the desired term (vf (n)−vf̂ (n)) of FBPMN filter. From Fig. 4.2, it is clear that the

same problem exists in Akhtar’s structure as well, because in Akhtar’s structure

also there is one sample delay between the desired response x(n) and input signal

(yw(n−1) = w(n−1)∗x(n−1)) of H(z). In proposed method-1, the delay ∆ ≥ Lf

is sufficient to decorrelate the term (vf (n) − vf̂ (n)) in x(n) (desired response of

H(z) in proposed method-1) from the term (vf (n−∆)− vf̂ (n−∆)) in x(n−∆)

(input of H(z) in proposed method), and hence will not allow the output of H(z)

to falsely cancel the desired term (vf (n) − vf̂ (n)) from ef̂ (n). This will improve

the convergence of the FBPMN filter in proposed method-1, and hence improves

the convergence of ANC system.

4.1.7 Simulation Results

In this section, simulation results are presented to compare the performance of

the proposed method-1 (see Fig. 4.3) with Kuo’s [70] and Akhtar’s method [75].

The performance comparison is carried out on the basis of following performance

measures.
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Table 4.2: Simulation parameters for online feedback path modeling and neutral-

ization without gain scheduling.

Parameters

No FBPN µw = 3× 10−5, µh = 5× 10−4, µf = 5× 10−3.

Kuo’s method [70] µw = 3× 10−5, µh = 5× 10−4, µf = 5× 10−3, ∆ = 32.

Akhtar’s method [75] µw = 3× 10−5, µh = 5× 10−4, µfmin = 3× 10−4,

µfmax = 5× 10−3.

Proposed method-1 [76] µw = 3× 10−5, µh = 5× 10−4, µf = 5× 10−3, ∆ = 32.

• Relative modeling error of feedback path ∆Df (n) being defined as

∆Df (n) = 10log10

||f(n)− f̂(n)||2

||f(n)||2
dB. (4.28)

• Mean-noise-reduction (MNR) at the error microphone without auxiliary noise

contribution being defined as

MNRd−yws(n) = 10 log10

E[(d(n)− yws(n))
2]

E[d2(n)]
dB. (4.29)

• MSE in the reference signal ∆X(n) being defined as

∆X(n) = 10 log10 E[(x(n)− r(n))2 dB. (4.30)

Using data from [4], the acoustic paths P (z), S(z), and F (z) are modeled as

FIR filters of tap-weight lengths 48, 16, and 32, respectively. The adaptive filters

W (z), F̂ (z), and H(z) are selected as FIR filters of tap-weight length 32, 32 and

16 respectively. In all methods, −5dB offline modeling is used for F̂ (z). The ANC

filter W (z) and H(z) are initialized by null vectors. The original unwanted noise
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Figure 4.4: (a) Relative modeling error, ∆Df (n)(dB), (b) Mean-noise-reduction

without auxiliary noise, MNRd−yws(n) (dB).

signal r(n), at the reference microphone, is a multi-tonal input with frequencies

100, 150, 300, 400, and 450 Hz, and its variance is adjusted to 2. A zero-mean

WGN with variance 0.002 is added with r(n) to account for any measurement

noise. The modeling excitation signal, vg(n), is a zero-mean WGN with variance

0.05. The step-size parameters for adaptive filters are experimentally adjusted for

fast and stable convergence and are given in Table. 4.2. The jumps in the middle of

all the simulation results is due to the perturbation in the impulse responses of the

acoustic paths P (z), S(z), and F (z). The data for the perturbed acoustic paths

is also obtained form [4]. The sampling frequency is 2kHz, and all the simulation

results are averaged over 10 independent realizations.

• The curves for relative modeling error ∆Df (n), as defined in (4.28), are

shown in Fig. 4.4(a). In Kuo’s method, the presence of the interference term

(h(n) ∗ vf (n−∆)) in x(n) (see (4.11) and (4.15)) will affect the convergence

of both the FBPM filter and ANC filter. In Akhtar’s method, the one sample
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Figure 4.5: (a) Mean-square-error in the reference signal, ∆X(n) (dB), (b) Time-

varying step-size parameter µf (n) for F̂ (z).

delay between the desired response, x(n), and the input signal, yw(n− 1), of

H(z) can not stop H(z) from canceling the desired term (vf (n) − vf̂ (n)) in

x(n), and thus will affect the convergence of FBPMN filter. The proposed

structure solves the problems with Kuo’s and Akhta’s method and hence

gives better performance than the previous methods.

• The curves for MNRd−yws(n), as defined in (4.29), are shown in Fig. 4.4(b).

The improved modeling accuracy of FBPM filter will reduce the interference

in the input signal of W (z), and hence gives improved NRP. It is clear from

Fig. 4.4(b) that the proposed method gives better performance than the

previous methods.

• The curves for MSE in the reference signal ∆X(n), as defined in (4.30),

are shown in Fig. 4.5(a). The better convergence of the FBPM filter will

efficiently neutralize the feedback path coupling effect, thus results in reduced

interference in the reference signal r(n). It is clear from Fig. 4.5(a) that the
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Table 4.3: Computational complexity comparison (Number of computations per

iteration)

Name × + ÷

No FBPN 2Lw + Ls + 1 2Lw + Ls − 1 −

Kuo [70] 2Lw + 2Lh + 3Lf + Ls + 3 2Lw + 2Lh + 3Lf + Ls −

Akhtar [75] 2Lw + 2Lh + 2Lf + Ls + 11 2Lw + 2Lh + 2Lf + Ls + 4 1

Proposed1 [76] 2Lw + 2Lh + 2Lf + Ls + 3 2Lw + 2Lh + 2Lf + Ls −

proposed method gives lower MSE compared to previous methods.

• Figure 4.5(b) shows the step-size, µf (n), variation of FBPM filter. In Kuo’s

and proposed method-1 fixed step-size is used, while in Akhtar’s method

VSS is used. As stated earlier, in Akhtar’s method, initially a small value

of step-size is used due to large value of interference term in the error signal

of FBPM filter. In the later stage, the step-size increases accordingly as the

interference decreases.

4.1.8 Computational Complexity Comparison

The computational complexity requirements of all the methods discussed in this

section are given in Table. 4.3. The method without FBPN has the lowest com-

putational complexity, but this method may cause the ANC system to become

unstable. Among the methods with FBPN, the proposed method-1 (without gain

scheduling) has the lower computational cost.
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4.2 Online FBPMN With Gain Scheduling

In the previous section no gain scheduling of auxiliary noise is used, and auxiliary

noise with fixed variance is injected in all operating conditions, i.e., G(n) = 1∀n.

As the auxiliary noise contributes to the residual error, therefore its fixed variance

∀n degrades the NRP of ANC system at the steady-state. The solution to the

problem is to use auxiliary-noise-power (ANP) scheduling. For this purpose, the

gain scheduling strategies are used to make G(n) and hence the ANP time-varying.

The ANP is varied in accordance with the convergence status of FBPMN filter.

When FBPMN filter is far from actual feedback path, the gain scheduling strategy

is desired to allow injection of auxiliary noise with large variance. This will result

in fast convergence of FBPMN filter. At early stages of adaptation of ANC system,

the large variance of auxiliary noise is masked by the large variance of the resid-

ual unwanted noise, and hence the contribution corresponding to auxiliary noise

remains unnoticeable by the subject (observer). However, with the convergence

of ANC system the original unwanted noise is reduced due to cancellation by the

anti-noise, and is not able to mask the large value of auxiliary noise. It is desir-

able that as the FBPMN filter and the ANC system converges the gain scheduling

strategy should allow the ANP to decrease. This will reduce the contribution of

auxiliary noise to the residual error, and thus improves the NRP of ANC system.

In this section a new gain scheduling strategies are proposed for online FBPMN.

4.2.1 Proposed Method-2 and Method-3

In this subsection a new gain scheduling strategy is proposed for online FBPMN.

The proposed gain scheduling strategy is used with structure of Fig. 4.2, hereafter

134



referred as proposed method-2 [77] and with structure of Fig. 4.3, hereafter referred

as proposed method-3 [76]. The auxiliary noise v(n) injected into the ANC system

for online FBPMN (can be used for OSPM as well) is given by

v(n) = G(n)vg(n), (4.31)

where G(n) is a time-varying gain, and vg(n) is a stationary zero mean WGN

signal with unit variance unless otherwise stated. In both Fig. 4.2 and Fig. 4.3,

the error signal of the FBPMN filter, ef̂ (n), is time-varying (has decreasing trend)

in nature, therefore the gain G(n) in the proposed methods is computed by mak-

ing {P(ywf̂+vf̂ )
(n) − Py

wf̂
(n)} to be equal to the power of ef̂ (n − 1), and is given

mathematically as

P(ywf̂+vf̂ )
(n)− Pywf̂

(n) = Pef̂
(n− 1). (4.32)

From Fig. 4.2 (or Fig. 4.3), the term P(ywf̂+vf̂ )
(n) in (4.32) can be written as

P(y
wf̂

+v
f̂
)(n) = ||f̂(n)||2

[
E[(yw(n− 1))2] +G2(n)E[(vg(n))

2]
]
, (4.33)

where || · || denotes the euclidean norm, E[(yw(n − 1))2] ≈ Pyw(n − 1), and vg(n)

is a zero-mean, unit variance WGN. Similarly the term Py
wf̂
(n) in (4.32) can be

written as

Pywf̂
(n)) = ||f̂(n)||2Pyw(n− 1). (4.34)

Substituting the value of P(ywf̂+vf̂ )
(n) and Pywf̂

(n), respectively, from (4.33) and

(4.34) in (4.32), and solving for the time-varying gain G(n) we get

G(n) =

√
Pe

f̂
(n− 1)

||f̂(n)||2
, (4.35)

where the power of the error signal Pef̂
(n) can be estimated online using a low

pass estimator as

Pe
f̂
(n− 1) = λPe

f̂
(n− 2) + (1− λ)ef̂

2(n− 1), (4.36)
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where 0.9 < λ < 1 is a forgetting factor. In the proposed methods fixed step-size is

used for the FBPMN filter, and the convergence is controlled by varying its input

signal power, i.e, Pv(n). The gain computed by (4.35) very quickly drops to a low

value, thus resulting in a very small input signal power of the FBPMN filter. This

will result in freezing of the adaptation of the FBPMN filter even if F̂ (z) is far

from F (z). In order to avoid this problem the gain is filtered and is given by

G(n) = αG(n− 1) + γ

√
Pe

f̂
(n− 1)

||f̂(n)||2
, (4.37)

where α and γ controls the decay rate and the steady-state value of the time-

varying gain G(n). The parameter α is like a forgetting factor and varies between

0.99 < α < 1 while γ > 0 is typically selected as a very small value. The algorithms

for proposed method-2 [77], and proposed method-3 [76] are given, respectively, in

Table. 4.4, and 4.5.

4.2.2 Simulation Results for Online FBPMN With Gain

Scheduling

In this section simulation results are presented to compare the performance of

following methods

1. Methods without gain scheduling

• ANC system with no FBPMN filter

• Kuo’s method [70]

• Akhtar’s method [75]

• Proposed method-1 [76]

2. Methods with gain scheduling
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Table 4.4: Algorithm for the proposed method-2 [77]

v(n) = G(n)vg(n) (G(n) = 1 for first iteration)

ywf (n) + vf (n) = fT (n)xf(n),(yw(n−1)+v(n))(n)

c(n) = r(n) + ywf (n) + vf (n)

ywf̂ (n) + vf̂ (n) = f̂T (n)xf̂(n),(yw(n−1)+v(n))(n)

x(n) = c(n)− ywf̂ (n)− vf̂ (n)

yh(n) = hT (n)xh(n),yw(n−1)(n); ef̂ (n) = x(n)− yh(n)

yw(n) = wT (n)xw(n),x(n)(n)

yws(n) + vs(n) = sT (n)xs(n),(yw(n)+v(n))(n)

d(n) = pT (n)xp(n),x(n)(n); e(n) = d(n)− yws(n)− vs(n)

yŝ(n) = ŝT (n)xŝ(n),x(n)(n);Compute G(n) using (4.37)

h(n+ 1) = h(n) + µhef̂ (n)xh(n),yw(n−1)(n)

f̂(n+ 1) = f̂(n) + µfef̂ (n)xLMS,v(n)(n)

w(n+ 1) = w(n) + µwe(n)xLMS,yŝ(n)(n)

• Proposed method-2 [77]: Using structure of Fig. 4.2 (Akhtar’s struc-

ture) along with gain scheduling as given in (4.37). In proposed method-

2 fixed step-size, instead of VSS, is used for FBPMN filter.

• Proposed method-3 [76]: Using structure of Fig. 4.3 (Proposed method-

1) along with gain scheduling as given in (4.37).

The modeling excitation signal, vg(n), is a zero-mean WGN with variance 0.05

for methods without gain scheduling, and with variance 1 for methods using gain
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Table 4.5: Algorithm for the proposed method-3 [76]

v(n) = G(n)vg(n) (G(n) = 1 for first iteration)

ywf (n) + vf (n) = fT (n)xf(n),(yw(n−1)+v(n))(n)

c(n) = r(n) + ywf (n) + vf (n)

ywf̂ (n) + vf̂ (n) = f̂T (n)xf̂(n),(yw(n−1)+v(n))(n)

x(n) = c(n)− ywf̂ (n)− vf̂ (n)

yh(n) = hT (n)xh(n),x(n−∆)(n); ef̂ (n) = x(n)− yh(n)

yw(n) = wT (n)xw(n),x(n)(n)

yws(n) + vs(n) = sT (n)xs(n),(yw(n)+v(n))(n)

d(n) = pT (n)xp(n),x(n)(n); e(n) = d(n)− yws(n)− vs(n)

yŝ(n) = ŝT (n)xŝ(n),x(n)(n);Compute G(n) using (4.37)

h(n+ 1) = h(n) + µhef̂ (n)xh(n),x(n−∆)(n)

f̂(n+ 1) = f̂(n) + µfef̂ (n)xLMS,v(n)(n)

w(n+ 1) = w(n) + µwe(n)xLMS,yŝ(n)(n)

scheduling strategy given in (4.37). It is important to note that for the methods

with no gain scheduling additive auxiliary noise with small variance is used, oth-

erwise it will degrade the NRP of ANC system. It is shown in [22] that for LMS

adaptive algorithm, the convergence of the mean-square-error (MSE) is guaranteed

if the step-size is selected within the bounds given by

0 < µf <
2

3Pv(n)
, (4.38)
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where Pv(n) is the power of input excitation signal v(n) of FBPMN filter and can

be estimated using a low pass estimator as

Pq(n) = λPq(n− 1) + (1− λ)q2(n), (4.39)

where q(n) is the signal of interest, and 0.9 < λ < 1 is a forgetting factor. It

is clear from (4.38), that the allowable range of step-size µf for which the LMS

algorithm remains stable is inversely proportional to the power of input excitation

signal. In those methods which are using gain scheduling, auxiliary noise with large

variance is injected. Therefore, in those methods, the allowable stable range for

step-size µf will be small. As a result, for stable operation, the step-size (for F̂ (z))

with small value is selected compared to the methods with no gain scheduling.

The step-size parameters and other simulation parameters for various methods are

given in Table. 4.6. All other simulation conditions are exactly the same as used

for the simulation results of Fig. 4.4, and Fig. 4.5. For comparison of different

methods, the following performance measures are used

• Time-varying gain G(n)

• Relative modeling error of feedback path ∆Df (n) as defined in (4.28)

• Norm of interference terms: This performance measure can be explained as

follows.

Using (4.3) and (4.16), the weight update equation for ANC filter W (z) given

by (4.2) can also be written like this

w(n+ 1) = w(n) + µwe(n)xLMS,yŝ(n)(n)

= w(n) + µwe(n)
[
xLMS,rŝ(n)(n) + xLMS,ywfŝ(n)(n)−

xLMS,ywf̂ŝ(n)
(n) + xLMS,vfŝ(n)(n)− xLMS,vf̂ ŝ(n)(n)

]
(4.40)
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where yŝ(n) is given by

yŝ(n) = rŝ(n) + ywfŝ(n)− ywf̂ŝ(n) + vfŝ(n)− vf̂ ŝ(n), (4.41)

and xLMS,rŝ(n)(n) = [rŝ(n), rŝ(n− 1), · · · , rŝ(n−Lw + 1)]T , xLMS,ywfŝ(n)(n) =

[ywfŝ(n), ywfŝ(n−1), · · · , ywfŝ(n−Lw+1)]T , xLMS,ywf̂ŝ(n)
(n) = [ywf̂ŝ(n), ywf̂ŝ(n−

1), · · · , ywf̂ŝ(n − Lw + 1)]T , xLMS,vfŝ(n)(n) = [vfŝ(n), vfŝ(n − 1), · · · , vfŝ(n −

Lw + 1)]T , and xLMS,v
f̂ ŝ

(n)(n) = [vf̂ ŝ(n), vf̂ ŝ(n − 1), · · · , vf̂ ŝ(n − Lw + 1)]T

are the input signal vectors corresponding to inputs rŝ(n), ywfŝ(n), ywf̂ŝ(n),

vfŝ(n), and vf̂ ŝ(n) respectively. where the signals rŝ(n), ywfŝ(n), ywf̂ŝ(n),

vfŝ(n), and vf̂ ŝ(n), respectively are given by

rŝ(n) = ŝ(n) ∗ r(n) = ŝT (n)xŝ(n),r(n)(n)

ywfŝ(n) = ŝ(n) ∗ ywf (n) = ŝT (n)xŝ(n),ywf (n)(n)

ywf̂ŝ(n) = ŝ(n) ∗ ywf̂ (n) = ŝT (n)xŝ(n),y
wf̂

(n)(n)

vfŝ(n) = ŝ(n) ∗ vf (n) = ŝT (n)xŝ(n)∗vf (n)(n)

vf̂ ŝ(n) = ŝ(n) ∗ vf̂ (n) = ŝT (n)xŝ(n),v
f̂
(n(n), (4.42)

where xŝ(n),r(n)(n) = [r(n), r(n − 1), · · · , r(n − Ls + 1)]T , xŝ(n),ywf (n)(n) =

[ywf (n), ywf (n− 1), · · · , ywf (n− Ls + 1)]T , xŝ(n),ywf̂ (n)
(n) = [ywf̂ (n), ywf̂ (n−

1), · · · , ywf̂ (n− Ls + 1)]T , xŝ(n)∗vf (n)(n) = [vf (n), vf (n− 1), · · · , vf (n− Ls +

1)]T , and xŝ(n),v
f̂
(n(n) = [vf̂ (n), vf̂ (n−1), · · · , vf̂ (n−Ls+1)]T . Using e(n) =

d(n) − yws(n) − vs(n), the weight update equation in (4.40) can be written
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as

w(n+ 1) = w(n) + µw(d(n)− yws(n))xLMS,rŝ(n)(n) +

µw(d(n)− yws(n))
[
xLMS,ywfŝ(n)(n)− xLMS,y

wf̂ŝ
(n)(n)

]
+

µw(d(n)− yws(n))
[
xLMS,vfŝ(n)(n)− xLMS,v

f̂ ŝ
(n)(n)

]
−

µwvs(n)
[
xLMS,rŝ(n)(n) + xLMS,ywfŝ(n)(n)− xLMS,y

wf̂ŝ
(n)(n)

]
−

µwvs(n)
[
xLMS,vfŝ(n)(n)− xLMS,v

f̂ ŝ
(n)(n)

]
. (4.43)

In (4.43), the vector µw(d(n)− yws(n))xLMS,rŝ(n)(n) is the desired correction

term for weight update of W (z), while the vectors corresponding to last four

terms in (4.43) acts as an interference for W (z). These interference terms

are required to be as small as possible in order to allow the filter W (z) to

converge to the optimal solution.

• Mean-noise-reduction (MNR) at the error microphone without auxiliary noise

contribution as defined in (4.29)

• MNR at the error microphone with auxiliary noise contribution being defined

as

MNR(n) = 10 log10

E[e2(n)]

E[d2(n)]
dB. (4.44)

• Figure 4.6(a) shows the plot of time-varying gain G(n). In Kuo’s, Akhtar’s

and proposed method-1, no gain scheduling is used and hence G(n) = 1 =

0dB in all operating conditions. The comparison of the proposed method-1

with Kuo’s and Akhtar’s method is shown previously in Fig. 4.4, and Fig.

4.5. The results of Kuo’s, Akhtar’s, and proposed method-1 are repeated

here for comparison with proposed method-2 and proposed method-3. In

proposed method-2, and proposed method-3, the gain is time-varying and is
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Table 4.6: Simulation parameters for online feedback path modeling and neutral-

ization without and with gain scheduling.

Parameters

Methods without gain scheduling

No FBPN µw = 3× 10−5, µh = 5× 10−4, µf = 5× 10−3.

Kuo’s method [70] µw = 3× 10−5, µh = 5× 10−4, µf = 5× 10−3, ∆ = 32.

Akhtar’s method [75] µw = 3× 10−5, µh = 5× 10−4, µfmin = 3× 10−4,

µfmax = 5× 10−3.

Proposed method-1 [76] µw = 3× 10−5, µh = 5× 10−4, µf = 5× 10−3, ∆ = 32.

Methods with gain scheduling, i.e, using (4.37)

Proposed method-2 [77] µw = 3× 10−5, µh = 5× 10−4, µf = 1× 10−3

α = 0.9992, γ = 3× 10−3.

Proposed method-3 [76] µw = 3× 10−5, µh = 5× 10−4, µf = 1× 10−3, ∆ = 32,

α = 0.9992, γ = 3× 10−3.

computed using (4.37). It is clear from Fig. 4.6(a) that gain in proposed

method-2 and proposed method-3 is large at early stages of adaptation of

ANC system or when the acoustic paths are perturbed in the middle of

simulation, and is reduced to a small value as the FBPMN filter converges.

The gain in proposed method-3 converges faster than proposed method-2.

The different gain variation in proposed method-2 and proposed method-3 is

due to different structure of ANC system used in these methods.

• The curves for relative modeling error as defined in (4.28) are shown in Fig.
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4.6(b). As stated earlier, in Kuo’s structure the presence of the interference

term (h(n) ∗ vf (n−∆)) (see (4.15)) in eh(n) and in x(n) will affect, respec-

tively, the convergence of the FBPM filter and ANC filter. Therefore, the

performance of Kuo’s method is inferior to all other methods in terms of mod-

eling accuracy of FBPM filter. In Akhtar’s method VSS is used for FBPMN

filter. The performance of Akhtar’s method is better than the Kuo’s method

but worst than the proposed method-1. The proposed method-2 uses the

same structure of Akhtar’s method. However in proposed method-2 a gain

scheduling strategy of (4.37) is used, and fixed step-size is used for FBPMN

filter. Similarly the proposed method-3 uses the same structure as used in

proposed method-1. However in proposed method-3 gain scheduling strategy

of (4.37) is used to vary the gain G(n). It is clear from Fig. 4.6(b) that the

performance of the proposed method-3 is better than all the other methods.

• In Fig. 4.6(c) the norm of the interference terms, as described in (4.43),

are plotted. It is clear from figure that the proposed method-3 gives better

performance in terms of reducing the norm of interference.

• The curves for MNR performance without auxiliary noise contribution are

shown in Fig. 4.7(a). In the case of ANC systems with no FBPN filter, no

additive auxiliary noise is injected, therefore E[e2(n)] = E[(d(n)− yws(n))
2].

The absence of FBPN filter results in large interference in the input signal

of W (z), therefore W (z) is not able to generate the desired anti-noise signal

yws(n) at the error microphone. The absence of FBPN results in a large

interference in the input signal of W (z), and hence the ANC system may

become unstable. This can be observed from Fig. 4.7(a), where the ANC

system without FBPN filter becomes unstable after the acoustic paths per-
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turbation in the middle of the simulation. All the proposed method results

in improved performance compared to Kuo’s and Akhtar’s methods. The im-

proved performance of the proposed methods is due to quick neutralization

of the feedback path.

• Fig. 4.7(b) shows the curves for MNR(n) with auxiliary noise contribution.

The improved NRP of the proposed methods is due to small contribution of

E[(d(n)−yws(n))
2] (see Fig. 4.7(a)) and E[v2s(n)] (due to small value of gain

(see Fig. 4.6(a))) in E[e2(n)].

• Fig. 4.7(c) shows the step-size variation for the FBPMN filter F̂ (z). In Kuo’s

and in the proposed methods fixed step-size is used, while in Akhtar’s method

VSS is used. In the proposed method-2 and proposed method-3, the value of

step-size for the FBPMN filter is smaller than that in Kuo’s method and in

proposed method-1. However, the proposed method-2 and proposed method-

3 gives fast convergence of the FBPMN filter (see Fig. 4.6(b)). This is due

to the large variance of additive auxiliary noise in the proposed method-2

and proposed method-3 compared to both the Kuo’s method and proposed

method-1. As no gain scheduling is used in Kuo’s, Akhtar’s and proposed

method-1, therefore auxiliary noise with small variance is used otherwise the

large variance of auxiliary noise will degrade the NRP of ANC systems. As

stated earlier, in Akhtar’s method initially a small value of step-size is used

due to large value of interference term in the error signal of the FBPMN

filter. In the later stage, the step-size increases accordingly as the inter-

ference decreases. When the acoustic paths are perturbed in the middle of

simulation, then the interference in the error signal of F̂ (z) increases, and

correspondingly the step-size in Akhtar’s method decreases again. As the
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Figure 4.6: (a) The time-varying gain G(n)(dB), (b) Relative modeling error,

∆Df (n)(dB), (c) Norm of total interference for ANC filter in dB.
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Figure 4.7: (a) Mean-noise-reduction without auxiliary noise, MNRd−yws(n) (dB),

(b) Mean-noise-reduction with auxiliary noise, MNR(n) (dB), (c) Time-varying step-

size parameter µf (n) for F̂ (z).
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ANC system converges, after acoustic paths perturbation, then the step-size

in Akhtar’s method again converging towards the maximum value.

4.2.3 Remarks Regarding Proposed Method-2 and Method-

3

• In proposed method-2 and proposed method-3 the gain is time-varying, and

is computed using (4.37). The small value of the gain at steady-state reduces

the contribution of auxiliary noise to the residual error, and thus improves

the NRP of ANC system.

• The time-varying gain G(n) computed using (4.35) drops very quickly. Al-

though this is desirable as far as NRP of ANC system is concerned. However,

the quick drop of the gain will reduce the power of input excitation signal

of adaptive FBPMN filter and its adaptation process freezes. In order to

avoid this situation, it is required to control the decay rate of the gain G(n)

in (4.35). For this reason the gain is required to be filtered through a low

pass filter involving two tuning parameters α and γ (see (4.37)). These pa-

rameters controls the decay rate of the gain G(n) in (4.35). However,these

parameters needs to be tuned again and again with changing characteristics

of the original unwanted noise, otherwise the NRP of ANC system will be

degraded.
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4.2.4 Effect of Relative Modeling Error of Feedback Path

∆Df(n) on MNR(n)

In this section the effect of −∆Df (n) on −MNR(n) of ANC system is studied.

For this case study the concept of offline modeling is used and the weights of fixed

FBPN filter in Fig. 1.12 are initialized for −∆Df (n) of 1 to 60 dB with a step of 1

when moving from 1 to 60 dB. For each step of −∆Df (n) the corresponding value

of −MNR(n) is obtained by averaging the last 50000 samples of −MNR(n) out of

100000 samples. The required simulation parameters are the same as used for Fig.

4.4. For this case study the −MNR(n) is plotted versus −∆Df (n) in Fig. 4.8. It

is clear from Fig. 4.8 that for −∆Df (n) ≥ 18 dB the −MNR(n) is independent of

−∆Df (n).

In this case the concept of offline modeling is used, and no auxiliary noise is

injected. Therefore, the last three terms in (4.43) are zero, and the only interfer-

ence term for w(n) in (4.43) is µw(d(n)−yws(n))[xLMS,ywfŝ(n)(n)−xLMS,ywf̂ŝ(n)
(n)].

For FBPN filter with modeling accuracy of −18 dB and higher the condition

||[xLMS,ywfŝ(n)(n)−xLMS,ywf̂ŝ(n)
(n)]|| << ||xLMS,rŝ(n)(n)|| is true, which implies that

the interference term µw(d(n)− yws(n))[xLMS,ywfŝ(n)(n)− xLMS,ywf̂ŝ(n)
(n)] has neg-

ligible effect on the convergence of tap-weights of w(n) towards optimal value,

therefore the −MNR(n) is independent of −∆Df (n) for −∆Df (n) ≥ 18 dB.

From this case study it can be concluded that higher modeling accuracy does

not mean less MNR, however higher modeling accuracy results in large stability

margins of ANC system. The above discussion lead us to the development of

self-tuned ANP scheduling strategy with matching step-size for online FBPMN in

ANC systems, referred as proposed method-4 [78], and will be discussed in the

148



0 20 40 60
0

10

20

30

−∆ D
f
(n)  (dB)

−
M

N
R

(n
) 

 (
dB

)

Figure 4.8: Effect of relative modeling error, ∆Df (n) (dB) as defined in (4.28) on

MNR(n) (dB) as defined in (4.44).

following subsection.

4.2.5 Proposed Method-4

In ANC systems, online FBPMN is needed: 1) to solve the potential instability

problem associated with fix/time-varying feedback path, and 2) to improve the

NRP of ANC system. Auxiliary noise injected for online FBPM degrades the

NRP of ANC system. The solution to the problem is to use ANP scheduling. The

previous proposed methods for online FBPMN with gain scheduling needs two

tuning parameters α, and γ (see (4.37)). These tuning parameters are required

to be tuned with changing characteristics of the original unwanted noise. In this

subsection a new method is proposed [78], in which a self-tuned ANP scheduling

strategy with matching step-size for adaptive FBPMN filter is used. The advantage

of the proposed method-4 is that no tuning parameters are required for ANP

scheduling, and improved steady-state NRP is achieved.

The block diagram of proposed method-4 is the same as for proposed method-

3 (see Fig. 4.3). However, in proposed method-4, instead of fixed step-size, a
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matching step-size (kind of VSS) is used for FBPMN filter. In proposed method-4

the gain is computed using (4.35). In proposed method-4, instead of filtering the

gain using (4.37) the idea of matching step-size is used to compensate for the bad

effect on modeling accuracy of FBPMN filter due to quick drop of the gain. The

idea of matching step-size will eliminate the use of tuning parameters while still

allowing ∆Df (n) ≤ −18dB (see Fig. 4.8 for the effect of ∆Df (n) on MNR(n)).

The word matching step-size is used to emphasis on the fact that the step-size for

each tap-weight of F̂ (z) will adjust its value automatically to compensate for the

decrease in the gain of the input signal value due to gain scheduling.

4.2.6 Matching Step-Size Calculation for FBPMN Filter in

Proposed Method-4

To explain the matching step-size, consider Fig. 4.3 where the VSS-LMS based

weight update equation for FBPMN filter can be written as

f̂(n+ 1) = f̂(n) + µf (n)ef̂ (n)xVSS−LMS,v(n)(n), (4.45)

where f̂(n) = [f̂0(n), f̂1(n), · · · , f̂Lf−1(n)]
T is the impulse response coefficient vec-

tor of F̂ (z) at time n, xVSS−LMS,v(n)(n) = [v(n), v(n− 1), ...v(n− Lf + 1)]T is the

input signal vector at time n, and µf (n) is a diagonal matrix having matching

step-size entries on its diagonal for the tap-weights of F̂ (z). In (4.45), both the

signal ef̂ (n), and the vector xVSS−LMS,v(n)(n) are functions of the diagonal gain

matrix G(n) being defined as

G(n) = diag[G(n), G(n− 1), · · · , G(n− Lf + 1)], (4.46)

where G(n) has dimensions Lf × Lf . The error signal ef̂ (n) and the input sig-

nal vector xLMS,v(n)(n) of FBPMN filter in terms of gain matrix G(n) are given,
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respectively, by

ef̂ (n) =
[
r(n) + ywf (n)− ywf̂ (n)

]
+[

fT (n)− f̂T (n)
]
G(n)xLMS,vg(n)(n), (4.47)

and

xVSS−LMS,v(n)(n) = G(n)xLMS,vg(n)(n) (4.48)

where f(n) = [f0(n), f1(n), · · · , fLf−1(n)]
T is the impulse response coefficient vec-

tor of unknown path F (z) at time n, and xLMS,vg(n)(n) = [vg(n), vg(n−1), ...vg(n−

Lf +1)]T . In case of ANC system without gain scheduling the gain matrix will be

identity matrix of size Lf × Lf and is given by G(n) = I.

The gain scheduling will reduce the contribution of auxiliary noise at the error

microphone, but it is clear from (4.47) and (4.48) that it will decrease the power

of the error signal, and the input excitation signal of the FBPMN filter. This will

reduce the magnitude of the tap-weight correction term of the FBPMN filter and

thus degrades the modeling accuracy of the FBPMN filter. As the feedback path

f(n) is unknown, therefore the effect of gain on the error signal ef̂ (n) can not be

compensated. However the effect of the gain on the input signal vector of FBPMN

filter can be compensated by using the matching step size. Therefore, instead

of fixed step-size µf used in proposed method-3, here we compute the matching

step-size µfi(n) (i = 0, 1, 2, · · ·Lf − 1) for each tap-weight of f̂(n) as

µf (n) = diag[µf0(n), µf1(n), · · · , µfLf−1
(n)]

= diag[µf0(n), µf0(n− 1), · · · , µf0(n− Lf + 1)]

= µfG
−1(n) (4.49)

where µf (n) is a diagonal matrix having matching step-size entries µf/G(n− i) for

(i = 0, 1, 2, · · ·Lf − 1) on its main diagonal. µf0(n) = µf/G(n) is matching step-
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size for the first tap-weight f̂0(n) of FBPMN filter at time n and can alternatively

be computed by satisfying the condition that the product of step-size and gain at

two consecutive iterations are made equal, and is given mathematically as

µf0(n)G(n) = µf0(n− 1)G(n− 1) ∀ n ≥ 1, (4.50)

From (4.50) the step-size µf0(n) is computed as

µf0(n) =
µf0(n− 1)G(n− 1)

G(n)
∀ n ≥ 1, (4.51)

where G(0) = 1, and µf0(0) = µf . G−1(n) is inverse of gain matrix G(n). As

G(n) is a diagonal matrix, therefore its inverse can be computed by taking the

reciprocal of each entry such that G(n)G−1(n) = I.

Using (4.45), (4.48), and (4.49) the weight update equation of FBPMN filter

in terms of matching step-size matrix µf (n) and the gain matrix G(n) (leaving

ef̂ (n) in the update equation as it is, because the effect of gain G(n) on the error

signal ef̂ (n) can not be compensated) can be written as

f̂(n+ 1) = f̂(n) + µfG
−1(n)ef̂ (n)G(n)xLMS,vg(n)(n), (4.52)

Replacing µfG
−1(n) with µf (n) and G(n)xLMS,vg(n)(n) with xVSS−LMS,v(n)(n) in

(4.52) we will get (4.45). Equation (4.52) can be further simplified and written as

f̂(n+ 1) = f̂(n) + µfef̂ (n)xLMS,vg(n)(n), (4.53)

where µf is a fixed step-size parameter. The original proposed method-4 (see

(4.52)), and its simplified version (see (4.53)) needs Lf more memories to store,

respectively, the diagonal values of gain matrix G(n), and the vector xLMS,vg(n)(n)

compared to proposed method-3. However, the computational complexity of the

simplified version of proposed method-4 is lower than the proposed method-3 [76]
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because in the simplified version of proposed method-4 the gain G(n) computed

using (4.35) need not to be filtered through a low pass filter. Also the computation

complexity of simplified version of proposed method-4 given by (4.53) is lower

than the actual proposed method-4 (given by (4.45)). This is because in simplified

version fixed step-size µf , instead of matching step-size µf (n), is used.

From (4.53) we can conclude that the use of matching step-size µf (n) =

µfG
−1(n) in the weight update equation (4.52) of the FBPMN filter will partially

compensate the gain scheduling effect on the modeling accuracy of the FBPMN

filter. This is because the matching step-size removes the effect of the gain from

the input signal vector G(n)xLMS,vg(n)(n) (note that vector xLMS,vg(n)(n) is used in

(4.53) instead of xVSS−LMS,v(n)(n)) for weight updation of FBPMN filter. However

this compensation is partial because the effect of gain on ef̂ (n) can not be removed

as the feedback path f(n) is unknown. The algorithm for the proposed method-4

is shown in Table. 4.7.

4.2.7 Simulation Results for Online FBPMN With Gain

Scheduling

In this section simulation results are presented to compare the performance of

Kuo’s [70], Akhtar’s [75], and proposed method-3 [76] with proposed method-4

[78]. Previously it is shown through simulation results that proposed method-

3 is better than both proposed method-1 and proposed method-2. Therefore,

for simplicity of representation of simulation results the proposed method-1 and

proposed method-2 are not considered here. The performance measures and the

required simulation parameters are exactly the same as used for the simulation

results of Fig. 4.6 and Fig. 4.7.
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Table 4.7: Algorithm for the proposed method-4 [78]

v(n) = G(n)vg(n) (G(n) = 1 for first iteration)

ywf (n) + vf (n) = fT (n)xf(n),(yw(n−1)+v(n))(n)

c(n) = r(n) + ywf (n) + vf (n)

ywf̂ (n) + vf̂ (n) = f̂T (n)xf̂(n),(yw(n−1)+v(n))(n)

x(n) = c(n)− ywf̂ (n)− vf̂ (n)

yh(n) = hT (n)xh(n),x(n−∆)(n); ef̂ (n) = x(n)− yh(n)

yw(n) = wT (n)xw(n),x(n)(n)

yws(n) + vs(n) = sT (n)xs(n),(yw(n)+v(n))(n);d(n) = pT (n)xp(n),x(n)(n)

e(n) = d(n)− yws(n)− vs(n);yŝ(n) = ŝT (n)xŝ(n),x(n)(n)

Compute G(n) using (4.35); Compute µf (n) using (4.49)

h(n+ 1) = h(n) + µhef̂ (n)xh(n),x(n−∆)(n)

f̂(n+ 1) = f̂(n) + µf (n)ef̂ (n)xLMS,v(n)(n)

w(n+ 1) = w(n) + µwe(n)xLMS,yŝ(n)(n)

• Figure 4.9(a) shows the plot of gain, G(n), in dB. In Kuo’s and Akhtar’s

method no gain scheduling is used, therefore the G(n) = 0 dB in all operating

conditions. In proposed method-3 the gain computed using (4.35) is then

filtered through a low pass filter, having parameters α and γ. Theses two

parameters control the decay rate and steady-state value of G(n), and avoid

freezing of the convergence of FBPMN filter when the input excitation signal

of FBPMN filter goes low due to gain scheduling. In the proposed method-

4, the use of matching step-size eliminates the need of low pass filtering.
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In the proposed method-4 the gain is computed using (4.35) and settles to

lower steady-state value compared to other methods. After the acoustic path

perturbation at n = 2× 105, a similar trend is observed for gain variation as

it was before the perturbation.

• Figure 4.9(b) shows the curves for relative modeling error as defined in (4.28).

It is clear form Fig. 4.9(b) that all the methods can achieve the desirable

modeling accuracy limit of −18 dB. The proposed method-3 outperforms

in terms of modeling accuracy of F̂ (z). The reason is that the two tuning

parameters control the decay rate of G(n), thus resulting in large input power

and fast convergence of F̂ (z). In the proposed method-4 the gain drops very

quickly (see Fig. 4.9(a) for gain variation). The effect of this decrease is

partially compensated by adjusting the step-size of FBPMN filter, which

will allow the proposed method-4 to achieve sufficient modeling accuracy for

F̂ (z) even if the input signal power Pv(n) of the signal v(n) for FBPMN filter

drops to a very low value due to gain scheduling.

• In Fig. 4.9(c) the norm of interference terms, as described in (4.43), are plot-

ted. At steady-state the conditions ||xLMS,ywfŝ(n)(n) − xLMS,ywf̂ŝ(n)
(n)|| <<

||xLMS,rŝ(n)(n)|| and ||xLMS,vfŝ(n)(n)−xLMS,v
f̂ ŝ

(n)(n)|| << ||xLMS,rŝ(n)(n)|| are

true and out of the last four interference terms the contribution of inter-

ference term µwvs(n)[xLMS,rŝ(n)(n) + xLMS,ywfŝ(n)(n)− xLMS,ywf̂ŝ(n)
(n)] is sig-

nificant. The signal vs(n) is a function of gain, therefore the small value

of the gain in the proposed method-4 reduces the contribution of vs(n)

and hence reduces the effect of the remaining significant interference term

µwvs(n)[xLMS,rŝ(n)(n) + xLMS,ywfŝ(n)(n) − xLMS,ywf̂ŝ(n)
(n)], thus resulting in

small total interference in the weight update equation of w(n) as shown in
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Fig. 4.9(c).

• Figure 4.10(a) shows the plot of MNRd−yws(n). In case of ANC systems

without FBPN, no auxiliary noise is injected therefore E[e2(n)] = E[(d(n)−

yws(n))
2], and the absence of FBPN filter results in large interference in the

input signal of W (z), therefore W (z) is not able to generate the desired anti-

noise signal yws(n) at the error microphone. The structure proposed by Kuo

also result in large interference in the input signal of W (z), thus degrades the

NRP. It is clear from Fig. 4.10(a) that the Akhtar’s, the proposed method-3

and the proposed method-4 outperforms in terms of MNRd−yws(n) compared

to Kuo’s method. The reason behind this improved performance is not only

the different strategy of weight adaptation of FBPMN filter but also the the

different structure of the overall ANC system.

• Figure 4.10(b) shows the MNR performance of various methods. It is clear

that the proposed method-4 results in lower MNR value compared to other

methods. The improved NRP is due to small contribution of E[v2s(n)] (due

to small value of gain G(n)) in E[e2(n)] at steady-state.

• Figure 4.10(c) shows the step-size variation for the first tap of F̂ (z). In Kuo’s,

Akhtar’s and proposed method-3 same step-size is used for all the tap-weights

of F̂ (z), while in proposed method-4 different step-size is used for each tap-

weight of F̂ (z). For the sake of convenience, in all the methods, only the step-

size variation for the first tap-weight of F̂ (z), i.e., µf0(n) is plotted. In Kuo’s

and proposed method-3 the value of step-size is constant for all operating

conditions, while in Akhtar’s and the proposed method-4 VSS is used. In

Akhtar’s method the step-size is minimum at the start and then increase to a
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Figure 4.9: (a) The time-varying gain G(n)(dB), (b) Relative modeling error,

∆Df (n)(dB), (c) Norm of total interference for ANC filter in dB.
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Figure 4.10: (a) Mean-noise-reduction without auxiliary noise, MNRd−yws(n) (dB),

(b) Mean-noise-reduction with auxiliary noise, MNR(n) (dB), (c) Time-varying step-

size parameter µf0(n) for first tap-weight of F̂ (z).
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Table 4.8: Computational complexity comparison (Number of computations per

iteration)

Name × + ÷ √

Methods without gain scheduling

No FBPN 2Lw + Ls + 1 2Lw + Ls − 1 − −

Kuo [70] 2Lw + 2Lh + 3Lf + Ls + 3 2Lw + 2Lh + 3Lf + Ls − −

Akhtar [75] 2Lw + 2Lh + 2Lf + Ls + 11 2Lw + 2Lh + 2Lf + Ls + 4 1 −

Proposed1 [76] 2Lw + 2Lh + 2Lf + Ls + 3 2Lw + 2Lh + 2Lf + Ls − −

Methods with gain scheduling

Proposed2 [77] 2Lw + 2Lh + 3Lf + Ls + 9 2Lw + 2Lh + 3Lf + Ls + 2 1 1

Proposed3 [76] 2Lw + 2Lh + 3Lf + Ls + 9 2Lw + 2Lh + 3Lf + Ls + 2 1 1

Proposed 4[78] 2Lw + 2Lh + 3Lf + Ls + 7 2Lw + 2Lh + 3Lf + Ls + 1 1 1

maximum value as the filter h(n) converges (see (4.22) for step-size variation

in Akhtar’s method). For the proposed method-4 the step-size variation for

the first tap f̂0(n) is computed using (4.51). In the proposed method-4 the

values of the step-size is matched for each tap-weight in order to compensate

the effect of time-varying gain, G(n), on input vector in the update equation

of F̂ (z) (see (4.52)). With the decrease in the Pef̂
(n) the gain and hence

the input signal power of F̂ (z) decreases and correspondingly the step-size

increases to avoid freezing of the convergence of F̂ (z). The perturbation

in acoustic paths at n = 2 × 105 results in increase in G(n), therefore the

step-size decreases (see (4.49)). After paths perturbation as F̂ (z) and ANC

system converges, the gain decrease and the step-size increases again.
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4.2.8 Computational Complexity Comparison

The computational complexity requirements of different methods are shown in

Table. 4.8. The method with no FBPN filter has the lowest computational com-

plexity, but this method may cause the ANC system to become unstable. Among

the methods with FBPN, the proposed method-1 (without gain scheduling) has the

lowest computational cost. The computation of the gain increases the computa-

tional requirement of the algorithms, that is why the methods using gain scheduling

have higher computational requirements compared to the methods without gain

scheduling. It is clear from Table. 4.8 that all the methods using gain scheduling

have almost same computational requirements.

4.3 Summary

In the first section of this chapter, existing methods for online FBPMN without

gain scheduling are discussed, and their shortcomings are highlighted. A new

structure is proposed to rectify the problems with the existing methods. The per-

formance of the proposed structure is compare with the existing methods through

the simulation results, and it is found that the proposed structure performs better

than the existing methods.

Auxiliary noise injected for online FBPMN contributes to the residual error,

and thus degrades the NRP of ANC system. In the second section of this chap-

ter, different gain scheduling strategies are proposed to reduce the contribution of

auxiliary noise to the residual and hence to improve the NRP of ANC systems.
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Chapter 5

Conclusion and Future
Recommendations

5.1 Conclusion

In ANC literature, many configurations of ANC systems are available. The focus

of this thesis is on the filtered-x-LMS (FxLMS) adaptive algorithm based single

channel feedforward configuration of ANC system. In this configuration, an anti-

noise signal (to cancel the original unwanted noise) is generated with the help of

reference and error microphones, ANC filter, and secondary source (loudspeaker).

The two of the most important issues in feedforward configuration are 1) online

secondary path modeling (OSPM), and 2) online feedback path modeling and neu-

tralization (FBPMN). Generally, for OSPM and online FBPMN a system identi-
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fication approach, in which an additional auxiliary noise is injected, is used. In

this thesis different ideas of gain scheduling (to vary auxiliary-noise-power (ANP))

to improve the noise-reduction-performance (NRP) of active noise control (ANC)

systems have been discussed.

OSPM: For stable operation of FxLMS adaptive algorithm based ANC sys-

tem, an estimate of the secondary path is required such that the phase difference

between the actual secondary path and its estimate is within ±90◦ bound [15]. The

secondary path is an electro-acoustic path, that contains the transfer function of

electronic components and the acoustic path, and hence this secondary path may

be time-varying. In order to track the variation in the secondary path, to keep the

phase difference within ±90◦ bound, a system identification techniques is used in

which an auxiliary noise (usually a WGN) is injected into the ANC system.

Online FBPMN: The anti-noise signal generated by the loudspeaker will not

only travel down stream to cancel the unwanted noise at the summing junction, but

also travel upstream through the feedback path and corrupt the reference signal

picked up by the reference microphone. This is called as feedback path coupling

in ANC literature. This feedback coupling causes an interference in the reference

signal of ANC filter, and hence may cause the ANC system to become unstable

at some frequency. In order to avoid this undesirable scenario, it is required to

neutralize the effect of the feedback coupling. For the neutralization of the feedback

path effect, an estimate of the model of the feedback path is required. Similar to

secondary path, the feedback path is also an electro-acoustic path, and hence

may be time-varying. In order to know the correct estimate of the feedback path

a system identification techniques is used in which an auxiliary noise (usually a

WGN) is injected into the ANC system.
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The basic objective of an ANC system is to reduce the unwanted noise at the

summing junction. For stable operation of ANC system online SPM and FBPMN

is required. For online SPM and FBPMN, an additional auxiliary noise is injected

into the ANC system. If this additional noise is injected with fixed variance in

all operating conditions, then at steady-state it will degrade the NRP of ANC

system. In order to achieve the online SPM and FBPMN on one hand, and to

improve the NRP on the other hand, an auxiliary noise with time-varying variance

is needed. During early stages of adaptation of ANC system when the estimate of

secondary path and feedback path are far from the actual values, an auxiliary noise

with large variance is injected. However, when ANC system converges, and the

estimates of the secondary and feedback path are close enough to the true values,

the variance of auxiliary noise is reduce to a small value. This will improve the

NRP of an ANC system. The main focus of this thesis is to investigate the new

gain scheduling strategies to have the time-varying variance of the auxiliary noise.

Chapter 2: In this chapter, the existing methods for OSPM without gain

scheduling (auxiliary noise with fixed variance is used in all operating condi-

tions) are discussed. A simplified structure for OSPM with the modified FxLMS

(MFxLMS) adaptive algorithm has been proposed. The advantage of the simpli-

fied structure is that it reduces the computational complexity of the MFxLMS

algorithm based OSPM without having any compromise on the performance of

ANC system.

Chapter 3: In this chapter, the existing methods for OSPM with gain schedul-

ing are discussed. The drawbacks with the existing gain scheduling strategies are

highlighted and some new gain scheduling strategies have been proposed to improve

the modeling accuracy of SPM filter and the NRP of an ANC system.
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Chapter 4: This chapter has dealed with the second most important issue

associated with the feedforward configuration of ANC system, i.e., the issue of

online FBPMN. In the first part of this chapter, the existing methods for on-

line FBPMN without gain scheduling have been discussed. A new structure has

been proposed for online FBPMN without gain scheduling. The performance of

the existing methods has been compared with the proposed method through the

simulation results.

In the second part of this chapter, a gain scheduling strategy has been pro-

posed to improve the NRP of ANC system. In addition to this, a self-tuned ANP

scheduling strategy with matching step-size for FBPMN filter has been proposed

that requires no tuning parameters and further improves the NRP of ANC systems.

5.2 Future Recommendations

In this thesis, single channel feedforward ANC system is discussed. The single

channel ANC system is effective to reduce the unwanted noise in a narrow duct.

When it is required to cancel the noise in an enclosure or in a large dimension

duct, then using a single channel ANC system to reduce the unwanted noise is

not effective. This is because in an enclosure or in a large dimension duct the

noise field is complicated. In this scenario the use of multi-channel ANC system

is recommended. In multi-channel ANC system, several reference and error mi-

crophones, and secondary sources (loudspeakers) are used to cancel the unwanted

noise [73], [79]-[82]. One of the future task could be to extend the ideas of proposed

gain scheduling strategies (used for OSPM, and online FBPMN) to multi-channel

ANC systems.

In this thesis, only linear ANC systems are considered. In linear case both
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the primary and secondary paths are assumed to be linear, and filtered-x-LMS

(FxLMS) adaptive algorithm is the common choice due to robustness and ease

of implementation. However, in actual practice the primary path may be non-

linear, the noise and the secondary path may have a non-linear distortion. In such

scenarios, for better performance, the linear ANC systems must be replaced by a

non-linear ANC systems employing non-linear controller. In addition to this, the

devices such as ADC, DAC, power amplifier with linear characteristics are costly.

However, if we have a non-linear ANC system employing non-linear controller then

we can select less expensive devices having non-linear characteristics, and thus the

cost of the overall ANC system may be reduced.

Several non-linear ANC systems have been presented in the literature. In [83]

a Volterra FxLMS (VFxLMS) adaptive algorithm is proposed, which performs

better than the FxLMS algorithm when 1) the reference noise is non-linear noise

process and at the same time the secondary path estimate is of non-minimum

phase, and 2) the primary path exhibits non-linearity. In [84] the filtered-s-LMS

(FsLMS) algorithm is proposed that performs better than VFxLMS algorithm. In

FsLMS algorithm the non-linear expansion of the original unwanted noise is used.

This non-linear expansion involves the trigonometric functions and the delayed

samples of the original unwanted noise. In [18] computationally efficient adaptive

non-linear filters are proposed for non-linear ANC system. In [18] the concept of

virtual secondary path is introduced to deal with linear and non-linear secondary

paths within a single framework. In [85, 86] Fourier non-linear (FN) and even

mirror FN (EMFN) filters, derived from the truncation of multidimensional gen-

eralized Fourier series, are presented. These filters have both (1) the property of

universal approximator and (2) the property of orthogonality, and hence performs
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better than VFxLMS and FsLMS non-linear filters. Because of the wide area of

application of non-linear ANC system, one future task could be to extend the idea

of gain scheduling for non-linear ANC systems to improve its NRP.

The basic building block of an ANC system is adaptive filter. In this thesis,

we considered only the time domain adaptive filtering. In some applications long

length adaptive FIR filters are needed to achieve the desired performance. One

solution to the complexity problem is to use adaptive IIR filters that need few

coefficients. With adaptive IIR filters we have the problems of algorithm instability,

slow convergence and trapping in a local minimum. Another strategy to reduce the

computation is to use the frequency domain adaptive filtering (FDAF) where block

updating strategy is used. In FDAF, the fast Fourier transform (FFT) algorithm

efficiently perform filter convolution and the gradient correlation needed for weight

updation [87]-[90]. In block updating strategy the block of data is accumulated first

and then the filter output computation and adaptive weight updation is performed

once for each block. In addition to computational savings, the FDAF algorithm

tends to decorrelate the correlated input signal due to inherent property of FFT,

and hence can improve the convergence of ANC system. The future task could be

to develop the gain scheduling strategy for frequency domain ANC system.
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