
Debugging and Testing Concurrent Programs
with Efficient Test Case Generation

効率良いテストケース生成による
並行処理プログラムのデバッグとテスト

SETIADI THEODORUS ERIC

Department of Information System Fundamentals [FS]
Graduate School of Information Systems

THE UNIVERSITY OF ELECTRO-COMMUNICATIONS

June 2015

 ii

APPROVAL

Name: Setiadi Theodorus Eric

Degree: Doctor of Philosophy

Title of thesis: Debugging and Testing Concurrent Programs

with Efficient Test Case Generation

Examining Committee: Prof. Hiroki Honda

 Prof. Tadashi Ohmori

 Prof. Akihiko Ohsuga

 Asc.Prof. Yasuyuki Tahara

 Prof. Emeritus Mamoru Maekawa

 Prof. Yoshikatsu Tada

Date Approved: June 2015

 iii

Copyright 2015
by

SETIADI THEODORUS ERIC

All rights reserved

 iv

効率良いテストケース生成による

並行処理プログラムのデバッグとテスト

概 要

マルチスレッドからなる並行処理プログラムのデバッギングは逐次処理

プログラムに比較してはるかに難しい。その理由の一つは、エラーの再現が

難しいからである。トレースを取るために、並行処理プログラムを再実行し

たり、コードに何らかの措置を施すと、実行のタイミングが変化したり、異

なった実行パスを取ることとなる。即ち、元のエラーが発生した厳密なタイ

ミングは未知である。エラーを再現するためには、たとえ入力変数の値が同

一でも、インターリーブを変化させた多くのテストケースの実行が必要とな

る。しかも、それらを全て実行できるとは限らない。

本論文では、マルチスレッド並行処理プログラムにおいて、異なったスケ

ジュールや割込タイミングの違いに起因するエラー、特に、レース条件の再

現のための方法を提案する。実行トレースから得られた限定された情報の範

囲で、全ての可能なテストケースを生成し、レース条件を検出するデバッギ

ング／テストシステムを提案した。これまで、partial order reductionを

用いたテストケース削減に関する多くの研究が存在するが、レース条件の検

出という意味ではまだ冗長な部分が存在する。本論文での目的は、効率的に

レース条件を検出することにある。そのために、３つの手法を提案する。

一つ目は、レース条件検出能力を維持しながら、冗長なテストケースを削

除することである。提案手法の独創性は、分岐に与えるインターリーブの影

響に注目し、トレース情報から得られたデータフロー情報を活用し、分岐結

果に影響を与えるインターリーブのみを特定することにある。既存手法の多

くは、共有変数に影響を与える全てのインターリーブを特定することを行っ

ている。この違いにより、提案手法はテストに必要なインターリーブの数を

さらに大きく削減することができる。同一のロック状態と共有変数へのアク

セス状態を有する実行パスを“レース等価グループ”として１つのグループ

にまとめ、そのグループを構成するメンバーの中の１個のみをテストするこ

とにより、レース条件テストに要する労力を軽減する。さらに、提案手法は

既存の実行トレースのモデルを拡張し、lock/unlockとwait/notify 依存性

により実行不可能なインターリーブを特定できる。こういった実行不可能な

 v

インターリーブをテストケースから省くことにより、テストケース削減に大

きく寄与できることを示した。

二つ目は、テストケースを生成するために必要なメモリ容量を削減するこ

とである。既存のreachability testing手法は、実行されることがないイン

ターリーブに対してもテストケースを生成する。本提案手法はデータ依存性

を解析することにより、ロック状態と共有変数へのアクセス状態に影響を与

えるインターリーブのみ生成する。これにより、テストケースを生成するた

めのグラフの大きさを削減でき、その維持のためのメモリ容量を削減できる。

実際、Apache Commons Poolに対する実験結果では、提案手法によってグラ

フのサイズが990ノードから4ノードに減少した。

三つ目は、繰り返しテストの労力を軽減することである。本提案手法を含

むデバッグ／テスト手法においては、プログラムの実行トレースを繰り返し

取ることによりプログラム誤りの有無と、その誤りの検出を行う。本提案手

法では以前の実行とレースとテストの結果を利用して、レース条件をチェッ

クする手間を軽減する。従来法では、テスト毎に全体の実行トレースを取り、

レース条件をチェックする必要がある。本提案手法は、生成されたインター

リーブに基づき、ロック状態を変更する可能性がある実行トレースの部分を

識別することができる。そのことにより、ロック状態を変更する可能性のあ

る実行トレースの部分のみを再チェックの対象とすることにより、チェック

の数を削減できた。

以上の新たな改善策の導入により、本提案手法は与えられた入力値に対し

て、可能なインターリーブの網羅的なテストを、はるかに少ない労力でもっ

て達成する。インターリーブに起因するプログラムエラーの有無、エラーが

発生するインターリーブ（パス）、ロックが正しく行われていない共有変数

へのアクセスに関する情報がプログラマに提供される。

 vi

ABSTRACT

Debugging multi-threaded concurrent programs is more difficult than
sequential programs because errors are not always reproducible. Re-executing or
instrumenting a concurrent program for tracing might change the execution timing
and might cause the concurrent program to take a different execution path. In other
words, the exact timing that caused the error is unknown. In order to reproduce the
error, one needs to execute the concurrent program with the same input values
many times as test cases by changing interleavings, but it is not always feasible to
test them all.

This dissertation proposes a debugging/testing system that generates all

possible executions as test cases based on the limited information obtained from an
execution trace, and then detects potential race conditions caused by different
schedules and interrupt timings on a concurrent multi-threaded program. There are
a number of studies about test cases reduction using partial order reduction, but
there are still redundancies for the purpose of checking race conditions. The
objective is to efficiently reproduce concurrent errors, specifically race conditions,
by proposing three methods.

The first is to reduce the numbers of interleavings to be tested. This is

achieved by reducing redundant test cases and eliminating infeasible ones. The
originality of the proposed method is to exploit the nature of branch coverage and
utilize data flows from the trace information to identify only those interleavings that
affect branch outcomes, whereas existing methods try to identify all the
interleavings which may affect shared variables. Since the execution paths with the
same branch outcomes would have equivalent sequences of lock/unlock and
read/write operations to shared variables, they can be grouped together in the same
“race-equivalent” group. In order to reduce the task for reproducing race conditions,
it is sufficient to check only one member of the group. In this way, the proposed
method can significantly reduces the number of interleavings for testing while still
capable of detecting the same race conditions. Furthermore, the proposed method

 vii

extends the existing model of execution trace to identify and avoid generating
infeasible interleavings due to dependency caused by lock/unlock and wait/notify
mechanisms.

Experimental results suggest that redundant interleavings can be identified

and removed which leads to a significant reduction of test cases. We evaluated the
proposed method against several concurrent Java programs. The experimental
results for an open source program Apache Commons Pool show the number of test
cases is reduced from 23, which is based on the existing Thread-Pair-Interleaving
method (TPAIR), to only 2 by the proposed method. Moreover, for concurrent
programs that contain infinite loops, the proposed method generates only a finite
and very few numbers of test cases, while many existing methods generate an
infinite number of test cases.

The second is to reduce the memory space required for generating test cases.

Redundant test cases were still generated by the existing reachability testing
method even though there was no need to execute them. Here, we propose a new
method by analyzing data dependency to generate only those test cases that might
affect sequences of lock/unlock and read/write operations to shared variables. The
experimental results for the Apache Commons Pool show that the size of the graph
for creating the test cases is reduced from 990 nodes, as based on the reachability
testing method used in our previous work, to only 4 nodes by our new method.

The third improvement is to reduce the effort involved in checking race

conditions by utilizing previous test results. Existing work requires checking race
conditions in the whole execution trace for every new test case. The proposed
method can identify only those parts of the execution trace in which the sequence of
lock/unlock and read/write operations to shared variables might be affected by a
new test case, thus necessitating that race conditions be rechecked only for those
affected parts.

 From the new improvements introduced above, the proposed methods

accomplish to significantly reduce the efforts for exhaustively checking all possible
interleavings. The proposed methods provide programmers the information
regarding whether there exist program errors caused by interleavings, the

 viii

interleaving (path) when the errors occurred, and accesses to shared variables with
inconsistent locking.

 ix

Contents

ABSTRACT... VI

CONTENTS .. IX

LIST OF TABLES.. XIII

LIST OF FIGURES ... XIV

CHAPTER 1. INTRODUCTION .. 1

1.1 Background ..1

1.2 Problem and Objective ..5
1.2.1 Problem .. 5
1.2.2 Objective... 6

1.3 Motivation ... 13

CHAPTER 2. RELATED WORK.. 17

2.1 Error Prevention .. 17

2.2 Error Detection .. 18

2.3 Static Error Detection ... 19

2.4 Dynamic Error Detection .. 20

2.5 Non-Deterministic Execution ... 23

2.6 Deterministic Execution .. 23

2.7 Deterministic Replay... 24

2.8 Deterministic Testing .. 25

2.9 Partial Approach for Deterministic Testing... 27
2.9.1 Structural Coverage.. 27
2.9.2 Partial Order .. 30
2.9.3 Partial Components .. 32

 x

CHAPTER 3. BASIC TERMS AND DEFINITIONS .. 34

3.1 Concurrency Control Using a Lock Mechanism ... 34

3.2 Race Conditions ... 35

3.3 Total Replay .. 37

3.4 Dynamic Access .. 38
3.4.1 Reference Variable ... 38
3.4.2 Array ... 39

3.5 Conditional Statements/Branches and Loops .. 40

3.6 Model for Concurrent Program Execution Traces .. 42

3.7 Execution Paths .. 43

3.8 Interleaving and Branching ... 44

3.9 Access-Manner ... 45

3.10 Race-Equivalent ... 48

3.11 Concurrent-Pair of Access-Manners .. 51

3.12 No-Race ... 53

3.13 Use-Define .. 55

CHAPTER 4. SETTING FOR THE PROPOSED METHOD 58

4.1 Requirements ... 58

4.2 Approach ... 59

CHAPTER 5. PROPOSED METHOD ... 67

5.1 Avoid Testing Redundant Interleavings ... 67
5.1.1 Creating Different Race-Equivalent Groups .. 68
5.1.2 Creating a Different Race-Equivalent Group by Changing a Control Flow 69

5.2 Avoid Testing Infeasible Interleavings .. 84

5.3 Reduce Memory Required for Generating Test Cases ... 86
5.3.1 System Overview ... 87
5.3.2 Concurrent Dependency Graph .. 89
5.3.3 Traversing a Concurrent Dependency Graph ... 94
5.3.4 Generating Test Cases from a Concurrent Dependency Graph .. 96
5.3.5 Comparison with the Existing Reachability Testing Method ... 99
5.3.6 Generating Test Cases to Check Consistent Locking for Access through Reference Variables . 101
5.3.7 Generating Test Cases: Traversing a Concurrent Dependency Graph of an Access-Manner 103

 xi

5.3.8 Generating Test Cases for Checking Consistent Locking of an Access-Manner 105

5.4 Reducing the Effort Involved in Checking Race Conditions ... 106
5.4.1 Executions in the Same Race-Equivalent Group: No Need to Check Race Conditions............ 107
5.4.2 Executions in a Different Race-Equivalent Group: Check Only Some Parts of Execution Traces
Affected by A New Test Case ... 111

CHAPTER 6. IMPLEMENTATION AND EXPERIMENTS 113

6.1 Lock Mechanism in Java ... 113
6.1.1 Lock Objects ..113
6.1.2 Synchronized Methods ..113
6.1.3 Synchronized Statements ...114

6.2 Interrupt as a Thread in Java Program .. 114

6.3 Tracing .. 115

6.4 Deterministic Testing .. 116

6.5 Implementation Diagram .. 117

6.6 Experiment Results: Test Case Reduction .. 118
6.6.1 Experiment 1: Apache Commons Pool ... 120
6.6.2 Experiment 2: JTelnet ... 123
6.6.3 Experiment 3: jNetMap .. 124
6.6.4 Experiment 4: JoBo .. 126
6.6.5 Experiment 5: Apache Derby .. 128

6.7 Experiment Results: Memory Reduction .. 128
Note: ... 129
** Proposed concurrent dependency graph ... 129
6.7.1 Experiment 1: jNetMap .. 129
6.7.2 Experiment 2: Apache Commons Pool ... 132
6.7.3 Experiment 3: JoBo .. 135

CHAPTER 7. DISCUSSIONS ... 138

7.1 Applicability ... 138
7.1.1 Program Characteristics .. 138
7.1.2 Error Types ... 143
7.1.3 Execution Environment .. 144

7.2 Limitations ... 145

7.3 Efficiency ... 146

7.4 Complexity ... 148

7.5 Correctness .. 152

7.6 Future Work .. 157

 xii

7.6.1 Correctness Criteria .. 157
7.6.2 Target Program .. 158
7.6.3 Scope .. 158
7.6.4 Reduction of the Load of Execution Trace .. 158
7.6.5 Reduction of the Need for Executing Test Cases ... 159

CHAPTER 8. CONCLUSIONS ... 162

9. GLOSSARY .. 165

10. REFERENCES ... 170

11. APPENDICES ... 177

Appendix A ... 177

Appendix B .. 178

Appendix C .. 178

 xiii

List of Tables

Table 1. Types of deterministic execution ... 24
Table 2. An example of finding a set of operations that is affecting branch outcomes

using Algorithm 3 ... 77
Table 3. An example of a branch-affect table .. 80
Table 4. Step-by-step example of Algorithm 5 .. 83
Table 5. Step-by-step example of Algorithm 4 (continued) 84
Table 6. Comparison between the existing variant graph and the proposed

concurrent dependency graph ... 87
Table 7. Definitions in a concurrent dependency graph .. 91
Table 8. A set of guidelines from the concurrent dependency graph in Figure 52(a).

 .. 95
Table 9. A set of guidelines from the concurrent dependency graph in Figure 52 (b)

 .. 95
Table 10. Different values of variables among different execution-variants 101
Table 11. A set of guidelines for generating test cases for testing pair2 in Figure 11

 .. 104
Table 12. Summary of experiment results ... 120
Table 13. Grouping of test cases for experiment 1 .. 122
Table 14. Summary of experiment results for JTelnet ... 123
Table 15. Summary of experiment results for jNetMap .. 125
Table 16. Branch-affect groups for jNetMap ... 126
Table 17. Summary of experiment results for JoBo .. 127
Table 18. Comparison of the experiment results for existing variant graph and the

proposed concurrent dependency graph ... 129
Table 19. A set of guidelines from the concurrent dependency graph in Figure 78

 .. 131
Table 20. A set of guidelines from the concurrent dependency graph in Figure 80

 .. 134
Table 21. A set of guidelines from the concurrent dependency graph in Figure 85

 .. 136

 xiv

List of Figures
Figure 1. Non-deterministic behavior of a concurrent program 2
Figure 2. General method for reproducing concurrent multi-threaded program errors

 ... 5
Figure 3. Number of possible interlavings ... 6
Figure 4. Objective ... 7
Figure 5. Comparison between the existing deterministic replay and the proposed

total replay ... 8
Figure 6. Scope for the proposed total replay .. 8
Figure 7. An example of a bug fix using information from a race detector 10
Figure 8. Applicability of the propose method ... 11
Figure 9. Contributions of the proposed methods .. 13
Figure 10. Examples of grouping for interleavings .. 14
Figure 11. An example of a control flow for a concurrent program 15
Figure 12. Related work ... 17
Figure 13. Static method and dynamic method for error detection 18
Figure 14. Static error detection using Jlint [Artho01] .. 20
Figure 15. Recent dynamic methods .. 22
Figure 16. Deterministic execution for replay and testing 24
Figure 17. Examples of execution paths combinations .. 29
Figure 18. An example of a critical section .. 34
Figure 19. An example of two threads T1 and T2 run concurrently and access a

shared variable x .. 35
Figure 20. Examples of consistent locks .. 36
Figure 21. Examples of reference variables ... 39
Figure 22. Sharing of an array element .. 40
Figure 23. An example of a branch that is affected by interleavings 41
Figure 24. (a) An example of a concurrent program. (b) Flow graph. (c) Flow graph

for read and write operations ... 43
Figure 25. An example of a conditional statement ... 43
Figure 26. Examples of different concurrent execution paths for program in Figure

25 ... 44
Figure 27. An example of L(Ti) for a usual access-manner with three locks 46
Figure 28. An example of a race-equivalent for two executions 48

 xv

Figure 29. An example of set of access-manners for a loop 50
Figure 30. Examples of some concurrent-pairs of access-manners in an execution

trace ... 52
Figure 31. An example of concurrent-pair of access-manners which is no-race 55
Figure 32. An example of a concurrent program ... 57
Figure 33. An example of execution traces and some of its use-defines 57
Figure 34. Comparison between the exhaustive method and reachability testing

method .. 60
Figure 35. An Example of a variant graph from an execution trace 64
Figure 36. Reducing test cases by avoiding redundant interleavings 68
Figure 37. Chain of reactions that can cause a different race-equivalent group 69
Figure 38. Interleavings and a branch affecting the occurrence of a race condition 70
Figure 39. Examples of grouping by changing a branch outcome 72
Figure 40. Creating a different race-equivalent group by changing a lock sequence

 .. 73
Figure 41. (a) An example of a concurrent program (b) Control flow graph (c)

Control flow graph for read and write operations ... 74
Figure 42. Examples of use-defines for the concurrent program in Figure 41 74
Figure 43. An example of a variant graph from an execution trace 79
Figure 44. Examples of branch-affect groups for the variant graph in Figure 43 ... 80
Figure 45. Branch-affect group table and branch-condition table for the first test

case .. 81
Figure 46. Branch-affect group table and branch-condition table when Algorithm 5

terminates .. 84
Figure 47. An example of the extension of a variant graph 86
Figure 48. General idea to reduce memory required for generating test cases 87
Figure 49. Overview of the proposed method ... 88
Figure 50. Components of a concurrent dependency graph 89
Figure 51. Step-by-step illustration for Algorithm 6 ... 92
Figure 52. (a) An example of a concurrent dependency graph. (b) and its optimized

version ... 93
Figure 53. An example of test case generation for different cases 98
Figure 54. An example of a test case generation from a guideline 99
Figure 55. Example of a variant graph. ... 100
Figure 56. Example of lock variables (a) and reference variables (b) 101

 xvi

Figure 57. Examples of three executions with different interleavings 103
Figure 58. An example of a concurrent dependency graph for the access-manner M3

in Figure 30 ... 104
Figure 59. An example of a test case execution for execution-variant V2 105
Figure 60. Reducing the effort involved in checking race conditions.................... 106
Figure 61. Examples of the same and a different access-manner caused by a branch

 ... 108
Figure 62. Different access-manners caused by a loop .. 109
Figure 63. Different access-manner caused by a branch and a loop 110
Figure 64. Control transfer from thread T1 to T2 ... 117
Figure 65. Implementation ... 117
Figure 66. The effectiveness of the proposed method .. 119
Figure 67. An example of a race condition that is difficult to detect 120
Figure 68. A comparison of exhaustive, TPAIR, and the proposed method 121
Figure 69. Comparison of numbers of test cases ... 123
Figure 70. The source code of the JTelnet and its execution trace 124
Figure 71. The source code of the jNetMap ... 125
Figure 72. Execution trace of jNetMap .. 126
Figure 73. The source code of JoBo ... 127
Figure 74. Execution trace of JoBo .. 127
Figure 75. The source code of Apache Derby .. 128
Figure 76. Variant graph for the execution of jNetMap ... 130
Figure 77. Execution trace of the first test execution of jNetMap 131
Figure 78. An example of a concurrent dependency graph for the execution of

jNetMap ... 131
Figure 79. The source code of jNetMap ... 132
Figure 80. An example of a concurrent dependency graph for Apache Commons

Pool .. 133
Figure 81. Execution trace of the experiment using Apache Commons Pool 133
Figure 82. An example of a test program using the Apache Commons Pool library

 ... 134
Figure 83. Concurrent dependency graph for the reference variable _pool 134
Figure 84. Execution trace of the first test ... 135
Figure 85. An example of a concurrent dependency graph for JoBo 136
Figure 86. The source code of JoBo ... 136

 xvii

Figure 87. Interrupt as a thread .. 141
Figure 88. Deadlock can be avoided by following the interrupt-as-thread principle.

 .. 142
Figure 89. Comparison between race detection (a) and deadlock detection (b) 144
Figure 90. Memory consistency ... 145
Figure 91. Complexity and the actual workload of the proposed method 149
Figure 92. Classification of read/write operations ... 150
Figure 93. The percentage of operations affecting branches for several target

programs ... 151
Figure 94. Operations affecting branches for the Apache Commons Pool 152
Figure 95. Proof for correctness .. 153
Figure 96. Example of a concurrent program with an error 157
Figure 97. Example of execution paths combinations ... 160
Figure 98. Example of possible interleavings for 2 threads and 3 operations 177
Figure 99. Example of possible interleavings for 2 threads and 3 operations 178
Figure 100. Type of interleavings in a concurrent program 179

 1

Chapter 1. Introduction

1.1 Background

Multi-core processors are now used in various computer systems ranging

from super computers to PCs, and even to small cellular phones. Concurrent
programming plays a very important role in fully exploiting the capability of
multi-core processors for improving their performance. A concurrent program
contains two or more threads/processes that execute concurrently or in parallel and
work together to perform a given task. Using multi-threads can increase
computational efficiency and resource utilization. For instance, while one thread is
waiting for user input or message from network, other threads can perform different
computational tasks. From the view point of structuring software systems, modern
complex systems are rather naturally structured and perhaps easier to be understood
by using multi-threads. They are often real time and require interactive operations.
For example, reactive systems, industrial control systems, financial systems, game
software, multi agent systems, web servers, etc. can be structured as multi-threaded
concurrent programs which create separate threads to service incoming requests
from users or devices.

While multi-threaded concurrent programs offer some advantages,

debugging and testing of multi-threaded programs are known to be notoriously
difficult [Dowell89]. Since they exhibit non-deterministic behavior, they sometimes
produce errors or incorrect behaviors that depend on timings. Such errors, for
example unintentional race conditions or deadlocks, are very difficult to uncover
during testing (see Figure 1). One reason for this difficulty is that the set of possible
different interleavings is huge, and it is not feasible to try all of them. The
probability of producing a concurrent error is very low because only a few of the
interleavings actually produce concurrent errors. Executing the same tests many
times under the same test environment might not produce the error because the
same interleaving might be created since the scheduler is deterministic. As a result,
such errors often remain undetected until even product deployment where different

 2

environmental conditions are waiting. Many errors are not repeatable, and when an
error is detected, much effort must be invested in recreating the conditions under
which it had occurred.

Figure 1. Non-deterministic behavior of a concurrent program

We define the correctness of a concurrent program execution by:

 Data integrity: no race condition.
 Free from concurrency issues: no deadlock, live-locks, and starvation

[Rahul08].
 Responsiveness: programs need to response to a user input or an interrupt

within a certain time.

In this research, we concentrate on checking race conditions in concurrent
programs whose concurrency control is based on locking mechanism. Race
conditions occur mostly because shared variables are accessed by threads using
inconsistent locking or even no locks [Savage97] [Edelstein03] [Lee96].
Programmers often fail to apply appropriate locks due to difficulties in predicting
the execution path or interrupt timing because of the complexity of concurrent
programs, especially when branches are affected by access to shared variables and
interleavings. To detect race conditions, a programmer can execute the concurrent
program and check the execution trace using a dynamic race detector.
Unfortunately, concurrent errors might not be easy to detect because a re-executed
concurrent program might execute with a different interleaving. Adding additional

Deployment Testing / Debugging

Input

Concurrent
execution

Concurrent
execution

Error
happened

Error might
not happen

Tracing

Execution
trace

Same input

 3

commands or instrumentation of the source code to record intermediate results for
testing concurrent programs might change the interleaving, so that errors may not
show up. Furthermore, dynamic race detectors can detect potential errors only if
they show up in a re-execution.

The execution of a concurrent program depends on both input values and

interleavings. Race conditions cannot always be detected during testing because their
occurrences depend on interleavings. In a concurrent program, a branch can take a
different execution path due not only to a different input value, but also to a different
interleaving. This situation happens when the program’s conditional statement
depends on shared variables and the shared variables are affected by interleavings. A
change of branch outcomes can affect the sequence of lock/unlock and read/write
operations to shared variables, thus affecting the occurrence of race conditions. Hence,
an execution trace might contain race conditions that depend on the branches and
interleavings.

A typical debugging scenario proposed in this dissertation is as follows:
1. An error that is thought to be caused by timing is discovered, but the exact

thread interleaving and interrupt timings are not known.
2. Trace the program using the same set of input values. From the result of

execution trace, examine race conditions, deadlocks, and responsiveness (late
response). If at least one cause of the error is found (which is lucky), fix it and
then continue debugging. Here, an execution trace is a time-stamped trace of all
the threads comprising the program.

3. Usually in most cases, the error is not reproduced. Tracing affects the execution
of lock/unlock and/or read/write operations to shared variables and interrupt
timings. Therefore there is no guarantee that the execution order and timing of
the program with tracing is the same as the one in which the error was detected.

For program debugging, one of the common and powerful methods is that, for

investigating the cause of incorrect behaviors, additional commands are added or
instrumented into the code to display intermediate results, and the program is executed
again using the same input. This re-execution of a program is called a “replay”.
However, this program replay debugging method causes the change of timing and the
error might not be reproduced. Gathering trace information while executing a program

 4

using even the same input values can cause schedules and timings to be different from
those in the execution in which the actual error had occurred. Therefore, the error
cannot always be reproduced because it might execute a different execution path.
Assuming almost all logical errors have been removed, then the errors are most likely
caused by a different timing. It is well known that debugging such remaining or hidden
or infrequent errors is difficult. The exact timing when error had occurred is unknown,
so it is difficult to find the true cause of the error. Since the exact interleaving is
unknown, we need to try all possible interleavings as test cases to find the execution
path where the error had occurred. The problem is that there can be many possibilities
of interleavings and interrupt timings.

A program replay is broadly divided into two classes:

 Deterministic replay : a program is re-executed exactly the same
interleaving and interrupt timing as previous execution.

 Non-deterministic replay : a program is re-executed, but might not exactly
the same interleaving and interrupt timing as previous execution.

If the previous execution is the one that contains an error, then we can

reproduce the error using deterministic replay. For a sequential program, it is
expected that this deterministic replay is always possible. For a concurrent program, a
deterministic replay is difficult. To do a deterministic replay of a concurrent program,
one controls the scheduling of threads in the system to obtain the same execution path.
If the complete information is obtained concerning the execution in which an
incorrect behavior is found, then a deterministic replay is preferable for debugging. A
number of techniques for deterministic replay have been devised and it becomes
popular because it provides the same degree of debugging easiness as that for
sequential programs. When the complete information is not obtained, then a
non-deterministic replay is applied.

In a non-deterministic replay, a single execution of a concurrent program

with a particular value of an input variable x is insufficient to determine the
correctness of the concurrent program when the actual execution timing of the error is
unknown. In order to reproduce the same error for debugging multi-threaded
concurrent program, it is necessary to change/alter the interleavings (timings) as test
cases and test all the possible executions produced from the same input values. Figure

 5

2 shows a general method for reproducing concurrent multi-threaded program errors.
Unfortunately there are many possible thread interleavings and interrupt timings,
which means it requires a large number of test cases and it is not always feasible to
test all of them. The number of different interrupt timings, in particular, is almost
unlimited because their granularity is very small. Randomly choosing which
execution to be replayed with some heuristics can help to increase the probability of
manifesting concurrent error, but often comes with many redundant test cases.

Figure 2. General method for reproducing concurrent multi-threaded program errors

1.2 Problem and Objective

1.2.1 Problem

It is difficult to detect race conditions in concurrent programs if the exact
interleaving that causing the error is unknown. In the case of debugging sequential
programs, the output results depend only on the input values. Even though
instrumentation is added to display/output intermediate results or tracing is applied, it
does not affect the process and the result of program execution. Therefore, in
investigating the cause of the error, it is possible to repeat the execution and then
narrowing down the cause of the error. Unfortunately, this is not the case in debugging
concurrent programs because the execution depends not only on the input value but also
on interleavings. As such, we must consider all possible interleavings for testing.

Deterministic execution

Execution
trace

Dynamic error
detection

Alter
interleavings

Source
code

Tracing

Input when
error occurred

repetitive

Error
detection
results

Problem:
Too many possible interleavings.
→ not feasible to test them all.

 6

Unfortunately, blindly executing all possible interleavings is not usually feasible
because of their huge number. Figure 3 shows an example that the number of possible
interleavings grows in factorial order as the number of threads and operations increase.

Figure 3. Number of possible interlavings

The main problem is how to reduce this number of testing and the efforts for detecting
concurrent errors. Two major issues in testing concurrent programs are efficiency and
precision. It is beneficial if, for concurrent programs, the same execution is reproducible
during testing and debugging just like sequential programs.

1.2.2 Objective

The objective of this research is to realize debugging capabilities/situations
for concurrent programs similar to those for sequential programs even though the
exact interleaving that causing the error is unknown. Note that our definition of
concurrent programs includes interrupts. Our goal for testing and debugging
concurrent systems is the ability to repeat an execution as close as the actual
execution in which an incorrect behavior will be manifested even when a trace is

 7

taken. This is achieved by realizing a deterministic replay for concurrent programs
which we call it “total replay” (see Figure 4). Total replay for concurrent programs
aims at reproducing all possible executions effectively based on limited trace
information under the following assumptions:

 Input values are known, but
 Interleaving is unknown (see Figure 6)

Namely, we guarantee that all possible execution paths or all different interleavings
are produced and we reduce redundant executions or tests as much as possible while
still capable of detecting the same error. Even though the input values are fixed, the
range of execution reproduction is still very large (see Figure 3) due to a wide range
of different interleaving caused by scheduling and interrupt timings.

Figure 4. Objective

Figure 5 shows the difference between the existing deterministic replay and the
proposed total replay.

Race conditions not detected/reproduced

Re-execute and alter interleavings

• Number of different interleavings

• Size of memory space

• Number of checkings

Objective:
"Total replay": replay
all possible
interleavings
efficiently

Avoid
redundancy

Background

Problems

For detecting/reproducing race conditions

 8

Figure 5. Comparison between the existing deterministic replay and the proposed total

replay

Figure 6 shows a debugging process using the proposed method.

Figure 6. Scope for the proposed total replay

Debugging process:

Source code

Input and
interleaving

Efficient test
case generation

Deterministic

execution

Interleavings
as test cases

Proposed “total replay”

Input

Existing deterministic replay

Source code Deterministic/

non deterministic

execution

Execution
trace

Execution
trace

Iterate

Tracing

Tracing

Input:

Output:

Concurrent
programs

Total
replay

Race
detector

Deadlock
detector

Existing

Proposal

Race conditions Deadlocks

Fixed input
values

Unknown
interleavings Execution trace

Existence of concurrent errors
• Interleaving (path) when the concurrent errors occurred

• Read/write to shared variables with inconsistent locking

Bug fix by a
programmer Programmer

Bug fix:
- Use appropriate locks

 9

1. Detection of race conditions by checking the consistent locks in the execution trace.
1.1. Suppose:

 There are N times accesses to a shared variable x.
 ActiveLocks(x,i) is the set of locks acquired by the thread when accessing

the shared variable x for the i-th access.
 Consistent locks for accessing the shared variable x is ActiveLocks(x,0) ⋂

ActiveLocks(x,1) ⋂ ActiveLocks(x,2) ⋂ . . . ⋂ ActiveLocks(x,N).
1.2. Race considions exist for an access to a shared variable x if the consistent locks

in step 1.1. is empty.
2. If concurrent errors are found by a race detector.

2.1. A race detector will give information about the name of lock variables, shared
variable names, and line of code where access to the shared variable is not
protected by consistent locks. The execution path can be obtained from the
execution trace.

2.2. Fix the error by adding appropriate locks in the source code, i.e. deciding the
consistent locks for accessing the shared variable.

3. If concurrent errors are not found, the error might be caused by other bugs in the
program. Such causes are not within the scope of the proposed method.

Figure 7 shows an example of a bug fix using information from a race detector.

 10

Figure 7. An example of a bug fix using information from a race detector

The applicability of the proposed method:

 At the end of software development phase after all logical errors and conceptual
errors are removed, or

 After deployment when an error is found by users

Source code

Execution trace

Race condition

Access to shared variable x is not
always protected by consistent locks.

Contain information about:

- Locks

- Variable names

- Location (LOC)

Access to shared
variable x without
previously acquiring any
locks.

T2:20 lock a

T2:21 read x

. . .

T2:25 unlock a

T1:10 write x

. . .

T2:20 lock a

T1:10 write x

T2:21 read x

. . .

T2:25 unlock a

Active locks : { Ø }

Active locks : { a }

Thread T1

Thread T2

inconsistent

Race
detector

T1:10 write x → active locks: { Ø }

T2:21 read x → active locks: { a }

10 x = 5;

. . .

9 lock a

10 x = 5;

. . .
Add an
approp
riate
lock

LOC

An appropriate
lock is added.

Bug fix

Lock a is active

Thread LOC

Interleaving
when the
concurrent error
occurred.

 11

Figure 8. Applicability of the propose method

In this dissertation, we propose a new efficient dynamic method to minimize

the number of test cases for detecting concurrent errors. Our method is particularly
applied for finding concurrent errors where the detection or the reproduction rate is
very low. It iteratively uses previous execution traces as guidelines for generating
new test cases. The focus is a debugging of a concurrent program whose behavior has
been found anomalous.

The contributions of this dissertation are as follows (refer to Figure 9):

1. Reducing the number of test cases for detecting concurrent errors:
 Eliminating redundant test cases: The proposed method reduces the number of

interleavings to be tested by exploiting the branch coverage information from
the execution trace. This is an improvement over the existing reachability
testing methods [Hwang95]. The existing reachability testing methods try to
identify all interleavings which may affect shared variables, although they
may not necessarily affect the sequence of lock/unlock and read/write
operations to shared variables; thus redundant interleavings are included.
These redundant interleavings are, however, reduced in our method, resulting
in a significant reduction in the number of interleavings for checking race
conditions. Our method is different from previous methods because it can
distinguish those interleavings that can affect branch outcomes and the
sequence of lock/unlock and read/write operations to shared variables from
those that cannot. Then the proposed method reduces the number of
interleavings necessary to be tested by the following:

 Grouping the interleavings which have the same sequence of lock/unlock

Developer: design implementation bug fix bug fix

Tester : unit test functionality test regression test performance test acceptance test release

User : requirement change request deployment error found

Time

Error : logical error conceptual error concurrent error

Applicability of the proposed method

Entity : Phase

 12

and read/write operations to shared variables.
 Testing only one member from each group.

To the best of our knowledge, this idea has not been exploited so far.
 Eliminating infeasible test cases: The existing reachability testing methods do

not consider the synchronization event dependency of the execution path, e.x.
lock-unlock and wait-notify mechanisms. There exist infeasible interleavings
due to this dependency. The proposed method extends the existing model of
variant graphs (will be defined in section 4.2 Approach) to identify infeasible
interleavings due to this dependency, thereby further contributing to reducing
the number of test cases.

2. Reducing memory space required for generating test cases.
Our method exploits data dependency to generate only those test cases that might
affect sequences of lock/unlock and read/write operations to shared variables. Our
new proposed method requires smaller size graphs for generating test cases compared
to the existing reachability testing methods. This means the required memory space is
reduced.

3. Reducing the effort involved in checking race conditions.
Our method identifies only the parts of the execution trace whose sequences of
lock/unlock and read/write operations to shared variables might be affected by a
new test case. Race conditions are then checked again only for those affected parts.
For other (unaffected) parts, we can reuse the results from previous executions,
thereby reducing the effort involved in checking race conditions.

 13

Figure 9. Contributions of the proposed methods

1.3 Motivation

Several methods have been proposed to reduce the number of interleavings for

testing. Partial order reduction is a general method which considers only those
interleavings that may affect an execution of a program based on certain criteria. One
example of the partial order reduction method reduces the number of interleavings by
considering only those that may affect the values of shared variables [Godefroid96]
[Clarke00] [Godefroid97] and by ignoring the order of “independent” operations. Two
operations are said to be independent if any different order of the operations does not
affect the values of shared variables. Examples of independent operations are two read
operations from different threads accessing the same shared variable. Such interleaving
is left unordered because its order is irrelevant to the resulting values of any shared
variables.

Unfortunately, such partial order reduction still leaves some redundancy when
exploring different execution paths in threads for detecting potential race conditions.
Consider the example in Figure 10. In the case that the loop in the thread T2 is executed
only once, there are six possible different interleavings. The first and the second

Deterministic execution

Execution
trace

Dynamic error
detection

Test
cases

Source code

Tracing

Input when
error occurred

repetitive

Error
detection
results

Test case generation:
Change interleavings

1. Reduce
test cases
1. Reduce
test cases

2. Reduce
memory
2. Reduce
memory

3. Reduce
checking
3. Reduce
checking

Total replay

Proposed
methods

 14

interleavings are different only in the order of independent operations, so they will have
the same values for shared variables. A similar situation happens for the fifth and sixth
interleavings. By ignoring the order of independent operations, there will be only four
groups of interleavings with different combinations of values for the shared variables x
and y. For the members of the same group, the same read or write operation is
guaranteed to use the same value of the shared variable. If the branch depends only on
the shared variable x, there are actually only two groups that matter for changing the
execution path of thread T1. These groups are determined by whether CS1 x is executed
before CSA x (group 1) or vice versa (group 2). When the loop in the thread T2 is
executed several times or possibly becomes an infinite loop, there are more possible
interleavings that affect the value of the shared variable y, but still there are only two
groups of interleavings with respect to different values of the shared variable x. We will
use this idea for exploring different execution paths efficiently.

Figure 10. Examples of grouping for interleavings

Figure 11 shows a control flow graph for a concurrent program and its

possible execution paths. A thread can take a different execution path when its control
flow changes. In a concurrent program, its control flow depends on input data,
interleavings, and branches. A different execution path might have a different lock
sequence or different read/write operations to shared variables. To detect concurrent
errors, we need to find all different interleavings that can change the execution path.

Thread T1 Thread T2

CS1 x

branch

CSA x

CS2 y
CSB y

1. CS1 x, CS2 y, CSA x, CSB y

2. CS1 x, CSA x, CS2 y, CSB y

3. CS1 x, CSA x, CSB y, CS2 y

4. CSA x, CS1 x, CS2 y, CSB y

5. CSA x, CS1 x, CSB y, CS2 y

6. CSA x, CSB y, CS1 x, CS2 y

Only differ in the
order of independent
operations.

Grouping by
ignoring the order
of independent
operations.

variant 4

variant 1

variant 2

variant 3

Grouping by considering
data dependency when
the branch depends only
on shared variable x

dependent

dependent
loop

group 1:
CS1 x before
CSA x

group 2:
CSA x before
CS1 x

Existing
reachability
testing (4)

Proposed
method (2)Exhaustive (6)

time

time

 15

Figure 11. An example of a control flow for a concurrent program

Suppose that path 1 is executed concurrently with path 3 (path 1 || path 3) when

the program is first tested. In this case, there are three other possible different
interleavings with the following results:
No. Possible

interleavings
Branch

outcome
Concurrent

paths
Note

1. CSA x, CS1 x, CS2 x true path1 || path3
2. CS1 x, CSA x, CS2 x false path2 || path3 Infeasible interleaving. It

becomes CS1 x, CSA x, CS3 x
3. CS1 x, CS2 x, CSA x true path1 || path3

Referring to Figure 11, let us assume that the first interleaving is taken when
the program is first tested. The other two interleavings are other possible test cases.
Assuming that the branch is conditioned by the shared variable x, the conditional
statement of the branch is affected only by the order of CSA x and CS1 x:

 CSA x is executed before CS1 x → branch outcome is true
 CS1 x is executed before CSA x → branch outcome is false

If the branch condition is true, then the execution of path 1 will be
concurrent with path 3 (path 1 || path 3). On the other hand, if the branch condition is
false, then we will have the combination of the execution of path 2 concurrent with
path 3 (path 2 || path 3). In this example, CSA x is executed before CS1 x in the first
and the third interleavings, so the branch outcome will be true and result in the same
execution path 1 for thread T1. Since thread T1 follows the same execution path in the
first and third interleavings, there will be no change in the sequence of lock/unlock
and read/write operations to shared variables. For exploring different execution paths

Thread T1 Thread T2

branch

Note:

CS : critical section

x : shared variablepath 1 path 2

path 3

CS1 x CSA x

CS2 x CS3 x

true false

 16

in thread T1 caused by the branch, it is sufficient to test only either the first or the
third interleaving.

By considering the dependency between the conditional statement in the

branch and the shared variables, we can avoid testing interleavings that do not change
the execution path of a thread. For the example shown in Figure 11, if we know from
the previous executions that the branch is not affected by the shared variable x, then
there is no need to test the second or the third interleaving. Of course, the final result
for the value of the shared variable x can be different in those interleavings because it
might also depend on the order of the critical sections. If the execution path in thread
T1 changes to path 2, we compare the sequence of lock/unlock and read/write
operations to shared variables between CS2 and CS3 before checking the race
conditions for the concurrent execution of path 2 and path 3 (path 2 || path 3). If the
sequence of lock/unlock and read/write operations to shared variables in CS2 and CS3
is the same or “equivalent” (will be defined in section 3.10 Race-Equivalent), then
the race conditions are the same as in the first test case (path 1 || path 3) in the
previous execution, thus reducing the effort for checking race conditions.

This dissertation consists of eight chapters. Chapter 2 presents the related

work and gives a survey on related existing systems for debugging concurrent
programs. Chapter 3 presents the basic terms and definitions that will be used in this
dissertation. Race conditions are introduced as one of major anomalies in concurrent
executions of multiple threads, and concurrency control mechanisms are shown as
means for solving race problems. In Chapter 4, we set the conditions and
requirements for the method that this dissertation seeks to provide. Among many
possible different situations and objectives for debugging and testing concurrent
programs, this section makes the conditions and the objectives specific. Chapter 5
proposes a new method to reduce the number of different interleavings for test cases.
The method utilizes data flows from the trace information to identify only those
interleavings that affect branch outcomes. The number of necessary test cases may be
significantly reduced. Chapter 6 discusses implementation methods in Java and
presents some of experimental results in comparison to some existing methods.
Chapter 7 does some discussions and indicates possible future work. Finally, Chapter
8 gives the conclusions.

 17

Chapter 2. Related Work

Figure 12 shows the area of this research among the related work

Figure 12. Related work

2.1 Error Prevention

The type-based system [Abdelqawy12] [Beckman06] introduces annotations
directly in source code to prevent race conditions. This is an improvement in terms of

Error detection

Static Dynamic

Deterministic
Non-deterministic

OS schedule Random Partial Exhaustive

Structural coverage:

Statement, branch,
path.

Deterministic
replay

Deterministic test

Source code,
false positive

Execution trace,
eliminate false positive

False negative

Too many,
not feasible

Detail trace
available

Detail trace
NOT available

Lack of consideration about race conditions

Correctness of concurrent programs

Error prevention

Expressive, but
need to be familiar
with new notations

Eliminate false negative

No guarantee that
all errors will be
detected

Proposed method:
Sequence of lock/unlock
and read/write operations
to shared variables.

Partial order:

Dependent
operations.

Partial
components:

Threads, variables.

Happens-before

Lockset analysis

Model
checker

Theorem
prover

Reduce overhead
caused by tracing

Race detection

Purpose: detect/reproduce
race conditions

 18

expressiveness, for example:
 Different objects of the same class can be protected by different locks.
 Different fields of the same object can be protected by different locks.

When we specify a field to be guarded by a lock, the type system can verify that all
accesses of that field are protected by that corresponding lock. However, it has some
drawbacks:

 Difficult to use: programmers need to be familiar with the notations of type-based
system.

 Concurrent errors might still escape: programmers cannot predict the flow of
execution because of the complexity of concurrent programs.

When concurrent errors escape, error detection systems can be useful to detect them.

2.2 Error Detection

Error detection can be classified into two classes; static and dynamic methods

(see Figure 13):
 Static methods : employ only source code analysis without executing the

program [Boyapati01] [Engler03] [Flanagan00] [Henzinger04] [Sterling93].
 Dynamic methods : actually execute a program and detect errors from the

execution trace [Nishiyama04] [Praun01] [Chris01] in addition to the source code
information.

Figure 13. Static method and dynamic method for error detection

Input

Source
code

Static
error detection

Dynamic Error
detection Errors

Errors

Concurrent
program execution

Execution
trace

Static method

Dynamic method

Source
code

 19

2.3 Static Error Detection

Since static methods do not know the precise execution of a program that

causes the error, they need to use a conservative (safe) approach by considering all
possible executions in order not to overlook potential errors [Yuan05]. Static methods
are suitable for ensuring that a program is free from errors because they check all
possible program behaviors. However, they often suffer from the detection of false
positives when debugging; that is, potential race conditions that do not actually exist
in the execution are detected, because it cannot determine the precise set of possible
interleavings that cause the errors. Furthermore, dynamic read/write operations to
shared variables through reference variables cannot be determined until the execution.

Some types of static methods:

 Inspect all possible different execution sequences for a concurrent program by
generating paths from a source code or a model based on control flow analysis
[Yang98] [Bertolino94].

 State space search method based on model checking [Godefroid97] [Havelund00]
[Holzmann91] [Cleaveland94] [Mutilin06]. This approach can systematically
exercise all the possible different sequences of synchronization events in a
concurrent program, but suffers from state space explosion problems. Techniques
such as partial order reduction [Godefroid96] [Clarke00] can suppress state
explosion, but it is necessary to record all execution history to avoid exercising
the same execution sequence and unfortunately static model is often too large to
build for many applications [Ramalingam02]. A recent work by Jasaitis R., et al
[Jasaitis13] extends an existing model checking tool [Havelund00] to verify a
distributed system in which the program runs in different machines.

 Check the properties of race conditions and deadlocks from a model based on
source code [Artho01], see Figure 14.

 20

Figure 14. Static error detection using Jlint [Artho01]

2.4 Dynamic Error Detection

In order to increase the precision, dynamic approaches [Nishiyama04]

[Praun01] [Chris01] are needed which actually execute a program, and the history
of program execution is recorded and analyzed. Since it analyzes the actual
execution, it results fewer false positive detection compared to static methods. For
debugging purpose, we should also be able to fully utilize information from
execution traces. The information obtained in a trace is concerned with read/write

Source code

Potential
concurrent errors

Model

Checking

Modeling

Rules for
checking

Drawback: false positives

- Infeasible execution paths due to branching and data dependency

- Infeasible interleavings due to synchronization, ex. wait-notify

Source
code

Detect race conditions

Detect deadlocks

Check race conditions:

- Variable not shared, or

- Volatile, final, or

- Within a synchronized method, or

- Within a block protected by a lock

class
extend
Thread

class
implement
runnable

Detect
potential
threads

Lock graph

Check deadlock:

- No circular in the lock graph

var x
var x

Modeling

No race conditions

No deadlocks

T1 T2

lock a
lock a

c

b

a

T1T2

T3
c

b

a

T1T2

T3

T1 T2

 21

operations to shared variables, lock commands, and synchronized commands
related to concurrency control. Some mechanisms for obtaining traces are JVM,
Aspect, and manual insertion. Since it detects only potential races based on a
particular execution, it does not guarantee the tested program to be bug free.

The dynamic approaches for helping debugging concurrent programs can be

applied either for showing/detecting potential errors from a particular execution
[Setiadi05] [Setiadi04] [Setiadi04_2] or for localizing/pinpointing the cause of error.
Delta debugging [Jong02] localizes the cause of error from the difference/delta
between correct and incorrect execution based on a binary search method which, if
a binary search is luckily applicable, makes it feasible even for a large program.
Others use specifications to find any errors/violations by deterministically execute
concurrent program [Chung01][Bochmann94][Carver98]. Very limited conditions
need be satisfied for these tools to be applicable in localizing the error. Due to the
limitations of such tools, they can be utilized only if the error can be reproduced,
that is having the same complete execution trace with timing information from the
execution in which the error had occurred, or knowing the correctness/specification
of the program, for example a particular incorrect value of a variable, or an
occurrence of an exception. Unfortunately, often programs do not stop or produce
an exception at the time when error occurs, and it is not always easy for
programmers to write a specification.

Existing trace analysis techniques for dynamically detecting potential races

are based on:
 Happens-before analysis : Happens-before analysis [Lamport78] based tools

[Adve91] [Chris01] [Dinning90] [Crummey91] establish temporal ordering on
program statements.

 Lockset analysis : Lockset analysis based tools [Savage97]
[Nishiyama04] [Praun01] verify that a program execution satisfies a locking
discipline. Eraser [Savage97], for example, is a lockset analysis that identifies
potential race from a particular execution by checking lock consistency for
access to shared variables.f

Most of research directions in this field are to reduce:

 False positives [Yuan05] [Nishiyama04] [Netzer91].

 22

 Overhead caused by tracing [Choi91] [Huang11].

J. Huang, J. Zhou, and C. Zhang [Huang11] identified one of the causes of

redundancy to be that an execution trace often contains a large number of events that
are mapped to the same lexical statements in the source code (see Figure 15).
However, removing them without careful analysis might cause false negatives
because they might affect the reproduction of race conditions. This situation happens
when a number of events from the same lexical statement in the source code affect a
conditional statement in a branch whose “then” and “else” statements have a different
sequence of lock/unlock and read/write operations to shared variables.

By checking happens-before relation or locking discipline for lockset,
potential races can be detected, but only if the execution trace contains potential
errors i.e. only identification of race conditions that actually occurred in the current
run. Unfortunately, the chance that a race condition will occur is low, and an actual
race detection tool does nothing to improve it. In a concurrent program, a branch can
take a different path not only caused by different input values, but also caused by
different scheduling and interrupt timings. Therefore it is not always possible to get
the same trace of the execution in which the error had occurred.

Figure 15. Recent dynamic methods

years
2006 2007 2008 2011

jCute: exhaustive

- Create different interleavings from
previous execution traces iteratively

CHESS: partial

- Test only
interleavings based
on fair scheduling

QuickCheck: restricted random

- Random interleavings

- Restriction on number of
operations

[Huang11]: trivial reduction

- Eliminate operations in an
execution trace which came
from the same lexical
statement in code

Drawback: Too many redundancies

Reduce the number of possible interleavings, but drawbacks:

• No guarantee concurrent errors will be found

• False negatives

 23

2.5 Non-Deterministic Execution

 Non-deterministic testing executes concurrent programs without precise
control of the interleavings. It does not guarantee that errors will be detected, i.e.
causing false negatives, because it might only execute some of the possible
interleavings. The interleavings can be decided either by:

 Operating system schedule.
 Random.

An operating system schedule determines interleavings based on some policies.

Therefore, the same interleaving might be executed even though a concurrent program
is executed several times. This causes concurrent errors not to be detected. In order to
increase the possibility of occurrence of concurrent errors, “CHESS” [Musuvathi07]
generates all interleavings of a given scenario written by a tester based on a “fair
scheduling”. In a fair scheduling, “all threads get opportunities to make progress”
[Musuvathi07].

A random approach determines interleavings arbitrarily. Since it is random, it
might not have a good coverage for detecting errors. An improved random
approach that uses a heuristic has been developed for the following purposes:
 Exploring execution paths which have high probability for causing the error

[Ben06] [Eytani07] [Stoller02] [Ben03]
 Reducing the search space [Edelstein03]
 Localizing the cause of errors [Ben03] [Edelstein03]

2.6 Deterministic Execution

Deterministic execution controls the interleaving of a concurrent execution.

There can be two type of deterministic execution based on the origin of the
interleaving as shown in Table 1.

 24

If we have the interleaving from previous execution when a concurrent error occurred,
then we can easily reproduce the error using a deterministic replay. Otherwise, we
need to use a deterministic testing to find the interleaving in which the error occurred.
Figure 16 illustrates the two types of deterministic execution.

Figure 16. Deterministic execution for replay and testing

2.7 Deterministic Replay

A deterministic replay can reproduce concurrent errors by replaying the
program. Some tools enforce a particular schedule to replay based on the
information from an execution trace. DejaVu [Jong98] is a deterministic replay
system for a modified Sun Microsystems' Java Virtual Machine. Jreplay [Baur03]

Source code

Input
Deterministic
execution

Deterministic testing

Deterministic replay

Source code Deterministic
execution

Execution
trace

Interleaving
from previous
execution

Input

Interleaving
as a test case

Execution
trace

Recording

Change
interleaving

Dynamic error
detection

Race
condition

Dynamic error
detection

Race
condition

Table 1. Types of deterministic execution

Deterministic
execution

Origin of the
interleaving

Description

Deterministic
replay

Previous execution Replay exactly the same interleaving
as previous execution.

Deterministic
testing

Generated as a test
case

Execute an interleaving as specified by
a test case.

 25

instruments Java byte code to replay specific thread schedule. Deterministic replay
techniques are available for replaying a concurrent program with the same
interleaving. Such techniques record the concurrent execution trace in a recording
mode. The recorded execution can be replayed later in a replaying mode for
dynamic analysis.

A commercial tool for deterministic replay [Total10] is capable of

reproducing the original execution order of threads, thus the same interleaving can be
replayed. When a concurrent error is detected during a recording mode, a
deterministic replay requires only one execution to replay the error and obtain the
execution trace containing the error. This is useful for debugging concurrent programs.
However, this is only effective if programmers can identify the errors when a
concurrent program is running in recording mode during software development or a
testing cycle. Unfortunately, due to the huge number of all possible interleavings, not
all of them can be tested during software development or the testing cycle because of
time and cost restrictions. Sometimes only regression tests are performed after fixing
bugs and the software is quickly deployed in real situations, leaving the possibility
that other errors remain. In recording mode, all the information necessary for
replaying can be traced using instrumentation [Baur03] or a specialized virtual
machine [Jong98]. Hence, recording mode will be different from the normal
execution which is known as probe effect:

 Timing: timings change and programs run more slowly because it is taking all
the information necessary for replaying.

 Memory: require more memories to store information concerning interleavings
and program states.

Therefore, executions cannot always be traced during the deployment of systems that
require high performance or where resources are limited, such as in embedded
systems. To reduce the probe effect, a special hardware device can be used to
communicate with the performance monitor through JTAG (refer to IEEE 1149) for
tracing, but many hardware constructions cannot run at full speed when JTAG is used
[Sebek02]. The advantage of this approach is that an execution can be traced with
minimum interference, but the drawback is expensive hardware costs.

2.8 Deterministic Testing

 26

In cases when an error has happened in the absence of a complete execution
trace for replaying, programmers need to test the concurrent program while taking
trace information to see if the same error can be detected. Unfortunately, the error
might not be easy to detect because a concurrent program can have a different
interleaving during re-execution. In this situation, programmers need to control the
interleaving and use deterministic testing. Deterministic testing can enforce a
particular interleaving specified in test cases. However, the number of possible
different interleavings can be huge. The method proposed in this research helps in
the efficient generation of test cases to reproduce the same or equivalent execution.

Some tools for deterministic replay can also be used for deterministic testing.

For example, in Jreplay [Baur03] programmers can control the interleaving by
enforcing thread switching using some additional locks, and can write them in the
locations where a thread switch should occur. Enforcing a thread switch is realized
by unblocking the next thread in the schedule followed by blocking all other
threads, including the current thread. An additional lock object is assigned to each
thread. The wait and notifyAll methods are used to implement the block and
unblock operations that suspend and resume an execution of a thread. A binary
semaphore is used to prevent deadlocks in the control transfer method due to
interceptions by the JVM scheduler. Another method devised by Pugh and Ayewah
[Pugh07] uses a clock to synchronize the order of executions in multiple threads.
Programmers can delay operations within a thread until the clock has reached a
desired tick.

Using the trace information, determining which interleavings to be inspected

among all the possible execution is important because it has direct impact on the
replay efficiency. Basically, there are two approaches:

(1) Partial : inspect only some of all possible interleavings based on
certain criteria.

(2) Exhaustive : inspect all possible interleavings [Lei06] [Lei04].

In principle, finding all errors requires an exhaustive approach.
Unfortunately, exhaustive approaches often suffer from an explosion of the number
of possible execution paths to be inspected. To overcome this problem, the concept
of partial approach is introduced.

 27

2.9 Partial Approach for Deterministic Testing

The idea behind a partial approach is to identify a group of executions with
the same coverage based on some criteria. For each particular group, it is sufficient to
test only one interleaving. It is useful for improving efficiency in testing because it
reduces the number of tests. In the field of concurrent programs, there exist some
criteria to determine which interleavings should be tested based on:

 Program structural (will be defined in subsection 2.9.1 Structural Coverage)
 Order of operations (will be defined in subsection 2.9.2 Partial Order)
 Program components (will be defined in subsection 2.9.3 Partial Components)

2.9.1 Structural Coverage

Structural coverage is based on control flow, which originally was defined
for sequential programs. In program testing, we can identify several levels of criteria
based on program structure [Prather87] [Taylor92]. These are statement coverage,
node coverage, branch coverage and path coverage.

Statement Coverage and Node Coverage

Statement coverage executes all statements in the graph at least once. Node
coverage encounters all decision node entry points in the flow graph. Statement
coverage and node coverage are rather weak criteria, representing necessary but by no
means sufficient conditions for conducting a reasonable test.

Branch Coverage

Branch coverage is a stronger criterion. It encounters all exits branches of
each decision node in the flow graph. Some existing researchers worked on testing
branch coverage for sequential programs [Prather87] [Gupta00]. In the case of
sequential programs, the execution path only depends on the input. Generating data
for branch coverage can be obtained by solving linear constraints in the conditional
statements of the branches. In the case of concurrent programs, where the input is
already known, we need to find different interleavings that cause the change in branch

 28

outcome.

It is necessary to apply branch coverage for checking race conditions since

different branch outcome might execute different sequences of lock/unlock and
read/write operations to shared variables in a thread. However, it is not sufficient
because of the following reasons:

 Branch coverage might not cover all possible concurrent combination of execution
paths.
Different interleavings might create different combinations of branch outcomes
containing race conditions. Take examples in Figure 17, assumed some test
executions execute the combination 3 and combination 4, and found no race
conditions. Branch coverage is fully covered because both branches have been
executed as true and false. However, race conditions might exist in different
interleavings for the combination 1 and 2.

 Race conditions might still occur even with the same branch outcomes.
Even with the same branch outcomes, different interleavings can change the
sequence of lock/unlock and read/write to shared variables causing race conditions.
This situation might happen when there are assignments to lock variables or
reference variables in different threads (will be explained in Section 5.3.6
Generating Test Cases to Check Consistent Locking for Access through
Reference Variables).

 29

Figure 17. Examples of execution paths combinations

In order to reduce the necessity to execute test cases, the proposed method

can identify and create a new execution path by combining the execution paths found
in the previous trace, but there is no guarantee that the new execution path will be
executed in the actual situation. Therefore there might be overhead for checking
unnecessary paths in this approach.

Path Coverage

Path coverage is the most thorough of all. Usually it is required to ensure the
correctness of a concurrent program. However, it is normally difficult to achieve
because the number of possible execution paths might be huge. Especially in
concurrent programs with complex loops and paths.

T1 T2

b1,1 b2,1
True

Execution path combination 1

False

T1 T2

b2,1

False

T1 T2

b1,1

True

T1 T2

b2,1

True

b1,1

False

b2,1

True

b1,1

False

Execution path combination 2

Execution path combination 3 Execution path combination 4

B P A Q

A PB Q

(a) (b)

(c) (d)

 30

In particular, interrupts may create an unlimited number of different paths
because interrupts may occur at any point of time in the program execution. This
problem can be partially mitigated by converting an interrupt processing to a thread.
Modern programming languages such as Java may also help mitigating this problem
by their capability of encapsulating concurrent operations. In this dissertation, we
assume that an interrupt processing is converted to a thread. Nevertheless, since
different execution paths might exercise different sequences of lock/unlock and
read/write operations to shared variables that can affect consistent locking, it is
mandatory to check path coverage to ensure that all concurrent read/write operations
to shared variables are consistent.

Koushik Sen and Gul Agha [Sen06] [Sen06_b] explored different execution
paths by generating new interleavings as well as new input. Their tool, known as
“jCute”, generates all possible interleavings based on previous executions by changing
the order of thread executions, starting from the smallest indexed thread. In jCute, some
redundancies remain in detecting race conditions, because not all of the generated
interleavings will change the sequences of lock/unlock and read/write operations to
shared variables.

All of the coverage criteria discussed above are mainly based on program
structure, but incomplete for exploring all sequences of lock/unlock and read/write
operations to shared variables in order to detect race conditions.

2.9.2 Partial Order

This type of coverage considers only some order of operations by exploiting
particular characteristics of concurrent programs.

Order of Dependent Operations

The partial order reduction, which was originally developed for static
methods, can be applied to reduce the possible executions. It reduces the execution by
defining “equivalency” between execution paths. It reduces possible interleavings by
considering only the order of “dependent” operations that affect the value of variables.
When the operations are “independent”, meaning that their execution does not

 31

interfere with each other, changing their order of execution will not modify their
combined effect. Since changing the order of independent operations will not affect
the value of shared variables, partial order reduction method ignores the order of
independent operations. Examples of independent operations are two read operations
to the same shared variable, and two write operations to different shared variables.
This method covers all possible different values of shared variables caused by
interleavings. This is necessary if we want to test all possible different values for
shared variables affected by different interleavings.

The reachability testing method proposed by [Hwang95] is an example of a

dynamic approach that utilizes the partial order reduction. Some of the focuses of
those researches in this field are to reduce the cost of tracing [Huang11] and to reduce
the search space [Flanagan05]. The reachability testing method is based on
prefix-based testing. The advantage of prefix-based testing is to be able to start
non-deterministic testing from a specific program state other than the initial state.
This kind of methods to reduce the cost of tracing is a natural part of our method
which is similar to the old idea of checkpoint/restart. In our method, by properly
applying this new checkpoint/restart technique for concurrent programs, any
redundant path that can be identified by the trace information is eliminated from the
test.

Another data flow coverage criterion proposed by Kojima [Kojima09] also
considers the order of data dependent operations which affect the values of shared
variables.

Order of Use-define Operations

“Use-define” coverage is a coverage criterion based on data flow. The
extension of use-define for concurrent programs was presented by [Lu07] [Yang03]
[Yang98]. The use-define will be discussed in section 3.13 Use-Define.

Order of Synchronization Operation

Synchronization coverage [Bron05] covers different orders of synchronization

events from different threads for evaluating concurrent completeness. Its goal is to
check whether the synchronization statements have been properly tested. For example,

 32

the tryLock method of the Lock interface in Java 1.5 is used to check whether a lock is
available. It does not block, but may succeed or fail depending on whether another
thread is holding the lock.

The use-define coverage [Yang98] and the synchronization coverage [Bron05]
are not suitable criteria for detecting race conditions because:

 Use-define coverage: consider only read/write operations to shared variables.
 Synchronization coverage: consider only locks.

For detecting race conditions, we need to consider both locks and read/write operations
to shared variables.

Order of Operations Causing Potential Concurrent Errors

Another work by C. Park, K. Sen, P. Hargrove, and C. Iancu [Park11], known

as active testing, generates a set of tuples that represents potential concurrent errors, by
performing imprecise dynamic analysis in an execution trace. The format of a tuple
corresponds to a particular class of errors. In the later phase, the program is re-executed
by actively controlling the thread schedule to confirm the concurrent errors. However,
the set of tuples might be incomplete if some tuples were not executed in the previous
execution. This situation happens when the executions of some tuples depend on the
“then” or “else” statements of a branch whose conditional statement is affected by
interleavings. This incomplete set of tuples might cause some false negatives for
detecting race conditions. Race conditions can only be detected using dynamic methods
if the execution trace contains the potential concurrent errors. Unfortunately in a
concurrent program, a branch can take a different execution path not only due to
different input values, but also due to different interleavings. Hence, depending on the
branches and interleavings, an execution trace might or might not contain potential race
conditions.

2.9.3 Partial Components

Some coverage criteria are derived from the existing ones by partially
selecting only some program components. For example, such partial selection may
pertain only to some threads [Takahashi08], variables, synchronization operations
[Bron05], or operations based on temporal order relations [Factor96].

 33

Other methods inspect some subset of interleavings by selecting only

combinations from some parameters. The intuition behind the idea is that many errors
can be exposed by considering interactions among a small number of parameters. The
work from [Lei07] proposes an efficient method for generating test cases for
combinatorial testing. This method is effective if we can predict the number of
parameters that cause the error and they should be far less than the total number of
parameters.

 34

Chapter 3. Basic Terms and Definitions

This section discusses the basic terms and definitions that are used in this
dissertation.

3.1 Concurrency Control Using a Lock Mechanism

Race conditions in a concurrent program can be eliminated by using a
concurrency control mechanism. Several methods are used for concurrency control,
but a lock mechanism is one of the most commonly used methods. In this
dissertation, we discuss only concurrency control using a lock mechanism. A lock
mechanism is used to enforce exclusive access to a shared variable by lock-unlock
operations. A lock mechanism prevents other threads from accessing the locked
shared variable (resource) concurrently. The execution section which is protected
by a lock is called a "critical section" (see Figure 18).

Figure 18. An example of a critical section

A thread is allowed to enter into a critical section when it acquires a lock and

exits the critical section after it releases the lock. Which lock to be acquired is
specified by the parameter “a” of the lock operation “lock a”. Likewise, “unlock a”
operation specifies the lock “a” to be released. In the case of multiple hierarchical
locks (such as two-phase locks), a critical section has to be defined for each lock.
These critical sections may overlap to each other.

Thread T1

lock a

read/write x

. . .

unlock a

critical section

time

 35

3.2 Race Conditions

When a shared variable is concurrently accessed by multiple threads, the
final value of the shared variable is not deterministic. Figure 19 shows an example
where two threads T1 and T2 run concurrently and access a shared variable x.

Thread T1 Thread T2

 // x is a shared variable
 integer x = 10;

// a is a local variable within T1 // b is a local variable within T2
integer a; integer b;

a = x; b = x;
a = a + 1; b = b – 1;
x = a; x = b;

Figure 19. An example of two threads T1 and T2 run concurrently and access a shared
variable x

The value of x after threads T1 and T2 have been executed is not determined

to the same unique value. Depending on the interleaving of instruction executions, the
value may be 10, 9, or 11. We say in such a situation that a “race condition” or simply
“race” occurs. This is not a desirable phenomenon. A technique for avoiding races is
concurrency control.

We define a race condition by referring to locking discipline from

[Savage97]. “Every shared variable must be protected by some locks.” Such locks are
called “consistent locks” for accessing a shared variable. The consistent locks are
acquired by any threads before accessing the shared variable.

 36

Figure 20. Examples of consistent locks

Figure 20 shows examples of consistent locks:

 Consistent lock for accessing the shared variable x is lock@123.
 Consistent lock for accessing the shared variable y is lock@456.

In concurrency control using a lock mechanism, a race condition exists when a thread
is accessing a shared variable without acquiring consistent locks.

Detecting race conditions is mostly the task of checking consistent locks for

accessing shared variables. A race detector called Eraser [Savage97] proposes an
efficient algorithm for checking consistent locks in the execution of a concurrent
program. In concurrency control using a lock mechanism, it is the responsibility of
programmers that a proper lock operation is performed before accessing a shared
variable, and that the lock is released after the access to the shared variable has been
completed. If this rule is properly followed, the accesses to the shared variable are
said to be "well-formed". In other words, an access is said to be well-formed if
processes or threads acquire a consistent lock for the shared resource before accessing

 Thread T1 Thread T2

a = lock@123

lock a

read / write x

unlock a b = lock@456

lock a

lock b

read / write x

read / write y

unlock b

unlock a

Thread T3

c = a

lock c

read / write x

unlock c

 37

it, and then eventually followed by an unlock operation to release the corresponding
lock. There are various reasons why access to a shared variable may not be
well-formed, for example:

 Programmers forget to write the lock, or they may write an incorrect lock
before accessing shared variables.

 Programmers make an incorrect prediction about the execution path, resulting
in the lock not being properly set.

 Programmers may intentionally omit a lock for performance reasons when race
conditions are acceptable, for example by using a volatile variable in Java.

In those cases, the access to shared variables is not well-formed and it might cause
a race condition. An example is shown in Figure 26(c) and Figure 26(d) where the
"else-statements" in line 15 for thread T1 access the shared variable x without
acquiring any locks.

3.3 Total Replay

We define a term called “total replay” [Setiadi10] for testing and debugging

concurrent programs. Total replay executes all possible different interleavings and
interrupt timings within the scope given by an execution trace that contains an error.
Formally, we define as follows:

 Let T be the information from the execution trace of a program execution r that
contains an error E. Let S be the set of possible different executions in the scope
of trace T; that is, those executions that start with the same set of input values but
with different interleavings and interrupt timings. If R is the set of all possible
executions for the program, then S is a part of R. Since the information T obtained
from the trace execution holds the conditions under which the error E had
occurred in the execution r, then we can guarantee that r ∈ S. Therefore for
reproducing the error E, we need to test only S (just the ones within the scope of
T), and there is no need to test any other execution.

 When we replay an execution p based on the trace information T, we can
guarantee that p ∈ S, but there is no guarantee that p and r are the same. When
no trace information is available, then S = R. In this case it will become an entire
program test. If S is small compared to R, then we are getting closer to a
debugging of a particular error. When we can replay all the possible executions in
S, then we call it as “total replay”. Most existing replay systems can replay only a

 38

subset of S. Therefore there is no guarantee that the execution r is replayed. In
contrast to the total replay, the existing replay systems may be called “selected
replay”.

3.4 Dynamic Access

There are some situations where access to a shared variable is not determined
at compile time. A shared variable or data access through a reference variable such as
a pointer in C, an object reference in Java, or an index of an array, or a file name
cannot be determined until an actual execution takes place. The reference variable
itself can be detected when it is shared, but trace information is needed to actually
determine which particular variable or data is accessed. We further elaborate the
situation below.

3.4.1 Reference Variable

A reference variable is a variable that refers to an object in Java
programming language. This is similar to a pointer in C programming language. Race
conditions might arise when several shared reference variables actually refer to the
same data. When checking for race conditions, we should not compare the reference
variable's name. Instead we need to compare the actual data referred from an
execution trace, which is the memory location of the pointer for C language, or the
object for Java language. Again dynamic methods are needed because static methods
cannot cope with such a situation. Figure 21 shows an example where two different
pointers refer to the same memory location and two different reference variables refer
to the same object. On the other hand, even when the same reference variable is
shared between threads, the variable or data referred by them may not necessarily be
shared. Those situations cannot be coped with static methods.

Pointer in C Object Reference in Java

St S1,S2,S3; //st is a structure
definition
st *p1, *p2; // shared variable

// p1 and p2 refer to the same memory

A ref1, ref 2; // object reference
ref1 = new A();

// ref1 and ref2 refer to the same
object

 39

// location
p1 = & S1;
p2 = & S1;

ref2 = ref1;

Figure 21. Examples of reference variables

We will show how to generate test cases for detecting race conditions caused by
reference variables in section 5.3.6 Generating Test Cases to Check Consistent
Locking for Access through Reference Variables. Similar situations also happen for
file references, for example file_name = fopen(c:¥¥data¥…). In such a situation, we can
treat them in a similar way to reference variables.

3.4.2 Array

When an array element is shared, the value of the index to specify a
particular element is not known until the actual execution (see Figure 22). In a
static method, to be safe, the entire array should be considered to be shared. Thus
the detection precision is lowered. A dynamic method is again required. Similarly
in the case of a file name, the actual file may not be known until the actual

p1 and p2 refer to the
same memory location,

T1

lock a

read/write p1

read/write p1

unlock a

T2

CS1,1 CS2,1

lock b

write p2

unlock b

A race condition will occur when critical section CS1,1 and CS2,1 are interleaved.

T1

lock a

read/write ref1

read/write ref1

unlock a

T2

CS1,1 CS2,1

lock b

write ref2

unlock b

ref1 and ref2 refer to
the same object,

Pointer in C Object reference in Java

p1 = & S1

p2 = & S1 ref2 = ref1

 40

execution.

Figure 22. Sharing of an array element

3.5 Conditional Statements/Branches and Loops

Interleavings, timings, and execution paths are all related. A concurrent

program can have different execution paths caused by conditional
statements/branches, loops, thread interleavings, interrupt timings, and thread
communications. Different execution path might cause the program to have a
different access-manner to shared variables, i.e. exercising different sequences of
lock/unlock. Control flows at conditional statements/branches can be affected by:

 Input values: The test case generation for all branches caused by different
input values has been an issue in program testing, for instance [Visser04]. This
is not our main concern in this dissertation. In our setting, the input values are
known.
 Thread interleavings and interrupt timings: Thread interleavings and interrupt
timings may affect the values of shared variables which may in turn affect the
result of conditional statements/branches. A simple example is shown in
Figure 23.

T1

lock a

read/write num[i]

unlock a

T2

CS1,2 CS2,2

lock b

write num[i]

unlock b

i++

Which array element is accessed
is not known until the execution.

 41

Figure 23. An example of a branch that is affected by interleavings

We use the term “branch outcome” to refer to the truth value within a

conditional statement of a branch during a program execution, that is whether true
or false. Let bi,j be the j-th branch from the execution trace of thread Ti. We define
“branch-path” for a thread as execution sequence of branch name and its branch
outcome. For an execution with N threads, let nb(Ti) be the number of branches for
thread Ti. The branch-path for concurrent program is the collection of branch-path
from all the threads.

b1,1[true|false] b1,2[true|false] b1,3[true|false] ... b1,nb(T1)[true|false]
b2,1[true|false] b2,2[true|false] b2,3[true|false] ... b1,nb(T2)[true|false]
 ...
bN,1[true|false] bN,2[true|false] bN,3[true|false] ... bN,nb(TN)[true|false]
For example, branch-path for a concurrent program execution with three threads

could be b1,1true, b1,2false, b1,3true, b2,1false, b2,2false, b3,1false, b3,2false.

Similarly loop-path at the execution of a thread is represented as:
l1,1[1st interation] l1,1[2nd interation] l1,1[3nd interation] ...

T1 T2

lock b

y = 0;

unlock b

if (y==0) {

lock a

read/write x

unlock a

}

T1 T2

if (y==0)

else {

lock c

read/write x

unlock c

}

lock b

y = 1;

unlock b

lock a

read/write x

unlock a

lock b

y = 0;

unlock b
lock b

y = 1;

unlock b

lock a

read/write x

unlock a

A race condition happens if lock a and
lock c do not refer to the same lock.

cs1,1

cs1,2

cs2,1

cs2,2

cs1,1

cs1,2

cs2,1

cs2,2

then is
executed

else is
executed

cs1,1 is
executed
before cs2,1

cs1,1 is
executed
after cs2,1

true false

Execution 1 Execution 2

No race condition.

 42

A “race-equivalent” (will be explained in section 3.10 Race-Equivalent)
group can be defined using these branch-path, loop-path and “access-manner” (will be
explained in section 3.9 Access-Manner). Some program executions might be
repeated even without a loop, for example because of goto statement. The existing
work by [Huang11] can detect such repetitions by identifying some events that are
mapped to the same lexical statements in the source code. Those repetitions might not
affect the reproduction of race conditions. In such a case, different executions with
different number of repetitions could be considered as one race-equivalent group.

3.6 Model for Concurrent Program Execution Traces

A concurrent program execution trace contains a sequence of operations from

all the threads. An operation in a thread is modeled as a triplet of:
location : operation : operand, where

 location is thread_name:file_name:line_of_code. The thread name or the file name is
omitted in some cases for simplicity when there is no ambiguity.
 operation is the read or write operation on a shared variable.
 operand is the name of the shared variable.

Figure 24 shows an example of a concurrent program and its flow graph. Let us
assume that the following read and write sequence S is obtained from an execution trace
of the first test:
T1:1 read x, T2:10 write x, T1:1 read y, T1:1: write n, T1:2 read n, T2:11 write y,
T1:3 …, T1:7 read y, T2:12 read x.

 43

Figure 24. (a) An example of a concurrent program. (b) Flow graph. (c) Flow graph for

read and write operations

3.7 Execution Paths

A concurrent program consisting of threads T1, T2, T3, …, Tp, where p is the
number of threads. An execution path is defined for a thread and a concurrent program:

 An execution path Pi of a thread Ti is a sequence of operations executed by the thread
Ti. For the execution of the program shown in Figure 26(a) and Figure 26(b), we
have:
P1 = {10: if (), 11:lock a, 12: read x, 13: unlock a}
P2 = {20:lock a, 21:lock b, 22:read y, 23:write x, 24:unlock b, 25:unlock a }
 An execution path of a concurrent program is a sequence of operations executed by
all threads, taking into account the global order among threads. Figure 26 shows four
possible examples of concurrent execution paths for the concurrent program in Figure
25.

Figure 25. An example of a conditional statement

1: n = x + y;
2: if (n<0) {
3: . . .
4: } else {
5: . . .
6: }
7: print y;

Thread T2
10: x = -10;
11: y = 2;
12: print x;

Thread T1
1: n = x + y

2: if (n<0)2: if (n<0)

3: . . . 5: . . .

7: print y

T F

10: x = -10

11: y = 2

12: print x

1: read x
1: read y
1: write n

2: read n2: read n

3: . . . 5: . . .

7: read y

T F

10: write x

11: write y

12: read x;

Thread T2Thread T1

(a) (b)

Thread T2Thread T1

(c)

10: if(condition){
11: lock a
12: write x
13: unlock a
14: } else{
15: write x
16: }

conditional statement

“then-statements”

“else-statements”

Thread T1 Thread T2
20: lock a
21: lock b
22: read y
23: write x
24: unlock b
25: unlock a

Access to
shared
variable x
without
previously
acquiring
any locks.

branch b1,1

 44

Figure 26. Examples of different concurrent execution paths for program in Figure 25

We define PATHS as a set of execution paths Pi’s.

PATHS = (P1, P2, P3, …, Pp), where p is the number of threads.
Note that PATHS does not take into account the global ordering among threads. For
the example in Figure 26(a) and Figure 26(b), we have:
PATHS = { P1, P2 } = { {10: if (), 11:lock a, 12: read x, 13: unlock a}, {20:lock a,
21:lock b, 22:read y, 23:write x, 24: unlock b, 25: unlock a} }

3.8 Interleaving and Branching

We denote by bi,j the j-th branch of thread Ti in the execution path of thread Ti.

The truth value of a conditional statement in a branch can be affected by both input
values and interleaving because interleaving might affect shared variables, which may
in turn affect the conditional statement. Figure 26(a) and Figure 26(b) show some
possible concurrent execution paths for the program in Figure 25 when the conditional
statement in the branch b1,1 is true, whereas Figure 26(c) and Figure 26(d) show the
concurrent execution paths when the conditional statement is false.

Let → denotes the “happens-before” relation as follows: If a is an event in

process Pi, and b is an event in process Pj, then event a →event b if and only if event
a happens before event b. In the example of Figure 26, the order of T1:10 and T2:23
affects the truth value of the branch b1,1. The branch is true in executions 1 and 2
when T1:10 →T2:23, and false in executions 3 and 4 when T2:23 →T1:10. We will
later explain how to identify operations that affect a branch.

T1:10: if () {
T1:11: lock a
T1:12: write x
T1:13: unlock a
T2:20: lock a
T2:21: lock b
T2:22: read y
T2:23: write x
T2:24: unlock b
T2:25: unlock a

Execution 1
b1,1 is True

Execution 2
b1,1 is True

(a) (b)
(c)

Execution 3
b1,1 is False

time

Thread T1 is accessing shared variable x
without acquiring any locks.

T2:20: lock a
T2:21: lock b
T2:22: read y
T2:23: write x
T1:10: if () {
T1:14: } else {
T1:15: write x
T2:24: unlock b
T2:25: unlock a

T2:20: lock a
T2:21: lock b
T1:10: if () {
T1:11: lock a
T1:12: write x
T1:13: unlock a
T2:22: read y
T2:23: write x
T2:24: unlock b
T2:25: unlock a

T2:20: lock a
T2:21: lock b
T2:22: read y
T2:23: write x
T2:24: unlock b
T2:25: unlock a
T1:10: if () {
T1:14: } else {
T1:15: write x

Execution 4
b1,1 is False

(d)

start: lock, L(T2)=1

end: lock, L(T2)=0

start: write, L(T1)=0

end: write, L(T1)=0

 45

3.9 Access-Manner

Partial order reduction is in general performed with respect to the concerned

properties. Reduction is possible only when the concerned properties hold in the
reduced state space of the target system. Since our main concerns are race conditions,
we can perform partial order reduction with respect to the sequence of lock/unlock
and read/write operations to shared variables. We define a notation called
“access-manner” to capture the following two properties for detecting race conditions:

(1) The currently effective locks when performing read/write operations to
shared variables.

(2) The order of their lock operations performed.

The knowledge of access-manner is sufficient to detect race conditions. We use
access-manner to check whether the access to a shared variable is performed correctly
under a lock. Here it is assumed that the target system adopts the locking scheme to
concurrency control.

In order to define an access-manner, we use notation L(Ti) as the number of
active locks acquired by thread Ti at a particular time. L(Ti) is 0 at the beginning of
the execution of the thread Ti. During an execution of a program, L(Ti) is incremented
and decremented by the following rules:

 Incremented by 1 when a thread successfully acquires a lock (i.e. has completed a
lock instruction).
 Decremented by 1 when the thread Ti releases the lock which is currently being
acquired (i.e. has completed an unlock instruction). L(Ti) is not decremented if a
thread is trying to release a lock which is not currently acquired. Hence, L(Ti) cannot
be negative.

We define an access-manner as a sequence of operations in which a thread has

acquired a lock, has accessed a shared variable, and has released the corresponding lock.
Access-manners are defined in the execution path of each thread. There could be several
access-manners within the execution path of a thread. An individual access-manner is a
sequence of lock/unlock and read-write operations to shared variables within an
execution path of a thread. We classify access-manners based on their sequences of

 46

lock/unlock and read/write operations to shared variables as follows:
 A usual access-manner:

An access-manner which starts and ends with the following conditions:
 Start : acquiring a lock, a lock operation which causes L(Ti) to become 1.
 End : releasing the corresponding locks, an unlock operation which causes

L(Ti) to become 0.
Figure 27 shows an example of L(Ti) for a usual access-manner using three locks.
In between the start and end, the thread is accessing shared variables.

 An unusual access-manner:
An access-manner which starts or ends by the following conditions:

 Start : accessing a shared variable without acquiring any locks, or when
executing only an unlock operation without acquiring a lock. This might
happen because programmers forget to acquire locks.

 End : when an execution trace has terminated.
Such an unusual access-manner might potentially cause race conditions should
another thread be accessing the same shared variable.

Figure 27. An example of L(Ti) for a usual access-manner with three locks

An individual access-manner must end before another individual access-manner starts;
thus they cannot overlap. Throughout this dissertation, an access-manner should be
understood to mean a usual access-manner.

Number of
active locks

L(T1)

timet1 t3 t4 t7 t8 t9

3

2

1

Access-manner
starts

Access-manner
ends

Thread T1

lock a

read/write x

lock b

lock c

read/write y

read/write z

unlock b

unlock a

unlock c

time t4

t7

t1

t9

t3

t8

 47

Two individual access-manners are the same if they have the same sequence of

lock/unlock and read-write operations to shared variables. We define Mi to be a set of
access-manners for the execution path of thread Ti, that is a collection of distinct
individual access-manners without considering their order. We also define a concurrent
set of access-manners MANNERS = {M1, M2, M3, ... , MN} as a collection of sets of
access-manners from all the threads within a concurrent execution path of a concurrent
program. When two concurrent execution paths of a concurrent program have the same
MANNERS, each thread will have the same set of access-manners.

When two different concurrent execution paths of a concurrent program have

the same PATHS, each thread in the two execution paths will exercise exactly the same
sequence of lock/unlock and read-write operations to shared variables, hence they will
also have the same set of access-manners. Therefore, two concurrent execution paths
with the same PATHS will certainly have the same MANNERS. The concurrent
execution path in Figure 26(a) and the execution path in Figure 26(b) have the same
PATHS, hence they will also have the same MANNERS:

M1 = {(11:lock a, 12:write x, 13:unlock a) }
M2 = {(20:lock a, 21:lock b, 22:read y, 23:write x, 24:unlock b, 25:unlock a) }
MANNERS = { {(11:lock a, 12:write x, 13:unlock a)}, {(20:lock a, 21:lock b, 22:read

y, 23:write x, 24:unlock b, 25:unlock a)} }

With the knowledge of access-manners and the accumulation previous execution
traces, we can accomplish two things:
(1) If the current sequence of lock/unlock and read/write operations is found to be the

same as the previous logged one, then we do not need to repeat the detection of
race conditions because the same situation has already been tested. This is true for
any execution paths including loops.

(2) In exploring execution paths, any execution paths having the same sequence of
lock/unlock and read/write operations are grouped into the same group. They
constitute a “race-equivalent” group. We will use access-manner to define the
equivalency in terms of race conditions among different executions of a
concurrent program (will be discussed in section 3.10 Race-Equivalent).
However, note that belonging to the same race-equivalent group does not
necessarily imply that the future computation will be the same.

 48

3.10 Race-Equivalent

Regarding reproducing race conditions due to inconsistent locking for

read/write operations to shared variables, it is beneficial to consider “equivalency”
between two executions of a concurrent program. For this purpose, we introduce a new
term called “race-equivalent”. Two executions of a concurrent program are
race-equivalent if they have the same MANNERS. In other words, for the same thread in
the two executions, they have the same sequence of lock/unlock and read/write
operations to shared variables (illustrated in Figure 28). Race-equivalent means the two
concurrent execution paths are using the same consistent locks (or the same inconsistent
locks) for accessing shared variables. Different concurrent execution paths of a
concurrent program that are race-equivalent are said to be in the same “race-equivalent
group”. It is sufficient to test only one member from each race-equivalent group,
thereby reducing the number of interleavings to be tested. For detecting race conditions,
we need to check all race-equivalent groups.

Figure 28. An example of a race-equivalent for two executions

Thread T1 Thread T2

a = lock@123

lock a

read x

unlock a

write x

unlock a

Access to a shared variable

without protected by consistent locks

Execution 1 Execution 2

Thread T1 Thread T2

a = lock@123

lock a

read x

unlock a
write x

unlock a

Race conditions happen in both executions

Same sequence of lock/unlock and

read/write in the same thread

Sufficient to test only one of them

Race-equivalent

time

Can be grouped

 49

As explained in section 3.9 Access-Manner, two concurrent execution paths

with the same PATHS will certainly have the same MANNERS. Therefore, two
concurrent execution paths of a concurrent program that have the same PATHS will
certainly be race-equivalent. For examples, the execution path in Figure 26(a) and
the concurrent execution path in Figure 26(b) have the same PATHS, so they are
race-equivalent. We can see that lock a is a consistent lock for accessing shared
variable x in both concurrent execution paths. Different race-equivalent groups can
be created by taking a different concurrent execution path in which at least one
thread changes its individual access-manner. A branch might lead to a different
concurrent execution path which, in turn, can produce different individual
access-manners that can affect consistent locking. As shown in the concurrent
execution paths in Figure 26(c) and Figure 26(d), there is a race condition because
there is no consistent lock for access to shared variable x in thread T1:
M1 = {(15:write x) }
M2 = {(20:lock a, 21:lock b, 22:read y, 23:write x, 24:unlock b, 25:unlock a) }
MANNERS = {{(15:write x) }, {(20:lock a, 21:lock b, 22:read y, 23:write x,

24:unlock b, 25:unlock a) } }
To detect this race condition, we need only check the concurrent execution path in
Figure 26(c) or the one in Figure 26(d) because they are race-equivalent. The same
inconsistent locking can be detected.

When a branch changes the execution path of a thread, it might not necessarily
produce different consistent locking. In this situation, the same thread in the two
concurrent execution paths might not exercise exactly the same sequence of lock/unlock
and read-write operations to shared variables, but they will still have the same
MANNERS, and so we can also classify them as race-equivalent. This is particularly
useful in the case of loops because we do not need to test all the iterations. It is
sufficient to test only a partial execution trace from several iterations for checking race
conditions because the execution of loop iterations can have the same access-manners.

In Figure 29, thread T1 in execution 1 and execution 2 has different
access-manners, hence concurrent execution paths 1 and 2 are not race-equivalent.
When there is an active lock that was acquired outside the loop, then the first iteration
will have different access-manners from those in the second iteration because they start

 50

from different active locks, as shown in concurrent execution paths 1 and 2 in Figure 29.
On the other hand, concurrent execution paths 2 and 3 in Figure 29 are race-equivalent
because each thread in the two executions has the same MANNERS:

M1 = { (1:lock a, 3:write x, 4:unlock a), (3:write x), (4:unlock a) }
M2 = { (20:lock a, 21:read x, 22:unlock a) }
MANNERS = {{(1:lock a, 3:write x, 4:unlock a), (3:write x), (4:unlock a)}, {(20:lock

a, 21:read x, 22:unlock a)}}

The second iteration for the loop accesses the shared variable x without

acquiring any lock, a fact that can be detected in either concurrent execution path 2 or 3.
When there is no active lock at the end of a loop, the rest of the iterations will have the
same set of access-manners. The rest of these iterations are called “equivalent iterations”
in terms of consistent locking because they have the same set of access-manners.

Figure 29. An example of set of access-manners for a loop

A different read/write sequence that affects the values of shared variables is
called an “execution-variant”. Section 4.2 Approach explains how to derive
execution-variant effectively using an existing method. Further to the discussion above,
the problem for detecting a race condition can be stated as follows:
Given a concurrent program that has an execution-variant Verror containing an error in
its concurrent set of access-manners MANNERSerror, find the Verror, or another
execution-variant V, which has the same concurrent set of access-manners as

1: lock a
2: while(condition){
3: write x
4: unlock a
5: }

1: lock a
2: while() {
3: write x
4: unlock a

Execution 1:
Iterates once

Execution 2:
Iterates twice

Execution 3:
Iterates three times

20: lock a
21: read x
22: unlock a

T1 T2

1st

T2T1

2nd

T2

3rd

T1

20: lock a
21: read x
22: unlock a

Thread T1 Thread T2

access without previously acquiring any locks

20: lock a
21: read x
22: unlock a

20: lock a
21: read x
22: unlock a

1: lock a
2: while() {
3: write x
4: unlock a

1st

2: while() {
3: write x
4: unlock a

2nd

1: lock a
2: while() {
3: write x
4: unlock a

1st

2: while() {
3: write x
4: unlock a
2: while() {
3: write x
4: unlock a

Same
individual
“access-
manner”

 51

MANNERSerror. Since each thread in V and Verror will have the same set of
access-manners, then the same inconsistent locking and improper lock-unlock
sequences in Verror will also be detected in V.

3.11 Concurrent-Pair of Access-Manners

We define the term “concurrent-pair” of access-manners for the purpose of
checking race conditions in a concurrent execution. Two access-manners M1 and M2 are
a concurrent-pair, denoted by pair(M1, M2), if there exists a different interleaving that
can change the order of occurrence between one of the operations from M1 and one of
the operations from M2. Let’s assume an access-manner M1 in a thread T1, and an
access-manner M2 in a thread T2. The access-manners M1 and M2 are a concurrent-pair
of access-manners if the following three conditions hold:

 Different threads: The threads T1 and T2 are different.
 Not blocked by a thread creation: The thread T1 is not created by the thread T2 after

the access-manner M2 ends, or the thread T2 is not created by the thread T1 after
the access-manner M1 ends.

 Not blocked by a synchronization message: The thread T1 does not wait for a
message from the thread T2 before the access-manner M1 starts, or the thread T2
does not wait for a message from the thread T1 before the access-manner M2 starts.

Figure 30 is an example of an execution for the source code in Figure 32. It

shows some concurrent-pairs of access-manners. The number of concurrent-pairs of
access-manners depends on the number of access-manners and how they are distributed
among threads.

 52

Figure 30. Examples of some concurrent-pairs of access-manners in an execution trace

 We have to check race conditions for each concurrent-pair of access-manners.
When a use operation has more than one member in its define_set, its value might be
affected by different interleavings. For each concurrent-pair of access-manners, we have
to check race conditions for all the combinations of the define_set of the lock variables
and reference variables. The occurrence of race conditions might be affected in the
event that any lock variables refer to different lock objects or any reference variables
refer to different objects. A race condition can occur in Figure 30 between the
concurrent-pair of access-manners M1 and M3. This happens when the reference
variables ref1 and ref2 refer to the same object, and the lock variables a and b refer to
different lock objects.

There is no need to check different interleavings between a concurrent-pair of
access-manners that satisfies the following two conditions, because the consistent
locking will be the same:

 The concurrent-pair of access-manners has been checked for race conditions in the
previous test execution.

 Different interleavings will not change the value of lock variables and reference
variables.

Thread T1 Thread T2 Thread T3

30: ref2 = ref1

20: x = 10

21: . . .

22: lock b

23: ref2 = new Object()

24: unlock b

25: print x

26: lock b

27: ref2.credit = 7

28: unlock b

1: x = -3

2: y = 2

3: n = x + y

4: if (n<0) {

6: } else {

7: lock a

8: ref1.credit = 10

9: unlock a

10: }
ref1 and ref2 refer
to different objects

time

M1

M2
pair1

M3
pair2

define_set(ref2, 27) =
{ 23: ref2 = new Object(),
30: ref2 = ref1 }

pair1 = pair(M1, M2)

pair2 = pair(M1, M3)

ud(ref2, 27, 23)

udpot(ref2, 27,
30)

 53

In this way, we can reduce the number of test cases. On the contrary, if any different
interleavings might affect the lock variables or reference variables, then they have to be
tested because the consistent locking might be affected accordingly.

3.12 No-Race

We define a term named “no-race” for a concurrent-pair of access-manners.
No-race means two access-manners can be interleaved without race conditions. This
is the essential definition for “no-race”. When the concurrency control of the target
system is based on a lock mechanism, we say that a concurrent-pair of
access-manners pair(M1,M2) is no-race when one of the following conditions is
satisfied:

 No common shared variables.
No common shared variables between the two access-manners.

 Protected by consistent locks.
Every read/write operation to a shared variable is always protected by consistent
locks (see about consistent locks in section 3.2 Race Conditions).

Algorithm 1 explains in more details on how to decide whether a concurrent-pair of
access-manners is no-race.

Algorithm 1. Deciding whether a concurrent-pair of access-manners is no race

Definitions:

 - M1: an access-manner

- vars(Mi) : set of variables within an access-manner Mi.

 - shared(M1, M2): set of variables which are shared between access-manner M1 and

M2.

 - write(Mi): set of shared variables that are written within an access-manner Mi.

- read(Mi): set of shared variables that are read within an access-manner M1.

 - activeLocks(x,t): set of active locks when a variable x is read or written at a

particular time t.

 54

- consistentLocks(x): set of consistent locks for accessing a variable x.

Input: a concurrent-pair of access-manners pair(M1,M2).

Output: deciding whether the input pair(M1,M2) is no-race.

Step 1. Check whether there are common shared variables between the two

access-manners

 If ((vars(M1) ∩ vars(M2)) = Ø) {

 Report as no-race and terminate this algorithm.

}

Step 2. Check whether every access to a shared variable is protected by consistent

locks.

Step 2.1 For every shared variable x in shared(M1, M2)

 Assuming the shared variable x is accessed at time : t1 ,t2 ,t3, . . . , tN

 consistentLock(x) = activeLocks(x, t1) ∩ activeLocks(x, t2) ∩ activeLocks(x, t3)

∩ . . . activeLocks(x, tN)

Step 2.2 For every shared variable x in shared(M1, M2)

 If consistentLock(x) ≠Ø

 Report as no-race and terminate this algorithm.

Step 3.

 Do not report as no-race.

Once a concurrent-pair of access-manners is found be no-race, and there are

no other assignments to reference variables or lock variables, except during the
initialization, then no further check is needed for other interleavings among

 55

operations inside the two access-manners. Figure 31 shows an example of a no-race
where access to shared variable x is protected by the consistent lock a.

Figure 31. An example of concurrent-pair of access-manners which is no-race

We note that no-race guarantees only whether accesses to shared variables

are protected by consistent locks. The order of them, of course, affects the values of
the shared variables. In the example in Figure 31, the final value of shared variable
x depends on whether access-manner M1 is executed before or after the execution
of access-manner M2.

3.13 Use-Define

A “use-define” is a relation consisting of a usage “use” of a variable and the

definition “define” of the variable.
 A use means a read operation on a variable.
 A define means a write operation of some value to a variable.

A use-define is a triplet:

ud(var, use_location, define_location) (1)

There must be no other write operations to the variable in between the use and
define operations. The use-define was initially defined for sequential programs. R.
Caballero, C. Hermanns, and H. Kuchen [Caballero07] utilize use-define for measuring
test coverage but that definition does not apply to concurrent programs. In this

T1 T2

M1
lock a

read/write x

unlock a

lock a

read/write x

unlock a

time

M2

 56

dissertation, we call this use-define for sequential programs the “conventional
use-define”. Yang, A.L. Souter, and L.L. Pollock [Yang98] extend the definition of
use-define to the usage and definition of shared variables in concurrent programs.
Below are the differences:

 Sequential program: the use and define operations are located in the same thread.
 Concurrent program: the define operation might be located in a different thread to

the use operation. The interleaving in a particular execution decides which thread
actually defines the value.

A set of use-defines is obtained from an execution trace. We use the set of

use-defines to find operations which affect conditional statements in branches or
reference variables in access-manners. We also define “potential use-define” for the
same use of the variable when there could be another interleaving which satisfies the
following two conditions:
1. There is another define operation which occurs before the use operation. We assume

the use operation can be executed after the define operation, i.e. not blocked by a
thread creation or a wait-notify message.

2. There is no other define operation to the variable between the define operation in
condition 1 and the use operation.

A potential use-define is denoted by:

udpot(var, use_location, define_location) (2)

Figure 33 is one of the possible execution traces for the source code in Figure 32. Its
use-defines and potential use-defines are as follows:

 Use-defines: ud(x, 3, 1), ud(y, 3, 2), ud(x, 25, 20), ud(n, 4, 3), ud(ref2, 27, 23)
 Potential use-defines: udpot(x, 3, 20), udpot (x, 25, 1), udpot (ref2, 27, 30)

Let setUD(V) be the set of use-defines in an execution-variant V. An execution-variant
V satisfies a use-define ud(var, use_location, define_location) if the use-define is
included in the setUD(V). In other words, it satisfies the following condition:

ud(var, use_location, define_location) ⊆ setUD(V) (3)

Let define_set(var, use_location) be the set of possible define operations for the variable
var at the location use_location. Below are some examples of define sets in Figure 33:

 57

 define_set(x, 3) = { 1: x = -3, 20: x = 10 }
 define_set(y, 3) = { 2: y = 2 }
 define_set(n,4) = { 3: n = x + y }
 define_set(x, 22) = { 1: x = -3, 20: x = 10 }

If a define set contains only one define operation from the same thread, then we can
guarantee that its values will not be affected by different interleavings.

Figure 32. An example of a concurrent program

Figure 33. An example of execution traces and some of its use-defines

Thread T1 Thread T2 Thread T3
30: ref2 = ref120: x = 10

21: . . .

22: lock b

23: ref2 = new Object()

24: unlock b

25: print x

26: lock b

27: ref2.credit = 7

28: unlock b

1: x = -3

2: y = 2

3: n = x + y

4: if (n<0) {

5: . . .

6: } else {

7: lock a

8: ref1.credit = 10

9: unlock a

10: }

ref2.credit

reference
variable

variable

lock b
Note:

lock
variable

30: ref2 = ref1

20: x = 10

1: x = -3

2: y = 2
3: n = x + y
4: if (n<0) {
5: . . . 21: . . .

25: print x

27: ref2.credit = 7

ud(x, 3, 1)

ud(y, 3, 2)

udpot(x, 25, 1) ud(x, 25, 20)

23: ref2 = new Object()
22: . . .

24: . . .

26: . . .
ud(ref2, 27, 23) udpot(ref2, 27, 30)

 58

Chapter 4. Setting for the Proposed Method

4.1 Requirements

Testing and debugging of concurrent programs seem to be a matured area at
least from a theoretical point of view. A large body of research exists for
methodologies of testing and debugging of concurrent programs. In particular,
many methods are proposed to reduce the necessary test cases of concurrent
programs. However their applications to real systems are still limited to special
cases. Practices of testing and debugging remain in many cases ad-hoc and
rudimentary.

The purpose of this research is to develop a practical debugging

methodology for normal concurrent programs. The presumed debugging situation is,
as suggested in Introduction, where all logical errors have been resolved or where
target systems have already been deployed and in service, and then errors have been
found. Those errors are most likely caused by a different timing. It is well known
that debugging such errors is extremely difficult. We set the requirements for the
methodology to solve this situation as follows:

1) Exhaustiveness: We mandate path coverage and exhaustive path
exploration. This is necessary to assure the reliability of this debugging.

2) Minimum interleavings: The number of necessary test cases is primarily
determined by interleavings. This number should be kept minimum.

3) Practicality: For real systems, applications must be efficient. To meet this
requirement, debugging should be dynamic. As discussed so far, static
debugging methods suffer false positive error detections and do not fit well
to debugging situations where some errors have been found and that those
errors are the target of detecting their true causes.

4) Effectiveness: The errors found are presumably extremely difficult ones in
finding their true causes. In order to find their true causes, tracing is one of
the most effective approaches. Our method assumes the effective use of
tracing.

 59

5) Efficient tracing: Tracing is an effective debugging approach, but it incurs
a large overhead. There must exist some means to mitigate this overhead.
One of the useful and old techniques is a checkpoint/restart scheme that
restarts the execution of the program from a recorded checkpoint instead of
the program’s initial start point so that the repeated executions of the same
initial portion of the program are avoided. The usefulness of this
checkpoint/restart scheme has also been recognized for debugging
concurrent programs. The “prefix-based testing” [Hwang95] is one of such
approaches.

6) Efficient race detection and deadlock detection: The amount of work for
race detection and deadlock detection processing should be minimized.
Previous race detection results should be utilized whenever possible.

These requirements cover not only the theoretical foundations but also

practical considerations.

4.2 Approach

There exist several research results which the requirements stated in section
4.1 Requirements can be developed based on or extended from. One of the older
ones is Reachability Testing Method of a concurrent program, which uses a partial
order reduction technique and tracing [Hwang95]. In a similar line of development,
we can find research results such as Dynamic Partial-Order Reduction by Flanagan,
C. and Godefroid, P. which uses backtracking to identify program execution points
where alternative paths in the state space need to be explored [Flanagan05], and
Algorithmic Debugging by Caballero, R., et al. which is discussed for sequential
programs but is claimed to be extended to parallel programs easily [Caballero07].

This section explains an existing method for generating test cases for

concurrent programs using the reachability testing method [Hwang95] [Carver04]
[Lei06]. This is a dynamic method that uses partial order reduction for reducing test
cases. The reachability testing method in [Hwang95] performs an efficient exploration
of different sequences of read/write operations which affect values of shared variables
as test cases. Only read and write operations are modeled. Using the idea behind the
partial order reduction, it groups and ignores different interleavings that do not affect

 60

any values of shared variables. It uses a dependency relation between two read/write
operations to determine whether the order of those operations affect the value of a
shared variable. Two operations are dependent if the following conditions are satisfied:

 The two operations are concurrent, i.e. from different threads.
 The two operations are accessing the same variable.
 One of the two operations is a write operation to the variable.

Any two operations that do not satisfy the conditions above are called as independent.
Figure 34 shows the comparison between the exhaustive method and the reachability
testing method. It gives the basic idea for reducing the number of different interleavings
for independent operations.

Figure 34. Comparison between the exhaustive method and reachability testing method

This reachability testing uses the previous execution trace to derive different

read/write sequences that affect values of shared variables. Assume that S is a read/write
sequence from an execution of a concurrent program. The concept of reachability
testing is defined as follows:
1. Use S to derive other read/write sequences, called “execution-variants”, that

Dependent operations:
- different threads
- common variable
- one of them is write

write xread x

write x read x

Thread T1

read x

Thread T2

write x

write xread x

write x read x

Exhaustive Reachability testing

Same

T1: read x

T2: write x

T2: write x

T1: read x

T1: read x

T2: write x

T2: write x

T1: read x

Independent operations:

Thread T1

read x

Thread T2

read y

read yread x

read y read x

read x

read y

Different

T1: read x

T2: read y

T2: read y

T1: read x

T1: read x

T2: read y

Reduction

No reductionNot ignore

Ignore

Ex.

Ex.
time

 61

produce different values of shared variables.
2. Perform deterministic testing based on the result from step 1 using tracing.
3. For each new execution-variant from step 2, repeat step 1 and 2 until no more

execution-variants are found.

This general approach is common in many methods that use a partial order
reduction and trace. Test cases are generated systematically using a variant graph
where an execution variant is a different execution whose state is different from the
previous ones. The reachability testing method performs an efficient exploration of
execution-variants by grouping and ignoring different interleavings that do not affect
values of shared variables, using the idea of partial order reduction. Test cases are
generated systematically using a variant graph. A variant graph derives different
read/write sequences from the previous execution trace. A different read/write
sequence that affects the values of shared variables is called an execution-variant.
Execution-variants are used as test cases in reachability testing. G. H. Hwang, K. C.
Tai, and T. L. Huang introduced an algorithm to create a variant graph from an
execution trace of a concurrent program [Hwang95]. The general steps for creating a
variant graph are as follows:

1) Starting from the initial node, set all the indices and the versions to zero.
2) Create a child node for read and write operation by changing one index from a

thread. Increase the version if the operation is write.
3) If the version for each operation do not conform with the initial trace, then label

the child node as “variant” (V). Label the parent node of the variant node as
“check point” (CP).

4) Continue until the indices in all the threads are explored. Do not explore/create
a child node for the node which is labeled as a variant (V), this will be done
later by executing it as a test case.

Algorithm 2 shows how to create a variant graph from an execution trace of a
concurrent program.

Algorithm 2. Creating a variant graph

Definitions:
- S(j) is a read/write sequence for thread Tj.

 62

- S(j, i) is the i-th operation in the sequence of thread Tj.
Each node N in the execution-variant graph contains the following two vectors:
- index vector: (id1, id2, … , idp), where p is the number of threads and idj indicates

the i-th operations in a thread Tj when node N is generated. The index vector is
initialized to zero and increased by one after each read or write operation in the thread
Tj.

- version vector: (ver1, ver2, …, verq), where q is the number of shared variables and
verk is the version number of variable Vk when node N is generated. The version for
variable Vk is initialized to zero and increased by one after each write operation to the
variable Vk.

Input: read/write sequence.
Output: variant graph.
Step 1. Initialize the variant graph.

Create an initial node and label it as “unmarked”. Set its index vector to (0,0, … ,
0) and version vector to (0,0, … , 0).

Step 2. Derive different read/write sequences.
 2.1 Select an “unmarked” node, say N.

For each j, 1 ≤ j ≤ p, where p is the number of threads
If idj < the length of S(j),

Then construct a child node N’ of N according to steps 2.2 – 2.5.
 2.2 Set the index vector of N’ to that of N except that the j-th element is idj + 1.
 2.3 Set the version vector of N’ to that of N.
 2.4 Let vark be a shared variable in the operation S(j, idj +1) and verk is the

version number of variable vark in S(j, idj +1).
 2.5 If S(j, idj +1) is a write operation to shared variable vark,

Then increase the verk’ of N’ by 1.
Step 3. Identify an execution-variant.

3.1 Let verk’ be the k-th element of the version vector of N’.
3.2 If verk != verk’

 Then label N’ as “marked” and execution-variant (V).
Else If the variant graph already contains a node with the same index and

version vector as N’.
 Then label N’ as “marked”
 Else label N’ as “unmarked”
Step 4. Repeat step 2 until all nodes in it are labeled “marked”. Do not create child

 63

nodes for the nodes which are labeled as execution-variant (V), as this will be done later
by executing them as test cases.

Note that we first need to identify all shared variables from source code before

creating a variant graph. If we do not consider all shared variables, then later we might
need to reconstruct the variant graph when other variables are found to be shared. It is
not enough just to identify shared variables from the execution trace because maybe not
all shared variables can be detected from a particular execution trace. Unfortunately, it
is not always possible to identify precisely all shared variables from source code: in the
case that threads are dynamically created according to input data, for example, it is
necessary to consider all potential shared variables. If some variables are not actually
shared, they will lead to redundant nodes in a variant graph, but they will not produce
redundancy in test cases because they will not lead to any new execution-variants.

Figure 35 is an example of a variant graph constructed using Algorithm 2 for

the execution trace in section 3.6 Model for Concurrent Program Execution Traces.
Lined boxes in a variant graph represent possible read/write sequences where they
access the same values of the shared variables as in the previous execution. A dotted
box in a variant graph represents an execution-variant (V) in which some read or write
operations access values of shared variables different from the previous execution as a
result of a different interleaving. There are seven execution-variants V1, V2, V3, V4, V5,
V6, and V7 in Figure 35. Execution variants are identified as candidate test cases in the
reachability testing method. Test cases can be started from the corresponding check
point (cp) to avoid executing unnecessary interleavings.

Figure 35 shows two equivalent read/write sequences surrounded by dotted
lines. They are equivalent in terms of the read/write sequence, in the sense that every
operation will read or write the same versions of shared variables. The reachability
testing method [Hwang95] performs reduction by considering only one of them as an
execution-variant

 64

Figure 35. An Example of a variant graph from an execution trace

The reachability testing is efficient for exploring different possible value of

shared variables caused by different interleavings, but has some redundancies for
the purpose of checking race conditions:

 Generate test cases with the same branch coverage
 The current development of variant graphs are not necessarily complete

because they focus mostly on read and write operations. Branch operations
and interrupts are not well considered, so it often produces test cases that
result the same path coverage which do not change the access-manner to
shared variables.

 Generate infeasible test cases
 The current development does not consider lock sequences. Enforcing them

in deterministic replay environment might cause suspension, which will not
be allowed in the real situation.

 Generate infinite test cases
 In the case of infinite loop, it might generate infinite test cases because the

0,0

0,0

1, 0

0, 0
0, 1

1,0

0, 2

1,1

T2:10 write xT1:1 read x

1, 1

1,0

T2:10 write x

2, 0

0, 0

3, 0

0,0

2, 1

1,0

T1:1 read y

2, 1

1,0

T1:1 read y

3, 1

1,0

T2:11 write y

1, 2

1, 1

T1:1 read x
T1:7 read y

T1 T2

x y

0, 3

1,1

T2:12 read x

“execution-variant”

Note:

1,3

1,1

T1:1 read x
T1:7 read y

1, 1

1,0

T1:1 read x

2, 2

1,1

T2:11 write y

1, 2

1,1

T2:11 write y

2, 2

1,1
V3

V5

V6

V7

index

version

Note:

V1

3, 2

1,1

T1:7 read y

First re-
execution

3, 3

1,1

T2:12 read x

2, 3

1,1

T2:12 read x

3, 3

1,1

T1:7 read y

V2

1, 3

1,1

T2:12 read x

2, 3

1,1 V4

T2:10 write x

T1:1 read y

T1:1 read y

Equivalent read-write sequence

cpcp
Check point : to start
the next test case.

cpcp

cpcp
cpcp

cpcp
cpcp

cpcp

 65

current model considers the index of operation. A trivial solution would be
just to limit the length of the execution trace. If the iteration of the loop
does not change the access-manner to shared variables it is not necessary to
test all the loop iterations for checking race conditions.

Our method extends the idea of partial order reduction to a dynamic testing

or debugging by ignoring the order of irrelevant interleavings that do not affect
branch outcome. Furthermore, we improve the reduction precision and increase the
number of reductions by exploiting the trace information. The trace information can
give more precise information concerning branching. The existing methods can
identify all interleavings which may affect shared variables whereas our method
identifies only those interleavings which affect branch outcomes. Not all
interleavings which may affect shared variables necessarily affect branch outcomes,
thus redundant interleavings are included in these interleavings. Those redundant
ones are further reduced in our method.

In this research, we exploit several new ideas to further improve the

debugging effectiveness and efficiency. First, we further reduce the number of
interleavings considering the fact that not all shared variables affect the truth values
of branches. We improve the reduction precision and increase the number of
reductions by exploiting the trace information. The trace information can give more
precise information concerning branching. Many of existing methods identify all
interleavings that may affect shared variables whereas our method identifies only
those interleavings which affect branch outcomes. Not all interleavings which may
affect shared variables necessarily affect branch outcomes, thus redundant
interleavings are included in these interleavings. Those redundant ones are further
reduced in our method.

We can also reduce the amount of work required to detect race conditions

and deadlock. Assuming that the target concurrent program adopts a locking
mechanism, it is known that the knowledge of the order of the currently effective
locking is sufficient to detect race conditions and deadlocks involving those
variables that are under the locking mechanism. We define the order of the
currently effective locking as the lock structure. Then we can say that any execution
sequence having the same lock structure belongs to the same equivalent group. If

 66

that structure has already been tested against race conditions and deadlocks, it is not
necessary to repeat those tests again. Furthermore, any part of executions that
maintain the same lock structure can be reduced to the same one.

Regarding the interrupt timing, it is not fully considered in the model of the

variant graph proposed by reachability testing [Hwang95]. If we assume interrupt
can happen anytime and we create a new node for all the interrupt timings, then the
graph might become unlimited. In order to support checking interrupt timings, we
propose to change interrupt as a thread as described in section 6, so that the existing
model for variant graph can be still be applied.

 67

Chapter 5. Proposed Method

This chapter proposes new methods to effectively reproduce race conditions
by reducing the followings:

 Number of test cases:
 Avoid testing redundant interleavings (section 5.1)
 Avoid testing infeasible interleavings (section 5.2)

 Memory required for generating test cases (section 5.3).
 Effort involved in checking race conditions (section 5.4).

5.1 Avoid Testing Redundant Interleavings

Figure 36 shows the idea of proposed method for reducing test cases. It
avoids redundant interleavings by grouping.

 68

Figure 36. Reducing test cases by avoiding redundant interleavings

5.1.1 Creating Different Race-Equivalent Groups

This subsection explains our proposed method for the reduction of the
number of different interleavings required to detect race conditions. The number of
different interleavings is reduced by trying to create only interleavings that lead to a
different race-equivalent group by:
 Changing a control flow by changing a branch outcome (see Figure 39).

write yread x

write yread y

read y

read x

V1

write y

Thread T1 Thread T2

1: read x
2: read y

10: write y

read yread y
T F

use

read x

write y

read y

V2 V3

Step 1: Identify data flow
affecting a branch.

“Use-define”

Step 2: Grouping

Group 1 Group 2

path 1 || path 3 path 2 || path 3

define

V2 and V3 are “race-equivalent”.

read y before
write y

read y after
write y

write yread x

write yread y

read y

read x

V1

write y

path 2
path 3

Thread T1 Thread T2

1: read x
2: read y

10: write y

read yread y
T F

branch

read x

write y

read y

V2 V3

path 1

Reduce
1 test
case.

Existing reachability testing: 3 test cases

Proposed method: 2 test cases

read x

read y

write y

read x

write y

read y

write y

read x

read y

 69

 Changing a lock sequence (see Figure 40). Similarly we can also change the
assignment to a reference variable to create a different race-equivalent group
(will be explained in subsection 5.3.6 Generating Test Cases to Check
Consistent Locking for Access through Reference Variables).

There can be a chain of reactions from a change of interleaving and/or

interrupt timing that can cause a different race-equivalent group (see Figure 37).
The set of different interleavings and interrupt timings which disconnect this chain
constitutes a race-equivalent group.

Figure 37. Chain of reactions that can cause a different race-equivalent group

5.1.2 Creating a Different Race-Equivalent Group by Changing a Control
Flow

We create different race-equivalent groups efficiently by considering only
different execution paths. The basic idea in this research is that, for exploring
possible different execution paths, it is sufficient to create and test only those

(a) A change of interleaving.

(b) A change of shared variables’ value. (b) A change in lock variable’s value.

(c) A change of a conditional statement. (c) A change of lock assignment.

(d) A change of branch outcome. (d) A change of lock usage.

(e) A change of an execution path. (e) A change of lock sequences.

(f) A new trace.

(g) A possible change of an “access-manner”.

(h) A possible different “race-equivalent” group.

Change of
branch outcome

Change of lock
assignment

 70

interleavings that might change the control flow. Figure 38 shows an example how
interleavings and a branch can affect the occurrence of a race condition.
Throughout the following explanation, we will discuss only change of control flow
through branches, but the same principle can also be applied for loops.

Figure 38. Interleavings and a branch affecting the occurrence of a race condition

Different execution-variants might lead to the same branch outcome for a

particular branch b. Hence, in exploring different concurrent execution paths caused
by the branch b, we can reduce test cases by grouping those execution-variants and
testing only one member from each group. We name such a group a “branch-affect”
group. A branch-affect group for a branch b contains a set of execution variants that

1. Interleavings

2. Data
dependency

3. Control flow

Sequence of:

- lock/unlock

- access to shared variables

4. Race
conditions

Order of
read/write
operations

Change

- Value of shared variables
- Conditional statements

Change

Change
Propose:

Identify a set of
use-defines which
affect a branch
outcome.

Thread 1 Thread 2

x = 1
x = 0

if (x=0)

write y
true

Thread 1 Thread 2

x = 1

x = 0

if (x=0)

lock a

write y

unlock a

false

Race
condition

No race
condition

Example: Execution 1 Execution 2

- Branch outcomes
- Execution paths

1. Interleaving 2. Data
dependency

3. Control
flow

4. Race
condition

Order of
read/write
operations

- Value of
shared
variables

- Conditional
statements

- Branch
outcomes

- Execution
paths

Sequence of
lock/unlock
and
read/write to
shared
variables

 71

would cause the same branch outcome for the branch b, which is either true or
false.

The idea for grouping the execution-variants comes from the fact that if two

execution-variants have the same data flow affecting a branch b, then the branch b will
have the same branch outcome in those tow execution-variants. Formally we define as
follows:

 Let BranchRelUD(b, V) be the set of use-defines affecting the conditional statement
of a branch b in an execution-variant V.

 If BranchRelUD(b, V1) = BranchRelUD(b, V2), then the branch b will have the
some branch outcome in execution-variant V1 and V2.

Thus they can be grouped into the same branch-affect group. Two or more
execution-variants in the same branch-affect group for a branch b are redundant with
respect to exploring the different concurrent execution paths caused by the branch b. In
Figure 39, the execution-variant V2 and V3 are in the same branch-affect group and they
all cause the branch outcome to become false.

 72

Figure 39. Examples of grouping by changing a branch outcome

Thread

T1

Thread

T2

CS1 CSA

CS2 CS3

CS1

CS2

CSA

Group 1 : path 1 || path 3

Set of access-manners:
CS1

CS2

CSA

CS1

CS3

CSA

Group 2 : path 2 || path 3

Set of access-manners:
CS1

CS3

CSA

CS1

CS3

CSA

T F
path 3

path 1 path 2

V1
V2 V3

Branch is True
CS2 is executed.

Branch is False
CS3 is executed.

 73

Figure 40. Creating a different race-equivalent group by changing a lock sequence

5.1.2.1 Determining the Set of Operations that Affect Branch Outcomes

In order to identify branch-affect groups, we first need to determine the set of
operations that affect the conditional value of a particular branch b. We propose a data
dependency analysis method using use-define (see section 3.13 Use-Define) to identify
operations that affect the conditional statement of the branch b from an execution trace.
This method analyzes data dependency among read/write operations to shared variables
related to the conditional statement of the branch b. Based on this analysis, we can
determine which operations are affecting the conditional statement.

The set of use-defines can be obtained by analyzing the execution trace or

source code. Since the method proposed in this dissertation iteratively generates
different interleavings based on previous execution traces, it is sufficient to use the
use-define set obtained only from the execution trace. The use-define set obtained by

a = new lock()

lock a

write x

unlock a

a = lock@123

lock lock@123

write x

unlock lock@123

b = new lock()

lock b

write x

unlock b

b = a

b = lock@456

lock lock@456

write x

unlock lock@456

b = lock@123

Group 1 :

M1 and M2 are protected by different locks.
Set of access-manners:

Group 2 :

M1 and M2 are protected by the same lock.
Set of access-manners:

Source code

An example of execution trace

lock@123 lock@456

lock@123 lock@123

T1 T2 T3

T1 T2 T3

M1

M2

M1 M2

M1 M2

 74

the static analysis of source code may contain redundant elements. Information from
the source code can be used as a supplement if execution traces do not contain
complete information for obtaining the use-define set. In this dissertation, we assume
that the execution trace contains enough information to obtain the set of use-defines
consisting of triplets of variable names, read or write operations, and locations. Figure
42 shows an example of a use-define set for the program example in Figure 41.

Figure 41. (a) An example of a concurrent program (b) Control flow graph (c) Control
flow graph for read and write operations

Figure 42. Examples of use-defines for the concurrent program in Figure 41

To detect a conventional use-define, we identify the variable in a thread’s

execution trace and check if it forms a conventional use-define. To detect an extended

1: n = x + y;
2: if (n<0) {
3: . . .
4: } else {
5: . . .
6: }
7: print y;

Thread T2
10: x = -10;
11: y = 2;
12: print x;

Thread T1
1: n = x + y

2: if (n<0)2: if (n<0)

3: . . . 5: . . .

7: print y

T F

10: x = -10

11: y = 2

12: print x

1: read x
1: read y
1: write n

2: read n2: read n

3: . . . 5: . . .

7: read y

T F

10: write x

11: write y

12: read x;

Thread T2Thread T1

(a) (b)

Thread T2Thread T1

(c)

Thread T2Thread T1

1: n = x + y

5: . . .

7: print y

10: x = -10

11: y = 2

12: print x

2: if (n < 0)

ud4 =

(x, 12, 10)

ud5 = (y, 7, 11)

ud3 = (y, 1, 11)
defdef

useuse

useuse defdef

Conventional use-
define for sequential
programs

ud1 = (x, 1, 10)
use define

ud2 = (n, 2, 1)
use define

ud1 is
affecting
ud2

Extension of use-define
for concurrent programs

use defineud3 is
affecting
ud2

useuse

defdef

defdef

useuse

branch b1,1

* *

*

use define

use define

 75

use-define, we first need to identify shared variables from the execution trace. A
variable is shared if it is accessed by more than one thread. In the example of Figure 42,
we see that the variable x and y are shared variables because they were accessed by
more than one thread. For each access to a shared variable in a thread, we check if it
forms an extended use-define with another thread. In the example of Figure 42, the read
operation on shared variable x in line 1 and the write operation on shared variable x in
line 10 form an extended use-define. There are several examples of use-define in Figure
42, as follows:

 Conventional use-define: ud2 = (n, 2, 1), ud4 = (x, 12, 10)
 Extended use-define for concurrent programs: ud1 = (x, 1, 10), ud3 = (x, 1, 11), ud5 =
(y, 7, 11)

Since a wait-notify mechanism can change data flow, it might cause some

infeasible use-defines. This situation could happen, for example, when there is a “wait”
command without the corresponding “notify” command. In this example, the use or
define after the wait command will not be executed, so the use-define becomes
infeasible. C. Yang, A.L. Souter, and L. L. Pollock [Yang98] [Yang97] describe some
complications that synchronization causes during data flow analysis. Some infeasible
use-defines might be included in a use-define set, but they will not be executed and will
not be used for grouping execution-variants. The infeasible use-define pairs will cause
redundancy in the use-define set, but they will not cause redundancy in test case
generation.

Data Dependency Relation with Use-define

For identifying operations which are affecting a control flow, we define a
dependency relation named as use-defines. A use-define ud2 depends on another
use-define ud1, if the definition for the variable in use-define ud2 is using the variable
in the use-define ud1. Formally we define as follows:
Let: ud1 = (var1, use1_location, def1_location)
 ud2 = (var2, use2_location, def2_location)
The ud2 depends on the ud1 iff the following two conditions are satisfied:

def2_location = use1_location
This also means that variable var2 depends on variable var1.

 76

An example of a dependency relation between use-defines is shown in Figure
42. Since the def_location of use-define ud2 is the same as the use_location of
use-define ud1, then use-define ud2 depends on use-define ud1. This means that there is
data flow from the variable x to the variable n, because the definition of variable n in
line 1 uses the variable x in line 10. In a similar way, the use-define ud2 depends on the
use-define ud3.

Algorithm 3 shows how to find the members of BranchRelUD(b) using the dependency
relation of use-define.

Algorithm 3. Finding a set of use-defines affecting branch outcomes

Input:
- An execution variant V.
- A branch b.

Output:
- BranchRelUD(b, V): a set of use-defines affecting branch outcomes of branch b.
Step 1. Initialization.

1.1 SetUD: set of use-defines from the execution variant V.
1.2 BranchRelUD(b, V): use-defines from SetUD where the variables are used in

the conditional statement of the branch b.
Step 2. Find all related use-defines.

2.1 For each use-define ud in SetUD, where
ud is not included in BranchRelUD(b, V), and
ud does not contain any operations from the same thread as the branch b

after the execution of the branch b.
2.1.1 If any use-defines in BranchRelUD(b) depend on ud.
 Then

Add ud to BranchRelUD(b, V).
Repeat Step 2.1 until Step 2.1.1 no longer adding any use-defines

to BranchRelUD(b, V).
2.2 Remove use-defines for local variables from BranchRelUD(b, V).

Terminate this algorithm.

When Algorithm 3 no longer finds use-defines that satisfy the conditions in

 77

step 2.1.1, it means that all use-defines related to the conditional statement of the branch
b have been included in BranchRelUD(b, V). When we consider different effects caused
by interleavings, we need to consider only different interleavings of read and write
operations on shared variables. Hence, we can consider only the set of use-defines
which is affecting the shared variables (Step 2.2). The example in Table 2 illustrates
how Algorithm 3 finds BranchRelUD(b1,1) for the program example in Figure 42.

Grouping Execution-Variants Which Causing the Same Branch Outcome

We define Algorithm 4 for creating branch-affect groups for a branch.
Execution-variants in the same branch-affect group for a branch b will have the same
branch outcome for the branch b.

Algorithm 4. Creating a set of branch-affect groups for a branch

Input: Execution-variants from a variant graph.
Output: A set of branch-affect groups G(b) for a branch b.
G(b) = {g1(b), g2(b), g3(b), ... }, where g1(b), g2(b), g3(b) are the first, second, and

third branch-affect groups for the branch b in the execution trace.
Step 1. Find BranchRelUD(b) using Algorithm 3.
Step 2. For each execution-variant V in the variant graph.

2.1 Take a sequence of operations S within the execution-variant V, where S starts
from the root node of execution variant V and ends at the operation within the
conditional statement of branch b.

Table 2. An example of finding a set of operations that is affecting branch outcomes
using Algorithm 3

Step Description

1.1 SetUD = {(x,1,10), (n,2,1), (y,1,11), (x,12,10), (y,7,11)}.
1.2 BranchRelUD(b1,1, V) = { (n, 2, 1) }.
2.1.1 The use-define (n, 2, 1) depends on the use-define (x, 1, 10) and (y, 1, 11).

BranchRelUD(b1,1, V) = { (n,2,1), (x,1,10), (y,1,11)}.
Go to step 2.1.

2.1.1 No more use-defines that satisfy the conditions in step 2.1.1.
2.2 Remove use-defines for local variables.

BranchRelUD(b1,1, V) = { (x,1,10), (y,1,11) }.
Algorithm terminates.

 78

2.2 Check which of the BranchRelUD(b) members are in the sequence S using the
following rules:

 Assume ud(var, use_location, def_location) is a member of
BranchRelUD(b).

 The def_location is executed before the use_location in sequence S
No other definition to the variable var in between def_location and

use_location within the sequence S.
 2.3 If the use-define members from step 2.2 are already exist in the current

branch-affect group.
 Then Add the execution variant V to the corresponding existing

branch-affect group.
 Else Create a new branch-affect group into G(b) and add the execution

variant V as its member.

As shown in the example in Figure 44, execution-variants V3 and V4 can be

grouped together into the same branch-affect group with respect to the branch b1,1
because they have the same set of use-defines affecting the branch b. A similar situation
also applies for the execution-variants V6 and V7, as shown in Figure 44. Table 3 shows
the complete groups for the examples in Figure 44.

 79

Figure 43. An example of a variant graph from an execution trace

0,0

0,0

1, 0

0, 0
0, 1

1,0

0, 2

1,1

T2:10 write xT1:1 read x

1, 1

1,0

T2:10 write x

2, 0

0, 0

3, 0

0,0

2, 1

1,0

T1:1 read y

2, 1

1,0

T1:1 read y

3, 1

1,0

T2:11 write y

1, 2

1, 1

T1:1 read x
T1:7 read y

T1 T2

x y

0, 3

1,1

T2:12 read x

“execution-variant”

Note:

1,3

1,1

T1:1 read x
T1:7 read y

1, 1

1,0

T1:1 read x

2, 2

1,1

T2:11 write y

1, 2

1,1

T2:11 write y

2, 2

1,1
V3

V5

V6

V7

index

version

Note:

V1

3, 2

1,1

T1:7 read y

First re-
execution

3, 3

1,1

T2:12 read x

2, 3

1,1

T2:12 read x

3, 3

1,1

T1:7 read y

V2

1, 3

1,1

T2:12 read x

2, 3

1,1 V4

T2:10 write x

T1:1 read y

T1:1 read y

Equivalent read-write sequence

 80

Figure 44. Examples of branch-affect groups for the variant graph in Figure 43

 As mentioned in section 3.10 Race-Equivalent, two different concurrent
execution paths with the same set of execution paths PATHS will be race-equivalent. To
explore different race-equivalent groups, it is necessary to find different sets of
execution paths PATHS. Since the execution path of a thread is affected by branches, we
introduce a “branch-condition” table to measure the progress of a test. A
“branch-condition” table contains a list of all possible sets of execution paths PATHS.
Each row in a “branch-combination” table represents the condition values of
if-statements and the number of iterations for loops in a concurrent execution path, so
each row represents a possible set of execution paths PATHS. Each different loop
iteration will lead to a different execution path, so we need to consider all loop iterations.
However, if loop iterations have the same set of access-manners, then there is no need to

0,0

0,0

1, 0

0, 0
0, 1

1,0

0, 2

1,1

T2:10 write xT1:1 read x

1, 1

1,0

T2:10 write x

2, 0

0, 0

3, 0

0,0

T1:1 read y

2, 1

1,0

T1:1 read y

3, 1

1,0

T2:11 write y

1, 2

1, 1

T1:1 read x

T1:7 read y

T1 T2

x y

0, 3

1,1

T2:12 read x

Note:

1,3

1,1

T1:1 read x

T1:7 read y

1, 1

1,0

T1:1 read x

T2:11 write y

1, 2

1,1

T2:11 write y

2, 2

1,1
V3

V5

V6

V7

index

version

V1

V2

1, 3

1,1

T2:12 read x

2, 3

1,1
V4

T2:10 write x

T1:1 read y

T1:1 read y

Group 1
Group 2

Group 3

Group 4

ud(y, 1, 11)
ud(x, 1, 10) ud(x, 1, 10)

ud(y, 1, 11)
OO

false

false

true

true

Table 3. An example of a branch-affect table

Branch Members of
branch-affect groups Set of use-defines from BranchRelUD(b1,1)

b1,1 g1(b1,1) = {V1, V2} { Ø }
g2(b1,1) = {V3, V4} { ud(y,1,11) }

g3(b1,1) = {V5 } { ud(x,1,10) }
g4(b1,1) = {V6, V7} { ud(x,1,10), ud(y,1,11) }

 81

check all of the iterations because they will be race-equivalent. A “branch-combination”
table is an accumulation from each execution of a test case. It is possible that not all
branches can be identified from the execution trace of the first test case. If new branches
are found during the execution of the next test case, they should be added to the
“branch-combination” table. At the beginning, all rows are marked as “untested”, except
for the one corresponding to the execution in the first test case.

An example of a “branch-condition” table is shown in Figure 45. We need to
test all the feasible sets of execution paths PATHS; that is, in order to find the
inconsistent locking for read/write operations to shared variables that have caused errors,
all the rows in a “branch-combination” table need to be tested. Algorithm 5 is the
complete algorithm of the proposed method. This algorithm integrates the existing
reachability testing in step 1.2, with the deterministic testing and race detection in step
4.

Figure 45. Branch-affect group table and branch-condition table for the first test case

Algorithm 5. Complete algorithm for generating test cases and checking race conditions
Definitions:
- Outcome(gk(bi,j)) is the truth value for an if-statement or the number of iterations for

a loop of a branch-affect group gk(bi,j)
- Outcome(r, bi,j) is the truth value or the number of iterations of the branch bi,j for

row r in a “branch-condition” table.
Input: a concurrent program and its input.
Output: test cases and race-detection results.

 82

Step 1. Initialization:
 1.1. Re-execute the concurrent program taking trace using the same input as in the

execution in which the error occurred.
1.2. Create the corresponding variant graph from the execution trace using

Algorithm 2.
1.3. Create a “branch-condition” table based on the execution trace from step 1.1.

1.4. For each branch of the variant graph in step 1.3, classify each execution-variant
into branch-affect groups using Algorithm 4.

Step 2. Conditions for termination.
2.1 Terminate this algorithm if at least one of the following conditions is satisfied:

- Condition 1: all rows in the “branch-condition” table have been tested,
- Condition 2: all branch-affect groups have been marked as “tested”. Note that the

algorithm terminates with the second condition if there exists any infeasible set of
concurrent execution paths for the given input.

Step 3. Select the next test cases TestCases:
3.1 TestCases = { Ø }
3.2 For each untested row r in “branch-condition” table
 3.2.1 Candidates = { Ø }, firstGroup = true.
 3.2.2 For each branch bi,j.
 If (firstGroup = = true).
 Then Candidates = all members of branch-affect

groups of branch bi,j where Outcome(gk(bi,j)) == Outcome(r, bi,j)
 firstGroup = false
 Else Candidates = Candidates ⋂ all members of the

branch-affect groups of the branch bi,j where Outcome(gk(bi,j)) == Outcome(r, bi,j)
 3.2.3 Select one execution-variant from Candidates and add it to TestCases.

3.2.4 If step 3.2.3 does not produce any test cases.
Then choose a member from an untested branch-affect group and add it to

the TestCases.
Step 4. Test cases execution.

4.1 Execute the execution-variants from the TestCases using deterministic testing
with tracing.

 4.2 Check the execution trace from step 4.1 using an existing race detector and
report any errors.

4.3 Derive new execution-variants from the execution trace in step 4.1, update the

 83

variant graph and “branch-condition” table.
4.4 Classify the new execution-variants into branch-affect groups.

Step 5. Repeat from step 2.

Race-equivalent means two concurrent execution paths of a concurrent program have
the same consistent locking for accessing shared variables, and also share the same
proper/improper lock-unlock sequences. When a variant graph produces
execution-variants, our algorithm groups them into race-equivalent groups. Our method
achieves test case reduction by testing only one member of each race-equivalent group.

A step-by–step example of Algorithm 5 is shown in Table 4 and Table 5. We
assume that there is a concurrent program with two threads T1 and T2. Thread T1 has
one branch b1,1 and thread T2 has one branch b2,1. The branches b1,1 and b2,1 are
if-statements The steps in Table 4 are deduced from the analysis shown in Figure 45.
The steps in Table 5 are deduced from the analysis shown in Figure 46.

Table 4. Step-by-step example of Algorithm 5

Step Description
1 Let us assume that step 1 results a variant graph with five execution-variants. The

execution for the first test case is V1 which makes b1,1 and b2,1 True. Assume that the
branch-affect group has been calculated using Algorithm 4 and the
“branch-condition” table is as exemplified in Figure 45.

2 Not all rows in the branch-condition table have been tested, so proceed to Step 3.
3 Step 3.2.3 does not produce any test cases.
3.2.4 Since Step 3.2.3 does not find any test cases, V5 is chosen as a test case from

untested branch affect group g2(b1,1).
4.1 Execute V5 using deterministic testing and obtain execution trace.
4.3 When we derive the execution trace from step 4.1, we find the new

execution-variant V6
4.4 The new execution-variant V6 is classified into g2(b1,1) and g1(b2,1), see Figure 46.
5 Repeat from step 2

 84

Figure 46. Branch-affect group table and branch-condition table when Algorithm 5
terminates

There is no need to test the branch-affect group g3(b1,1) because all the rows in

the “branch-condition” table in Figure 46 have been completed. Our algorithm requires
only the testing of four execution-variants from the total of six execution-variants.

5.2 Avoid Testing Infeasible Interleavings

Generating different interleavings for test cases must consider the existence of
locks in order to avoid deadlock. Enforcing infeasible interleavings in deterministic
replay environment might cause suspension, which will not be allowed in the real
situation. Avoid generating infeasible test cases reduces the number of interleavings.

We extend the existing variant graph [Hwang95] by considering

Table 5. Step-by-step example of Algorithm 4 (continued)
Ste
p Description

2 Not all rows in the branch-condition table have been tested, so proceed to Step 3.
3 TestCases = { Ø }, for each untested row r in the branch-condition table

The 2nd row: Candidates = {V1, V2, V3 } ⋂ {V3, V5} = V3.
The 3rd row: Candidates = {V5, V6} ⋂ {V1, V2, V4, V6} = V6.
The 4th row: Candidates = {V5, V6} ⋂ {V3, V5} = V5.
TestCases = { V3, V6, V5}

4 No need to do step 4 because there are some test cases from step 3.
5.1 Execute the members of TestCases.
5.2 No new execution-variants can be derived from the trace in step 5.1.
2 All rows in the “branch-condition” table have been tested, so the algorithm

terminates.

 85

synchronization dependencies to eliminate redundancy. The extended model for variant
graphs utilizes trace information about lock-unlock and wait-notify operations. For
wait-notify, we use a simple model with the following assumptions:

 A thread that is waiting for a notification can receive a notification from any
threads.

 A notification is sent to all threads.
 In general, a notification will be accepted and processed by particular threads. In

this simple model, we assume only waiting threads will accept and process the
notification, otherwise the incoming notification will be lost.

We extend the node in a variant graph to include flags for “lock” and “wait” besides the
existing “index” and “version”. “Index” will also be incremented for lock-unlock and
wait-notify operations. In this way, different orders of wait-notify will be considered in
test case generation, thus avoiding false negatives. We add the following rules in the
extended variant graph for handling lock-unlock and wait-notify operations:

 Lock-unlock:
- If the operation is “lock”, set the lock flag for the corresponding lock to 1.
- If the operation is “unlock”, reset the lock flag for the corresponding lock to 0.

 Wait-notify:
- If the operation is “wait”, set the wait flag for the corresponding thread to 1.
- If the operation is “notify”, reset the wait flags for all threads to 0.

- Since in our model we assume a notification is sent to all thread, so the wait
flags are reset for all threads.

When expanding an extended variant graph, a node is infeasible if any one of

the following conditions holds:
 The wait flag for the corresponding thread is 1.
 The operation is lock and the lock flag is 1.

Figure 47 shows an extension of a variant graph which adds lock-unlock and

wait-notify operations for the concurrent program in Figure 41(a). The extended variant
graph in Figure 47 identifies some infeasible interleavings caused by the lock-unlock
and wait-notify operations.

 86

Figure 47. An example of the extension of a variant graph

5.3 Reduce Memory Required for Generating Test
Cases

This section explains how to reduce memory required for generating test

cases by proposing a concurrent dependency graph. Figure 48 illustrates the general
idea for reducing the required memory.

 87

Figure 48. General idea to reduce memory required for generating test cases

5.3.1 System Overview

This new method introduces “concurrent dependency graphs”, instead of
variant graphs. Variant graphs are the major instruments for representing and
analyzing the execution development of a concurrent program in the reachability
testing method. Table 6 shows the comparison between the existing variant graph and
the proposed concurrent dependency graph.

write y

branch

write yread x

write yread y

read y

read x

V1

write y read y

V2 V3

Reduction
in the
number of
nodes.

Existing reachability testing: 9 nodes

Proposed method: 4 nodes

Thread T1 Thread T2

read x
read y

write y

read yread y
T F

use

read x

write y

“Use-define”

define

Variant graph

Concurrent
dependency
graph.

Reducing
the
required
memory.

Table 6. Comparison between the existing variant graph and the proposed concurrent
dependency graph

 88

Figure 49 shows the overview of the proposed method to avoid redundancy

in test case generation. The whole procedure for testing is shown as follows:

Figure 49. Overview of the proposed method

1) Execute a concurrent program with a trace.
2) Detect branches, concurrent-pairs of access-manners, and a set of use-defines from

the execution trace.
3) Create concurrent dependency graphs from branches and concurrent-pairs of

access-manners. A concurrent dependency graph represents data flow relations
among operations that might affect race conditions.

4) Determine a set of “guidelines” for generating test cases. A “guideline” is a set of
use-defines obtained by traversing the concurrent dependency graphs from the
previous step (will be explained in subsection 5.3.3 Traversing a Concurrent
Dependency Graph).

5) Generate test cases based on the set of guidelines from step 4. The idea is to
generate only those test cases necessary to avoid redundancy and that do not affect

Execute a
concurrent
program
with tracing

Concurrent
dependency graphs

Test
cases

Test using
deterministic / non-
deterministic
testing with tracing

Detect
branches Create

dependency
graphsT1 T2 T3T1 T2 T3

T1 T2 T3T1 T2 T3

11

22

33

66
77

44

Detect any
race
conditions

Traverse
dependency
graphs

Set of
guidelines

55

Proposed method

if (n < 0) {
⋮

else {

Detect
concurrent-
pairs of
access-
manners

T1 T2 T3
T1 T2 T3

T1 T2 T3

Execution traces

T1 T2 T3T1 T2 T3
T1 T2 T3T1 T2 T3

T1 T2 T3T1 T2 T3

Execution traces

Detect use-defines
Set of
use-defines

Generate
test cases

88

Repeat if a new branch
or a use-define is found

 89

race conditions.
6) Execute the test cases using an existing deterministic/non-deterministic testing

method by taking a trace.
7) Detect any race conditions using an existing race detector and report them to

programmers.
8) If a new branch or a new use-define is found in the execution trace in step 6, repeat

step 3 to step 8 for the new branch or the new use-define.
9) The test is completed if neither a new branch nor a new use-define is found in step

6.

5.3.2 Concurrent Dependency Graph

We newly propose a concurrent dependency graph for identifying data
dependencies of shared variables or reference variables. A concurrent dependency
graph is a directed graph representing use-define relations in an execution of a
concurrent program. A conventional dependency graph depends only on data flow,
but a concurrent dependency graph depends on data flow and interleavings. A
concurrent dependency graph contains all possible data dependencies for different
interleavings. Which data dependency actually occurs in a particular execution would
depend on the interleaving during the execution. Figure 50 shows an example of a
concurrent dependency graph.

Figure 50. Components of a concurrent dependency graph

 90

Let us take an example of the shared variable x in the root node. There are two write
operations that can define its value depending on the interleavings. One is the write
operation in line 1 while the other one is in line 20. The components of a concurrent
dependency graph are as follows:

 Node:
 Box node (bn):

 Root node: represents one of the following:
- A conditional statement in a branch (see the example in Figure 50), or
- An access-manner (see the example in Figure 58).
A root node does not have an incoming edge.

 Non-root node: derived from a root node or another non-root box node.
Algorithm 6 explains how to derive non-root nodes. A non-root node has
one incoming and one outgoing edge.

 Leaf node: a box node whose statement does not contain any variables.
When a variable is used without being defined, then there will be no
corresponding leaf node. A leaf node does not have an outgoing edge. In
Figure 5, nodes bn4 and bn5 are leaf nodes.

The maximum number of outgoing edges from a box node is 1.
 Circle node (cn): represents a selection of “define” operations for a variable.

 Edge:
 “Use-edge” (ue): represents a read operation to a variable. This edge goes out

from a box node and comes into a circle node. It is labeled by the program
statement that reads the variable.

 “Define-edge” (de): represents a write operation to a variable. This edge goes
out from a circle node and comes into a box node. It is labeled by the program
statement that writes to the variable.

Table 7 lists the definitions in a concurrent dependency graph.

 91

A concurrent dependency graph is created by deriving child nodes starting from their
root node. Algorithm 6 explains how to derive child nodes from a box node, while
Figure 6 is an illustration of Algorithm 6.

Table 7. Definitions in a concurrent dependency graph

Definitions Examples
(refer to Figure 50)

variable(ue) : the variable used by a use edge ue. variable(ue1) = x

variable(de) : the variable defined by a define edge de. variable(de1) = x

variable(bn): the set of variables in the statement of a box node

bn.

variable(cn): the set of variables in the statement of a circle node

cn.

variable(bn1) = { x, y }

variable(cn1) = {x}

def_edge(cn): the set of define edges for a circle node cn. def_edge(cn1) = {de1, de2}

parent(cn): the parent node of a circle node cn.

parent(cn) = { bn | where a use edge ue exists in which

ue is the outgoing edge of bn,

ue is the incoming edge of cn,

variable(bn) ⋂ variable(cn) ≠ Ø }

parent(cn1) = bn1

child(bn): the child node of bn.

child(bn) = { cn | where a use edge ue exists in which

 ue is the outgoing edge of bn,

 ue is the incoming edge of cn,

 variable(bn) ⋂ variable(cn) ≠ Ø }

Note: The child node of a box node is a circle node that

represents the “use” of a variable within the statement of the box

node. A box node can only have one circle node as its child

node.

child(bn1) = cn1

child(cn): the set of child nodes of cn.

child(cn) = { bn | where for every bn, a define edge de exists in

which

de is an outgoing edge of cn,

de is an incoming edge of bn }

Note: A circle node cn does not have any child nodes if the

variable for cn is used without being defined.

child(cn1) = { bn2, bn3}

 92

Algorithm 6. Deriving child nodes from a box node

Input : - A box node bninput as a parent node.
- A set of use-defines and potential use-defines.

Output : - The input parent node is connected to a newly-created circle node cn as a
child node.
 - The circle node cn is connected to newly-created box node(s) as its child
node(s).
Step 1. Create a circle node cn for the input box bninput.

1.1 Choose a variable var from the statement inside the bninput.
1.2 Create a new circle node cn and label it as var.
1.3 Create an outgoing use-edge ue from the bninput to the circle node cn created

in step 1.2.
1.4 Label the use edge ue with the variable chosen in step 1.1.

Step 2. Create child nodes for the circle node cn.
2.1 Find define operations for variable(cn) from the set of use-defines.
2.2 For every define operation in step 2.1, create one define edge de.

2.2.1 For each define edge de in step 2.2, create a box node bn.
2.2.1.1 Make the de the incoming edge for the bn.
2.2.1.2 The box node bn contains the statement from the bninput with the

variable var substituted by the define statement in step 2.2.

Figure 51. Step-by-step illustration for Algorithm 6

4: if (x + y < 0)

x

4: if (x + y < 0)

4: if (-3 + y < 0) 4: if (10 + y < 0)

def x def x

use x

1: x = -3 20: x = 10

Step 1.1, 1.2

4: if (x + y < 0)

use x

Step 1.3, 1.4

4: if (x + y < 0)

def x def x

use x

1: x = -3 20: x = 10

Step 2.1, 2.2
Step 2.2.1, 2.2.1.1

x

x
x

bninput

 93

Algorithm 7 explains how to construct a concurrent dependency graph. It derives a
box node using Algorithm 6 until all the derived child nodes reach leaf nodes.

Algorithm 7. Constructing a concurrent dependency graph

Input: - A set of use-defines and potential use-defines from an execution trace.
- A root node.

Output: A concurrent dependency graph dg.
Step 1. Initialization: include the root node in the concurrent dependency graph dg.
Step 2. For every box node bn in dg that does not have an outgoing edge.

2.1 Create child nodes bn using Algorithm 6.
Step 3. Repeat step 2 until no more new edges or new boxes are created.

Figure 52 shows a concurrent dependency graph constructed using Algorithm 7 for the
branch of the thread T1 in Figure 33.

Figure 52. (a) An example of a concurrent dependency graph. (b) and its optimized

version

4: if (n<0) {

4: if (x + y < 0)

4: if (-3 + y < 0) 4: if (10 + y < 0)

4: if (-3 + 2 < 0)

def n

use n

def x def x

def y

use x

gu1 = { ud(y, 3, 2), ud(x, 3, 1), ud(n, 4, 3) }

gu2 = {ud(y, 3, 2), ud(x, 3, 20), ud(n, 4, 3) }

3: n = x + y

1: x = -3 20: x = 10

use y

2: y = 2

4: if (10 + 2 < 0)

def y

use y

2: y = 2

(a) (b)

n

x

y y
4: if (x + y < 0)

4: if (-3 + 2 < 0) 4: if (10 + 2 < 0)

def x def x

use x

gu1 = { ud(x, 3, 1) } gu2 = { ud(x, 3, 20) }

1: x = -3 20: x = 10

x

4: if (x + y < 0)

4: if (-3 + 2 < 0)

def x def x

use x

1: x = -3 20: x = 10

4: if (10 + 2 < 0)

xOptimization

Step 2.1

Step 2.2Optimization

 94

Only variables with a define set of more than one member within a concurrent
dependency graph can create different execution-variants. Therefore, any variables with
only one member in their define set are redundant with respect to exploring different
execution-variants. Algorithm 8 describes how to optimize a concurrent dependency
graph by removing such a redundancy. Figure 52(b) shows an example of an optimized
dependency graph.

Algorithm 8. Optimizing a concurrent dependency graph
Input: A concurrent dependency graph dg.
Output: An optimized concurrent dependency graph dg.
Step 1. For each circle node cn in the concurrent dependency graph dg.

1.1 If cn has only one outgoing edge.
 Then

 1.1.1 Remove the parent node of cn and all edges connected to cn.
 1.1.2 Make the incoming edge of parent(cn) the incoming edge of
child_node(cn).
Note: step 1.1.2 is not applicable if the parent(cn) is a root node, because a root node
does not have an incoming edge.

The optimized graph is more efficient because it is smaller and thus requires fewer steps
to traverse. The next subsection explains how to traverse a dependency graph.

5.3.3 Traversing a Concurrent Dependency Graph

A race condition can occur because different interleavings affecting branch
outcomes can lead to different sequences of lock/unlock and read/write operations to
shared variables. This subsection explains how to generate different interleavings in
order to explore different branch outcomes. We use the term “guidelines” as a set of
use-defines for generating a test case. The guidelines determine the data dependency for
creating a test case. An execution-variant V satisfies a guideline if all members of the
guideline are included in the set of use-defines of the execution-variant V. In other
words, the following condition must be satisfied:

all members of guideline ⊆ setUD(V) (4)

 95

Algorithm 9 explains how to traverse the paths in a concurrent dependency graph to
obtain a set of guidelines. Table 8 is an example of a set of guidelines obtained by
applying
Algorithm 9 to the concurrent dependency graph in Figure 52(a).

Algorithm 9. Traversing a concurrent dependency graph
Input: A concurrent dependency graph dg.
Output: A set of guidelines for generating test cases.
Step 1. Initialization.
 Let the output set of guidelines = { Ø }
Step 2. Start from the root node of the input concurrent dependency graph dg, do a
“Depth First Search” (DFS).

2.1 When the DFS visits a leaf node, extract the set of use-defines from the root
node to the leaf node and add them as a guideline to the set of guidelines as the output.

2.2 Repeat step 2.1 until all leaf nodes in the concurrent dependency graph dg
have been visited.

One test case will be created for each guideline, so there will be two test cases based on
Table 8. The use-define ud(y, 3, 2) and ud(n, 4, 3) are the same for both guidelines.
They are redundant because the concurrent dependency graph in Figure 52(a) is not
optimal. In order to distinguish between these two test cases, only the use-defines on
variable x matter. Table 9 is an example of a set of guidelines obtained by applying
Algorithm 9 to the optimized concurrent dependency graph in Figure 52(b). It shows
that only the use-defines on variable x are necessary to distinguish between those two
guidelines.

Table 9. A set of guidelines from the concurrent dependency graph in Figure 52 (b)

NO. Guideline
1 gu1 = { ud(x, 3, 1) }
2 gu2 = { ud(x, 3, 20) }

Table 8. A set of guidelines from the concurrent dependency graph in Figure 52(a).

No. Guideline
1 gu1 = { ud(y, 3, 2), ud(x, 3, 1), ud(n, 4, 3) }
2 gu2 = { ud(y, 3, 2), ud(x, 3, 20), ud(n, 4, 3) }

 96

5.3.4 Generating Test Cases from a Concurrent Dependency Graph

This subsection explains an efficient test case generation using a set of
guidelines from a concurrent dependency graph [Setiadi14]. We recall some definitions
from the work by T. E. Setiadi, A. Ohsuga, and M. Maekawa [Setiadi13] in the
subsection on a Model for Concurrent Program Execution Traces about the sequence of
operations in an execution of a concurrent program. These are as follows:

 S is a sequence of read/write operations from an execution trace.
 S(j) is a sequence of read/write operations in thread Tj.
 S(j, i) is the i-th operation in the sequence of operations in thread Tj.

The task for generating test cases can be stated as follows:
Given a concurrent dependency graph dg derived from an existing sequence of
read/write operations S1 and the following set of guidelines obtained from the
concurrent dependency graph dg:

 gu1 = { ud(var, use, def1) }
 gu2 = { ud(var, use, def2) }

Supposing that the existing sequence of read/write operations S1 satisfies the guideline
gu1, create another sequence of read/write operations S2 that satisfies the guideline gu2.
Let:

 S(a,j) = the use operation in the guideline gu2.
 S(a,j-1) = one operation in the thread Ta before the use operation S(a,j).
 S(b k) = the def2 operation in the guideline gu2.
 S(b,k-1) = one operation in the thread Tb before the def2 operation S(b,k).

The solution for the S2 depends on whether the use operation is located in the same
thread as def2 operation or not:

 Case 1: the use operation is in the same thread as the def2 operation, i.e. they
are located in the same thread Tb, S(b,j) = use operation and S(b,k) = def2
operation (refer to Algorithm 10).

 Case 2: The use operation is in a different thread to the def2 operation (refer to
Algorithm 11).

Figure 53 illustrates the examples of these two cases.

 97

Algorithm 10. Generating test cases if the define operation is in the same thread as the
use operation

Step 1. Select the next operation non-deterministically.
Step 2. If the operation selected in step 1 is the def2 operation S(b, k),
 Then
 2.1 The next operations are from thread Tb until the use operation S(b, j).
 2.2 Select the next operations non-deterministically until the concurrent
program terminates.
 2.3 Terminate this algorithm.
 Else
 2.1 Repeat from step 1.

Algorithm 11. Generating test cases if the define operation is in a different thread to the
use operation

Step 1. Initialization:
- All threads are not blocked.

Step 2. Select the next operation non-deterministically from any non-blocked threads.
Step 3. Check whether the operation selected in step 2 is one operation before the use
operation or before the def2 operation.
 3.1 If the operation selected in step 2 is S(b, k-1)
 Then
 3.1.1 Thread Tb is blocked.
 3.2 If the operation selected in step 2 is S(a, j-1)

Then
3.2.1 Thread Ta is blocked.

Step 4. If thread Ta and thread Tb are blocked
 Then
 4.1 Execute def2 and use consecutively as the next operations.
 4.2 Select the next operations non-deterministically until the concurrent
program terminates.
 4.3 Terminate this algorithm.

Else
 4.1 Repeat from step 2.

 98

Figure 53. An example of test case generation for different cases

An example of case 2:

 From Figure 33: S1 is T1:1:x = -3, T1:2:y = 2, T1:3:n = x+y, T1:4:if(n<0),
T1:5:..., T2:20:x = 10, T2:21:..., T2:22:..., T2:23:ref2 = new Object(),T2:24:...,
T2:25:print x, T2:26:..., T2:27:ref2.credit = 7, T3:30:ref2=ref1

 Figure 52: Let dg be the concurrent dependency graph derived from the
existing sequence S1.

 From Table 9: the set of guidelines = { gu1 = { ud(x, 3, 1) }, gu2 = { ud(x, 3,
20) } } is derived from the concurrent dependency graph dg in Figure 7(b).

This example falls into case 2 because the use and def2 in gu2 are in different threads.
Figure 54 illustrates the test case generation. The sequence for S2 is T1:1:x = -3, T1:2:y
= 2, T2:20:x = 10, T1:3:n = x+y, T1:4:if (n<0), T1:5:..., T2:21:..., T2:22:..., T2:23:ref2 =
new Object(),T2:24:..., T2:25:print x, T2:26:..., T2:27:ref2.credit = 7, T3:30:ref2 = ref1.

S1 S2

def2
use

def2

use

Ta Tb Ta Tb

Case 1

def1

def1

S1 S2

def2

use

def1

def2
use

Ta Tb Ta Tb

Case 2

def1

Existing sequence New sequence

Existing sequence New sequence

ud(var, use, def2)

S(b,1)
…

S(b, k)
…

S(b, j)
…

S(a,1)
…

S(a, j-1)
S(b, 1)
…
S(b, k-1)
S(b, k)
S(a, j)

ud(var, use, def1)

ud(var, use, def1) ud(var, use, def2)

The def2 operation is executed.

Execute operations from the same thread
until the use operation is executed.

Executing operations in the same thread
will guarantee that there are no other def
operations from other threads in between
the def2 and use operation.

Thread Ta is blocked.

Thread Tb is blocked.

Execute the def2 and use operation
consecutively.

Executing the def2 and use operation
consecutively will guarantee that there
are no other def operations from other
threads in between them.

 99

Figure 54. An example of a test case generation from a guideline

5.3.5 Comparison with the Existing Reachability Testing Method

This subsection explains an example for test case generation using the existing
reachability testing method. Figure 55 is an example of a variant graph for the execution
trace in Figure 33. In this example, we exclude the shared variable ref2 and consider
only the shared variables x and y to simplify the explanation. There are four
execution-variants; they are V1, V2, V3, and V4 as shown in Figure 55. Dotted boxes in
a variant graph represent some read or write operations accessing different values of
shared variables as the result of different interleavings.

T1:1:x=-3
T1:2:y=2
T2:20:x=10
T1:3:n =x+y
T1:4:if(n<0)

S(2, k-1)

S(1, j-1)
S(2, k)
S(1, j)

ud (x,3,20)

S2

T1:1:x=-3
T1:2:y=2
T1:3:n=x+y
T1:4:if(n<0)
T1:5:...
T2:20:x=10
T2:21:...
T2:22:...
T2:23:ref2=new
Object()
T2:24:...
T2:25:print x
T2:26:...
T2:27:ref2.credit=7
T3:30:ref2=ref1

S1

ud (x,3,1)

Execute non-
deterministically

:.:.

 100

 The variant graph in Figure 55 generates four test cases, but some of them
are redundant. From the set of guidelines in Table 8 or Table 9, our proposed method
identifies that only two test cases are required. Table 10 shows different values of
variables when executing different execution-variants. The execution-variants V1 and
V3 have the same truth value for the branch in line 4. It is sufficient to test only one of
them with respect to exploring different execution paths caused by the branch. They
differ in the values of the variable x in line 25, but the truth value of the branch in line
4 is the same. A similar situation happens for the execution-variants V2 and V4.
Suppose that the execution-variant V1 is executed when the program is first tested.
The execution-variant V2 can be created from V1 by replacing the use-define ud(x, 3,
1) with ud(x, 3, 20).

Figure 55. Example of a variant graph.

0,0

0 1: write x

1, 0

1

2, 1

2

20: write x

2, 0

1

3: read x

2, 2

2

25: read x

1,1

2

20: write x

2, 1

2

3: read x

2, 2

2

25: read x

0, 1

1

20: write x

1, 1

2

3: read x

2, 1

2

1: write x

2, 2

2

3: read x

0, 2

1

25: read x

1: write x

V1 V2 V3

Note:

index

version

1, 2

2

2, 2

2

V4

25: read x

1, 2

2

1, 2

2

25: read x25: read x

3: read x 3: read x

 101

Figure 54 shows how to generate only the required test cases based on the
guideline from the proposed concurrent dependency graph.

5.3.6 Generating Test Cases to Check Consistent Locking for Access
through Reference Variables

The basic premise suggested in the method that we have proposed so far is
that covering an execution path is sufficient to detect a race or no-race condition by
checking consistency locking in that execution path, independently of variable values.
In some cases, this might not be sufficient, since the value of the lock object itself
may depend on the data flow and, theoretically, on the interleaving, as illustrated in
Figure 56(a). This situation may be considered as a race condition.

Figure 56. Example of lock variables (a) and reference variables (b)

Similar problems may also arise when different shared reference variables (a

Thread T1 Thread T2

lock a

unlock a
read ref1.x

lock b

unlock b

read ref2.x

Thread T3

ref2 = ref1

ref1 and ref2 refer to the same data.

Thread T1 Thread T2

lock a

unlock a

read ref1.x
lock a

unlock a
read ref1.x

Thread T3

a = b

refer to different lock object.

(b)(a)

Table 10. Different values of variables among different execution-variants

Execution-va
riant 3: read x 3: read y 3: write n 4: if (n<0) 25: read x

V1 -3 2 -1 True 10

V2 10 2 12 False 10

V3 -3 2 -1 True -3

V4 -3 2 12 False 10

 102

pointer in C or an object reference in Java) actually refer to the same data as
illustrated in Figure 56(b). Threads acquire a consistent lock for accessing ref1 and
ref2, but actually they are referring to the same data depending on the interleaving of
the assignment ref2 = ref1 in the thread T3. On the other hand, even when the same
reference variable is shared between threads, the actual data referred to may not
necessarily be shared.

This subsection shows that our proposed concurrent dependency graph can
also generate test cases for detecting race condition caused by lock variables or
reference variables. A more complicated example involving a branch is illustrated
below:

 In Figure 57, the truth value of the branch depends on the order of executions of the
access-manner M1 and M4 as seen in Figure 57(a) and Figure 57(b). In the event
that the branch takes a different execution path, the error might not be detected.

 The reference variables ref1 and ref2 can refer to the same or different objects
depending on the order of executions of the access-manners M5 and M6, as shown
in Figure 57(b) and Figure 57(c). A race condition arises in execution 3 in Figure
57(c) in the event that the access-manner M3 and access-manner M5 are not
protected by the same lock. A race condition cannot be detected in execution trace 1
or 2, but can be detected in execution trace 3.

Thread T1 Thread T2

branch

M1 M4

M2 M3

Thread T3

M6

M5
if (n<0)

n=-1 n=2

ref1

ref2

ref2=ref1

ref1 Note:

M : “access-manner”

 103

Figure 57. Examples of three executions with different interleavings

5.3.7 Generating Test Cases: Traversing a Concurrent Dependency
Graph of an Access-Manner

This subsection explains how to generate different interleavings to check
whether accesses through reference variables in an access-manner have consistent
locking. In Figure 30, the define_set for the read operation to ref2 in M3 for pair2
contains two members, hence its value might be affected by different interleavings.
Figure 58 shows an example of a concurrent dependency graph for the access-manner
M3 in Figure 30. The root node contains the statements from the access-manner M3. We
will show an example of how to traverse the concurrent dependency graph of the
access-manner M3 in Figure 58 to generate test cases.

T1 T2

if (n<0) true

M1

M4
M2

T3

M6

Execution 1

M5

n=-1

n=2

T1 T2

if (n<0) false

M1
M4

M3

T3

M6

M5

n=-1
n=2

Execution 2 Execution 3

T1 T2

if (n<0)

M1
M4

M3

T3

M6

M5

n=-1
n=2

ref2 = ref1

ref1 ref2

A different interleaving causes
a change in a branch outcome.

A different interleaving causes two different
reference variables to refer to the same object.

The ref1 and ref2 refer
to the same object.

CS3 is executed
instead of CS2

ref1
ref2

The ref1 and ref2 refer
to different objects.

(a) (b) (c)

 104

Figure 58. An example of a concurrent dependency graph for the access-manner M3 in

Figure 30

Table 11 shows the results of traversing the concurrent dependency graph in

Figure 58 by applying Algorithm 9. Let us assume that the execution in Figure 30 is
obtained when the program is first tested, and we call it execution-variant V1. Its
interleaving satisfies the use-define ud(ref2, 27, 23). The execution-variant V2 is used as
the next test case as shown in Figure 59. Its interleaving satisfies the use-define ud(ref2,
27, 30). The next subsection explains how to create the execution-variant V2 effectively
from the concurrent dependency graph in Figure 58.

26: lock b
27: ref2.credit = 7
28: unlock b

ref2

:.:.

def

use

26: lock b
27: new Object().credit = 7
28: unlock b

26: lock b
27: ref1.credit = 7
28: unlock b

30: ref2 = ref123: ref2 = new Object()
def

b b

:.:.

use use

Table 11. A set of guidelines for generating test cases for testing pair2 in Figure 11

No. Guideline execution
-variant

Test result

1 gu1 = { ud(ref2, 27,
23) }

V1 No race condition, because ref1 and ref2 refer to
different objects.

2 gu2 = { ud(ref2, 27,
30) }

V2 Race condition for accessing ref1, if lock a and
lock b refer to different lock objects.

 105

Figure 59. An example of a test case execution for execution-variant V2

5.3.8 Generating Test Cases for Checking Consistent Locking of an
Access-Manner

 Based on Table 11, the execution-variant V2 can be generated from
execution-variant V1 by changing the define operation for the use operation of variable
ref2 in line 21.

 The guideline for the current execution-variant V1: { ud(ref2, 27: ref2.credit = 7,
23: ref2 = new Object()) }

 The guideline for the target execution-variant V2: { ud(ref2, 27: ref2.credit = 7,
30: ref2 = ref1) }

Generating the execution-variant V2 applies to case 2 because the use operation is in a
different thread from the target “def” operation. Therefore, Algorithm 11 applies for this
case.

 defbase : 23: ref2 = new Object()
 deftarget : 30: ref2 = ref1
 use : 27: ref2.credit = 7

Thread T1 Thread T2 Thread T3

30: ref2 = ref1

20: x = 10

21: . . .

22: lock b

23: ref2 = new Object()

24: unlock b

25: print x

26: lock b

27: ref2.credit = 7

28: unlock b

1: x = -3

2: y = 2

3: n = x + y

4: if (n<0) {

6: } else {

7: lock a

8: ref1.credit = 10

9: unlock a

10: }

11: print y ref1 and ref2 refer
to the same object

time

M1

M2
pair1

M3
pair2

pair1 = pair(M1, M2)

pair2 = pair(M1, M3)

ud(ref2, 27, 30)

M4
pair3

pair4

pair3 = pair(M2, M4)

pair4 = pair(M3, M4)

pair5 = pair(M1, M4)

 106

Figure 59 shows an example of the execution trace that satisfies the guideline gu2.

5.4 Reducing the Effort Involved in Checking Race
Conditions

Effort involved in checking race conditions can be reduced by utilizing
previous check results. Suppose we have the first execution with the set of execution
paths PATHS1 which is already checked. Then we execute the next test case which
results an execution with the set of execution paths PATHS2. The effort for checking the
set of execution paths PATHS2 can be reduced as follows:

 In case PATHS1 and PATHS2 are in the same race-equivalent group: No need to
check race conditions for PATHS2.

 In case PATHS1 and PATHS2 are not in the same race-equivalent group: Check
only some parts of execution traces affected by a new test case. Figure 60 shows
the idea for reducing the effort involved in checking race conditions:

 The pair(CS1, CSA) and pair(CS2, CSA), indicated by **, exists in the
previous execution, hence they do not require checking for race conditions.

 However, the pair(CS4, CSA), indicated by *, does not exist in the previous
execution, hence it requires checking for race conditions.

Figure 60. Reducing the effort involved in checking race conditions

Thread

T1

Thread

T2

CS1 CSA

CS3 CS4

CS2

CS1

CS3

CS2 CSA

3 checks 3 checks 3 checks

V1 V2 V3

CS1

CS4

CS2 CSA

CS1

CS4

CS2 CSA

CS1

CS3

CS2 CSA

3 checks 1 checks

Group 1 Group 2

CS1

CS4

CS2 CSA

Proposed method: total 4 checks

Existing method: total 9 checks

Reduce
number
of
checks

*

**

change

 107

5.4.1 Executions in the Same Race-Equivalent Group: No Need to Check
Race Conditions

It is possible to reduce the amount of work for checking errors in different
execution paths by grouping different execution paths from different executions with
the same set of manner-manners of access to shared variables into the same
race-equivalent group. All members of the same group are said to be race-equivalent.
All members within the same group will have the same set of access-manners. By this,
only one execution path from each race-equivalent group need to be checked. This
method reduces the task for checking errors in different execution paths by
eliminating all the execution paths belonging to the same race-equivalent group
except one. During the test iteration, the already checked race-equivalent group is
recorded to avoid repeating checking the combination of execution paths belong to
the already checked race-equivalent group.

Determining no-race can contribute to reduce the computation effort of

finding race conditions and deadlocks. This reduction is applied during exploring
different execution paths due to different interleavings. The reduction is possible by
followings:
1. Logging and detecting for race conditions for the set of access-manners appeared

in the past.
2. As the execution path of the target system progresses, execution traces for other

test cases are logged.
3. If a new execution trace has the same set of access-manners as one of the logged,

then we do not need to repeat race conditions detections because the same
sequence of lock/unlock and read/write operations to shared variables has already
been tested. In other words, they are in the same race-equivalent group.

This is true for any execution paths including loops. If it is found that

looping does not change sequences of lock/unlock and read/write operations to shared
variables, we do not need to check race conditions for each execution of the loop. One
test is enough for the entire loop. In exploring execution paths due to different
interleavings, any execution paths having the same sequences of lock/unlock and
read/write operations to shared variables can be grouped into the same

 108

race-equivalent group. However, the fact that some execution paths belong to the
same race-equivalent group does not necessarily imply that the future computations of
them will be the same.

Figure 61. Examples of the same and a different access-manner caused by a branch

If the branch path b true and the branch path b false have the same access-manner to
shared variables, then two executions with different execution paths caused by
different branch outcomes for the branch b are said to be equivalent (see an example
in Figure 61(a)).

Different branch outcome results
the same access-manner.

lock b

if (x>0) {

write y

else {

write y

}

unlock b

Branch is true Branch is false

lock b

read x

write y

unlock b

lock b

read x

write y

unlock b

same access-manner

:.:.

:.:.

Different branch outcome results
a different access-manner.

lock b

if (x>0) {

write y

else {

write z

}

unlock b

Branch is true Branch is false

lock b

read x

write y

unlock b

lock b

read x

write z

unlock b

different access-manner

:.:.

:.:.

(a) (b)

 109

Figure 62. Different access-manners caused by a loop

Similarly, if the access-manner to the shared variables are all the same in l1, l2, l3, l4,
l5, l6, ….. l∾ , then different execution paths caused by the different loop iterations
for a loop l will be in the same race-equivalent group. This property is useful to avoid
checking a long or an infinite loop. In the case of an infinite loop, there might be
infinite execution path, but we group different execution paths caused by loop if the
access-manner to the shared variables is the same. In this case we need only to
consider the combination of branches and loops. When there are only finite numbers
of branches and loops, then their combinations will also be finite. Figure 62 shows an
example of a loop in which the access-manner in the first iteration is different from
the second one. The rest of the iterations will have the same access-manners as the
second one. Figure 63 shows more complicated examples where the access-manners
are affected by a branch and a loop.

lock a

while (x>1) {

write y

unlock a

}

:.:.

Execution trace

lock a

read x

write x

unlock a

Source code

:.:.
First
loop

Second
loop

read x

write x

unlock a

:.:.

Access to the variable x

is protected by the lock a.

Access to the variable x

is NOT protected by the lock a.

Different
access-manner

 110

Figure 63. Different access-manner caused by a branch and a loop

Theorem 1. All race conditions can be detected within the race-equivalent

groups.

Proof:
Race conditions happen when there exists a possible combination of

execution paths from different threads which are not well-formed. We need to proof
that for any possible combination of execution paths, there exist one
race-equivalent group in which has the same access-manner to shared variables.
Hence, if the possible combination of execution paths has race conditions, it will
also be detected at the corresponding race-equivalent group.

Assume that P is a possible combination of execution paths and there is no

race-equivalent group which has the same access-manner to shared variables as in P.
Two concurrent executions with the same access-manner to shared variables for all
their threads will be grouped into the same race-equivalent group. Therefore, the set

Case 1: branch is true
lock a

while (x>1) {

if (y == 0)

x = 1

else

read x

unlock a

}

:.:.

lock a

read x

read y

write x

unlock a

(loop terminates)

:.:. 1st iteration:

Protected by
the lock a.

lock a

read x

read y

read x

unlock a

read x

read y

read x

unlock a

read x

read y
read x
unlock a

:.:.

:.:.

1st iteration:

protected by
the lock a.

2nd iteration:

NOT protected by
the lock a.

Different
access-manner

Case 1: branch is false

:.:.

The variable x is always
protected by the lock a within
the loop.

The variable x is NOT
protected by the lock a from
the 2nd iteration.

3rd iteration:

NOT protected by
the lock a.

 111

of race-equivalent groups will contain all possible combinations of access-manner
to shared variables from all threads.

Since P is a possible combination of execution paths, there exist one

race-equivalent group in which the access-manner to shared variables for the first,
second, third, ... , N-th thread are the same. Then P should be in one of
race-equivalent group. This contradicts our assumption that there is no
race-equivalent group which has the same access-manner to shared variable as in P.
Therefore, for any possible combination of execution paths, there exists one
race-equivalent group in which has the same access-manner to shared variables.
Q.E.D.■

5.4.2 Executions in a Different Race-Equivalent Group: Check Only Some Parts
of Execution Traces Affected by A New Test Case

When a new test case is executed, only concurrent-pairs of access-manners

whose access-manners are affected by the new test case have to be re-checked for race
conditions. In this way, the effort for checking race conditions is reduced. The following
discussion explains how to identify the access-manners which are affected by a new test
case.

5.4.2.1 Conditional Statements in a Branch

A different interleaving might change branch outcomes which can, in turn,
change the sequences of lock/unlock and read/write operations to shared variables. In
the event that a test case is created based on a conditional statement of a branch, then
only the access-manners affected by the change of the branch outcomes have to be
re-checked for race conditions. Let op(br, true) be the set of operations executed only
when the conditional statement in a branch br is true and let op(M) be the set of
operations within an access-manner M. When the outcome of the branch br changes
from true to false, we have to check only race conditions in concurrent pairs of
access-manners involving access-manner M, where op(br, false) ⋂ op(M) ≠ Ø. Also,
when the outcome of branch br changes from false to become true, a similar rule
applies. For example, let us assume a test case is created based on the branch in line 4 in
Figure 59. If the branch has changed its outcome from true to false, then the

 112

access-manner affected by the test case is M1. Therefore, we have to check only those
race conditions for the concurrent-pairs related to the access-manner M1; these are pair1,
pair2, and pair5.

5.4.2.2 Assignment of Lock Variables or Reference Variables within an
Access-Manner

Different interleavings might change the assignment of lock variables or

reference variables within an access-manner. If a test case is created based on an
access-manner Ma, then we have to check only those race conditions for the concurrent
pair of access-manners pair(M1, M2) where M1 = Ma or M2 = Ma. The test cases in the
example of Table 11 are created based on the access-manner M3 from Figure 30. Only
pair2 and pair4 have to be re-checked using a race detector because they are related to
the access-manner M3. On the other hand, since pair1, pair3 and pair5 are not related to
the access-manner M3, they are not affected by the test case. Hence, there is no need to
re-check race conditions among them (see Figure 59).

 When a loop contains an access-manner, each iteration can generate a
concurrent-pair of access-manners. In the case of an infinite loop, the number of
concurrent-pairs of access-manners can be infinite. However, in some cases the
concurrent-pairs generated in each iteration could be the same as in the previous one. In
such cases, there is no need to check for all the iterations. In this way, the effort
involved in checking race conditions during the test can be reduced. We will show an
example of this in subsection 6.6.3 Experiment 3: jNetMap.

 113

Chapter 6. Implementation and Experiments

This chapter describes an implementation of the proposed method in Java
and shows some results of experiments.

6.1 Lock Mechanism in Java

In Java, the lock mechanism is implemented as follows:
 Lock objects
 Synchronized methods
 Synchronized statements

6.1.1 Lock Objects

A lock object is an actual object that represents a lock. One example of an
implementation class is ReentrantLock. A lock is acquired by calling the lock()
method and released by calling the unlock() method. The execution between them
becomes a critical section.

 ...
 private Lock scoreLock = new ReentrantLock();
 ...
 public void method1() {
 ...
 try {
 scoreLock.lock();

 ...

 } finally {
 scoreLock.unlock();
 }
 }

6.1.2 Synchronized Methods

critical section

 114

A synchronized method is a method which has a “synchronized” keyword in
its method declaration. There are two kinds of locks when using a synchronized
method:

 Class lock: a synchronized method is defined as a static method.
 Object lock: a synchronized method is defined not as a static method. It uses the

object instance as the lock object specified from an object reference or using the
keyword this to specify its own object.

A thread that wants to execute a synchronized method must first obtain the
lock. The lock is released after it returns from the synchronized method. The
execution within the method becomes a critical section.

public synchronized void method2() {

 . . .

 }

6.1.3 Synchronized Statements

A synchronized statement is similar to a synchronized method, but
synchronized statements must specify an object as shown below.

public void method3() {
 . . .
 synchronized(this) {

 . . .

 }
 . . .
}

For the three mechanisms above, a lock is being acquired irrespective of which syntactic
approach is used.

6.2 Interrupt as a Thread in Java Program

It is not always possible to translate existing programs to support

critical section

critical section

 115

interrupt-as-a-thread principle for debugging/testing as suggested in this dissertation.
In Java, however, it is rather easy. We can simply create a (new) thread for interrupt
handling when interrupt comes. Preserving interrupt processing order, for example, a
series of interrupt from a keyboard or a series of interrupt from the same ATM, can be
achieved using joint point. In Java, invoking t.join() for a thread t suspends the caller
until the target thread t completes [Lea99]. Therefore when a series of interrupts come,
the execution of a later interrupt handling can be suspended until the previous
interrupt handling thread completes its execution.

If we design interrupt handling based on an interrupt dispatcher, we can use

Executor interface [Oaks04] for defining thread pools for interrupt processing. In fact,
the recent java.util.concurrent package provides the code for such an implementation.
An interrupt handling and the task required for it are executed in a newly created
thread.

6.3 Tracing

We use AspectJ [Gradecki03] for tracing Java multi-threaded concurrent

programs. It is an aspect-oriented extension to the Java programming language.
AspectJ was chosen because of its flexibility to trace the necessary data from an
execution of a program. Other means of tracing can also be used as long as they can
capture the necessary information about lock sequences, access to shared variables,
and branches.

We capture the necessary information from an execution of a program using

the concept of “pointcut”, “advice”, and “reflection” in AspectJ. Note that they are
specific terms for AspectJ. Here, we describe only the general idea of tracing using
AspectJ:

 Pointcut: specify locations within an execution of a program where necessary
information needs to be captured. We do not explicitly specify the locations in
term of line of code; instead we specify wildcards so AspectJ will take a trace
when any locks are acquired or released, or any shared variables are accessed.

 Advice: a piece of code to be executed for each pointcut.
 Reflection: getting trace information from program execution, for example about

locks’ acquisition or operations on shared variables. Reflections are written

 116

within an advice. Besides obtaining the shared variables or object references’
name, it is also possible to know which actual data is referenced by specifying its
object id in order to precisely determine where a race condition has actually
happened.

 For each of the pointcut, we write a corresponding additional a piece of code to
be executed, called advice to get the information about locks or shared variables
using AspectJ reflection. Within the advice, we use reflection to get the necessary
information for tracing, such as a shared variable’s name.

For detecting a branch or loop, the line of code (loc) in the source code is

recorded when a variable is accessed, and then later compared to the source code to
determine whether it is in an if-statement or a loop. The AspectJ codes necessary for
tracing are written in AspectJ files, which are separated from the target programs. The
AspectJ files need to be weaved with the target source code. The information
necessary to be traced is a sequence of lock/unlock, read/write operations to shared
variables, branches and loops. The pointcut definition for lock, call to synchronized
method, read access and write access to shared variables are call(void

Lock.lock()), call(synchronized * *.*(..)), get(* *.*), set(* *.*).
The overhead incurred by tracing differs case by case depending on the occurrence of
locks’ acquisition and read/write operations to shared variables.

6.4 Deterministic Testing

For controlling a program execution, Java code instrumentation [Baur03] can
be used. Thread switch is realized by unblocking the next thread in the schedule
followed by blocking all other threads including the current thread. A lock object is
assigned to each thread. Methods wait and notifyAll are used to implement block
and unblock operations that suspend and resume execution of a thread.

 117

Figure 64. Control transfer from thread T1 to T2

6.5 Implementation Diagram

Figure 65. Implementation

Thread T1 Thread T2Switcher

execution.sync() t2.unlock()

t1.unlock()

Execution
trace

Java
Source
code

Write AspectJ code for tracing
AspectJ code

JVM

Weaver

Input

Note:

Still manual

Automated

Existing system

Proposal 1 : Grouping from the existing reachability testing

Detect r/w
operations

Detect
shared
variables

Detect
interleaving
dependent
operations

Detect operations
affecting branches

Detect
branches

Create
variant
graphs

Group
interleavings

Race
equivalent
groups

Traverse concurrent
dependency graphs

Create concurrent
dependency graphs

Interleavings as test cases

Compiler

Deterministic execution
with tracing

Race detector /

deadlock detector

Select one
interleaving from
each group

Concurrent
errors

Proposal 2: Creating only necessary interleavings

 118

6.6 Experiment Results: Test Case Reduction

We use some Java open source programs for network control and database
management in the experiments, because these programs are usually designed to be
multi-threaded. The effectiveness of the proposed method for detecting race
condition depends on the structure of the program. Some concurrent programs have
only read-shared variables [Savage97], for example BlueJ [BlueJ09] and Baralga
[Baralga10]. The values of read-shared variables are only assigned once during
initialization and they are not affected by different interleavings. Hence, they also
do not have branches that are affected by different interleavings. The concurrent
errors in such program are always reproducible because there will be no change in
the sequence of lock/unlock and read/write operations to the shared variables in
each thread. They can be easily detected using existing dynamic race detection tools.
Debugging such programs is relatively easy by treating them as similar to
sequential programs. In such easy situations, the effectiveness of the proposed
method for detecting or reproducing race conditions is the same as the existing
methods. The proposed method is superior in the case where race conditions are
difficult to be detected or reproduced. Figure 66 shows the effectiveness of the
proposed method compared to the existing methods.

 119

Figure 66. The effectiveness of the proposed method

The objective of the experiments is to show the efficiency of the proposed

method for reducing the number of test cases in detecting race conditions. We
compare the number of test cases against an existing test case reduction method based
on the Thread-Pair-Interleaving (TPAIR) criterion [Lu07]. The results are
summarized in Table 12. For a fair comparison, we allow only the same input for both
methods. In these experiments, we measure the reduction in the number of different
interleavings used for test case generation. We ignore different orders of read-shared
variables. A read-shared variable is a variable that it is written during initialization
only and becomes read-only thereafter [Savage97]. Its value is determined only by the
input and it does not change during an execution of a program. As such, it can be
ignored during test case generation because different interleavings do not affect its
value.

Concurrent programs

Branches affected
by interleavings ?

No Yes

• Baralga (2010)
• BlueJ (2009)

Error are always
reproduced.

Errors not always
reproduced.

Infinite
loop?

Infinite test cases by
the existing methods.

• Apache Derby (2010)
• WebHarverst (2007)
• Apache Commons Pool (2006)
• WebLech (2002)

• JTelnet (2003)
• jNetMap (2009)
• JoBo (2006)

Yes
No

Sequential programs

Low HighDependency among threads

Few interleavings
affecting race conditions.

Easy DifficultError detection/reproduction

Same as
the existing
methods

Superior than
the existing
methods

Effectiveness of the
proposed method

 120

6.6.1 Experiment 1: Apache Commons Pool

In Experiment 1, we use a generic object-pooling library called Apache
Commons Pool [ApachePool06]. Some race conditions have been reported in related
work [PLDI06] [Naik06]. Most of the race conditions are easy to detect in that they can
be found by simply re-executing the program and using an existing dynamic race
detector. Our proposed method is intended to find race conditions that are difficult to
detect. This is because such race conditions are affected by branches and different
interleavings. There are 160 race conditions reported at [PLDI06]. We observed 15% of
them as being difficult to detect. One possible example is shown in Figure 67.

Figure 67. An example of a race condition that is difficult to detect

904: public synchronized void
setFactory(PoolableObjectFactor
y factory) throws
IllegalStateException {
906: if (0 < _numActive) {
907: throw new
IllegalStateException("Objects
are already active");
908: } else {

:
910: _factory = factory;
911: }
912:}

:

_numActive--;
:

_numActive--;
:

_pool = null;

995: public void
addObject() {
996: Object obj =
_factory.makeObject();

:

}
:

1025: Iterator it =
_pool.iterator();

Thread T1 Thread T2

Access to a shared
variable only if conditional
statement is false

A shared variable affecting
conditional statement in a
branch. Hence, it can be
affected by different
interleaving.

Access to a shared
variable without
acquiring any locks.

715: public Object
borrowObject() {

:
765: _numActive++;

}

Thread T3

The interleavings
affect conditional
statement in the
branch.

race
condition

branch

The interleavings do not affect
conditional statement in the branch.

Table 12. Summary of experiment results

1. Apache
Commons

Pool

2. JTelnet 3. jNetMap 4. JoBo 5. Apache
Derby

Program size (Kloc) 123 5 3 45 292
Trace size (KB) 35 1638 201 87500 72800
Number of threads 3 3 6 4 5
Number of shared variables 33 7 10 4 33
Number of branches executed from
trace

17 329 31 121665 14164

Number of branches affected by
interleaving

1 0 1 1 29

Number of test cases in TPAIR 23 66 Infinite Infinite 1453539
Number of test cases in proposed
method

2 1 4 1 58

 121

There is a race condition in Figure 67 between thread T1 and thread T2 when
accessing the shared variable _factory, because thread T1 does not acquire any locks.
However, it happens only when the conditional statement for the branch in thread T2 is
false. Furthermore, the conditional statement depends on the value of shared variable
_numActive which is affected by the interleaving with thread T3. Figure 68 shows read
and write accesses to the shared variables for the execution of the first test case, in
which the race condition is not reproduced. Using Algorithm 3, we calculate the
following:

BranchRelUD(b, V) = { (_numActive, 906, 765) }.

Figure 68. A comparison of exhaustive, TPAIR, and the proposed method

Our proposed method generates two test cases based on Table 13. Group g2(b) will
cause the conditional statement to become false, so the error will be reproduced.

Note:
variables:

: _factory

: _pool

: _numActive

T1 T2 T3

r

r

w

r

w

r

w

r

T1 T2 T3

r

r

w

r

w

r

w

r

T1 T2 T3

r

r

w

r

w

r

w

r

(a) (b) (c)

Exhaustive Thread-Pair-Interleaving

(TPAIR)
Proposed method

pair between T1 and T2

pair between T2 and T3

pair between T1 and T3

operations:

r : read

w: write

branchbranch
branch

r
r

r

w w w

Only
interleavings
affecting
branch.

All possible
interleavings.

 122

We compare our proposed method against an existing test case reduction method based
on the Thread-Pair-Interleaving (TPAIR) criteria [Lu07]. Instead of generating different
interleavings among all threads, TPAIR generates only different interleavings for every
pair of threads to reduce the number of test cases. This reduction is based on the fact
that most concurrency bugs are caused by the interaction between two threads, instead
of all threads, as explained in the previous error detection work [Savage97] [Lu06]. This
also happens for the race condition between thread T1 and thread T2 when accessing
shared variable _factory in Figure 67. Its reproduction depends on the branch in thread
T2 whose conditional statement is affected by the interleaving between thread T2 and
thread T3. However, not all different interleavings between those two threads will affect
the reproduction of the race condition. For example, shared variable _pool is affected by
the interleaving between thread T1 and thread T2, but the race condition when accessing
the shared variable _pool will always be reproduced. Hence, it can always be detected
by a race detector independent of the interleaving between those two threads. In this
experiment, the reachability testing method produces 147 test cases, the TPAIR method
produces 23 test cases, and our proposed method produces only 2 test cases for
detecting the race condition.

In order to evaluate the feasibility, we performed several experiments by
increasing the number of shared variables accesses for the same target program. Figure
69 indicates the increase in the number of test cases when the number of read/write
operations to shared variables is increased. In order to reproduce the race condition,
Figure 69 shows that our proposed method produces fewer test cases than test
generation based on the existing TPAIR. In addition, error detection by TPAIR can be
guaranteed only if the errors are caused by interleaving between two threads. In contrast,
our proposed method can reproduce errors caused by interleavings from any number of
threads. This is because our proposed dependency graph considers data flow from any
threads that affect the conditional statement in a branch.

Table 13. Grouping of test cases for experiment 1

Groups Set of use-defines affecting branch b

g1(b) { (_numActive, 906, …) }

g2(b) { (_numActive, 906, 765) }

 123

Figure 69. Comparison of numbers of test cases

6.6.2 Experiment 2: JTelnet

The JTelnet [JTelnet03] is a telnet client written in Java. Among the 7 shared
variables, 6 of them are read-shared. Based on the data flow analysis, one branch is
affected by a shared variable. This experiment shows that some interleavings will
change the values of shared variables, but they might not affect the reproduction of race
conditions. In such circumstances, the existing reachability testing and TPAIR methods
will generate some test cases, but our proposed method generates no test case. The
results are summarized in Table 14.

Table 14. Summary of experiment results for JTelnet

Method Number of
test cases

Description

Existing
TPAIR

66 Test cases generated by TPAIR will affect only the values
of shared variables in thread AWT-EventQueue-0, but will
not affect any conditional statements for branches in thread
T2 (Figure 70)

Proposed
method

1 Branches in thread T2 are only affected by operations in
the same thread. Therefore, the proposed method does not
produce any other test cases because their outcomes will
not be affected by a different interleaving.

 124

Figure 70. The source code of the JTelnet and its execution trace

6.6.3 Experiment 3: jNetMap

The jNetMap [jNet09] is a network client to monitor devices in a network. This
program detects PCs and a router in a network. Among the 10 shared variables, 9 of
them are read-shared variables. Based on data flow analysis, the one non read-shared
variable affects one branch. The source code and its execution trace are shown in Figure
71 and Figure 72. The results are summarized in Table 15.

public void paint(Graphics g) {
:

317: g.setColor(new Color(screenbg[yloc][xloc].
getRGB()^ 0xFFFFFF));

318: g.fillRect(3+xloc*charOffset, 2+yloc*
lineOffset, charOffset, lineOffset);

319: g.setColor(new Color(screenfg[yloc][xloc].
getRGB() ^ 0xFFFFFF));

320: g.drawChars(screen[yloc], xloc, 1, 3+xloc*
charOffset, topOffset+yloc*lineOffset);

:

shared variable: xloc

Thread T-AWT-EventQueue-0 Updating GUI

Receiving input from socket
while (true) {

try {

if ((read=sIn.read(buf))>= 0){

71: if (xloc >= columns) {
:
}

:
114: screen[yloc][xloc] = (char) c;
115: screenfg[yloc][xloc] = fgcolor;
116: screenbg[yloc][xloc] = bgcolor;
117: xloc++;

:

Thread T2

T-AWT:317: read xloc
T-AWT:318: read xloc
T-AWT:319: read xloc
T-AWT:320: read xloc
T-AWT:320: read xloc

:
T2:71: read xloc
T2:114: read xloc
T2:115: read xloc
T2:116: read xloc
T2:117: read xloc
T2:117: write xloc

:

operations
affecting
branch b2,1branch

b2,1

T-AWT:317: read xloc
T-AWT:318: read xloc
T-AWT:319: read xloc
T-AWT:320: read xloc
T-AWT:320: read xloc

:
T2:71: read xloc
T2:114: read xloc
T2:115: read xloc
T2:116: read xloc
T2:117: read xloc
T2:117: write xloc

:

time

branch
b2,2

operations
affecting
branch b2,2

Affect(b2,1) =
{T2:71: read xloc }

Affect(b2,2) =
{ T2:117: write xloc,
T2:71: read xloc }

 125

Figure 71. The source code of the jNetMap

276: while (true) {
:

279: if (pingInterval <= 0) {
280: synchronized (t) {

t.wait();
}

283: } else {
284: Thread.sleep((int)

(60000*pingInterval));
285: }
286: pingInterval =

parseFloat(interval.getText());
:
:

}

108: FileOutputStream out = null;
109: ObjectOutputStream obj = null;

:
112: pingInterval =

parseFloat(interval.getText());
:

114: File conf = new
File(System.getProperty("user.home")+"
/.jNetMap.conf");
115: out = new FileOutputStream(conf);
116: obj =new ObjectOutputStream(out);

:
:

123: obj.writeFloat(pingInterval);
:

224: notifyAll();
:

Thread T-AWT-EventQueue-0Thread T2

shared variable: pingInterval

Table 15. Summary of experiment results for jNetMap

Method Number of
test cases

Description

Existing
TPAIR

Infinite There is an infinite loop affecting the read and write
sequence which causes infinite test case generation because
it considers different values of shared variables as different
test cases.

Proposed
method

4 There are two test cases from the branch-affect group for
branch b2,1 and two test cases from the branch-affect group
for branch b2,2. All these groups are listed in Table 16. The
same set use-defines affects branches b2,2, b2,3, b2,4 and the
rest of the branches within the loop 1 for iteration 2, 3, 4,
and so on. In this example, the test cases for the branch b2,2
do not change the branch outcomes, i.e., they are always
false. Therefore, branches within the loop 1 will always
have the same outcome, so there is no need to test for
infinite iterations in loop 1.

 126

Figure 72. Execution trace of jNetMap

6.6.4 Experiment 4: JoBo

JoBo [JoBo06] is a web crawler for downloading complete websites to a local
computer. In this experiment, we downloaded a website from Yahoo [Yahoo] and saved
it into a local computer. The program has four threads and four shared variables and is
14 kloc in size. Among the four shared variables, one of them is non read-shared.
Similar to the previous experiment using jNetMap, this experiment shows that the
proposed method generates a finite number of test cases, while existing methods
generate an infinite number of test cases.

Figure 73 shows the source code of JoBo. Based on data flow analysis, there is

one branch affected by the shared variables. The first iteration in the loop has the same
set of access-manners as the second iteration, whereas the third iteration has a different

T2:279: read pingInterval
T2:284: read pingInterval
T2:286: write pingInterval

T2:279: read pingInterval
T2:284: read pingInterval
T2:285: write pingInterval

T2:279: read pingInterval
T2:284: read pingInterval
T2:286: write pingInterval

loop 1
first
iteration

loop 1
second
iteration

loop 1
third
iteration

branch b2,1 False

branch b2,2 False

branch b2,3 False

Time

:
:

loop 1
fourth
iteration

T-AWT:112: write pingInterval

T-AWT:123: read pingInterval

ud

ud
ud

ud

ud

Table 16. Branch-affect groups for jNetMap
 Branch-affect

groups Set of use-defines

g1(b2,1) ud(pingInterval, T2:279, T-AWT:112)
g2(b2,1) ud(pingInterval, T2:279, …)
g1(b2,2) ud(pingInterval, T2:279, T-AWT:112)
g2(b2,2) ud(pingInterval, T2:279, T2:286)

 127

access-manner (see the execution trace in Figure 74). The results are summarized as
follows:

Figure 73. The source code of JoBo

Figure 74. Execution trace of JoBo

09: m_connection = null;
:

40: for (; ;) {
:

// Check connection
43: if(m_connection != null)
44: break;
45: else {

// Check error
47: if(isError()){

:
}

:
}

:

infinite
loop

branch
affected
by a
shared
variable

Thread T3 Thread T4

shared variable
m_connection

123: public void run() {
:

145: m_connection = sock;
:

}

useuse

defdef

*

*

* operations affecting branch.

defdef*

Note:

branch b3,1

First re-execution :
T3:9 m_connection = null

. . .
T3:43 if(m_connection!=null)
T3:47 . . .
T3:43 if(m_connection!=null)
T3:47 . . .
T4:145 m_connection=sock
T3:43 if(m_connection!=null)
T3:44 . . .

False

False

True

loop 1
first iteration
loop 1
second iteration

loop 1
third iteration

branch b3,2

branch b3,3

:.:.

ud(m_connection, 43, 145)

ud(m_connection, 43, 9)

Table 17. Summary of experiment results for JoBo

Method Number of
test cases

Description

Existing
TPAIR

Infinite There exists an infinite loop that causes infinite test case
generation.

Proposed
method

1 All possible concurrent paths have been checked from the
first re-execution trace, no more test cases are required.

 128

6.6.5 Experiment 5: Apache Derby

Apache Derby [ApacheDerby10] is a database written in Java. It has a higher
degree of concurrency because it has more non read-shared variables. In such a program,
our proposed method proves its significance because there are more potential concurrent
errors that are difficult to reproduce. One of the examples is shown in Figure 75.

Figure 75. The source code of Apache Derby

6.7 Experiment Results: Memory Reduction

In this section, we show the effectiveness of our proposed new method in

reducing the memory required for generating test cases. The work by T. E. Setiadi, A.
Ohsuga, and M. Maekawa [Setiadi13] requires a variant graph from the existing
reachability testing method. The effectiveness of our proposed new method is
demonstrated by comparing the size of our proposed concurrent dependency graph

DRDAConnThread_3
if (reader.isCmd()) {

try {

server.processCommands(reader,
writer, session);

reader.initialze(this, null);

writer.reset(null);

CloseSession();

else {

exchangeServerAttributes();

}

correlationID =
reader.readDssHeader();

codePoint =
reader.readLengthAndCodePoint();

:.:.

Thread-2

reader = new DDMReader(this,
session.dssTrace);

writer = new
DDMWriter(ccsidManager, this,
session.dssTrace);

Pair
affecting
a branch.

Potential race condition
when branch is true.

:.:.

Pair not affecting any branches:
cause of redundancy.

 129

against that of the variant graph. We discuss three experiments using the following
multi-threaded Java open source programs:

1. jNetMap [jNet09] is a network client for monitoring devices, such as PCs and
routers, in a network.

2. Apache Commons Pool [ApachePool06] is a generic object-pooling library from
Apache.

3. Jobo [JoBo06] is a web spider for downloading complete websites to a local
computer.

Table 18shows that the concurrent dependency graph proposed in this dissertation is
smaller in size than the variant graph in the existing reachability testing method.

Note:

* Existing variant graph from reachability testing method

** Proposed concurrent dependency graph

6.7.1 Experiment 1: jNetMap

There is an access to a shared variable in an infinite loop affected by another
thread. This causes an infinite sequence of read/write operations and creates a variant
graph of infinite size. Figure 76 shows only some parts of the variant graph from the
reachability testing method. Here we explain only one example that caused a
redundancy.

Table 18. Comparison of the experiment results for existing variant graph and the
proposed concurrent dependency graph

NO Target programs
Number of nodes Memory size (in bytes)

Existing* Proposed** Existing* Proposed**
1 jNetMap Infinite 8 Infinite 320
2 Apache Commons Pool 990 4 71,280 288
3 Jobo Infinite 4 Infinite 160
4 JTelnet 42 1 1,680 40

 130

Figure 76. Variant graph for the execution of jNetMap

Figure 77 shows the execution trace of the first execution. The reachability

testing method considers all different interleavings between the two threads that can
affect the values of shared variables. On the other hand, our proposed method considers
only different interleavings that can possibly change the outcome of the conditional
statement in line 279, so it generates fewer test cases. In this experiment, only the
conditional statement in line 279 might cause different sequences of lock/unlock and
read/write operations to shared variables.

0, 0

0

69: write

1, 0

1

0, 1

1

112: write

2, 0

1

279: read

3, 0

2

3, 1

3

286: write

112: write

3, 2

3

V1

2, 1

2

112: write

3, 1

1

3, 2

3

V2

286: write

2, 2

2

123: read

2, 2

3

V3

123: read 286: write

1, 1

2

112: write

2, 1

2

279: read

3, 1

2

284: read

4, 1

2

286: write

V4

:.:.
V5

1, 2

2

123: read

:.:.
V6

1, 1

2

69: write

2, 1

2

279: read

3, 1

2

284: read

4, 1

2

286: write

:.:.
V7

:.:.
V8

1, 2

2

123: read

:.:.
V9

0, 2

1

123: read

:.:.
V10

0, 0

0

index of thread T2
index of thread T-AWT-EventQueue-0

version of
pingInterval
shared variable

1, 2

2

2, 2

2

69: write

279: read

ud(..., 279, 69)

ud(..., 279, 112)

ud(..., 279, 69)

gu1 gu2
gu1:.:. :.:. :.:. :.:.

 131

Figure 77. Execution trace of the first test execution of jNetMap

 Figure 78 shows a concurrent dependency graph for the branch from the
execution trace analysis of the first execution. The traversal of the concurrent
dependency graph in Figure 78 results in a set of guidelines in Table VII for generating
test cases. Table VII shows the set of guidelines for producing two test cases based on
the traversal of the concurrent dependency graph in Figure 78.

Figure 78. An example of a concurrent dependency graph for the execution of jNetMap

The branch outcomes for the conditional statement in line 279 are determined

by the assignment from the write operation in either line 69 or 112. For a comparison

69: pingInterval = obj.readFloat();
:

279: if (pingInterval <= 0) {
280:

:
286: pingInterval =

parseFloat(interval.getText());
:

:
112: pingInterval =

parseFloat(interval.getText());
:

123: obj.writeFloat(pingInterval);
:

Thread T-AWT-EventQueue-0Thread T2

ud(pingInterval,
279, 69)

udpot(pingInterval,
279, 112)

279: if (pingInterval <= 0) {

279: if
(parseFloat(interval.getText())
<= 0) {

279: if
(obj.readFloat()
<= 0) {

pingInterval
69: pingInterval =
obj.readFloat();

112: pingInterval =
parseFloat(interval.getText());

“use”

“define”“define”

Table 19. A set of guidelines from the concurrent dependency graph in Figure 78
NO. Guideline

1 gu1 = { ud(pingInterval, 279, 69) }
2 gu2 = { ud(pingInterval, 279, 112) }

 132

with the existing reachability testing method, we created a variant graph in Figure 76
based on the execution trace in Figure 77.

We refer to the source code in Figure 79 to explain the cause of redundancy.
The truth value of the branch in line 279 is affected by the order of interleavings
between the assignment of the shared variable pingInterval in line 69 and 112. The other
read and write operations to the shared variable pingInterval in line 123, 284, and 286
do not affect the truth value of the branch in line 279, so different interleavings among
them are redundant. For exploring different execution paths caused by the branch in line
279, we have to consider only whether an execution-variant satisfies the ud(pingInterval,
279, 69) or ud(pingInterval, 279, 112). In other words, we can group those
execution-variants into two groups and it is sufficient to test only one of each group.

Figure 79. The source code of jNetMap

6.7.2 Experiment 2: Apache Commons Pool

The reachability testing method uses a variant graph with 990 nodes to generate
216 test cases. However, most of them do not affect the occurrence of the race condition.
As shown in the work by T. E. Setiadi, A. Ohsuga, and M. Maekawa [Setiadi13], only
two test cases are actually required. Figure 80 shows that we require a concurrent
dependency graph with only 4 nodes to generate those two required test cases.

69: pingInterval = obj.readFloat();
:

276: while (true) {
279: if (pingInterval <= 0) {
280:

:
283: } else {
284: Thread.sleep((int)

(60000*pingInterval));
285: }
286: pingInterval =

parseFloat(interval.getText());
:

:
112: pingInterval =

parseFloat(interval.getText());
:

123: obj.writeFloat(pingInterval);
:

Thread T-AWT-EventQueue-0Thread T2

 133

Figure 80. An example of a concurrent dependency graph for Apache Commons Pool

Figure 81 shows the execution trace of the test program containing race

conditions. The reachability testing method considers all different interleavings that
affect the values of shared variables among the three threads in Figure 81. Our proposed
method generates fewer test cases because it considers only those interleavings that can
possibly affect the conditional statement in line 906. Figure 80 shows a concurrent
dependency graph from the execution trace in Figure 81.

Figure 81. Execution trace of the experiment using Apache Commons Pool

Based on the set of guidelines in Table 20, our proposed method generates only

2 test cases. Figure 82 shows a piece of code to explain the cause of redundancy in the
reachability testing method. The conditional statement in line 906 depends only on the
values of the shared variable _numActive affected by the interleavings with the
assignment in line 765 of the thread T3. The access through the reference variable _pool
depends on interleavings, but it does not affect the conditional statement in line 906.
Hence, different interleavings that are affecting the reference variable _pool are
redundant. Figure 83 shows the concurrent dependency graph for the reference variable

906: if(0<_numActive)

906: if(0<_numActive++)906: if(0<0)

_numActive

126: _numActive = 0 765: numActive++

“use”

“define”“define”

126: int _numActive = 0;
:

906: if (0 < _numActive) {
:

_numActive--;
:

_numActive--;
:

_pool = null;
:

392: _pool = new
CursorableLinkedList();

:
1025: Iterator it =

_pool.iterator();
:

Thread T1 Thread T2

:
765: _numActive++;

:

Thread T3ud(_numActive,
906, 126)

udpot(_numActive,
906, 765)

branch

 134

_pool.

Figure 82. An example of a test program using the Apache Commons Pool library

Figure 83. Concurrent dependency graph for the reference variable _pool

126: int _numActive = 0;
:

904: public synchronized void
setFactory(PoolableObjectFactor
y factory) throws
IllegalStateException {
906: if (0 < _numActive) {
907: throw new
IllegalStateException("Objects
are already active");
908: } else {

:
910: _factory = factory;
911: }
912:}

:

_numActive--;
:

_numActive--;
:

_pool = null;

392: _pool = new
CursorableLinkedList();

:
1025: Iterator it =

_pool.iterator();

Thread T1 Thread T2

A shared variable affects
a conditional statement
in a branch. Hence, the
truth value can be
affected by different
interleavings.

715: public Object
borrowObject() {

:
765: _numActive++;

}

Thread T3

The interleavings affect
conditional statement in
the branch.

branch

The interleavings
do not affect
conditional
statement in the
branch.

1025: Iterator it =

_pool.iterator();

1025: Iterator it =
null.iterator();

1025: Iterator it =
new

CursorableLinkedList().
iterator();

_pool392: _pool = new
CursorableLinkedList(); 1258: _pool = null;

“use”

“define”“define”

Table 20. A set of guidelines from the concurrent dependency graph in Figure 80
NO. Guideline

1 gu1 = { ud(_numActive, 906, 126) }
2 gu2 = { ud(_numActive, 906, 765) }

 135

6.7.3 Experiment 3: JoBo

In this experiment, we downloaded a website from Yahoo [Yahoo] and saved it
in a local computer. Similar to Experiment 1, there is an access to a shared variable
within an infinite loop. This shared variable is affected by another thread, thus causing
an execution trace of infinite length accessing the shared variable. The reachability
testing method produces a variant graph of infinite length and infinite number of test
cases because of the infinite length of execution trace. However, actually only two test
cases are required as shown in the work by T. E. Setiadi, A. Ohsuga, and M. Maekawa
[Setiadi13].

Figure 84 shows the execution trace of the first execution. Note that loop 1 is

an infinite loop. The infinite loop in the thread T3 is accessing a shared variable. For
each access to a shared variable in the loop iteration, its value can be affected by the
assignment from the thread T4. Therefore, the reachability testing method generates
infinite test cases because it produces a different test case for each iteration in the
infinite loop. Our method identifies that only some of the iterations are sufficient for
checking consistent locking, because the concurrent-pair of access-manners generated
for each iteration is the same as in the previous one.

Figure 84. Execution trace of the first test

Figure 85 shows a concurrent dependency graph for the branch from the

execution trace analysis of the first test execution in Figure 84. Based on the traversals
of the concurrent dependency graph in Figure 85, our proposed method produces the set
of guidelines in Table 21. We then generate two test cases based on Table 21.

branch b3,1

First re-execution :
T3:9 m_connection = null

. . .
T3:43 if(m_connection!=null)
T3:47 . . .
T3:43 if(m_connection!=null)
T3:47 . . .
T4:145 m_connection=sock
T3:43 if(m_connection!=null)
T3:44 . . .

False

False

True

loop 1
first iteration
loop 1
second iteration

loop 1
third iteration

branch b3,2

branch b3,3

:.:.

ud(m_connection, 43, 145)

ud(m_connection, 43, 9)

 136

Figure 85. An example of a concurrent dependency graph for JoBo

Figure 86 shows the piece of code that affects the test case generation. There is

an infinite loop in the thread T3 accessing a shared variable. From the execution trace of
the first execution, the reachability testing method produces a variant graph with infinite
nodes. For each node, an execution-variant can be created by making a different order
of interleavings for an assignment from the thread T4, hence causing an infinite number
of test cases.

Figure 86. The source code of JoBo

The first and second loop iterations of the execution trace in Figure 84 satisfy

43: if(m_connection != null) {

43: if(sock != null) {43: if(null != null) {

_numActive
9: m_connection =
null

145: m_connection =
sock

“use”

“define”“define”

09: m_connection = null;
:

40: for (; ;) {
:

// Check connection
43: if(m_connection != null)
44: break;
45: else {

// Check error
47: if(isError()){

:
}

:
}

:

infinite
loop

branch
affected
by a
shared
variable

Thread T3 Thread T4

shared variable
m_connection

123: public void run() {
:

145: m_connection = sock;
:

}

useuse

defdef

*

*

* operations affecting branch.

defdef*

Note:

Table 21. A set of guidelines from the concurrent dependency graph in Figure 85
NO. Guideline

1 gu1 = { ud(m_connection, 43, 9) }
2 gu2 = { ud(m_connection, 43, 145) }

 137

the first use-define in the guideline gu1, whereas the third iteration satisfies the second
use-define in the guideline gu2. The first iteration of the infinite loop has the same
concurrent-pair of access-manners as the second iteration, whereas the third one has a
different concurrent-pair of access-manners. All possible different concurrent-pairs of
access-manners in the iterations of loop 1 have been explored, from the first iteration
until the third one. Therefore our proposed method does not need to test all the infinite
loop iterations, because the remaining loop iterations will not produce different
sequences of lock/unlock and read/write operations to shared variables.

 138

Chapter 7. Discussions

The proposed method is intended to be used for debugging multi-threaded
concurrent programs as complement for dynamic race detector tools. Specifically
in the case when the exact timing information when the error happened is unknown.
Dynamic race detector tools detect potential race condition from a particular
execution trace. When there is only limited information from the execution trace
when the error occurred, then it is possible that the actual execution path might not
be exactly reproduced because different interleavings caused different branch
outcome. Hence, the dynamic race detector tools might not detect the existence of
error. In order to reproduce the error, one has to replay the concurrent program
many times by changing the timings/interleavings.

7.1 Applicability

The proposed method is applicable for the following program characteristic,
error types, and environments:

7.1.1 Program Characteristics

 Concurrent programs that are using lock mechanisms, for example Java, C, and
C++.

 Applicable for procedural or object-oriented languages. Our detection for race
conditions only concerns about the sequence of lock/unlock and read/write
operations to shared variables. The lock/unlock and read/write operations to
shared variables can be called from another function or method. It justifies the
correctness of the program by checking program execution whether all
read/write operations to shared variables are protected by consistent locks.

 Program structure: It manages to detect/reproduce concurrent errors caused by
interleavings and various program structures such as branches, loops, interrupts,
pointers, reference variables, file references, and arrays.

 139

Program Structure
Reasons why errors
are difficult to be
detected/reproduced.

Interleavings cause different
execution paths.

Interleavings cause variables to
refer to different data.

Program structures. - Branch: if,
switch.
- Loop: for,
while.

Interrupt Variable → data

- Pointer (in C) → memory
address
- Reference variable (in Java) →
object
- File reference → file
- Lock variable → lock object
- Index of an array → element of
an array
- Iterator → element of an array

Solution by the
proposed method to
detect/reproduce
errors.

Use dependency
graphs to
determine
interleavings that
can change the
conditional
statement.

Apply the
concept of
interrupt as a
thread. Hence
checking
interrupt timing
become checking
interleavings, so
the proposed
method can be
applied.

Use dependency graphs to
determine interleavings that can
change the data.

Array

When an array is shared, the actual element that is shared depends on the index
of the array. The value of the index to specify a particular element might not be known
until the actual execution. The index could be specified by a variable whose value can
depend on input and interleaving. Depending on interleavings, the particular element
specified during the execution might be different even though the same execution path

 140

is executed. To be safe, programmers can take a conservative approach by considering
all elements in an array to be shared when we are checking for race conditions.
Unfortunately, locking an entire array would decrease concurrency because other
threads have to wait to access different elements. To increase concurrency, sometimes
programmers divide the values of the index into several groups and use separate locks
for each group consistently during programming. For an array, programmers need to
specify whether the array has to be accessed as a whole, or it can be accessed
individually for each element. In the later case, the proposed method will generate test
cases based on the index of array or the iterator.

Concurrent Programs with Interrupts

The proposed method can also apply to concurrent programs with interrupts by
treating an interrupt as a thread. Interrupt handling programs might necessarily access
shared variables or locks, which might cause race conditions or deadlocks. To ensure
program correctness, it is necessary to check accesses to shared variables and lock
consistency when an interrupt or event is processed. Based on the origin of the interrupt,
we classify two types of interrupts:

 Internal interrupts: caused by an illegal CPU execution, such as buffer
overflow, divide by zero, memory protection violation, etc. For this type of
interrupt, it is natural that the program thread processes the interrupt handing.
 External interrupts: caused by a device other than CPU in the timing that is
independent of (no relation to) the program thread progress. Most real-time
applications are composed of processes that deal with interrupts from external
sources such as signals from sensors, network interfaces, and I/O devices.

This dissertation proposes to change an interrupt handling processing into a

thread. When an interrupt occurs, a corresponding interrupt handler is executed as a
different thread. In this way, interrupt timing’s problem is translated into a
synchronization and/or interleaving’s problem. Thus, testing interrupt timing
problems can be handled in the same way using the proposed method in Chapter 5
as concurrent programs.

 141

Figure 87. Interrupt as a thread

For realizing interrupt-as-a-thread, there are two basic approaches. In the first

method, a separate thread, namely, an interrupt processing thread, is assigned to
each interrupt signal. Thus interrupt processing thread directly receives an interrupt
signal and then handles it. In the second method, the central interrupt dispatcher
process receives all interrupt signals and then dispatches its processing to an
interrupt processing thread. In either of these two methods, interrupt processing
threads can be newly created every time interrupt is received, or prepared
beforehand at the system start up.

Advantage of Making an Interrupt as a Thread

There are three advantages in making an interrupt as a thread.
 Easier for testing: the problem of checking interrupt timings is reduced to the
problem of checking interleavings among the threads including the threads for
interrupt processing. The exact timing of interrupt occurrences is no longer
need be concerned.
 Deadlock avoidance: A deadlock occurs when the interrupt handler tries to
acquire resources (ex. a lock) that is currently occupied by the interrupted
thread. If we design a system following the principle of interrupt-as-thread, we
can avoid the deadlock caused by a competition of resources between the
interrupted thread and the interrupt handler, because the thread scheduler can

Thread
T1

Interrupt
occurrence

Normal
execution

Interrupt
handler

Thread
T1

Interrupt handler within
the interrupted thread

Interrupt handler as a thread

Normal
execution

Thread
T2Thread

T2

Interrupt
handler
thread

Interrupt
handler

The interrupt handler might
compete resources with T1 and T2.

The interrupt handler competes resources
with T1 and T2, and their critical sections
freely interleave with each other.

 142

switch control to the interrupted thread and continue the execution until the
resource is released.
 Easier for programming: In order to avoid deadlocks, or to in order to avoid
that resources are locked for a long time during interrupt processing, one
traditional programming style for a critical section is to entirely inhibit
interrupts during its entire execution. This is no longer needed by making an
interrupt as a thread because the delay is guaranteed to be short, namely, the
time to trigger an execution of an interrupt handler thread.

Figure 88. Deadlock can be avoided by following the interrupt-as-thread principle.

Disadvantage of Making an Interrupt as a Thread

The disadvantages of making an interrupt as a thread are:

 Less responsive: since the interrupt handler runs as a thread, its execution will
depend on the thread scheduling and might be preempted by others.
 Processing order: since the threads for interrupt processing are under the control
of thread scheduler, their order of processing may not be the same as the
occurrences of the interrupts. This may cause problems when a series of interrupts
are expected to be processed as a stream, for example processing a series of input
signals from the same device.

Preservation of Interrupt Processing Order

 143

Depending on the nature of processing, there is a need to preserve the
interrupt order. Take an example in which an interrupt comes from each “different”
ATM for account processing such as cash deposit or withdrawal. In this case, the
precise timing and order of the interrupts may not be so important. In fact, these
requests may compete for resources to each other. On the other hand, in the case
where a series of interrupt come from the same ATM, the order need be preserved.

It is difficult to control the order of execution as in the original program only

by controlling scheduling. Another alternative solution is by using some graph
model such as Petri Net model to preserve the interrupt order. When the order of
interrupts does not need to be preserved, we can create/use different nodes for
handling different interrupts. When interrupt order needs to be preserved, we can
assign all the interrupts to be handled by the same node so that the next interrupt
will be executed after the current interrupt handling finishes.

7.1.2 Error Types

 Race condition
 Deadlock

The proposed method can also be applied to detect/reproduce deadlocks as well using
an existing deadlock detector. In fact, detecting a deadlock is easier because it
considers only the sequence of lock/unlock (see Figure 89(b)).

 144

Figure 89. Comparison between race detection (a) and deadlock detection (b)

7.1.3 Execution Environment

 Availability of source code.
 Some information from source code is required for tracing, for example

variable names, class names, line of code, etc and of course source code is
required for fixing the bugs.

 Tracing capabilities to record lock/unlock and read/write operations to variables.
 Deterministic testing: using specialized virtual machine or instrumentation for

controlling interleaving, i.e. thread switches.
 No bugs in the compiler, virtual machine, or processor.

 The proposed method is intended to check whether programmers have written
their code correctly by using appropriate locks for accessing shared variables.
Even though a source code is written correctly, concurrent errors might still
occur if there is a bug in the compiler or Virtual machine that violates memory
consistency. Such concurrent errors caused by the compiler or virtual machine
might not be detected by the proposed method (see Figure 90). The read/write
operations can be re-ordered for optimization purpose by the compiler, virtual
machine, or processor. However, the happen-before relationship for

lock a

read x

unlock a
write x

unlock a

Race
detector

Deadlock
detector

Thread T1 Thread T2

lock a

lock b

. . .

unlock a

unlock b
lock b

lock a
. . .

Sequence of lock/unlock
and read/write to shared
variables.

Sequence of
lock/unlock.

Error:

Inconsistent
order of
locks.

Error:

Access to a
shared variable
not protected by
consistent locks.

(a)

(b)

 145

lock/unlock to the same lock object must be guaranteed to be correct, otherwise
it will give false alarms. For programs using lock mechanisms, such
happen-before relation must be guaranteed.

Figure 90. Memory consistency

7.2 Limitations

 Intentional race conditions.
 If a concurrent program is designed with some race conditions that are

intentional, for example, to speed up the process, then the proposed method
will report them as false positives. Such writing of code is not usually
recommended. Such a situation happens when programmer are certain that the
program will behave correctly even though a race condition occurs. It requires
manual analysis and currently beyond the scope of our proposed method.

 Synchronization other than lock mechanism, for example barrier [Nishiyama04].
 Real Time.

 The proposed method focuses on detecting errors caused by interleavings of

program order

execution order

re-ordering

Source code

Thread T1 Thread T2

Memory consistency model:

Ex. - Sequential Consistency (SC) [Lamport79]

- Total Store Ordering (TSO)

- Relaxed consistency

- As-if-serial within a thread

- Happen-before relationship among
threadsstore

load

load
:.:.

Execution

Detected by the proposed method:
Inconsistent locking because:

- Programmers forgot to write locks

- Unpredicted execution paths caused by
interleavings and branches

NOT detected by the proposed method:
Violations in memory consistency because:

- Bugs in compiler

- Bugs in Virtual Machine

- Bugs in processor, ex. cache coherence

Java

by compiler
or Virtual
Machine

 146

threads. However, it cannot measure exact timing; for example it cannot check
a case such as, whether after a particular interrupt, the next interrupt must come
within 2 seconds. Therefore the proposed method cannot be applied as in the
current form for checking the correctness of critical real time applications.

 Time interval.
 Using commands to “wait” for a fixed period of time, for example wait(100ms),

will cause some interleavings to become infeasible. Some commands in the
same thread after a wait command would not be interleaved immediately with
other threads because the thread is suspended for a period of time. For example,
in an extreme situation, other threads might have finished, so the waiting thread
continues its own execution without interleaving with any other threads. Since
our current method does not consider the usage of wait command for a fixed
period of time, our algorithm might generate some interleavings that are
infeasible. However, we consider using a command to wait for a fixed period of
time to be a bad programming practice.

7.3 Efficiency

The efficiency of the proposed method to reproduce errors is measured by

how much it can reduce the necessary test cases while still maintaining to cover all
the race-equivalent groups. The proposed method is efficient in reducing the
number of test cases by considering only different interleavings that are affecting
race conditions. The efficiency of the proposed method depends on the structure of
the target programs. It performs efficiently in a concurrent program which has
complex sequences of lock/unlock in branches. Such complex structures often
make it difficult to reproduce concurrent errors because different execution paths
caused by different interleavings often execute different sequences of lock/unlock
and read/write operations to shared variables.

Our proposed method significantly reduces the number of test cases by the

following means:
 Grouping together different interleavings that do not affect consistent locking

using the concept of race-equivalence.
 Testing only one member of each group.

 147

The debugging efficiency is primarily measured by the number of test cases.
The minimum number of test cases required is the number of race-equivalent
groups. In order to improve the efficiency for reproducing the errors, we extend the
past work [in particular, Hwang95] for reachability testing of concurrent programs.
Many existing methods try to identify all interleavings which may affect shared
variables, whereas our method can identify only those interleavings which affect
branch outcomes. The advantages of the proposed method are an improvement in
efficiency by the following means:

 Reduction of test cases that do not change execution path.
 Reduction of the amount of work for checking race condition in execution
paths with the same set of access-manners to shared variables.
 Creation of a new execution path can be identified and created by combining
the branch-paths found in the previous trace without further replaying the
program.

The proposed method performs efficiently for concurrent program in which

branch outcome and loop are not much affected by different interleavings. This
happens when the conditional statement for the branch or the conditional for the
loop are affected by only few shared variables and few dependent concurrent
operations that can change their values. We performed data flow analysis for some
case studies in experiment section and found that two of them, that is WebLech
[Weblech02] and WebHarverst [Wbhv07], satisfy this condition. For those two
case cases, experimental results shows that our proposed method is superior and
achieves the reduction as much as 90% of test cases compared to those partial
order reductions.

Similar to reachability testing, our method is also exhaustive in the way that

the test cases are created systematically and all the possible combination of
execution paths from the threads can be explored if the number of interleavings is
bounded. In the presence of infinite loop or in reactive system that does not
terminate, the number of possible interleavings might be unlimited and causes
unlimited execution paths. Even in such situation, our proposed method groups
different execution paths with the same access-manner to shared variables in to the
same race-equivalent group and test only one of them. Therefore the number of test
cases is bounded by the number of branches. Since we test only one member from

 148

each race-equivalent group, it is possible that the error was reproduced from
different execution path, but it has the same access-manner to shared variable as in
the execution path when the actual error occurred. This should be sufficient for the
purpose of race detection because the same cause of error, i.e. the lock
inconsistency, exists in both execution paths.

7.4 Complexity

The complexity of the proposed method is in factorial order, which is
required for creating/grouping variant graphs and creating/traversing concurrent
dependency graphs (refer to operations B in Figure 91). Other operations are for
obtaining information from execution traces which are in linear order complexity
(refer to operations A in Figure 91).

Trace length Number of
interleaving
dependent
operations

Number of
interleaving
dependent operations
affecting branches

Dete
ct

sh
are

d v
ar

iab
les

Parameters:

Dete
ct

de
pe

nd
en

t o
pe

ra
tio

ns

Dete
ct

op
er

ati
on

s a
ffe

cti
ng

 br
an

ch
es

Dete
ct

br
an

ch
es

B1

Ope
rat

ion
s:

Dete
ct

re
ad

/w
rite

 op
er

ati
on

s

Cre
ate

 a
va

ria
nt

gr
ap

h
Gro

up
 te

st
ca

se
s

Cre
ate

 co
nc

ur
re

nt

de
pe

nd
en

cy
 gr

ap
hs

Tr
av

er
se

co

nc
ur

re
nt

de
pe

nd
en

cy
 gr

ap
hs

- Shared variables related to conditional
statements

-- Indirectly affected by the number of branches

- Number of shared variables
-- Number of write operations (main factor)

- Number of threads
-- Only threads which contain shared variables

> >

Proposal 1:

reduce test
cases

Proposal 2:

reduce test cases
and memory

A

Greater
than

Greater
than

Existing
reachability
testing

B2

Trace analysis

 149

Figure 91. Complexity and the actual workload of the proposed method

The calculation for the complexity will be derived as follows.

Let:
 m: number of threads, ≥ 2.
 n: number of interleaving dependent read/write operations, ≥ 0.

- n = 0% means there will be no concurrent errors.
 p: percentage of n which are affecting branches.

- p = 0% means interleavings are not affecting any branches.
 : number of interleaving dependent read/write operations in thread T1.
 interleaving dependent read/write operations: read/write operations to shared

variables in which the value of the shared variables can be affected by the
interlavings of the read/write operations.

- Number of threads = 1, or

- Number of interleaving
dependent operations = 0

(same as sequential programs)
Workload

constant

linear linear

factorial

B1B1

AA

B1B1

AA

Case 1: Case 2:
- (other than case 1)

A: trace length

B1: number of interleaving dependent operations

B2: number of interleaving dependent operations affecting branches

0.288.1JoBo

0.338.8jNetMap

0.3421.5jTelnet

0.524.3Apache Common Pool

Operation B2 Operation A

Time taken (in seconds)
Target program

0.288.1JoBo

0.338.8jNetMap

0.3421.5jTelnet

0.524.3Apache Common Pool

Operation B2 Operation A

Time taken (in seconds)
Target program

Actual
workload
from the
experiment

B2B2 factorialB2B2

0 0

Workload

constant

linear linear

factorial

B1B1

AA

B1B1

AA

Case 1: Case 2:
- (other than case 1)

B2B2 factorialB2B2

0 0

Workload

constant

linear linear

factorial

B1B1

AA

B1B1

AA

Case 1: Case 2:
- (other than case 1)

B2B2 factorialB2B2

0 0

Experiment

Trace analysis Test case generation

 150

Figure 92. Classification of read/write operations

Number of possible interleavings = !

()!∙()!∙()!⋯()! = n! ∙ ∏ ()! (7-1)

See some examples in Appendix A.

Take the worst case where operations are distributed equally among threads, hence each

thread will have ｎ
ｍ

 number of operations. Therefore = = = = ｎ

ｍ

(7-2)

In the worst case (7-2), the number of test cases for the existing reachability testing will
become (7-1)(7-2): ∏ ! = !

! (7-3)

Stirling's approximation [Hazewinkel01]:
n! ≅ √2 (7-4)

Approximate equation (7-3) using Stirling's approximation (7-4): !
! ≅

. ∙
√ () (7-5), see Appendix B for the detail proof.

In most cases, the number of operations (n) is much larger than the number of threads
(m), i.e. ≫ . Take the largest order from equation (7-5) to measure the complexity:

 Existing reachability testing method: O () (7-6)
 Proposed method: since our proposed method only concerns with the interleavings

affecting branching, the complexity: O(∙) where 0% ≤ ≤ 100% (7-7)

Read/write
operations

Interleaving dependent
read/write operations

Interleaving dependent
read/write operations
affecting branches> >

n p · n

 151

The order of complexity does not change, but since 0% ≤ ≤ 100%, the complexity
of proposed method (7-7) is less than the existing method (7-6), or it is equal to the
existing method in the worst case when p = 100%.
From the experiment results, the value of p is between 0% and 33.3%.

Figure 93. The percentage of operations affecting branches for several target programs

Figure 94 shows the operations affecting branches for the Apache Commons Pool.

p
0% 100%

Similar to a
sequential
program:

no concurrent
errors.

Worst case:

same complexity
as the existing
reachability testing
method.

• BlueJ [BlueJ09]
• Baralga [Baralga10]
• JTelnet [JTelnet03]

• jNetMap [jNet09]
• JoBo [JoBo06]

• Apache Derby [ApacheDerby10]

• Apache Commons Pool [ApachePool06]

20% 33.3%

More reduction Less reduction

 152

Figure 94. Operations affecting branches for the Apache Commons Pool

7.5 Correctness

Scope

 Target: concurrent programs with lock mechanism.
 Definition for a race condition: exist an interleaving where two threads are

accessing the same data without protected by consistent locks.

Precondition

 For detecting/reproducing concurrent errors, the proposed method will have an
execution trace with the same input as when the concurrent errors occurred.
(7-8)

 The execution trace contains the sequence of lock/unlock and read/write
operations to shared variables.

 However, the concurrent errors might not be detected/reproduced in that
execution trace because the interleaving might be different from the one
when the concurrent errors occurred.

Note:
Variables:

: _factory

: _pool

: _numActive

T1 T2 T3

r

r

w

r

w

r

w

r

Operations:

r : read

w: write

branch

r
w

Operations
affecting
branch.

p = x 100% = 20%

Interleaving dependent r/w operations, n = 10.

p ・n = 2

10
2

 153

For detecting/reproducing the concurrent error, the proposed method will generate
different interleavings from the execution trace stated in precondition (7-8). Test case
reduction by the proposed method is achieved by:
1. Group the interleavings generated from the existing reachability testing into several

race-equivalent groups. (7-9)
2. Test only one member from each race-equivalent group. (7-10)

Reasons why concurrent errors are difficult to be detected/reproduced (refer to
Applicability subsection):
- Interleavings cause different execution paths. (reason 1)
- Interleavings cause variables to refer to different data. (reason 2)

Correctness: we have to prove there are no false alarms in the proposed method.
- A. No false positives : must not report any concurrent errors which actually do not

exist. (7-11)
- B. No false negatives : concurrent errors must be detected/reproduced even though

not all interleavings are tested because of reduction by the proposed method.
 (7-12)

Figure 95. Proof for correctness

Correctness:

No false alarms

A. No false
positives

B. No false
negatives

B1. Interleavings cause
different execution paths

- Branch, loop

B2. Interleavings cause variables to
refer to different data.

- Pointer, reference variable, file reference,
index of an array

Reasons why concurrent errors are
difficult to be detected/reproduced

 154

A. Proof for (7-11): No false positives

Proof that if a program does not contain concurrent errors ⇒ proposed method does not
generate interleavings that contain concurrent errors.

Definition:

 V: execution variant. A different read/write sequence that affects the values of
shared variables.

 Reachability: set of execution-variants from reachability testing method.
 Reachability = { V1, V2, V3, … ,VN }, N = the number of execution-variants.

 gi : race-equivalent group. With i = 1, 2, 3, … , M. M = number of race-equivalent
groups.

Lemma: Reachability testing does not contain false positives.
If a program does not contain concurrent errors ⇒ the reachability testing does not
generate any interleavings that contain concurrent errors.
Since the reachability is just changing the order of interleavings and does not remove
any locks, it will not cause any new concurrent errors that actually do not exist.

Assume there is no concurrent errors ⇒in a program, then from the proposed
methodLemma above:
For ∀V where V ∈ Reachability ⇒V does not generate interleavingscontain
concurrent errors.

Proof that all members in that race-equivalent groups do not contain concurrent errors.
Proof:For all i = 1, 2, 3, … , M, ∀V ∈ gi ⇒ V does not contain concurrent errors.

Since the proposed method only groups the interleavings generated by the existing
reachibility testing (7-9). Hence, no matter howfrom the algorithmreachabililty testing
method, so if V ∈ gi ⇒ V ∈ Reachability
From the Lemma, for the grouping is, it will not create any new concurrent errors after
grouping if the reachability testing does not generate interleavings that∀V where V ∈
Reachability ⇒ V does not contain concurrent errors.
By implication, we can conclude that:: ∀V ∈ gi ⇒ V does not contain concurrent
errors.
If a program does not contain concurrent errors ⇒ proposed method does not generate

 155

interleavings thatall members in race-equivalent groups do not contain concurrent errors.
 QED.

B. Proof for (7-12): No false negatives

SupposeAssumption: there is an interleaving that contains a concurrent error in a
program, let’s say Verror.

We have to Prove that there is a race-equivalent group, let’s say g1, in which:
- The Verror is a member of the g1. Verror ∊ g1 (7-13)
- All members in the g1 contain the same error as in the Verror. ∀V ∊ g1 ⇒ V

contains the same concurrent error as in the Verror (7-14)

Lemma:
Our proposed method will test one interleaving from each race-equivalent group. Hence,
the concurrent error will be detected when one of the members from the race-equivalent
group g1 is tested. QED.

Lemma: The reachability testing does not contain false negatives.
Assume that a concurrent program contains an interlaving, Verror, that contains
concurrent errors ⇒ Verror ∊ Reachability.
In other words, ∃V where V ∊ Reachability and V = Verror
Given an execution trace as stated in precondition (7-8), the reachability testing will
generate different interleavings which contain the concurrent errors. See Appendix C for
the proof.

Proof for (7-13):
Proof that if a concurrent program contains an interleaving that contains concurrent
errors, let’s say Verror then the Verror will exist in one of the race-equivalent groups.
∃gi where i = 1, 2, 3, . . . , number of race equivalent groups, so that Verror ∊ gi

From (7-9), the proposed method groups all interleavings generated from the existing
reachability testing into several race-equivalent groups. From the lemma above, the
existing reachability testing will generate the interleaving that contains the error, Verror,
so it will be grouped into one of the race-equivalent groups. We name the
race-equivalent group that contains the Verror as g1. QED.

 156

Proof for (7-14):

B1
Different execution paths

B2
Different data

 The proposed method identifies the set
of use-defines that is affecting
conditional statements in branches
(BranchRelUD).

 Then it groups the interleavings with
the same BranchRelUD into the same
race-equivalent group.

 Interleavings with the same
BranchRelUD will have the same
branch outcomes.

 The proposed method identifies the
set of use-defines that is affecting
variables (VarRelUD).

 Then it groups the interleavings with
the same VarRelUD into the same
race-equivalent group.

 Variables within the interleavings
with the same VarRelUD will refer to
the same data.

↓ Implies
The proposed method groups the
interlavings with the same branch
outcomes into the same race-equivalent
group.

The proposed method groups the
interlavings in which the variables’
accesses refer to the same data into the
same race-equivalent group.

↓ Implies
For all members in the same
race-equivalent group:

The same thread will have the same
sequence of lock/unlock and read/write
operations to shared variables.

For all members in the same
race-equivalent group:

The variables’ accesses will refer to the
same data.

↓ Implies
For all members in the same
race-equivalent group:

The thread that contains the concurrent
error, let’s say thread Terror, will have the
same sequence of lock/unlock and
read/write operations to shared variables.
Hence the same concurrent errors exist in
the thread Terror of all members in the same
race-equivalent group. (7-15)

For all members in the same
race-equivalent group:

The variable that causes the error, let’s
say varerror, will refer to the same data.
Hence the same concurrent errors exist
when the varerror is accessing the data for
all members in the same race-equivalent
group. (7-16)

 157

From (7-10), (7-15) and (7-16)
We will test one interleaving from each race-equivalent group (7-10). When the
race-equivalent group that contains the Verror is tested, the same concurrent error will be
detected no matter which member is selected. This is because all members in the same
race-equivalent group will contain the same concurrent errors (7-15) (7-16). QED

Figure 96 is an example for the case B1. The interleavings no.1 and no. 2 will be in the
same race-equivalent group. Both will contain the same error. No matter which one is
chosen (no. 1 or no. 2), the concurrent error will be detected.

Figure 96. Example of a concurrent program with an error

7.6 Future Work

7.6.1 Correctness Criteria

 158

Translating interrupt as a thread might reduce responsiveness as it would
depend on scheduling. By measuring the responsiveness of interrupt and use it as
one of the criteria to decide the correctness of multi-threaded concurrent program,
our method can be applied for real time system.

7.6.2 Target Program

Currently, our proposed method is applied to the actual target program
written in Java language. Another existing work from [Yu08] proposed
prototyping for software testing and showed its benefits. Applying our method to a
prototyping language could be one direction for further research.

7.6.3 Scope

Also for the future work, the method can be extended not only for debugging,
but also apply it for testing all possible executions. In the current proposal, we
concentrate on checking the possible interleavings and interrupt timings restricted
for fixed values of the input variables. There are some existing systems for test
generation for branch coverage. Some generates input data that exercises a selected
branch [Prather87], [Gupta00] based on execution based approach. It is necessary
to investigate whether we can utilize the existing method to extend our proposal
for testing and also the possibility to help reducing false positives.

7.6.4 Reduction of the Load of Execution Trace

A checkpoint/restart scheme can reduce the load of execution trace. A

checkpoint method allows a program to resume from a checkpoint, thus eliminating
re-executing of the same portion of program code up to the checkpoint each time an
execution trace is taken. This method is called “prefix-based testing” [Hwang95]. It
allows starting non-deterministic testing from a specific program state other than
the initial state. Our proposed method can also take the advantage of prefix-based
testing. Here are the steps:

 Put check point at every parent node of the execution variant node in the

 159

execution variant graph.
 For testing an execution variant, start from its parent node (not from
beginning) and then execute it non-deterministically.

By employing a check point system, we avoid repeating the same execution

up to the execution variant node. The efficiency can be improved by performing
interleaving gradually step-by-step, accumulating the intermediate result to be
utilized for the next step. By continuing from the last check point, the next debug
step can be done in a minimum effort.

7.6.5 Reduction of the Need for Executing Test Cases

The verification of an execution path does not necessarily require the

execution of the path. A new execution path can be identified and created by
combining the branch-paths found in the previous execution trace without further
testing the program. We use this technique to further reduce the need for executing
the test cases.

An execution path from a thread contains sequence of branch-paths from

each branch execution. A branch-path is an execution from one branch to the next
branch in the execution trace of a thread. For each execution, the truth value of the
branch-path could be either true or false. Suppose we obtain the following
information from a trace:
1) Initial execution trace:

 Thread T1 creates branch-path A, thread T2 creates branch-path P.
 There is an execution path where branch-path A is concurrent with
branch-path P (Figure 97(d)).

1) Execution trace from the test case:
 Thread T1 creates branch-path B instead of the branch-path A, thread T2
creates branch-path Q instead of branch-path P.
 There is an execution path where branch-path B is in concurrent with
branch-path Q (Figure 97(c)).

Then the two new execution paths can be created by combining the information from

 160

the initial execution trace and the execution trace from the test case without further
executing the program:

 Branch-path A is in concurrent with branch-path Q (Figure 97(b)).
 Branch-path B is in concurrent with branch-path P (Figure 97(a)),

Figure 97. Example of execution paths combinations

The possible number of combinations for the branch-paths will be maximum

when there is no nested branch. For n branches with no nested branch, the possible
number of all combinations is 2n. Figure 97 shows an example of two threads with
one branch each, since there are two possible execution-paths for each thread, we
have four possible combinations of execution-paths.

Since our program executions are limited by a fixed input for debugging

purposes, only those possible execution paths under the given values of the input

T1 T2

b1,1 b2,1
True

Execution path combination 1

False

T1 T2

b2,1

False

T1 T2

b1,1

True

T1 T2

b2,1

True

b1,1

False

b2,1

True

b1,1

False

Execution path combination 2

Execution path combination 3 Execution path combination 4

B P A Q

A PB Q

(a) (b)

(c) (d)

 161

variables will be executed. It means that not all branches will change the execution
path. The test is finished when all the possible combination of execution-paths have
been checked.

Algorithm 12 shows how to create a new execution path by utilizing

information from execution trace.

Algorithm 12. Creating a new execution path by utilizing information from execution
trace

Input:
 - A test case
 - Branch-paths history: contains previously executed branch-paths
Output:
 - New execution-paths labeled as either “no race condition” or “potential race

condition”

Step 1 If the test case changes the branch outcome then {

create new execution paths by combining the new branch-path with the
existing ones in the branch-paths history

Step 1.1 for each new execution path {
check the new execution path using existing race detector tool
if no race was detected then {

label the new execution path as "no race"
else {

label the new execution path as "potential race"
 }

add the new branch-path into branch-paths history
}

}

The number of test cases can be reduced because we can ignore the next test
cases that lead into the new execution path labeled as "no race". The new execution
paths labeled as "potential race" might be a false positive which will become a race
if exists a test case that could lead into the combination of execution-paths. This
should be explored in the next test cases.

 162

Chapter 8. Conclusions

In this dissertation, we have proposed efficient methods for reproducing
multi-threaded concurrent program errors. Debugging concurrent multi-threaded
programs is notoriously difficult because the exact timing that caused the error is
normally unknown. Gathering trace information while executing a program using
even the same input values can cause schedule and timings to be different that
could lead the program into a different execution path, for example due to
branching or loop, so the error cannot always be reproduced and detected by
existing error detection tools.

In order to reproduce an error in a multi-threaded concurrent program, this

research aims at realizing a deterministic replay which we call it "total replay".
Total replay reproduces all possible executions caused by different thread
interleavings and interrupt timings as test cases, whereas existing deterministic
replay often reproduce only a selected execution. We focus on detecting errors,
particularly race conditions, caused by interleavings of threads and different
interrupt timings. It is intended to reproduce all possible execution paths within the
scope determined by the limited information obtained from an execution trace.
Even though the input values are fixed, the range of execution reproduction is still
very large due to a wide range of different schedules and interrupt timings.

In order to realize total replay efficiently, we propose some methods for

reducing the number of test cases. We observed that executions from different
interleavings with the same combination of execution path between threads have
the same access-manner to shared variables and data, so regarding the detection of
race condition we can classify them into the same race-equivalent group. The
non-existence of race condition in multi-threaded concurrent programs can be
ensured by checking the lock consistency from all possible combinations of
execution paths between threads. In that sense, interleavings that do not change
execution path in a thread produce redundancy with respect to checking race
conditions. Since an execution path in a thread is affected by branches, our

 163

proposed method identifies only those interleavings that affect branch outcomes by
utilizing data flow from the trace information to identify such redundancy. For our
purpose, we extend the definition and notation of use-def chain to cover usage and
definition of shared variables in multi-threaded. We first identify the set of
operations that affect the conditional statement of a branch. Based on this analysis,
which interleavings affect the branch outcomes can be determined.

The originality of the proposed method is as follows:

1) Reducing test cases.
 Grouping different interleaving that have the same locking consistency:

The existing methods try to identify all interleavings which may affect
shared variables whereas our method identifies only those interleavings
which affect sequence of lock/unlock and read/write operations to shared
variables. Different execution paths with the same locking consistency
are grouped into the same race-equivalent group and tested only once.
This significantly reduces the number of interleavings necessary for
testing.

 Avoiding infeasible test cases: Infeasible test cases caused by
synchronization mechanisms, such as a wait-notify mechanism, are
identified and eliminated.

2) Reducing memory space required for generating test cases.
Our method exploits data dependency to generate only those test cases that
might affect sequences of lock/unlock and shared variables. Our new proposed
method requires smaller sized graphs for generating test cases compared to the
existing reachability testing method. This means the required memory space is
reduced.

3) Reducing the effort involved in checking race conditions.
Our method identifies only the parts of the execution trace whose sequences of
lock/unlocks and shared variables might be affected by a new test case. Race
conditions are then checked again only for those affected parts. For other
unaffected parts, we can reuse the results from previous executions, thereby
reducing the effort involved in checking race conditions.

We conducted some experiments on several real world Java open source

programs to demonstrate the effectiveness of our proposed method. The

 164

experimental results suggest that redundant interleavings can be identified and
removed that lead to a significant reduction of test cases.

 165

9. Glossary

A

access-manner - A sequence of operations in which a thread has acquired a lock, has
accessed a shared variable, and has released the corresponding lock (section 3.9
Access-Manner, page 45).

advice – An Aspect-oriented term referring to a piece of code to be executed in a
pointcut (section 6.3 Tracing). See also pointcut (section 6.3 Tracing).

Aspect-oriented programming - A programming paradigm that aims to increase
modularity by allowing the separation of concerns.

AspectJ - An aspect-oriented extension to the Java programming language. We use it
for tracing Java multi-threaded concurrent programs (section 6.3 Tracing, page 115).

B

branch-affect group - A branch-affect group for a branch b contains a set of execution
variants that would cause the same branch outcome for the branch b, which is either true
or false.

branch outcome - The truth value within a conditional statement of a branch during a
program execution, that is whether true or false.

C

concurrency – “A condition that exists when at least two threads are making progress.
A more generalized form of parallelism that can include time-slicing as a form of virtual

 166

parallelism” [Oracle10].

concurrent dependency graph - A directed graph representing use-define relations in
an execution of a concurrent program for identifying data dependencies of shared
variables (subsection 5.3.2 Concurrent Dependency Graph, page 89).

concurrency control – A control mechanism for concurrent programs to avoid race
conditions.

concurrent set of access-manners (MANNERS) - A collection of sets of
access-manners from all the threads within a concurrent execution path of a concurrent
program (section 3.9 Access-Manner, page 45).

consistent lock for a shared variable - A lock which is acquired by any threads before
accessing the shared variable (section 3.2 Race Conditions, page 35).

D

define - A write operation of some value to a variable (section 3.13 Use-Define, page
55).

deterministic replay - Executing a concurrent program with exactly the same
interleaving as previous execution (section 2.7 Deterministic Replay, page 24).

deterministic testing - Executing a concurrent program with the interleaving as
specified by a test case (section 2.8 Deterministic Testing, page 25).

E

execution-variant - A different read/write sequence that affects the values of shared
variables (section 4.2 Approach, page 59).

 167

F

false alarm - a false positive or a false negative.

false positive - reporting errors which actually do not exist.

false negative - test results that do not indicate the presence of errors which are actually
present.

G

guideline - A set of use-defines obtained by traversing a concurrent dependency graphs
(subsection 5.3.3 Traversing a Concurrent Dependency Graph). It is used for
constructing test cases.

N

no-race - A concurrent-pair of access-manners is said to be no-race if the two
access-manners can be interleaved without race conditions (section 3.12 No-Race). See
also concurrent-pair of access-manners (section 3.11 Concurrent-Pair of
Access-Manners)

P

parallelism – A principle that large problems can often be divided into smaller ones,
which are then solved simultaneously in parallel [Gottlieb89]. This dissertation
discusses about concurrency instead of parallelism, see the definition about
concurrency.

pointcut – An Aspect-oriented term to specify a location within an execution of a
program where an advice has to be executed (section 6.3 Tracing). See also advice
(section 6.3 Tracing).

 168

R

race condition - A condition when there is a concurrent access to a shared variable
which is not protected by consistent locks (section 3.2 Race Conditions, page 35).

race-equivalent - Two executions of a concurrent program are race-equivalent if they
have the same set of access-manners (MANNERS) (section 3.10 Race-Equivalent, page
48).

race-equivalent group - A group contains concurrent execution paths that are
race-equivalent (section 3.10 Race-Equivalent, page 48). See also race-equivalent
(section 3.10 Race-Equivalent, page 48)

reachability testing method - One of testing methods for concurrent programs that
performs an efficient exploration of different sequences of read/write operations which
affect values of shared variables (section 4.2 Approach, page 59).

reference variable - A variable that refers to an object in Java programming language.
This is similar to a pointer in C programming language (subsection 3.4.1 Reference
Variable, page 38).

reflection – An Aspect-oriented term for getting information about program execution
(section 6.3 Tracing, page 115).

S

shared variable - A variable which is accessed by more than one thread.

sequential consistency - A multiprocessing system had sequential consistency if "the
results of any execution is the same as if the operations of all the processors were
executed in some sequential order, and the operations of each individual processor
appear in this sequence in the order specified by its program." [Lamport79]

 169

U

use - A read operation on a variable (section 3.13 Use-Define, page 55).

use-define - A relation consisting of a usage “use” of a variable and the definition
“define” of the variable (section 3.13 Use-Define, page 55). See also “use” and “define”
(section 3.13 Use-Define, page 55)

V

variant graph - A directed graph for deriving different read/write sequences from an
execution trace (section 4.2 Approach, page 59).

W

well formed - An access to a shared variable is said to be well formed if all threads
acquire consistent locks before accessing the shared variable, and then perform an
unlock operation to release the corresponding locks (section 3.2 Race Conditions, page
35). See also "consistent lock" (section 3.2 Race Conditions, page 35).

 170

10. References

[1] [Abdelqawy12] Abdelqawy D., Kamel A. and Omara F. "A Survey on Testing
Concurrent and Multi-Threaded Applications Tools and Methodologies".
International Conference on Informatics & Applications (ICIA2012), Malaysia,
pp.459-471. 2012.

[2] [Adve91] Adve S. V., Hill M.D., Miller B.P., and Netzer R.H.B. “Detecting Data
Races on Weak Memory Systems,” Proceedings of the 18th Annual International
Symposium on Computer Architecture (ISCA), pp.234–243. May 1991.

[3] [ApacheDerby10] Apache Derby. 2010. Available: http://db.apache.org/derby/
[4] [ApachePool06] Apache Commons Pool, 2006. Available at:

http://jakarta.apache.org/commons/pool/
[5] [Artho01] Artho C. "Finding Faults in Multi-Threaded Programs," Master thesis,

ETH Zurich, Switzerland. March 2001.
[6] [Beckman06] Beckman N. E. “A Survey of Methods for Preventing Race

Conditions,”Litterature survey of Analysis of Software Artifacts. Carnegie
Mellon University. 2006. Available at:
http://www.cs.cmu.edu/~nbeckman/papers/race_detection_survey.pdf

[7] [Ben03] Ben-Asher Y., Farchi E., and Eytani Y. "Heuristics for Finding
Concurrent Bugs," Proceedings of the 17th International Symposium on Parallel
and Distributed Processing, IEEE Computer Society. Washington, DC, USA.
2003.

[8] [Ben06] Ben-Asher Y., Farchi E., Eytani, Y.; Ur S. “Noise Makers Need to Know
Where to be Silent – Producing Schedules That Find Bugs,” Second International
Symposium on Leveraging Applications of Formal Methods, Verification and
Validation (ISoLA). Nov 2006.

[9] [Baur03] Baur M. C. “Instrumenting Java Bytecode to Replay Execution Traces
of Multithreaded Programs,” Formal Methods Group, Computer Systems
Institute, Swiss Federal Institute of Technology (ETH Zurich). 2003.

[10] [Bertolino94] Bertolino A. and Marre M. “Automatic Generation of Path Covers
Based on the Control Flow Analysis of Computer Programs.” IEEE Transactions
on Software Engineering, Vol.20, No.12, pp.885-899. December 1994.

[11] [Bochmann94] Bochmann G. V. and Petrenko A. “Protocol Testing: Review of
Methods and Relevance for Software Testing,” Proceedings of the 1994 ACM
SIGSOFT international symposium on Software testing and analysis, Seattle,
Washington, United States. 1994.

[12] [Boyapati01] Boyapati C. and Rinard M. "A Parameterized Type System for
Race-Free Java Programs." Proceedings of the 16th ACM SIGPLAN conference
on Object oriented programming, systems, languages, and applications
(OOPSLA), Oct. 2001.

[13] [Bron05] Bron A., Farchi E., Magid Y., Nir Y., and Ur S. "Applications of

 171

Synchronization Coverage,” Proceedings of the tenth ACM SIGPLAN
symposium on Principles and practice of parallel programming. Chicago, IL,
USA, pp.206-212. 2005.

[14] [Baralga10] Baralga. 2010. Available: http://baralga.origo.ethz.ch/
[15] [BlueJ09] BlueJ. The interactive Java environment. 2009. Available:

http://www.bluej.org/
[16] [Carver98] Carver R. H. and Tai K. C. “Use of sequencing constraints for

specification-based testing of concurrent programs,” IEEE Transactions on
Software Engineering, Vol.24, Issue 6. 1998.

[17] [Caballero07] Caballero R., Hermanns C., and Kuchen H. “Algorithmic
Debugging of Java Programs”. Electronic Notes in Theoretical Computer
Science 177, pp.75-89. 2007.

[18] [Carver04] Carver R. and Lei Y. "A General Model for Reachability Testing of
Concurrent Programs." International Conference on Formal Engineering
Methods, pp.76-98. Nov 2004.

[19] [Choi91] Choi J. D., Miller B. P., and Netzer R. H. B. “Techniques for
Debugging Parallel Programs with Flowback Analysis,” ACM Transactions on
Programming Languages and Systems, Vol. 13, No. 4, pp. 491–530. October
1991.

[20] [Chung01] Chung I. S. and Kim B. M. "A New Approach to Deterministic
Execution Testing for Concurrent Programs,” IEICE TRANSACTIONS on
Information and Systems, Vol.E84-D, No.12. 2001.

[21] [Jong98] Choi J. D. and Srinivasan H. “Deterministic Replay of Multithreaded
Java Applications,” ACM SIGMETRICS SPDT98, Oregon. August 1998.

[22] [Jong02] Choi J. D. and Zeller A. "Isolating Failure-Inducing Thread Schedules,"
International Symposium on Software Testing and Analysis (ISSTA2002), Via di
Ripetta, Rome – Italy. July 2002.

[23] [Chris01] Christiaens M. and Bosschere K. De. “TRaDe, A Topological
Approach to on-the-fly Race Detection in Java Programs,” Proceedings of the
Java Virtual Machine Research and Technology Symposium (JVM), Apr. 2001.

[24] [Clarke00] Clarke E. M., Grumberg O., and Peled D. A. Model Checking, The
MIT Press. January 2000.

[25] [Cleaveland94] Cleaveland R., Parrow J., and Steffen B. “The Concurrency
Workbench: A Semantics Based Tool for the Verification of Concurrent Systems,”
ACM Transactions on Programming Languages and Systems. 1994.

[26] [Crummey91] Crummey J. M. “On-the-fly Detection of Data Races for Programs
with Nested Fork-Join Parallelism,” Proceedings of Supercomputing. November
1991.

[27] [Dinning90] Dinning A. and Schonberg E. “An Empirical Comparison of
Monitoring Algorithms for Access Anomaly Detection,” Proceedings of the 2nd
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming
(PPoPP), pp.1–10. 1990.

[28] [Edelstein03] Edelstein O., Farchi E., Goldin E., Nir Y., Ratsaby G, and Ur S.
"Framework for Testing Multi-Threaded Java Programs," Concurrency and
Computation: Practice and Experience, John Wiley & Sons. 2003.

[29] [Engler03] Engler D. and Ashcraft K. "RacerX: Effective, Static Detection of

 172

Race Conditions and Deadlocks." Proceedings of the 19th ACM Symposium on
Operating Systems Principles (SOSP), pp.237–252. October 2003.

[30] [Eytani07] Eytani Y. and Latvala T. “Explaining Intermittent Concurrent Bugs by
Minimizing Scheduling Noise,” Lecture Notes in Computer Science. Hardware
and Software, Verification and Testing, Vol.4383. 2007.

[31] [Factor96] Factor M., Farchi E., Lichtenstein Y., and Malka Y. “Testing
Concurrent Programs: A Formal Evaluation of Coverage Criteria,” Seventh
Israeli Conference on Computer-Based Systems and Software Engineering
(ICCSSE '96), Herzliya, ISRAEL. ISBN: 0-8186-7536-5. 1996.

[32] [Flanagan00] Flanagan C. and S. N. Freund. "Type-based Race Detection for
Java." Proceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), pp.219–232. 2000.

[33] [Flanagan05] Flanagan C. and Godefroid P. “Dynamic Partial-Order Reduction
for Model Checking Software“. Proceedings of the 32nd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages.
ACM SIGPLAN. Vol.40, Issue 1, pp.110-121. January 2005.

[34] [Godefroid96] Godefroid P. “Partial-Order Methods for the Verification of
Concurrent Systems - An Approach to the State-Explosion Problem”, Lecture
Notes in Computer Science. Springer-Verlag, Vol.1032. January 1996.

[35] [Godefroid97] Godefroid P. “Model Checking for Programming Languages
using VeriSoft.” Proceedings of the 24th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, Paris, France. 1997.

[36] [Gottlieb89] Gottlieb A. and Almasi G. S. “Highly parallel computing.”
Redwood City, Calif. Benjamin/Cummings. ISBN 0-8053-0177-1. 1989.

[37] [Gradecki03] Gradecki J.D. and Lesiecki N. Mastering AspectJ: Aspect-Oriented
Programming in Java, John Willey & Sons (Asia) Pte Ltd. 2003.

[38] [Gupta00] Gupta N., Mathur A. P., and Soffa M. L. “Generating Test Data for
Branch Coverage,” In Proc. of the International Conference on Automated
Software Engineering. 2000.

[39] [Hwang95] Hwang G.H, Tai K.C, Huang T.L. “Reachability Testing: An
Approach to Testing Concurrent Software.” International Journal of Software
Engineering and Knowledge Engineering. 1995.

[40] [Havelund00] Havelund K. and Pressburger T. "Model checking JAVA programs
using JAVA PathFinder," International Journal on Software Tools for Technology
Transfer, Vol.2, No.4, pp. 366-381. 2000.

[41] [Hazewinkel01] Hazewinkel M. “Stirling Formula." Encyclopedia of
Mathematics. Springer. ISBN 978-1-55608-010-4. 2001.

[42] [Henzinger04] Henzinger T., Jhala R., and Majumder R. "Race Checking by
Context Inference." Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI). June 2004.

[43] [Holzmann91] Holzmann G. J. Design and Validation of Computer Protocols,
Prentice Hall. 1991.

[44] [Hwang95] Hwang G. H., Tai K. C., and Huang T. L. “Reachability Testing: An
Approach to Testing Concurrent Software.” International Journal of Software
Engineering and Knowledge Engineering, Vol.5, No.4, pp.493-510. 1995.

[45] [Huang11] Huang J., Zhou J., and Zhang C. “Scaling Predictive Analysis of

 173

Concurrent Programs by Removing Trace Redundancy,” ACM Transactions on
Software Engineering and Methodology, Vol.22, Issue 1. 2011.

[46] [Jasaitis13] Jasaitis R., Prapuolenis J, and Bareisa E. "Distributed System
Resource Racing Conditions Automated Testing Method," Technology Education
Managenement Informatics (TEM) Journal, Vol.2, No.4, pp.283-290. 2013.

[47] [jNet09] jNetMap. June 2009. Available: http://www.rakudave.ch/?q=jnetmap
[48] [JTelnet03] Kristjansson D. JTelnet. 2003. Available:

http://mrl.nyu.edu/~kristja/jtelnet.html
[49] [Kojima09] Kojima H., Kakuda Y., Takahashi J., and Ohta T. “A Model for

Concurrent States and Its Coverage Criteria,” International Symposium on
Autonomous Decentralized Systems, ISADS '09, pp.23-25. 2009.

[50] [Lu06] Lu S., Tucek J., Qin F., and Zhou Y., "Avio: Detecting
Atomicity Violations via Access Interleaving Invariants," International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS). 2006.

[51] [Lamport78] Lamport L. “Time, Clocks, and the Ordering of Events in a
Distributed System,” Communications of the ACM, Vol.21, No.7, pp.558–565.
July 1978.

[52] [Lamport79] Lamport L. "How to Make a Multiprocessor Computer That
Correctly Executes Multiprocess Programs," IEEE Trans. Comput. C-28,9,
pp.690-691. September 1979.

[53] [Lea99] Lea D. Concurrent programming in Java: Design Principles and Patterns,
Second edition. Addison-Wesley. November 1999.

[54] [Lei04] Lei Y. and Carver R. “A New Algorithm for Reachability Testing of
Concurrent Programs,” Proceedings of the 16th IEEE International Symposium
on Software Reliability Engineering, pp.346 - 355. 2005.

[55] [Lei06] Lei Y. and Carver R.H. "Reachability Testing of Concurrent Programs."
IEEE Transactions on Software Engineering, Vol.32, Issue 6, pp.382 - 403. June
2006.

[56] [Lu07] Lu S., Jiang W., and Zhou Y. "A Study of Interleaving Coverage
Criteria," Proceedings of the 6th joint meeting of the European software
engineering conference and the ACM SIGSOFT symposium on the foundations
of software. 2007.

[57] [Lei07] Lei Y., R.H. Carver, Kacker R., and Kung D. “A Combinatorial Testing
Strategy for Concurrent Programs”. Software Testing, Verification & Reliability.
Vol. 17, Issue 4, pp.207 – 225. December 2007.

[58] [Lee96] Lee E.K., Thekkath C., and Petal A. “Distributed Virtual Disks,”
Proceedings of the Seventh International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS-VII). 1996.

[59] [Dowell89] McDowell C. E. and Helmbold D.P. “Debugging Concurrent
Programs”, ACM Computing Surveys, Vol.21, No.4, pp.593-622. 1989.

[60] [Mutilin06] Mutilin V. “Concurrent Testing of Java Components using Java
PathFinder,” Proceedings of the Second International Symposium on Leveraging
Applications of Formal Methods, Verification and Validation, pp.53-59. 2006.

[61] [Musuvathi07] Musuvathi M., Qadeer S., and Ball T. "CHESS: A Systematic
Testing Tool for Concurrent Software," Microsoft Research Technical Report.

 174

MSR-TR-2007-149. 2007.
[62] [JoBo06] Matuschek D. JoBo: Web Spider. Dec 2006. Available at:

http://www.matuschek.net/jobo-menu/
[63] [Naik06] Naik M., Aiken A., and Whaley J. "Effective static race

detection for Java," Proceeding PLDI '06 Proceedings of the 2006 ACM
SIGPLAN conference on Programming language design and implementation,
Vol.41, Issue 6, ISBN:1-59593-320-4. June 2006.

[64] [Park11] Park C., Sen K., Hargrove P., and Iancu C. “Efficient Data Race
Detection for Distributed Memory Parallel Programs,” SC11, November 12-18,
2011, Seattle, Washington, USA Copyright 2011 ACM 978-1-4503-0771-0/11/11

[65] [Pugh07] Pugh W. and Ayewah N. "Unit Testing Concurrent Software,"
Proceedings of the twenty-second IEEE/ACM international conference on
Automated Software Engineering, Atlanta, pp.513-516. November 2007.

[66] [Netzer91] Netzer R. H.B. and Miller B. P. “Improving the Accuracy of Data
Race Detection,” Proceedings of the 1991 Conference on the Principles and
Practice of Parallel Programming. 1991.

[67] [Nishiyama04] Nishiyama H. “Detecting Data Races using Dynamic Escape
Analysis based on Read Barrier,” Proceedings of the 3rd Virtual Machine
Research and Technology Symposium (VM). May 2004.

[68] [Oaks04] Oaks S. and Wong H. Java Threads, Third Edition, O'Reilly. 2004.
[69] [Oracle10] Oracle Corporation. Multithreaded Programming Guide. Oracle Help

Center. 2010.
https://docs.oracle.com/cd/E19455-01/806-5257/6je9h032b/index.html

[70] [PLDI06] PLDI Experimental Results. 2006. Available:
http://www.cc.gatech.edu/~mnaik7/research/pldi06_results.html

[71] [Plexousakis05] Plexousakis D. ”Concurrency Control”. Univ. of Crete. CS460
Fall 2005.

[72] [Prather87] Prather R.E. and Myers J.P. Jr, “The Path Prefix Software Testing
Strategy.” IEEE Transactions on Software Engineering. Vol.SE-13, Issue 7. July
1987.

[73] [Praun01] Praun C. and Gross T. “Object Race Detection,” Proceedings of the
16th ACM SIGPLAN conference on Object oriented programming, systems,
languages, and applications (OOPSLA), pp. 70–82. 2001.

[74] [Ramalingam02] Ramalingam G. “Context-Sensitive Synchronization-Sensitive
Analysis is Undecidable”. ACM Transactions on Programming Languages and
Systems, Vol.22, No.2, pp 416–430. 2000.

[75] [Rahul08] Rahul V.P. and Boby G. “Tools and Techniques to Identify
Concurrency Issues.” MSDN Magazine. Microsoft. 2008. Available at:
http://msdn.microsoft.com/en-us/magazine/cc546569.aspx

[76] [Savage97] Savage S., Burrows M., Nelson G., Sobalvarro P., and
Anderson T. “Eraser: A Dynamic Data Race Detector for Multithreaded
Programs,” ACM Transactions on Computer Systems. 1997.

[77] [Sen06] Sen K. and Agha G. "Concolic Testing of Multithreaded Programs and
Its Application to Testing Security Protocols," UIUC Technical Report.
Department of Computer Science, January 2006.

[78] [Sen06_b] Sen K. and Agha G. "CUTE and jCUTE: Concolic Unit Testing and

 175

Explicit Path Model-Checking Tools," In CAV. Springer, pp.419-423. 2006.
[79] [Setiadi04] Setiadi T. E., Nakayama K., Kobayashi Y., and Maekawa M.

"Identifying Candidate Invariant Conditions of Running Program". The 8th
IASTED International Conference on Software Engineering and Applications.
MIT, Cambridge, MA, USA. 2004.

[80] [Setiadi04_2] Setiadi T. E., Nakayama K., Kobayashi Y., and Maekawa M.
"Analyzing Invariant Condition of Running Java Program". The 16th
International Conference of Software Engineering and Knowledge Engineering
(SEKE'04). Alberta, Canada. 2004.

[81] [Setiadi05] Setiadi T. E., Nakayama K., Kobayashi Y., and Maekawa M.
"Interactive Environment for Smart Summarization of Execution Trace".
International Symposium on Communications and Information Technology
(ISCIT), IEEE International. Beijing, China. 2005.

[82] [Setiadi10] Setiadi T. E., Nakayama K., Ohsuga A., and Maekawa M. “Efficient
Replay for Reproducing Concurrent Program Errors,” International Journal of
Computational Science Vol 4, No. 2. pp. 129-155. April 2010.
http://www.gip.hk/ijcs/Internet%20V4N2/Abstract/v4n2%20ab2.pdf

[83] [Setiadi13] Setiadi T. E., Ohsuga A., and Maekawa M. “Efficient Execution Path
Exploration for Detecting Races in Concurrent Programs,” IAENG International
Journal of Computer Science, Vol.40, Issue 3, pp.143–163, September 2013.
http://www.iaeng.org/IJCS/issues_v40/issue_3/IJCS_40_3_02.pdf

[84] [Setiadi14] Setiadi T. E., Ohsuga A., and Maekawa M. “Efficient Test Case
Generation for Detecting Race Conditions,” IAENG International Journal of
Computer Science, Vol.41, Issue 2, pp.112-130. May 2014.
http://www.iaeng.org/IJCS/issues_v41/issue_2/IJCS_41_2_04.pdf

[85] [Sterling93] Sterling N. "Warlock: a static data race analysis tool." Proceedings
of USENIX Winter Technical Conference, January 1993.

[86] [Stoller02] Stoller S. D. "Testing Concurrent Java Programs using Randomized
Scheduling," Proceedings of the Second Workshop on Runtime Verification (RV),
Vol.70, No.4, Electronic Notes in Theoretical Computer Science. © Elsevier,
2002.

[87] [Sebek02] Sebek F. "Instruction Cache Memory Issues in Real-Time Systems,"
Technology Licentiate Thesis. Computer Architecture Lab. Department of
Computer Science and Engineering. Malardalen University. Vasteras, Sweden,
ISBN 97-88834-38-7. October 2002.

[88] [Takahashi08] Takahashi J., Kojima H., and Furukawa Z. “Coverage Based
Testing for Concurrent Software,” The 28th IEEE International Conference on
Distributed Computing Systems Workshops, pp.533-538. 2008.

[89] [Taylor92] Taylor R. N., Levine D. L., and Kelly C. D. “Structural Testing of
Concurrent Programs,” IEEE Trans. Soft. Eng, Vol.18, No.3, pp.206-215. 1992.

[90] [Total10] TotalView Technologies. Getting Started with Replay Engine. 2010.
Available: http://www.totalviewtech.com/support/documentation/
pdf/ReplayEngine1-7_GettingStarted.pdf

[91] [Visser04] Visser W., Pasareanu C., and Khurshid S. "Test Input Generation with
Java PathFinder ," Proceedings of ISSTA, Boston, MA. July 2004.

[92] [Weblech02] Weblech-0.0.3. WebLech: web site download/mirror tool. 2002.

 176

http://weblech.sourceforge.net/
[93] [Wbhv07] Web-Harvest. http://web-harvest.sourceforge.net/ 2007.
[94] [Yahoo] Yahoo. Available at: http://www.yahoo.com
[95] [Yang98] Yang C., Souter A. L., and Pollock L. L., “All-du-path coverage for

parallel programs.” International Symposium on Software Testing and Analysis,
pp.153-162, 1998.

[96] [Yuan05] Yu Y., Rodeheffer T., and Chen W. "RaceTrack: Efficient Detection of
Data Race Conditions via Adaptive Tracking, " ACM Symposium on Operating
Systems Principles (SOSP). 2005.

[97] [Yang98] Yang C., Souter A.L., and Pollock L.L., "All-Du-Path Coverage for
Parallel Programs," International Symposium on Software Testing and Analysis,
pp.153-162. 1998.

[98] [Yang03] Yang C.D. and Pollock L.L. “All-Uses Testing of Shared Memory
Parallel Programs,” Software Testing, Verification, and Reliability (SVTR)
Journal, Vol.13, No.1, pp.3-24. 2003.

[99] [Yang97] Yang C.S. and Pollock L. "An Algorithm for All-Du-Path Testing
Coverage of Shared Memory Parallel Programs," Asian Test Symposium,
pp.263-268. 1997.

[100] [Yu08] Yu L. “Prototyping, Domain Specific Language, and Testing,”
Engineering Letters, International Association of Engineers (IAENG), Vol.16,
Issue 1. 19 February 2008.

 177

11. Appendices

Appendix A
Example of the calculation for the number of possible interleavings.

Let:

m: number of threads, ≥ 2
n: number of interleaving dependent read/write operations, ≥ 0

 n = 0% means there will be no concurrent errors.
 : number of interleaving dependent read/write operations in thread T1
 interleaving dependent read/write operations: read/write operations to shared
variables in which the value of the shared variables can be affected by the interlavings
of the read/write operations.

Number of possible interleavings = !

()!∙()!∙()!⋯()! = n! ∙ ∏ ()!

Examples:
n = 3, = 2, = 1
The number of possible interleavings is calculated using equation (7-1). 3!2! ∙ 1! = 3

Figure 98. Example of possible interleavings for 2 threads and 3 operations

n = 4, = 2, = 2

T1 T2 T1 T2 T1 T2

1 2 3

 178

!
! ! = 6

Figure 99. Example of possible interleavings for 2 threads and 3 operations

Appendix B

Approximation of equation (7-3) using Stirling's approximation (7-4) [Hazewinkel01]
for calculating the computational complexity.

!
! ≅

√
ｎ

ｍ∙
ｎ

ｍ

 =
√

∙

=
√

√
 = √

√

=
√ () = √ () . ∙

=
. ∙

√ () (7-5)

Appendix C

Proof: Given an execution trace with the same input as when the concurrent errors

T1 T2 T1 T2 T1 T2 T1 T2 T1 T2T1 T2

1 2 3 4 5 6

 179

occurred, the reachability testing will generate different interleavings which contain the
concurrent errors.

Reachability testing method generates different interleavings by:

 Ignoring the order of interleaving independent operations. (characteristic 1)
 Considering only the order interleaving dependent operations. (characteristic 2)

From the characteristic 2, the reachability testing method will generate all different
interleavings that are affecting the values of shared variables. This overcomes the
difficulties in detecting/reproducing the concurrent errors:
A) Interleavings cause different execution paths. -> characteristic 2 affects

the values of shared variables, then affecting conditional statements, then affecting
the branches causing different execution paths.

B) Interleavings cause variables to refer to different data. -> will be directly explored
by characteristic 2.

Figure 100. Type of interleavings in a concurrent program

Interleavings
affecting
shared
variable
values

Interleavings affecting
branches

Interleavings
affecting pointers,
reference variables,
file references, lock
variables, indices of
arrays

A BExplored by
the
reachability
testing

Interleavings
affecting race
conditions

 180

About the Author

Theodorus Eric Setiadi. He received his Engineering Degree in Electrical Engineering
and a Masters Degree in Computer System Engineering from the Institute of
Technology, Bandung, Indonesia, in 2000 and 2002, respectively. He pursued his PhD
degree at the Graduate School of Information Systems, University of
Electro-Communications, Tokyo, Japan with the support from the Jinnai International
Student Scholarship. His research interests are debugging systems and execution trace
analysis. He has working experiences in developing and verifying software. He is now
working as a technical consultant related to finance.

