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各種の性質を改善した直交DTCWTの設計
に関する研究

王　戴維

概要

双対木複素ウェーブレット変換 (DTCWT: Dual Tree Complex Wavelet Trans-

form)は信号処理や画像処理などの多くの分野で応用されている．DTCWTは，

二つの実係数フィルタバンクを用いたウェーブレット変換で実行され，それぞ

れ複素数の実部と虚部に対応する．二つのウェーブレット基底はヒルベルト変

換対となる必要がある．その結果，双対木複素ウェーブレット変換は近似的に

シフト不変性であり，高次元信号の場合，より良い方向選択性を持つ．本論文で

は，改善された特性を持つ二種類の双対木複素ウェーブレット変換を提案する．

第二章では，まず双対木複素ウェーブレット変換の基礎について簡潔に述べ

る．ウェーブレット変換は時間と周波数領域において信号を同時に解析できる

有効なツールである．スケーリング係数とウェーブレット係数を効率よく得る

ため，離散ウェーブレット変換が導入され，離散ウェーブレット変換は２チャ

ネルフィルタバンクを用いて実現できる．次に，２チャネルフィルタバンクの

設計条件：完全再構成条件と直交条件を説明し，ウェーブレット関数の直交性，

対称性やバニシングモーメント等の性質について述べる．さらに，双対木複素

ウェーブレット変換の構造を説明し，二つのウェーブレット基底がヒルベルト

変換対となることが必要であることを明らかにする．ヒルベルト変換対になる

ために，二つのスケーリングローパスフィルタが半サンプル遅延条件を満たす

ことが要求される．最後に，複素ウェーブレット変換の性能を評価するための

評価基準を示す．

第三章では，異なる次数の分子と分母を持つ一般的な IIR フィルタを用いて，

改善された解析性と周波数選択性を持つ双対木複素ウェーブレット変換を提案

する．Selesnick により提案された共通因子法では，半サンプル遅延条件を満

たすために，最大平坦オールパスフィルタが使用された．しかし，得られた複

素ウェーブレット変換の解析性が良くなかった．複素ウェーブレット変換の解

析性を改善するために，平坦度を指定して近似帯域で等リプル位相特性を持つ

オールパスフィルタの設計法を提案する．また，スケーリングローパスフィル

タの周波数選択性を改善するために，z=-1における零点の数を指定して阻止域

の振幅誤差を最小化する．Remezアルゴリズムを用いて，等リプル特性を近似
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する．よって，固有値問題を解くことで，簡単にフィルタ係数が得られる．さら

に，双対木複素ウェーブレット変換の性能を調査し，近似帯域と阻止域の適切

な与え方を示す．Selesnickにより提案された DTCWTは本論文で提案された

DTCWTの特殊なケースにすぎないことを明らかにする．

第四章では，任意の対称中心を持つ近似的に対称な双対木複素ウェーブレッ

ト変換を提案する．複素ウェーブレット変換の解析性を改善するために，まず

スケーリングローパスフィルタの群遅延の平坦度とバニシングモーメントを指

定し，二つのスケーリングローパスフィルタの間の周波数応答の差を最小化す

る．次に，Remez アルゴリズムを用いて定式化し，わずか数回の反復計算で，

誤差関数の等リプル特性を得る．よって，二つのスケーリングローパスフィル

タを同時に設計することができる．得られた複素ウェーブレット変換は，直交

であり，対称性と解析性が改善できる．さらに，スケーリングローパスフィルタ

の群遅延が任意に指定できるため，スケーリング関数は任意の対称中心を持つ．

いくつかの設計例を通じて，本論文で提案された DTCWTの設計手法の有効性

を示す．最後に，ノイズ低減の応用例を通じて，本論文で設計された DTCWT

が優れたノイズ除去性能を達成できることを明らかにする．
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A STUDY ON DESIGN OF ORTHOGONAL

DTCWTS WITH IMPROVED PROPERTIES

DAIWEI WANG

Abstract

The Dual tree complex wavelet transforms (DTCWTs) have been found to

be successful in many applications of signal and image processing. DTCWTs

employ two real wavelet transforms, where one wavelet corresponds to the

real part of complex wavelet and the other is the imaginary part. Two

wavelet bases are required to be a Hilbert transform pair. Thus, DTCWTs

are nearly shift invariant and have a good directional selectivity in two or

higher dimensions with limited redundancies. In this dissertation, we pro-

pose two new classes of DTCWTs with improved properties.

In Chapter 2, we review the Fourier transform at first and then introduce

the fundamentals of dual tree complex wavelet transform. The wavelet trans-

form has been proved to be a successful tool to express the signal in time

and frequency domain simultaneously. To obtain the wavelet coefficients ef-

ficiently, the discrete wavelet transform has been introduced since it can be

achieved by a tree of two-channel filter banks. Then, we discuss the design

conditions of two-channel filter banks, i.e., the perfect reconstruction and

orthonormality. Additionally, some properties of scaling and wavelet func-

tions including orthonormality, symmetry and vanishing moments are also

given. Moreover, the structure of DTCWT is introduced, where two wavelet

bases are required to form a Hilbert transform pair. Thus, the corresponding

scaling lowpass filters must satisfy the half-sample delay condition. Finally,

the objective measures of quality are given to evaluate the performance of

the complex wavelet.

In Chapter 3, we propose a new class of DTCWTs with improved analytic-

ity and frequency selectivity by using general IIR filters with numerator and

denominator of different degree. In the common-factor technique proposed

by Selesnick, the maximally flat allpass filter was used to satisfy the half-

sample delay condition, resulting in poor analyticity of complex wavelets.

Thus, to improve the analyticity of complex wavelets, we present a method

for designing allpass filters with the specified degree of flatness and equirip-
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ple phase response in the approximation band. Moreover, to improve the

frequency selectivity of scaling lowpass filters, we locate the specified num-

ber of zeros at z = −1 and minimize the stopband error. The well-known

Remez exchange algorithm has been applied to approximate the equiripple

response. Therefore, a set of filter coefficients can be easily obtained by solv-

ing the eigenvalue problem. Furthermore, we investigate the performance

on the proposed DTCWTs and dedicate how to choose the approximation

band and stopband properly. It is shown that the conventional DTCWTs

proposed by Selesnick are only the special cases of DTCWTs proposed in

this dissertation.

In Chapter 4, we propose another class of almost symmetric DTCWTs

with arbitrary center of symmetry. We specify the degree of flatness of

group delay, and the number of vanishing moments, then apply the Remez

exchange algorithm to minimize the difference between two scaling lowpass

filters in the frequency domain, in order to improve the analyticity of com-

plex wavelets. Therefore, the equiripple behaviour of the error function can

be obtained through a few iterations. Moreover, two scaling lowpass filters

can be obtained simultaneously. As a result, the complex wavelets are or-

thogonal and almost symmetric, and have the improved analyticity. Since

the group delay of scaling lowpass filters can be arbitrarily specified, the

scaling functions have the arbitrary center of symmetry. Finally, several ex-

periments of signal denoising are carried out to demonstrate the efficiency of

the proposed DTCWTs. It is clear that the proposed DTCWTs can achieve

better performance on noise reduction.
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Notation

ϕ(t) scaling function

ψ(t) wavelet function

ψc(t) complex wavelet function

ψ1(t) wavelet function of Tree A (real part of ψc(t))

ψ2(t) wavelet function of Tree B (imaginary part of ψc(t))

Φ(ω) Fourier transform of ϕ(t)

Ψ(ω) Fourier transform of ψ(t)

Ψc(t) Fourier transform of ψc(t)

Ψ1(t) Fourier transform of ψ1(t) of Tree A

Ψ2(t) Fourier transform of ψ2(t) of Tree B

cj,n scaling coefficient

dj,n wavelet coefficient

dcj,n complex wavelet coefficient

dAj,n wavelet coefficient of Tree A (real part of dcj,n)

dBj,n wavelet coefficient of Tree B (imaginary part of dcj,n)

d̂j,n wavelet coefficient after thresholding

d̂cj,n complex wavelet coefficient after thresholding

h(n) impulse response of lowpass filter in analysis filter

h1(n) impulse response of lowpass filter of Tree A

h2(n) impulse response of lowpass filter of Tree B



2 Chapter 0 Notation

H(z) transfer function of lowpass filter in analysis filter

H̃(z) transfer function of lowpass filter in synthesis filter

H1(z) transfer function of lowpass filter of Tree A

H2(z) transfer function of lowpass filter of Tree B

g(n) impulse response of highpass filter in analysis filter

G(z) transfer function of highpass filter in analysis filter

G̃(z) transfer function of highpass filter in synthesis filter

µ(r) moment of impulse response of highpass filter

m(r) moment of wavelet function

K number of vanishing moment

θ(ω) phase response of lowpass filter

θ1(ω) phase response of lowpass filter of Tree A

θ2(ω) phase response of lowpass filter of Tree B

θd(ω) desired phase response of lowpass filter

θd1(ω) desired phase response of lowpass filter of Tree A

θd2(ω) desired phase response of lowpass filter of Tree B

θe(ω) error phase response of lowpass filter

θe1(ω) error phase response of lowpass filter of Tree A

θe2(ω) error phase response of lowpass filter of Tree B

τ group delay of lowpass filter

τ1 group delay of lowpass filter of Tree A

τ2 group delay of lowpass filter of Tree B

A(z) transfer function of allpass filter
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a(n) coefficient of allpass filter

J degree of allpass filter

L degree of flatness of group delay

N degree of FIR filter or numerator of IIR filter

M number of integer delay in half-sample delay condition

P (z) product filter

ωc cutoff frequency of approximation band of allpass filter

ωs cutoff frequency of stopband of lowpass filter

T threshold value

E(ω) error function

Ep objective measure of analyticity of complex wavelet

H{· } Hilbert transform

⌊· ⌋ largest integer not greater than ·

D(· , · ) thresholding operator
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Chapter 1 Introduction

1.1 Background

A wavelet is a locally oscillating function that can be used to capture in-

formative, efficient, and useful descriptions of a signal. Despite of its short

history, wavelet theory has been proved to be a powerful mathematical tool

for analysis and synthesis of signals and has been used in a remarkable

diversity of disciplines such as physics, geophysics, numerical analysis, sig-

nal processing, biomedical engineering, statistics, and computer graphics

[1] ∼ [3], [26].

Why have wavelets been proved so useful in such a wide range of appli-

cations? The primary reason is because they collect information from both

temporal and frequency domain simultaneously while cutting up data into

different frequency components, and then study each component with a

resolution matched to its scale. Therefore, they can provide an extremely

efficient representation for many types of signals, that appear often in

practice but are not well matched by the Fourier basis, which is ideally

meant for periodic signals. Another reason encourages us is that the co-

efficients from a fine-scale representation can be easily obtained from two

octave-band, discrete-time filter banks that recursively apply a discrete-

time lowpass filter, a highpass filter, and upsampling and downsampling

operations [1] ∼ [3]. However, the wavelet transform itself also suffer four

fundamental shortcomings in spite of its efficient signal representation and

multiscale analysis [26];
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1. OSCILLATION

It is attractive that if wavelet coefficients could be large at the

edge or the sharp position. Generally, the wavelet coefficients tend to

oscillate positive and negative around these areas.

2. SHIFT VARIANCE A small shift of signal would generate a

great difference of wavelet coefficients, especially the wavelet coeffi-

cients oscillate around singularities.

3. ALIASING

As mentioned above, the wavelet coefficients can be computed from

the signal via iterated discrete-time downsampling operations from

lowpass and highpass filters, resulting in substantial aliasing.

4. LACK OF DIRECTIONAL SELECTIVITY

In two or higher dimensions, the wavelet produces a checkerboard

pattern that is oriented along 4 directions, i.e., 0◦, 45◦, 90◦, 135◦.

This lack of directional selectivity greatly complicates modelling and

processing of geometric image features like edges.

The undecimated wavelet transform [10] seems to be a good solution

to these four DWT shortcomings, since downsampling and upsampling

operations have not been adopted. However, the undecimated wavelet

transform leads in a huge redundancy as the output of each level of signal

contains the same number of samples as the input. Therefore, a better

solution between shift invariance and redundancies in the wavelet coef-

ficients is to use a complex wavelet instead, in which one of the most

successful and widely-used approaches is dual-tree complex wavelet trans-

form (DTCWT).
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DTCWT was originally introduced by Kingsbury [13], and has been

found to be successful in many applications of signal and image process-

ing [13] ∼ [29]. DTCWT provides the following significant improvements

over the conventional discrete wavelet transform (DWT) in [1], i.e., it is of

approximate shift invariance, enhanced directional selectivity for multidi-

mensional signals and gives the explicit phase information [26]. Generally,

the DTCWT is constructed by a Hilbert transform pair of wavelets (90◦

out of phase with each other). It has been shown in [20], [23] and [27] ∼

[30] that the necessary and sufficient condition for two wavelet bases to

be a Hilbert transform pair is that the two corresponding lowpass filters

should satisfy the half-sample delay condition.

1.2 Previous Design Methods

Several design procedures for constructing DTCWTs had been presented

in [13]∼ [48]. In [20], Selesnick had proposed a common-factor design tech-

nique, where the scaling lowpass filters are constructed by using allpass

filters to satisfy the half-sample delay condition. This method is simple

and effective, since the approximation accuracy of the half-sample delay is

controlled only by the allpass filter. Selesnick had adopted the maximally

flat allpass filter and given a class of FIR orthonormal and biorthogonal

solutions, and IIR orthonormal solution, where the scaling lowpass fil-

ters have as many zeros at z = −1 as possible to obtain the maximum

number of vanishing moments of wavelets, resulting in the maximally flat

magnitude responses of the scaling lowpass filters. It is well known that

frequency selectivity is a useful property for many applications of signal

processing. However, the maximally flat filters have poor frequency selec-
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tivity [2]. In addition, the resulting IIR scaling lowpass filters have the

numerator and denominator of the (almost) same degree. In [25], a new

class of Hilbert transform pairs of orthonormal wavelet bases has been

proposed by using general IIR filters, where the degree of numerator is

larger than that of the denominator, but only the maximally flat design

has been discussed. The maximally flat allpass filters have a larger phase

error as |ω| increases, resulting in a poor analyticity of complex wavelet.

The wavelet filters obtained by the common-factor method have non-

linear phase responses, resulting in asymmetric wavelet bases. Generally,

the symmetric wavelet bases are widely used in image processing since

the perceptually objectionable distortions around image edges can be ef-

fectively reduced. Therefore, several methods have been proposed for ob-

taining symmetric wavelet bases. Q-shift filters were proposed by Kings-

bury in [16], [17], [22]. In [16], two scaling lowpass filters were selected to

be the time-reversed versions of each other. Therefore, the group delay

of lowpass filter is required to be 1/4 (quarter) or 3/4 sample from the

half-sample delay condition, and then the filter was called as Q-shift filter.

Some design methods for Q-shift filters have been also proposed in [17],

[22], [41], [42] to improve the vanishing moments, symmetry and so on. In

addition, SSH (symmetric self-Hilbertian) filter had been proposed by Tay

in [30] and its design had been discussed in [31], [45], [47]. In principle,

SSH filters are the same as Q-shift filters, and have a group delay of 1/4

sample.

In many applications of signal and image processing, digital filters with

the specified (fractional or integer) group delay are often needed [3], [6].

For the conventional DWTs, nearly symmetric orthogonal wavelets, e.g.,
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coiflets, had been proposed in [1, chapter 8.2], and the original coiflets had

also been generalized by varying the group delay at ω = 0, i.e., the center

of symmetry of scaling function, where non-integer group delay was used

to obtain a rich class of new wavelets [11], [12]. Therefore, it is reasonable

to design a class of almost symmetric DTCWTs with arbitrarily specified

group delay responses.

1.3 Contruibutions and Organizations of the

Dissertation

This dissertation proposes two new classes of DTCWTs with different im-

proved properties. First of all, we propose a new class of DTCWTs with

improved analyticity and frequency selectivity by using general IIR filters

with numerator and denominator of different degree based on common-

factor method. Next, we propose another class of almost symmetric

DTCWTs with arbitrary center of symmetry. The scaling lowpass fil-

ters can have the specified group delay responses, resulting in the scaling

functions having arbitrary center of symmetry. The resulting DTCWTs

are orthogonal and almost symmetric, and have the improved analyticity.

In Chapter 2, we first review Fourier transform and short time Fourier

transform, and then introduce the theory of wavelet transform including

wavelet series expansion and multiresolution. It is shown that the signal

can be easily constructed from a single wavelet by its shift and scaling.

The discrete wavelet transform is introduced to obtain the wavelet co-

efficients efficiently, since the coefficients can be calculated by a tree of

two-channel filter banks. Next, we discuss the properties of wavelets in-
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cluding orthonormality, symmetry and vanishing moments. Moreover, the

structure of Dual tree complex wavelet transforms (DTCWTs) is given,

which is consisted from two conventional discrete wavelet transform. Two

wavelet bases are required to form a Hilbert transform pair, thus, the

corresponding scaling lowpass filters must satisfy the half-sample delay

condition. Finally, two objective measures are introduced to evaluate the

performance of complex wavelet.

In Chapter 3, we propose a new class of DTCWTs with improved ana-

lyticity and frequency selectivity by using general IIR filters with numer-

ator and denominator of different degree. To improve the analyticity of

complex wavelet, we present a method for designing allpass filters with

the specified degree of flatness at ω = 0 and equiripple phase response

in the approximation band. To improve the frequency selectivity of the

scaling lowpass filters, we specify the number of zeros at z = −1 from the

viewpoint of vanishing moments and then minimize the stopband error by

using the remaining degree of freedom. The proposed design procedures

are based on the well-known Remez exchange algorithm, thus, a set of filter

coefficients can be easily obtained by solving the eigenvalue problem. The

optimal solution is attained through a few iterations. It is shown that the

conventional FIR and IIR orthonormal solutions proposed in [20] are only

the special cases of DTCWTs proposed in this dissertation. Moreover, we

investigate the performance on the proposed DTCWTs and indicate how

to choose the approximation band properly.

In Chapter 4, we propose another class of almost symmetric DTCWTs

with arbitrary center of symmetry. We design simultaneously two scaling

lowpass filters with the specified flat group delay at ω = 0, which sat-
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isfy the half-sample delay condition. In addition to specifying the number

of vanishing moments, we apply the Remez exchange algorithm to min-

imize the difference between two scaling lowpass filters in the frequency

domain, in order to improve the analyticity of complex wavelets. The

equiripple behaviour of the error function can be obtained through a few

iterations. As a result, the complex wavelets are orthogonal and almost

symmetric, and have the improved analyticity. Differently from Q-shift

filters, the group delay responses of scaling lowpass filters can be arbitrar-

ily specified, resulting in the scaling functions having the arbitrary center

of symmetry. Moreover, it is shown that DTCWTs proposed in this dis-

sertation can achieve better analyticity than Q-shift filters. Finally, we

introduce wavelet thresholding scheme to investigate the performance of

noise reduction by using the proposed DTCWTs.

In Chapter 5, we conclude the dissertation.
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Chapter 2 Fundamentals of Dual

Tree Complex Wavelet

Transform

2.1 Introduction

In this chapter, we briefly review the theory of Fourier analysis and short

time Fourier transform, and then introduce the fundamentals of wavelet

theory, from wavelet series expansion, to two-channel filter bank. Next,

a newly-developed technique referred as dual tree complex wavelet trans-

form (DTCWT) is introduced. Two measures used for evaluating the

performance of complex wavelet are given at the end of this chapter.

2.2 Fourier Analysis

2.2.1 Fourier Transform

The Fourier transform is one of the most significant mathematical tool for

decomposing the signal into a sum of sines and cosines basis functions.

Each of these basis functions is a complex exponential of a different fre-

quency. Therefore, the Fourier transform maps the signal in time domain

to the frequency domain.
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Generally, the Fourier transform of a signal x(t) can be expressed as

X(ω) =

∫ ∞

−∞
x(t)e−jωtdt. (2.1)

In addition, x(t) can be obtained from X(ω) via the inverse Fourier trans-

form:

x(t) =
1

2π

∫ ∞

−∞
X(ω)ejωtdω. (2.2)

According to Eq.(2.1), we can not obtain the frequency spectrum for the

signal in accurate time position. According to Eq.(2.2), it is difficult to

extract the time information corresponding to the specified frequency spec-

trum. That is to say, the Fourier transform can only provide either time

or frequency domain information. Therefore, short-time Fourier transform

(STFT) had been proposed to obtain the local information in both time

and frequency domains.

2.2.2 Short-Time Fourier Transform

The concept of STFT is obvious that it uses a window function (e.g., Hann

window or Gaussian window), which is nonzero for only a short period of

time, to provide the local information of time and frequency as the window

slides along the time axis. The STFT can be expressed as

X(ω, t0) =

∫ ∞

−∞
x(t)w(t− t0)e

−jωtdt, (2.3)

where w(t) is the window function and t0 is the local position. Thus,

STFT is time and frequency localized, which can provide both time and

frequency information.
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However, the STFT only provides the equal resolution in time for lower

and higher frequencies since the resolution is determined by the window

size in advance. For the practical usage, it is reasonable to provide mul-

tiresolution for time-frequency analysis. Therefore, the wavelet transform

had been proposed and proved to be a successful tool instead of STFT.

2.3 Wavelet Theory

2.3.1 Wavelet Series Expansion and Multiresolution

In the previous section, the Fourier transform is employed to transform

signals between time and frequency domains. However, the signal can not

contain information in both time and frequency domains simultaneously.

In order to overcome the limitation of Fourier transform, another trans-

form referred as wavelet transform had been proposed and proved to be a

successful tool instead of Fourier transform. Differently from basis func-

tions (sines and cosines) in Fourier transform, the wavelet bases are a set

of locally oscillating functions, which are constructed from a single mother

(or father) wavelet by its shift and scaling. Therefore, the scaling func-

tions ϕ(t) and wavelet functions ψ(t) at scale j with n shift are expressed

as, 
ϕj,n(t) = 2j/2ϕ(2jt− n)

ψj,n(t) = 2j/2ψ(2jt− n)

. (2.4)

Generally, a signal x(t) can be represented as a linear combination of
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the wavelet bases as

x(t) =
∑
n

cj0,nϕj0,n(t) +
∞∑

j=j0

∑
n

dj,nψj,n(t), (2.5)

where cj0,n are the scaling coefficients at scale 2j0 and dj,n are the wavelet

coefficients at scale 2j. Eq.(2.5) is regarded as wavelet series expansion.

The scaling coefficients cj0,n can be obtained by

cj0,n =

∫ +∞

−∞
x(t)ϕj0,n(t)dt, (2.6)

while the wavelet coefficients dj,n can be obtained by

dj,n =

∫ +∞

−∞
x(t)ψj,n(t)dt. (2.7)

The first term in Eq.(2.5) represents the approximation of the signal

x(t) at level j0 by the linear combination of the scaling functions ϕj0,n(t)

and the second term represents the details in different levels of the signal

x(t) by the linear combination of the wavelet functions ψj,n(t). Thus,

the scaling function has the characteristic of lowpass nature (“smooth”

the signal) whereas the wavelet function has the characteristic of highpass

nature (take “difference” of signal).

It should be noted that at each given resolution (level j) of the signal,

the approximation plus the detail, the ϕj,n(t)’s plus the ψj,n(t)’s, combine

into a multiresolution of the signal at the finer level j + 1,

∑
n

cj+1,nϕj+1,n(t) =
∑
n

cj,nϕj,n(t) +
∑
n

dj,nψj,n(t). (2.8)

Thus, the signal is usually expressed by the wavelet series expansion in its

multiresolution representation. Fig.2.1 shows each mentioned-above trans-
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form in time-frequency representation. The Fourier transform only pro-

vides information about either time or frequency; The short-time Fourier

transform provides local time-frequency information, but with the same

resolution; The wavelet transform provides information about the time

and frequency with different resolution.

(a) Fourier transform (FT).

(b) Short-time Fourier transform (STFT).

(c) Wavelet transform (WT).

Fig.2.1 Comparison of FT, STFT and WT
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2.3.2 Discrete Wavelet Transform

For the practical usage of the wavelet transform and its multiresolution

analysis, discrete wavelet transform had been proposed to compute the

coefficients cj,n and dj,n quickly and efficiently. In the discrete time, the

scaling function ϕ(t) satisfy dilation equation:

ϕ(t) =
√
2
∑
n

h(n)ϕ(2t− n), (2.9)

and the wavelet function ψ(t) satisfy wavelet equation:

ψ(t) =
√
2
∑
n

g(n)ϕ(2t− n). (2.10)

where h(n) and g(n) are lowpass filter and highpass filter from a two-

channel filter bank, respectively.

Thus, multiresolution analysis in discrete time can be achieved by a tree

of two-channel filter banks. The scaling and wavelet coefficients at scale

2j can be computed from the scaling coefficients at the finer scale 2j+1

through a discrete-time filtering followed by a downsampling operations,

while the scaling coefficients at the scale 2j+1 can be synthesized from the

scaling and wavelet coefficients at the scale 2j via a up-sampling operation

followed by a discrete-time filtering. For instance, we start with cj1+1,n and

perform the decomposition (j1 − j0 + 1) times:

cj1+1,n −→ cj1,n −→ cj1−1,n −→ · · · −→ cj0,n

↘ ↘ ↘ ↘
dj1,n dj1−1,n · · · dj0,n

,

while we can recover cj1+1,n by performing the reconstruction (j1− j0+1)
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times:

cj0,n −→ cj0+1,n −→ · · · −→ cj1,n −→ cj1+1,n

↗ ↗ ↗ ↗
dj0,n dj0+1,n · · · dj1,n

.

Thus, it is obvious that the discrete wavelet transform provides an efficient

discrete-time approach to compute the wavelet series expansion by its

recursive process.

2.3.3 Two Channel Filter Banks

2.3.3.1 Basic Structure

The basic structure of two-channel filter bank is shown in Fig.2.2. In the

analysis bank, H(z) is a lowpass filter and G(z) is a highpass filter. In

the synthesis bank, H̃(z) is a lowpass filter and G̃(z) is a highpass fil-

ter. The down-sampling operators (↓) are decimators and the upsampling

operators (↑) are expanders. Basically, the properties (orthogonality, sym-

metry, vanishing moments and so on) of scaling and wavelet function are

determined by the filter banks.
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Fig.2.2 Two-channel filter bank.

2.3.3.2 Perfect Reconstruction

Consider the input signal is X(z), then the output Y (z) is consisted from

lowpass and highpass channels,

lowpass output =
1

2
H̃(z)[H(z)X(z) +H(−z)X(−z)]

highpass output =
1

2
G̃(z)[G(z)X(z) +G(−z)X(−z)]

Therefore, the output Y (z) can be expressed as

Y (z) =
1

2
[H(z)H̃(z) +G(z)G̃(z)]X(z)

+
1

2
[H(−z)H̃(z) +G(−z)G̃(z)]X(−z).

(2.11)

For perfect reconstruction with N sample delays, Y (z) = X(z)z−N . So the

first term in Eq.(2.11) should cancel the signal distortion and the second
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term must be zero. Thus, the corresponding filter banks should satisfy
H(z)H̃(z) +G(z)G̃(z) = 2z−N

H(−z)H̃(z) +G(−z)G̃(z) = 0

, (2.12)

where N is odd. Thus, the synthesis bank H̃(z), G̃(z) can be directly

derived from analysis bank H(z), G(z) as

H̃(z) = G(−z) and G̃(z) = −H(−z). (2.13)

Then, Eq.(2.12) becomes

H(z)G(−z)−H(−z)G(z) = 2z−N . (2.14)

which is perfect reconstruction condition.

2.3.3.3 Orthonormality

It is well-known that the orthonormal wavelets form a tight Riesz basis,

and the corresponding transform has the l2-norm-preserving property. In

applications, the orthogonality has several advantages such as noise decor-

relation in denoising, energy preservation and so on [46]. Therefore, we

restrict ourself to the case of orthonormal wavelet bases in this disser-

tation. The corresponding filter banks should satisfy the orthonormality

condition, i.e., the synthesis filter bank should be time-reversed of analysis

filter banks,

H̃(z) = z−NH(z−1) and G̃(z) = z−NG(z−1). (2.15)
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According to Eq.(2.13), Eq.(2.15) becomes

H(−z) = −z−NG(z−1) and G(−z) = z−NH(z−1). (2.16)

Then the orthonormality condition can be derived from Eq.(2.14),

Eq.(2.15) and Eq.(2.16),
H(z)H(z−1) +H(−z)H(−z−1) = 2

G(z)G(z−1) +G(−z)G(−z−1) = 2

H(z)G(z−1) +H(−z)G(−z−1) = 0

. (2.17)

2.3.3.4 Symmetry

If the scaling function ϕ(t) and wavelet function ψ(t) are symmetric and

their center of symmetry are located at τ0 and N
2
, respectively,

ϕ(t− τ0) = ϕ(τ0 − t)

ψ(t− N

2
) = ψ(

N

2
− t)

. (2.18)

Eq.(2.18) requires that the corresponding scaling lowpass filter must have

a linear phase response;

θ(ω) = −τ0ω, (2.19)

where τ0 is the constant.
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2.3.3.5 Vanishing Moments

The moment of the wavelet function is defined by

m(r) =

∫ ∞

−∞
trψ(t)dt, (2.20)

and the moment of impulse response g(n) is given by

µ(r) =
∑
n

nrg(n). (2.21)

Generally, the wavelets function is required to have K vanishing mo-

ments,
m(r) =

∫ ∞

−∞
trψ(t)dt = 0

µ(r) =
∑
n

nrg(n) = 0

(r = 0, 1, · · · , K − 1) . (2.22)

According to Eq.(2.16), we have

g(n) = (−1)nh(N − n). (2.23)

Therefore, the scaling lowpass filter H(z) must have K zeros at z = −1;

H(z) = Q(z)(1 + z−1)K , (2.24)

where Q(z) is a FIR or IIR filter.
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2.4 Dual Tree Complex Wavelet Transform

In the previous section, the wavelet theory and filter banks have been

introduced. However, the conventional wavelet transform has some un-

avoidable shortcomings, like shift variance, lack of directionality and so

on. Therefore, the dual-tree complex wavelet transform is proposed to

overcome the shortcomings of DWT.

2.4.1 Basic Structure

Dual-Tree Complex Wavelet Transform (DTCWT) was originally pro-

posed by Kingsbury [13], and has been found to be successful in many

applications of signal and image processing [13] ∼ [29]. It not only inher-

its the merit of DWT, like multiresolution analysis, time-frequency rep-

resentation and so on, but also makes a comparable improvement to the

shortcomings of DWT, i.e., it is of approximate shift invariance, enhanced

directional selectivity for multidimensional signals and gives the explicit

phase information [26]. Besides, it achieves these with a redundancy fac-

tor of only 2d for d-dimensional signals, which is substantially lower than

the undecimated DWT.

DTCWT employs two real DWTs, as shown in Fig.2.3, where the first

DWT is the real part of DTCWT and the other one is the imaginary part.

Each DWT is consisted from two-channel filter bank. Let {ϕi(t), ψi(t)} be

the scaling and wavelet functions of two DWTs, where i = 1, 2. Then, the
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H1(z)

G1(z)

2

2

H1(z)

G1(z)

2

2

H2(z)

G2(z)

2

2

H2(z)

G2(z)

2

2

Real part

Imaginary part

Fig.2.3 Dual tree complex wavelet filter bank.

complex wavelet ψc(t) is expressed as

ψc(t) = ψ1(t) + jψ2(t). (2.25)

Generally, two wavelet functions ψ1(t) and ψ2(t) are required to be a

pair of Hilbert transform. Thus the complex wavelet ψc(t) is analytic, i.e.,

the spectrum is one-sided:

Ψc(ω) = Ψ1(ω) + jΨ2(ω) =

 2Ψ1(ω) (ω > 0)

0 (ω < 0)
. (2.26)

where Ψi(ω) is the Fourier transform of ψi(t).
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2.4.2 Half-sample Delay Condition

It had been proven in [20], [23] ∼ [27], [30] and [31] that two wavelet

functions ψi(t) are a Hilbert transform pair;

ψ2(t) = H{ψ1(t)}, (2.27)

that is,

Ψ2(ω) =

 −jΨ1(ω) (ω > 0)

jΨ1(ω) (ω < 0)
, (2.28)

if and only if the corresponding scaling lowpass filters H1(z) and H2(z)

satisfy

H2(e
jω) = H1(e

jω)e−j(2M+ 1
2
)ω (|ω| < π), (2.29)

where M is an integer. Eq.(2.29) is the generalized half-sample delay

condition, which is the necessary and sufficient condition for two wavelet

bases to form a Hilbert transform pair. It should be noted that M = 0 is

used in all design examples in this dissertation.

2.4.3 Error Function

It is obvious in Eq.(2.29) that H2(e
jω) needs to be approximated to

H1(e
jω)e−j(2M+ 1

2
)ω. Specifically, the scaling lowpass filters should be offset

from another one by a half sample. Therefore, we define the error function

E(ω) as

E(ω) = H2(e
jω)−H1(e

jω)e−j(2M+ 1
2
)ω. (2.30)
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In this dissertation, we will minimize the error function E(ω) to improve

the analyticity.

2.5 Objective Measures of Analyticity

Practically, it is impossible to achieve the ideal Hilbert transform. There-

fore, to evaluate the analyticity of complex wavelet, we use the p-norm of

the spectrum Ψc(ω) to define an objective measure of quality as

Ep =
||Ψc(ω)||p,(−∞,0)

||Ψc(ω)||p,(0,∞)

, (2.31)

where

||Ψc(ω)||p,Ω =

(∫
Ω

|Ψc(ω)|pdω
) 1

p

. (2.32)

If p = ∞, E∞ = lim
p→∞

Ep evaluates the peak error in the negative frequency

domain. If p = 2, E2 evaluates the square root of the negative frequency

energy. In this dissertation, we use E∞ and E2 to evaluate the analyticity

of the complex wavelets. It should be noted that the lower the values of

E∞ and E2, the better the analyticity of complex wavelet.

2.6 Summary

In this chapter, we have introduced the Fourier transform and short-time

Fourier transform at first and then reviewed the conventional wavelet the-

ory and interpreted the discrete wavelet transform achieved by two-channel

filter banks. Next, we discussed the orthornomality and the perfect recon-

struction of two-channel filter banks. In addition, some important prop-
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erties such as symmetry, vanishing moments of wavelets have been dis-

cussed. Next, DTCWT was introduced. The half-sample delay condition

was given which is the necessary and sufficient condition for two wavelet

bases to be a Hilbert transform pair. Finally, two objective measures were

introduced to evaluate the performance of the complex wavelets.
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Chapter 3 Orthogonal DTCWTs

with Improved Analyticity

and Frequency Selectivity

3.1 Introduction

Dual tree complex wavelet transforms (DTCWTs) have been proposed and

found to be successful in many applications of signal and image processing

[13], [16] ∼ [22], [26]. Two wavelet bases are required to form to be a

Hilbert transform pair. The corresponding scaling lowpass filters satisfy

the half-sample delay condition. Several design procedures for Hilbert

transform pairs of wavelet bases have been presented in [13], [16] ∼ [22],

[26], [30], [31] and [38] by using FIR filters, which are corresponding to

the compactly supported wavelets. In [20], Selesnick had proposed the

common-factor technique, where the scaling lowpass filters are constructed

by using allpass filters to satisfy the half-sample delay condition. Selesnick

had adopted the maximally flat allpass filter and given a class of FIR

orthonormal and biorthogonal solutions, and IIR orthonormal solution.

However, the maximally flat allpass filter has a large phase error as |ω|

increases, resulting in a poor analyticity of complex wavelet. In addition,

the scaling lowpass filters in [26] have as many zeros at z = −1 as possible,

resulting a weak frequency selectivity. Moreover, the resulting IIR scaling

lowpass filters have the numerator and denominator of the (almost) same
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degree.

In [25], Kawada and Zhang had proposed a design method based on

common-factor technique by using general IIR filters with numerator and

denominator of different degree. We will review that method at first and

then propose a new class of DTCWTs with improved analyticity and fre-

quency selectivity. It is shown that the conventional FIR and IIR orthonor-

mal solutions proposed in [20] are only the special cases of DTCWTs pro-

posed in this disseratation. Finally, we investigate the performance on the

proposed DTCWTs and indicate how to choose the approximation band

properly.

3.2 The Common-Factor Technique

3.2.1 Hilbert Transform Pairs by Allpass Filter

It is known [6] that the transfer function of an allpass filter A(z) with a

delay of τ samples is defined by

A(z) = z−JD(z−1)

D(z)
, (3.1)

where

D(z) =
J∑

n=0

a(n)z−n. (3.2)

with

a(n) = (−1)n

(
J

n

)
(τ − J)n
(τ + 1)n

, (3.3)
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where J is the degree of A(z) and a(n) are real filter coefficients, a(0) = 1

and (x)n represents the rising factorial, i.e., (x)n := (x)(x+1) · · · (x+n−1).

The allpass filter A(z) has unit magnitude response at all frequencies and

its phase response θ(ω) is given by

θ(ω) = −Jω + 2 tan−1

J∑
n=0

an sin(nω)

J∑
n=0

an cos(nω)

. (3.4)

In [20], Selesnick had proposed the common factor technique where the

scaling lowpass filters H1(z) and H2(z) are composed of the allpass filter

by  H1(z) = F (z)D(z)

H2(z) = F (z)z−JD(z−1)
. (3.5)

Since both of scaling lowpass filters have the same factor F (z), we have

H2(z) = H1(z)z
−JD(z−1)

D(z)
= H1(z)A(z). (3.6)

It is clear that H2(z) is expressed as the product of H1(z) and A(z). The

half-sample delay condition in Eq.(2.29) can be approximately achieved if

the allpass filter is an approximate half-sample delay;

A(ejω) ≈ e−j(2M+ 1
2
)ω (|ω| < π). (3.7)

Thus the half-sample delay condition is achieved approximately, and two

wavelet bases form an approximate Hilbert transform pair. The advantage

of this method is that the approximation accuracy of the half-sample delay

is controlled only by the allpass filter.
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3.2.2 FIR Orthonormal Solution

After A(z) is determined, F (z) needs to be constructed for H1(z) and

H2(z). To obtain wavelet bases with K vanishing moments, F (z) is chosen

as

F (z) = Q(z)(1 + z−1)K . (3.8)

Thus, H1(z) = Q(z)(1 + z−1)KD(z)

H2(z) = Q(z)(1 + z−1)Kz−JD(z−1)
. (3.9)

It is clear that H1(z) and H2(z) have the same product filter P (z);

P (z) = H1(z)H1(z
−1) = H2(z)H2(z

−1)

= Q(z)Q(z−1)(1 + z)K(1 + z−1)KD(z)D(z−1)

= Q(z)Q(z−1)(z + 2 + z−1)KD(z)D(z−1)

. (3.10)

Let Q(z) be a FIR filter and defining

R(z) = Q(z)Q(z−1) =

N1∑
n=−N1

r(n)z−n, (3.11)

S(z) = (z + 2 + z−1)KD(z)D(z−1) =
J+K∑

n=−J−K

s(n)z−n, (3.12)

where r(n) = r(−n) for 1 ≤ n ≤ N1 and s(n) = s(−n) for 1 ≤ n ≤ J +K,

and Eq.(3.10) becomes

P (z) = R(z)S(z). (3.13)
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Therefore, the orthonormality condition in Eq.(2.17) becomes,

P (z) + P (−z) = 2, (3.14)

or equivalently,

Imax∑
k=Imin

s(2n− k)r(k) =


1 (n = 0)

0 (1 ≤ n ≤ N1 + J +K

2
)

, (3.15)

where Imin = max{−N1, 2n − J −K} and Imax = min{N1, 2n + J +K}.

Note that P (z) is a halfband filter. The degree of Hi(z) is N = N1+J+K.

Since r(n) = r(−n), there are totally (N + 1)/2 equations with respect

to (N1 + 1) unknown coefficients of r(n) in Eq.(3.15). Therefore, we can

obtain the only solution if (N + 1)/2 = N1 + 1.

In [20], Selesnick had chosen N1 = J +K − 1 and obtained the filter of

minimal degree for given J and K, which corresponds to the maximal K

for given J and N1,

Kmax = N1 − J + 1 =
N + 1

2
− J. (3.16)

Thus the scaling lowpass filters have the maximally flat magnitude re-

sponses, resulting in the maximum number of vanishing moments. This is

the FIR orthonormal solution proposed in [20].

3.2.3 IIR Orthonormal Solution

In general, IIR filters require a lower computational complexity than FIR

filters to achieve a sharp frequency response. IIR filters can be also used
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to construct DTCWT. In [20], Selesnick has chosen

F (z) =
(1 + z−1)K

C(z2)
, (3.17)

then 
H1(z) =

(1 + z−1)KD(z)

C(z2)

H2(z) =
(1 + z−1)Kz−JD(z−1)

C(z2)

. (3.18)

H1(z) and H2(z) have the same product filter P (z),

P (z) =
(z + 2 + z−1)KD(z)D(z−1)

C(z2)C(z−2)
. (3.19)

Defining

B(z) = C(z)C(z−1) =

N2∑
n=−N2

b(n)z−n, (3.20)

where b(n) = b(−n) for 1 ≤ n ≤ N2. From the orthonormality condition

in Eq.(2.16),

S(z) + S(−z) = 2B(z2). (3.21)

thus N2 = ⌊J+K
2

⌋ and

b(n) = s(2n), (3.22)

where ⌊x⌋ means the largest integer not greater than x. This is the IIR

orthonormal solution proposed in [20]. It is clear that the numerator

and denominator of Hi(z) are of degree N = J + K and 2N2 = 2⌊J+K
2

⌋

respectively, which are the almost same.
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3.2.4 General IIR Orthonormal Solution

Now we consider the case of using general IIR filters with numerator and

denominator of different degree [25]. We choose

F (z) =
Q(z)(1 + z−1)K

C(z2)
, (3.23)

then the corresponding scaling lowpass filters Hi(z) become
H1(z) =

Q(z)(1 + z−1)KD(z)

C(z2)

H2(z) =
Q(z)(1 + z−1)Kz−JD(z−1)

C(z2)

, (3.24)

where the degree of numerator is not less than the degree of denominator,

that is, N = J +K +N1 ≥ 2N2. If N > 2N2, then N is an odd number,

whereas if N = 2N2, N is an even number.

Thus, the product filter P (z) is

P (z) = H1(z)H1(z
−1) = H2(z)H2(z

−1)

=
Q(z)Q(z−1)(1 + z)K(1 + z−1)KD(z)D(z−1)

C(z2)C(z−2)

=
R(z)S(z)

B(z2)

. (3.25)

According to the orthonormality condition, we have

Imax∑
k=Imin

s(2n− k)r(k) =


b(n) (0 ≤ n ≤ N2)

0 (N2 < n ≤ N

2
)

. (3.26)
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We rewrite Eq.(3.26) in the matrix form as

b = S1r, (3.27)

and

S2r = 0, (3.28)

where b = [b(0), b(1), · · · , b(N2)]
T , r = [r(0), r(1), · · · , r(N1)]

T , 0 =

[0, 0, · · · , 0]T , and the elements of the matrices S1 and S2 are given by

S1(m,n) =


s(2m) (n = 0)

s(2m− n) + s(2m+ n) (n = 1, 2, . . . , N1)

(3.29)

where 0 ≤ m ≤ N2, and

S2(m,n) =


s(2(N2 + 1 +m)) (n = 0)

s(2(N2 + 1 +m)− n) + s(2(N2 + 1 +m) + n)

(n = 1, 2, . . . , N1)

(3.30)

where 0 ≤ m ≤ ⌊N
2
⌋−N2−1. Note that s(−n) = s(n) = 0 for n > J+K.

Assuming r(0) = 1 without any loss of generality, there are (⌊N
2
⌋ −

N2) equations with respect to N1 unknown coefficients r(n) in Eq.(3.28).

Therefore, it is clear that the only solution r(n) exists if ⌊N
2
⌋ −N2 = N1,

and then b(n) can be obtained by using Eq.(3.27). When N > 2N2, N1 +

2N2 = J+K−1, since N is odd. If we choose N2 = 0, then N1 = J+K−1,

which is correspondent to the FIR orthonormal solution in [20]. If we

choose N1 = 0, then N = J+K. When N is odd, 2N2 = J+K−1 = N−1,

while if N is even, 2N2 = J +K = N . Thus N2 =
⌊
N
2

⌋
=
⌊
J+K
2

⌋
, and it

is the IIR orthonormal solution in [20]. Therefore, it is clear that the FIR
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and IIR orthonormal solutions proposed in [20] are only the special cases

of general IIR orthonormal solutions when N2 = 0 or N1 = 0. It should

be noted that the minimum-phase spectral factor approach is applied to

get Q(z) from R(z), C(z) from B(z) in this dissertation. TABLE.3.1

summarizes the FIR/IIR orthonormal solutions using general IIR filters

with numerator and denominator of different degree.

TABLE 3.1 FIR/IIR Orthonormal Solutions

N1, N2 N Number of equation Filter Type

N1 ̸= 0, N2 = 0 ODD N1 = J +K − 1 FIR [20]

N1 ̸= 0, N2 ̸= 0 ODD N1 +N2 = ⌊N
2 ⌋ IIR

N1 = 0, N2 ̸= 0 EVEN or ODD N2 = ⌊N
2 ⌋ = ⌊J+K

2 ⌋ IIR [20]
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3.2.5 Design Examples

In this section, two examples will be presented. In the first example,

we consider a class of DTCWTs using general IIR filters. In the second

example, K and J will be varied to construct a new class of DTCWTs.

Example 3.1

We consider a class of DTCWTs using IIR filters with numerator and

denominator of different degree. As proposed in [20], we have used the

maximally flat allpass filter with J = 2 and K = 4. To obtain the filters

of minimal degree, we can choose {N1, N2} = {5, 0}, {3, 1}, {1, 2}, {0, 3},

where the degree of numerators are N = 11, 9, 7, 6, respectively. Note that

the filter with {N1, N2} = {5, 0} is FIR filter. We have designed these

four filters, and the resulting magnitude responses of Hi(z) are shown in

Fig.3.1. It is seen that IIR filters have more sharp magnitude responses

than FIR filter. To get stable filters, the numerator and denominator are

obtained by using the minimum-phase spectral factor [20]. Their group

delay responses are given in Fig.3.2. It is seen that the group delay be-

comes more flat as a decreasing N2, and the half-sample delay condition is

approximately achieved. Moreover, the magnitude responses of E(ω) are

shown in Fig.3.3. The maximum error of IIR filters are smaller than the

conventional FIR filter. The scaling and wavelet functions ϕi(t), ψi(t) are

also shown in Fig.3.4. Furthermore, the spectrum Ψi(ω) and the spectrum

Ψc(ω) are shown in Fig.3.5, Fig.3.6 and Fig.3.7 respectively. In Fig.3.7,

the complex wavelet constructed by FIR filter has a bigger spectrum in
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the negative frequency domain than that by IIR filters. Finally, the ana-

lyticity measures of E∞ and E2 are summarized in Table 3.2 and both of

E∞ and E2 decrease as an increasing N2.

TABLE 3.2 Analyticity Measures E∞ and E2.

N1 N2 E∞(%) E2(%)

5 0 1.627 1.894

3 1 1.064 1.173

1 2 1.017 1.061

0 3 1.014 1.048
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Fig.3.1 Magnitude responses of scaling lowpass filters Hi(z).
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Fig.3.4 Scaling and wavelet functions ϕi(t), ψi(t).
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Fig.3.5 Magnitude responses of Ψi(ω).
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Fig.3.6 Magnitude responses of Ψc(ω).
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Example 3.2

We consider a class of DTCWTs using IIR Filters with N = 9, N1 = 3.

We can choose different K and J , where K + J = 6. Therefore, K and

J are selected as {K, J} = {4, 2}, {3, 3}, {2, 4}, respectively. The result-

ing magnitude response of Hi(z) are shown in Fig.3.8. It is obvious that

with the increasing of K, the transition band of the scaling lowpass filters

becomes sharp. Their group delay responses are given in Fig.3.9, where

the half-sample delay condition is approximately achieved. Moreover, the

magnitude responses of E(ω) are given in Fig.3.10. It is maximum when

{K = 4, J = 2} while minimum when {K = 2, J = 4}. Next, the scaling

functions ϕi(t) and wavelet functions ψi(t) are shown in Fig.3.11. Fur-

thermore, the spectrum of wavelet function Ψi(ω) and complex wavelet

Ψc(ω) are given in Fig.3.12, Fig.3.13, and Fig.3.14, respectively. When

{K = 2, J = 4}, the negative spectrum of DTCWT is small, i.e., bet-

ter analyticity of DTCWT. Finally, the objective measures of quality are

summarized in Table 3.3.
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TABLE 3.3 Analyticity Measures E∞ and E2.

K J E∞(%) E2(%)

4 2 1.064 1.173

3 3 0.254 0.293

2 4 0.147 0.265
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Fig.3.8 Magnitude responses of scaling lowpass filters Hi(z).
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Fig.3.9 Group delay responses of scaling lowpass filters Hi(z).
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Fig.3.11 Scaling and wavelet functions ϕi(t), ψi(t).
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Fig.3.13 Magnitude responses of Ψc(ω).
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3.3 DTCWTs with Improved Analyticity

In the previous section, we had introduced the common-factor technique,

where the maximally flat allpass filters A(z) had been adopted for con-

structing the scaling lowpass filters. Since ω = 0 is chosen as the point of

approximation, the phase error will increase as |ω| increases. Therefore,

E(ω) has a large error in transition band, resulting in a poor analyticity

of complex wavelet. In the following, we will discuss how to improve the

analyticity of complex wavelet.

3.3.1 Flatness Condition

From Eqs.(2.30) and (3.5), we have

E(ω) = H2(e
jω)−H1(e

jω)e−j(2M+ 1
2
)ω

= H1(e
jω)[A(ejω)− e−j(2M+ 1

2
)ω],

(3.31)

thus

|E(ω)| = 2|H1(e
jω)|| sin

θ(ω) + (2M + 1
2
)ω

2
|. (3.32)

where θ(ω) is the phase response of A(z). It is clear that |E(ω)| is de-

pendent on both the magnitude response |H1(e
jω)| and the phase error of

A(z). Since H1(z) is a lowpass filter, we must minimize the phase error

not only in passband but also in transition band to improve the analytic-

ity of complex wavelet. There are many design methods for allpass filters

to approximate a fractional delay response, for example, the maximally

flat [6], equiripple approximations [8], and so on. It will be better if the
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minimax (Chebyshev) phase approximation of allpass filters is used.

It is known that the wavelet function is defined by the infinite product

formula. Thus, it is necessary that A(z) has a certain degree of flatness

at ω = 0 to improve the analyticity. In the following, we present a design

method of allpass filters with the specified degree of flatness at ω = 0 and

equiripple phase response in the approximation band.

The desired phase response is θd(ω) = −(2M + 1
2
)ω. The difference

θe(ω) between θ(ω) and θd(ω) is given by

θe(ω) = θ(ω)− θd(ω) = 2 tan−1 NJ(ω)

DJ(ω)
, (3.33)

where
NJ(ω) =

J∑
n=0

a(n) sin{(n− J

2
+M +

1

4
)ω}

DJ(ω) =
J∑

n=0

a(n) cos{(n− J

2
+M +

1

4
)ω}

. (3.34)

Firstly, we consider the flatness condition of the phase response at ω = 0.

It is required that the derivatives of θ(ω) are equal to that of θd(ω) at

ω = 0;

∂2r+1θ(ω)

∂ω2r+1

∣∣∣∣
ω=0

=
∂2r+1θd(ω)

∂ω2r+1

∣∣∣∣
ω=0

(r = 0, 1, · · · , L− 1), (3.35)

where L is a parameter that controls the degree of flatness, and 0 ≤ L ≤ J .

Eq.(3.35) is equivalent to

∂2r+1θe(ω)

∂ω2r+1

∣∣∣∣
ω=0

= 0 (r = 0, 1, · · · , L− 1). (3.36)
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From Eq.(3.33), Eq.(3.36) can be reduced to

∂2r+1NJ(ω)

∂ω2r+1

∣∣∣∣
ω=0

= 0 (r = 0, 1, · · · , L− 1). (3.37)

By substituting NJ(ω) in Eq.(3.34) into Eq.(3.37), we can derive a system

of linear equations as follows;

J∑
n=0

(n− J

2
+M +

1

4
)2r+1a(n) = 0 (r = 0, 1, · · · , L− 1). (3.38)

It should be noted that if L = J , we can solve the linear equations in

Eq.(3.38) to obtain the maximally flat allpass filters, due to a(0) = 1.

3.3.2 Phase Error Minimization

In the following, we consider the case of L < J . We want to obtain an

equiripple phase response in the approximation band [0, ωc] by using the

remaining degree of freedom J − L. Let ωi (0 < ω0 < ω1 < · · · < ωJ−L =

ωc) be the extremal frequencies in the approximation band. We apply

Remez exchange algorithm [4] and formulate θe(ω) as

tan
θe(ωi)

2
=

J∑
n=0

a(n) sin{(n− J

2
+M +

1

4
)ωi}

J∑
n=0

a(n) cos{(n− J

2
+M +

1

4
)ωi}

= (−1)iδ, (3.39)

where δ is an error. We then rewrite Eqs.(3.38) and (3.39 ) in the matrix

form as

Pa = δQa, (3.40)
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where a = [a(0), a(1), · · · , a(J)]T , and the elements of the matrices P and

Q are given by

P (m,n) =


(n− J

2
+M + 1

4
)(2m+1) (m = 0, 1, · · · , L− 1)

sin{(n− J
2
+M + 1

4
)ω(m−L)} (m = L,L+ 1, · · · , J)

(3.41)

Q(m,n) =



0 (m = 0, 1, · · · , L− 1)

(−1)m−L cos{(n− J
2
+M + 1

4
)ω(m−L)}

(m = L,L+ 1, · · · , J)

(3.42)

It should be noted that Eq.(3.40) corresponds to a generalized eigenvalue

problem, i.e., δ is an eigenvalue, and a is the corresponding eigenvector.

To minimize δ, we should choose the absolute minimum eigenvalue by

solving the eigenvalue problem, thus the corresponding eigenvector give a

set of filter coefficients a(n). To be an equiripple phase response in the

approximation band, we make use of an iteration procedure to obtain the

optimal filter coefficients a(n) [8],[39].
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3.3.3 Design Algorithm

In this section, we summarize the algorithm for designing allpass filters

with specified degree of flatness at ω = 0 and equiripple phase response in

the approximation band.

Design Algorithm

Begin

(1) Read J , L and ωc.

(2) Select initial extremal frequencies Ωi (0 < Ω0 < Ω1 < · · · <

ΩJ−L = ωc) equally spaced in [0, ωc].

Repeat

(3) Set ωi = Ωi for (i = 0, 1, · · · , J − L).

(4) Compute P and Q then find the absolute minimum eigenvalue δ

to obtain a set of filter coefficients a(n).

(5) Search the peak frequencies Ωi (0 < Ω0 < Ω1 < · · · < ΩJ−L = ωc)

of θe(ω) in the approximation band [0, ωc].

Until

Satisfy the following condition for a prescribed small constant ε (e.g.,

ε = 10−12);

J−L∑
i=0

|ωi − Ωi| < ε

End.
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3.3.4 Design Examples

In this section, we present two design examples to demonstrate the ef-

ficiency of our proposed algorithm. First of all, we design a class of

DTCWTs with improved analyticity by using FIR scaling lowpass filters.

Next, we pick different ωc to investigate the influence on the analyticity

of complex wavelet.

Example 3.3

First of all, we consider a class of DTCWTs with improved analyticity

by using FIR filters. We have designed an allpass filter with J = 2,

ωc =
5
8
π and L = 1. The resulting phase error θe(ω) and phase response

of allpass filter A(z) are shown in Fig.3.15 and Fig.3.16, respectively. For

the comparison, the phase response and phase error with {L = 0, L = 2}

are also plotted. Note that L = 0 means the allpass filter without the

flatness condition, while L = 2 means the maximally flat allpass filter

has been adopted. We then have used the method proposed in [20] to

construct the scaling lowpass filters Hi(z) with N1 = 5, K = 4. The

magnitude response and group delay of Hi(z) are shown in Fig.3.17 and

Fig.3.18, respectively. The scaling lowpass filters have the same degree

(N = 11) and the magnitude responses are the almost same. However,

E(ω) are different, as shown in Fig.3.19. When L = 0, the maximum error

of E(ω) is minimum, while it is maximum when L = 2. Moreover, the

scaling function and wavelet functions ϕi(t) and wavelet function ψi(t)

with different L are shown in Fig.3.20. Furthermore, the spectrum of
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Ψi(ω) are shown in Fig.3.21, which are the almost same. The spectrum of

complex wavelet Ψc(ω) are shown in Fig.3.22 and Fig.3.23, respectively. In

Fig.3.23, the negative spectrum is small when L = 1. Finally the objective

measures of quality are summarized in TABLE.3.4. When L = 1, the

analyticity of complex wavelets is better. It is necessary to let allpass

filter have certain flatness degree while minimizing the phase error.

TABLE 3.4 Analyticity Measures E∞ and E2.

L E∞(%) E2(%)

0 1.077 1.0

1 0.689 0.830

2 1.627 1.894
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Fig.3.15 Phase errors of allpass filters A(z).



3.3 DTCWTs with Improved Analyticity 57

0 0.1 0.2 0.3 0.4 0.5
−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

NORMALIZED FREQUENCY

P
H
A
S
E
 R
E
S
P
O
N
S
E
S
 (
≠
)

 

 

L = 0

L = 1

L = 2

Fig.3.16 Phase responses of allpass filters A(z).
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Fig.3.17 Magnitude responses of scaling lowpass filters Hi(z).
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Fig.3.18 Group delay responses of scaling lowpass filters Hi(z).
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Fig.3.19 Magnitude responses of E(ω).
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(c) J = 0, L = 2.

Fig.3.20 Scaling and wavelet functions ϕi(t), ψi(t).
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Fig.3.21 Magnitude responses of Ψi(ω).

　　

-15 -10 -5 0 5 10 15

0

0.2

0.4

0.6

0.8

1

ω/π

 

 
L=0
L=1
L=2

|Ψ
c
(ω
)|

Fig.3.22 Magnitude responses of Ψc(ω).
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Fig.3.23 Magnitude responses of Ψc(ω).
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Example 3.4

We consider a class of DTCWTs with improved analyticity by using IIR

filters. We have designed three allpass filters with J = 2, L = 1. The

approximation band is selected as ωc = {0.35π, 0.55π, 0.75π}. First of all,

the phase error θe(ω) are shown in Fig.3.24. It is obvious that with the

increasing of ωc, the phase error also increase. The phase responses of

allpass filters A(z) are shown in Fig.3.25. Next, we have constructed the

scaling lowpass filters Hi(z) with K = 4, N1 = 5 and N2 = 1. Their mag-

nitude responses are shown in Fig.3.26, which are almost the same. Their

group delay responses are shown in Fig.3.27, respectively. Moreover, the

magnitude responses of error function E(ω) are shown in Fig.3.28. It is

obvious that E(ω) is minimum when ωc = 0.55π, while it is maximum

when ωc = 0.75π. If ωc is too small or too big, the maximum error E(ω)

will increase, resulting in a poor analyticity, as shown in Table 3.5. That is

to say, how to determine the approximation band will effect E(ω), as well

as the analyticity of complex wavelet. In addition, the scaling functions

ϕi(t) and wavelet functions ψi(t) are shown in Fig.3.29. Furthermore, the

spectrum of Ψi(ω) and complex wavelet are shown in Fig.3.30, Fig.3.31

and Fig.3.32, respectively. In Fig.3.32, it is clear that the negative spec-

trum of DTCWT is minimum when ωc = 0.55π. Finally, E∞ and E2 are

summarized in Table 3.5.
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TABLE 3.5 Analyticity Measures E∞ and E2.

ωc E∞(%) E2(%)

0.35π 0.718 0.782

0.55π 0.395 0.417

0.75π 1.523 1.527
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Fig.3.24 Phase errors of allpass filters A(z).
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Fig.3.25 Phase responses of allpass filters A(z).
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Fig.3.26 Magnitude responses of scaling lowpass filters Hi(z).
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Fig.3.27 Group delay responses of scaling lowpass filters Hi(z).
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Fig.3.29 Scaling and wavelet functions ϕi(t), ψi(t).
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Fig.3.30 Magnitude responses of Ψi(ω).
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Fig.3.31 Magnitude responses of Ψc(ω).
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Fig.3.32 Magnitude responses of Ψc(ω).
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3.4 DTCWTs with Improved Frequency Se-

lectivity

It is well-known in [3] that frequency selectivity is a useful property for

many applications of signal and image processing. However, the maximally

flat filters have poor frequency selectivity. In the above-mentioned sec-

tions, the orthogonal scaling lowpass filters have as many zeros at z = −1

as possible to obtain the maximum number of vanishing moments, re-

sulting in the maximally flat magnitude responses. In the following, in

order to improve the frequency selectivity of the scaling lowpass filters, we

specify the number of zeros at z = −1 from the viewpoint of vanishing

moments and then minimize the stopband error by using the remaining

degree of freedom. The filter coefficients can be obtained easily by solving

an eigenvalue problem.

3.4.1 Formulation using Remez exchange algorithm

We first specify the number of zeros at z = −1 from the viewpoint of

regularity. We assume K < Kmax where Kmax = ⌊N+1
2

⌋ + N2 − J . Then

the remaining degree of freedom is Kmax − K, which can be used for

obtaining the optimal possible frequency selectivity. Since zeros on the

unit circle are complex-conjugate pair except z = ±1, Kmax − K should

be even, i.e., Kmax −K = 2I.

Next, we apply the Remez exchange algorithm to get an equiripple mag-

nitude response in the stopband [ωs, π], where ωs is the cutoff frequency
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of scaling lowpass filters. Assuming ωi (ωs = ω0 < ω1 < · · · < ωI < π) to

be a set of extremal frequencies, we formulate P (ejω) as

P (ejωi) =
R(ejωi)S(ejωi)

B(ej2ωi)
=

1 + (−1)i

2
δ, (3.43)

where δ(> 0) is an error. Note that we force P (ejωi) ≥ 0 to permit spectral

factorization of R(z). From Eq.(3.43), we have

S(ejωi)R(ejωi) =
1 + (−1)i

2
δB(ej2ωi), (3.44)

where
R(ejω) =r(0) + 2

N1∑
n=1

r(n) cos(nω)

B(ejω) =b(0) + 2

N2∑
n=1

b(n) cos(nω)

. (3.45)

Thus, we rewrite Eq.(3.44) in the matrix form as

P1r = δQ1b, (3.46)

where the elements of the matrices P1 and Q1 are given by

P1(m,n) =

{
S(ejωm)) (n = 0)

2S(ejωm)) cos(nωm) (n = 1, 2, . . . , N1)

Q1(m,n) =

{
(1 + (−1)m)/2 (n = 0)

(1 + (−1)m) cos(2nωm) (n = 1, 2, · · · , N2)

(3.47)

It should be noted that the orthonormality condition has been given in

Eqs.(3.27) and (3.28). Hence, we use Eq.(3.27) to obtain

P1r = δQ1b = δQ1S1r. (3.48)
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We rewrite Eq.(3.48) in the matrix form as[
S2

P1

]
r = δ

[
0

Q1S1

]
r, (3.49)

which is correspondent to a generalized eigenvalue problem, i.e., δ is the

eigenvalue and r is the corresponding eigenvector. Since there exist more

than one eigenvalue, we choose the minimum positive eigenvalue δ and the

corresponding eigenvector gives a set of filter coefficients r(n). The initial

extremal frequencies may not be the optimal peak frequencies so that we

make use of an iteration procedure to obtain the optimal coefficients r(n).

We then compute b(n) by Eq.(3.27).
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3.4.2 Design Algorithm

Design Algorithm

Begin

(1) Read K, J , L and the cutoff frequency ωs.

(2) Design A(z) to get a(n), and use Eq.(3.12) to compute s(n).

(3) Select initial extremal frequencies Ωi (ωs = Ω0 < Ω1 < · · · <

ΩI < π) equally spaced in the stopband.

Repeat

(4) Set ωi = Ωi for i = 0, 1, · · · , I.

(5) Compute S1 and S2 in Eq.(3.29) and Eq.(3.30), respectively.

(6) Compute P1 and Q1 in Eq.(3.47).

(7) Choose the minimum positive eigenvalue δ and corresponding

eigenvector r in Eq.(3.49) to obtain a set of filter coefficients r(n).

(8) Obtain the coefficients b(n) by Eq.(3.28).

(9) Search the peak frequencies Ωi (ωs = Ω0 < Ω1 < · · · < ΩI < π)

of P (ejω) in the stopband.

Until

Satisfy the following condition for a prescribed small constant ε (e.g.,

ε = 10−12);

I∑
i=1

|ωi − Ωi| < ε

End.
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3.4.3 Design Examples

In the following, two examples will be presented to demonstrate our pro-

posed procedure. We construct a class of DTCWTs with improved ana-

lyticity and frequency selectivity by using general IIR filters at first. Next,

we investigate the influence of the stopband on the analyticity of complex

wavelet.

Example 3.5

We consider a class of DTCWTs with improved analyticity and frequency

selectivity. Firstly, we have used the allpass filter with J = 2, L = 1,

ωc = 0.51π, and then designed the scaling lowpass filters Hi(z) with

N = 13, N2 = 1, ωs = 0.67π. We set K = 4 and N1 = 7. The re-

sulting magnitude response of Hi(z) are shown in Fig.3.33 and Fig.3.34,

respectively. For comparison, the scaling lowpass filter with the maxi-

mally flat magnitude response (K = 6, N1 = 5), and the filter with two

equiripples in the stopband (K = 2, N1 = 9) are also designed and their

magnitude responses are shown in Fig.3.33. It is clear that the magnitude

responses of Hi(z) with improved frequency selectivity are more sharp

than the maximally flat filter. Their group delay responses are shown

in Fig.3.35. In addition, the magnitude responses of E(ω) are shown in

Fig.3.36, where the error decreases at the expense of decreasing vanish-

ing moments. Besides, the scaling functions ϕi(t) and wavelet functions

ψi(t) are shown in Fig.3.37. The wavelet spectrum Ψi(ω) are shown in

Fig.3.38, which are almost same. Furthermore, the spectrum Ψc(ω) are
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shown in Fig.3.39 and Fig.3.40, where the negative spectrum of proposed

DTCWTs are smaller than that constructed by the maximally flat scaling

lowpass filter. Finally, Table 3.6 summarizes the analyticity measures of

E∞ and E2. It is seen that the analyticity can be also improved slightly

by improving the frequency selectivity of Hi(z).

TABLE 3.6 Analyticity Measures E∞ and E2.

K N1 E∞(%) E2(%)

6 5 0.268 0.299

4 7 0.262 0.236

2 9 0.258 0.232
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Fig.3.33 Magnitude responses of scaling lowpass filters Hi(z).
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Fig.3.34 Magnitude responses of scaling lowpass filters Hi(z).
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Fig.3.35 Group delay responses of scaling lowpass filters Hi(z).
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Fig.3.36 Magnitude responses of E(ω).



3.4 DTCWTs with Improved Frequency Selectivity 77

0 1 2 3 4 5 6 7 8 9

−0.5

0

0.5

1

1.5

TIME

A
M
P
LI
T
U
D
E

 

 

φ
1
(t)

φ
2
(t)

0 1 2 3 4 5 6 7 8 9
−1.5

−1

−0.5

0

0.5

1

1.5

TIME

A
M
P
LI
T
U
D
E

 

 

ψ
1
(t)

ψ
2
(t)

(a) N1 = 5,K = 6.

0 1 2 3 4 5 6 7 8 9

−0.5

0

0.5

1

1.5

TIME

A
M
P
LI
T
U
D
E

 

 

φ
1
(t)

φ
2
(t)

0 1 2 3 4 5 6 7 8 9
−1.5

−1

−0.5

0

0.5

1

1.5

TIME

A
M
P
LI
T
U
D
E

 

 

ψ
1
(t)

ψ
2
(t)

(b) N1 = 7,K = 4.
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Fig.3.37 Scaling and wavelet functions ϕi(t), ψi(t).
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Fig.3.39 Magnitude responses of Ψc(ω).
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Example 3.6

We consider a class of DTCWTs with improved analyticity and fre-

quency selectivity. Firstly, we have used the allpass filter with J = 2,

L = 1, ωc = 0.51π, and then designed scaling lowpass filters Hi(z) with

K = 4, N1 = 7, and N2 = 1. The cutoff frequency ωs is chosen as

ωs = {0.56π, 0.61π, 0.88π}, respectively. The magnitude responses of re-

sulting lowpass filters are shown in Fig.3.41 and Fig.3.42, respectively. It

is obvious that the scaling lowpass filters become sharp as ωs decreases.

Their group delay responses are shown in Fig.3.43, where the half-sample

delay condition are almost achieved. Next, the magnitude responses of

E(ω) are shown in Fig.3.44. It is seen in Fig.3.44 that cutoff frequency

ωs influence the magnitude responses of E(ω). If ωs is too small or too

big, the maximum error E(ω) increase, resulting in a poor analyticity of

complex wavelet, as shown in Table 3.7. Moreover, the scaling functions

ϕi(t) and wavelet functions ψi(t) are shown in Fig.3.45. The wavelet spec-

trum Ψi(ω) are given in Fig.3.46. Furthermore, the spectrum of DTCWTs

are shown in Fig.3.47 and Fig.3.48, respectively. In Fig.3.48, the negative

spectrum is minimum when ωs = 0.61π. Finally, we summarize the objec-

tive measures of quality E∞ and E2 in Table 3.7.

TABLE 3.7 Analyticity Measures E∞ and E2.

ωs E∞(%) E2(%)

0.56π 0.298 0.366

0.61π 0.262 0.254

0.88π 0.263 0.290
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Fig.3.41 Magnitude responses of scaling lowpass filters Hi(z).

　　

0.25 0.3 0.35 0.4 0.45 0.5
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

NORMALIZED FREQUENCY

M
A

G
N

IT
U

D
E

 R
E

S
P

O
N

S
E

 

 

ω
s
=0.56π

ω
s
=0.61π

ω
s
=0.88π

Fig.3.42 Magnitude responses of scaling lowpass filters Hi(z).
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Fig.3.44 Magnitude responses of E(ω).
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0 1 2 3 4 5 6 7 8 9

−0.5

0

0.5

1

1.5

TIME

A
M
P
LI
T
U
D
E

 

 

φ
1
(t)

φ
2
(t)

0 2 4 6 8 10 12
−1.5

−1

−0.5

0

0.5

1

1.5

TIME

A
M
P
LI
T
U
D
E

 

 

ψ
1
(t)

ψ
2
(t)

(b) ωs = 0.61π.
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Fig.3.45 Scaling and wavelet functions ϕi(t), ψi(t).
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Fig.3.46 Magnitude responses of Ψi(ω).
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Fig.3.47 Magnitude responses of Ψc(ω).
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3.5 Performance Investigation

In this section, we investigate the performance on the proposed DTCWTs

with improved analyticity and frequency selectivity. First of all, we have

designed the allpass filters with J = 2, L = 1 and the cutoff frequency is

chosen as ωc = {0.35π, 0.52π, 0.80π}. Then we have designed the scaling

lowpass filters Hi(z) with K = 2, N1 = 5, N2 = 1 and ωs = 0.67π. The

resulting magnitude responses of E(ω) are shown in Fig.3.49, and it is

seen that the maximum error of E(ω) is the minimum when ωc = 0.52π.

If ωc is too small or too big, the maximum error of E(ω) will increase,

resulting in a poor analyticity as shown in Table 3.8. That is to say,

how to determine the cutoff frequency ωc influences E(ω) as well as the

analyticity of complex wavelets. Next, we have varied ωc from 0.3π to 0.8π

to investigate the relationship between the analyticity measures of E∞, E2

and the cutoff frequency ωc. It is seen in Fig.3.50 when ωc is too small or

too big, the analyticity measures of E∞, E2 become larger. Furthermore,

we have also varied cutoff frequency ωs from 0.55π to 0.95π to investigate

the relationship between the optimal frequency ωopt
c and ωs. It is clear

in Fig.3.51 that if the stopband is too wide, i.e., ωs is closer to 0.5π, the

optimal cutoff frequency ωopt
c is larger, that is, the approximation band of

allpass filter become wider. It is because the stopband error of lowpass

scaling filter is larger in this case, requiring the allpass filter to improve the

error E(ω) also in stopband. On other hand, the optimal frequency ωopt
c

is almost constant when the stopband is not too wide, since the stopband

error of lowpass scaling filter is small and has little effect on the analyticity.

Finally, the objective measures of quality are summarized in Table 3.8.
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TABLE 3.8 Analyticity Measures E∞ and E2.

ωc E∞(%) E2(%)

0.35π 0.626 0.653

0.52π 0.292 0.378

0.80π 2.013 1.977
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Fig.3.49 Magnitude responses of E(ω).
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3.6 Summary

In this chapter, we have firstly reviewed the common-factor technique

proposed by Selesnick [20]. Next, the common-factor technique by using

general IIR filters with numerator and denominator of different degree

was introduced [25]. It has been proved that the FIR and IIR orthonor-

mal solutions proposed in [20] are only the special cases of general IIR

orthonormal solutions. Moreover, in order to improve the analyticity of

complex wavelet, we have proposed a design procedure of allpass filter

with the specified degree of flatness at ω = 0 and an equiripple phase

response in the approximation band. Furthermore, to improve the fre-

quency selectivity of scaling lowpass filters, we have specified the number

of vanishing moments at z = −1 and used the remaining degree of free-

dom to approximate an equiripple magnitude response in the stopband.

Some design examples are presented to demonstrate the efficiency of our

proposed algorithm. Finally, the performance on the proposed DTCWTs

has been investigated, where a properly chosen approximation band can

improve the analyticity of complex wavelets.
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Chapter 4 Almost Symmetric

DTCWTs with Arbitrary

Center of Symmetry

4.1 Introduction

In the previous chapter, the common-factor method has been generalized

by using IIR filters with numerator and denominator of different degree to

obtain a class of general IIR orthogonal solutions. However, the wavelet

filters obtained by the common-factor method have nonlinear phase re-

sponses, resulting in asymmetric wavelet bases. Therefore, the purpose

of this chapter is to design the symmetric orthogonal DTCWTs. Q-shift

filter is one of the representative filters used for obtaining the symmet-

ric wavelet bases, which was proposed by Kingsbury in [16], [17], [22].

The group delay responses of Q-shift filters are required to be 1/4 or 3/4

sample from the half-sample delay condition. However, digital filters with

the specified (fractional or integer) group delay are often needed in many

applications of signal and image processing [3], [6].

Thus, in this chapter, we review the design of Q-shift filters at first

and then propose a method for designing two scaling lowpass filters with

the arbitrarily specified flat group delay responses, which satisfy the half-

sample delay condition. Moreover, two scaling lowpass filters are designed

simultaneously to satisfy the specified degree of flatness of group delays,
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vanishing moments and orthogonality condition. Furthermore, the differ-

ence of the frequency responses between two scaling lowpass filters can be

effectively minimized to improve the analyticity of complex wavelet. It

will be shown that the proposed DTCWTs can have arbitrary center of

symmetry with improved analyticity. Finally, several experiments of sig-

nal denoising are carried out to demonstrate the efficiency of the proposed

DTCWTs.

4.2 Q-Shift Filters

In [16] and [17] and [22], Kingsbury had proposed Q-shift filters in order

to provide the improved symmetry property. One scaling lowpass filter is

chosen to be the time reverse of another filter;

H2(z) = z−NH1(z
−1), (4.1)

where Hi(z) is FIR filter of degree N for i = 1, 2. The transfer function

of Hi(z) are given by

Hi(z) =
N∑

n=0

hi(n)z
−n, (4.2)

where hi(n) are real filter coefficients and N is an odd number.

Q-shift filters are required to have linear phase responses. That is, the

desired phase response of H1(z) is

θd1(ω) = −(
N

2
− 1

4
)ω. (4.3)

Therefore, the phase response of H2(z) will be −(N
2
+ 1

4
)ω, and then two

scaling lowpass filters H1(z) and H2(z) satisfy the half-sample delay con-
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dition.

In addition to the phase condition given in Eq.(4.3), Hi(z) is also

required to satisfy the conditions of regularity and orthonormality of

wavelets. From the viewpoint of regularity, Hi(z) must have K zeros

at z = −1;

Hi(z) = Qi(z)(1 + z−1)K . (4.4)

When the maximum K is chosen, the maximum number of vanishing mo-

ments can be obtained.

Moreover the condition of orthonormality for Hi(z) is given by

Hi(z)Hi(z
−1) +Hi(−z)Hi(−z−1) = 2, (4.5)

which means the product filter Pi(z) = Hi(z)Hi(z
−1) must satisfy

pi(2n) =


1 (n = 0)

0 (n > 0)

, (4.6)

where pi(n) = pi(−n) is the impulse response of Pi(z).

To achieve the approximate group delay of 1
4
, Kingsbury had proposed a

method in [22] for designing a linear-phase lowpass filter HL2(z) of degree

2N + 1.

HL2(z) = H1(z
2) + z−1H1(z

−2)

= H1(z
2) + z−1H2(z

2)

, (4.7)

which has a group delay of 1
2
. By subsampling HL2(z), the scaling lowpass

filter H1(z) can be obtained with half of its delay and twice its bandwidth.

To avoid unwanted passbands appear from subsampled filters, it is rea-
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sonable to ensure that the stopband of H1(z) reduces as much energy

as possible. It is sufficient to consider the combined frequency responses

between H1(z) and H1(z
2), which is

H1(z)H1(z
2)|z=ejω = H1(e

jω)H1(e
j2ω). (4.8)

Assuming the stopband cutoff frequency of H1(z) is ωs, then the transition

band and passband of H1(z
2) should extend from π − ωs

2
to π. Therefore,

to avoid the overlapping from H1(z
2),

ωs ≤ π − ωs

2
⇒ ωs ≤

2π

3
. (4.9)

Thus, the Q-shift filter can be designed from HL2(z) of degree 2N + 1

with zero amplitude for the stopband, i.e., π
3
≤ ωs ≤ π.

4.3 DTCWTs with Arbitrary Center of

Symmetry

The Q-shift filters can construct the symmetric wavelet bases with the

fixed center of symmetry. To obtain the wavelet functions with arbitrary

center of symmetry, we propose a new design method of scaling lowpass

filters with arbitrarily specified flat group delay responses at ω = 0, which

satisfy the half-sample delay condition.
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4.3.1 Approximation of Flat Group Delay

To obtain symmetric wavelet bases, the desired linear phase response θdi (ω)

of Hi(z) is

θdi (ω) = −τiω. (4.10)

From the half-sample delay condition in Eq.(2.29),

τ2 = τ1 + 2M +
1

2
. (4.11)

Therefore, the scaling functions have the arbitrary center of symmetry

since the group delay τ1 can be arbitrarily specified.

We now consider the flatness condition of group delay response. Many

criterions can be used to approximate the group delay, e.g., the maximally

flat, weighted least square, equiripple approximation, and so on. To obtain

a number of vanishing moments on scaling functions [1], [12], we use the

flat approximation in this dissertation. From Eq.(4.2), the phase response

of Hi(z) is given by

θi(ω) = − tan−1

N∑
n=0

hi(n) sin(nω)

N∑
n=0

hi(n) cos(nω)

. (4.12)

Thus, the difference θei (ω) between θi(ω) and θ
d
i (ω) is

θei (ω) = θi(ω)− θdi (ω) = tan−1 Ni(ω)

Di(ω)
, (4.13)
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where
Ni(ω) =

N∑
n=0

hi(n) sin{(τi − n)ω}

Di(ω) =
N∑

n=0

hi(n) cos{(τi − n)ω}
. (4.14)

The group delay response is required to be flat with the specified degree

of flatness at ω = 0;
τi(0) = τi

∂2rτi(ω)
∂ω2r

∣∣∣∣
ω=0

= 0 (r = 1, 2, · · · , L− 1)
, (4.15)

where L (> 0) is a parameter that controls the degree of flatness. Since

τi(ω) = −∂θi(ω)
∂ω

, Eq.(4.15) is equivalent to

∂2r+1θie(ω)

∂ω2r+1

∣∣∣∣
ω=0

= 0 (r = 0, 1, · · · , L− 1). (4.16)

By using Eq.(4.13), Eq.(4.16) can be reduced to

∂2r+1Ni(ω)

∂ω2r+1

∣∣∣∣
ω=0

= 0 (r = 0, 1, · · · , L− 1). (4.17)

We substitute Ni(ω) in Eq.(4.14) into Eq.(4.17), then derive a set of linear

equations;

N∑
n=0

(τi − n)2r+1hi(n) = 0 (r = 0, 1, · · · , L− 1). (4.18)

It is clear that there are L equations in Eq.(4.18) with respect to (N + 1)

unknown coefficients hi(n).
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4.3.2 Orthonormality and Vanishing Moments

In addition to the group delay condition, the wavelets are also required to

have the specified number of vanishing moments and satisfy the condition

of orthogonality. Thus, to obtain K zeros at z = −1, Eq.(4.4) is equivalent

to

∂rHi(e
jω)

∂ωr

∣∣∣∣
ω=π

= 0 (r = 0, 1, · · · , K − 1). (4.19)

By substituting Hi(e
jω) in Eq.(4.2) into Eq.(4.19), we obtain a set of linear

equations as follow;

N∑
n=0

(−1)nnrhi(n) = 0 (r = 0, 1, · · · , K − 1), (4.20)

where there are K equations with respect to hi(n).

Moreover, we rewrite the orthonormality condition in Eq.(4.6) as

N−2n∑
k=0

hi(2n+ k)hi(k) =


1 (n = 0)

0 (n > 0)

, (4.21)

where there exist (N + 1)/2 equations with respect to hi(n). If K + L =

(N + 1)/2, the number of equations becomes K +L+ (N + 1)/2 = N + 1

in Eqs.(4.18), (4.20) and (4.21) with respect to (N + 1) unknown filter

coefficients hi(n). By solving Eqs.(4.18), (4.20) and (4.21), the scaling

lowpass filters hi(n) can be obtained for i = 1, 2.

It is seen that Eq.(4.21) is a set of quadratic constraints on the filter

coefficients hi(n). Generally, it is difficult to solve this nonlinear prob-

lem, particularly if the filter is of higher degree, although some nonlinear
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optimization tools are available, such as Matlab optimization toolbox.

4.3.3 Linearization of the Design Problem

In the following, we first linearize the nonlinear equation in Eq.(4.21), and

then use an iterative procedure to obtain a set of filter coefficients, as

proposed in [22].

Let h
(l)
i (n) be the filter coefficients at lth iteration, which is given by

h
(l)
i (n) = h

(l−1)
i (n) + ∆h

(l)
i (n). (4.22)

Then, Eq.(4.21) becomes

N−2n∑
k=0

[h
(l−1)
i (k + 2n)h

(l−1)
i (k) + h

(l−1)
i (k + 2n)∆h

(l)
i (k)

+ h
(l−1)
i (k)∆h

(l)
i (k + 2n) + ∆h

(l)
i (k)∆h

(l)
i (k + 2n)] = δ(n). (4.23)

Assuming ∆h
(l)
i (k) becomes small enough as l increases, then the term

∆h
(l)
i (k)∆h

(l)
i (k + 2n) can be neglected. Therefore, we have

N∑
k=0

[h
(l−1)
i (k + 2n) + h

(l−1)
i (k + 2n)]∆h

(l)
i (k)

= δ(n) −
N−2n∑
k=0

h
(l−1)
i (k + 2n)h

(l−1)
i (k), (4.24)

where h
(l−1)
i (k) = 0 for k < 0 and k > N . Similarly, Eq.(4.18) and

Eq.(4.20) become

N∑
n=0

(τi − n)2r+1∆h
(l)
i (n) =

N∑
n=0

(n− τi)
2r+1h

(l−1)
i (n). (4.25)



4.3 DTCWTs with Arbitrary Center of Symmetry 99

N∑
n=0

(−1)nnr∆h
(l)
i (n) =

N∑
n=0

(−1)n+1nrh
(l−1)
i (n), (4.26)

Therefore, we can obtain ∆h
(l)
i (n) by solving the set of linear equations

in Eq.(4.24), Eq.(4.25) and Eq.(4.26), if coefficients h
(l−1)
i (n) have already

known. The filter coefficients are subsequently updated by ∆h
(l)
i (n) in

Eq.(4.22).

To converge to the optimal solution, a set of good initial coefficients

h
(0)
i (n) are needed. It is known that Pi(z) = Hi(z)Hi(z

−1) is a linear

phase half band filter. We firstly design Pi(z) as the maximally flat half-

band filter, and choose the magnitude responses of Hi(z) as |Hi(e
jω)| =

|Pi(e
jω)| 12 . Then we set its phase response as τi, that is

Hi(e
jω) = |Pi(e

jω)|
1
2 e−jτiω. (4.27)

Therefore, a set of initial coefficients h
(0)
i (n) are computed by taking N+1

point inverse discrete Fourier transform (IDFT).
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4.3.4 Design Algorithm

Design Algorithm

Begin

1) Read N , K, L and τi.

2) Set l = 0.

3) Obtain the filter coefficients h
(l)
i (n) by taking N + 1 point IDFT of

Hi(e
jω) in Eq.(4.27).

Repeat

3) l = l + 1;

4) Solve Eqs.(4.24), Eq.(4.25) and Eq.(4.26) to obtain a set of coeffi-

cients ∆h
(l)
i (n).

5) Update the filter coefficients with h
(l)
i (n) = h

(l−1)
i (n) + ∆h

(l)
i (n).

Until

Satisfy the following condition for a prescribed small constant ϵ (e.g.,

ϵ = 10−12);

N∑
n=0

|∆h(l)i (n)| < ϵ.

End.
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4.3.5 Design Examples

In this section, two examples will be given to demonstrate the proposed

algorithm. First of all, we consider a class of DTCWTs with different

degree of flatness and number of vanishing moments. Next, we consider a

class of DTCWTs with different center of symmetry.

Example 4.1

We consider a class of DTCWTs with N = 15, K = {3, 5, 7} and L =

(N +1)/2−K = {5, 3, 1} with group delay {τ1 = 8.5, τ2 = 9.0}. We have

designed these three scaling lowpass filters, and the resulting magnitude

responses of Hi(z) are shown in Fig.4.1, Fig.4.2, respectively. With the

increasing of the number of vanishing moments K, the transition band

becomes sharp. The group delay responses become flat as an increasing

L, as shown in Fig.4.3. It is clear that the half-sample delay condition are

approximately achieved. In addition, the magnitude responses of E(ω)

has been shown in Fig.4.4. It is maximum when {K = 5, L = 3}, while

it is minimum when {K = 3, L = 5}. Since two scaling lowpass filters

are designed independently, it is difficult to minimize the error function.

Moreover, the scaling function ϕi(t) and wavelet functions ψi(t) are shown

in Fig.4.5. Furthermore, the spectrum of the wavelet functions Ψi(ω)

and the spectrum of the complex wavelet Ψc(ω) are given in Fig.4.6 and

Fig.4.7, respectively. It is obvious that the negative spectrum is maximum

when K = 5, L = 3 while it is minimum when K = 3, L = 5. Finally, the

analyticity measures of E∞ and E2 are summarized in Table 4.1.
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Fig.4.1 Magnitude responses of scaling lowpass filters H1(z).
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Fig.4.2 Magnitude responses of scaling lowpass filters H2(z).
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Fig.4.3 Group delay responses of scaling lowpass filters Hi(z).
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Fig.4.4 Magnitude responses of E(ω).
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(b) K = 5, L = 3.
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Fig.4.5 Scaling and wavelet functions ϕi(t), ψi(t).
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Fig.4.6 Magnitude responses of Ψi(ω).
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Fig.4.7 Magnitude responses of Ψc(ω).
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TABLE 4.1 Analyticity Measures E∞ and E2.

N K L E∞(%) E2(%)

15 3 5 1.221 1.334

15 5 3 33.882 39.031

15 7 1 14.484 17.021
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Fig.4.8 Magnitude responses of Ψc(ω).
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Example 4.2

We consider a class of DTCWTs with N = 17, K = 4, L = 5. Since

the group delay can be arbitrarily specified, the group delay τi is se-

lected as τ1 = {7.6, 8.3, 9.0}. From the half-sample delay condition,

τ2 = {8.1, 8.8, 9.5}. The magnitude responses ofHi(z) are shown in Fig.4.9

and Fig.4.10 respectively, which are almost the same. Next, the group de-

lay responses are displayed in Fig.4.11. From Fig.4.11, it is clear that

the half-sample delay has been approximately achieved and the scaling

lowpass filters have flat group delay response at ω = 0. The magnitude

responses of E(ω) are shown in Fig.4.12. It is obvious in Fig.4.12 that

choosing different τi can influence the error function E(ω). It is mini-

mum when {τ1 = 8.3, τ2 = 8.8}. Moreover, the scaling functions ϕi(t) and

wavelet functions ψi(t) are shown in Fig.4.13. It is obvious that the scaling

functions have different center of symmetry, while the center of symmetry

of wavelet functions remain unchanged. Furthermore, the spectrums of

wavelet function Ψi(ω) and complex wavelet Ψc(ω) are given in Fig.4.14,

Fig.4.15, respectively. When {τ1 = 8.3, τ2 = 8.8}, the negative spectrum

of Ψc(ω) is minimum, as shown in Fig.4.16. Finally, we summarize the

analyticity measures of E∞ and E2 in Table 4.2.

TABLE 4.2 Analyticity Measures E∞ and E2.

N K L τ1 E∞(%) E2(%)

15 4 5 7.6 6.829 7.264

15 4 5 8.3 1.275 1.322

15 4 5 9.0 9.486 10.004
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Fig.4.9 Magnitude responses of scaling lowpass filters H1(z).
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Fig.4.10 Magnitude responses of scaling lowpass filters H2(z).



4.3 DTCWTs with Arbitrary Center of Symmetry 109

　　

0 0.05 0.1 0.15 0.2 0.25 0.3

7.5

8

8.5

9

9.5

10

NORMALIZED FREQUENCY

G
R

O
U

P
D

E
L

A
Y

 R
E

S
P

O
N

S
E

 

 

τ
1
=7.6

τ
1
=8.3

τ
1
=9.0

τ
2
=8.1

τ
2
=8.8

τ
2
=9.5

H 2 (z)

H 1 (z)

H 2 (z)

H 2 (z)

H 1 (z)

H 1 (z)

Fig.4.11 Group delay responses of scaling lowpass filters Hi(z).
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Fig.4.12 Magnitude responses of E(ω).
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(b) τ1 = 8.3, τ2 = 8.8.

0 2 4 6 8 10 12 14 16 18
−0.5

0

0.5

1

1.5

TIME

A
M
P
LI
T
U
D
E

 

 

φ
1
(t)

φ
2
(t)

0 2 4 6 8 10 12 14 16 18

−1.5

−1

−0.5

0

0.5

1

1.5

TIME

A
M
P
LI
T
U
D
E

 

 

ψ
1
(t)

ψ
2
(t)

(c) τ1 = 9.0, τ2 = 9.5.

Fig.4.13 Scaling and wavelet functions ϕi(t), ψi(t).
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Fig.4.14 Magnitude responses of Ψi(ω).
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Fig.4.15 Magnitude responses of Ψc(ω).
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Fig.4.16 Magnitude responses of Ψc(ω).
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4.4 DTCWTs with Improved Analyticity

In the previous section, the scaling lowpass filters with the specified flat

group delay have been designed. However, the scaling lowpass filters are

designed independently, so that the difference of frequency responses be-

tween two scaling lowpass filters has not been taken into consideration,

which results in poor analyticity of complex wavelet. In the following, we

design two scaling lowpass filters simultaneously to improve the analytic-

ity of complex wavelet. Furthermore, the Remez exchange algorithm will

be applied to obtain an equiripple behaviour of the error function. It will

be shown that the resulting complex wavelets are orthogonal and almost

symmetric, and have the improved analyticity.

4.4.1 Initial Solution

To minimize the difference of frequency responses between two scaling

lowpass filters, we consider the case of L+K < (N +1)/2. The remaining

degree of freedom is I = (N + 1)/2 −K − L. We will use the remaining

degree of freedom to improve the analyticity of complex wavelets. Let

ω̃k(0 < ω̃0 < ω̃1 < · · · < ω̃I−1 < π) be the frequency points at which

makes the error between two scaling lowpass filters equal to zero;

E(ω̃k) = H2(e
jω̃k)−H1(e

jω̃k)e−j(2M+ 1
2
)ω̃k = 0. (4.28)
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Eq.(4.28) is separated into real and imaginary parts to obtain a set of

linear equations as follows;

N∑
n=0

{h2(n) cos(nω̃k)− h1(n) cos[(n+ 2M +
1

2
)ω̃k]} = 0

N∑
n=0

{h2(n) sin(nω̃k)− h1(n) sin[(n+ 2M +
1

2
)ω̃k]} = 0

, (4.29)

for k = 0, 1, · · · , I − 1. Similarly, Eq.(4.18), Eq.(4.20) and Eq.(4.21) be-

come



N∑
n=0

(τ1 − n)2r+1h1(n) = 0

N∑
n=0

(τ2 − n)2r+1h2(n) = 0

(r = 0, 1, · · · , L− 1), (4.30)



N∑
n=0

(−1)nnrh1(n) = 0

N∑
n=0

(−1)nnrh2(n) = 0

(r = 0, 1, · · · , K − 1), (4.31)



N−2n∑
k=0

h1(2n+ k)h1(k) = δ(n)

N−2n∑
k=0

h2(2n+ k)h2(k) = δ(n)

. (4.32)

There are totally 2K+2L+N+1+2I = 2(N+1) equations in Eqs.(4.29),

(4.30), (4.31) and (4.32) with respect to 2N +2 unknown filter coefficients

h1(n), h2(n). Thus, we can obtain the filter coefficients h1(n) and h2(n)
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simultaneously by solving this set of equations.

4.4.2 Formulation using Remez exchange algorithm

In the previous section, we use the remaining degree of freedom to let

the frequency points equal to zero. However, the frequency points ωk are

equally spaced in [0, π]. In the following, we apply the Remez exchange

algorithm to obtain an equiripple magnitude behaviours of the error func-

tion E(ω) in order to improve the analyticity of complex wavelet.

It is obvious that if the scaling lowpass filters have no remaining degree

of freedom (I = 0), the error function E(ω) has only one peak point, while

there are I + 1 peak points if I > 0. We want to make it to be equiripple

when I > 0. Therefore, we apply Remez exchange algorithm to obtain the

equiripple behavior of E(ω). Let ωi(0 < ω0 < ω1 < · · · < ωI < π) be the

frequencies of the peak points of E(ω), which are computed by using the

filter coefficients obtained in the preceding section. Then we formulate

the error function E(ω) as follows;

E(ωi) = H2(e
jωi)−H1(e

jωi)e−j(2M+ 1
2
)ωi = δej(θe(ωi)+∆θ), (4.33)

where δ is a magnitude error and ∆θ is a phase error. θe(ωi) is the phase

of E(ωi) computed by using the filter coefficients in the preceding section.

Since δej∆θ = δ cos(∆θ) + jδ sin(∆θ) = δc + jδs, Eq.(4.33) becomes

H2(e
jωi)−H1(e

jωi)e−j(2M+ 1
2
)ωi − (δc + jδs)e

jθe(ωi) = 0. (4.34)
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Therefore, Eq.(4.34) is separated into real and imaginary parts as,

N∑
n=0

{h2(n) cos(nωi)− h1(n) cos[(n+ 2M +
1

2
)ωi]}

−δc cos(θe(ωi)) + δs sin(θe(ωi)) = 0

N∑
n=0

{h2(n) sin(nωi)− h1(n) sin[(n+ 2M +
1

2
)ωi]}

−δc sin(θe(ωi))− δs cos(θe(ωi)) = 0

, (4.35)

for i = 0, 1, · · · , I.

It should be noted that Eqs.(4.30), (4.31), (4.32) and (4.35) have

2K + 2L +N + 1 + 2(I + 1) = 2N + 4 equations with respect to 2N + 2

filter coefficients hi(n) plus δc and δs. Therefore, we can solve this set of

equations to obtain a set of coefficients h1(n) and h2(n), respectively. Fur-

thermore, we make use of an iterative procedure to obtain the equiripple

magnitude response of E(ω). Thus, the optimal filter coefficients can be

easily obtained through a few iterations. The design algorithm is given in

the following.
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4.4.3 Design Algorithm

Design Algorithm

Begin

1. Read N , K, L and τ1, τ2.

2. Select initial frequency points ω̃k (0 < ω̃0 < ω̃1 < · · · < ω̃I−1 < π)

equally spaced in [0, π].

3. Solve Eqs.(4.29), (4.30), (4.31) and (4.32) to obtain a set of initial

coefficients h1(n), h2(n).

4. Compute E(ω) to find the peak frequency points Ωi(0 < Ω0 < Ω1 <

· · · < ΩI < π).

Repeat

5) Set ωi = Ωi (i = 0, 1, · · · , I).

6) Solve Eqs.(4.30), (4.31), (4.32) and (4.35) to obtain a set of filter

coefficients h1(n), h2(n).

7) Compute E(ω) to find the peak frequency points Ωi(0 < Ω0 < Ω1 <

· · · < ΩI < π).

Until

Satisfy the following condition for a prescribed small constant ϵ (e.g.,

ϵ = 10−12);

I∑
i=0

|ωi − Ωi| < ϵ

End.
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4.4.4 Design Examples

In this section, several examples are presented to demonstrate the effective-

ness of our proposed algorithm. In the first design example, we consider

a class of DTCWTs with different flatness degree of group delay. In the

second example, we consider a class of DTCWTs with different center of

symmetry. Finally, we consider a class of DTCWTs and compare with

the Q-shift filter designed by Kingsbury in [22] to show the priority of our

proposed algorithm.

Example 4.3

We have used the proposed method to design H1(z) and H2(z) with

N = 15, K = 4, L = {3, 2, 1} and τ1 = 9.0, τ2 = 9.5. The remaining

degree of freedom is I = {1, 2, 3}, respectively. The magnitude responses

of scaling lowpass filters are given in Fig.4.17 and Fig.4.18, which are al-

most the same. Their group delay responses are shown in Fig.4.19, where

the half-sample delay condition is approximately achieved. Moreover, the

magnitude responses of E(ω) with different I are shown in Fig.4.20. It is

clear that the euqiripple magnitude responses of E(ω) have been obtained

and the maximum error of |E(ω)| has been effectively minimized by ap-

plying the Remez exchange algorithm. In addition, the scaling functions

ϕi(t) and wavelet functions are presented in Fig.4.21, which are almost

the same. Furthermore, Fig.4.22 displays the wavelet spectrum Ψi(ω) and

the complex wavelet spectrum Ψc(ω) are given in Fig.4.23. The negative

spectrum of DTCWTs are shown in Fig.4.24. It is minimum when I = 2,
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while it is maximum when I = 1, i.e., poor analyticity of DTCWT. Fi-

nally, the analyticity measures of E∞ and E2 are summarized in Table 4.3.

It is obvious that the analyticity of complex wavelet has been improved

by minimizing the magnitude responses of E(ω).

TABLE 4.3 Analyticity Measures E∞ and E2.

N K L I E∞(%) E2(%)

15 4 3 1 1.146 1.360

15 4 2 2 0.513 0.578

15 4 1 3 0.638 0.665
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Fig.4.17 Magnitude responses of scaling lowpass filters H1(z).
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Fig.4.18 Magnitude responses of scaling lowpass filters H2(z).
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Fig.4.19 Group delay responses of scaling lowpass filtersHi(z).
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Fig.4.20 Magnitude responses of E(ω).
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Fig.4.21 Scaling and wavelet functions ϕi(t), ψi(t).
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Fig.4.22 Magnitude responses of Ψi(ω).
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Fig.4.23 Magnitude responses of Ψc(ω).
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Fig.4.24 Magnitude responses of Ψc(ω).
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Example 4.4

We consider a class of almost symmetric DTCWTs with N = 21, K = 6,

L = 3 and I = 2. The group delay τ1 is selected as τ1 = 9.3. From

the half-sample delay condition, τ2 = 9.8 is selected. The magnitude

responses of the scaling lowpass filters Hi(z) are shown in Fig.4.25 and

Fig.4.26. For comparison, the magnitude responses of other two filters with

τ1 = 8.1, τ2 = 8.6 and τ1 = 11.0, τ2 = 11.5 are also shown in Fig.4.25 and

Fig.4.26. The corresponding group delay responses are shown in Fig.4.27.

Moreover, the magnitude responses of E(ω) are shown in Fig.4.28, and

are equiripple. It is clear that the maximum error of E(ω) depends on the

group delay τi also. In addition, the scaling functions ϕi(t) and wavelet

functions ψi(t) are given in Fig.4.29, respectively. In Fig.4.29, the scaling

functions have different center of symmetry, while the center of symmetry

of wavelet functions remain unchanged. However, the resulting scaling

and wavelet functions have different behaviors depending on the group

delays. Furthermore, the spectrum of wavelet Ψi(ω) and complex wavelets

are given in Fig.4.30, Fig.4.31, and Fig.4.32, respectively. Finally, the

analyticity measures of E∞ and E2 are summarized in Table 4.4.

TABLE 4.4 Analyticity Measures E∞ and E2.

N K L I τ1 E∞(%) E2(%)

21 6 3 2 8.1 0.380 0.372

21 6 3 2 9.3 1.251 1.092

21 6 3 2 11.0 0.740 0.634
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Fig.4.25 Magnitude responses of scaling lowpass filters H1(z).
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Fig.4.26 Magnitude responses of scaling lowpass filters H2(z).
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Fig.4.27 Group delay responses of scaling lowpass filters Hi(z).
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Fig.4.28 Magnitude responses of E(ω).
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Fig.4.29 Scaling and wavelet functions ϕi(t), ψi(t).
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Fig.4.30 Magnitude responses of Ψi(ω).
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Fig.4.31 Magnitude responses of Ψc(ω).
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Fig.4.32 Magnitude responses of Ψc(ω).
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Example 4.5

We have constructed a class of DTCWTs with N = 15, K = 2, L =

3, and I = 3. We set τ1 = 7.25 and τ2 = 7.75 from the half-sample

delay condition. For comparison, the Q-shift filter proposed by Kingsbury

in [22] is also designed, where N = 15, K = 1, τ1 = 7.25, τ2 = 7.75.

The magnitude responses of the scaling lowpass filters Hi(z) are shown in

Fig.4.33, Fig.4.34, Fig.4.35 and Fig.4.36, respectively. It is seen in Fig.4.33

and Fig.4.35 that the Q-shift filter has a sharp magnitude response, but has

only one zero at z = −1, which means the wavelet has only one vanishing

moment. In Fig.4.33 and Fig.4.35, the magnitude responses of two filters

with τ1 = 6.5, τ2 = 7.0 and τ1 = 8.0, τ2 = 8.5 are also shown. Their

group delay responses are shown in Fig.4.37. It is seen that the group

delay responses of the proposed filters are consistent with the specified

group delays at ω = 0, and more flat than the Q-shift filter. Moreover,

the magnitude responses of E(ω) are shown in Fig.4.38, and are smaller

than that of the Q-shift filter. In addition, the scaling functions ϕi(t)

and wavelet functions ψi(t) are shown in Fig.4.39. It is obvious that the

proposed lowpass filters with different group delay responses can result

in the scaling functions having different center of symmetry compared

with that of Q-shift filter. Furthermore, the spectrum of wavelet function

Ψi(ω) are shown in Fig.4.40. The complex wavelet spectrum Ψc(ω) and

their negative spectrum are shown in Fig.4.42. The analyticity measures

of E∞ and E2 are summarized in Table 4.5. It is clear that when τ1 = 6.5

and τ2 = 7.0 are chosen, the analyticity is the best, compared with the

Q-shift and other two filters.
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Fig.4.33 Magnitude responses of scaling lowpass filters H1(z).
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Fig.4.34 Magnitude responses of scaling lowpass filters H1(z).
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Fig.4.35 Magnitude responses of scaling lowpass filters H2(z).
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Fig.4.36 Magnitude responses of scaling lowpass filters H2(z).
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Fig.4.37 Group delay responses of scaling lowpass filters H1(z).
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Fig.4.38 Magnitude responses of E(ω).
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(b) τ1 = 7.25, τ2 = 7.75.
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(c) τ1 = 8.0, τ2 = 8.5.
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Fig.4.39 Scaling and wavelet functions ϕi(t), ψi(t).
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Fig.4.40 Magnitude responses of Ψi(ω).
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Fig.4.41 Magnitude responses of Ψc(ω).
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TABLE 4.5 Analyticity Measures E∞ and E2.

L I K τ1 τ2 E∞(%) E2(%)

Q-shift filter 1 7.25 7.75 1.139 1.338

3 3 2 6.50 7.00 0.150 0.175

3 3 2 7.25 7.75 0.429 0.414

3 3 2 8.00 8.50 0.217 0.296
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Fig.4.42 Magnitude responses of Ψc(ω).
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4.5 Signal Denoising Application

In the previous section, the almost symmetric DTCWT with improved

analyticity has been proposed. In this section, we review the wavelet

thresholding method at first, and then introduce the DTCWT threshold-

ing scheme. Moreover, several experiments are carried out to investigate

the performance on noise reduction.

4.5.1 Denoising Using Wavelet Thresholding

In the real world, the signals are inevitably mixed with some noises. It

is necessary to remove the noise corrupting a signal to recover that signal

and proceed with further data analysis [15]. Wavelet thresholding scheme,

which was firstly proposed by Donoho and his coworkers in [5], is consid-

ered as a preferred denoising method to suppress noise by thresholding

the wavelet coefficients. Generally, wavelet thresholding scheme consists

of three steps to reduce the noise, which are shown in Fig.4.43. First of

all, we transform the noisy signal into wavelet domain by taking a forward

DWT to obtain the approximation and wavelet coefficients, respectively.

Next, we suppress the wavelet coefficients smaller than a given amplitude

(using a hard or soft thresholding) to remove the noise. Finally, we take

the IDWT to obtain the denoised signal.

Let D(· , · ) denote the thresholding operator, then the hard thresholding
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Fig.4.43 Denoising using wavelet thresholding.

can be expressed as

d̂j,n = D(dj,n, T ) =


dj,n |dj,n| ≥ T

0 |dj,n| < T

, (4.36)

In the case of soft thresholding,

d̂j,n = D(dj,n, T ) =


dj,n − T × sgn(dj,n) |dj,n| ≥ T

0 |dj,n| < T

, (4.37)

where T is the given threshold value, j is the decomposition level of DWT,

and sgn(·) is the signum function.

4.5.2 Denoising Using DTCWT Thresholding

It has been shown in [26] that DWT is not very efficient for denoising

since it is lack of shift invariance, leading to artifacts in the reconstructed

signal. Denoising using DTCWT gives a substantial performance to DWT.

It is effective to threshold the complex wavelet coefficients rather than its

real and imaginary parts separately because the magnitude of complex

wavelet coefficients are free of aliasing distortion, which results in a nearly

shift-invariance.

In the previous section, we have shown that the key to obtain the shift

invariance from DTCWT lies in that the corresponding wavelet functions
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Fig.4.44 The conventional implementation of DTCWT decomposition.

are Hilbert transform pair. The necessary and sufficient condition for two

wavelet bases to form a Hilbert transform pair is that two scaling lowpass

filters satisfy the half-sample delay condition. For wavelet coefficients to

be the Hilbert transform pair in finite levels of decomposition, it was sug-

gested in [16] and [17] that for the first level of decomposition, the same

filter bank were adopted for Tree A and Tree B, but with one sample de-

lay difference between each other. In addition, two scaling lowpass filters,

which satisfy half-sample delay condition, were adopted for the rest of

levels, as shown in Fig.4.44. In [26], Selesnick had used the Daubechies

length-10 filter at the first level, and the orthonormal solutions of length

12 based on the common-factor technique at the subsequent levels. How-

ever, two wavelet coefficients at the first level are not Hilbert transform

pair, which results in a poor performance of noise reduction. Thus, a new

scheme is proposed in the following, as shown in Fig.4.45. On the real

part of DTCWT, the signal is directly inputted to the tree A of DTCWT.

On the imaginary part, it is firstly through an allpass filter A(z) approxi-
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Fig.4.45 Allpass filter with approximately half-sample delay

ahead of DTCWT.

mating to half-sample delay, and then inputted to the tree B. Therefore,

the corresponding wavelet coefficients are Hilbert transform pair at each

level. Moreover, we define the wavelet coefficients at level j from tree A

as dAj,n and from tree B as dBj,n, then the complex wavelet coefficients are

dcj,n = dAj,n + dBj,ni. The thresholding operator D(· , · ) in hard thresholding

becomes

d̂cj,n = D(dcj,n, T ) =


dcj,n |dcj,n| ≥ T

0 |dcj,n| < T

, (4.38)

while in the soft thresholding,

d̂cj,n = D(dcj,n, T ) =


|dcj,n| − T

|dcj,n|
dcj,n |dcj,n| ≥ T

0 |dcj,n| < T

. (4.39)

Furthermore, A(z−1) is needed to cancel the phase of A(z). A(z−1) can be

realized by reversing the input signal, passing it through A(z), and then

re-reversing the output signal.
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4.5.3 Experiments on Signal Denoising

The noisy signal x(n) is defined:

x(n) = x0(n) + xN(n), (4.40)

where x0(n) is the original signal, xN(n) is the additive white noise with

N(0, σ2). In the following, four specific signals, Blocks, Bumps, Heavy

Sine and Doppler are used as the original signal x0(n). We generate

the noisy signal x(n) by adding xN(n) with σ = 0.4. First of all, we

use the procedure proposed in [17] to investigate the performance of the

proposed DTCWT on noise reduction by using hard thresholding. For

the first level of DTCWT, we use the filter bank of length 8 proposed

by Abdelnour and Selesnick in [18]. For the rest of levels, we use the

Q-shift filter with {N = 15, K = 1, τ1 = 7.25} proposed by Kingsbury

in [22], DTCWT with {N = 15, K = 2, L = 3, I = 3, τ1 = 7.25} and

{N = 15, K = 2, L = 3, I = 3, τ1 = 6.5} in Example 4.4.4. For the

purpose of simplicity, we name DTCWT with τ1 = 7.25 as filter 1, and

DTCWT with τ1 = 6.5 as filter 2. We then calculate the signal-noise

ratio (SNR) by using different threshold value T from 0 to 5. SNR with

the optimal threshold value is shown in Table 4.6. It is obvious that

the proposed DTCWTs can achieve better performance (higher SNR) on

noise reduction than Q-shift filter. Next, we use the proposed denoising

scheme. We use the maximally allpass filter A(z) of degree J = 1 with

approximately half-sample delay. The results are given in Table 4.6. It is

clear that the proposed denoising scheme can obtain higher SNR than the

conventional scheme proposed in [17].
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Moreover, we investigate the performance of DTCWTs and DWT con-

structed by Daubechies 9/7 filter on noise reduction. Table 4.7 summarizes

the comparison of SNR using hard thresholding with optimal threshold

value. It is clear that the denoising using DTCWT thresholding achieves

better performance than that by DWT, averagely 2.52dB improved. Ta-

ble 4.9 summarizes the comparison of SNR using soft thresholding, and

denoising using DTCWT thresholding performs better. In addition, fil-

ter 2 owns the best performance on noise reduction for the most cases,

since the corresponding complex wavelet is approximately analytic. The

optimal threshold value of hard and soft thresholding are summarized in

Table 4.8 and 4.10, respectively.

Finally, denoised signals using hard and soft thresholding are shown

in Fig.4.46 ∼ Fig.4.53. It is obvious that the denoised signal by using

the proposed DTCWTs have little noise compared with the conventional

DWT and Q-shift filters.
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TABLE 4.6 Comparison of SNR(dB) for DTCWT denoising

schemes using hard thresholding.

Q-shift filter filter 1 filter 2

Signal Initial SNR
Previous

[17] Proposed
Previous

[17] Proposed
Previous

[17] Proposed

Blocks 17.872 19.792 24.178 19.949 25.837 19.995 25.360

Bumps 17.866 23.140 25.830 23.302 25.700 23.105 25.911

Heavy sine 17.690 29.539 28.378 30.001 30.058 31.117 30.334

Doppler 18.087 22.476 26.065 22.062 25.624 22.486 25.956

Average 17.879 23.736 26.113 23.828 26.805 24.175 26.890

TABLE 4.7 Comparison of SNR(dB) using hard thresholding

with optimal threshold value.

D9/7 filter Q-shift filter filter 1 filter 2

Blocks 17.872 22.743 24.178 25.837 25.360

Bumps 17.866 23.092 25.830 25.700 25.911

Heavy sine 17.690 26.692 28.378 30.058 30.334

Doppler 18.087 23.810 26.065 25.624 25.956

Average 17.879 24.084 26.113 26.805 26.890
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TABLE 4.8 The optimal threshold value of hard thresholding.

D9/7 filter Q-shift filter filter 1 filter 2

Blocks 1.10 1.55 1.60 1.50

Bumps 1.15 1.45 1.75 1.50

Heavy sine 1.10 1.45 1.75 1.55

Doppler 1.20 1.65 1.45 1.50

TABLE 4.9 Comparison of SNR(dB) using soft thresholding

with optimal threshold value.

D9/7 filter Q-shift filter filter 1 filter 2

Blocks 17.872 22.291 22.859 23.684 23.369

Bumps 17.866 22.455 24.246 24.228 24.395

Heavy sine 17.690 25.468 27.318 28.075 28.099

Doppler 18.087 23.232 24.893 23.968 24.463

Average 17.879 23.361 24.829 24.989 25.082

TABLE 4.10 The optimal threshold value of soft thresholding.

D9/7 filter Q-shift filter filter 1 filter 2

Blocks 0.45 0.60 0.65 0.65

Bumps 0.45 0.70 0.70 0.70

Heavy sine 0.65 0.85 0.90 0.90

Doppler 0.50 0.70 0.65 0.70
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(b) Noisy Signal (SNR = 17.872 dB)
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(c) D9/7 filter (SNR = 22.743 dB)
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(d) Q-shift filter (SNR = 24.178 dB)
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(e) filter 1 (SNR = 25.837 dB)
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(f) filter 2 (SNR = 25.360 dB)

Fig.4.46 Denoising using hard thresholding for signal Blocks.
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(a) Original Signal (Blocks)
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(b) Noisy Signal (SNR = 17.872 dB)
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(c) D9/7 filter (SNR = 22.291 dB)
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(d) Q-shift filter (SNR = 22.859 dB)
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(e) filter 1 (SNR = 23.684 dB)

0 200 400 600 800 1000
−5

0

5

10

15

TIME

A
M
P
L
IT
U
D
E

 

 

(f) filter 2 (SNR = 23.369 dB)

Fig.4.47 Denoising using soft thresholding for signal Blocks.
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(a) Original Signal (Bumps)
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(b) Noisy Signal (SNR = 17.866 dB)
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(c) D9/7 filter (SNR = 23.092 dB)
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(d) Q-shift filter (SNR = 25.830 dB)
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(e) filter 1 (SNR = 25.700 dB)
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(f) filter 2 (SNR = 25.911 dB)

Fig.4.48 Denoising using hard thresholding for signal Bumps.
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(a) Original Signal (Bumps)
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(b) Noisy Signal (SNR = 17.866 dB)
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(c) D9/7 filter (SNR = 22.455 dB)
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(d) Q-shift filter (SNR = 24.246 dB)
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(e) filter 1 (SNR = 24.228 dB)
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(f) filter 2 (SNR = 24.395 dB)

Fig.4.49 Denoising using soft thresholding for signal Bumps.
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(a) Original Signal (Heavy sine)
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(b) Noisy Signal (SNR = 17.866 dB)
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(c) D9/7 filter (SNR = 26.692 dB)
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(d) Q-shift filter (SNR = 28.378 dB)
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(e) filter 1 (SNR = 30.058 dB)
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(f) filter 2 (SNR = 30.334dB)

Fig.4.50 Denoising using hard thresholding for signal Heavy sine.
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(a) Original Signal (Heavy sine)
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(b) Noisy Signal (SNR = 17.690 dB)
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(c) D9/7 filter (SNR = 25.468 dB)
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(d) Q-shift filter (SNR = 27.318 dB)
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(e) filter 1 (SNR = 28.075 dB)
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(f) filter 2 (SNR = 28.099 dB)

Fig.4.51 Denoising using soft thresholding for signal Heavy sine.
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(a) Original Signal (Doppler)
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(b) Noisy Signal (SNR = 18.087 dB)
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(c) D9/7 filter (SNR = 23.810 dB)
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(d) Q-shift filter (SNR = 26.065 dB)
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(e) filter 1 (SNR = 25.624 dB)
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(f) filter 2 (SNR = 25.956 dB)

Fig.4.52 Denoising using hard thresholding for signal Doppler.
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(a) Original Signal (Doppler)
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(b) Noisy Signal (SNR = 18.087 dB)
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(c) D9/7 filter (SNR = 23.232 dB)
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(d) Q-shift filter (SNR = 24.893 dB)
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(e) filter 1 (SNR = 23.968 dB)
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(f) filter 2 (SNR = 24.463 dB)

Fig.4.53 Denoising using soft thresholding for signal Doppler.
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4.6 Summary

In this chapter, we have firstly reviewed the conventional Q-shift filters

for DTCWTs proposed by Kingsbury in [16], [17] and [22]. We then have

proposed a new method for designing DTCWTs with arbitrary center of

symmetry. We have specified the degree of flatness of group delay response

at ω = 0, and the number of vanishing moments. Next, we have applied

the Remez exchange algorithm to minimize the magnitude of the error

function, resulting in the improved analyticity of complex wavelet. Two

scaling lowpass filters can be obtained simultaneously by iteratively solv-

ing a set of equations. Therefore, the optimal solution is attained through

a few iterations. As a result, the proposed DTCWTs are orthogonal and

almost symmetric, and have the improved analyticity. Furthermore, we

compared the proposed DTCWTs with Q-shift filter proposed by Kings-

bury. It is obvious that the proposed DTCWTs can have arbitrary center

of symmetry, while the center of symmetry of Q-shift filter remains un-

changed. Finally, several experiments of signal denoising are carried out to

demonstrate the efficiency of the proposed DTCWTs. It is clear that the

proposed DTCWTs can achieve better performance on noise reduction.
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Chapter 5 Conclusion

In this dissertation, we have proposed two new classes of DTCWTs with

different improved properties. First of all, we have proposed a new class of

DTCWTs with improved analyticity and frequency selectivity. Next, we

have proposed another class of almost symmetric DTCWTs with arbitrary

center of symmetry. The resulting DTCWTs are orthogonal and almost

symmetric, and have the improved analyticities.

In Chapter 2, we have reviewed the Fourier transform and then intro-

duced fundamentals of dual tree complex wavelet transform. The wavelet

transform has been proved to be a successful tool to express the signal in

time and frequency domain simultaneously. To obtain the wavelet coeffi-

cients efficiently, the discrete wavelet transform has been introduced since

it can be achieved by a tree of two-channel filter banks. Then, we discussed

the design conditions of two-channel filter banks, i.e., perfect reconstruc-

tion and orthogonality. Additionally, some properties of wavelet functions

including orthonormality, symmetry and vanishing moments have been

also given. Moreover, the structure of DTCWT was introduced, where

two wavelet bases are required to form a Hilbert transform pair. Thus,

the corresponding scaling lowpass filters must satisfy the half-sample de-

lay condition. Finally, the objective measures of quality were given to

evaluate the performance of the complex wavelet.

In Chapter 3, we have proposed a new class of DTCWTs with improved

analyticity and frequency selectivity by using general IIR filters with nu-

merator and denominator of different degree. The proposed DTCWTs in-

clude the conventional DTCWTs proposed by Selesnick as a special cases.
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First of all, we have given a design method of allpass filters with the speci-

fied degree of flatness and equiripple phase responses in the approximation

band to improve the analyticity of complex wavelets. Next, we have spec-

ified the number of vanishing moments and applied the Remez exchange

algorithm to minimize the stopband error in order to improve the fre-

quency selectivity of scaling lowpass filters. Finally, we have investigated

the performance on the proposed DTCWTs, where a properly chosen ap-

proximation band can improve the analyticity of complex wavelets.

In Chapter 4, we have proposed another class of almost symmetric or-

thogonal DTCWTs with arbitrary center of symmetry. First of all, two

scaling lowpass filters are designed separately with the specified number of

vanishing moments and the specified flatness degree of group delay, which

satisfy the half-sample delay condition. Next, two scaling lowpass filters

are designed simultaneously by applying the Remez exchange algorithm

to minimize the difference of frequency responses between two scaling low-

pass filters, in order to improve the analyticity of complex wavelets. The

equiripple behaviour of the error function can be obtained through a few

iterations. As a result, the proposed DTCWTs are orthogonal, almost

symmetric and have the improved analyticity. Differently from Q-shift fil-

ters, the group delay responses of scaling lowpass filters can be arbitrarily

specified, resulting in the scaling functions having the arbitrary center of

symmetry. Finally, we have introduced signal denoising by using wavelet

thresholding to investigate the performance of the proposed DTCWTs on

noise reduction. It is shown that the proposed DTCWTs can achieve

better performance on noise reduction than the conventional DWT and

Q-shift filter.
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