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ABSTRACT

Debugging multi-threaded concurrent programs is more difficult than
sequential programs because errors are not always reproducible. Re-executing or
instrumenting a concurrent program for tracing might change the execution timing
and might cause the concurrent program to take a different execution path. In other
words, the exact timing that caused the error is unknown. In order to reproduce the
error, one needs to execute the concurrent program with the same input values
many times as test cases by changing interleavings, but it is not always feasible to
test them all.

This dissertation proposes a debugging/testing system that generates all
possible executions as test cases based on the limited information obtained from an
execution trace, and then detects potential race conditions caused by different
schedules and interrupt timings on a concurrent multi-threaded program. There are
a number of studies about test cases reduction using partial order reduction, but
there are still redundancies for the purpose of checking race conditions. The
objective is to efficiently reproduce concurrent errors, specifically race conditions,

by proposing three methods.

The first is to reduce the numbers of interleavings to be tested. This is
achieved by reducing redundant test cases and eliminating infeasible ones. The
originality of the proposed method is to exploit the nature of branch coverage and
utilize data flows from the trace information to identify only those interleavings that
affect branch outcomes, whereas existing methods try to identify all the
interleavings which may affect shared variables. Since the execution paths with the
same branch outcomes would have equivalent sequences of lock/unlock and
read/write operations to shared variables, they can be grouped together in the same
“race-equivalent” group. In order to reduce the task for reproducing race conditions,
it is sufficient to check only one member of the group. In this way, the proposed
method can significantly reduces the number of interleavings for testing while still

capable of detecting the same race conditions. Furthermore, the proposed method
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extends the existing model of execution trace to identify and avoid generating
infeasible interleavings due to dependency caused by lock/unlock and wait/notify

mechanisms.

Experimental results suggest that redundant interleavings can be identified
and removed which leads to a significant reduction of test cases. We evaluated the
proposed method against several concurrent Java programs. The experimental
results for an open source program Apache Commons Pool show the number of test
cases is reduced from 23, which is based on the existing Thread-Pair-Interleaving
method (TPAIR), to only 2 by the proposed method. Moreover, for concurrent
programs that contain infinite loops, the proposed method generates only a finite
and very few numbers of test cases, while many existing methods generate an

infinite number of test cases.

The second is to reduce the memory space required for generating test cases.
Redundant test cases were still generated by the existing reachability testing
method even though there was no need to execute them. Here, we propose a new
method by analyzing data dependency to generate only those test cases that might
affect sequences of lock/unlock and read/write operations to shared variables. The
experimental results for the Apache Commons Pool show that the size of the graph
for creating the test cases is reduced from 990 nodes, as based on the reachability

testing method used in our previous work, to only 4 nodes by our new method.

The third improvement is to reduce the effort involved in checking race
conditions by utilizing previous test results. Existing work requires checking race
conditions in the whole execution trace for every new test case. The proposed
method can identify only those parts of the execution trace in which the sequence of
lock/unlock and read/write operations to shared variables might be affected by a
new test case, thus necessitating that race conditions be rechecked only for those

affected parts.

From the new improvements introduced above, the proposed methods
accomplish to significantly reduce the efforts for exhaustively checking all possible
interleavings. The proposed methods provide programmers the information

regarding whether there exist program errors caused by interleavings, the
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interleaving (path) when the errors occurred, and accesses to shared variables with

inconsistent locking.
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Chapter 1. Introduction

1.1 Background

Multi-core processors are now used in various computer systems ranging
from super computers to PCs, and even to small cellular phones. Concurrent
programming plays a very important role in fully exploiting the capability of
multi-core processors for improving their performance. A concurrent program
contains two or more threads/processes that execute concurrently or in parallel and
work together to perform a given task. Using multi-threads can increase
computational efficiency and resource utilization. For instance, while one thread is
waiting for user input or message from network, other threads can perform different
computational tasks. From the view point of structuring software systems, modern
complex systems are rather naturally structured and perhaps easier to be understood
by using multi-threads. They are often real time and require interactive operations.
For example, reactive systems, industrial control systems, financial systems, game
software, multi agent systems, web servers, etc. can be structured as multi-threaded
concurrent programs which create separate threads to service incoming requests

from users or devices.

While multi-threaded concurrent programs offer some advantages,
debugging and testing of multi-threaded programs are known to be notoriously
difficult [Dowell89]. Since they exhibit non-deterministic behavior, they sometimes
produce errors or incorrect behaviors that depend on timings. Such errors, for
example unintentional race conditions or deadlocks, are very difficult to uncover
during testing (see Figure 1). One reason for this difficulty is that the set of possible
different interleavings is huge, and it is not feasible to try all of them. The
probability of producing a concurrent error is very low because only a few of the
interleavings actually produce concurrent errors. Executing the same tests many
times under the same test environment might not produce the error because the
same interleaving might be created since the scheduler is deterministic. As a result,

such errors often remain undetected until even product deployment where different



environmental conditions are waiting. Many errors are not repeatable, and when an
error is detected, much effort must be invested in recreating the conditions under

which it had occurred.

Deployment Testing / Debugging
Same input
Input ;
Concurrent Concurrent
execution execution
l l Tracing
Error § Error might l
h d | th
appens § not happen Execution
trace

Figure 1. Non-deterministic behavior of a concurrent program

We define the correctness of a concurrent program execution by:

° Data integrity: no race condition.

[ Free from concurrency issues: no deadlock, live-locks, and starvation
[Rahul08].
® Responsiveness: programs need to response to a user input or an interrupt

within a certain time.

In this research, we concentrate on checking race conditions in concurrent
programs whose concurrency control is based on locking mechanism. Race
conditions occur mostly because shared variables are accessed by threads using
inconsistent locking or even no locks [Savage97] [Edelstein03] [Lee96].
Programmers often fail to apply appropriate locks due to difficulties in predicting
the execution path or interrupt timing because of the complexity of concurrent
programs, especially when branches are affected by access to shared variables and
interleavings. To detect race conditions, a programmer can execute the concurrent
program and check the execution trace using a dynamic race detector.
Unfortunately, concurrent errors might not be easy to detect because a re-executed

concurrent program might execute with a different interleaving. Adding additional



commands or instrumentation of the source code to record intermediate results for
testing concurrent programs might change the interleaving, so that errors may not
show up. Furthermore, dynamic race detectors can detect potential errors only if

they show up in a re-execution.

The execution of a concurrent program depends on both input values and
interleavings. Race conditions cannot always be detected during testing because their
occurrences depend on interleavings. In a concurrent program, a branch can take a
different execution path due not only to a different input value, but also to a different
interleaving. This situation happens when the program’s conditional statement
depends on shared variables and the shared variables are affected by interleavings. A
change of branch outcomes can affect the sequence of lock/unlock and read/write
operations to shared variables, thus affecting the occurrence of race conditions. Hence,
an execution trace might contain race conditions that depend on the branches and

interleavings.

A typical debugging scenario proposed in this dissertation is as follows:

1. An error that is thought to be caused by timing is discovered, but the exact
thread interleaving and interrupt timings are not known.

2. Trace the program using the same set of input values. From the result of
execution trace, examine race conditions, deadlocks, and responsiveness (late
response). If at least one cause of the error is found (which is lucky), fix it and
then continue debugging. Here, an execution trace is a time-stamped trace of all
the threads comprising the program.

3. Usually in most cases, the error is not reproduced. Tracing affects the execution
of lock/unlock and/or read/write operations to shared variables and interrupt
timings. Therefore there is no guarantee that the execution order and timing of

the program with tracing is the same as the one in which the error was detected.

For program debugging, one of the common and powerful methods is that, for
investigating the cause of incorrect behaviors, additional commands are added or
instrumented into the code to display intermediate results, and the program is executed
again using the same input. This re-execution of a program is called a “replay”.
However, this program replay debugging method causes the change of timing and the

error might not be reproduced. Gathering trace information while executing a program



using even the same input values can cause schedules and timings to be different from
those in the execution in which the actual error had occurred. Therefore, the error
cannot always be reproduced because it might execute a different execution path.
Assuming almost all logical errors have been removed, then the errors are most likely
caused by a different timing. It is well known that debugging such remaining or hidden
or infrequent errors is difficult. The exact timing when error had occurred is unknown,
so it is difficult to find the true cause of the error. Since the exact interleaving is
unknown, we need to try all possible interleavings as test cases to find the execution
path where the error had occurred. The problem is that there can be many possibilities

of interleavings and interrupt timings.

A program replay is broadly divided into two classes:

® Deterministic replay : a program is re-executed exactly the same
interleaving and interrupt timing as previous execution.

® Non-deterministic replay  : a program is re-executed, but might not exactly

the same interleaving and interrupt timing as previous execution.

If the previous execution is the one that contains an error, then we can
reproduce the error using deterministic replay. For a sequential program, it is
expected that this deterministic replay is always possible. For a concurrent program, a
deterministic replay is difficult. To do a deterministic replay of a concurrent program,
one controls the scheduling of threads in the system to obtain the same execution path.
If the complete information is obtained concerning the execution in which an
incorrect behavior is found, then a deterministic replay is preferable for debugging. A
number of techniques for deterministic replay have been devised and it becomes
popular because it provides the same degree of debugging easiness as that for
sequential programs. When the complete information is not obtained, then a

non-deterministic replay is applied.

In a non-deterministic replay, a single execution of a concurrent program
with a particular value of an input variable x is insufficient to determine the
correctness of the concurrent program when the actual execution timing of the error is
unknown. In order to reproduce the same error for debugging multi-threaded
concurrent program, it is necessary to change/alter the interleavings (timings) as test

cases and test all the possible executions produced from the same input values. Figure



2 shows a general method for reproducing concurrent multi-threaded program errors.
Unfortunately there are many possible thread interleavings and interrupt timings,
which means it requires a large number of test cases and it is not always feasible to
test all of them. The number of different interrupt timings, in particular, is almost
unlimited because their granularity is very small. Randomly choosing which
execution to be replayed with some heuristics can help to increase the probability of

manifesting concurrent error, but often comes with many redundant test cases.
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code Deterministic execution
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trace
v 5 " Error
Problem: ynamic eror L, detection
o , detection it
Too many possible interleavings. results

— not feasible to test them all.

Figure 2. General method for reproducing concurrent multi-threaded program errors

1.2 Problem and Objective

1.2.1 Problem

It is difficult to detect race conditions in concurrent programs if the exact
interleaving that causing the error is unknown. In the case of debugging sequential
programs, the output results depend only on the input values. Even though
instrumentation is added to display/output intermediate results or tracing is applied, it
does not affect the process and the result of program execution. Therefore, in
investigating the cause of the error, it is possible to repeat the execution and then
narrowing down the cause of the error. Unfortunately, this is not the case in debugging
concurrent programs because the execution depends not only on the input value but also

on interleavings. As such, we must consider all possible interleavings for testing.



Unfortunately, blindly executing all possible interleavings is not usually feasible
because of their huge number. Figure 3 shows an example that the number of possible

interleavings grows in factorial order as the number of threads and operations increase.

Too many interleavings.

1000000 Not feasible to test all.
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10000

——4 threads
1000
=3 threads

2 threads

100

Number of possible interleavings

10

1 2 3 4 5 6 7 8 9 10 11 12

Number of operations (read/write, lock/unlock)

Figure 3. Number of possible interlavings

The main problem is how to reduce this number of testing and the efforts for detecting
concurrent errors. Two major issues in testing concurrent programs are efficiency and
precision. It is beneficial if, for concurrent programs, the same execution is reproducible

during testing and debugging just like sequential programs.

1.2.2 Objective

The objective of this research is to realize debugging capabilities/situations
for concurrent programs similar to those for sequential programs even though the
exact interleaving that causing the error is unknown. Note that our definition of
concurrent programs includes interrupts. Our goal for testing and debugging
concurrent systems is the ability to repeat an execution as close as the actual

execution in which an incorrect behavior will be manifested even when a trace is



taken. This is achieved by realizing a deterministic replay for concurrent programs
which we call it “total replay” (see Figure 4). Total replay for concurrent programs
aims at reproducing all possible executions effectively based on limited trace
information under the following assumptions:

® Input values are known, but

® Interleaving is unknown (see Figure 6)

Namely, we guarantee that all possible execution paths or all different interleavings
are produced and we reduce redundant executions or tests as much as possible while
still capable of detecting the same error. Even though the input values are fixed, the
range of execution reproduction is still very large (see Figure 3) due to a wide range

of different interleaving caused by scheduling and interrupt timings.
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Figure 4. Objective

Figure 5 shows the difference between the existing deterministic replay and the
proposed total replay.
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Figure 5. Comparison between the existing deterministic replay and the proposed total
replay

Figure 6 shows a debugging process using the proposed method.
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Figure 6. Scope for the proposed total replay

Debugging process:



1. Detection of race conditions by checking the consistent locks in the execution trace.

1.1. Suppose:
® There are N times accesses to a shared variable x.
® ActiveLocks(x,i) is the set of locks acquired by the thread when accessing

the shared variable x for the i-th access.
® Consistent locks for accessing the shared variable x is ActiveLocks(x,0) /]
ActiveLocks(x,1) (1 ActiveLocks(x,2) /. . . [1 ActiveLocks(x,N).

1.2. Race considions exist for an access to a shared variable x if the consistent locks
in step 1.1. is empty.

2. If concurrent errors are found by a race detector.

2.1. A race detector will give information about the name of lock variables, shared
variable names, and line of code where access to the shared variable is not
protected by consistent locks. The execution path can be obtained from the
execution trace.

2.2. Fix the error by adding appropriate locks in the source code, i.e. deciding the
consistent locks for accessing the shared variable.

3. If concurrent errors are not found, the error might be caused by other bugs in the

program. Such causes are not within the scope of the proposed method.

Figure 7 shows an example of a bug fix using information from a race detector.
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Figure 7. An example of a bug fix using information from a race detector

The applicability of the proposed method:
® At the end of software development phase after all logical errors and conceptual
errors are removed, or

® After deployment when an error is found by users
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In this dissertation, we propose a new efficient dynamic method to minimize
the number of test cases for detecting concurrent errors. Our method is particularly
applied for finding concurrent errors where the detection or the reproduction rate is
very low. It iteratively uses previous execution traces as guidelines for generating
new test cases. The focus is a debugging of a concurrent program whose behavior has

been found anomalous.

The contributions of this dissertation are as follows (refer to Figure 9):
1. Reducing the number of test cases for detecting concurrent errors:

< Eliminating redundant test cases: The proposed method reduces the number of
interleavings to be tested by exploiting the branch coverage information from
the execution trace. This is an improvement over the existing reachability
testing methods [Hwang95]. The existing reachability testing methods try to
identify all interleavings which may affect shared variables, although they
may not necessarily affect the sequence of lock/unlock and read/write
operations to shared variables; thus redundant interleavings are included.
These redundant interleavings are, however, reduced in our method, resulting
in a significant reduction in the number of interleavings for checking race
conditions. Our method is different from previous methods because it can
distinguish those interleavings that can affect branch outcomes and the
sequence of lock/unlock and read/write operations to shared variables from
those that cannot. Then the proposed method reduces the number of
interleavings necessary to be tested by the following:

® Grouping the interleavings which have the same sequence of lock/unlock

11



and read/write operations to shared variables.
® Testing only one member from each group.
To the best of our knowledge, this idea has not been exploited so far.
< Eliminating infeasible test cases: The existing reachability testing methods do
not consider the synchronization event dependency of the execution path, e.x.
lock-unlock and wait-notify mechanisms. There exist infeasible interleavings
due to this dependency. The proposed method extends the existing model of
variant graphs (will be defined in section 4.2 Approach) to identify infeasible
interleavings due to this dependency, thereby further contributing to reducing
the number of test cases.
2. Reducing memory space required for generating test cases.
Our method exploits data dependency to generate only those test cases that might
affect sequences of lock/unlock and read/write operations to shared variables. Our
new proposed method requires smaller size graphs for generating test cases compared
to the existing reachability testing methods. This means the required memory space is
reduced.
3. Reducing the effort involved in checking race conditions.
Our method identifies only the parts of the execution trace whose sequences of
lock/unlock and read/write operations to shared variables might be affected by a
new test case. Race conditions are then checked again only for those affected parts.
For other (unaffected) parts, we can reuse the results from previous executions,

thereby reducing the effort involved in checking race conditions.
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Figure 9. Contributions of the proposed methods

1.3 Motivation

Several methods have been proposed to reduce the number of interleavings for
testing. Partial order reduction is a general method which considers only those
interleavings that may affect an execution of a program based on certain criteria. One
example of the partial order reduction method reduces the number of interleavings by
considering only those that may affect the values of shared variables [Godefroid96]
[Clarke00] [Godefroid97] and by ignoring the order of “independent” operations. Two
operations are said to be independent if any different order of the operations does not
affect the values of shared variables. Examples of independent operations are two read
operations from different threads accessing the same shared variable. Such interleaving
is left unordered because its order is irrelevant to the resulting values of any shared

variables.

Unfortunately, such partial order reduction still leaves some redundancy when
exploring different execution paths in threads for detecting potential race conditions.
Consider the example in Figure 10. In the case that the loop in the thread 72 is executed

only once, there are six possible different interleavings. The first and the second
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interleavings are different only in the order of independent operations, so they will have
the same values for shared variables. A similar situation happens for the fifth and sixth
interleavings. By ignoring the order of independent operations, there will be only four
groups of interleavings with different combinations of values for the shared variables x
and y. For the members of the same group, the same read or write operation is
guaranteed to use the same value of the shared variable. If the branch depends only on
the shared variable x, there are actually only two groups that matter for changing the
execution path of thread 7'/. These groups are determined by whether CS; x is executed
before CS4 x (group 1) or vice versa (group 2). When the loop in the thread 72 is
executed several times or possibly becomes an infinite loop, there are more possible
interleavings that affect the value of the shared variable y, but still there are only two
groups of interleavings with respect to different values of the shared variable x. We will

use this idea for exploring different execution paths efficiently.
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o Proposed
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/ / / / /
time ——»
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tenondant © loop | variant3 {4. CSsk CS;x,CS,Y,CSzy ) group 2:
cS vyl -.. penaen : F CS. x before
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: 6. CSA y CSB y, CS1 X, CSZ y
branch l
Grouping by Grouping by considering
ignoring the order  Only differ in the data dependency when
of independent +—— order of independent  the Pranch depends only
operations. operations. on shared variable x

Figure 10. Examples of grouping for interleavings

Figure 11 shows a control flow graph for a concurrent program and its
possible execution paths. A thread can take a different execution path when its control
flow changes. In a concurrent program, its control flow depends on input data,
interleavings, and branches. A different execution path might have a different lock
sequence or different read/write operations to shared variables. To detect concurrent

errors, we need to find all different interleavings that can change the execution path.
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Figure 11. An example of a control flow for a concurrent program

Suppose that path 1 is executed concurrently with path 3 (path 1 || path 3) when
the program is first tested. In this case, there are three other possible different
interleavings with the following results:

No. Possible Branch Concurrent Note
interleavings outcome paths
CSyx, CS;x, CS) x true pathl || path3
2. CS;x,CSyx,CS>x | false path2 || path3 | Infeasible interleaving. It
becomes CS; x, CSyx, CS3 x
3. CS;x,CS,x, CSyx true pathl || path3

Referring to Figure 11, let us assume that the first interleaving is taken when
the program is first tested. The other two interleavings are other possible test cases.
Assuming that the branch is conditioned by the shared variable x, the conditional
statement of the branch is affected only by the order of CS4 x and CS; x:
® (S, x1s executed before CS; x — branch outcome is true
® (S xis executed before CS, x — branch outcome is false

If the branch condition is frue, then the execution of path 1 will be
concurrent with path 3 (path 1 || path 3). On the other hand, if the branch condition is
false, then we will have the combination of the execution of path 2 concurrent with
path 3 (path 2 || path 3). In this example, CS4 x is executed before CS; x in the first
and the third interleavings, so the branch outcome will be frue and result in the same
execution path 1 for thread 7'/. Since thread 7'/ follows the same execution path in the
first and third interleavings, there will be no change in the sequence of lock/unlock

and read/write operations to shared variables. For exploring different execution paths
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in thread 7'/ caused by the branch, it is sufficient to test only either the first or the

third interleaving.

By considering the dependency between the conditional statement in the
branch and the shared variables, we can avoid testing interleavings that do not change
the execution path of a thread. For the example shown in Figure 11, if we know from
the previous executions that the branch is not affected by the shared variable x, then
there is no need to test the second or the third interleaving. Of course, the final result
for the value of the shared variable x can be different in those interleavings because it
might also depend on the order of the critical sections. If the execution path in thread
T1 changes to path 2, we compare the sequence of lock/unlock and read/write
operations to shared variables between CS,; and CS; before checking the race
conditions for the concurrent execution of path 2 and path 3 (path 2 || path 3). If the
sequence of lock/unlock and read/write operations to shared variables in CS, and CS;
is the same or “equivalent” (will be defined in section 3.10 Race-Equivalent), then
the race conditions are the same as in the first test case (path 1 || path 3) in the

previous execution, thus reducing the effort for checking race conditions.

This dissertation consists of eight chapters. Chapter 2 presents the related
work and gives a survey on related existing systems for debugging concurrent
programs. Chapter 3 presents the basic terms and definitions that will be used in this
dissertation. Race conditions are introduced as one of major anomalies in concurrent
executions of multiple threads, and concurrency control mechanisms are shown as
means for solving race problems. In Chapter 4, we set the conditions and
requirements for the method that this dissertation seeks to provide. Among many
possible different situations and objectives for debugging and testing concurrent
programs, this section makes the conditions and the objectives specific. Chapter 5
proposes a new method to reduce the number of different interleavings for test cases.
The method utilizes data flows from the trace information to identify only those
interleavings that affect branch outcomes. The number of necessary test cases may be
significantly reduced. Chapter 6 discusses implementation methods in Java and
presents some of experimental results in comparison to some existing methods.
Chapter 7 does some discussions and indicates possible future work. Finally, Chapter

8 gives the conclusions.
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Chapter 2. Related Work

Figure 12 shows the area of this research among the related work

Correctness of concurrent programs

| Expressive, but

v v . need to be familiar
Error detection Error prevention | with new notations
Source cggje, Execution trace,
false positive eliminate false positive
i Happens-before |
Static Dynamic |5 =I Race detection
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Theorem MhOd?(l Eliminate false negative ,, Reduce overhead
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False negative .
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Non-deterministic | Detail trace | Detail trace
available l NOT available
la\llfegrtrlcz)arlrsanwtitﬁebt:at Deterministic Deterministic test .
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path. operations. Threads, variables. and read/write operations
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Figure 12. Related work

2.1 Error Prevention

The type-based system [Abdelgawyl2] [Beckman06] introduces annotations

directly in source code to prevent race conditions. This is an improvement in terms of
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expressiveness, for example:
® Different objects of the same class can be protected by different locks.
® Different fields of the same object can be protected by different locks.
When we specify a field to be guarded by a lock, the type system can verify that all
accesses of that field are protected by that corresponding lock. However, it has some
drawbacks:
® Difficult to use: programmers need to be familiar with the notations of type-based
system.
® Concurrent errors might still escape: programmers cannot predict the flow of
execution because of the complexity of concurrent programs.

When concurrent errors escape, error detection systems can be useful to detect them.

2.2 Error Detection

Error detection can be classified into two classes; static and dynamic methods
(see Figure 13):
® Static methods : employ only source code analysis without executing the
program [BoyapatiO1] [Engler03] [Flanagan00] [Henzinger04] [Sterling93].
® Dynamic methods : actually execute a program and detect errors from the
execution trace [NishiyamaO4] [Praun01] [ChrisO1] in addition to the source code

information.

Static method

Source Static
code " | error detection _i_> Errors
1

E Dynamic method i

nout I_i_, tExecution i
| Concurrent racé | Dynamic Error | |

Source E program execution — | detection 1~ Errors
1

Figure 13. Static method and dynamic method for error detection
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2.3 Static Error Detection

Since static methods do not know the precise execution of a program that

causes the error, they need to use a conservative (safe) approach by considering all

possible executions in order not to overlook potential errors [ Yuan05]. Static methods

are suitable for ensuring that a program is free from errors because they check all

possible program behaviors. However, they often suffer from the detection of false

positives when debugging; that is, potential race conditions that do not actually exist

in the execution are detected, because it cannot determine the precise set of possible

interleavings that cause the errors. Furthermore, dynamic read/write operations to

shared variables through reference variables cannot be determined until the execution.

Some types of static methods:

Inspect all possible different execution sequences for a concurrent program by
generating paths from a source code or a model based on control flow analysis
[Yang98] [Bertolino94].

State space search method based on model checking [Godefroid97] [Havelund00]
[Holzmann91] [Cleaveland94] [Mutilin06]. This approach can systematically
exercise all the possible different sequences of synchronization events in a
concurrent program, but suffers from state space explosion problems. Techniques
such as partial order reduction [Godefroid96] [Clarke00] can suppress state
explosion, but it is necessary to record all execution history to avoid exercising
the same execution sequence and unfortunately static model is often too large to
build for many applications [Ramalingam(2]. A recent work by Jasaitis R., et al
[Jasaitis13] extends an existing model checking tool [Havelund00] to verify a
distributed system in which the program runs in different machines.

Check the properties of race conditions and deadlocks from a model based on

source code [Artho01], see Figure 14.
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Figure 14. Static error detection using Jlint [Artho01]

2.4 Dynamic Error Detection

In order to increase the precision, dynamic approaches [NishiyamaO4]
[Praun01] [ChrisO1] are needed which actually execute a program, and the history

of program execution is recorded and analyzed. Since it analyzes the actual

execution, it results fewer false positive detection compared to static methods. For
debugging purpose, we should also be able to fully utilize information from

execution traces. The information obtained in a trace is concerned with read/write
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operations to shared variables, lock commands, and synchronized commands
related to concurrency control. Some mechanisms for obtaining traces are JVM,
Aspect, and manual insertion. Since it detects only potential races based on a

particular execution, it does not guarantee the tested program to be bug free.

The dynamic approaches for helping debugging concurrent programs can be
applied either for showing/detecting potential errors from a particular execution
[SetiadiO5] [Setiadi04] [Setiadi04 2] or for localizing/pinpointing the cause of error.
Delta debugging [Jong02] localizes the cause of error from the difference/delta
between correct and incorrect execution based on a binary search method which, if
a binary search is luckily applicable, makes it feasible even for a large program.
Others use specifications to find any errors/violations by deterministically execute
concurrent program [Chung01][Bochmann94][Carver98]. Very limited conditions
need be satisfied for these tools to be applicable in localizing the error. Due to the
limitations of such tools, they can be utilized only if the error can be reproduced,
that is having the same complete execution trace with timing information from the
execution in which the error had occurred, or knowing the correctness/specification
of the program, for example a particular incorrect value of a variable, or an
occurrence of an exception. Unfortunately, often programs do not stop or produce
an exception at the time when error occurs, and it is not always easy for

programmers to write a specification.

Existing trace analysis techniques for dynamically detecting potential races
are based on:
® Happens-before analysis  : Happens-before analysis [Lamport78] based tools
[Adve91] [ChrisO1] [Dinning90] [Crummey91] establish temporal ordering on
program statements.
® Lockset analysis : Lockset analysis based tools [Savage97]
[Nishiyama04] [PraunO1] verify that a program execution satisfies a locking
discipline. Eraser [Savage97], for example, is a lockset analysis that identifies
potential race from a particular execution by checking lock consistency for

access to shared variables.f

Most of research directions in this field are to reduce:
® False positives [ Yuan05] [Nishiyama04] [Netzer91].
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® Overhead caused by tracing [Choi91] [Huangl11].

J. Huang, J. Zhou, and C. Zhang [Huangl1] identified one of the causes of
redundancy to be that an execution trace often contains a large number of events that
are mapped to the same lexical statements in the source code (see Figure 15).
However, removing them without careful analysis might cause false negatives
because they might affect the reproduction of race conditions. This situation happens
when a number of events from the same lexical statement in the source code affect a
conditional statement in a branch whose “then” and “else” statements have a different

sequence of lock/unlock and read/write operations to shared variables.

By checking happens-before relation or locking discipline for lockset,
potential races can be detected, but only if the execution trace contains potential
errors i.e. only identification of race conditions that actually occurred in the current
run. Unfortunately, the chance that a race condition will occur is low, and an actual
race detection tool does nothing to improve it. In a concurrent program, a branch can
take a different path not only caused by different input values, but also caused by
different scheduling and interrupt timings. Therefore it is not always possible to get

the same trace of the execution in which the error had occurred.

jCute: exhaustive

- Create different interleavings from Drawback: Too many redundancies
previous execution traces iteratively
T
2006 2007 2008 2011
i ' | » years
‘— A4 A4
CHESS: partial QuickCheck: restricted random [Huang11]: trivial reduction
- Test only - Random interleavings - Eliminate operations in an
interleavings based . execution trace which came
: . - Restriction on number of .
on fair scheduling . from the same lexical
operations .
statement in code
N —
—

Reduce the number of possible interleavings, but drawbacks:
* No guarantee concurrent errors will be found

* False negatives

Figure 15. Recent dynamic methods
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2.5 Non-Deterministic Execution

Non-deterministic testing executes concurrent programs without precise
control of the interleavings. It does not guarantee that errors will be detected, i.e.
causing false negatives, because it might only execute some of the possible
interleavings. The interleavings can be decided either by:
® Operating system schedule.
® Random.

An operating system schedule determines interleavings based on some policies.
Therefore, the same interleaving might be executed even though a concurrent program
is executed several times. This causes concurrent errors not to be detected. In order to
increase the possibility of occurrence of concurrent errors, “CHESS” [Musuvathi07]
generates all interleavings of a given scenario written by a tester based on a “fair
scheduling”. In a fair scheduling, “all threads get opportunities to make progress”
[Musuvathi07].

A random approach determines interleavings arbitrarily. Since it is random, it
might not have a good coverage for detecting errors. An improved random
approach that uses a heuristic has been developed for the following purposes:

® Exploring execution paths which have high probability for causing the error
[Ben06] [EytaniO7] [Stoller02] [Ben03]

® Reducing the search space [Edelstein03]

® [ocalizing the cause of errors [Ben03] [Edelstein03]

2.6 Deterministic Execution

Deterministic execution controls the interleaving of a concurrent execution.
There can be two type of deterministic execution based on the origin of the

interleaving as shown in Table 1.
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Table 1. Types of deterministic execution

Deterministic Origin of the Description
execution interleaving
Deterministic Previous execution Replay exactly the same interleaving
replay as previous execution.
Deterministic Generated as a test Execute an interleaving as specified by
testing case a test case.

If we have the interleaving from previous execution when a concurrent error occurred,

then we can easily reproduce the error using a deterministic replay. Otherwise, we

need to use a deterministic testing to find the interleaving in which the error occurred.

Figure 16 illustrates the two types of deterministic execution.
Deterministic replay

Source code —»

Deterministic Execution Dynan_1ic error Race_ .
Input execution trace l detection condition
Interleaving —
from previous Recording
execution |
Deterministic testing
Source code ™ | paterministic Execution Dynamic error Race
execution trace detection condition
Input - l
Interleaving — Change
interleaving

as a test case T

Figure 16. Deterministic execution for replay and testing

2.7 Deterministic Replay

A deterministic replay can reproduce concurrent errors by replaying the

program. Some tools enforce a particular schedule to replay based on the

information from an execution trace. DejaVu [Jong98] is a deterministic replay

system for a modified Sun Microsystems' Java Virtual Machine. Jreplay [Baur03]
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instruments Java byte code to replay specific thread schedule. Deterministic replay
techniques are available for replaying a concurrent program with the same
interleaving. Such techniques record the concurrent execution trace in a recording
mode. The recorded execution can be replayed later in a replaying mode for

dynamic analysis.

A commercial tool for deterministic replay [Totall0] is capable of
reproducing the original execution order of threads, thus the same interleaving can be
replayed. When a concurrent error is detected during a recording mode, a
deterministic replay requires only one execution to replay the error and obtain the
execution trace containing the error. This is useful for debugging concurrent programs.
However, this is only effective if programmers can identify the errors when a
concurrent program is running in recording mode during software development or a
testing cycle. Unfortunately, due to the huge number of all possible interleavings, not
all of them can be tested during software development or the testing cycle because of
time and cost restrictions. Sometimes only regression tests are performed after fixing
bugs and the software is quickly deployed in real situations, leaving the possibility
that other errors remain. In recording mode, all the information necessary for
replaying can be traced using instrumentation [BaurO3] or a specialized virtual
machine [Jong98]. Hence, recording mode will be different from the normal
execution which is known as probe effect:

® Timing: timings change and programs run more slowly because it is taking all
the information necessary for replaying.
® Memory: require more memories to store information concerning interleavings
and program states.
Therefore, executions cannot always be traced during the deployment of systems that
require high performance or where resources are limited, such as in embedded
systems. To reduce the probe effect, a special hardware device can be used to
communicate with the performance monitor through JTAG (refer to IEEE 1149) for
tracing, but many hardware constructions cannot run at full speed when JTAG is used
[Sebek02]. The advantage of this approach is that an execution can be traced with

minimum interference, but the drawback is expensive hardware costs.

2.8 Deterministic Testing
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In cases when an error has happened in the absence of a complete execution
trace for replaying, programmers need to test the concurrent program while taking
trace information to see if the same error can be detected. Unfortunately, the error
might not be easy to detect because a concurrent program can have a different
interleaving during re-execution. In this situation, programmers need to control the
interleaving and use deterministic testing. Deterministic testing can enforce a
particular interleaving specified in test cases. However, the number of possible
different interleavings can be huge. The method proposed in this research helps in

the efficient generation of test cases to reproduce the same or equivalent execution.

Some tools for deterministic replay can also be used for deterministic testing.
For example, in Jreplay [Baur03] programmers can control the interleaving by
enforcing thread switching using some additional locks, and can write them in the
locations where a thread switch should occur. Enforcing a thread switch is realized
by unblocking the next thread in the schedule followed by blocking all other
threads, including the current thread. An additional lock object is assigned to each
thread. The wait and notifyAll methods are used to implement the block and
unblock operations that suspend and resume an execution of a thread. A binary
semaphore is used to prevent deadlocks in the control transfer method due to
interceptions by the JVM scheduler. Another method devised by Pugh and Ayewah
[Pugh07] uses a clock to synchronize the order of executions in multiple threads.
Programmers can delay operations within a thread until the clock has reached a
desired tick.

Using the trace information, determining which interleavings to be inspected
among all the possible execution is important because it has direct impact on the

replay efficiency. Basically, there are two approaches:

(1) Partial : inspect only some of all possible interleavings based on
certain criteria.

(2) Exhaustive :inspect all possible interleavings [Lei06] [Lei04].

In principle, finding all errors requires an exhaustive approach.
Unfortunately, exhaustive approaches often suffer from an explosion of the number
of possible execution paths to be inspected. To overcome this problem, the concept

of partial approach is introduced.
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2.9 Partial Approach for Deterministic Testing

The idea behind a partial approach is to identify a group of executions with
the same coverage based on some criteria. For each particular group, it is sufficient to
test only one interleaving. It is useful for improving efficiency in testing because it
reduces the number of tests. In the field of concurrent programs, there exist some
criteria to determine which interleavings should be tested based on:
® Program structural (will be defined in subsection 2.9.1 Structural Coverage)
® Order of operations (will be defined in subsection 2.9.2 Partial Order)

® Program components (will be defined in subsection 2.9.3 Partial Components)

2.9.1 Structural Coverage

Structural coverage is based on control flow, which originally was defined
for sequential programs. In program testing, we can identify several levels of criteria
based on program structure [Prather87] [Taylor92]. These are statement coverage,

node coverage, branch coverage and path coverage.

Statement Coverage and Node Coverage

Statement coverage executes all statements in the graph at least once. Node
coverage encounters all decision node entry points in the flow graph. Statement
coverage and node coverage are rather weak criteria, representing necessary but by no

means sufficient conditions for conducting a reasonable test.

Branch Coverage

Branch coverage is a stronger criterion. It encounters all exits branches of
each decision node in the flow graph. Some existing researchers worked on testing
branch coverage for sequential programs [Prather87] [Gupta0O]. In the case of
sequential programs, the execution path only depends on the input. Generating data
for branch coverage can be obtained by solving linear constraints in the conditional
statements of the branches. In the case of concurrent programs, where the input is

already known, we need to find different interleavings that cause the change in branch
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outcome.

It is necessary to apply branch coverage for checking race conditions since
different branch outcome might execute different sequences of lock/unlock and
read/write operations to shared variables in a thread. However, it is not sufficient
because of the following reasons:
® Branch coverage might not cover all possible concurrent combination of execution
paths.
Different interleavings might create different combinations of branch outcomes
containing race conditions. Take examples in Figure 17, assumed some test
executions execute the combination 3 and combination 4, and found no race
conditions. Branch coverage is fully covered because both branches have been
executed as frue and false. However, race conditions might exist in different
interleavings for the combination 1 and 2.

® Race conditions might still occur even with the same branch outcomes.
Even with the same branch outcomes, different interleavings can change the
sequence of lock/unlock and read/write to shared variables causing race conditions.
This situation might happen when there are assignments to lock variables or
reference variables in different threads (will be explained in Section 5.3.6
Generating Test Cases to Check Consistent Locking for Access through
Reference Variables).
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Figure 17. Examples of execution paths combinations

In order to reduce the necessity to execute test cases, the proposed method
can identify and create a new execution path by combining the execution paths found
in the previous trace, but there is no guarantee that the new execution path will be
executed in the actual situation. Therefore there might be overhead for checking

unnecessary paths in this approach.

Path Coverage

Path coverage is the most thorough of all. Usually it is required to ensure the
correctness of a concurrent program. However, it is normally difficult to achieve
because the number of possible execution paths might be huge. Especially in

concurrent programs with complex loops and paths.
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In particular, interrupts may create an unlimited number of different paths
because interrupts may occur at any point of time in the program execution. This
problem can be partially mitigated by converting an interrupt processing to a thread.
Modern programming languages such as Java may also help mitigating this problem
by their capability of encapsulating concurrent operations. In this dissertation, we
assume that an interrupt processing is converted to a thread. Nevertheless, since
different execution paths might exercise different sequences of lock/unlock and
read/write operations to shared variables that can affect consistent locking, it is
mandatory to check path coverage to ensure that all concurrent read/write operations

to shared variables are consistent.

Koushik Sen and Gul Agha [Sen06] [Sen06 b] explored different execution
paths by generating new interleavings as well as new input. Their tool, known as
“jCute”, generates all possible interleavings based on previous executions by changing
the order of thread executions, starting from the smallest indexed thread. In jCute, some
redundancies remain in detecting race conditions, because not all of the generated
interleavings will change the sequences of lock/unlock and read/write operations to

shared variables.

All of the coverage criteria discussed above are mainly based on program
structure, but incomplete for exploring all sequences of lock/unlock and read/write

operations to shared variables in order to detect race conditions.

2.9.2 Partial Order

This type of coverage considers only some order of operations by exploiting

particular characteristics of concurrent programs.

Order of Dependent Operations

The partial order reduction, which was originally developed for static
methods, can be applied to reduce the possible executions. It reduces the execution by
defining “equivalency” between execution paths. It reduces possible interleavings by
considering only the order of “dependent” operations that affect the value of variables.

When the operations are “independent”, meaning that their execution does not
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interfere with each other, changing their order of execution will not modify their
combined effect. Since changing the order of independent operations will not affect
the value of shared variables, partial order reduction method ignores the order of
independent operations. Examples of independent operations are two read operations
to the same shared variable, and two write operations to different shared variables.
This method covers all possible different values of shared variables caused by
interleavings. This is necessary if we want to test all possible different values for

shared variables affected by different interleavings.

The reachability testing method proposed by [Hwang95] is an example of a
dynamic approach that utilizes the partial order reduction. Some of the focuses of
those researches in this field are to reduce the cost of tracing [Huangl1] and to reduce
the search space [Flanagan05]. The reachability testing method is based on
prefix-based testing. The advantage of prefix-based testing is to be able to start
non-deterministic testing from a specific program state other than the initial state.
This kind of methods to reduce the cost of tracing is a natural part of our method
which is similar to the old idea of checkpoint/restart. In our method, by properly
applying this new checkpoint/restart technique for concurrent programs, any
redundant path that can be identified by the trace information is eliminated from the

test.

Another data flow coverage criterion proposed by Kojima [Kojima09] also
considers the order of data dependent operations which affect the values of shared

variables.

Order of Use-define Operations

“Use-define” coverage is a coverage criterion based on data flow. The
extension of use-define for concurrent programs was presented by [Lu07] [Yang03]
[Yang98]. The use-define will be discussed in section 3.13 Use-Define.

Order of Synchronization Operation
Synchronization coverage [Bron05] covers different orders of synchronization

events from different threads for evaluating concurrent completeness. Its goal is to

check whether the synchronization statements have been properly tested. For example,
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the tryLock method of the Lock interface in Java 1.5 is used to check whether a lock is
available. It does not block, but may succeed or fail depending on whether another
thread is holding the lock.

The use-define coverage [Yang98] and the synchronization coverage [Bron05]
are not suitable criteria for detecting race conditions because:
® Use-define coverage: consider only read/write operations to shared variables.
® Synchronization coverage: consider only locks.
For detecting race conditions, we need to consider both locks and read/write operations
to shared variables.

Order of Operations Causing Potential Concurrent Errors

Another work by C. Park, K. Sen, P. Hargrove, and C. lancu [Park11], known
as active testing, generates a set of tuples that represents potential concurrent errors, by
performing imprecise dynamic analysis in an execution trace. The format of a tuple
corresponds to a particular class of errors. In the later phase, the program is re-executed
by actively controlling the thread schedule to confirm the concurrent errors. However,
the set of tuples might be incomplete if some tuples were not executed in the previous
execution. This situation happens when the executions of some tuples depend on the
“then” or “else” statements of a branch whose conditional statement is affected by
interleavings. This incomplete set of tuples might cause some false negatives for
detecting race conditions. Race conditions can only be detected using dynamic methods
if the execution trace contains the potential concurrent errors. Unfortunately in a
concurrent program, a branch can take a different execution path not only due to
different input values, but also due to different interleavings. Hence, depending on the
branches and interleavings, an execution trace might or might not contain potential race
conditions.

2.9.3 Partial Components

Some coverage criteria are derived from the existing ones by partially
selecting only some program components. For example, such partial selection may
pertain only to some threads [TakahashiO8], variables, synchronization operations

[Bron05], or operations based on temporal order relations [Factor96].
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Other methods inspect some subset of interleavings by selecting only
combinations from some parameters. The intuition behind the idea is that many errors
can be exposed by considering interactions among a small number of parameters. The
work from [Lei07] proposes an efficient method for generating test cases for
combinatorial testing. This method is effective if we can predict the number of
parameters that cause the error and they should be far less than the total number of
parameters.
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Chapter 3. Basic Terms and Definitions

This section discusses the basic terms and definitions that are used in this

dissertation.

3.1 Concurrency Control Using a Lock Mechanism

Race conditions in a concurrent program can be eliminated by using a
concurrency control mechanism. Several methods are used for concurrency control,
but a lock mechanism is one of the most commonly used methods. In this
dissertation, we discuss only concurrency control using a lock mechanism. A lock
mechanism is used to enforce exclusive access to a shared variable by lock-unlock
operations. A lock mechanism prevents other threads from accessing the locked
shared variable (resource) concurrently. The execution section which is protected

by a lock is called a "critical section" (see Figure 18).

Thread T1
time lock a
read/write x
l critical section
unlock a

Figure 18. An example of a critical section

A thread is allowed to enter into a critical section when it acquires a lock and
exits the critical section after it releases the lock. Which lock to be acquired is
specified by the parameter “a” of the lock operation “lock a”. Likewise, “unlock a”
operation specifies the lock “a” to be released. In the case of multiple hierarchical
locks (such as two-phase locks), a critical section has to be defined for each lock.

These critical sections may overlap to each other.
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3.2 Race Conditions

When a shared variable is concurrently accessed by multiple threads, the
final value of the shared variable is not deterministic. Figure 19 shows an example
where two threads 7'/ and 72 run concurrently and access a shared variable x.

Thread T1 Thread T2

/] x 1s a shared variable
integer x = 10;

/l a 1s a local variable within T1 /' b 1s a local variable within T2
integer a; integer b;

a=x; b=x;

a=a+1; b=b-1;

X = a; X =b;

Figure 19. An example of two threads 7/ and 72 run concurrently and access a shared
variable x

The value of x after threads 77 and 72 have been executed is not determined
to the same unique value. Depending on the interleaving of instruction executions, the
value may be 10, 9, or 11. We say in such a situation that a “race condition” or simply
“race” occurs. This is not a desirable phenomenon. A technique for avoiding races is

concurrency control.

We define a race condition by referring to locking discipline from
[Savage97]. “Every shared variable must be protected by some locks.” Such locks are
called “consistent locks” for accessing a shared variable. The consistent locks are

acquired by any threads before accessing the shared variable.
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Thread T1 Thread T2 Thread T3
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\
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locka ------- .
read / write x
unlock a b = lock@456 _
" lock a
lock b ----- -

read / write x
read / write y
unlock b /

unlock a .
C=a «-_

lock ¢ ---*
read / write x

unlock ¢

Figure 20. Examples of consistent locks

Figure 20 shows examples of consistent locks:
® Consistent lock for accessing the shared variable x is lock@123.
® (onsistent lock for accessing the shared variable y is lock@456.

In concurrency control using a lock mechanism, a race condition exists when a thread

is accessing a shared variable without acquiring consistent locks.

Detecting race conditions is mostly the task of checking consistent locks for
accessing shared variables. A race detector called Eraser [Savage97] proposes an
efficient algorithm for checking consistent locks in the execution of a concurrent
program. In concurrency control using a lock mechanism, it is the responsibility of
programmers that a proper lock operation is performed before accessing a shared
variable, and that the lock is released after the access to the shared variable has been
completed. If this rule is properly followed, the accesses to the shared variable are
said to be "well-formed". In other words, an access is said to be well-formed if

processes or threads acquire a consistent lock for the shared resource before accessing
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it, and then eventually followed by an unlock operation to release the corresponding

lock. There are various reasons why access to a shared variable may not be

well-formed, for example:

Programmers forget to write the lock, or they may write an incorrect lock
before accessing shared variables.
Programmers make an incorrect prediction about the execution path, resulting
in the lock not being properly set.
Programmers may intentionally omit a lock for performance reasons when race

conditions are acceptable, for example by using a volatile variable in Java.

In those cases, the access to shared variables is not well-formed and it might cause

a race condition. An example is shown in Figure 26(c) and Figure 26(d) where the

"else-statements" in line 15 for thread 7/ access the shared variable x without

acquiring any locks.

3.3 Total Replay

We define a term called “total replay” [SetiadilO] for testing and debugging

concurrent programs. Total replay executes all possible different interleavings and

interrupt timings within the scope given by an execution trace that contains an error.

Formally, we define as follows:

Let 7 be the information from the execution trace of a program execution 7 that
contains an error E. Let S be the set of possible different executions in the scope
of trace T; that is, those executions that start with the same set of input values but
with different interleavings and interrupt timings. If R is the set of all possible
executions for the program, then S is a part of R. Since the information 7 obtained
from the trace execution holds the conditions under which the error £ had
occurred in the execution 7, then we can guarantee that » € §. Therefore for
reproducing the error E, we need to test only S (just the ones within the scope of
T), and there is no need to test any other execution.

When we replay an execution p based on the trace information 7, we can
guarantee that p € S, but there is no guarantee that p and r are the same. When
no trace information is available, then S = R. In this case it will become an entire
program test. If S is small compared to R, then we are getting closer to a
debugging of a particular error. When we can replay all the possible executions in

S, then we call it as “total replay”. Most existing replay systems can replay only a
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subset of S. Therefore there is no guarantee that the execution r is replayed. In
contrast to the total replay, the existing replay systems may be called “selected

replay”.

3.4 Dynamic Access

There are some situations where access to a shared variable is not determined
at compile time. A shared variable or data access through a reference variable such as
a pointer in C, an object reference in Java, or an index of an array, or a file name
cannot be determined until an actual execution takes place. The reference variable
itself can be detected when it is shared, but trace information is needed to actually
determine which particular variable or data is accessed. We further elaborate the
situation below.

3.4.1 Reference Variable

A reference variable is a variable that refers to an object in Java
programming language. This is similar to a pointer in C programming language. Race
conditions might arise when several shared reference variables actually refer to the
same data. When checking for race conditions, we should not compare the reference
variable's name. Instead we need to compare the actual data referred from an
execution trace, which is the memory location of the pointer for C language, or the
object for Java language. Again dynamic methods are needed because static methods
cannot cope with such a situation. Figure 21 shows an example where two different
pointers refer to the same memory location and two different reference variables refer
to the same object. On the other hand, even when the same reference variable is
shared between threads, the variable or data referred by them may not necessarily be

shared. Those situations cannot be coped with static methods.

Pointer in C Object Reference in Java

St S1,S82,83; //st is a structure | A refl, ref 2; // object reference
definition refl = new A();

st *pl, *p2; // shared variable

// pl and p2 refer to the same memory | object
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// location ref2 = refl;
pl = & S1;
p2 = & S1;
Pointer in C Obiject reference in Java
T1 T2 T1 T2
pl = & S1
p2 = & Sl ref2 = refl
( lock a ( lock a
read/write pl read/write refl
lock b lock b
CS1 1< C821 write p2 CS1 1< C321 write ref2
Y Y unlock b Y ' unlock b
read/write pl read/write refl
\ unlock a \_ Junlock a
pl and p2 refer to the refl and ref2 refer to
same memory location, the same object,
SN
—

A race condition will occur when critical section CS, | and CS, | are interleaved.

Figure 21. Examples of reference variables

We will show how to generate test cases for detecting race conditions caused by
reference variables in section 5.3.6 Generating Test Cases to Check Consistent
Locking for Access through Reference Variables. Similar situations also happen for
file references, for example file name = fopen(c:¥¥data¥...). In such a situation, we can

treat them in a similar way to reference variables.

3.4.2 Array

When an array element is shared, the value of the index to specify a
particular element is not known until the actual execution (see Figure 22). In a
static method, to be safe, the entire array should be considered to be shared. Thus
the detection precision is lowered. A dynamic method is again required. Similarly

in the case of a file name, the actual file may not be known until the actual
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execution.

T1 T2

i++ \}

[ lock a

read/write num([i]
J ' lock b
€51z CS,, write num[i]

u/rJJoC/Ii b

g unlock a

Which array element is accessed
is not known until the execution.

Figure 22. Sharing of an array element

3.5 Conditional Statements/Branches and Loops

Interleavings, timings, and execution paths are all related. A concurrent
program can have different execution paths caused by conditional
statements/branches, loops, thread interleavings, interrupt timings, and thread
communications. Different execution path might cause the program to have a
different access-manner to shared variables, i.e. exercising different sequences of
lock/unlock. Control flows at conditional statements/branches can be affected by:

® Input values: The test case generation for all branches caused by different
input values has been an issue in program testing, for instance [Visser04]. This
is not our main concern in this dissertation. In our setting, the input values are
known.

® Thread interleavings and interrupt timings: Thread interleavings and interrupt
timings may affect the values of shared variables which may in turn affect the
result of conditional statements/branches. A simple example is shown in

Figure 23.

40



Execution 1 Execution 2
T1 T2 T1 T2
i Cs, 4is
CS1’1 IS lock b 1,1
executed lock b cs o executed
@0321 082’1 y= T py=s befﬂcszj
- unlock b unlock b
lock b lock b
Cs — 1.
CS1Y1 y:O‘ 2,1 y_1:
unlock b / true unlock b false
if (y==0) { if (y==0)
lock a else {
CS :
2,20 read/write x lock ¢
0822 .
unlock a read/write x
locka .-, } lock lock
- \ ocka .. unlock ¢
CSyo | readiwritex \ . CSq ! .
! then Is read/write x | M elseis
unlock a \ \
. executed unlock a \' executed
No race condition. A race condition happens if lock a and
lock ¢ do not refer to the same lock.

Figure 23. An example of a branch that is affected by interleavings

We use the term “branch outcome” to refer to the truth value within a
conditional statement of a branch during a program execution, that is whether true
or false. Let b;; be the j-th branch from the execution trace of thread 7i. We define
“branch-path” for a thread as execution sequence of branch name and its branch
outcome. For an execution with N threads, let nb(7i) be the number of branches for
thread 7i. The branch-path for concurrent program is the collection of branch-path
from all the threads.

by i[truelfalse] b, [truelfalse] b, s[truelfalse] ... by upiri)[truelfalse]
b, i[truelfalse] by [truelfalse] by s[truelfalse] ... by qpiro)[truelfalse]

by, [truelfalse] by s[truelfalse] by s[truelfalse] ... by .pcrv)[truelfalse]
For example, branch-path for a concurrent program execution with three threads

could be b, jtrue, b sfalse, b strue, b false, b, sfalse, bs ifalse, bs jfalse.

Similarly loop-path at the execution of a thread is represented as:

[; ,[1*" interation] /; J[2™ interation] I J[3™ interation] ...
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A “race-equivalent” (will be explained in section 3.10 Race-Equivalent)
group can be defined using these branch-path, loop-path and “access-manner” (will be
explained in section 3.9 Access-Manner). Some program executions might be
repeated even without a loop, for example because of gofo statement. The existing
work by [Huangl1] can detect such repetitions by identifying some events that are
mapped to the same lexical statements in the source code. Those repetitions might not
affect the reproduction of race conditions. In such a case, different executions with

different number of repetitions could be considered as one race-equivalent group.
3.6 Model for Concurrent Program Execution Traces

A concurrent program execution trace contains a sequence of operations from
all the threads. An operation in a thread is modeled as a triplet of:

location : operation : operand, where

® Jocation is thread name:file name:line_of code. The thread name or the file name is
omitted in some cases for simplicity when there is no ambiguity.
® operation is the read or write operation on a shared variable.

® operand is the name of the shared variable.

Figure 24 shows an example of a concurrent program and its flow graph. Let us
assume that the following read and write sequence S is obtained from an execution trace
of the first test:

TI:1 read x, T2:10 write x, TI:1 read y, Tl:1: write n, T1:2 read n, T2:11 write y,
TI:3...,TI:7 read y, T2:12 read x.
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Thread T1

:n=x+y;
: if (n<0) {

} else {
}
: print y;

S o U W N

Thread T2

10: x = -10;
11: y = 2;
12: print x;

(a)

Thread T1

Thread T2

E

. | | 5: . ..
|

(b)

Thread T1

1: read x
l: read y
1: write n

Thread T2

10: write x

Figure 24. (a) An example of a concurrent program. (b) Flow graph. (c) Flow graph for
read and write operations

3.7 Execution Paths

A concurrent program consisting of threads 7/, 72, T3, ..., Tp, where p is the

number of threads. An execution path is defined for a thread and a concurrent program:

® An execution path Pi of a thread 7i is a sequence of operations executed by the thread

Ti. For the execution of the program shown in Figure 26(a) and Figure 26(b), we

have:

PI1={10:1f( ), I1:lock a, 12: read x, 13: unlock a}

P2 ={20:lock a, 21:lock b, 22:read y, 23:write x, 24:unlock b, 25:unlock a }

® An execution path of a concurrent program is a sequence of operations executed by

all threads, taking into account the global order among threads. Figure 26 shows four

possible examples of concurrent execution paths for the concurrent program in Figure

25.

conditional statement

branch b, ; =

“then-statements”

“else-statements” {

Thread T1
~a
1 10+»if ( condition ) { Access to
11: lock a shared
12: write x variable x
13: unlock a without
14: ) el§e{ previously
15:  write x acquiring
16: } any locks.

Thread T2
20: lock a
21: lock b
22: read y
23: write x
24: unlock Db
25: unlock a

Figure 25. An example of a conditional statement
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Execution 1 Execution 2 Execution 3 | Execution 4
b, 4 is True b, 4 is True b, , is False b, , is False
time T1:10: if ( ){ T2:20: lock a T2:20: lock a T2:20: locka --->start: lock, L(T2)=1
T1:11: lock a T2:21: lock b T2:21: lock b T2:21: lockb |
T1:12: write x T1:10: if () { T2:22: ready T2:22: ready
T1:13: unlocka | T1:11: lock a T2:23: write x T2:23: write X |
T2:20: lock a T1:12: write x T1:10: if (. ){ | 72:24: unlockb |
T2:21: lock b T1:13: unlocka | T1:14: }else { T2:25: unlock a-~--+end: lock, L(T2)=0
T2:22: ready T2:22: ready T1:15: write x T1:10: if ( ){ .
T2:23: write x T2:23: write x T2:24: unlock T1:14: Yelse { .-~ start: write, L(T1)=0
T2:24: unlock b | T2:24: unlock b | T2:25: unlock a\| T1:15: write x -

T2:25: unlock a T2:25: unlock a == end: write, L(T1)=0

Thread T1 is accessing shared variable x
without acquiring any locks.

b
(a) (b) © )

Figure 26. Examples of different concurrent execution paths for program in Figure 25

We define PATHS as a set of execution paths Pi’s.

PATHS = (P1, P2, P3, ..., Pp), where p is the number of threads.
Note that PATHS does not take into account the global ordering among threads. For
the example in Figure 26(a) and Figure 26(b), we have:
PATHS = { P1, P2 } = { {10:if (), 11:lock a, 12: read x, 13: unlock a}, {20:lock a,
21:lock b, 22:read y, 23:write x, 24: unlock b, 25: unlock a} }

3.8 Interleaving and Branching

We denote by b;; the j-th branch of thread 7i in the execution path of thread 7.
The truth value of a conditional statement in a branch can be affected by both input
values and interleaving because interleaving might affect shared variables, which may
in turn affect the conditional statement. Figure 26(a) and Figure 26(b) show some
possible concurrent execution paths for the program in Figure 25 when the conditional
statement in the branch b;; is true, whereas Figure 26(c) and Figure 26(d) show the

concurrent execution paths when the conditional statement is false.

Let — denotes the “happens-before” relation as follows: If a is an event in
process Pi, and b is an event in process Pj, then event a —event b if and only if event
a happens before event b. In the example of Figure 26, the order of 77:10 and 72:23
affects the truth value of the branch b; ;. The branch is true in executions 1 and 2
when T17:10 —72:23, and false in executions 3 and 4 when 72:23 —T17:10. We will

later explain how to identify operations that affect a branch.
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3.9 Access-Manner

Partial order reduction is in general performed with respect to the concerned
properties. Reduction is possible only when the concerned properties hold in the
reduced state space of the target system. Since our main concerns are race conditions,
we can perform partial order reduction with respect to the sequence of lock/unlock
and read/write operations to shared variables. We define a notation called
“access-manner” to capture the following two properties for detecting race conditions:

(1) The currently effective locks when performing read/write operations to
shared variables.

(2) The order of their lock operations performed.

The knowledge of access-manner is sufficient to detect race conditions. We use
access-manner to check whether the access to a shared variable is performed correctly
under a lock. Here it is assumed that the target system adopts the locking scheme to

concurrency control.

In order to define an access-manner, we use notation L(77) as the number of
active locks acquired by thread 77 at a particular time. L(7i) is 0 at the beginning of
the execution of the thread 7i. During an execution of a program, L(73) is incremented
and decremented by the following rules:
® Incremented by 1 when a thread successfully acquires a lock (i.e. has completed a
lock instruction).

® Decremented by 1 when the thread 7i releases the lock which is currently being
acquired (i.e. has completed an unlock instruction). L(77) is not decremented if a
thread is trying to release a lock which is not currently acquired. Hence, L(77) cannot

be negative.

We define an access-manner as a sequence of operations in which a thread has
acquired a lock, has accessed a shared variable, and has released the corresponding lock.
Access-manners are defined in the execution path of each thread. There could be several
access-manners within the execution path of a thread. An individual access-manner is a
sequence of lock/unlock and read-write operations to shared variables within an

execution path of a thread. We classify access-manners based on their sequences of
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lock/unlock and read/write operations to shared variables as follows:
® A usual access-manner:

An access-manner which starts and ends with the following conditions:

» Start : acquiring a lock, a lock operation which causes L(77) to become 1.

» End : releasing the corresponding locks, an unlock operation which causes
L(Ti) to become 0.

Figure 27 shows an example of L(7%) for a usual access-manner using three locks.

In between the start and end, the thread is accessing shared variables.

® An unusual access-manner:

An access-manner which starts or ends by the following conditions:

» Start : accessing a shared variable without acquiring any locks, or when
executing only an unlock operation without acquiring a lock. This might
happen because programmers forget to acquire locks.

» End :when an execution trace has terminated.

Such an unusual access-manner might potentially cause race conditions should

another thread be accessing the same shared variable.

Thread T1 Number of
active locks
t
1 lock a L(T1)
read/write x 4
t; | lockb
time t, lock ¢ 3T
2 -4
l read/write y
read/write z 11
t, | unlockb t t; 4 t; tg ty time
tg unlock a / \
tg unlock ¢ Access-manner Access-manner
starts ends

Figure 27. An example of L(7i) for a usual access-manner with three locks

An individual access-manner must end before another individual access-manner starts;

thus they cannot overlap. Throughout this dissertation, an access-manner should be

understood to mean a usual access-manner.
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Two individual access-manners are the same if they have the same sequence of
lock/unlock and read-write operations to shared variables. We define Mi to be a set of
access-manners for the execution path of thread 7i, that is a collection of distinct
individual access-manners without considering their order. We also define a concurrent
set of access-manners MANNERS = {M1, M2, M3, ... , MN} as a collection of sets of
access-manners from all the threads within a concurrent execution path of a concurrent
program. When two concurrent execution paths of a concurrent program have the same

MANNERS, each thread will have the same set of access-manners.

When two different concurrent execution paths of a concurrent program have
the same PATHS, each thread in the two execution paths will exercise exactly the same
sequence of lock/unlock and read-write operations to shared variables, hence they will
also have the same set of access-manners. Therefore, two concurrent execution paths
with the same PATHS will certainly have the same MANNERS. The concurrent
execution path in Figure 26(a) and the execution path in Figure 26(b) have the same
PATHS, hence they will also have the same MANNERS:

M1 = {(11:lock a, 12:write x, 13:unlock a) }

M2 = {(20:lock a, 21:lock b, 22:read y, 23:write x, 24:unlock b, 25:unlock a) }

MANNERS = { {(11:lock a, 12:write x, 13:unlock @)}, {(20:lock a, 21:lock b, 22:read
v, 23:write x, 24:unlock b, 25:unlock a)} }

With the knowledge of access-manners and the accumulation previous execution

traces, we can accomplish two things:

(1) If the current sequence of lock/unlock and read/write operations is found to be the
same as the previous logged one, then we do not need to repeat the detection of
race conditions because the same situation has already been tested. This is true for
any execution paths including loops.

(2) In exploring execution paths, any execution paths having the same sequence of
lock/unlock and read/write operations are grouped into the same group. They
constitute a “race-equivalent” group. We will use access-manner to define the
equivalency in terms of race conditions among different executions of a
concurrent program (will be discussed in section 3.10 Race-Equivalent).
However, note that belonging to the same race-equivalent group does not

necessarily imply that the future computation will be the same.
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3.10 Race-Equivalent

Regarding reproducing race conditions due to inconsistent locking for
read/write operations to shared variables, it is beneficial to consider “equivalency”
between two executions of a concurrent program. For this purpose, we introduce a new
term called “race-equivalent”. Two executions of a concurrent program are
race-equivalent if they have the same MANNERS. In other words, for the same thread in
the two executions, they have the same sequence of lock/unlock and read/write
operations to shared variables (illustrated in Figure 28). Race-equivalent means the two
concurrent execution paths are using the same consistent locks (or the same inconsistent
locks) for accessing shared variables. Different concurrent execution paths of a
concurrent program that are race-equivalent are said to be in the same “race-equivalent
group”. It is sufficient to test only one member from each race-equivalent group,
thereby reducing the number of interleavings to be tested. For detecting race conditions,

we need to check all race-equivalent groups.

Execution 1 Execution 2
Thread T1 Thread T2 Thread T1 Thread T2
time - k@123 a = lock@123
\ lock a . lock a

- Wwrite X

read x ' read x .
unlock a --»write x

unlock a : unlock a '

! unlock a

Access to a shared variable

________________

without protected by consistent locks

Race conditions happen in both executions ™
P — e L TS —-

\ I Same sequence of lock/unlock and |

read/write in the same thread i >~ Race-equivalent

Sufficient to test only one of them  _/ Can be grouped

Figure 28. An example of a race-equivalent for two executions
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As explained in section 3.9 Access-Manner, two concurrent execution paths
with the same PATHS will certainly have the same MANNERS. Therefore, two
concurrent execution paths of a concurrent program that have the same PATHS will
certainly be race-equivalent. For examples, the execution path in Figure 26(a) and
the concurrent execution path in Figure 26(b) have the same PATHS, so they are
race-equivalent. We can see that lock a is a consistent lock for accessing shared
variable x in both concurrent execution paths. Different race-equivalent groups can
be created by taking a different concurrent execution path in which at least one
thread changes its individual access-manner. A branch might lead to a different
concurrent execution path which, in turn, can produce different individual
access-manners that can affect consistent locking. As shown in the concurrent
execution paths in Figure 26(c) and Figure 26(d), there is a race condition because
there is no consistent lock for access to shared variable x in thread 7'/:

M1 = {(15:write x) }

M2 = {(20:lock a, 21:lock b, 22:read y, 23:write x, 24:unlock b, 25:unlock a) }

MANNERS = {{( 15:write x) }, {(20:lock a, 21:lock b, 22:read y, 23:write x,
24:unlock b, 25:unlock a) } }
To detect this race condition, we need only check the concurrent execution path in
Figure 26(c) or the one in Figure 26(d) because they are race-equivalent. The same

inconsistent locking can be detected.

When a branch changes the execution path of a thread, it might not necessarily
produce different consistent locking. In this situation, the same thread in the two
concurrent execution paths might not exercise exactly the same sequence of lock/unlock
and read-write operations to shared variables, but they will still have the same
MANNERS, and so we can also classify them as race-equivalent. This is particularly
useful in the case of loops because we do not need to test all the iterations. It is
sufficient to test only a partial execution trace from several iterations for checking race

conditions because the execution of loop iterations can have the same access-manners.

In Figure 29, thread 7/ in execution 1 and execution 2 has different
access-manners, hence concurrent execution paths 1 and 2 are not race-equivalent.
When there is an active lock that was acquired outside the loop, then the first iteration

will have different access-manners from those in the second iteration because they start
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from different active locks, as shown in concurrent execution paths 1 and 2 in Figure 29.
On the other hand, concurrent execution paths 2 and 3 in Figure 29 are race-equivalent
because each thread in the two executions has the same MANNERS:

M1 = { (1:lock a, 3:write x, 4:unlock a), (3:write x), (4:unlock a) }

M2 = { (20:lock a, 21:read x, 22:unlock a) }

MANNERS = {{(1:lock a, 3:write x, 4:unlock a), (3:write x), (4:unlock a)}, {(20:lock
a, 21:read x, 22:unlock @)} }

The second iteration for the loop accesses the shared variable x without
acquiring any lock, a fact that can be detected in either concurrent execution path 2 or 3.
When there is no active lock at the end of a loop, the rest of the iterations will have the
same set of access-manners. The rest of these iterations are called “equivalent iterations”

in terms of consistent locking because they have the same set of access-manners.

Thread T1 Thread T2
1: lock a 20: lock a . .
2: while (condition) { 21: read x Execution 3: .
3: write x 22: unlock a Iterates three times
4: unlock a
. T1 T2
o: ) Execution 2:
lterates twice , ;: 'Oﬁﬁ"’; ) 20locka
7 2: while .

i . / 21: read x
Execution 1: T T2 15t} 3: write x o ek
Iterates once 1: lock a 20: lock \. 4:unlock a '

7 2: while -locka o i
T T2 qot | SumleOt otread x| [ 2 while( )
i B : 2nd: 2 write x ----- -
1:lock a 20: lock a " 4:-unlock a 22:unlock a S . Same
- : - T “4: unlock a ---:-- <
qst | 22While( ){ 21: read x 7 2: while( ) { “ 2 whie( ){ | | omdual
+ 30 write x 22:unlock a | 2nd{ 3. yrite x 3rd ! 3. writ i | @ccess-
\4: unlock a Lo P OpWre X .- © ! manner’
- 4:unlock a //Ak'un|ock q - -

access without previously acquiring any locks

Figure 29. An example of set of access-manners for a loop

A different read/write sequence that affects the values of shared variables is
called an “execution-variant”. Section 4.2 Approach explains how to derive
execution-variant effectively using an existing method. Further to the discussion above,
the problem for detecting a race condition can be stated as follows:

Given a concurrent program that has an execution-variant V., containing an error in
its concurrent set of access-manners MANNERS.,,.,., find the V..., or another

execution-variant ¥, which has the same concurrent set of access-manners as
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MANNERS.,,,,. Since each thread in V and V.., will have the same set of
access-manners, then the same inconsistent locking and improper lock-unlock

sequences in V. will also be detected in V.

3.11 Concurrent-Pair of Access-Manners

We define the term “concurrent-pair” of access-manners for the purpose of
checking race conditions in a concurrent execution. Two access-manners M/ and M2 are
a concurrent-pair, denoted by pair(M1, M2), if there exists a different interleaving that
can change the order of occurrence between one of the operations from M/ and one of
the operations from M2. Let’s assume an access-manner M/ in a thread 7/, and an
access-manner M2 in a thread 72. The access-manners M1 and M2 are a concurrent-pair
of access-manners if the following three conditions hold:
® Different threads: The threads 7/ and 72 are different.
® Not blocked by a thread creation: The thread 7/ is not created by the thread 72 after
the access-manner M2 ends, or the thread 72 is not created by the thread 7/ after
the access-manner M1/ ends.

® Not blocked by a synchronization message: The thread 77/ does not wait for a
message from the thread 72 before the access-manner M1 starts, or the thread 72

does not wait for a message from the thread 7'/ before the access-manner M2 starts.

Figure 30 is an example of an execution for the source code in Figure 32. It
shows some concurrent-pairs of access-manners. The number of concurrent-pairs of
access-manners depends on the number of access-manners and how they are distributed

among threads.
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Thread T1 Thread T2 Thread T3

1: x = -3
2: vy =2 20: x = 10
. 21:
time
22: lock b
3: n=x+y M2 23: ref2 = new Object ()
4: if (n<0) { pair1 24: unlock b
6: } else { - 25: print x ud(ref2,’/'27, 23)
7: lock a ; 26: lock b /
8: reﬁ}.credit = 10 M1 M3 27: ref2.credit = 77"
9: unlock & pair2 28:,f’f,{1:11<3"ck b
B ; ud,(ref2, 27,
10: } 30) % 30: ref2 = refl

ref and ref2 refer
to different objects

1

_ _ define Yset(ref2, 27) =
pair1 = pair(M1, M2) { 23: ref2 = new Object(),

pair2 = pair(M1, M3) 30: ref2 = ref1 }

Figure 30. Examples of some concurrent-pairs of access-manners in an execution trace

We have to check race conditions for each concurrent-pair of access-manners.
When a use operation has more than one member in its define set, its value might be
affected by different interleavings. For each concurrent-pair of access-manners, we have
to check race conditions for all the combinations of the define set of the lock variables
and reference variables. The occurrence of race conditions might be affected in the
event that any lock variables refer to different lock objects or any reference variables
refer to different objects. A race condition can occur in Figure 30 between the
concurrent-pair of access-manners M/ and M3. This happens when the reference
variables refl and ref2 refer to the same object, and the lock variables a and b refer to

different lock objects.

There is no need to check different interleavings between a concurrent-pair of
access-manners that satisfies the following two conditions, because the consistent
locking will be the same:
® The concurrent-pair of access-manners has been checked for race conditions in the

previous test execution.
® Different interleavings will not change the value of lock variables and reference

variables.
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In this way, we can reduce the number of test cases. On the contrary, if any different
interleavings might affect the lock variables or reference variables, then they have to be

tested because the consistent locking might be affected accordingly.
3.12 No-Race

We define a term named “no-race” for a concurrent-pair of access-manners.
No-race means two access-manners can be interleaved without race conditions. This
is the essential definition for “no-race”. When the concurrency control of the target
system is based on a lock mechanism, we say that a concurrent-pair of
access-manners pair(M1,M2) is no-race when one of the following conditions is
satisfied:
® No common shared variables.

No common shared variables between the two access-manners.
® Protected by consistent locks.
Every read/write operation to a shared variable is always protected by consistent
locks (see about consistent locks in section 3.2 Race Conditions).
Algorithm 1 explains in more details on how to decide whether a concurrent-pair of

access-manners is no-race.

Algorithm 1. Deciding whether a concurrent-pair of access-manners is no race

Definitions:

- M1: an access-manner
- vars(Mi) : set of variables within an access-manner Mi.

_shared(M1, M2): set of variables which are shared between access-manner M/ and
M2.

_write(Mi): set of shared variables that are written within an access-manner M.

_read(Mi): set of shared variables that are read within an access-manner M.

- activeLocks(x,t): set of active locks when a variable x is read or written at a

particular time z.
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- consistentLocks(x): set of consistent locks for accessing a variable x.

Input: a concurrent-pair of access-manners pair(M1,M?2).
Output: deciding whether the input pair(M1,M?2) is no-race.
Step 1. Check whether there are common shared variables between the two
access-manners
If (vars(M1).N_vars(M2))=0) {
Report as no-race and terminate this algorithm.
h
Step 2. Check whether every access to a shared variable is protected by consistent
locks.
Step 2.1 For every shared variable x in shared(M1, M2)
Assuming the shared variable x is accessed at time : #; ,t5 ,t3, ..., ty
consistentLock(x) = activeLocks(x, t;) N activeLocks(x, t;) N activeLocks(x, t3)
N ... activeLocks(x, ty)
Step 2.2 For every shared variable x in shared(M1, M2)

If consistentLock(x) #+O

Report as no-race and terminate this algorithm.
Step 3.

Do not report as no-race.

Once a concurrent-pair of access-manners is found be no-race, and there are
no other assignments to reference variables or lock variables, except during the

initialization, then no further check is needed for other interleavings among
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operations inside the two access-manners. Figure 31 shows an example of a no-race

where access to shared variable x is protected by the consistent lock a.

T T2
time
lock a
M1 read/write x

unlock a
lock a
read/write x

M2 unlock a

Figure 31. An example of concurrent-pair of access-manners which is no-race

We note that no-race guarantees only whether accesses to shared variables
are protected by consistent locks. The order of them, of course, affects the values of
the shared variables. In the example in Figure 31, the final value of shared variable
x depends on whether access-manner M1 is executed before or after the execution

of access-manner M2.
3.13 Use-Define

A “‘use-define” is a relation consisting of a usage “use” of a variable and the
definition “define” of the variable.
® A use means a read operation on a variable.

® A define means a write operation of some value to a variable.

A use-define is a triplet:

ud(var, use_location, define location) (1)

There must be no other write operations to the variable in between the use and
define operations. The use-define was initially defined for sequential programs. R.
Caballero, C. Hermanns, and H. Kuchen [Caballero07] utilize use-define for measuring

test coverage but that definition does not apply to concurrent programs. In this
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dissertation, we call this use-define for sequential programs the ‘“conventional

use-define”. Yang, A.L. Souter, and L.L. Pollock [Yang98] extend the definition of

use-define to the usage and definition of shared variables in concurrent programs.

Below are the differences:

® Sequential program: the use and define operations are located in the same thread.

® Concurrent program: the define operation might be located in a different thread to
the use operation. The interleaving in a particular execution decides which thread

actually defines the value.

A set of use-defines is obtained from an execution trace. We use the set of
use-defines to find operations which affect conditional statements in branches or
reference variables in access-manners. We also define “potential use-define” for the
same use of the variable when there could be another interleaving which satisfies the
following two conditions:

1. There is another define operation which occurs before the use operation. We assume
the use operation can be executed after the define operation, i.e. not blocked by a
thread creation or a wait-notify message.

2. There is no other define operation to the variable between the define operation in

condition 1 and the use operation.

A potential use-define is denoted by:

udyo(var, use_location, define_location) (2)

Figure 33 is one of the possible execution traces for the source code in Figure 32. Its
use-defines and potential use-defines are as follows:

® Use-defines: ud(x, 3, 1), ud(y, 3, 2), ud(x, 25, 20), ud(n, 4, 3), ud(ref2, 27, 23)

® Potential use-defines: udyo(x, 3, 20), udyo (x, 25, 1), ud,,; (ref2, 27, 30)

Let setUD(V) be the set of use-defines in an execution-variant V. An execution-variant
V' satisfies a use-define ud(var, use location, define location) if the use-define is
included in the setUD(V). In other words, it satisfies the following condition:

ud(var, use_location, define_location) & setUD(V) 3)

Let define_set(var, use_location) be the set of possible define operations for the variable

var at the location use location. Below are some examples of define sets in Figure 33:
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define set(x,3)={1:x=-3,20:x=10 }
define set(y,3)={2:y=2}

define set(n4)={3:n=x+y}
define set(x,22)={1:x=-3,20:x=10}

If a define set contains only one define operation from the same thread, then we can

guarantee that its values will not be affected by different interleavings.

Thread T1 Thread T2 Thread T3

1: x = -3 20: x =10 |30: ref2 = refl |
2: y =2 21:

3:n=x+y 22: lock b

4: if (n<0) | 23: ref2 = new Object()

5: 24: unlock b Note: lock

, R lock b «— '0C
6: } else { 25: print x . variable
7: lock a 26: lock b ref2.credit

.
8: refl.credit = 10 27: ref2.credit = 7 / \
9: unlock a 28: unlock b .
reference variable

10: } variable

Figure 32. An example of a concurrent program

ud(x, 3,1) ;- 1: x = -3 -
et 2 =2
3: n=x +y
ud(y, 3,2) 4: if (n<0) {
5:
ud

20:

21:
22:
""""""" 23:
24:

.- 25:
26:

10 -,
Lud(x, 25, 20)

ref2 = new Object ()

U o pot

ud__(ref2, 27, 30)

[n}
(0]
h
Ny
Q
[n}
(0]
o,
N
o
Il
~J

30: ref2 = refl

Figure 33. An example of execution traces and some of its use-defines
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Chapter 4. Setting for the Proposed Method

4.1 Requirements

Testing and debugging of concurrent programs seem to be a matured area at
least from a theoretical point of view. A large body of research exists for
methodologies of testing and debugging of concurrent programs. In particular,
many methods are proposed to reduce the necessary test cases of concurrent
programs. However their applications to real systems are still limited to special
cases. Practices of testing and debugging remain in many cases ad-hoc and

rudimentary.

The purpose of this research is to develop a practical debugging
methodology for normal concurrent programs. The presumed debugging situation is,
as suggested in Introduction, where all logical errors have been resolved or where
target systems have already been deployed and in service, and then errors have been
found. Those errors are most likely caused by a different timing. It is well known
that debugging such errors is extremely difficult. We set the requirements for the
methodology to solve this situation as follows:

1)  Exhaustiveness: We mandate path coverage and exhaustive path
exploration. This is necessary to assure the reliability of this debugging.

2)  Minimum interleavings: The number of necessary test cases is primarily
determined by interleavings. This number should be kept minimum.

3)  Practicality: For real systems, applications must be efficient. To meet this
requirement, debugging should be dynamic. As discussed so far, static
debugging methods suffer false positive error detections and do not fit well
to debugging situations where some errors have been found and that those
errors are the target of detecting their true causes.

4)  Effectiveness: The errors found are presumably extremely difficult ones in
finding their true causes. In order to find their true causes, tracing is one of
the most effective approaches. Our method assumes the effective use of

tracing.
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5)  Efficient tracing: Tracing is an effective debugging approach, but it incurs
a large overhead. There must exist some means to mitigate this overhead.
One of the useful and old techniques is a checkpoint/restart scheme that
restarts the execution of the program from a recorded checkpoint instead of
the program’s initial start point so that the repeated executions of the same
initial portion of the program are avoided. The usefulness of this
checkpoint/restart scheme has also been recognized for debugging
concurrent programs. The “prefix-based testing” [Hwang95] is one of such
approaches.

6) Efficient race detection and deadlock detection: The amount of work for
race detection and deadlock detection processing should be minimized.

Previous race detection results should be utilized whenever possible.

These requirements cover not only the theoretical foundations but also

practical considerations.
4.2 Approach

There exist several research results which the requirements stated in section
4.1 Requirements can be developed based on or extended from. One of the older
ones is Reachability Testing Method of a concurrent program, which uses a partial
order reduction technique and tracing [Hwang95]. In a similar line of development,
we can find research results such as Dynamic Partial-Order Reduction by Flanagan,
C. and Godefroid, P. which uses backtracking to identify program execution points
where alternative paths in the state space need to be explored [Flanagan05], and
Algorithmic Debugging by Caballero, R., et al. which is discussed for sequential

programs but is claimed to be extended to parallel programs easily [Caballero07].

This section explains an existing method for generating test cases for
concurrent programs using the reachability testing method [Hwang95] [Carver04]
[Lei06]. This is a dynamic method that uses partial order reduction for reducing test
cases. The reachability testing method in [Hwang95] performs an efficient exploration
of different sequences of read/write operations which affect values of shared variables
as test cases. Only read and write operations are modeled. Using the idea behind the

partial order reduction, it groups and ignores different interleavings that do not affect
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any values of shared variables. It uses a dependency relation between two read/write
operations to determine whether the order of those operations affect the value of a
shared variable. Two operations are dependent if the following conditions are satistied:
® The two operations are concurrent, i.e. from different threads.

® The two operations are accessing the same variable.

® One of the two operations is a write operation to the variable.

Any two operations that do not satisfy the conditions above are called as independent.
Figure 34 shows the comparison between the exhaustive method and the reachability
testing method. It gives the basic idea for reducing the number of different interleavings

for independent operations.

Dependent operations: Exhaustive Reachability testing

- different threads
- common variable
- one of them is write

v

write x write x

Same

. write x write x
Not ignore No reduction
Ex.
T1: read x T2: write x T1: read x T2: write x
Thread T1 Thread T2 T2: write x T1: reag X T2: write x T1: read x
read x writex  TTTTTTeeeee- B ¥ e

Independent operations:

* read x
Different
Ignore J
Ex. Reduction %Y
Thread T1 Thread T2  — L =mmmmmmeeees > time
T1: read x T2:ready T1:read x !
read x read y T2:ready T1: read x T2:ready M

Figure 34. Comparison between the exhaustive method and reachability testing method

This reachability testing uses the previous execution trace to derive different
read/write sequences that affect values of shared variables. Assume that S is a read/write
sequence from an execution of a concurrent program. The concept of reachability
testing is defined as follows:

1. Use S to derive other read/write sequences, called ‘“execution-variants”, that
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produce different values of shared variables.
Perform deterministic testing based on the result from step 1 using tracing.
3. For each new execution-variant from step 2, repeat step 1 and 2 until no more

execution-variants are found.

This general approach is common in many methods that use a partial order
reduction and trace. Test cases are generated systematically using a variant graph
where an execution variant is a different execution whose state is different from the
previous ones. The reachability testing method performs an efficient exploration of
execution-variants by grouping and ignoring different interleavings that do not affect
values of shared variables, using the idea of partial order reduction. Test cases are
generated systematically using a variant graph. A variant graph derives different
read/write sequences from the previous execution trace. A different read/write
sequence that affects the values of shared variables is called an execution-variant.
Execution-variants are used as test cases in reachability testing. G. H. Hwang, K. C.
Tai, and T. L. Huang introduced an algorithm to create a variant graph from an
execution trace of a concurrent program [Hwang95]. The general steps for creating a

variant graph are as follows:

1) Starting from the initial node, set all the indices and the versions to zero.

2) Create a child node for read and write operation by changing one index from a
thread. Increase the version if the operation is write.

3) If the version for each operation do not conform with the initial trace, then label
the child node as “variant” (V). Label the parent node of the variant node as
“check point” (CP).

4) Continue until the indices in all the threads are explored. Do not explore/create
a child node for the node which is labeled as a variant (V), this will be done

later by executing it as a test case.

Algorithm 2 shows how to create a variant graph from an execution trace of a
concurrent program.

Algorithm 2. Creating a variant graph

Definitions:

- 8(@) is a read/write sequence for thread 7j.
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- 8@, i) 1s the i-th operation in the sequence of thread 7j.

Each node N in the execution-variant graph contains the following two vectors:

- index vector: (idy, id>, ... , id,), where p is the number of threads and id; indicates
the i-th operations in a thread 7j when node N is generated. The index vector is
initialized to zero and increased by one after each read or write operation in the thread
1j.

- version vector: (ver;, vers, ..., ver,), where q is the number of shared variables and
very 1s the version number of variable Vk when node N is generated. The version for
variable Vk is initialized to zero and increased by one after each write operation to the
variable Vk.

Input: read/write sequence.

Output: variant graph.

Step 1. Initialize the variant graph.

Create an initial node and label it as “unmarked”. Set its index vector to (0,0, ...,
0) and version vector to (0,0, ... , 0).
Step 2. Derive different read/write sequences.
2.1 Select an “unmarked” node, say N.
For each j, 1 <j < p, where p is the number of threads
If id; < the length of S(j),
Then construct a child node N’ of N according to steps 2.2 — 2.5.
2.2 Set the index vector of N’ to that of N except that the j-th element is id; + 1.
2.3 Set the version vector of N’ to that of V.
2.4 Let var, be a shared variable in the operation S(j, id; +1) and very is the
version number of variable vary in S(j, idj +1).
2.51f8(G, idj +1) is a write operation to shared variable vary,
Then increase the ver;,” of N’ by 1.
Step 3. Identify an execution-variant.
3.1 Let ver;’ be the k-th element of the version vector of N'.
3.2 If very \=very’
Then label N’ as “marked” and execution-variant (V).
Else If the variant graph already contains a node with the same index and
version vector as N'.
Then label N’ as “marked”
Else label N’ as “unmarked”

Step 4. Repeat step 2 until all nodes in it are labeled “marked”. Do not create child
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nodes for the nodes which are labeled as execution-variant (7), as this will be done later

by executing them as test cases.

Note that we first need to identify all shared variables from source code before
creating a variant graph. If we do not consider all shared variables, then later we might
need to reconstruct the variant graph when other variables are found to be shared. It is
not enough just to identify shared variables from the execution trace because maybe not
all shared variables can be detected from a particular execution trace. Unfortunately, it
is not always possible to identify precisely all shared variables from source code: in the
case that threads are dynamically created according to input data, for example, it is
necessary to consider all potential shared variables. If some variables are not actually
shared, they will lead to redundant nodes in a variant graph, but they will not produce

redundancy in test cases because they will not lead to any new execution-variants.

Figure 35 is an example of a variant graph constructed using Algorithm 2 for
the execution trace in section 3.6 Model for Concurrent Program Execution Traces.
Lined boxes in a variant graph represent possible read/write sequences where they
access the same values of the shared variables as in the previous execution. A dotted
box in a variant graph represents an execution-variant (¥) in which some read or write
operations access values of shared variables different from the previous execution as a
result of a different interleaving. There are seven execution-variants V1, V2, V3, V4, V35,
V6, and V7 in Figure 35. Execution variants are identified as candidate test cases in the
reachability testing method. Test cases can be started from the corresponding check

point (cp) to avoid executing unnecessary interleavings.

Figure 35 shows two equivalent read/write sequences surrounded by dotted
lines. They are equivalent in terms of the read/write sequence, in the sense that every
operation will read or write the same versions of shared variables. The reachability
testing method [Hwang95] performs reduction by considering only one of them as an

execution-variant
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Figure 35. An Example of a variant graph from an execution trace

The reachability testing is efficient for exploring different possible value of
shared variables caused by different interleavings, but has some redundancies for
the purpose of checking race conditions:

® (Generate test cases with the same branch coverage
» The current development of variant graphs are not necessarily complete
because they focus mostly on read and write operations. Branch operations
and interrupts are not well considered, so it often produces test cases that
result the same path coverage which do not change the access-manner to
shared variables.
® (Generate infeasible test cases
» The current development does not consider lock sequences. Enforcing them
in deterministic replay environment might cause suspension, which will not
be allowed in the real situation.
® (enerate infinite test cases

» In the case of infinite loop, it might generate infinite test cases because the
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current model considers the index of operation. A trivial solution would be
just to limit the length of the execution trace. If the iteration of the loop
does not change the access-manner to shared variables it is not necessary to

test all the loop iterations for checking race conditions.

Our method extends the idea of partial order reduction to a dynamic testing
or debugging by ignoring the order of irrelevant interleavings that do not affect
branch outcome. Furthermore, we improve the reduction precision and increase the
number of reductions by exploiting the trace information. The trace information can
give more precise information concerning branching. The existing methods can
identify all interleavings which may affect shared variables whereas our method
identifies only those interleavings which affect branch outcomes. Not all
interleavings which may affect shared variables necessarily affect branch outcomes,
thus redundant interleavings are included in these interleavings. Those redundant

ones are further reduced in our method.

In this research, we exploit several new ideas to further improve the
debugging effectiveness and efficiency. First, we further reduce the number of
interleavings considering the fact that not all shared variables affect the truth values
of branches. We improve the reduction precision and increase the number of
reductions by exploiting the trace information. The trace information can give more
precise information concerning branching. Many of existing methods identify all
interleavings that may affect shared variables whereas our method identifies only
those interleavings which affect branch outcomes. Not all interleavings which may
affect shared variables necessarily affect branch outcomes, thus redundant
interleavings are included in these interleavings. Those redundant ones are further

reduced in our method.

We can also reduce the amount of work required to detect race conditions
and deadlock. Assuming that the target concurrent program adopts a locking
mechanism, it is known that the knowledge of the order of the currently effective
locking is sufficient to detect race conditions and deadlocks involving those
variables that are under the locking mechanism. We define the order of the
currently effective locking as the lock structure. Then we can say that any execution

sequence having the same lock structure belongs to the same equivalent group. If
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that structure has already been tested against race conditions and deadlocks, it is not
necessary to repeat those tests again. Furthermore, any part of executions that

maintain the same lock structure can be reduced to the same one.

Regarding the interrupt timing, it is not fully considered in the model of the
variant graph proposed by reachability testing [Hwang95]. If we assume interrupt
can happen anytime and we create a new node for all the interrupt timings, then the
graph might become unlimited. In order to support checking interrupt timings, we
propose to change interrupt as a thread as described in section 6, so that the existing

model for variant graph can be still be applied.

66



Chapter 5. Proposed Method

This chapter proposes new methods to effectively reproduce race conditions
by reducing the followings:
® Number of test cases:
» Avoid testing redundant interleavings (section 5.1)
» Avoid testing infeasible interleavings (section 5.2)
® Memory required for generating test cases (section 5.3).

® Effort involved in checking race conditions (section 5.4).
5.1 Avoid Testing Redundant Interleavings

Figure 36 shows the idea of proposed method for reducing test cases. It

avoids redundant interleavings by grouping.
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Existing reachability testing: 3 test cases

Thread T1 Thread T2
1: read x 10: write
1o

write y read y

i P P V3]
read x read x write y
read write read x
branch Y Y
write y read y read y

Proposed method: 2 test cases

Step 2: Grouping

Step 1: Identify data flow
affecting a branch.

write y

Thread T1 Thread T2
;: :z:g X 10: write y read y write y read x
: y

/‘(‘Use-defipe” V1 V3
Group1 Group 2 /
cen read ybefore  ready afte
path 3 write y write y
path 1 path 2 path 1 || path 3 path 2 || path 3

V2 and V3 are “race-equivalent”.

Figure 36. Reducing test cases by avoiding redundant interleavings

5.1.1 Creating Different Race-Equivalent Groups

This subsection explains our proposed method for the reduction of the

number of different interleavings required to detect race conditions. The number of

different interleavings is reduced by trying to create only interleavings that lead to a

different race-equivalent group by:

® Changing a control flow by changing a branch outcome (see Figure 39).
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® Changing a lock sequence (see Figure 40). Similarly we can also change the
assignment to a reference variable to create a different race-equivalent group
(will be explained in subsection 5.3.6 Generating Test Cases to Check

Consistent Locking for Access through Reference Variables).

There can be a chain of reactions from a change of interleaving and/or
interrupt timing that can cause a different race-equivalent group (see Figure 37).
The set of different interleavings and interrupt timings which disconnect this chain

constitutes a race-equivalent group.

Change of (a) A change of interleaving. Change of lock
branch out?f)_rfl_e_ | ass1gnment
y g (b) A change of shaied variables’ value. (b) A change in loik variable’s value. ; \\"
v
(c) A change of a C(‘)'nditional statement. (c) A change of 1lock assignment.
(d) A change of‘l':)ranch outcome. (d) A change <;f lock usage.
| X
(e) A change of an execution path. (e) A change of lock sequences.

I |
|

(f) A new trace.

A

(g) A possible change of an “access-manner”.

l

(h) A possible different “race-equivalent” group.

Figure 37. Chain of reactions that can cause a different race-equivalent group

5.1.2 Creating a Different Race-Equivalent Group by Changing a Control
Flow

We create different race-equivalent groups efficiently by considering only
different execution paths. The basic idea in this research is that, for exploring

possible different execution paths, it is sufficient to create and test only those
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interleavings that might change the control flow. Figure 38 shows an example how

interleavings and a branch can affect the occurrence of a race condition.

Throughout the following explanation, we will discuss only change of control flow

through branches, but the same principle can also be applied for loops.

1. Interleaving :::>

2. Data
dependency

3. Control 4. Race
flow condition

Order of - Value of - Branch Sequence of
read/write shared outcomes lock/unlock
operations variables . and
- Execution djwrite t
- Conditional paths reha v;n eto
statements share
variables
Execution 1 Execution 2
Example:
Thread 1  Thread 2 Thread 1 Thread 2
1. Interleavings | N\ __ R ' X =1 x=0
Jx=0 X =1
Order of Change X
read/write v | if (x=0
operations 2. Data ) ) (x=0) if (x=0)
dependency o true false
| writey lock
- Value of shared variables Change Race ocka
- Conditional statements i write
3. Control flow condition y
*‘ unlock a
Propose: - Branch outcomes Change N
Identify a set of - Execution paths NC @ ——m NU > Norace
y condition

use-defines which
affect a branch
outcome.

4. Race
Sequence of: | conditions

- lock/unlock

- access to shared variables

Figure 38. Interleavings and a branch affecting the occurrence of a race condition

Different execution-variants might lead to the same branch outcome for a

particular branch b. Hence, in exploring different concurrent execution paths caused

by the branch b, we can reduce test cases by grouping those execution-variants and

testing only one member from each group. We name such a group a “branch-affect”

group. A branch-affect group for a branch b contains a set of execution variants that
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would cause the same branch outcome for the branch b, which is either frue or
false.

The idea for grouping the execution-variants comes from the fact that if two
execution-variants have the same data flow affecting a branch b, then the branch b will
have the same branch outcome in those tow execution-variants. Formally we define as
follows:
® Let BranchRelUD(b, V) be the set of use-defines affecting the conditional statement

of a branch b in an execution-variant V.
® If BranchRelUD(b, V1) = BranchRelUD(b, V2), then the branch b will have the
some branch outcome in execution-variant V'/ and V2.

Thus they can be grouped into the same branch-affect group. Two or more
execution-variants in the same branch-affect group for a branch b are redundant with
respect to exploring the different concurrent execution paths caused by the branch b. In
Figure 39, the execution-variant 2 and V3 are in the same branch-affect group and they

all cause the branch outcome to become false.
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Thread Thread

pooTh 2
,II’ CS1 ‘\“ C SA E
ST F *
\ Cs, cs;, path 3
Branch is True | Branch is False
CS,is executed. N v CS;is executed.
path 1 path 2
Group 1 : path 1 || path 3 Group 2 : path 2 || path 3
Set of access-manners: Set of access-manners:
{ Cs, ' CS, } { CS, ' CS, }
CS, cs,r
’ ‘ cS,, /8, Cs,
' : : L iocsy
Cs, ; CSyi /
.. CS, VA CS,
S “\/2 Tl VA

Figure 39. Examples of grouping by changing a branch outcome
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Group 1:
Source code
M1 and M2 are protected by different locks.

T T2 T3 Set of access-manners:
a = new lock() b = new lock() b=a { E lock@123 M2/ I 1 lock@456 [I:II }
lock a lock b
write x write x
unlock a unlock b |
- v “‘ : \ ]
An example of execution trace ﬂ] / [I]
1 T2 137 h ' N g
a = lock@123
= lock@456 -~ Group 2:
|o;;|£]55k@423 M1 and M2 are protected by the same lock.
M wiite x L Set of access-manners:

.. B unlock lock@123 {WE lock@123 Mzg lock@123 ”]}

7 lock lock@456
Z
R M2 é write x
é unlock lock@456

[[I] b= Io¢k@123

Figure 40. Creating a different race-equivalent group by changing a lock sequence

5.1.2.1 Determining the Set of Operations that Affect Branch Outcomes

In order to identify branch-affect groups, we first need to determine the set of
operations that affect the conditional value of a particular branch . We propose a data
dependency analysis method using use-define (see section 3.13 Use-Define) to identify
operations that affect the conditional statement of the branch b from an execution trace.
This method analyzes data dependency among read/write operations to shared variables
related to the conditional statement of the branch 5. Based on this analysis, we can

determine which operations are affecting the conditional statement.

The set of use-defines can be obtained by analyzing the execution trace or
source code. Since the method proposed in this dissertation iteratively generates
different interleavings based on previous execution traces, it is sufficient to use the

use-define set obtained only from the execution trace. The use-define set obtained by
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the static analysis of source code may contain redundant elements. Information from
the source code can be used as a supplement if execution traces do not contain
complete information for obtaining the use-define set. In this dissertation, we assume
that the execution trace contains enough information to obtain the set of use-defines
consisting of triplets of variable names, read or write operations, and locations. Figure

42 shows an example of a use-define set for the program example in Figure 41.

Thread T1 Thread T1 Thread T2 Thread T1 Thread T2
l: n=x+y; . n = x + rr X
2: if (n<0) { |1 L | 1: rzzg .y 10: write x
3: Do 1: write n
4: } else { T F
5: Coe
7: print y;

11: write y
|
L a
|3: .

F
HE. .| | 5: . .

Thread T2 | | ] [5: . ..

o

(@) (b) (c)

Figure 41. (a) An example of a concurrent program (b) Control flow graph (c¢) Control
flow graph for read and write operations

Thread T1 Extension of use-define Thread T2
for concurrent programs

ud1=(x,_ 1, 10)

_/ use define
*|[1:n=x+y ud1|s‘, * | 10: x = -10

affecting
ud2 ud4 =

ud3 =(y, 1, 11)

Conventional use- ud3 is -~ use define (x, 12,]10)
define for sequential v *‘"éffééfiﬁg use define
programs ‘@ ud2=(n, 2, 1) ,q42 ‘@

use define 11: y = 2

branchb1,1|2: it (n<0) | *

e ey

: ud5 =(y, 7, 1)
IE use define

Figure 42. Examples of use-defines for the concurrent program in Figure 41

To detect a conventional use-define, we identify the variable in a thread’s

execution trace and check if it forms a conventional use-define. To detect an extended
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use-define, we first need to identify shared variables from the execution trace. A
variable is shared if it is accessed by more than one thread. In the example of Figure 42,
we see that the variable x and y are shared variables because they were accessed by
more than one thread. For each access to a shared variable in a thread, we check if it
forms an extended use-define with another thread. In the example of Figure 42, the read
operation on shared variable x in line 1 and the write operation on shared variable x in
line 10 form an extended use-define. There are several examples of use-define in Figure
42, as follows:

® Conventional use-define: ud2 = (n, 2, 1), ud4 = (x, 12, 10)

® Extended use-define for concurrent programs: ud/l = (x, 1, 10), ud3 = (x, 1, 11), ud5 =

o 7,11)

Since a wait-notify mechanism can change data flow, it might cause some
infeasible use-defines. This situation could happen, for example, when there is a “wait”
command without the corresponding “notify” command. In this example, the use or
define after the wait command will not be executed, so the use-define becomes
infeasible. C. Yang, A.L. Souter, and L. L. Pollock [Yang98] [Yang97] describe some
complications that synchronization causes during data flow analysis. Some infeasible
use-defines might be included in a use-define set, but they will not be executed and will
not be used for grouping execution-variants. The infeasible use-define pairs will cause
redundancy in the use-define set, but they will not cause redundancy in test case

generation.

Data Dependency Relation with Use-define

For identifying operations which are affecting a control flow, we define a
dependency relation named as use-defines. A use-define ud? depends on another
use-define ud1, if the definition for the variable in use-define ud?2 is using the variable
in the use-define ud!. Formally we define as follows:

Let: udl = (varl, usel location, defl location)

ud2 = (var2, use2 location, def2 location)

The ud2 depends on the ud! iff the following two conditions are satisfied:
def2 location = usel location

This also means that variable var2 depends on variable varl.
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An example of a dependency relation between use-defines is shown in Figure
42. Since the def location of use-define ud? is the same as the use location of
use-define udl, then use-define ud2 depends on use-define ud/. This means that there is
data flow from the variable x to the variable n, because the definition of variable » in
line 1 uses the variable x in line 10. In a similar way, the use-define ud2 depends on the
use-define ud3.

Algorithm 3 shows how to find the members of BranchRelUD(b) using the dependency
relation of use-define.

Algorithm 3. Finding a set of use-defines affecting branch outcomes

Input:
- An execution variant V.
- A branch b.
Output:
- BranchRelUD(b, V): a set of use-defines affecting branch outcomes of branch b.
Step 1. Initialization.
1.1 SetUD: set of use-defines from the execution variant V.
1.2 BranchRelUD(b, V): use-defines from SetUD where the variables are used in
the conditional statement of the branch b.
Step 2. Find all related use-defines.
2.1 For each use-define ud in SetUD, where
ud 1s not included in BranchRelUD(b, V), and
ud does not contain any operations from the same thread as the branch b
after the execution of the branch b.
2.1.1 If any use-defines in BranchRelUD(b) depend on ud.
Then
Add ud to BranchRelUD(b, V).
Repeat Step 2.1 until Step 2.1.1 no longer adding any use-defines
to BranchRelUD(b, V).
2.2 Remove use-defines for local variables from BranchRelUD(b, V).
Terminate this algorithm.

When Algorithm 3 no longer finds use-defines that satisfy the conditions in
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step 2.1.1, it means that all use-defines related to the conditional statement of the branch
b have been included in BranchRelUD(b, V). When we consider different effects caused
by interleavings, we need to consider only different interleavings of read and write
operations on shared variables. Hence, we can consider only the set of use-defines
which is affecting the shared variables (Step 2.2). The example in Table 2 illustrates
how Algorithm 3 finds BranchRelUD(b, ;) for the program example in Figure 42.

Table 2. An example of finding a set of operations that is affecting branch outcomes
using Algorithm 3

Step Description

1.1 SetUD = {(x,1,10), (n,2,1), (,1,11), (x,12,10), (,7,11)}.
1.2 BranchRelUD(b;,, V) ={(n,2,1)}.
2.1.1  The use-define (n, 2, 1) depends on the use-define (x, 1, 10) and (y, 1, 11).
BranchRelUD(b; 1, V) = { (n,2,1), (x,1,10), (,1,11)}.
Go to step 2.1.
2.1.1  No more use-defines that satisfy the conditions in step 2.1.1.
2.2 Remove use-defines for local variables.
BranchRelUD(b; ;, V) = { (x,1,10), (»,1,11) }.
Algorithm terminates.

Grouping Execution-Variants Which Causing the Same Branch Outcome

We define Algorithm 4 for creating branch-affect groups for a branch.
Execution-variants in the same branch-affect group for a branch b will have the same

branch outcome for the branch 5.

Algorithm 4. Creating a set of branch-affect groups for a branch

Input: Execution-variants from a variant graph.
Output: A set of branch-affect groups G(b) for a branch b.
G(b) = {gl(b), g2(b), g3(b), ... }, where gl(b), g2(b), g3(b) are the first, second, and
third branch-affect groups for the branch b in the execution trace.
Step 1. Find BranchRelUD(b) using Algorithm 3.
Step 2. For each execution-variant V in the variant graph.
2.1 Take a sequence of operations S within the execution-variant ¥, where S starts

from the root node of execution variant V' and ends at the operation within the

conditional statement of branch b.
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2.2 Check which of the BranchRelUD(b) members are in the sequence S using the
following rules:
Assume  ud(var, wuse location, def location) 1is a member of
BranchRelUD(b).
The def location is executed before the use location in sequence S
No other definition to the variable var in between def location and
use_location within the sequence S.
2.3 If the use-define members from step 2.2 are already exist in the current
branch-affect group.
Then Add the execution variant 7 to the corresponding existing
branch-affect group.
Else Create a new branch-affect group into G(b) and add the execution

variant V as its member.

As shown in the example in Figure 44, execution-variants V'3 and V4 can be
grouped together into the same branch-affect group with respect to the branch b;
because they have the same set of use-defines affecting the branch b. A similar situation
also applies for the execution-variants V6 and V7, as shown in Figure 44. Table 3 shows

the complete groups for the examples in Figure 44.
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Figure 43. An example of a variant graph from an execution trace
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0,0

0.0 Note:
T1:1 reyw T1 T2 [+ index
1,0 X Y |« version
0,1
T1:1ready 9.0 T2:10 write x 1,0
T1:1 X T2:11 write
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________ : ,‘ ----4Z--\T1:1 read x
| . 1,3
, | 12,3 ! Group 4 '
1.1
false | V7
\ true
y false ud(y, 1, 11)
/@ ud(x, 1, 10)

Figure 44. Examples of branch-affect groups for the variant graph in Figure 43

Table 3. An example of a branch-affect table

Members of
Branch branch-affect groups Set of use-defines from BranchRelUD(b; ;)
b;; glb; )=V, V2y {0}

g2(by,))=1{V3, V4}  {ud(y,1,11)}
g3(br)={V5} { ud(x,1,10) §
g4(br.)={V6,V7}  {ud(x,1,10), ud(y,1,11) }

As mentioned in section 3.10 Race-Equivalent, two different concurrent
execution paths with the same set of execution paths PATHS will be race-equivalent. To
explore different race-equivalent groups, it is necessary to find different sets of
execution paths PATHS. Since the execution path of a thread is affected by branches, we
introduce a “branch-condition” table to measure the progress of a test. A
“branch-condition” table contains a list of all possible sets of execution paths PATHS.
Each row in a “branch-combination” table represents the condition values of
if-statements and the number of iterations for loops in a concurrent execution path, so
each row represents a possible set of execution paths PATHS. Each different loop
iteration will lead to a different execution path, so we need to consider all loop iterations.

However, if loop iterations have the same set of access-manners, then there is no need to

80



check all of the iterations because they will be race-equivalent. A “branch-combination”

table is an accumulation from each execution of a test case. It is possible that not all

branches can be identified from the execution trace of the first test case. If new branches

are found during the execution of the next test case, they should be added to the

“branch-combination” table. At the beginning, all rows are marked as “untested”, except

for the one corresponding to the execution in the first test case.

An example of a “branch-condition” table is shown in Figure 45. We need to

test all the feasible sets of execution paths PATHS; that is, in order to find the

inconsistent locking for read/write operations to shared variables that have caused errors,

all the rows in a “branch-combination” table need to be tested. Algorithm 5 is the

complete algorithm of the proposed method. This algorithm integrates the existing

reachability testing in step 1.2, with the deterministic testing and race detection in step

4,
“Branch-affect” group table “Branch-condition” table
Branch | Members of “branch- Qutcome(gk(b, )) Row Qutcomelr, b;) | “Execution-
affect” group gk(b, ) r b b variants”
11 21
b gl, )={V1,V2,V3} | True ' '
R ! 1 True True Vi
g2h, )={Vv5} Untested
! AN 2 True False Untested
g3, ) ={v4} Untested
. o ' eI vZvay [T 3 False | True Untested
g = , V2, rue
o al 4 False False Untested
g2(b, ) ={V3,V5} Untested

Choose V5 for the next test case.

Figure 45. Branch-affect group table and branch-condition table for the first test case

Algorithm 5. Complete algorithm for generating test cases and checking race conditions

Definitions:

- Outcome(gk(b;;)) is the truth value for an if-statement or the number of iterations for

a loop of a branch-affect group gk(b; )

- Outcome(r, b;;) 1s the truth value or the number of iterations of the branch b;; for

row 7 in a “branch-condition” table.

Input: a concurrent program and its input.

Output: test cases and race-detection results.
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Step 1. Initialization:
1.1. Re-execute the concurrent program taking trace using the same input as in the
execution in which the error occurred.
1.2. Create the corresponding variant graph from the execution trace using
Algorithm 2.
1.3. Create a “branch-condition” table based on the execution trace from step 1.1.

1.4. For each branch of the variant graph in step 1.3, classify each execution-variant
into branch-affect groups using Algorithm 4.

Step 2. Conditions for termination.

2.1 Terminate this algorithm if at least one of the following conditions is satisfied:

- Condition 1: all rows in the “branch-condition” table have been tested,

- Condition 2: all branch-affect groups have been marked as “tested”. Note that the
algorithm terminates with the second condition if there exists any infeasible set of
concurrent execution paths for the given input.

Step 3. Select the next test cases TestCases:

3.1 TestCases = { O }

3.2 For each untested row 7 in “branch-condition” table

3.2.1 Candidates = { @ }, firstGroup = true.
3.2.2 For each branch b;;.
If (firstGroup = = true).
Then Candidates = all members of branch-affect
groups of branch b;; where Outcome(gk(b;;)) == Outcome(r, b;;)
firstGroup = false
Else Candidates = Candidates (1 all members of the
branch-affect groups of the branch b, ; where Outcome(gk(b;;)) == Outcome(r, b;))
3.2.3 Select one execution-variant from Candidates and add it to TestCases.
3.2.4 If step 3.2.3 does not produce any test cases.
Then choose a member from an untested branch-affect group and add it to
the TestCases.
Step 4. Test cases execution.
4.1 Execute the execution-variants from the 7estCases using deterministic testing
with tracing.
4.2 Check the execution trace from step 4.1 using an existing race detector and
report any errors.

4.3 Derive new execution-variants from the execution trace in step 4.1, update the
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variant graph and “branch-condition” table.
4.4 Classify the new execution-variants into branch-affect groups.
Step 5. Repeat from step 2.

Race-equivalent means two concurrent execution paths of a concurrent program have
the same consistent locking for accessing shared variables, and also share the same
proper/improper  lock-unlock sequences. When a variant graph produces
execution-variants, our algorithm groups them into race-equivalent groups. Our method

achieves test case reduction by testing only one member of each race-equivalent group.

A step-by—step example of Algorithm 5 is shown in Table 4 and Table 5. We
assume that there is a concurrent program with two threads 7/ and 72. Thread 7/ has
one branch b;; and thread 72 has one branch b, ;. The branches b;; and b,; are
if-statements The steps in Table 4 are deduced from the analysis shown in Figure 45.

The steps in Table 5 are deduced from the analysis shown in Figure 46.

Table 4. Step-by-step example of Algorithm 5

Step Description

1 Let us assume that step 1 results a variant graph with five execution-variants. The
execution for the first test case is VI which makes b; ; and b, ; True. Assume that the
branch-affect group has been calculated using Algorithm 4 and the
“branch-condition” table is as exemplified in Figure 45.

2 Not all rows in the branch-condition table have been tested, so proceed to Step 3.

3 Step 3.2.3 does not produce any test cases.

3.2.4 Since Step 3.2.3 does not find any test cases, V5 is chosen as a test case from
untested branch affect group g2(b; ;).

4.1 Execute V5 using deterministic testing and obtain execution trace.

43 When we derive the execution trace from step 4.1, we find the new
execution-variant V6

4.4 The new execution-variant V6 is classified into g2(b, ;) and g1(b, ;), see Figure 46.

5 Repeat from step 2
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Table 5. Step-by-step example of Algorithm 4 (continued)

S;e Description
2 Not all rows in the branch-condition table have been tested, so proceed to Step 3.
3 TestCases = { @ }, for each untested row r in the branch-condition table

The 2™ row: Candidates = {V1, V2, V3 } N {V3, V5} = V3.

The 3™ row: Candidates = {V5, V6} N {V1, V2, V4, V6} = V6.

The 4" row: Candidates = {V5, V6} N {V3, V5} = V5.

TestCases = { V3, V6, V5}

No need to do step 4 because there are some test cases from step 3.
5.1  Execute the members of TestCases.
5.2 No new execution-variants can be derived from the trace in step 5.1.

2 All rows in the “branch-condition” table have been tested, so the algorithm
terminates.
“Branch-affect” group table “Branch-condition” table
Branch Mempe'r's of “branch-affect’” | Outcome(gk Row | Outcome(r,b;) | “Execution-
group ghib, ) (b,) r b b variants”
b, , g, ) ={V1, V2, V3} | True i 2
' 2:(b ') (,Vsu_ T8 } o a1 True True V1
g = V6 N alse
AN P update 2 True False T V3
g3y, ) ={V4}, ; Untested table
" 1(b.:‘) Vi V2 va V6} I 3 False_ | True_..-LWW6
3={V1, V2, V4 [ VB}: | True. .o e
A et AT A R v 4 |False |False |V5
g2(b,,)={V3,/¥5} ;  |False —Z

Figure 46. Branch-affect group table and branch-condition table when Algorithm 5
terminates

There is no need to test the branch-affect group g3(b; ;) because all the rows in
the “branch-condition” table in Figure 46 have been completed. Our algorithm requires

only the testing of four execution-variants from the total of six execution-variants.

5.2 Avoid Testing Infeasible Interleavings

Generating different interleavings for test cases must consider the existence of
locks in order to avoid deadlock. Enforcing infeasible interleavings in deterministic
replay environment might cause suspension, which will not be allowed in the real

situation. Avoid generating infeasible test cases reduces the number of interleavings.

We extend the existing variant graph [Hwang95] by considering
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synchronization dependencies to eliminate redundancy. The extended model for variant

graphs utilizes trace information about lock-unlock and wait-notify operations. For

wait-notify, we use a simple model with the following assumptions:

® A thread that is waiting for a notification can receive a notification from any
threads.

® A notification is sent to all threads.

® In general, a notification will be accepted and processed by particular threads. In
this simple model, we assume only waiting threads will accept and process the

notification, otherwise the incoming notification will be lost.

We extend the node in a variant graph to include flags for “lock” and “wait” besides the
existing “index” and “version”. “Index” will also be incremented for lock-unlock and
wait-notify operations. In this way, different orders of wait-notify will be considered in
test case generation, thus avoiding false negatives. We add the following rules in the
extended variant graph for handling lock-unlock and wait-notify operations:
® [ ock-unlock:

- If the operation is “lock”, set the lock flag for the corresponding lock to 1.

- If the operation is “unlock”, reset the lock flag for the corresponding lock to 0.
©® Wait-notify:

- If the operation is “wait”, set the wait flag for the corresponding thread to 1.

- If the operation is “notify”, reset the wait flags for all threads to 0.

- Since in our model we assume a notification is sent to all thread, so the wait

flags are reset for all threads.

When expanding an extended variant graph, a node is infeasible if any one of
the following conditions holds:
® The wait flag for the corresponding thread is 1.
® The operation is lock and the lock flag is 1.

Figure 47 shows an extension of a variant graph which adds lock-unlock and
wait-notify operations for the concurrent program in Figure 41(a). The extended variant
graph in Figure 47 identifies some infeasible interleavings caused by the lock-unlock

and wait-notify operations.
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Figure 47. An example of the extension of a variant graph

5.3 Reduce Memory Required for Generating Test

Cases

This section explains how to reduce memory required for generating test

cases by proposing a concurrent dependency graph. Figure 48 illustrates the general

idea for reducing the required memory.
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Figure 48. General idea to reduce memory required for generating test cases

5.3.1 System Overview

This new method introduces ‘“concurrent dependency graphs”, instead of
variant graphs. Variant graphs are the major instruments for representing and
analyzing the execution development of a concurrent program in the reachability
testing method. Table 6 shows the comparison between the existing variant graph and

the proposed concurrent dependency graph.

Table 6. Comparison between the existing variant graph and the proposed concurrent
dependency graph

Existing: Froposed:
variant graph concurrent dependency graph
Purpose | Generate all different Generate only different
interleavings affecting values | interleavings affecting race
of shared variables. conditions.
Size Bigger Smaller

N

Usually only fewer different interleavings affecting race conditions.
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Figure 49 shows the overview of the proposed method to avoid redundancy

in test case generation. The whole procedure for testing is shown as follows:

Execute a | Proposed method | Concurrent
concurrent E dependency graphs !
program | Detect ; Create '
with tracing ¥ « branches if(n<0){

dependency

T T2 T3 / else { graphs
@}\> ™ T2 T3 4

Detect

concurrent- -], 5
pairs of oL
A access- | B 5
manners Traverse ;
dependency @
» Setof —— graphs l
. Detect use-defines  use-defines
E_ _________________________ Set of
""""""""""""""""" guidelines
Repeat if a new branch Execution traces
or a use-define is found Test using : ,
™ T2 T3 deterministic / non- | Generate
deterministic i '
™m T2 T3 testing with tracing ! test cases
< ™ T2 T3 < Test i
Detect any @ cases
race
conditions

Figure 49. Overview of the proposed method

1) Execute a concurrent program with a trace.

2) Detect branches, concurrent-pairs of access-manners, and a set of use-defines from
the execution trace.

3) Create concurrent dependency graphs from branches and concurrent-pairs of
access-manners. A concurrent dependency graph represents data flow relations
among operations that might affect race conditions.

4) Determine a set of “guidelines” for generating test cases. A “guideline” is a set of
use-defines obtained by traversing the concurrent dependency graphs from the
previous step (will be explained in subsection 5.3.3 Traversing a Concurrent
Dependency Graph).

5) Generate test cases based on the set of guidelines from step 4. The idea is to

generate only those test cases necessary to avoid redundancy and that do not affect
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race conditions.

6) Execute the test cases using an existing deterministic/non-deterministic testing
method by taking a trace.

7) Detect any race conditions using an existing race detector and report them to
programmers.

8) If a new branch or a new use-define is found in the execution trace in step 6, repeat
step 3 to step 8 for the new branch or the new use-define.

9) The test is completed if neither a new branch nor a new use-define is found in step
6.

5.3.2 Concurrent Dependency Graph

We newly propose a concurrent dependency graph for identifying data
dependencies of shared variables or reference variables. A concurrent dependency
graph is a directed graph representing use-define relations in an execution of a
concurrent program. A conventional dependency graph depends only on data flow,
but a concurrent dependency graph depends on data flow and interleavings. A
concurrent dependency graph contains all possible data dependencies for different
interleavings. Which data dependency actually occurs in a particular execution would
depend on the interleaving during the execution. Figure 50 shows an example of a

concurrent dependency graph.

root node —* | 4:if (x +y < 0) bn,

circle node

bn, |4:if(-3+y<0)| |4if(10+y<0)| bn,

use y use y

defy | 2:y=2 defy | 2:y=2
bny | 4:it3+2<0)| |[4if(10+2<0)| bn,

v 4

- leaf node -~

Figure 50. Components of a concurrent dependency graph
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Let us take an example of the shared variable x in the root node. There are two write
operations that can define its value depending on the interleavings. One is the write
operation in line 1 while the other one is in line 20. The components of a concurrent
dependency graph are as follows:
B Node:
® Box node (bn):
< Root node: represents one of the following:
- A conditional statement in a branch (see the example in Figure 50), or
- An access-manner (see the example in Figure 58).
A root node does not have an incoming edge.
< Non-root node: derived from a root node or another non-root box node.
Algorithm 6 explains how to derive non-root nodes. A non-root node has
one incoming and one outgoing edge.
<> Leaf node: a box node whose statement does not contain any variables.
When a variable is used without being defined, then there will be no
corresponding leaf node. A leaf node does not have an outgoing edge. In
Figure 5, nodes bny and bns are leaf nodes.
The maximum number of outgoing edges from a box node is 1.
® Circle node (cn): represents a selection of “define” operations for a variable.
B Edge:
® “Use-edge” (ue): represents a read operation to a variable. This edge goes out
from a box node and comes into a circle node. It is labeled by the program
statement that reads the variable.
® “Define-edge” (de): represents a write operation to a variable. This edge goes
out from a circle node and comes into a box node. It is labeled by the program
statement that writes to the variable.

Table 7 lists the definitions in a concurrent dependency graph.
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Table 7. Definitions in a concurrent dependency graph

. Examples
Definitions (refer to Figure 50)
variable(ue) : the variable used by a use edge ue. variable(ue;) = x
variable(de) : the variable defined by a define edge de. variable(de;) = x

variable(bn): the set of variables in the statement of a box node variable(bn;)= {x,y }
bn.

variable(cn): the set of variables in the statement of a circle node variable(cn;) = {x}

cn.
def edge(cn): the set of define edges for a circle node cn. def edge(cn;) = {de;, de,}
parent(cn): the parent node of a circle node cn. parent(cn;) = bn,

parent(cn) = { bn | where a use edge ue exists in which
ue is the outgoing edge of bn,
ue is the incoming edge of cn,

variable(bn) N variable(cn) # @ }

child(bn): the child node of bn. child(bn;) = cn,
child(bn) = { cn | where a use edge ue exists in which
ue is the outgoing edge of bn,
ue is the incoming edge of cn,
variable(bn) N variable(cn) # O }
Note: The child node of a box node is a circle node that
represents the “use” of a variable within the statement of the box
node. A box node can only have one circle node as its child

node.

child(cn): the set of child nodes of cn. child(cn;) = { bn,, bnz}
child(cn) = { bn | where for every bn, a define edge de exists in
which
de is an outgoing edge of cn,
de is an incoming edge of bn }
Note: A circle node c¢n does not have any child nodes if the

variable for cn is used without being defined.

A concurrent dependency graph is created by deriving child nodes starting from their
root node. Algorithm 6 explains how to derive child nodes from a box node, while

Figure 6 is an illustration of Algorithm 6.
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Algorithm 6. Deriving child nodes from a box node

Input : - Abox node bnj,, as a parent node.
- A set of use-defines and potential use-defines.
Output : - The input parent node is connected to a newly-created circle node cn as a
child node.
- The circle node cn is connected to newly-created box node(s) as its child
node(s).
Step 1. Create a circle node cn for the input box by,
1.1 Choose a variable var from the statement inside the bniyp,.
1.2 Create a new circle node cn and label it as var.
1.3 Create an outgoing use-edge ue from the bnj,p, to the circle node cn created
in step 1.2.
1.4 Label the use edge ue with the variable chosen in step 1.1.
Step 2. Create child nodes for the circle node cn.
2.1 Find define operations for variable(cn) from the set of use-defines.
2.2 For every define operation in step 2.1, create one define edge de.
2.2.1 For each define edge de in step 2.2, create a box node bn.
2.2.1.1 Make the de the incoming edge for the bn.
2.2.1.2 The box node bn contains the statement from the bn;y,,, with the

variable var substituted by the define statement in step 2.2.

Step 1.1, 1.2 Step 1.3, 1.4
bNinout | 4:if (x +y < 0) | == [4:if (x +y<0)

- x|
\

Step 2.2.1, 2.2.1.1

4:if (x +y < 0) Step 2.1, 2.2
Use x — 4:if(x+y<0)
def x ef x
1:x=-3 20: %= 10

4:if (-3+y<0) 4:if (10 +y < 0)

Figure 51. Step-by-step illustration for Algorithm 6

92




Algorithm 7 explains how to construct a concurrent dependency graph. It derives a

box node using Algorithm 6 until all the derived child nodes reach leaf nodes.

Algorithm 7. Constructing a concurrent dependency graph

Input:
- A root node.

Output: A concurrent dependency graph dg.

Step 1. Initialization: include the root node in the concurrent dependency graph dg.

Step 2. For every box node bn in dg that does not have an outgoing edge.

- A set of use-defines and potential use-defines from an execution trace.

2.1 Create child nodes bn using Algorithm 6.

Step 3. Repeat step 2 until no more new edges or new boxes are created.

Figure 52 shows a concurrent dependency graph constructed using Algorithm 7 for the

branch of the thread 7'/ in Figure 33.

|

4:if (x+y<0)

def x
1:.x=-3

use X

def x

10

4:if (-3+2<0)

4:if (10 + 2 < 0)

Optimization l Step 2.2

4: if (n<0) {
use n
Optimization

defn 3n=x+y Step 2.1

4:if(x+y<0)

use X /

def x def x

1:x=-3 20~=10
4:if (-3+y<0) 4:if (10 +y <0)

usey
defy | 2:y=2

| 4:if(-3+2<0)

usey
defy | 2:y=2

4:if (10 +2<0) | .

gut = { ud(y, 3, 2), ud(x, 3, 1), ud(n, 4, 3)}
gu2 = {ud(y, 3, 2), ud(x, 3, 20), ud(n, 4, 3)} *
(a)

\

v

-

4:if (x+y<0)
use X
def x def x
1:x=-3 200~%=10
4:if (-3+2<0) 4:if (10 +2<0)

gul={ud(x,3,1)}

~

N
1

gu2 = {ud(x, 3, 20)} “

(b)

Figure 52. (a) An example of a concurrent dependency graph. (b) and its optimized

version
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Only variables with a define set of more than one member within a concurrent
dependency graph can create different execution-variants. Therefore, any variables with
only one member in their define set are redundant with respect to exploring different
execution-variants. Algorithm 8 describes how to optimize a concurrent dependency
graph by removing such a redundancy. Figure 52(b) shows an example of an optimized

dependency graph.

Algorithm 8. Optimizing a concurrent dependency graph

Input: A concurrent dependency graph dg.
Output: An optimized concurrent dependency graph dg.
Step 1. For each circle node cn in the concurrent dependency graph dg.
1.1 If cn has only one outgoing edge.
Then

1.1.1 Remove the parent node of cx and all edges connected to cn.

1.1.2 Make the incoming edge of parent(cn) the incoming edge of
child _node(cn).
Note: step 1.1.2 is not applicable if the parent(cn) is a root node, because a root node

does not have an incoming edge.

The optimized graph is more efficient because it is smaller and thus requires fewer steps

to traverse. The next subsection explains how to traverse a dependency graph.

5.3.3 Traversing a Concurrent Dependency Graph

A race condition can occur because different interleavings affecting branch
outcomes can lead to different sequences of lock/unlock and read/write operations to
shared variables. This subsection explains how to generate different interleavings in
order to explore different branch outcomes. We use the term “guidelines” as a set of
use-defines for generating a test case. The guidelines determine the data dependency for
creating a test case. An execution-variant V' satisfies a guideline if all members of the
guideline are included in the set of use-defines of the execution-variant V. In other

words, the following condition must be satisfied:
all members of guideline & setUD(V) 4)
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Algorithm 9 explains how to traverse the paths in a concurrent dependency graph to
obtain a set of guidelines. Table 8 is an example of a set of guidelines obtained by
applying

Algorithm 9 to the concurrent dependency graph in Figure 52(a).

Algorithm 9. Traversing a concurrent dependency graph

Input: A concurrent dependency graph dg.
Output: A set of guidelines for generating test cases.
Step 1. Initialization.
Let the output set of guidelines = { @ }

Step 2. Start from the root node of the input concurrent dependency graph dg, do a
“Depth First Search” (DFS).

2.1 When the DFS visits a leaf node, extract the set of use-defines from the root
node to the leaf node and add them as a guideline to the set of guidelines as the output.

2.2 Repeat step 2.1 until all leaf nodes in the concurrent dependency graph dg
have been visited.

Table 8. A set of guidelines from the concurrent dependency graph in Figure 52(a).

No. Guideline

1 gul =1{ud(y, 3,2), udx, 3, 1), udn, 4, 3) }
2 gu2=1ud(y, 3, 2), ud(x, 3, 20), ud(n, 4, 3) }

One test case will be created for each guideline, so there will be two test cases based on
Table 8. The use-define ud(y, 3, 2) and ud(n, 4, 3) are the same for both guidelines.
They are redundant because the concurrent dependency graph in Figure 52(a) is not
optimal. In order to distinguish between these two test cases, only the use-defines on
variable x matter. Table 9 is an example of a set of guidelines obtained by applying

Algorithm 9 to the optimized concurrent dependency graph in Figure 52(b). It shows
that only the use-defines on variable x are necessary to distinguish between those two

guidelines.

Table 9. A set of guidelines from the concurrent dependency graph in Figure 52 (b)

No. Guideline

1 gul ={udx,3,1)}
2 gu2 = {ud(x, 3, 20) }
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5.3.4 Generating Test Cases from a Concurrent Dependency Graph

This subsection explains an efficient test case generation using a set of
guidelines from a concurrent dependency graph [Setiadil4]. We recall some definitions
from the work by T. E. Setiadi, A. Ohsuga, and M. Maekawa [Setiadil3] in the
subsection on a Model for Concurrent Program Execution Traces about the sequence of
operations in an execution of a concurrent program. These are as follows:
® Sis a sequence of read/write operations from an execution trace.
® S(j) is a sequence of read/write operations in thread 7j.

® S(j, i) is the i-th operation in the sequence of operations in thread 7j.

The task for generating test cases can be stated as follows:

Given a concurrent dependency graph dg derived from an existing sequence of
read/write operations S/ and the following set of guidelines obtained from the
concurrent dependency graph dg:

® oul = { ud(var, use, defl) }

® ou? = { ud(var, use, def2) }

Supposing that the existing sequence of read/write operations S/ satisfies the guideline
gul, create another sequence of read/write operations S2 that satisfies the guideline gu2.
Let:

S(a,j) = the use operation in the guideline gu?.

S(a,j-1) = one operation in the thread 7a before the use operation S(a,j).

S(b k) = the def2 operation in the guideline gu2.

S(b,k-1) = one operation in the thread 7b before the def2 operation S(b,k).

The solution for the S2 depends on whether the use operation is located in the same
thread as def2 operation or not:
® C(Case 1: the use operation is in the same thread as the def2 operation, i.e. they
are located in the same thread 7h, S(b,j) = use operation and S(b,k) = def2
operation (refer to Algorithm 10).
® (Case 2: The use operation is in a different thread to the def2 operation (refer to
Algorithm 11).

Figure 53 illustrates the examples of these two cases.
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Algorithm 10. Generating test cases if the define operation is in the same thread as the

use operation

Step 1. Select the next operation non-deterministically.
Step 2. If the operation selected in step 1 is the def2 operation S(b, k),
Then
2.1 The next operations are from thread 7b until the use operation S(b, j).
2.2 Select the next operations non-deterministically until the concurrent
program terminates.
2.3 Terminate this algorithm.
Else
2.1 Repeat from step 1.

Algorithm 11. Generating test cases if the define operation is in a different thread to the

use operation

Step 1. Initialization:
- All threads are not blocked.
Step 2. Select the next operation non-deterministically from any non-blocked threads.
Step 3. Check whether the operation selected in step 2 is one operation before the use
operation or before the def2 operation.
3.1 If the operation selected in step 2 is S(b, k-1)
Then
3.1.1 Thread Tb is blocked.
3.2 If the operation selected in step 2 is S(a, j-1)
Then
3.2.1 Thread Ta is blocked.
Step 4. If thread Ta and thread Tb are blocked
Then
4.1 Execute def2 and use consecutively as the next operations.
4.2 Select the next operations non-deterministically until the concurrent
program terminates.
4.3 Terminate this algorithm.
Else
4.1 Repeat from step 2.
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$1 S2 Case 1

Ta Tb Ta Tb
S(b,1)
The def2 operation is executed.
def, -t-def,d S(b, k)« P
def, ; «— Execute operations from the same thread
|ouse “4--use O S(b, j) until the use operation is executed.
- . def, © X Executing operations in the same thread
L’ ' will guarantee that there are no other def
ud(var, use, def1) ud(var, use, def2) operations from other threads in between
. the def2 and use operation.
Existing sequence New sequence
S1 S2 Case 2
Ta Tb Ta Tb
def2C5 S(a,1)
def, P - o -
1 ) def, S(a, j- 1),_Thread Ta is blocked.
(b 1) Thread Tb is blocked.
b k-1) Execute the def2 and use operation
! def, / consecutively.
use (p ‘ 2C‘ S(b, k) . .
\ use O v S(a, ) Executing the def2 and use operation
\ 'v\\ consecutively will guarantee that there
ud(var, use, def1) ud(var, use, def2) are no O_ther def operations from other
threads in between them.
Existing sequence New sequence

Figure 53. An example of test case generation for different cases

An example of case 2:
® From Figure 33: S/ is Tl:1:x = -3, T1:2:y = 2, T1:3:n = x+ty, T1:4:1f(n<0),
T1:5:..., T2:20:x = 10, T2:21:..., T2:22:..., T2:23:ref2 = new Object(),T2:24:...,
T2:25:print x, T2:26:..., T2:27:ref2.credit =7, T3:30:ref2=ref1
® Figure 52: Let dg be the concurrent dependency graph derived from the
existing sequence S/.
® From Table 9: the set of guidelines = { gul = { ud(x, 3, 1) }, gu2 = { ud(x, 3,
20) } } is derived from the concurrent dependency graph dg in Figure 7(b).
This example falls into case 2 because the use and def2 in gu?2 are in different threads.
Figure 54 illustrates the test case generation. The sequence for S2 is T1:1:x =-3, T1:2:y
=2,T2:20:x =10, T1:3:n = x+y, T1:4:if (n<0), T1:5:..., T2:21:..., T2:22:..., T2:23:ref2 =
new Object(),T2:24:..., T2:25:print x, T2:26:..., T2:27:ref2.credit = 7, T3:30:ref2 = refl.
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S1

- T1:1:x=-3
T1:2:y=2
- T1:3:n=x+y
ud (x,3,1) T1:4:if(n<0)
T1:5:...
T2:20:x=10
T2:21:...
T2:22:...
T2:23:ref2=new
Object()
T2:24:...
T2:25:print x
T2:26:...
T2:27:ref2.credit=7
T3:30:ref2=ref1

ud (x,3,20) T1:2iy=2

S2
+«—— S(2, k-1)
T1:1:x=-3
«— S(1,j-1)
T2:20:x=10 ~— S(2, k)
T1:3:n =x+y «— S(1, )
T1:4:if(n<0)  ~

«__ Execute non-
deterministically

J

Figure 54. An example of a test case generation from a guideline

5.3.5 Comparison with the Existing Reachability Testing Method

This subsection explains an example for test case generation using the existing

reachability testing method. Figure 55 is an example of a variant graph for the execution

trace in Figure 33. In this example, we exclude the shared variable ref2 and consider

only the shared variables x and y to simplify the explanation. There are four

execution-variants; they are V1, V2, V3, and V4 as shown in Figure 55. Dotted boxes in

a variant graph represent some read or write operations accessing different values of

shared variables as the result of different interleavings.

99



Note: 0,0

o ~~20: write x
<« index 1"W 0 AN

<+ version Ao
1,0 L 01
1N\ i b
K '1' \25;\readx
20: write x i / e
. . 1:writex .
3: read x/ s v 32‘
2.0 IO IR 02
1 L2 b2 L.
3iread x .7 “re. . g 1: write x
20: write X~ Tk Bigedx dready Tagreadx MY
2,1 P21 2 b 21 2 12
2 o2 2 2 2 2
25: readx4 25: read X, 3fead x  25: read X, 3: réad x 3: fead x
o T 2 RN S
2,2 bo2,2 bo2,2 bo2,2
2 b2 b2 b2
V1 V2 V3 V4

Figure 55. Example of a variant graph.

The variant graph in Figure 55 generates four test cases, but some of them
are redundant. From the set of guidelines in Table 8 or Table 9, our proposed method
identifies that only two test cases are required. Table 10 shows different values of
variables when executing different execution-variants. The execution-variants V1 and
V'3 have the same truth value for the branch in line 4. It is sufficient to test only one of
them with respect to exploring different execution paths caused by the branch. They
differ in the values of the variable x in line 25, but the truth value of the branch in line
4 is the same. A similar situation happens for the execution-variants V2 and V4.
Suppose that the execution-variant '/ is executed when the program is first tested.
The execution-variant V2 can be created from VI by replacing the use-define ud(x, 3,
1) with ud(x, 3, 20).
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Table 10. Different values of variables among different execution-variants

Execution-va ) 3:ready  3:writen 4: 1f (n<0) 25: read x
. 3:read x
riant
Vi -3 2 -1 True 10
V2 10 2 12 False 10
V3 -3 2 -1 True -3
V4 -3 2 12 False 10

Figure 54 shows how to generate only the required test cases based on the

guideline from the proposed concurrent dependency graph.

5.3.6 Generating Test Cases to Check Consistent Locking for Access
through Reference Variables

The basic premise suggested in the method that we have proposed so far is

that covering an execution path is sufficient to detect a race or no-race condition by

checking consistency locking in that execution path, independently of variable values.

In some cases, this might not be sufficient, since the value of the lock object itself

may depend on the data flow and, theoretically, on the interleaving, as illustrated in

Figure 56(a). This situation may be considered as a race condition.

Thread T1 Thread T2 Thread T3 Thread T1 Thread T2 Thread T3

lock a azb lock ref2 = ref1

‘ ook ocka lock b
| ock a
) read ref1.x
read refd.x read refl.x read ref2.x
' . ) unlocka .
unlock a “J.unlock b
unlocka ; \
refer to different lock object. ref1 and ref2 refer to the same data.
(a) (b)

Figure 56. Example of lock variables (a) and reference variables (b)

Similar problems may also arise when different shared reference variables (a
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pointer in C or an object reference in Java) actually refer to the same data as
illustrated in Figure 56(b). Threads acquire a consistent lock for accessing ref! and
ref2, but actually they are referring to the same data depending on the interleaving of
the assignment ref2 = refl in the thread 73. On the other hand, even when the same
reference variable is shared between threads, the actual data referred to may not
necessarily be shared.

This subsection shows that our proposed concurrent dependency graph can
also generate test cases for detecting race condition caused by lock variables or
reference variables. A more complicated example involving a branch is illustrated
below:
® In Figure 57, the truth value of the branch depends on the order of executions of the
access-manner M1 and M4 as seen in Figure 57(a) and Figure 57(b). In the event
that the branch takes a different execution path, the error might not be detected.

® The reference variables refl and ref2 can refer to the same or different objects
depending on the order of executions of the access-manners M5 and M6, as shown
in Figure 57(b) and Figure 57(c). A race condition arises in execution 3 in Figure
57(c) in the event that the access-manner M3 and access-manner M5 are not
protected by the same lock. A race condition cannot be detected in execution trace 1
or 2, but can be detected in execution trace 3.

Thread T1 Thread T2 Thread T3

M1 ‘ n=-1 M4 n=2 M6 ref2=refl

branch irf (n<0)

(\‘ M5 ref2
M3
M2 refl Note:

Y M : “access-manner”
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A different interleaving causes

Execution 1
T1 T2 T3
<if (n<0) true >
(LN P N
R 4
M5
N i
(@)

¥

Execution 2
T T2 T3
M1 n=-
M4 n=2

<if (n<0) false >

M3 j,\,‘/‘ref 1 M5 r?fz
) CS;is execute&\ Mé

instead of CS, .

The ref1 a‘n’d ref2 refer
to different objects.

(b)

A different interleaving causes two different
reference variables to refer to the same object.

Execution 3

™ T2 T3

n=-1 M6
M4 |n=2

if (n<0)

m3 *reﬁ M5 | ref2

The ref1 and ref2 refer
to the same object.

(c)

Figure 57. Examples of three executions with different interleavings

5.3.7 Generating Test Cases: Traversing a Concurrent Dependency
Graph of an Access-Manner

This subsection explains how to generate different interleavings to check

whether accesses through reference variables in an access-manner have consistent

locking. In Figure 30, the define set for the read operation to ref2 in M3 for pair2

contains two members, hence its value might be affected by different interleavings.

Figure 58 shows an example of a concurrent dependency graph for the access-manner

M3 in Figure 30. The root node contains the statements from the access-manner M3. We

will show an example of how to traverse the concurrent dependency graph of the

access-manner M3 in Figure 58 to generate test cases.
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26:lock b
27:ref2.credit =7
28: unlock b

use

def
30: ref2 =ref1

def
23: ref2 = new Obje

26:lock b 26: lock b
27: new Obiject().credit =7 27: ref1.credit=7
28:unlock b 28: unlock b

use use

Figure 58. An example of a concurrent dependency graph for the access-manner M3 in
Figure 30

Table 11 shows the results of traversing the concurrent dependency graph in
Figure 58 by applying Algorithm 9. Let us assume that the execution in Figure 30 is
obtained when the program is first tested, and we call it execution-variant V1. Its
interleaving satisfies the use-define ud(ref2, 27, 23). The execution-variant 2 is used as
the next test case as shown in Figure 59. Its interleaving satisfies the use-define ud(ref2,
27, 30). The next subsection explains how to create the execution-variant V2 effectively
from the concurrent dependency graph in Figure 58.

Table 11. A set of guidelines for generating test cases for testing pair2 in Figure 11

No. Guideline execqtion Test result
-variant
1 gul = { ud(ref2, 27, VI No race condition, because refl and ref2 refer to
23) } different objects.
2 gu2 = { ud(ref2, 27, V2 Race condition for accessing refl, if lock a and
30) } lock b refer to different lock objects.
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Thread T1 Thread T2 Thread T3

1: x = -3
2: y =2 20: x =10
. 21: .
time
22: lock b
3:n=x+y M2 23: ref2 = new Object ()
4: 1if (n<0) { pairi ) \-2‘4%\_@_1’}100]{ b
6: } else { 25: print - PAIN3
) ] - M4 30: ref2 = refl
7: lock a v 26: lock b paird _...-
8: refvl.credit = 10 M1.\“M3 27 re}fz.credit = 7
9: unlock a._ pair2 283Gnlock b %
10: } \‘\\\\ ’,,’ ‘\\/,—"ud(refZ,27,30)
11: print y ref1 and ref2 refer
to the same object pair3 = pair(M2, M4)
pair1 = pair(M1, M2) pair4 = pair(M3, M4)
pair2 = pair(M1, M3) pair5 = pair(M1, M4)

Figure 59. An example of a test case execution for execution-variant 2

5.3.8 Generating Test Cases for Checking Consistent Locking of an
Access-Manner

Based on Table 11, the execution-variant V2 can be generated from
execution-variant '/ by changing the define operation for the use operation of variable
ref2 in line 21.

® The guideline for the current execution-variant V1: { ud(ref2, 27: ref2.credit = 7,
23: ref2 = new Object()) }
® The guideline for the target execution-variant V2: { ud(ref2, 27: ref2.credit =7,

30: ref2 =refl ) }

Generating the execution-variant V2 applies to case 2 because the use operation is in a
different thread from the target “def” operation. Therefore, Algorithm 11 applies for this

case.
® defruse : 23: ref2 = new Object( )
®  defiurger : 30: ref2 = refl
® use : 27 ref2.credit =7
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Figure 59 shows an example of the execution trace that satisfies the guideline gu?.

5.4 Reducing the Effort Involved in Checking Race

Conditions

Effort involved in checking race conditions can be reduced by utilizing

previous check results. Suppose we have the first execution with the set of execution

paths PATHSI which is already checked. Then we execute the next test case which

results an execution with the set of execution paths PATHS2. The effort for checking the

set of execution paths PATHS?2 can be reduced as follows:

® In case PATHSI and PATHS? are in the same race-equivalent group: No need to
check race conditions for PATHS?.
® In case PATHSI and PATHS? are not in the same race-equivalent group: Check

only some parts of execution traces affected by a new test case. Figure 60 shows

the idea for reducing the effort involved in checking race conditions:
® The pair(CS;, CS,) and pair(CS,, CS4), indicated by **, exists in the
previous execution, hence they do not require checking for race conditions.

® However, the pair(CS,, CS4), indicated by *, does not exist in the previous

execution, hence it requires checking for race conditions.

Thread Thread
T1 T2
CS1 ‘ CSA
Cs,
cs, cs,

Existing method: total 9 checks

V1 V2 V3
cs, | cs, | cs, |
cs, | —lecs, cs.l—|cs, 5.1 —]cs,
cs, | cs, | cs, |
3 checks 3 checks 3 checks Reduce
number
Proposed method: total 4 checks SLecks

Group 1 Group 2

CS1| Cs, I *%
e, | —]cs, cs, |

| cs
cs, |/ ...... - CS, |A A

3 checks 1 checks

Figure 60. Reducing the effort involved in checking race conditions

106



5.4.1 Executions in the Same Race-Equivalent Group: No Need to Check
Race Conditions

It is possible to reduce the amount of work for checking errors in different
execution paths by grouping different execution paths from different executions with
the same set of manner-manners of access to shared variables into the same
race-equivalent group. All members of the same group are said to be race-equivalent.
All members within the same group will have the same set of access-manners. By this,
only one execution path from each race-equivalent group need to be checked. This
method reduces the task for checking errors in different execution paths by
eliminating all the execution paths belonging to the same race-equivalent group
except one. During the test iteration, the already checked race-equivalent group is
recorded to avoid repeating checking the combination of execution paths belong to

the already checked race-equivalent group.

Determining no-race can contribute to reduce the computation effort of
finding race conditions and deadlocks. This reduction is applied during exploring
different execution paths due to different interleavings. The reduction is possible by
followings:

1. Logging and detecting for race conditions for the set of access-manners appeared
in the past.

2. As the execution path of the target system progresses, execution traces for other
test cases are logged.

3. If anew execution trace has the same set of access-manners as one of the logged,
then we do not need to repeat race conditions detections because the same
sequence of lock/unlock and read/write operations to shared variables has already

been tested. In other words, they are in the same race-equivalent group.

This is true for any execution paths including loops. If it is found that
looping does not change sequences of lock/unlock and read/write operations to shared
variables, we do not need to check race conditions for each execution of the loop. One
test is enough for the entire loop. In exploring execution paths due to different
interleavings, any execution paths having the same sequences of lock/unlock and

read/write operations to shared variables can be grouped into the same
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race-equivalent group. However, the fact that some execution paths belong to the

same race-equivalent group does not necessarily imply that the future computations of

them will be the same.

Different branch outcome results
the same access-manner.

lock b
if (x>0){

write y

else {

write y

}

unlock b

Branch is true Branch is false

lock b lock b

read x read x

write y write y

unlock b unlock b
13 A

same access-manner

(@)

Different branch outcome results
a different access-manner.

lock b
if (x>0){

write y

else {

write z

}

unlock b

Branch is true Branch is false

lock b lock b

read x read x

unlock b unlock b
® A

different access-manner

(b)

Figure 61. Examples of the same and a different access-manner caused by a branch

If the branch path b true and the branch path b false have the same access-manner to

shared variables, then two executions with different execution paths caused by

different branch outcomes for the branch b are said to be equivalent (see an example

in Figure 61(a)).
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Source code Execution trace

(T -
lock a ‘_locka
while (x>1) { read x Access to the variable x
. First . ) .
loop < : is protected by the lock a. “~«_
write y write x AN
Different
unlock a L unlock a
access-manner
}
read x /,/
Second : Access to the variable x 4
loop < write x is NOT protected by the lock a.
unlock a
~

Figure 62. Different access-manners caused by a loop

Similarly, if the access-manner to the shared variables are all the same in /1, /2, I3, 4,
15, 16, ..... [0, then different execution paths caused by the different loop iterations
for a loop / will be in the same race-equivalent group. This property is useful to avoid
checking a long or an infinite loop. In the case of an infinite loop, there might be
infinite execution path, but we group different execution paths caused by loop if the
access-manner to the shared variables is the same. In this case we need only to
consider the combination of branches and loops. When there are only finite numbers
of branches and loops, then their combinations will also be finite. Figure 62 shows an
example of a loop in which the access-manner in the first iteration is different from
the second one. The rest of the iterations will have the same access-manners as the
second one. Figure 63 shows more complicated examples where the access-manners

are affected by a branch and a loop.
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Case 1: branch is true Case 1: branch is false

lock a
lock a while (x>1) { Clocka
read X y, read x ,\\
N if (v == : R 1st jteration:
\ 1titeration: it(y==0) : dby *
N = rotecte e
read y .-~ Protected by x=1 ready ‘?Z- fhe lock a. Y N
write x 4 the lock a. else read x <~ .
unlock a read x unlock a Different
, _/ access-manner
(loop terminates) unlock a -
} read X y ) ,,”
™ 2viteration:
read y >_\ NOT protected by
_{--- thelock a.
read x <
unlock a
read x
: _ 3diteration:
read y
read x «-f-— NOT protected by
the lock a.
unlock a
The variable x is always The variable x is NOT
protected by the lock a within protected by the lock a from
the loop. the 2nd iteration.

Figure 63. Different access-manner caused by a branch and a loop

Theorem 1. All race conditions can be detected within the race-equivalent

groups.

Proof:

Race conditions happen when there exists a possible combination of
execution paths from different threads which are not well-formed. We need to proof
that for any possible combination of execution paths, there exist one
race-equivalent group in which has the same access-manner to shared variables.
Hence, if the possible combination of execution paths has race conditions, it will

also be detected at the corresponding race-equivalent group.

Assume that P is a possible combination of execution paths and there is no
race-equivalent group which has the same access-manner to shared variables as in P.
Two concurrent executions with the same access-manner to shared variables for all

their threads will be grouped into the same race-equivalent group. Therefore, the set
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of race-equivalent groups will contain all possible combinations of access-manner
to shared variables from all threads.

Since P is a possible combination of execution paths, there exist one
race-equivalent group in which the access-manner to shared variables for the first,
second, third, ... , N-th thread are the same. Then P should be in one of
race-equivalent group. This contradicts our assumption that there is no
race-equivalent group which has the same access-manner to shared variable as in P.
Therefore, for any possible combination of execution paths, there exists one

race-equivalent group in which has the same access-manner to shared variables.
QED.NR

5.4.2 Executions in a Different Race-Equivalent Group: Check Only Some Parts
of Execution Traces Affected by A New Test Case

When a new test case is executed, only concurrent-pairs of access-manners
whose access-manners are affected by the new test case have to be re-checked for race
conditions. In this way, the effort for checking race conditions is reduced. The following
discussion explains how to identify the access-manners which are affected by a new test

case.

5.4.2.1 Conditional Statements in a Branch

A different interleaving might change branch outcomes which can, in turn,
change the sequences of lock/unlock and read/write operations to shared variables. In
the event that a test case is created based on a conditional statement of a branch, then
only the access-manners affected by the change of the branch outcomes have to be
re-checked for race conditions. Let op(br, true) be the set of operations executed only
when the conditional statement in a branch br is true and let op(M) be the set of
operations within an access-manner M. When the outcome of the branch br changes
from true to false, we have to check only race conditions in concurrent pairs of
access-manners involving access-manner M, where op(br, false) N op(M) +# @. Also,
when the outcome of branch br changes from false to become true, a similar rule
applies. For example, let us assume a test case is created based on the branch in line 4 in

Figure 59. If the branch has changed its outcome from #rue to false, then the
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access-manner affected by the test case is M1. Therefore, we have to check only those
race conditions for the concurrent-pairs related to the access-manner M1; these are pairl,

pair2, and pair35.

5.4.2.2 Assignment of Lock Variables or Reference Variables within an

Access-Manner

Different interleavings might change the assignment of lock variables or
reference variables within an access-manner. If a test case is created based on an
access-manner M,, then we have to check only those race conditions for the concurrent
pair of access-manners pair(M1, M2) where M1 = M, or M2= M,. The test cases in the
example of Table 11 are created based on the access-manner M3 from Figure 30. Only
pair2 and pair4 have to be re-checked using a race detector because they are related to
the access-manner M3. On the other hand, since pairl, pair3 and pair5 are not related to
the access-manner M3, they are not affected by the test case. Hence, there is no need to

re-check race conditions among them (see Figure 59).

When a loop contains an access-manner, each iteration can generate a
concurrent-pair of access-manners. In the case of an infinite loop, the number of
concurrent-pairs of access-manners can be infinite. However, in some cases the
concurrent-pairs generated in each iteration could be the same as in the previous one. In
such cases, there is no need to check for all the iterations. In this way, the effort
involved in checking race conditions during the test can be reduced. We will show an

example of this in subsection 6.6.3 Experiment 3: jNetMap.
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Chapter 6. Implementation and Experiments

This chapter describes an implementation of the proposed method in Java

and shows some results of experiments.

6.1 Lock Mechanism in Java

In Java, the lock mechanism is implemented as follows:
® [Lock objects
® Synchronized methods

® Synchronized statements

6.1.1 Lock Objects

A lock object is an actual object that represents a lock. One example of an
implementation class is ReentrantLock. A lock is acquired by calling the lock()
method and released by calling the unlock() method. The execution between them

becomes a critical section.

private Lock scorelock = new ReentrantLock( );
public void methodl () {
try |
scoreLock.lock( );

critical section

} finally {
scoreLock.unlock( );

}

6.1.2 Synchronized Methods
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A synchronized method is a method which has a “synchronized” keyword in
its method declaration. There are two kinds of locks when using a synchronized
method:
® C(lass lock: a synchronized method is defined as a static method.
® Object lock: a synchronized method is defined not as a static method. It uses the

object instance as the lock object specified from an object reference or using the

keyword this to specify its own object.

A thread that wants to execute a synchronized method must first obtain the
lock. The lock is released after it returns from the synchronized method. The

execution within the method becomes a critical section.

public synchronized void method2 () {

critical section

6.1.3 Synchronized Statements

A synchronized statement is similar to a synchronized method, but

synchronized statements must specify an object as shown below.

public void method3 () {

synchronized (this) {

critical section

For the three mechanisms above, a lock is being acquired irrespective of which syntactic

approach is used.
6.2 Interrupt as a Thread in Java Program

It is not always possible to translate existing programs to support
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interrupt-as-a-thread principle for debugging/testing as suggested in this dissertation.
In Java, however, it is rather easy. We can simply create a (new) thread for interrupt
handling when interrupt comes. Preserving interrupt processing order, for example, a
series of interrupt from a keyboard or a series of interrupt from the same ATM, can be
achieved using joint point. In Java, invoking t.join() for a thread ¢ suspends the caller
until the target thread t completes [Lea99]. Therefore when a series of interrupts come,
the execution of a later interrupt handling can be suspended until the previous

interrupt handling thread completes its execution.

If we design interrupt handling based on an interrupt dispatcher, we can use
Executor interface [Oaks04] for defining thread pools for interrupt processing. In fact,
the recent java.util.concurrent package provides the code for such an implementation.
An interrupt handling and the task required for it are executed in a newly created
thread.

6.3 Tracing

We use Aspect] [GradeckiO3] for tracing Java multi-threaded concurrent
programs. It is an aspect-oriented extension to the Java programming language.
Aspect] was chosen because of its flexibility to trace the necessary data from an
execution of a program. Other means of tracing can also be used as long as they can
capture the necessary information about lock sequences, access to shared variables,

and branches.

We capture the necessary information from an execution of a program using
the concept of “pointcut”, “advice”, and “reflection” in Aspect]. Note that they are
specific terms for Aspect]. Here, we describe only the general idea of tracing using
Aspect]:
® Pointcut: specify locations within an execution of a program where necessary
information needs to be captured. We do not explicitly specify the locations in
term of line of code; instead we specify wildcards so Aspect] will take a trace
when any locks are acquired or released, or any shared variables are accessed.

® Advice: a piece of code to be executed for each pointcut.

® Reflection: getting trace information from program execution, for example about

locks’ acquisition or operations on shared variables. Reflections are written
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within an advice. Besides obtaining the shared variables or object references’
name, it is also possible to know which actual data is referenced by specifying its
object id in order to precisely determine where a race condition has actually
happened.

® For each of the pointcut, we write a corresponding additional a piece of code to
be executed, called advice to get the information about locks or shared variables
using Aspectl] reflection. Within the advice, we use reflection to get the necessary

information for tracing, such as a shared variable’s name.

For detecting a branch or loop, the line of code (loc) in the source code is
recorded when a variable is accessed, and then later compared to the source code to
determine whether it is in an if-statement or a loop. The Aspect] codes necessary for
tracing are written in Aspect] files, which are separated from the target programs. The
Aspect] files need to be weaved with the target source code. The information
necessary to be traced is a sequence of lock/unlock, read/write operations to shared
variables, branches and loops. The pointcut definition for lock, call to synchronized
method, read access and write access to shared variables are call (void
Lock.lock()), call (synchronized * *.*(..)), get(* *.%*), set(* *.*).
The overhead incurred by tracing differs case by case depending on the occurrence of

locks’ acquisition and read/write operations to shared variables.

6.4 Deterministic Testing

For controlling a program execution, Java code instrumentation [Baur03] can
be used. Thread switch is realized by unblocking the next thread in the schedule
followed by blocking all other threads including the current thread. A lock object is
assigned to each thread. Methods wait and notifyAll are used to implement block

and unblock operations that suspend and resume execution of a thread.
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Figure 64. Control transfer from thread 7'/ to 72
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6.6 Experiment Results: Test Case Reduction

We use some Java open source programs for network control and database
management in the experiments, because these programs are usually designed to be
multi-threaded. The effectiveness of the proposed method for detecting race
condition depends on the structure of the program. Some concurrent programs have
only read-shared variables [Savage97], for example Blue] [BlueJ09] and Baralga
[BaralgalO]. The values of read-shared variables are only assigned once during
initialization and they are not affected by different interleavings. Hence, they also
do not have branches that are affected by different interleavings. The concurrent
errors in such program are always reproducible because there will be no change in
the sequence of lock/unlock and read/write operations to the shared variables in
each thread. They can be easily detected using existing dynamic race detection tools.
Debugging such programs is relatively easy by treating them as similar to
sequential programs. In such easy situations, the effectiveness of the proposed
method for detecting or reproducing race conditions is the same as the existing
methods. The proposed method is superior in the case where race conditions are
difficult to be detected or reproduced. Figure 66 shows the effectiveness of the
proposed method compared to the existing methods.
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Sequential programs Concurrent programs
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Figure 66. The effectiveness of the proposed method

The objective of the experiments is to show the efficiency of the proposed
method for reducing the number of test cases in detecting race conditions. We
compare the number of test cases against an existing test case reduction method based
on the Thread-Pair-Interleaving (TPAIR) criterion [Lu07]. The results are
summarized in Table 12. For a fair comparison, we allow only the same input for both
methods. In these experiments, we measure the reduction in the number of different
interleavings used for test case generation. We ignore different orders of read-shared
variables. A read-shared variable is a variable that it is written during initialization
only and becomes read-only thereafter [Savage97]. Its value is determined only by the
input and it does not change during an execution of a program. As such, it can be
ignored during test case generation because different interleavings do not affect its

value.
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Table 12.

Summary of experiment results

1. Apache 2. JTelnet 3. jNetMap 4. JoBo 5. Apache
Commons Derby
Pool
Program size (Kloc) 123 5 3 45 292
Trace size (KB) 35 1638 201 87500 72800
Number of threads 3 3 6 4 5
Number of shared variables 33 7 10 4 33
Number of branches executed from 17 329 31 121665 14164
trace
Number of branches affected by 1 0 1 1 29
interleaving
Number of test cases in TPAIR 23 66 Infinite Infinite 1453539
Number of test cases in proposed 2 1 4 1 58

method

6.6.1 Experiment 1: Apache Commons Pool

In Experiment 1, we use a generic object-pooling library called Apache
Commons Pool [ApachePool06]. Some race conditions have been reported in related
work [PLDIO6] [Naik06]. Most of the race conditions are easy to detect in that they can
be found by simply re-executing the program and using an existing dynamic race
detector. Our proposed method is intended to find race conditions that are difficult to
detect. This is because such race conditions are affected by branches and different
interleavings. There are 160 race conditions reported at [PLDI06]. We observed 15% of

them as being difficult to detect. One possible example is shown in Figure 67.

Thread T1

Access to a shared
variable without
acquiring any locks.

Access to a shared
variable only if conditional
statement is false

991:} public void
addobject () {

996:----.Object obj
| _factory makeObject () ;

} condition

1025: Iterator it =
[ _pool.iterator();

The interleavings do not affect

conditional statement in the branch.

Thread T2

Thread T3

branch
~

N

904: public synchronized void
setFactory (PoolableObjectFactor
y factory) throws

I galStateExc_Vep‘Ei-eﬂ—a(n_‘ ------------ r-

906: ™ if (0 < _numActive)

907: throw ndwe "

IllegalStateException (

are already active");
: } else {

“.._numActive--; ./

’:‘ _pool ::= null;

715: public Object

- 76‘53'1::_numActive+:}-);

y

\A shared variable affecting

conditional statement in a
branch. Hence, it can be
affected by different
interleaving.

~ The interleavings
affect conditional
statement in the

branch.

Figure 67. An example of a race condition that is difficult to detect
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There is a race condition in Figure 67 between thread 7'/ and thread 72 when
accessing the shared variable factory, because thread 7/ does not acquire any locks.
However, it happens only when the conditional statement for the branch in thread 72 is
false. Furthermore, the conditional statement depends on the value of shared variable
_numActive which is affected by the interleaving with thread 73. Figure 68 shows read
and write accesses to the shared variables for the execution of the first test case, in

which the race condition is not reproduced. Using Algorithm 3, we calculate the

following:

BranchRelUD(b, V) = { (_numActive, 906, 765) }.

Exhaustive

L

All possible /
interleavings.

(a)

Thread-Pair-Interleaving

e oway

(TPAIR)
T T2 T3

!
/
g
Q
\ >
o
o N
-
)
A\ A\ T

_‘
)
N\

3
©

= = ~ pair between T1 and T2

............. pair between T2 and T3
"=~ pair between T1 and T3

(b)

Proposed method

T1 T2 T3

frd oy Only
\branch' r @ /" interleavings
ra T o w Q\_\) affecting
rd¢ |77 branch.
w O
Note:
r @ variables:
w A\ _factory
rm L :_pool
Wl O :_numActive
operations:
r:read
w: write

(c)

Figure 68. A comparison of exhaustive, TPAIR, and the proposed method

Our proposed method generates two test cases based on Table 13. Group g2(b) will

cause the conditional statement to become false, so the error will be reproduced.
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Table 13. Grouping of test cases for experiment 1

Groups Set of use-defines affecting branch b
gl(b) { (_numActive, 906, ...) }
g2(b) { (_numActive, 906, 765) }

We compare our proposed method against an existing test case reduction method based
on the Thread-Pair-Interleaving (TPAIR) criteria [Lu07]. Instead of generating different
interleavings among all threads, TPAIR generates only different interleavings for every
pair of threads to reduce the number of test cases. This reduction is based on the fact
that most concurrency bugs are caused by the interaction between two threads, instead
of all threads, as explained in the previous error detection work [Savage97] [Lu06]. This
also happens for the race condition between thread 7'/ and thread 72 when accessing
shared variable factory in Figure 67. Its reproduction depends on the branch in thread
T2 whose conditional statement is affected by the interleaving between thread 72 and
thread 73. However, not all different interleavings between those two threads will affect
the reproduction of the race condition. For example, shared variable pool is affected by
the interleaving between thread 7'/ and thread 72, but the race condition when accessing
the shared variable pool will always be reproduced. Hence, it can always be detected
by a race detector independent of the interleaving between those two threads. In this
experiment, the reachability testing method produces 147 test cases, the TPAIR method
produces 23 test cases, and our proposed method produces only 2 test cases for

detecting the race condition.

In order to evaluate the feasibility, we performed several experiments by
increasing the number of shared variables accesses for the same target program. Figure
69 indicates the increase in the number of test cases when the number of read/write
operations to shared variables is increased. In order to reproduce the race condition,
Figure 69 shows that our proposed method produces fewer test cases than test
generation based on the existing TPAIR. In addition, error detection by TPAIR can be
guaranteed only if the errors are caused by interleaving between two threads. In contrast,
our proposed method can reproduce errors caused by interleavings from any number of
threads. This is because our proposed dependency graph considers data flow from any

threads that affect the conditional statement in a branch.
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Number of test cases
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TPAIR
30000 -
20000 -
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Proposed
method
o - ~ Number of shared
10 35 54 66 variables access

Figure 69. Comparison of numbers of test cases

6.6.2 Experiment 2: JTelnet

The JTelnet [JTelnet03] is a telnet client written in Java. Among the 7 shared
variables, 6 of them are read-shared. Based on the data flow analysis, one branch is
affected by a shared variable. This experiment shows that some interleavings will
change the values of shared variables, but they might not affect the reproduction of race
conditions. In such circumstances, the existing reachability testing and TPAIR methods
will generate some test cases, but our proposed method generates no test case. The

results are summarized in Table 14.

Table 14. Summary of experiment results for JTelnet

Method Number of Description
test cases
Existing 66 Test cases generated by TPAIR will affect only the values
TPAIR of shared variables in thread AWT-EventQueue-0, but will
not affect any conditional statements for branches in thread
72 (Figure 70)
Proposed 1 Branches in thread 72 are only affected by operations in
method the same thread. Therefore, the proposed method does not

produce any other test cases because their outcomes will
not be affected by a different interleaving.
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Thread T-AWT-EventQueue-0 Updating GUI

public void paint (Graphics g) {

getRGB ()~ OXFEEFEE)) ;

317: g.setColor (new Color(screenbg[yloc(lxloc];)
318: g.fillRect (3+xloc*charOffset, 2+yloc*
lineOffset, chatUffset, lineOffset);

319: g.setColor (new Color(screenfg[ylocrfifgér;

320: g.drawChars(screen[yloc] ,‘i‘xloc,_\:fl , 342{ oc* J}

shared variable: xloc

Thread T2 Receiving input from socket

while (true) {
try {

if ((read=sIn.read(buf))>= 0){

T1: if {gggg_ié columns) {

}
114: screen[yloc}jéiec+;;‘(char) c;
115: screenfg[yloc:]l[: X = fgcolor;
116: sr_:_r__e_enbg[ylocﬂ:[xloc]:,E bgcolor;

117: (xloc+¥; S

time l

branch
b, 4

branch
b,

T-AWT:
T-AWT
T-AWT
T-AWT:
T-AWT:

T2:71:
T2:114
T2:115
T2:116
T

T-AWT:
T-AWT:
T-AWT:
T-AWT:
T-AWT:

T2:71:

T2:114:
T2:115:
T2:116:
T2:117:
T2:117:

317: read xloc
:318: read xloc
:319: read xloc
320: read xloc
320: read xloc
read xloc

: read xloc
: read xloc
: read xloc

317: read xloc
318: read xloc
319: read xloc
320: read xloc
320: read xloc
read xloc

read xloc
read xloc
read xloc
read xloc
write xloc

operations
affecting
branch b, ,

Affect(b, 1) =
{T2:71: read xloc }

N\

operations
affecting
branch b, ,

Affect(b, ,) =
{T2:117: write xloc,
T2:71: read xloc }

Figure 70. The source code of the JTelnet and its execution trace

6.6.3 Experiment 3: jNetMap

The jNetMap [jNet09] is a network client to monitor devices in a network. This

program detects PCs and a router in a network. Among the 10 shared variables, 9 of

them are read-shared variables. Based on data flow analysis, the one non read-shared

variable affects one branch. The source code and its execution trace are shown in Figure

71 and Figure 72. The results are summarized in Table 15.
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Table 15. Summary of experiment results for jNetMap

Number of Description
Method
test cases
Existing Infinite There is an infinite loop affecting the read and write
TPAIR sequence which causes infinite test case generation because
it considers different values of shared variables as different
test cases.
Proposed 4 There are two test cases from the branch-affect group for
method branch b, ; and two test cases from the branch-affect group
for branch b, ,. All these groups are listed in Table 16. The
same set use-defines affects branches b, ,, b, 3, b, 4 and the
rest of the branches within the loop 1 for iteration 2, 3, 4,
and so on. In this example, the test cases for the branch b,
do not change the branch outcomes, i.e., they are always
false. Therefore, branches within the loop 1 will always
have the same outcome, so there is no need to test for
infinite iterations in loop 1.
Thread T2 Thread T-AWT-EventQueue-0
276: while (true) { 108: FileOutputStream out = null;
_______ L 109: ObjectOutputStream obj = null;
279: if (PingInterval <= 0) { T K
280: synchronized (t) { 112: pigglntervg};%
t.wait (); parseFIcat (interval.getText ());
} :
283: } else { 114: File conf = new
284: Thread.s;eep(%int)\\ File(System.getProperty ("user.home")+"
(6000O*§;ngnterva;1); /.jNetMap.conf") ;
285: | . S 115: out = new FileOutputStream(conf);
286: ﬁ;gglnterva;’% 116: obj =new ObjectOutputStream(out);
parséFléat (interval.getText ()) ; :
123 obj.writeFloatiélthnteréni};
} : T i
224: notifyall();
shared variable: pingInterval :

Figure 71. The source code of the jNetMap
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iteratio

loop 1
third
v iteration

loop 1
fourth
iteration

Time loop 1 T252793
first T2:284:
n

T2:286:

loop 1 T2:279: read pinglnterval " branch b,, False
second < 72:284: '
iteration T2:285:

{ T2:279:

T2:284:
T2:286:

read pinglnterval . branch b,, False
read pinglnterval
write pinglnterval - T ud

ud | g __:::fl-_T-AWT:112: write pinglnterval

T-AWT:123: read pinglnterval

read pinglnterval
write pinglnterval--.

ud y
read pinginterval --— branch b, , False .~
read pinginterval ™. " ud
write pinginterval

Figure 72. Execution trace of jNetMap

Table 16. Branch-affect groups for jNetMap

Branch-affect

Set of use-defines

groups
gl(by) ud(pinglnterval, T2:279, T-AWT:112)
g2(bs1) ud(pinglnterval, T2:279, ...)
gl(by2) ud(pinglnterval, T2:279, T-AWT:112)
g2(b,,) ud(pinglnterval, T2:279, T2:286)
6.6.4 Experiment 4: JoBo

JoBo [JoBo006] is a web crawler for downloading complete websites to a local

computer. In this experiment, we downloaded a website from Yahoo [Yahoo] and saved

it into a local computer. The program has four threads and four shared variables and is

14 kloc in size. Among the four shared variables, one of them is non read-shared.

Similar to the previous experiment using jNetMap, this experiment shows that the

proposed method generates a finite number of test cases, while existing methods

generate an infinite number of test cases.

Figure 73 shows the source code of JoBo. Based on data flow analysis, there is

one branch affected by the shared variables. The first iteration in the loop has the same

set of access-manners as the second iteration, whereas the third iteration has a different
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access-manner (see the execution trace in Figure 74). The results are summarized as

follows:
Table 17. Summary of experiment results for JoBo
Number of Description
Method P
test cases
Existing Infinite There exists an infinite loop that causes infinite test case
TPAIR generation.
Proposed 1 All possible concurrent paths have been checked from the
method first re-execution trace, no more test cases are required.
Thread T3 Thread T4
* | 09: m connection = null; ( def 123: public void run() {
40: for ( ; ;) | % | 145: m_cénnection = sock;
infinite :
Ioop// // Check connection

)
% | 43: 1if (m connection != null)
y break; \\ /
45: else {
///// // Check error \\\\\\\

branch | 47: if (isError () { shared variable
: m_connection

affected }
by a :
shared ) Note:
variable : * operations affecting branch.
Figure 73. The source code of JoBo
First re-execution :

T3:9 m_connection = null -~ ud(m_connection, 43, 9)
loop 1 { T3:43 1if (m _connection!=null) — > branch b, False
first iteration T3:47 ..
loop 1 { T3:43 1if(m connection! =null ) branch b3’2 False
second iteration L T3:47 ... .

T4:145 m connection=sock ‘\\Ud(m_ConneCtlon, 43, 145)
loop 1 T3:43 if (m connection!=null) '
third iteration T3:44 .o s branch by, True

Figure 74. Execution trace of JoBo
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6.6.5 Experiment S: Apache Derby

Apache Derby [ApacheDerby10] is

a database written in Java. It has a higher

degree of concurrency because it has more non read-shared variables. In such a program,

our proposed method proves its significance because there are more potential concurrent

errors that are difficult to reproduce. One of the examples is shown in Figure 75.

DRDAConnThread_3

if (reader.isCmd())

wriper, session);
reader.initialze (this, null);
writer.reset (null);

CloseSession () ;

exchangeServerAttributes () ;

correlationID
reader.readDssHeader () ;

codePoint
reader.readLengthAndCodePoint () ;

________________________________________________________

Potential race condition
when branch is true.

Pair
affecting

ch. Thread-2

"reader = new DDMReader (this,
sessjon.dssTrace) ;

.writér = new
DDMWriter (ccsidManager, this,

segsion.dssTrace) ;

Pair not affecting any branches:
cause of redundancy.

Figure 75. The source code of Apache Derby

6.7 Experiment Results: Memory Reduction

In this section, we show the effectiveness of our proposed new method in

reducing the memory required for generating test cases. The work by T. E. Setiadi, A.

Ohsuga, and M. Macekawa [Setiadil3] requires a variant graph from the existing

reachability testing method. The effectiv.

eness of our proposed new method is

demonstrated by comparing the size of our proposed concurrent dependency graph

12
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against that of the variant graph. We discuss three experiments using the following
multi-threaded Java open source programs:
1. jNetMap [jNet09] is a network client for monitoring devices, such as PCs and
routers, in a network.
2. Apache Commons Pool [ApachePool06] is a generic object-pooling library from
Apache.

3. Jobo [JoBo06] is a web spider for downloading complete websites to a local
computer.

Table 18shows that the concurrent dependency graph proposed in this dissertation is
smaller in size than the variant graph in the existing reachability testing method.

Table 18. Comparison of the experiment results for existing variant graph and the
proposed concurrent dependency graph

Number of nodes Memory size (in bytes)

No Target programs

Existing* Proposed**  Existing®  Proposed™*
1  jNetMap Infinite 8 Infinite 320
2 Apache Commons Pool 990 4 71,280 288
3 Jobo Infinite 4 Infinite 160
4 JTelnet 42 1 1,680 40

Note:

* Existing variant graph from reachability testing method

** Proposed concurrent dependency graph

6.7.1 Experiment 1: jNetMap

There is an access to a shared variable in an infinite loop affected by another
thread. This causes an infinite sequence of read/write operations and creates a variant
graph of infinite size. Figure 76 shows only some parts of the variant graph from the
reachability testing method. Here we explain only one example that caused a
redundancy.
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index of thread T2 0,0

index of thread T-AWT-EventQ -0 -
¢ index of threa ventQueue 0 \ .
112: write

0 «—— version of S e : ;
pingInterval TR ud(..., 279, 112) 1
shared variable - ] W ; . ad

-' - - T~ - 69: writ
279:read 7 : r = Ud(..., 279, 69)
. N , i 1,1 1 . ;
20 | ud(..., 279, 69) r ' 1

: : / 2
AP F279:read? = "= : S < i
286: writg ! 112: write /| j%@ffd 279:18d [/ _ 6% Wf'tf/
; P 23:read /
; D .

| 30 2,1 _ 2,1 12 | 2,1 7| 2
- 2 2 : ._ 2 2 .. 2 2 /\ 2
/ \ 286:w:\i}e/ g\{fad s r%d . Bread / — 279:rea
1112: write : : i 3,1 .
31 3,1 2,2 | 3,1 P 9 . 2,2
' 3 1 2| 2 V6 :. | 286: write /\ V9 2
\ % rea\ 286: v/ite ! e WA [ 4,1
3,2 3,2 2,2 41 : [ 2 V10
3 3 3 | o Y : e
: : : L2 lovs oy V8 gut
VT vz v VA U2 S

Figure 76. Variant graph for the execution of jNetMap

Figure 77 shows the execution trace of the first execution. The reachability
testing method considers all different interleavings between the two threads that can
affect the values of shared variables. On the other hand, our proposed method considers
only different interleavings that can possibly change the outcome of the conditional
statement in line 279, so it generates fewer test cases. In this experiment, only the
conditional statement in line 279 might cause different sequences of lock/unlock and

read/write operations to shared variables.
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Thread T2 Thread T-AWT-EventQueue-0

69: pingInterval = obj.readFloat();,
: -~ ud(pinglnterval,

279: if (pingInterval <= 0) { .-~ 279 69)
280: ’
286: pingInterval = *\\\ udpodping|ntervah

parseFloat (interval.getText ()); ™. 279 112)

112: pingInterval =
parseFloat (interval.getText ());

123: obj.writeFloét(pingInterval);
Figure 77. Execution trace of the first test execution of jNetMap

Figure 78 shows a concurrent dependency graph for the branch from the
execution trace analysis of the first execution. The traversal of the concurrent
dependency graph in Figure 78 results in a set of guidelines in Table VII for generating
test cases. Table VII shows the set of guidelines for producing two test cases based on

the traversal of the concurrent dependency graph in Figure 78.

279: 1if (pingInterval <= 0) {

pingInterval
69: pinglInterval =
obj.readFloat () ;

112: pingInterval =
parseFloat (interval.getText ());

“define” “define”

279: if 279: if
(obj.readFloat () (parseFloat (interval.getText ())
<= 0) { <= 0) {

Figure 78. An example of a concurrent dependency graph for the execution of jNetMap

Table 19. A set of guidelines from the concurrent dependency graph in Figure 78

No. Guideline
1 gul =1 ud(pinglnterval, 279, 69 ) }
2 gu2 =1 ud(pinglnterval, 279, 112) }

The branch outcomes for the conditional statement in line 279 are determined

by the assignment from the write operation in either line 69 or 112. For a comparison
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with the existing reachability testing method, we created a variant graph in Figure 76

based on the execution trace in Figure 77.

We refer to the source code in Figure 79 to explain the cause of redundancy.
The truth value of the branch in line 279 is affected by the order of interleavings
between the assignment of the shared variable pinglnterval in line 69 and 112. The other
read and write operations to the shared variable pinglnterval in line 123, 284, and 286
do not affect the truth value of the branch in line 279, so different interleavings among
them are redundant. For exploring different execution paths caused by the branch in line
279, we have to consider only whether an execution-variant satisfies the ud(pinginterval,
279, 69) or ud(pinglnterval, 279, 112). In other words, we can group those

execution-variants into two groups and it is sufficient to test only one of each group.

Thread T2 Thread T-AWT-EventQueue-0

276: while (true) { ____

279:  if {pingIntervall<= 0) { Pl
280: T 123: obj.writeFloat{pingInterval).;
283: } else {
284: Thread.sleep(-{int) __

(60000%pingInterval)) ;
2851 }iceeeemeee T ’
286: (p}nglnterva;>=

ParseFIZat (interval.getText ());

Figure 79. The source code of jNetMap

6.7.2 Experiment 2: Apache Commons Pool

The reachability testing method uses a variant graph with 990 nodes to generate
216 test cases. However, most of them do not affect the occurrence of the race condition.
As shown in the work by T. E. Setiadi, A. Ohsuga, and M. Maekawa [Setiadil3], only
two test cases are actually required. Figure 80 shows that we require a concurrent

dependency graph with only 4 nodes to generate those two required test cases.
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906: 1f(0< numActive)

“use”

A 4

_numActive

126: numActive = 0 765: numActive++

“define”  “define”

906: 1f (0<0) 906: if (0< numActive++)

Figure 80. An example of a concurrent dependency graph for Apache Commons Pool

Figure 81 shows the execution trace of the test program containing race
conditions. The reachability testing method considers all different interleavings that
affect the values of shared variables among the three threads in Figure 81. Our proposed
method generates fewer test cases because it considers only those interleavings that can
possibly affect the conditional statement in line 906. Figure 80 shows a concurrent

dependency graph from the execution trace in Figure 81.

Thread T1 Thread T2 . Thread T3
ud(_numActive,
906, 126) ,
126: int numActive = O;'“~_,/

392: pool = new ) : oL

CursorablelLinkedList () ; 906: 4 if (0 < _nunLActJrve) {

1025: Iterator it = branch . \“Z“u-\‘\; 765: _3umActive++;

_pool.iterator(); _numActive--; v
_numActive--; ud,.(_numActive,

906, 765)

_pool = null;

Figure 81. Execution trace of the experiment using Apache Commons Pool

Based on the set of guidelines in Table 20, our proposed method generates only
2 test cases. Figure 82 shows a piece of code to explain the cause of redundancy in the
reachability testing method. The conditional statement in line 906 depends only on the
values of the shared variable numActive affected by the interleavings with the
assignment in line 765 of the thread 73. The access through the reference variable pool
depends on interleavings, but it does not affect the conditional statement in line 906.
Hence, different interleavings that are affecting the reference variable pool are

redundant. Figure 83 shows the concurrent dependency graph for the reference variable
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_pool.

Table 20. A set of guidelines from the concurrent dependency graph in Figure 80

No. Guideline
1 gul =1{ ud_numActive, 906, 126 ) }
2 gu2 =1 ud_numActive, 906, 765 ) }
Thread T1 Thread T2 Thread T3
126: int numActive = 0; 715: public Object
: borrowObject () |
branch.| 904: public synchronized void Leememreeees -
etFactory (PoolableObjectFactor _“76557:_pumActive+f;
392: _pool = new y Xactory) throws e IR -

CursorableLinkedList () ;

1025: .Iterator it =
[ _pool.iterator();

e

I11e alStathxeeptieﬂ~¢::'"
906: if {0 < _numActive): {
907: tHTow -new-- -+

IllegalStateException ("Objects
are already-active");
908: {} else {

-s”

. 910: _factory = fagﬁgr ;

The interleavings - 911:  } .
do not affect ' 912:}
conditional
statement in the P e ——
branch. / : s

.__numActive--;

_pool = null;

}

. A shared variable affects

a conditional statement
in a branch. Hence, the
truth value can be
affected by different
interleavings.

\_ The interleavings affect
conditional statement in
the branch.

Figure 82. An example of a test program using the Apache Commons Pool library

392: _pool =

new
CursorablelLinkedList () ;

1025: Iterator it =

_pool.iterator();

“define” “define”

1258: _pool =

null;

1025:
new

iterator () ;

Iterator it =

CursorablelLinkedList() .

1025: Iterator

null.iterator();

it =

Figure 83. Concurrent dependency graph for the reference variable pool
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6.7.3 Experiment 3: JoBo

In this experiment, we downloaded a website from Yahoo [Yahoo] and saved it
in a local computer. Similar to Experiment 1, there is an access to a shared variable
within an infinite loop. This shared variable is affected by another thread, thus causing
an execution trace of infinite length accessing the shared variable. The reachability
testing method produces a variant graph of infinite length and infinite number of test
cases because of the infinite length of execution trace. However, actually only two test
cases are required as shown in the work by T. E. Setiadi, A. Ohsuga, and M. Maekawa
[Setiadil3].

Figure 84 shows the execution trace of the first execution. Note that loop 1 is
an infinite loop. The infinite loop in the thread 73 is accessing a shared variable. For
each access to a shared variable in the loop iteration, its value can be affected by the
assignment from the thread 74. Therefore, the reachability testing method generates
infinite test cases because it produces a different test case for each iteration in the
infinite loop. Our method identifies that only some of the iterations are sufficient for
checking consistent locking, because the concurrent-pair of access-manners generated

for each iteration is the same as in the previous one.

First re-execution :
T3:9 m_connection = null -~ ud(m_connection, 43, 9)

100p 1 { T3:43 if (m_connection '=null) o » branch b3’1 False
first iteration T3:47 e
loop 1 { T3:43 if(m connection!=null)--"" » branch b, , False
second iteration L T3:47 e .

T4:145 m_connection=sock ._ud(m_connection, 43, 145)
loop 1 T3:43 if (m_connection!=null) ’
third iteration { T3:44 e e T > branch b;, True

Figure 84. Execution trace of the first test

Figure 85 shows a concurrent dependency graph for the branch from the
execution trace analysis of the first test execution in Figure 84. Based on the traversals
of the concurrent dependency graph in Figure 85, our proposed method produces the set

of guidelines in Table 21. We then generate two test cases based on Table 21.
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43:

if (m_connection != null) {

9: m connection
null

“define”

145:
sock

m_connection

“define”

43: if(null != null) {

|43: if(sock != null) {

Figure 85. An example of a concurrent dependency graph for JoBo

Table 21. A set of guidelines from the concurrent dependency graph in Figure 85

No. Guideline
1 gul ={ ud(m_connection, 43,9 ) }
2 gu2 =1 ud(m_connection, 43, 145 ) }

Figure 86 shows the piece of code that affects the test case generation. There is

an infinite loop in the thread 73 accessing a shared variable. From the execution trace of

the first execution, the reachability testing method produces a variant graph with infinite

nodes. For each node, an execution-variant can be created by making a different order

of interleavings for an assignment from the thread 74, hence causing an infinite number

of test cases.

infinit/e

loop
*

/

branch
affected
by a
shared

Thread T3 Thread T4
09: m connection = null; ( def 123: public void run()
40: for ( ; ; ) | % | 145: m_connection =
// Check connection } /
43: if(m connection != null)
y break; \\ /
45: else {
// Check error \\\\\\\ _
47 shared variable

if (isError()) {

}

variable

{

sock;

m_connection

Note:

Figure 86. The source code of JoBo

* operations affecting branch.

The first and second loop iterations of the execution trace in Figure 84 satisfy
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the first use-define in the guideline gu/, whereas the third iteration satisfies the second
use-define in the guideline gu2. The first iteration of the infinite loop has the same
concurrent-pair of access-manners as the second iteration, whereas the third one has a
different concurrent-pair of access-manners. All possible different concurrent-pairs of
access-manners in the iterations of loop 1 have been explored, from the first iteration
until the third one. Therefore our proposed method does not need to test all the infinite
loop iterations, because the remaining loop iterations will not produce different
sequences of lock/unlock and read/write operations to shared variables.
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Chapter 7. Discussions

The proposed method is intended to be used for debugging multi-threaded
concurrent programs as complement for dynamic race detector tools. Specifically
in the case when the exact timing information when the error happened is unknown.
Dynamic race detector tools detect potential race condition from a particular
execution trace. When there is only limited information from the execution trace
when the error occurred, then it is possible that the actual execution path might not
be exactly reproduced because different interleavings caused different branch
outcome. Hence, the dynamic race detector tools might not detect the existence of
error. In order to reproduce the error, one has to replay the concurrent program

many times by changing the timings/interleavings.
7.1 Applicability

The proposed method is applicable for the following program characteristic,

error types, and environments:

7.1.1 Program Characteristics

® Concurrent programs that are using lock mechanisms, for example Java, C, and

C++.

» Applicable for procedural or object-oriented languages. Our detection for race
conditions only concerns about the sequence of lock/unlock and read/write
operations to shared variables. The lock/unlock and read/write operations to
shared variables can be called from another function or method. It justifies the
correctness of the program by checking program execution whether all
read/write operations to shared variables are protected by consistent locks.

® Program structure: It manages to detect/reproduce concurrent errors caused by
interleavings and various program structures such as branches, loops, interrupts,

pointers, reference variables, file references, and arrays.
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Program Structure

Reasons why errors
are difficult to be

Interleavings cause different

execution paths.

Interleavings cause variables to

refer to different data.

detected/reproduced.
Program structures. |- Branch: if, Interrupt Variable — data
switch.
- Loop: for, - Pointer (in C) — memory
while. address
- Reference variable (in Java) —
object
- File reference — file
- Lock variable — lock object
- Index of an array — element of
an array
- Iterator — element of an array
Solution by the Use dependency |Apply the Use dependency graphs to
proposed method to |graphs to concept of determine interleavings that can
detect/reproduce determine interrupt as a change the data.
erTors. interleavings thatjthread. Hence
can change the [checking
conditional interrupt timing
statement. become checking
interleavings, so
he proposed
ethod can be
applied.
Array

When an array is shared, the actual element that is shared depends on the index

of the array. The value of the index to specify a particular element might not be known

until the actual execution. The index could be specified by a variable whose value can

depend on input and interleaving. Depending on interleavings, the particular element

specified during the execution might be different even though the same execution path
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is executed. To be safe, programmers can take a conservative approach by considering
all elements in an array to be shared when we are checking for race conditions.
Unfortunately, locking an entire array would decrease concurrency because other
threads have to wait to access different elements. To increase concurrency, sometimes
programmers divide the values of the index into several groups and use separate locks
for each group consistently during programming. For an array, programmers need to
specify whether the array has to be accessed as a whole, or it can be accessed
individually for each element. In the later case, the proposed method will generate test

cases based on the index of array or the iterator.
Concurrent Programs with Interrupts

The proposed method can also apply to concurrent programs with interrupts by
treating an interrupt as a thread. Interrupt handling programs might necessarily access
shared variables or locks, which might cause race conditions or deadlocks. To ensure
program correctness, it is necessary to check accesses to shared variables and lock
consistency when an interrupt or event is processed. Based on the origin of the interrupt,
we classify two types of interrupts:

® Internal interrupts: caused by an illegal CPU execution, such as buffer
overflow, divide by zero, memory protection violation, etc. For this type of
interrupt, it is natural that the program thread processes the interrupt handing.

® External interrupts: caused by a device other than CPU in the timing that is
independent of (no relation to) the program thread progress. Most real-time
applications are composed of processes that deal with interrupts from external

sources such as signals from sensors, network interfaces, and I/0O devices.

This dissertation proposes to change an interrupt handling processing into a
thread. When an interrupt occurs, a corresponding interrupt handler is executed as a
different thread. In this way, interrupt timing’s problem is translated into a
synchronization and/or interleaving’s problem. Thus, testing interrupt timing
problems can be handled in the same way using the proposed method in Chapter 5

as concurrent programs.
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Interrupt handler within Interrupt handler as a thread
the interrupted thread
Thread Thread Interrupt
Thread Thread T1 T2 handler
T T2 thread
Normal
Normal Interrupt execution
execution | occurrence
/
Interrupt
Interrupt handler
handler
The interrupt handler competes resources
The interrupt handler might with T1 and T2, and their critical sections
compete resources with T1 and T2. freely interleave with each other.

Figure 87. Interrupt as a thread

For realizing interrupt-as-a-thread, there are two basic approaches. In the first
method, a separate thread, namely, an interrupt processing thread, is assigned to
each interrupt signal. Thus interrupt processing thread directly receives an interrupt
signal and then handles it. In the second method, the central interrupt dispatcher
process receives all interrupt signals and then dispatches its processing to an
interrupt processing thread. In either of these two methods, interrupt processing
threads can be newly created every time interrupt is received, or prepared

beforehand at the system start up.
Advantage of Making an Interrupt as a Thread

There are three advantages in making an interrupt as a thread.

® Easier for testing: the problem of checking interrupt timings is reduced to the
problem of checking interleavings among the threads including the threads for
interrupt processing. The exact timing of interrupt occurrences is no longer
need be concerned.

® Deadlock avoidance: A deadlock occurs when the interrupt handler tries to
acquire resources (ex. a lock) that is currently occupied by the interrupted
thread. If we design a system following the principle of interrupt-as-thread, we
can avoid the deadlock caused by a competition of resources between the

interrupted thread and the interrupt handler, because the thread scheduler can
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switch control to the interrupted thread and continue the execution until the
resource is released.

® Easier for programming: In order to avoid deadlocks, or to in order to avoid
that resources are locked for a long time during interrupt processing, one
traditional programming style for a critical section is to entirely inhibit
interrupts during its entire execution. This is no longer needed by making an
interrupt as a thread because the delay is guaranteed to be short, namely, the

time to trigger an execution of an interrupt handler thread.

Interrupt handler executed Interrupt as a thread
in the interrupted thread
P t1 Interrupt handler
t1 thread
Maormal Lock a
executian ;
Marmal Lock a F,,f‘mterrupt
executond 0 | TTTTrmmmmeeee—as .
— Interrupt Interrupt | Try to acouire lock a (waiting)
handler
Interrupt Try to acquire lock a e mmmmmm==
handler Continue
Deadlock narmal
execution Y Release lock a
________________ .
Acquire lock a
No deadlock
The interrupt handler might The interrupt handler campetes resaurces with
Compete resources with thread t1 thread t1 and other threads, and their critical
and other threads. sections freely interleave to each other.

Figure 88. Deadlock can be avoided by following the interrupt-as-thread principle.

Disadvantage of Making an Interrupt as a Thread

The disadvantages of making an interrupt as a thread are:

® [ess responsive: since the interrupt handler runs as a thread, its execution will
depend on the thread scheduling and might be preempted by others.

® Processing order: since the threads for interrupt processing are under the control
of thread scheduler, their order of processing may not be the same as the
occurrences of the interrupts. This may cause problems when a series of interrupts
are expected to be processed as a stream, for example processing a series of input

signals from the same device.

Preservation of Interrupt Processing Order
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Depending on the nature of processing, there is a need to preserve the
interrupt order. Take an example in which an interrupt comes from each “different”
ATM for account processing such as cash deposit or withdrawal. In this case, the
precise timing and order of the interrupts may not be so important. In fact, these
requests may compete for resources to each other. On the other hand, in the case

where a series of interrupt come from the same ATM, the order need be preserved.

It is difficult to control the order of execution as in the original program only
by controlling scheduling. Another alternative solution is by using some graph
model such as Petri Net model to preserve the interrupt order. When the order of
interrupts does not need to be preserved, we can create/use different nodes for
handling different interrupts. When interrupt order needs to be preserved, we can
assign all the interrupts to be handled by the same node so that the next interrupt

will be executed after the current interrupt handling finishes.

7.1.2 Error Types

® Race condition

® Deadlock

The proposed method can also be applied to detect/reproduce deadlocks as well using
an existing deadlock detector. In fact, detecting a deadlock is easier because it

considers only the sequence of lock/unlock (see Figure 89(b)).
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(b)

Thread T1 Thread T2

Race Error:
_—
lock a detector Access to a
read x U N shared variable
O write x Sequence of lock/unlock not protected by
unlock a T and read/write to shared -
unlock a . consistent locks.
variables.
{ lock a ‘
{ lockb Deadlock Error:
e T detector Inconsistent
unlock a order of
) Sequence of
unlock b q locks.
+ lock/unlock.
lock b
lock a /

Figure 89. Comparison between race detection (a) and deadlock detection (b)

7.1.3 Execution Environment

® Availability of source code.

» Some information from source code is required for tracing, for example

variable names, class names, line of code, etc and of course source code is

required for fixing the bugs.

® Tracing capabilities to record lock/unlock and read/write operations to variables.

® Deterministic testing: using specialized virtual machine or instrumentation for

controlling interleaving, i.e. thread switches.

® No bugs in the compiler, virtual machine, or processor.

>

The proposed method is intended to check whether programmers have written
their code correctly by using appropriate locks for accessing shared variables.
Even though a source code is written correctly, concurrent errors might still
occur if there is a bug in the compiler or Virtual machine that violates memory
consistency. Such concurrent errors caused by the compiler or virtual machine
might not be detected by the proposed method (see Figure 90). The read/write
operations can be re-ordered for optimization purpose by the compiler, virtual

machine, or processor. However, the happen-before relationship for
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lock/unlock to the same lock object must be guaranteed to be correct, otherwise
it will give false alarms. For programs using lock mechanisms, such

happen-before relation must be guaranteed.

Detected by the proposed method:
Inconsistent locking because:
- Programmers forgot to write locks
Source code @ 9 9
- Unpredicted execution paths caused by
Thread T1 Thread T2 interleavings and branches

Memory consistency model:
(" Ex. - Sequential Consistency (SC) [Lamport79]
- Total Store Ordering (TSO)

program order

re-ordering
by compiler < - Relaxed consistency

Execution or Virtual - As-if-serial within a thread n
Machine

- Happen-before relationship among | Java

store , \_ threads
execution order
load

load NOT detected by the proposed method:
N Violations in memory consistency because:

- Bugs in compiler

-

- Bugs in Virtual Machine

- Bugs in processor, ex. cache coherence

Figure 90. Memory consistency
7.2 Limitations

® Intentional race conditions.

» If a concurrent program is designed with some race conditions that are
intentional, for example, to speed up the process, then the proposed method
will report them as false positives. Such writing of code is not usually
recommended. Such a situation happens when programmer are certain that the
program will behave correctly even though a race condition occurs. It requires
manual analysis and currently beyond the scope of our proposed method.

® Synchronization other than lock mechanism, for example barrier [Nishiyama04].
® Real Time.
» The proposed method focuses on detecting errors caused by interleavings of
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threads. However, it cannot measure exact timing; for example it cannot check
a case such as, whether after a particular interrupt, the next interrupt must come
within 2 seconds. Therefore the proposed method cannot be applied as in the
current form for checking the correctness of critical real time applications.

® Time interval.

» Using commands to “wait” for a fixed period of time, for example wait(100ms),
will cause some interleavings to become infeasible. Some commands in the
same thread after a wait command would not be interleaved immediately with
other threads because the thread is suspended for a period of time. For example,
in an extreme situation, other threads might have finished, so the waiting thread
continues its own execution without interleaving with any other threads. Since
our current method does not consider the usage of wait command for a fixed
period of time, our algorithm might generate some interleavings that are
infeasible. However, we consider using a command to wait for a fixed period of

time to be a bad programming practice.
7.3 Efficiency

The efficiency of the proposed method to reproduce errors is measured by
how much it can reduce the necessary test cases while still maintaining to cover all
the race-equivalent groups. The proposed method is efficient in reducing the
number of test cases by considering only different interleavings that are affecting
race conditions. The efficiency of the proposed method depends on the structure of
the target programs. It performs efficiently in a concurrent program which has
complex sequences of lock/unlock in branches. Such complex structures often
make it difficult to reproduce concurrent errors because different execution paths
caused by different interleavings often execute different sequences of lock/unlock

and read/write operations to shared variables.

Our proposed method significantly reduces the number of test cases by the
following means:
® Grouping together different interleavings that do not affect consistent locking
using the concept of race-equivalence.

® Testing only one member of each group.
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The debugging efficiency is primarily measured by the number of test cases.
The minimum number of test cases required is the number of race-equivalent
groups. In order to improve the efficiency for reproducing the errors, we extend the
past work [in particular, Hwang95] for reachability testing of concurrent programs.
Many existing methods try to identify all interleavings which may affect shared
variables, whereas our method can identify only those interleavings which affect
branch outcomes. The advantages of the proposed method are an improvement in
efficiency by the following means:
® Reduction of test cases that do not change execution path.
® Reduction of the amount of work for checking race condition in execution
paths with the same set of access-manners to shared variables.
® Creation of a new execution path can be identified and created by combining
the branch-paths found in the previous trace without further replaying the

program.

The proposed method performs efficiently for concurrent program in which
branch outcome and loop are not much affected by different interleavings. This
happens when the conditional statement for the branch or the conditional for the
loop are affected by only few shared variables and few dependent concurrent
operations that can change their values. We performed data flow analysis for some
case studies in experiment section and found that two of them, that is WebLech
[Weblech02] and WebHarverst [Wbhv07], satisfy this condition. For those two
case cases, experimental results shows that our proposed method is superior and
achieves the reduction as much as 90% of test cases compared to those partial

order reductions.

Similar to reachability testing, our method is also exhaustive in the way that
the test cases are created systematically and all the possible combination of
execution paths from the threads can be explored if the number of interleavings is
bounded. In the presence of infinite loop or in reactive system that does not
terminate, the number of possible interleavings might be unlimited and causes
unlimited execution paths. Even in such situation, our proposed method groups
different execution paths with the same access-manner to shared variables in to the
same race-equivalent group and test only one of them. Therefore the number of test

cases 1s bounded by the number of branches. Since we test only one member from
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each race-equivalent group, it is possible that the error was reproduced from
different execution path, but it has the same access-manner to shared variable as in
the execution path when the actual error occurred. This should be sufficient for the
purpose of race detection because the same cause of error, i.e. the lock

inconsistency, exists in both execution paths.
7.4 Complexity

The complexity of the proposed method is in factorial order, which is
required for creating/grouping variant graphs and creating/traversing concurrent
dependency graphs (refer to operations B in Figure 91). Other operations are for
obtaining information from execution traces which are in linear order complexity

(refer to operations A in Figure 91).

- Number of shared variables
-- Number of write operations (main factor)
- Number of threads
-- Only threads which contain shared variables

- Shared variables related to conditional
statements
-- Indirectly affected by the number of branches

o~ 7

Number of Number of
. Trace length
Parameters: g > interleaving > interleaving
Greater | dependent | Greater | dependent operations
than operations | than affecting branches

| Existing | | Proposal 1: | Proposal 2:

i 'Tace gt ireat_:hab|l|ty | ! reduce test | | reduce test cases |
- 8Nalysjs ! testing . o :
28 : 1 | Gases i+ and memory |

............................
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Case 1: Case 2:
- Number of threads =1, or - (other than case 1)

- Number of interleaving
dependent operations = 0

(same as sequential programs)

Workload 4
@ linear
constant

0 >
A: trace length

B1: number of interleaving dependent operations Experiment
B2: number of interleaving dependent operations affecting branches /

Actual Time taken (in seconds)
workload Target program Operation A | Operation B2
from the
. Apache Common Pool 24.3 0.5
experiment
jTelnet 421.5 0.3
jNetMap 38.8 0.3
JoBo 88.1 0.2

Trace analysis Test case generation

Figure 91. Complexity and the actual workload of the proposed method

The calculation for the complexity will be derived as follows.
Let:
® m: number of threads, m > 2.
® : number of interleaving dependent read/write operations, n = 0.
- n=0% means there will be no concurrent errors.
® p: percentage of n which are affecting branches.
- p=0% means interleavings are not affecting any branches.
® 7., :number of interleaving dependent read/write operations in thread 77.
® interleaving dependent read/write operations: read/write operations to shared
variables in which the value of the shared variables can be affected by the

interlavings of the read/write operations.
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Interleaving dependent
> read/write operations
affecting branches

Read/write Interleaving dependent
operations > read/write operations

|
“

Figure 92. Classification of read/write operations

N

. . . n! 1
= = ' - m — -
Number of possible interleavings (nr)!(nr)!(nra)t (nrm)! n! - 12, or)! (7-1)

See some examples in Appendix A.

Take the worst case where operations are distributed equally among threads, hence each

. n N
thread will have — number of operations. Therefore np; = npy, = Np3= Ny, =
m

2=

(7-2)

In the worst case (7-2), the number of test cases for the existing reachability testing will
become (7-1)(7-2):

| (%), - ((%;u)m (7-3)

Stirling's approximation [HazewinkelO1]:

n
| =~ n -
n = V2mn () (7-4)
Approximate equation (7-3) using Stirling's approximation (7-4):
n! mOo-SMm.mn .
= — 7-5), see Appendix B for the detail proof.

In most cases, the number of operations () is much larger than the number of threads

(m), 1.e. n > m. Take the largest order from equation (7-5) to measure the complexity:

® Existing reachability testing method: O (m™) (7-6)

® Proposed method: since our proposed method only concerns with the interleavings
affecting branching, the complexity: O(mP™) where 0% < p < 100% (7-7)
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The order of complexity does not change, but since 0% < p < 100%, the complexity
of proposed method (7-7) is less than the existing method (7-6), or it is equal to the
existing method in the worst case when p = 100%.

From the experiment results, the value of p is between 0% and 33.3%.

Similar to a Worst case:

sequential same complexity

program: as the existing
no concurrent reachability testing
errors. method.
More reduction Less reduction
< > J
0% 20% 33.3% 100%
p A A A A

» Apache Derby [ApacheDerby10]

» Apache Commons Pool [ApachePool06]

* jNetMap [jNet09]
* JoBo [JoBo06]

* BlueJ [BlueJ09]
* Baralga [Baralga10]
* JTelnet [JTelnet03]

Figure 93. The percentage of operations affecting branches for several target programs

Figure 94 shows the operations affecting branches for the Apache Commons Pool.
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Interleaving dependent r/w operations, n = 10.

T1

r AN

r g

T2 T3
T b v Operations
\ brgneh r @ /" affecting p n=2
*\\ w b “\) branch.
ro |
p= 2 x100% = 20%
W o 10
r® Note:
w Q Variables: Operations:
A\ 1 _factory r: read
w (][] [ : _pool w: write

O :_numActive

Figure 94. Operations affecting branches for the Apache Commons Pool

7.5 Correctness

Scope

® Target: concurrent programs with lock mechanism.

® Definition for a race condition: exist an interleaving where two threads are

accessing the same data without protected by consistent locks.

Precondition

® For detecting/reproducing concurrent errors, the proposed method will have an

execution trace with the same input as when the concurrent errors occurred.

(7-8)
¢

<>

The execution trace contains the sequence of lock/unlock and read/write
operations to shared variables.

However, the concurrent errors might not be detected/reproduced in that
execution trace because the interleaving might be different from the one

when the concurrent errors occurred.
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For detecting/reproducing the concurrent error, the proposed method will generate

different interleavings from the execution trace stated in precondition (7-8). Test case

reduction by the proposed method is achieved by:

1. Group the interleavings generated from the existing reachability testing into several
race-equivalent groups. (7-9)

2. Test only one member from each race-equivalent group. (7-10)

Reasons why concurrent errors are difficult to be detected/reproduced (refer to
Applicability subsection):
- Interleavings cause different execution paths. (reason 1)

- Interleavings cause variables to refer to different data. (reason 2)

Correctness: we have to prove there are no false alarms in the proposed method.

- A. No false positives : must not report any concurrent errors which actually do not
exist. (7-11)

- B. No false negatives : concurrent errors must be detected/reproduced even though

not all interleavings are tested because of reduction by the proposed method.

(7-12)
Correctness:
No false alarms
A. No false B. No false
positives negatives
Reasons why concurrent errors are
difficult to be detected/reproduced
B1. Interleavings cause B2. Interleavings cause variables to
different execution paths refer to different data.
- Pointer, reference variable, file reference,
- Branch, loop index of an array

Figure 95. Proof for correctness
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A. Proof for (7-11): No false positives

Proof that if a program does not contain concurrent errors = proposed method does not

generate interleavings that contain concurrent errors.

Definition:
® J: execution variant. A different read/write sequence that affects the values of

shared variables.

® Reachability: set of execution-variants from reachability testing method.
»  Reachability={ V1, V2. V3, ... VN, N=the number of execution-variants.

® oj : race-equivalent group. Withi =1, 2. 3. ... . M. M = number of race-equivalent

groups.

Lemma: Reachability testing does not contain false positives.

If a program does not contain concurrent errors = the reachability testing does not
generate any interleavings that contain concurrent errors.
Since the reachability is just changing the order of interleavings and does not remove

any locks, it will not cause any sew-concurrent errors_that actually do not exist.

Assume there is no concurrent errors =*in _a program, then from the prepesed
methedLemma above:
For V'V where V & Reachability =V does not generate—interleavingscontain

concurrent errors.

Proof that all members in that race-equivalent groups do not contain concurrent errors.
Proof:Foralli=1,2.3. ... . M, YV € gi = V does not contain concurrent errors.

Since the proposed method only groups the interleavings generated—by—the—existing
reachibilitytesting (7 9)—Henee,no-matter howfrom the algerithmreachabililty testing
method, so if V' € gi = V & Reachability

From the Lemma, for th%gfeﬂpmg—ts—ﬁ—w%ket—erea%%aﬂ%n%wheeﬂeufrenpeﬂeﬁ—aﬁer
hat V'V where V €

Reachability = V does not contain concurrent errors.

By implication;—we—can—conelude—that:: VJV € gi = V does not contain concurrent
erTors.

If a program does not contain concurrent errors = prepesed-method-doesnotgenerate
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interleavings-thatall members in race-equivalent groups do not contain concurrent errors.
® QED.

B. Proof for (7-12): No false negatives

SuppeseAssumption: there is an interleaving that contains a concurrent error_in a
program, let’s say Vo

We-have-to-Prove that there is a race-equivalent group, let’s say g/, in which:
- The V0, 1s @ member of the g/. Verror € gl (7-13)
- All members in the g/ contain the same error as in the V... VV € gl =5 V7

contains the same concurrent error as in the Vo (7-14)

Lemma:

Our proposed method will test one interleaving from each race-equivalent group. Hence,

the concurrent error will be detected when one of the members from the race-equivalent
group ¢/ is tested. @ QED.

Lemma: The reachability testing does not contain false negatives.

Assume that a concurrent program contains an interlaving, V... that contains

concurrent errors = Voo € Reachability.
In other words, 3V where V€ Reachability and V = V,,,,,

Given an execution trace as stated in precondition (7-8), the reachability testing will

generate different interleavings which contain the concurrent errors. See Appendix C for
the proof.

Proof for (7-13):

Proof that if a concurrent program contains an interleaving that contains concurrent

errors, let’s say Ve, then the V,,,,, will exist in one of the race-equivalent groups.

Tgi wherei=1.2.3..... number of race equivalent groups, so that Vorror € @i

From (7-9), the proposed method groups all interleavings generated from the existing
reachability testing into several race-equivalent groups. From the lemma above, the
existing reachability testing will generate the interleaving that contains the error, Ve,

so it will be grouped into one of the race-equivalent groups. We—name—the
racc-cquivalent group that contains the Foas ¢/ BB QED.
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Proof for (7-14):

B1
Different execution paths

B2
Different data

® The proposed method identifies the set

® The proposed method identifies the

of use-defines that is affecting set of use-defines that is affecting
conditional statements in branches variables (VarRelUD).
(BranchRelUD). ® Then it groups the interleavings with
® Then it groups the interleavings with the same JVarRelUD into the same
the same BranchRelUD into the same race-equivalent group.
race-equivalent group. ® Variables within the interleavings
® Interleavings with  the same with the same VarRelUD will refer to
BranchRelUD will have the same the same data.
branch outcomes.
| Implies
The proposed method groups the | The proposed method groups the
interlavings with the same branch | interlavings in which the variables’

outcomes into the same race-equivalent

group.

accesses refer to the same data into the

same race-equivalent group.

| Im

lies

all

race-equivalent group:

For members in the same

The same thread will have the same

all

race-equivalent group:

For members in the same

The variables’ accesses will refer to the

sequence of lock/unlock and read/write | same data.
operations to shared variables.
| Implies
For all members in the same|For all members in the same

race-equivalent group:

The thread that contains the concurrent
error, let’s say thread 7., will have the
of

read/write operations to shared variables.

same sequence lock/unlock and

Hence the same concurrent errors exist in
the thread T.,.., of all members in the same

race-equivalent group.  (7-15)

race-equivalent group:

The variable that causes the error, let’s
SAy VaAFemor, Will refer to the same data.
Hence the same concurrent errors exist
when the var,,,,, is accessing the data for
all members in the same race-equivalent

group. (7-16)
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From (7-10), (7-15) and (7-16)

We will test one interleaving from each race-equivalent group (7-10). When the
race-equivalent group that contains the V., 1s tested, the same concurrent error will be

detected no matter which member is selected. This is because all members in the same

race-equivalent group will contain the same concurrent errors (7-15) (7-16). ® QED

Figure 96 is an example for the case B1. The interleavings no.1 and no. 2 will be in the

same race-equivalent group. Both will contain the same error. No matter which one is

chosen (no. 1 or no. 2), the concurrent error will be detected.

Thread T1 Thread T2
1 CS X '; CS, x |
branch v
S true false path 3
v CS, X CSy; X |
error - Note
. | r CS : critical section
path 1 path 2 X : shared variable
No. Possible Branch Concurrent
interleavings outcome paths
1. CS5ax. CSix, C81x True pathl || path3 g1 -> contains error
2 CSix, CS1x, Clax True pathl || path3
3. Cirx. C8ax, CSix False path2 || path3 g2 -> no error

Figure 96. Example of a concurrent program with an error

7.6 Future Work

7.6.1 Correctness Criteria
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Translating interrupt as a thread might reduce responsiveness as it would
depend on scheduling. By measuring the responsiveness of interrupt and use it as
one of the criteria to decide the correctness of multi-threaded concurrent program,

our method can be applied for real time system.

7.6.2 Target Program

Currently, our proposed method is applied to the actual target program
written in Java language. Another existing work from [YuO8] proposed
prototyping for software testing and showed its benefits. Applying our method to a

prototyping language could be one direction for further research.

7.6.3 Scope

Also for the future work, the method can be extended not only for debugging,
but also apply it for testing all possible executions. In the current proposal, we
concentrate on checking the possible interleavings and interrupt timings restricted
for fixed values of the input variables. There are some existing systems for test
generation for branch coverage. Some generates input data that exercises a selected
branch [Prather87], [Gupta00] based on execution based approach. It is necessary
to investigate whether we can utilize the existing method to extend our proposal

for testing and also the possibility to help reducing false positives.

7.6.4 Reduction of the Load of Execution Trace

A checkpoint/restart scheme can reduce the load of execution trace. A
checkpoint method allows a program to resume from a checkpoint, thus eliminating
re-executing of the same portion of program code up to the checkpoint each time an
execution trace is taken. This method is called “prefix-based testing” [Hwang95]. It
allows starting non-deterministic testing from a specific program state other than
the initial state. Our proposed method can also take the advantage of prefix-based
testing. Here are the steps:

® Put check point at every parent node of the execution variant node in the
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execution variant graph.
® For testing an execution variant, start from its parent node (not from

beginning) and then execute it non-deterministically.

By employing a check point system, we avoid repeating the same execution
up to the execution variant node. The efficiency can be improved by performing
interleaving gradually step-by-step, accumulating the intermediate result to be
utilized for the next step. By continuing from the last check point, the next debug

step can be done in a minimum effort.

7.6.5 Reduction of the Need for Executing Test Cases

The verification of an execution path does not necessarily require the
execution of the path. A new execution path can be identified and created by
combining the branch-paths found in the previous execution trace without further
testing the program. We use this technique to further reduce the need for executing

the test cases.

An execution path from a thread contains sequence of branch-paths from
each branch execution. A branch-path is an execution from one branch to the next
branch in the execution trace of a thread. For each execution, the truth value of the
branch-path could be either true or false. Suppose we obtain the following
information from a trace:

1) Initial execution trace:

» Thread 7 creates branch-path 4, thread 72 creates branch-path P.

» There is an execution path where branch-path 4 is concurrent with
branch-path P (Figure 97(d)).

1) Execution trace from the test case:

» Thread T creates branch-path B instead of the branch-path A4, thread 72
creates branch-path Q instead of branch-path P.

» There is an execution path where branch-path B is in concurrent with
branch-path Q (Figure 97(c)).

Then the two new execution paths can be created by combining the information from
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the initial execution trace and the execution trace from the test case without further

executing the program:

® Branch-path 4 is in concurrent with branch-path Q (Figure 97(b)).
® Branch-path B is in concurrent with branch-path P (Figure 97(a)),

Execution path combination 1

Execution path combination 2
T1 T2

(b)

’ 2,1
True \ \ True

Execution path combination 4

T1 T2

b

Fa:I’;e é) é b2’1

K K False
A P

(d)

Figure 97. Example of execution paths combinations

The possible number of combinations for the branch-paths will be maximum

when there is no nested branch. For n branches with no nested branch, the possible

number of all combinations is 2". Figure 97 shows an example of two threads with

one branch each, since there are two possible execution-paths for each thread, we

have four possible combinations of execution-paths.

Since our program executions are limited by a fixed input for debugging

purposes, only those possible execution paths under the given values of the input



variables will be executed. It means that not all branches will change the execution
path. The test is finished when all the possible combination of execution-paths have
been checked.

Algorithm 12 shows how to create a new execution path by utilizing
information from execution trace.

Algorithm 12. Creating a new execution path by utilizing information from execution
trace

Input:
- A test case
- Branch-paths history: contains previously executed branch-paths
Output:
- New execution-paths labeled as either “no race condition” or “potential race

condition”

Step 1 If the test case changes the branch outcome then {
create new execution paths by combining the new branch-path with the
existing ones in the branch-paths history
Step 1.1 for each new execution path {
check the new execution path using existing race detector tool
if no race was detected then {
label the new execution path as "no race"
else {
label the new execution path as "potential race"

}

add the new branch-path into branch-paths history

The number of test cases can be reduced because we can ignore the next test
cases that lead into the new execution path labeled as "no race". The new execution
paths labeled as "potential race" might be a false positive which will become a race
if exists a test case that could lead into the combination of execution-paths. This

should be explored in the next test cases.
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Chapter 8. Conclusions

In this dissertation, we have proposed efficient methods for reproducing
multi-threaded concurrent program errors. Debugging concurrent multi-threaded
programs is notoriously difficult because the exact timing that caused the error is
normally unknown. Gathering trace information while executing a program using
even the same input values can cause schedule and timings to be different that
could lead the program into a different execution path, for example due to
branching or loop, so the error cannot always be reproduced and detected by

existing error detection tools.

In order to reproduce an error in a multi-threaded concurrent program, this
research aims at realizing a deterministic replay which we call it "total replay".
Total replay reproduces all possible executions caused by different thread
interleavings and interrupt timings as test cases, whereas existing deterministic
replay often reproduce only a selected execution. We focus on detecting errors,
particularly race conditions, caused by interleavings of threads and different
interrupt timings. It is intended to reproduce all possible execution paths within the
scope determined by the limited information obtained from an execution trace.
Even though the input values are fixed, the range of execution reproduction is still

very large due to a wide range of different schedules and interrupt timings.

In order to realize total replay efficiently, we propose some methods for
reducing the number of test cases. We observed that executions from different
interleavings with the same combination of execution path between threads have
the same access-manner to shared variables and data, so regarding the detection of
race condition we can classify them into the same race-equivalent group. The
non-existence of race condition in multi-threaded concurrent programs can be
ensured by checking the lock consistency from all possible combinations of
execution paths between threads. In that sense, interleavings that do not change
execution path in a thread produce redundancy with respect to checking race

conditions. Since an execution path in a thread is affected by branches, our
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proposed method identifies only those interleavings that affect branch outcomes by

utilizing data flow from the trace information to identify such redundancy. For our

purpose, we extend the definition and notation of use-def chain to cover usage and

definition of shared variables in multi-threaded. We first identify the set of

operations that affect the conditional statement of a branch. Based on this analysis,

which interleavings affect the branch outcomes can be determined.

)]

2)

3)

The originality of the proposed method is as follows:
Reducing test cases.
® Grouping different interleaving that have the same locking consistency:
The existing methods try to identify all interleavings which may affect
shared variables whereas our method identifies only those interleavings
which affect sequence of lock/unlock and read/write operations to shared
variables. Different execution paths with the same locking consistency
are grouped into the same race-equivalent group and tested only once.
This significantly reduces the number of interleavings necessary for
testing.
® Avoiding infeasible test cases: Infeasible test cases caused by

synchronization mechanisms, such as a wait-notify mechanism, are
identified and eliminated.

Reducing memory space required for generating test cases.

Our method exploits data dependency to generate only those test cases that

might affect sequences of lock/unlock and shared variables. Our new proposed

method requires smaller sized graphs for generating test cases compared to the

existing reachability testing method. This means the required memory space is

reduced.

Reducing the effort involved in checking race conditions.

Our method identifies only the parts of the execution trace whose sequences of

lock/unlocks and shared variables might be affected by a new test case. Race

conditions are then checked again only for those affected parts. For other

unaffected parts, we can reuse the results from previous executions, thereby

reducing the effort involved in checking race conditions.

We conducted some experiments on several real world Java open source

programs to demonstrate the effectiveness of our proposed method. The
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experimental results suggest that redundant interleavings can be identified and

removed that lead to a significant reduction of test cases.
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9. Glossary

A

access-manner - A sequence of operations in which a thread has acquired a lock, has
accessed a shared variable, and has released the corresponding lock (section 3.9

Access-Manner, page 45).

advice — An Aspect-oriented term referring to a piece of code to be executed in a

pointcut (section 6.3 Tracing). See also pointcut (section 6.3 Tracing).

Aspect-oriented programming - A programming paradigm that aims to increase

modularity by allowing the separation of concerns.

AspectJ - An aspect-oriented extension to the Java programming language. We use it

for tracing Java multi-threaded concurrent programs (section 6.3 Tracing, page 115).

B

branch-affect group - A branch-affect group for a branch b contains a set of execution
variants that would cause the same branch outcome for the branch b, which is either true

or false.

branch outcome - The truth value within a conditional statement of a branch during a

program execution, that is whether true or false.

C

concurrency — “A condition that exists when at least two threads are making progress.

A more generalized form of parallelism that can include time-slicing as a form of virtual
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parallelism” [Oracle10].
concurrent dependency graph - A directed graph representing use-define relations in
an execution of a concurrent program for identifying data dependencies of shared

variables (subsection 5.3.2 Concurrent Dependency Graph, page 89).

concurrency control — A control mechanism for concurrent programs to avoid race

conditions.
concurrent set of access-manners (MANNERS) - A collection of sets of
access-manners from all the threads within a concurrent execution path of a concurrent

program (section 3.9 Access-Manner, page 45).

consistent lock for a shared variable - A lock which is acquired by any threads before

accessing the shared variable (section 3.2 Race Conditions, page 35).

D

define - A write operation of some value to a variable (section 3.13 Use-Define, page
55).

deterministic replay - Executing a concurrent program with exactly the same

interleaving as previous execution (section 2.7 Deterministic Replay, page 24).

deterministic testing - Executing a concurrent program with the interleaving as

specified by a test case (section 2.8 Deterministic Testing, page 25).

E

execution-variant - A different read/write sequence that affects the values of shared

variables (section 4.2 Approach, page 59).
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F

false alarm - a false positive or a false negative.

false positive - reporting errors which actually do not exist.

false negative - test results that do not indicate the presence of errors which are actually

present.

G

guideline - A set of use-defines obtained by traversing a concurrent dependency graphs
(subsection 5.3.3 Traversing a Concurrent Dependency Graph). It is used for

constructing test cases.

N

no-race - A concurrent-pair of access-manners is said to be no-race if the two
access-manners can be interleaved without race conditions (section 3.12 No-Race). See
also concurrent-pair of access-manners (section 3.11 Concurrent-Pair of

Access-Manners)

P

parallelism — A principle that large problems can often be divided into smaller ones,
which are then solved simultaneously in parallel [Gottlieb89]. This dissertation
discusses about concurrency instead of parallelism, see the definition about

concurrency.
pointcut — An Aspect-oriented term to specify a location within an execution of a

program where an advice has to be executed (section 6.3 Tracing). See also advice

(section 6.3 Tracing).
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R

race condition - A condition when there is a concurrent access to a shared variable

which is not protected by consistent locks (section 3.2 Race Conditions, page 35).

race-equivalent - Two executions of a concurrent program are race-equivalent if they
have the same set of access-manners (MANNERS) (section 3.10 Race-Equivalent, page
48).

race-equivalent group - A group contains concurrent execution paths that are
race-equivalent (section 3.10 Race-Equivalent, page 48). See also race-equivalent

(section 3.10 Race-Equivalent, page 48)

reachability testing method - One of testing methods for concurrent programs that
performs an efficient exploration of different sequences of read/write operations which

affect values of shared variables (section 4.2 Approach, page 59).
reference variable - A variable that refers to an object in Java programming language.
This is similar to a pointer in C programming language (subsection 3.4.1 Reference

Variable, page 38).

reflection — An Aspect-oriented term for getting information about program execution

(section 6.3 Tracing, page 115).

S

shared variable - A variable which is accessed by more than one thread.

sequential consistency - A multiprocessing system had sequential consistency if "the
results of any execution is the same as if the operations of all the processors were
executed in some sequential order, and the operations of each individual processor

appear in this sequence in the order specified by its program." [Lamport79]
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U

use - A read operation on a variable (section 3.13 Use-Define, page 55).

3

use-define - A relation consisting of a usage “use” of a variable and the definition
“define” of the variable (section 3.13 Use-Define, page 55). See also “use” and “define”

(section 3.13 Use-Define, page 55)

\Y%

variant graph - A directed graph for deriving different read/write sequences from an

execution trace (section 4.2 Approach, page 59).

W

well formed - An access to a shared variable is said to be well formed if all threads
acquire consistent locks before accessing the shared variable, and then perform an
unlock operation to release the corresponding locks (section 3.2 Race Conditions, page

35). See also "consistent lock" (section 3.2 Race Conditions, page 35).
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11. Appendices

Appendix A

Example of the calculation for the number of possible interleavings.

Let:
m: number of threads, m > 2
n: number of interleaving dependent read/write operations, n > 0
n = 0% means there will be no concurrent errors.
nr; : number of interleaving dependent read/write operations in thread 7'/
interleaving dependent read/write operations: read/write operations to shared
variables in which the value of the shared variables can be affected by the interlavings

of the read/write operations.

n!
: : : = =pnl - m ___
Number OprSSIble mterleavmgs T T I T s TR Y n! ”1—1( .Y

Examples:
n=3, npy =2, nyp =1

The number of possible interleavings is calculated using equation (7-1).

31
ST

T1I T2 T1 T2 T1T2

1 1 2 i 3

Figure 98. Example of possible interleavings for 2 threads and 3 operations

n=4, TlT1=2, TlT2=2
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Figure 99. Example of possible interleavings for 2 threads and 3 operations

Appendix B

Approximation of equation (7-3) using Stirling's approximation (7-4) [HazewinkelO1]
for calculating the computational complexity.

Lm ~ 2nn(g)n _ Znngg)n
() ey () G

Znn(g)n _ 21N
m

o (B @ @ ()

m

_ mO.Sm_mn
()™ (72)

Appendix C

Proof: Given an execution trace with the same input as when the concurrent errors
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occurred, the reachability testing will generate different interleavings which contain the

concurrent errors.

Reachability testing method generates different interleavings by:

® Ignoring the order of interleaving independent operations. (characteristic 1)

® Considering only the order interleaving dependent operations. (characteristic 2)

From the characteristic 2, the reachability testing method will generate all different

interleavings that are affecting the values of shared variables. This overcomes the

difficulties in detecting/reproducing the concurrent errors:

A) Interleavings cause different execution paths. -> characteristic 2 affects
the values of shared variables, then affecting conditional statements, then affecting
the branches causing different execution paths.

B) Interleavings cause variables to refer to different data.  -> will be directly explored

by characteristic 2.

Interleavings

.-~~~ affectingrace -~ -~
conditions
v v
Interleavings Interleavings affecting Interleavings
affecting branches affecting pointers,
shared / reference variables,
variable file references, lock
values \ variables, indices of
4 arrays
Explored by A
the
reachability
testing

Figure 100. Type of interleavings in a concurrent program

179



About the Author

Theodorus Eric Setiadi. He received his Engineering Degree in Electrical Engineering
and a Masters Degree in Computer System Engineering from the Institute of
Technology, Bandung, Indonesia, in 2000 and 2002, respectively. He pursued his PhD
degree at the Graduate School of Information Systems, University of
Electro-Communications, Tokyo, Japan with the support from the Jinnai International
Student Scholarship. His research interests are debugging systems and execution trace
analysis. He has working experiences in developing and verifying software. He is now

working as a technical consultant related to finance.

180



