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概 要

自然界では、粉体・流体における固液混相流現象は砂漣のような無害の現象から

雪崩、地滑り、地震による液状化などの自然災害に及ぶ。このような現象の解明が重

要であるにも関わらず、任意の形状を持った粒子や流体領域を考慮に入れるシミュ

レーションはほとんどない。従って、流体内における粒子の運動を解析するには離

散要素法を固液混相流シミュレーションに導入するのは困難である。このような固

液二相流の問題を解析するために、巨視的な及びメゾスコピックな物理量が得られ

るシミュレーション方法が必要とされる。本研究では、流体シミュレーションの有

限要素法を粉体シミュレーションの離散要素法と組み合わせることによって、非圧

縮性ニュートン流体中における粉体の微視的シミュレーションを開発した。「微視的

シミュレーション」とは本研究で開発されたモデルは流体が「粒子を通って流れる」

ではなくて「粒子の周りを沿って流れる」ものを意味する。

粉体シミュレーションでは、離散要素法（DEM）では接触している多角形粒子

が変形しないと仮定し、その弾性接触力は重なり面積に比例しているとされている。

粉体の運動方程式の解をGearの予測子・修正子法（二次後退差分法BDF2）を用い

て求める。一方、流体シミュレーションでは、流体の運動を示す非圧縮ナビエース

トークス方程式をガラーキン有限要素法（FEM）で微分代数方程式（DAE）に定式化

する。その時間方向には粉体相と同じく二次後退差分法を用いて離散化する。 得ら

れた非線形連立 1次代数方程式をNewton–Raphson法で解く。 また、空間方向の離

散化では、Delaunay三角形分割かつ緩和計算で後処理した三角要素をTaylor–Hood

要素として使用する。適切な境界条件および粉体の境界を沿って流体の応力テンソ

ルを積分して得らた抗力を利用し、粉体のDEMと流体のFEMを結合する。シミュ

レーションの の検証としては、流体中に落下する粒子の壁からの補正係数を計算

する。

流体のシミュレーションを自由表面のシミュレーションに拡張する。有限要素法

から得られた流体境界上の流速をAdams–Bashforth解法で積分し、流体境界を移動

させることによって、自由表面の運動を求める。従来型のシミュレーション方法に

比較するとこの方法は必要なデータ構造などの付加的な取り組みを最小限にするこ

とができる。検証として、水柱の崩壊のシミュレーションを行い、理論および実験

データと比較する。



DEM-FEMシミュレーションを用いて二つの数値的実験を行った：1) 圧密に関

するシミュレーションから、粒状集合に流体を加えることにより、その系の音速を

流体に含まれていない系より増加させることが示された。また、流体を加えること

によって、圧密が減速させることが確認できた。2) 粒子の柱のシミュレーションに

より、水中において粒子の回転に関する重要さが失われることが示された。



Two-phase dynamics of granular particles in a
Newtonian fluid

Shi Han Ng

ABSTRACT

Many scientific and technical problems which concern the dynamics of complex

fluids such as multi-phase-flow and realistic flow in porous and granular media deal

with the interaction between fluids and particles, rather than with the dynamics of

the fluid alone. The research of how the surrounding fluid affects the dynamics of

particles, or how to deal with the problem computationally for the microscopic level

is still at the beginning. The aim of this study is to develop a microscopic simulation

method (fluid goes around the particles) where granular particles can be simulated

inside fluids to study those problems. This is done by combining the simulation

method for granular particles with the simulation method for the incompressible

Newtonian fluid.

The granular particles are implemented via the discrete element method (DEM)

where the elastic contact force between two undeformed contacting polygonal

particles is proportional to the overlap area (“hard particle, soft contact”). The

Gear Predictor–Corrector of 2nd-order (BDF2) is used as the time integrator to solve

the equations of motion of the particles. For the fluid phase, the implementation of

the incompressible Navier–Stokes equations via the Galerkin finite element method

(FEM) is formulated as differential algebraic equations (DAE) with the pressures

as the Lagrange parameters. The time integration is again via the BDF2 while the

resulting non-linear equations are solved via the Newton–Raphson methods. The

spatial discretization is via the Taylor–Hood elements from Delaunay triangulations

with additional post-processing with the relaxation algorithm. The coupling of

the DEM for the granular particles and the FEM for the fluid is via appropriate

boundary conditions and the drag force (computed by the integration of the fluid

stress tensor over the particle’s surface). This is being verified via the computation

of wall correction factors of a sinking particle.

The fluid simulation is extended to a simulation of free surfaces where the motion

of the surface is integrated out according to the velocity on the surface which

is obtained from the FEM-scheme. The second-order Adams–Bashforth method

turns out to be the most suitable integrator for the surface motion. Compared to



conventional efforts, which try to solve partial differential equations for the motion of

the surface, the additional effort in our method with respect to new data structures

etc. is minimal. The free surfaces code is verified by simulating the collapse of a

water column. For the speed of the wavefronts, excellent agreement is obtained for

large viscosity with the lubrication approximation. The agreement of the results

with the experimental data for water is a further gratifying result.

Two numerical experiments are conducted using the DEM-FEM code: one with

a rather slow dynamics, another one relatively more “violent”. The compaction

simulation has shown that the addition of fluid to a granular assembly can increase

the sound velocity in the system, compared to the dry case. The high viscosity

slowed down the compaction, irrespective whether the system was tapped only on

the ground or on the whole boundary. The granular column simulations show that

for systems immersed under fluids, rolling of particles becomes less important than

for the corresponding dry systems.
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Chapter 1

Introduction

Many scientific and technical problems which concern the dynamics of complex

fluids such as multi-phase-flow and realistic flow in porous and granular media deal

with the interaction between fluids and particles, rather than with the dynamics of

the fluid alone. The research of how the surrounding fluid affects the dynamics of

particles, or how to deal with the problem computationally for the microscopic level

is still at the beginning. The aim of this study is to develop a simulation method

where granular particles can be simulated inside fluids to study those problems.

This is done by combining the simulation method for granular particles with the

simulation method for the incompressible Newtonian fluid. The implementation

of the algorithms which we will discuss is in two dimensions and developed using

MATLAB [3].

1.1 Intended Characteristics of the Simulation

The intended region of validity for our approach is given in Fig. 1.1. The results

in this thesis are computed for particles which are large than the size for which

cohesion has to be taken into account. However, cohesion between particles could

be implemented easily through modifications in the force laws between the particles.

The flow is treated as isothermal flow as temperature effects in granular materials

are usually absent or not measurable.

To reduce the amount of CPU-time the particles should be described by the

minimal number of variables, so to obtain smooth shapes, we use a single polygon

instead of a cluster of many circles. Further, the polygons allow a pore space around

the particles which “fit” the particles when we use triangular meshes in order to

1
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Fig. 1.1 Intended region of validity for our simulation of granular particles inside
Newtonian fluid. The method should be applicable for technical problems as well
as well as for systems in the geosciences.

minimize the noise in the solutions. As long as the simulation is stable, the largest

possible mesh size should be allowed. An implicit time integrator is implemented in

order to archive largest possible step-size.

As problems which deal with granular materials need the comparison with

different simulation runs, running the simulation of each configurations on different

personal computers (PCs) can be considered as a feasible “parallelization.” There-

fore, the simulation should work on PCs and if possible make best use of multicore

processors. Supercomputers as possible computing platforms are avoided because

work overhead in the application procedures and and porting of the code (not to

mention the risk of having the proposal rejected).

As many mechanisms of the dynamics of granular materials in fluid are still

not clear, it is problematic to study the system in three dimensions as long as

the understanding in two dimensions is still not established. Therefore, we limit

ourselves to two dimensional in this study, where the granular particles can be

imagined as rods or “Schneebeli materials.”
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1.2 Microscopic and Macroscopic Simulation

Fig. 1.2 Microscopic (left) modeling where the flow goes around the particles and
macroscopic (right) modeling where the flow goes through the particles.

When simulating a particle-fluid system, from the modeling point of view,

the methods can be categorized into microscopic or macroscopic simulations. In

microscopic simulations as in our approach, the particles form exact boundaries of

the surrounding fluid. In macroscopic simulations, the particles are not boundaries

of the fluid, but overlay the fluid domain and experience forces from the underlying

flow, which in some formulations is coupled back to the simulations as volume forces

[4]. Such interactions are derived based on e.g. drag, but the problem is that there

is no exact mathematical formulation of the drag of many particle configurations

possible. One feature of “macroscopic” simulations is that the fluid will at least

partially go “through” the solid particles. While for highly turbulent airflows

and conditions where modeling is more important than exactness anyway, i.e. for

milling of light small particles, the approach may have some justification. The

higher the fluid density and the smaller the flow velocity is, the more dubious

the approach becomes: Representing “exclusive volumes”, with the possibility

to simulate blocking, is the most decisive interaction for slow flows, relevant for

simulations from technical processes to disaster research. Because no simulation

seems to exist which is satisfying both from the particle simulation point and the

fluid mechanics point, we decided to design a microscopic simulation which is as

realistic as possible for both flow and granular phase.
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1.3 Simulation of the Particle Part

Depending on the application and the parameters, the granular particles which are

treated in this study are sand grains, of the size of millimeters in diameter, up

to fractured rocks, in the range of meters. The interaction between the particle

surfaces in the normal direction of the contacts is due to elastic deformation, while

in tangential direction, Coulomb friction plays a significant role. The deformations

of the particles during contact are negligible relative to the displacements of the

centers of mass. There is no universal governing equation for granular materials

similar to the Navier–Stokes equations for the fluid. Modeling of granular materials

based on continuum approaches usually includes a lot of phenomenological modeling

and material constants with not clear physical meaning. For realistic simulations of

granular materials we prefer the explicit modeling of the particle arrangement, i.e.

solving the equations of motion of each individual particles directly.

Our simulation of the granular particles phase is carried out via the discrete

element method (DEM) where the elastic contact force between two undeformed

contacting particles is proportional to the overlapping area. The solid particles are

treated as convex polygons instead of the conventionally used round particles, as

the particle shapes play a very decisive role in constructing the aggregates. The

whole granular dynamics is governed the competition between rolling and sliding,

which crucially depends on the particle shape. With elastic contact force, dissipative

force and tangential friction taken into consideration, the motion of each particles

is obtained by solving the equations of motion using the integrator for ordinary

differential equations, i.e. backward-difference formula of second order (BDF2).

1.4 Simulation of the Fluid Part

In principle, for a simulation of the fluid, one has the choice of either dealing with

compressible or incompressible flow. For the case of fluid between granular particles,

incompressible flow is the physically more valid situation: Compared to continuum

materials, for granular materials from the same material, the sound velocity is

reduced considerably: The sound velocities of an uncompressed granular packing

is less than 10% for two-dimensional granular assemblies (rods) compared to the

space-filling packing (homogeneous material) in simulations, and less than 1% for

three-dimensional assemblies (plastic-beads) in experiments [5], as the transfer of

momentum can take place via the relatively narrow particle interstices. As the

sound velocity of the granular assembly will be much smaller than that of the fluid
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we will treat the flow as incompressible. We have two possibilities of solving the

equations of motion for the incompressible flow. For dealing with the incompressible

flow, there is the alternative between Lagrangian methods (particle based, as for the

granular particles), or Eulerian (mesh-based). We will shortly consider the possible

choices.

1.4.1 Particle Methods for Fluid

The advantage of particle-methods is that they are already formulated in the

“language” of the DEM-simulation, with forces, centers etc. instead of stresses,

representative volumes etc. This makes the interaction with particles in principle

“easy to implement”. In the meshless approach, the fluid volume is represented by

a discrete number of particles. The solution of the flow problem i.e. velocities and

pressures etc., obtained from the collective behavior of the particles which represent

fluid volumes or parts of fluid volumes.

Combing Smoothed Particle Hydrodynamics with Discrete Element

Method

Smoothed particle hydrodynamics (SPH) has originally been developed for astro-

physics applications [6] for the exchange of mass between celestial bodies. Methods

of coupling the SPH via implementation of the locally averaged Navier–Stokes

equations with the DEM for the granular particles to simulate the fluid–particle

systems has been presented in [7]. The method is completely particle-based for

both particle- and fluid phase which avoids the usage of mesh. For the approach

which simulates fluid with particle methods, the fluid boundary evolves on its own.

Because the accuracy of the computation is proportional to the particle density, when

rim frays due to scattering of SPH-particles on the border of granular particles, it is

difficult to reduce the noise in the computation, except by massive use of particle,

i.e. via CPU- and memory usage. A further drawback is that even stationary states

have to be resolved with moving particles which might lead to “shot-noise” due to

the motion of the discrete fluid particles. Another problem with obtaining stationary

states is that it is unclear how long a particle simulation is supposed to run until

the stationary state is reached: For mesh-based methods, obtaining the stationary

flow is comparatively cheap. While SPH is inherently a “compressible” simulation

(shocks can be resolved, which is relevant for astrophysical impact problems), the

newer MPS (Moving Particle Semi-implicit [8]) an incompressible variant, which has
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been used also in the coupling between “fluid” and “solid” particles. The problems

are the same as for the SPH-approach, while straight surfaces of granular particles

must be modeled by many “spherical” MPS-particles, which increases again CPU-

and memory requirements.

Lattice Boltzmann Methods

While current lattice Boltzmann methods (LBM) [9] use amplitudes on a grid, the

methods originated from cellular automata (lattice gas automata (LG) [10]) whose

averaged properties obey the desired NavierStokes equation. Due to the original

particle character, LBM is treated in this section. Lattice Boltzmann methods are

constructed from simplified kinetic models that incorporate the essential physics of

microscopic models with mesoscopic kinetic equations on continuous amplitudes so

that for the macroscopic averaged properties the desired NavierStokes equations are

recovered. LBM is very easy to use for modeling complicated boundary conditions

and multiphase interfaces. To compute the fluid–solid problem, a solid particle is

mapped onto the lattice to define boundary nodes [9]. A special rule at the boundary

nodes is implemented to exchanges momentum between the fluid and solid particles

at each update of the lattice. Fluid velocities at the nodes are matched to the particle

velocities. Hydrodynamic forces and moments acting on solid particles are calculated

from LBM and used to update the particle motion using Newton’s second law.

One drawback of the lattice Boltzmann methods is the lack of Galilean invariance,

after all, momentum conservation and the underlying Galilean invariance are the

basic characteristics underlying the Navier–Stokes equation. Another problem is

that lattice Boltzmann simulations tend to show very non-linear flow fields under

conditions where it is difficult to verify whether the fingering etc. is due to the fluid

mechanical problem or an artifact of the methods.

1.4.2 Grid Methods

The classical approach for simulating fluids is by spatial discretization of the flow

equations onto grids: While the continuum equations have infinitely degrees of

freedom, the purpose of the discretization is to yield a finite amount of equations

and data.
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0 a/2 a

v(0) v(a) = −v(0)

v(a/2) = 0

Fig. 1.3 Resolving the boundary v(a/2) of a solid (in gray) by the specification of
interpolated mirror condition v(a) inside the solid.

r

r
2

Fig. 1.4 Discretization or a circle via square grid: only the approximation of the
area is improved with finer grid but not the circumference (8r on the left, 16× r

2
= 8r

on the right).

Finite Difference Method

In finite difference (FD) methods, the original differential operators are approxi-

mated with difference formulae, in general in Cartesian coordinates. For pure fluid

simulations and simple boundaries (parallel to the Cartesian axes), the use of fifth

or higher order formulae is feasible and possible. For complicated boundaries, there

are serious problems with higher order methods. Boundaries of solids must be

resolved by the specification of interpolated mirror conditions inside the solid: If the

boundary is at a/2 (see Fig. 1.3), in the middle of two grid points at 0 and a, where

a is inside the solid, if v(0) is computed, then v(a) must be set as v(a) = −v(0):

P1

P2
P1

P3

Fig. 1.5 Particle pairs P1–P2 and P3–P4 of the same size, relative position and
orientation on finite difference square grid. Flow is possible for P1–P2 but not for
P3–P4.
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This interpolates to v(a/2) = 0, no-flow conditions on the boundaries. For the

boundaries at other spacing than at a/2, interpolations must be used. Nevertheless,

such crude interpolations work only with low order methods, so that the commonly

used approach is that of marker-and-cell (MAC) [4, 11, 2], in what is commonly

called “second order”, but in fact is not [12]). If the boundaries are oblique to

the coordinate axes (see Fig. 1.4), this means that curves of first or higher order

must be approximated by grid points on rectangular grids: This is algebraically not

possible, as points outside the Cartesian mesh points don’t enter the equations, so

in principle any interpolation is arbitrary. We will return to this problem when we

compare our approach with a FD approach in Chapter 5. Another problem related

to the fact that FD-solutions are only defined on the grid points (“stencils”), not in

between is the modeling of the connectivity of a pore space for particles a shorter

distance (see Fig. 1.5): The flow will not depend on the inter-particle distance, but

on the fact whether the line between two stencils is covered by one of the neighboring

particles. The interpolation of the boundaries and the covering-uncovering of flow

paths can be expected to lead to considerable noise in the simulation. Another issue

is the pressure: While for FD-methods with compressible flow, the pressure fronts

move along their own equations of (“sound”) motion, for incompressible flow the

pressure should actually just “react” to the flow field: Nevertheless, the common

approach is a relaxation of the pressure (as in MAC) to “physically plausible” values

which are nevertheless not physical, as the relaxation equations are not motivated

by physical necessity but by numerical convenience. To summarize: The need to

model the particle surfaces via interpolated boundary conditions allows only the

use of low order solvers, which produce noisy solutions, the use of grids leads to

pore spaces which increase the noise further, and the relaxation procedures used in

this context are not exact either. All this leads to noisy solutions which must be

obtained with small grids and small time-steps, which is numerically not feasible.

The resulting simulations might work for only some specific problems and some

unphysical artifact can be observed. In [13] where the microscopic approach is via

direct numerical simulation, the particles showed a suspicious lack of settling. The

three dimensional simulation with ellipsoidal particles in [4] (which is based on [2]

but macroscopic instead of microscopic) had “springs” fixed between particles and

fluid. These springs were sometimes unintentionally fixed on the boundary due to

rounding errors in the position assignment of particles and boundaries, which then

lead to particles sticking on the boundaries. Both Ristow [2] and Schwarzer [4]

reportedly withdrew from academic research after completion of their code. The

student who inherited the code from [4] dropped PhD as the program crashed
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continuously after 10 hours of CPU-time. So completing a working simulation code

for fluids and particles one can have confidence in by no means a trivial affair.

Finite Volume Codes

Finite volume codes have been used to model particles in fluids [14]. A drawback

with finite volume methods is that they need grids with well-defined connectivities,

while the connectivity of the pore space for granular particles in fluids can be

expected to change in every time-step, which is one reason that we have avoided

this discretization approach. Another reason is that finite element theory allows to

classify finite volume methods as a kind of finite element methods where the some

subset of equations remains unsolved, but the solutions are set.

Eulerian Continuum Approach

The Eulerian continuum approach uses continuum theory that views solid and

fluid as inter-penetrating mixtures [15]. This approach derives the disperse-phase

momentum equation by averaging the particle equation of motion. Interactions

between the solid and the fluid cannot be understood from these mixture theories

alone. Effects from particle collision also have been neglected in the study.

1.4.3 Finite Element Methods

As we want to simulate polygonal particles, the resulting pore space can be

discretized exactly only via the use of triangular grids: Every other spatial dis-

cretization is inappropriate, noise resulting from approximating oblique boundaries

with rectangular grids leads to noise which has unpredictable effects on the stability

and physicality of the simulation. We choose to simulate the fluid phase using

the finite element method (FEM) (a Galerkin method with piecewise polynomials)

as it allows the usage of triangular meshes. Another kind of Galerkin methods

are spectral methods. As the underlying functions are periodic, spectral methods

have ideal momentum-conservation properties, as they are formulated in Fourier-

space. However, for systems with many particles, the resolution of the boundaries

will be a serious problem, as it would be necessary to use the Fourier-transform

forward and backward to calculate the interaction between particles and flow.

Our implementation of the Navier–Stokes equations for incompressible flow via

the Galerkin finite element method (FEM) is formulated as differential algebraic
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equations (DAE) with the pressures as the Lagrange parameters. The time

integration is again via the backward-difference formula of second order (BDF2)

while the resulting non-linear equations are solved by Newton–Raphson methods.

The grid is obtained for Taylor–Hood elements from Delaunay triangulations with

additional post-processing steps. Form drags and friction drags from the fluid acting

on the particles are computed from the velocities and pressures obtained via the finite

element method. Boundary conditions for the flow around the particle boundaries

are determined by the velocities of the solid particles.

Not all finite element approaches are feasible in combination with particle

simulations. Simulation of the particle–fluid system via stabilized space-time finite

element method have been reported in [16]. In that method both temporal

coordinate and the spatial coordinates are discretized using the finite element

method. The deformation of the spatial domain with time is reflected in the

deformation of the mesh. Linear interpolation functions were used for both fluid

velocities and pressures in the study. The problem with this approach is that the

behavior of finite element methods in the time domain is hardly understood: It is

not among the standard methods [17] for which decades of experience with various

problems exist. This makes the approach a bit risky, as there is a possibility of bad

surprises.

1.5 Performance Issues

Though our approach is computationally costly, the amount of available CPU-

power from PC’s and servers is still increasing exponentially. It seems that

substantial sustained computing power has become available in the hands of

researchers who are far away from supercomputing centers with their cumbersome

application procedures. Our intention is, rather than focusing on massive-parallel

implementations with time-consuming parallelizations, to develop a methodology

where we can reduce the degrees of freedom without lowering the accuracy of the

geometrical description, and to use time-integration methods for which the time-

step is only limited by the time-scale of the physical phenomena, rather than by the

lamentable stability requirements of easy-to-implement algorithms. Once we have a

satisfying algorithm, we can focus on the performance optimization.
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1.6 Overview of the Thesis

This thesis discusses the necessary formulations and algorithms for both the granular

particle phase (Chapter 2) and the fluid phase (Chapter 3). Then we demonstrate

the capability of our FEM-code through introducing a novel technique for simulating

free surfaces and its verification in Chapter 4. The coupling of the discrete element

method for the granular particles and the finite element method for the fluid is

discussed in Chapter 5: The verification of the DEM-FEM approach is via the

computation of wall correction factors of a sinking particle. Chapter 6 discusses two

numerical applications which were conducted with the DEM-FEM code: compaction

due to tapping in two-dimensional granular columns and collapse of granular column

in fluid. Finally, the limitations and possible improvements of the simulation is

addressed in Chapter 7, and the summary of the development of the DEM-FEM

code is given in Chapter 8.



Chapter 2

Simulation of the Granular Part

2.1 The Principle of Discrete Element Method

The discrete element simulation provides a way to study and analyze the microme-

chanics of granular material in a way that cannot be achieved with the continuum

approaches. The method treats granular materials as assemblies of particles and the

motion and interaction between individual particles are computed throughout the

simulation. Forces which are taken into consideration when computing the motion

of particles include

• the elastic contact force in normal direction,

• the dissipative force in normal direction,

• friction in tangential direction.

Before we go into the detailed discussion of the magnitude of the forces mentioned

above, we need to define the direction and the contact point of the forces. The

definitions for both the magnitudes, the directions of the forces and the force point

need to be “robust” because the time integrator (see Section 2.3) assumes continuity

in the forces. By robust we mean that continuous relative position changes between

contacting particles will lead to continuous changes in the force (both magnitude and

direction) and the force point. The simulation will be unstable if a small change

in position can cause a discontinuous change in the force (be it in magnitude or

direction). Because the flow simulation in this thesis is is limited to the two-

dimensional case, we also limit our discussion of the discrete element method to

the two-dimensional case.

12
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In the simplest case of the contact of a pair of circular particles the straight line

C1C2 connecting two centers of mass (C1 and C2 in Fig. 2.1) is used as the normal

direction n̂ and the tangential direction t̂ can be obtained by taking the direction

orthogonal to the normal direction. The force point P is defined at the intersection

between C1C2 and the line S1S2 connecting the two intersection points S1 and S2.

This location can be obtained easily as the distance from C1,

C1P =
R2

1 −R2
2 + C1C2

2

2C1C2

(2.1)

using the radii of the particles R1 and R2 without the need of computing the actual

intersection points S1 and S2. In order to obtain consistent directions throughout the

simulation, the tangential direction is defined with respect to the counterclockwise

orientation of the first particle of the contacting pair, i.e. direction of t̂ is
#      –

S2S1 (not
#      –

S1S2). Fig. 2.1 is determined by the counterclockwise orientation of particle at C1.

The orientation of the normal direction can then be defined as n̂ =
[
−t̂y t̂x

]⊺
, i.e.

counterclockwise rotation of t̂ by 90 degrees. Definitions of force directions and force

point for non-round particles will be introduced in Section 2.2.4. For the sake of

clarity, we will use⊥ and ∥ in the following equations to indicate the normal direction

(for elastic force and damping) and tangential direction (for friction) respectively.

For circular particles, the normal forces act along the line defined by the centers of

mass, they are central forces, while for elongated particles, this is usually not the

case.

PC1
C2

n̂

t̂

S1

S2

R1 R2

Fig. 2.1 The normal n̂ and tangential t̂ directions of two contacting round particles
at C1 and C2 with radii R1 and R2 respectively. The force point P is located at the
intersection between C1C2 and S1S2.
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2.1.1 Elastic Force in Normal Direction

Elasticity theory yields the following behavior for the elastic contact force between

two contacting particles (due to symmetry argument, the proportionality is the same

for equally shaped contacts or contacts of the same shape with a plane)[18]

• Hookean (linear) contact where the elastic force is proportional to δ for

rectangular shape particles (see (a) in Fig. 2.2).

• Hertzian contact where the elastic force is proportional to δ3/2 for circular

shape particles (see (b) in Fig. 2.2).

• Wedge-shaped contact where the elastic force is proportional to δ2 for particles

with sharp corners (see (c) in Fig. 2.2).

The overlap area of the contacts are also (at least approximately) proportional to

the penetration depth δ [19]. Therefore, choosing the magnitude of the elastic force

to be proportional to the overlapping area A instead of the penetration depth δ is

more practical than working with the penetration depth because we can reproduce

all three regimes mentioned above without the need to analyze the contact types

and apply the right exponents of δ for the corresponding geometries. The shape

of the particle is treated as invariant, i.e. there will not be any deformation due

to the contact. The magnitude of the overlap relative to the particle size will be

small. The overlap of the particles can be interpreted as the the necessary amount

of deformation which is required so that the particles can occupy the space in the

actual configuration. This finite overlap approach which is also know as “hard

particle, soft contact” saves us the effort of detecting a exact point contact with

the precision necessary for rigid particle simulations and model the deformation, as

would be necessary in a finite element simulation.

F ∝ δ F ∝ δ2

A ∝∼ δ
3
2 A ∝ δ2A ∝ δ

F ∝ δ
3
2

δ

(a) (b) (c)

Fig. 2.2 Relationships between the elastic force F , contact area A, and penetration
depth δ for three types of contact based on the elasticity theory: (a) Hookean
contact, (b) Hertzian contact (middle), and (c) wedge-shaped contact.
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Another parameter which is used to compute the elastic contact force is the

Young’s modulus Y . In the case of two dimensions where in our case the particles

are conceived as 1 [m]-long rods, the Young’s modulus is rescaled from the three

dimensional units [N/m2] to two dimensions [N/m]. Other constants such as

Poisson’s ratio, bulk modulus, etc. are neglected due to the fact that for the

inhomogeneous material composition of grains, no continuum assumptions are valid,

and the effects due to the corresponding material parameters are weaker anyway.

However, multiplying the two-dimensional Young’s modulus Y [N/m] with the

area A [m2] does not yield a force, as we are still missing a factor with a unit of

length. The additional factor must be supplied by a different reasoning. Sound

velocity c [m/s]

c =

√
Y

σ
(2.2)

depends only on the (in our case, two-dimensional) density σ [kg/m2] and the

Young’s modulus Y . Therefore its value should be the same for a bulk continuum and

a space-filling packing of particles regardless of the particle-size. Sound propagation

occurs in discrete element simulations through the microscopic displacements of the

particles’ centers of mass [5, 20]. A “characteristic length” lc is added to supply the

missing factor of length in the formulation of elastic force

lc =
r1r2
r1 + r2

(2.3)

in order to obtained sound velocity which is independent of the particle size. Here

r1 = ∥r1∥ and r2 = ∥r2∥ are the distances from the center of mass to the force point

P for each particle (see Fig. 2.3).

PC1
C2

r1
r2

A

Fig. 2.3 Overlapping particle-pair with overlap area A; r1 and r2 are distances from
the centers of mass (C1 and C2) to the force point P .
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Thus, using the two-dimensional Young’s modulus Y, the overlap area A and the

characteristic length lc which serves to adapt the sound velocity in a space-filling

packing to the sound velocity of the material, the magnitude of our shape-dependent

elastic force Fc,⊥ of two contacting particles can be written as

Fc,⊥ = Y
A

lc
. (2.4)

2.1.2 Dissipative/Damping Force in Normal Direction

The deformation rate at the contact between two particles gives rise to a normal

viscous force. The damped harmonic oscillator

m
d2x

dt2
= −kx− c

dx

dt
(2.5)

with spring constant k [N/m] its magnitude is determined by the viscous damping

coefficient c [Ns/m]. Using the dimensionless damping constant γ = c/
√
km , the

viscous term can be rewritten as

−γ
√
km

dx

dt
. (2.6)

For our force law Eq. (2.4) we adapt this dependency by replacing the position x with

area A, and the spring constant k with the Young’s modulus Y as in the equation

for the elastic force (Eq. (2.4)), then we use the characteristic length lc to “correct”

the unit. Then the resulting dissipative force Fd,⊥ can be written as

Fd,⊥ = γ
√
Y mred

1

lc
· dA

dt
, (2.7)

with the force proportional to the rate of change of the overlapping area dA
dt

as the

viscous damping term in the harmonic oscillator proportional to the velocity. The

reduced mass mred for the masses m1 and m2 of the two contacting particles

mred =
m1m2

m1 +m2

(2.8)

is included so that the force law can deal with both particle–particle and particle–

wall interactions. When a particle with massm1 collides with a large wall (m2 → ∞)

(treated as a particle which is fixed throughout the simulation) the obtained reduced

mass mred will be close to m1. The prefactor
√
Y mred scales the dissipation for

different various masses m and Young’s moduli Y . When applying the formulation
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for the viscous damping into the code, Eq. (2.7) can be rewritten as

Fd,⊥ = γ
√
Y mred

1

lc
· A(t)− A(t− τ)

τ
, (2.9)

where and τ is the time-step and A(t − τ) is the overlap area of the particle pairs

in the previous time-step.

Approach Separation

F
or
ce
s

F
or
ce
s

Fd,⊥

Fc,⊥

F⊥ = Fc,⊥ + Fd,⊥

Fd,⊥

Fc,⊥

F⊥ = Fc,⊥ + Fd,⊥

0

0

(a)

(b)

Time

Fig. 2.4 (a) Direct summation of the elastic Fc,⊥ and damping force Fd,⊥ in normal
direction leads to jumps in total force F⊥ during the approach and separation of the
contacting particles. (b) Correction in the damping force is performed to cut off the
unphysical attractive force during separation.

However, following the example of the harmonic oscillator in the above way leads

to problems for simulations with closing and separating contact. The resulting total

force from the summation of the elastic contact force Fc,⊥ and the dissipative force

Fd,⊥ will give unphysical spurious attractive forces. The reason is the non-smooth

evolution of the dissipative force during closing and opening of the interparticle

contact. This can be understood by observing that during a collision, the elastic

force evolves proportional to a sine curve (proportional to the overlapping area)

and the the dissipative force evolves proportional to a cosine curve (proportional to
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the first derivative of the overlapping area) over the interval between 0 and π as

shown in Fig. 2.4. Jumps occur for the cosine at 0 and π, due to the fact that the

velocities are maximal during closing of the contact and during separation, where

the elastic force is negligible. Accordingly, these jumps occur also the total the

total interparticle force. Physically, since impacts are non-smooth processes which

trigger sound and damage at the surface, the jump at approach can be justified

and the backward differentiation formula (see Section 2.3) can deal with it without

any treatment if the impact velocity is not too large. However, the attractive force

at separation is unphysical since the total force for dry granular materials without

any additional cohesive force can only be repulsive or zero. In order to cut off the

unphysical attractive force, the following modification is applied in the dissipative

force when the total force has become “attractive”

Fd,⊥ =

−Fc,⊥ if Fc,⊥ (Fc,⊥ + Fd,⊥) < 0,

γ
√
Y mred

1
lc
· dA

dt
otherwise.

(2.10)

If this cutoff is not implemented, unphysical noise is introduced in the simulation and

the finite difference schemes used for the time-integration of the particles become

unstable. In combination with the fluid code, the noisy movement of the particles

cannot be damped out by the fluid, because the motion amplitudes are unphysically

large. On the contrary, the noise is transferred to the flow field, so that the fluid

part may blow up first.

2.1.3 Friction in Tangential Direction

The dynamic Coulomb friction Fdy of one-dimensional dry sliding contacts between

two solids can be written as

Fdy = −Fnµ sgn (v), (2.11)

where Fn is the normal force and µ is the friction coefficient. Fdy is a dissipative force

tangential to the normal contact and acts in the opposite direction to the sliding

(tangential) velocity. On the other hand, the static Coulomb friction Fst for resting

contacts is given by the inequality

−Fnµ ≤ Fst ≤ Fnµ (2.12)
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which is a constraint force without any dissipation at all (see Fig. 2.5). In general, it

is justified to use the same friction coefficient µ for both dynamic and static frictions

for contacts which do not change chemically or mechanically over time [19].

Dynamic friction

Static friction

Friction force

Velocity

Dynamic friction

Fig. 2.5 Two kinds of friction in sliding contact of particles: static friction as
constraint force and dynamic friction as dissipative force.

The friction coefficient is independent of the material strength and the apparent

contact area. It is not much affected by the surface roughness either. The friction

coefficient is mainly a result of the reaction of the “unemployed” surface electrons

and the electron affinity (the likelihood for bonding between electrons) of the two

contacting solids which contribute to the adhesion. A common example would be the

low friction coefficient between Teflon and metals. The difference between energy

states (metal bonding for metal and covalent bonding for Teflon) results in poor

electron affinity and leads to a low friction coefficient. Accordingly, friction is

different from interlocking of surfaces, which is a geometrical effect and must be

modeled via the shape of the particles.

Since until today there is no exact computation method for static friction in

general many-particle systems available, the friction force in our discrete element

simulation is computed from the Cundal–Strack model [21]. The tangential friction

force Fd,∥ at time t is modeled incrementally from the previous time-step τ with in

the direction opposite to the relative tangential velocity vrel,∥ at the contact

Fd,∥(t) =

sgn (Fd,∥(t)) · µF⊥ if Fd,∥(t) > µF⊥

Fd,∥(t− τ)− Y∥vrel,∥τ otherwise.
(2.13)

where Y∥ = 2
7
Y is the “tangential stiffness” with the same dimension as a spring

constant [N/m] and F⊥ = Fc,⊥ − Fd,⊥ is the total force in normal direction. The
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PC1

C2

n̂

t̂

r1
r2

ω1

ω2

v1 v2

vrel,∥
vrel

Fig. 2.6 Obtaining the relative tangential velocity vrel,∥ from velocities v1, v2,
angular velocities ω1, ω2 of the contacting particles and the vectors r1, r2 between
their centroids and the force point P .

relative velocity vrel is derived from the velocities v1, v2 of contacting particles,

angular velocities ω1, ω2 around their centers of mass, and the vectors r1, r2 between

the centroids of the particles and the force point P (see Fig. 2.6)

vrel = v1 − v2 − (ω1r1 − ω2r2) . (2.14)

The relative tangential velocity vrel,∥ in Eq. (2.13) can be obtained from the

projection of the relative velocity onto the tangential direction.

Exact
friction

Actual Cundall–Strack model

Cundall–Strack model
without truncation

Time

T
an

ge
n
ti
al

fo
rc
e µF⊥

Gripping of the
exact friction

Gripping of the
Cundall–Strack model

Beginning of contact

Fig. 2.7 Implementation of Cundall–Strack model for the tangential friction force
in the discrete element simulation. The model is truncated to the Coulomb friction
µF⊥. Gripping is delayed in the Cundall–Strack model comparing to the exact
friction.
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The upper case in Eq. (2.13) means that if the obtained incrementing tangential

force is larger than the maximal value allowed for dynamic friction, it will be

truncated. This approach is sometimes known as a model of “breaking tangential

spring”. Dividing the lower part of Eq. (2.13) with an infinitesimal time-step τ gives

the following differential equation

dFd,∥(t)

dt
= −Y∥vrel,∥. (2.15)

where the tangential force will not be increasing monotonously but has a behavior

of a harmonic oscillator. This means that the tangential force does not always act

opposite to the tangential velocity. The energy is dissipated only if the tangential

force reaches the value for sliding friction. The oscillations can be reduced by

introducing a damping term proportional to
√
meff,∥ · Y∥ so that we have

Fd,∥(t) =

sgn (Fd,∥(t)) · µF⊥, if Fd,∥(t) > µF⊥

Fd,∥(t− τ)− Y∥vrel,∥τ −
√
meff,∥ · Y∥ vrel,∥, otherwise,

(2.16)

where the tangential mass meff,∥is defined from the particles’ mass (m1 and m2) and

their distances from the centers of mass to the force point (r1 and r2 in Fig. 2.3) as

meff,∥ =
1

1

m1

+
1

m2

+
r21
I1

+
r22
I2

(2.17)

where the momenta of inertia I1, I2 being included in the reduced “tangential” mass.

Beside the oscillatory behavior, the Cundall–Strack model also leads the delay

in gripping of the tangential friction compared to the “exact” friction. Nevertheless,

we can still obtain good results (e.g. constructing a stable heap on a smooth surface)

as beyond the time-scale of the oscillation is considerably shorter than the time-scale

of the physical processes under consideration. For particles in fluids, the oscillations

are suppressed anyway, and the damping term in Eq. (2.16) is not necessary.

2.1.4 Total Force and Torque

The resulting normal and tangential forces from the sections above need to be

decomposed into their horizontal and vertical components (see Fig. 2.8) before
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summing the forces together to get the total force

F =

[
Fx

Fy

]
= (Fc,⊥ − Fd,⊥)

[
n̂x

n̂y

]
+ Fd,∥

[
−n̂y

n̂x

]
. (2.18)

The torques T1, T2 acting on particle 1 and 2 can then be computed as

T1 = r1 × F ,

T2 = r2 ×−F .
(2.19)

In the case of particles of different shape and size, there is no action = reaction

principle, i.e. in general T1 ̸= T2.

P

C1

C2

n̂

r1

r2

F⊥ = Fc,⊥ − Fd,⊥

Fd,∥

x

y

n̂yFd,∥

n̂xFd,∥

n̂xF⊥

n̂yF⊥

n̂y

n̂x

Fig. 2.8 Decomposition of the normal forces F⊥ (elastic Fc,⊥ and damping Fd,⊥
forces) and tangential friction force Fd,∥ between two contacting particles into
horizontal and vertical components.

2.2 Polygonal Particles

A very tempting approach in the discrete element simulations is to use round

particles for simplicity. Unfortunately, particle shapes do play a very decisive role

in constructing the aggregates. For example, non-elongated particles have angles of

repose of about 20 degrees, while round particles do not even give straight angles

of repose. So the use of round particles limits the phenomena which are accessible

with discrete element simulations considerably.
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The dynamics of the granular materials is basically determined by the compe-

tition between the rolling and sliding. Unlike round particle, a non-round particle

will always need a finite torque in order to roll due to the finite length of their edges.

If the rolling is inhibited, the dynamics will then be determined by sliding alone.

Round particles can escape the influence of sliding friction at zero energetic cost by

rolling.1 Therefore, systems which are made up of round particles will be unstable

due to the fact that the particles have very high tendency to roll with relatively small

mechanical resistance and low energetic cost. The competition between rolling and

sliding also effects the strength of a granular assembly (as measured by e.g. triaxial

compression). The strength of an assembly with round particles can be expected

to be weaker than the one with convex particles. The assembly with non-convex

particles will have higher strength than the other two due to the higher degree

of interlocking of surfaces. In order to “mimic” the behavior of the non-round

particles assembly in a round particles simulation, in some simulation packages for

round particles unphysically large rolling friction coefficients are specified to enforce

higher angles of repose. However, using the high rolling friction coefficient which

can never be archived in experiment does not improve the verisimilitude of the

simulation.

Another aspect is that the pore space which will contain the fluid simulation

is difficult to discretize if the wall boundaries are not straight. In this respect,

the use of polygonal particles is also advantageous because the resulting polygonal

porespace can be discretized exactly at least by finite element methods. In the

following sections, we will discuss the basic concepts in using the full geometric

information of the contacting polygonal particles to model the elastic contact force

discussed in Section 2.1.1. These include the computation of the overlap area A in

Eq. (2.4) and the necessary modifications in the force directions and force points.

2.2.1 Creating the Polygonal Particles

In the following we will introduce two methods that are used in the program to

generate convex polygonal particles for the simulations. To simplify the algorithms

for overlap computations (will be introduced in Section 2.2.3) it is advantageous

that the edges and vertices are labeled counterclockwise.

1Experimentally, rolling coefficients of friction are two to three orders of magnitude smaller
than sliding coefficients of frictions, so no coefficient of rolling friction is used in the program.
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The first method inscribes a regular polygon into an ellipse (with semi-major

axis a and semi-minor axis b)

xi = a cos θi,

yi = b sin θi.
(2.20)

where θi can be chosen at certain regular stepping, i = 1, 2, . . . , n indicating the ith of

n vertices, (xi, yi) are the coordinates of the vertices (see Fig. 2.9 (a)). Additionally,

a small dispersion can be added in the half-axes a, b and the angle θ with random

numbers in order to generate an irregular convex polygon (gray in Fig. 2.9 (a)). After

the randomization, the convexity of the polygon should be verified, as too large

random amplitudes can make the particles non-convex, in which case the overlap

computation and the force computation will fail.

b

a

(x1, y1)

(x2, y2)

(xn, yn)

(a) (b)

Fig. 2.9 (a) Constructing a polygon by inscribing a regular polygon with eight
vertices (solid line) into an ellipse (dashed-line) (with semi-major axis a and semi-
minor axis b). Irregular polygon (gray) can be obtained via randomization of the
vertices of the regular polygon. (b) Constructing a polygon via convex hull for a
set of random points (•). The polygons obtained with this method has a higher
tendency to have sharp corners.

Computing the convex hull is another method of creating a polygonal particle

for a set of random points (see Fig. 2.9 (b)). Computation of the convex hull is

implemented in MATLAB with convhull(x, y, ’simplify’, true) where x and

y are the coordinates of the random points. However, this method tends to create

sharp polygonal shapes for few points and rectangular corners for many points which

then lead to penetrating contacts which will be dealt with in section 2.2.5.

2.2.2 Mass, Center of Mass and Moment of Inertia

Since computing mass, center of mass and moment of inertia of a triangle is easy,

the computation of these quantities for a convex polygon is done by splitting the
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polygon into triangles. It is convenient to select a point P inside the polygon as the

average of all n vertices of the particle (see Fig. 2.10 (a)) xi = [xi yi]
⊺

P =

[
Px

Py

]
=

1

n

n∑
i=1

xi. (2.21)

From P and xi we can obtain the vectors ri in radial direction for each vertex

ri = xi − P (2.22)

which partitions the polygon into n triangles. The vectors si which describe the

edges of the particle are given by the coordinates of the ith and (i+ 1)th vertices

si = xi+1 − xi. (2.23)

ri

c△ili
h

bproji

breji

(a) (b)

(Px, Py)

(xi, yi)

(xi+1, yi+1)

ri

si
di

r

si

r

a

bi

C

c△i
C

Fig. 2.10 (a) Decomposition of a particle with n = 10 vertices into n triangles.
The center of mass of the ith triangle can be obtained from the median as 2

3
d. The

center of mass of the polygon C will be the weighted average of the centers of mass
of the triangles. (b) Triangle enlarged from (a) to show the computation of the
moment of inertia using the radial vector ri and edge vector si.

Mass

The area Ai of the triangular partition formed by radial vector ri and edge vector

si is given by the cross product

Ai =
1

2
∥ri × si∥ . (2.24)
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Multiplying the area by the two-dimensional density gives us the mass of the triangle

m△
i = σAi, (2.25)

and the mass of the particle m is simply the sum of mass of all triangular partition

m = σ
n∑

i=1

Ai. (2.26)

Center of Mass

The center of mass of a triangle is located at the intersection of the medians, i.e. the

lines joining each vertex with the midpoint of the opposite edge. The center of mass

divides the median in the ratio 2 : 1. The vector di from point P to the midpoint

of si will be one of the medians which can be written as the addition of the radial

and edge vectors

di = ri +
1

2
si. (2.27)

The center of mass of the each triangle can be computed as the following based on

the ratio mentioned above

c△i = P +
2

3
di = P +

2

3

(
ri +

1

2
si

)
. (2.28)

The center of mass of the polygon C will be the weighted average of the centers of

mass of the triangles

C =

∑n
i=1m

△
i c

△
i

m
(2.29)

which is close to but not identical to the average of the vertices P .

Moment of Inertia

The moment of inertia of a triangle around the axis through its center of mass is

given by

I△ =
r3h− r2ha+ rha2 + rh3

36
(2.30)

where for the ith triangle of the polygon the base is given by

r = ∥ri∥. (2.31)
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The vector bi from the endpoint of the base to the apex (see Fig. 2.10 (b)) can be

obtained from ri and si

bi = ri + si, (2.32)

from which the length a can be obtained from the norm of its projection onto ri

bproji =
bi · ri
∥ri∥

ri
∥ri∥

, (2.33)

a =
∥∥∥bproji

∥∥∥ . (2.34)

On the other hand, the height h is equivalent to that component of b which is

orthogonal to ri (i.e. the rejection of bi onto ri)

breji = bi − bproji , (2.35)

h =
∥∥∥breji

∥∥∥ . (2.36)

The moment of inertia I of the whole polygon is obtained from the parallel axis

theorem

I =
n∑

i=1

(
I△i +m△

i l
2
i

)
(2.37)

where li is the distance between the center of mass c△i of the ith triangle and the

center of mass of the polygon C.

2.2.3 Overlap Area

For the overlap area of two contacting polygonal particles, first we need the

intersection points S1 and S2. While they can be computed from two nested loops

over the edges of each particle, this approach is inefficient. The computation of

the intersection point requires a division operation (as shown in Eq. (2.41) later

in this section) which is computationally more expensive than the additions or

multiplications which form the bulk of the operations. Since most pairs of edges

in the nested loop will not have intersections, it is desirable to eliminate them via

the following steps without actually computing the intersection points to improve

the computational efficiency.

Comparison of Cartesian Coordinates

The edges of “bounding boxes” are their extremal vertices in both x- and y-

directions (see Fig. 2.11). If the bounding boxes in either of the directions are not
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overlapping, the pair of edges will be eliminated from the list of possible intersecting

edges and we do not have to continue with the following steps and try to look for

the intersection points.

(a)

e2e1

(b)

e2

e1

(c)

e2

e1

Bounding box

Fig. 2.11 “Bounding boxes” constructed from the endpoints of the edges. Pairs of
edges with non-overlapping bounding boxes in (a) x-direction and (b) y-direction
will be eliminated from the list of possible intersecting pairs. (c) will be eliminated
since the bounding boxes in x-direction do not overlap.

Overlap and Orientation of Triangles

The endpoints of edges e1 and e2 can be used to obtain triangles whose relative

orientation can be used to determine whether the edges intersect. In total we

will get four triangles in total from the two edges (see Fig. 2.12). The two edges

are intersecting if and only if the two triangles formed by the same edge with the

endpoints of the other edge have different orientation. This means that if the two

triangles from the first edge have the same orientation, the edges are not intersecting

and we do not have to check the orientation of the triangles by the other edge. The

orientation of the triangle can computed from the cross product between the given

edge and the vector from its endpoint to the endpoint of the other edge. This allows

us to check for intersection without division. In fact, for polygons which are close,

but which are just not overlapping the computational effort is largest, as all possible

candidates must be tried out, while for overlapping polygons the nested loop can

be terminated. Because sequences of additions and multiplications can be pipelined

efficiently, the speed of determining whether there is an intersection from triangle

orientation is considerably higher than from the actual intersection computation.

Only the intersection point computation then needs a division.
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e2

e1 e1

e2

Fig. 2.12 Construction of four triangles by connecting each edge to the endpoints of
the other edge. The two edges are intersecting if and only if the two triangles formed
by the same edge with the endpoints of the other edge have different orientation.

Computation of the Intersection Points

The intersection point of two intersecting edges can be represented with a vector s

which is parallel to the one of the edge e1 as shown in Fig. 2.13. Since s is parallel

to e1, the following relation holds

s = λe1 (2.38)

where λ is a scalar which shows the length ratio of the two vectors. Area of a

parallelogram A1 can be obtained by taking the cross product between e1 and e2

A1 = |e1 × e2| . (2.39)

On the other hand, the cross product between s and e2 gives

A2 = |s× e2| = |r × e2| (2.40)

which is equivalent to the cross product between r (vector which connects the tail of

e2 to the tail of e1) and e2 because the area of the parallelogram will not change if

it is sheared along e2. Since length ratio between vectors s and e1 is also equivalent

to the ratio of the area of the parallelograms A2, A1 formed by the each vector, λ

can be defined as

λ =
A2

A1

. (2.41)

The overlap geometry between two contacting polygonal particles is formed by

the intersection points S1 and S2 and the vertices of the particles which penetrate

into the other particle (see Fig. 2.14). The area A for the elastic contact force

in Eq. (2.4) can then be computed from the resulting overlap geometry using the

method discussed in Section 2.2.2.
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e2

e1
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s

(a) (b)

e2
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s

(e2)

e2
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s

(c)
(e2)

e1
e1

r

A1

A2

A2

A2

Fig. 2.13 Computation of the intersection points of the intersecting edges. (a) The
intersection point is represented with vector s parallel to the edge vector e1. (b) λ
can be computed from the ratio between area A2 and A1. (c) An auxiliary vector r
can be used to compute area A2.

2.2.4 Force Directions and Force Points

While for the contact of round particles, the force directions and force point depends

only on the relative position of the centers of mass of the particles (Section 2.1), the

force point and force directions for polygonal particles depends on the geometry of

the contact. The force point is defined at the center of mass of the overlap geometry

(see Fig. 2.15). The line segment between two intersection points S1 and S2 is used to

define the tangential direction t̂ and accordingly the normal direction n̂ is obtained

by rotation t̂ by 90◦ as shown in Fig. 2.15 (a). An alternative way of computing the

force direction would be to compute the normal n̂ as the weighted average of the

normals n̂1 and n̂2 perpendicular to the lines l1 and l2 connecting each intersection

points to the centroid of the overlap area (see Fig. 2.15 (b))

n̂ =
n̂1l1 + n̂2l2
l1 + l2

. (2.42)

A

C2

C1

S2

S1

Fig. 2.14 Overlap geometry (in gray) with area A of two contacting polygonal
particles constructed via the intersection points S1 and S2 (△) and the vertices of
the particles (•) which penetrate into the other particle.
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P

S1

S2

P

S1

S2

(a) (b)t̂

n̂

t̂

n̂
n̂2

n̂1

l2

l1

Fig. 2.15 (a) The normal n̂ and tangential t̂ directions of two contacting polygonal
particles obtained directly from the “contact line” S1S2. (b) Normal direction n̂ as
the weighted average of n̂1 and n̂2. The force point P is located at the center of
mass of the overlap geometry.

2.2.5 Dealing with Penetrating Contacts

The algorithms for computing the overlap geometry discussed in Section 2.2.3

assumes that there are two intersection points. This assumption works well generally

except when we are dealing with particles with acute or very sharp corners. This

kind of particles tends to have corners penetrating through the other particle which

then leads to four intersection points as shown in Fig. 2.16. In order to obtain a

consistent overlap compared to two intersection point so that the force law stays

continuous for such contacts, the following procedure is applied when more than

two intersection points are detected from the overlap computation.

1. Compute the rays from the center of mass C1 of polygon 1 to each of the

intersection points S1, . . . , S4 (see Fig. 2.16 (a)).

2. Identify the extremal rays based on the angle of the rays around the center

A1

A2

P1

P2

(a) (b)

C1 C2

S1

S3

S2

S4
Polygon 1 Polygon 2

C1 C2

S1

S3

S2

S4
Polygon 1 Polygon 2

Fig. 2.16 Exaggerated sketches showing the resulting four intersection points
S1, . . . , S4 (•) from a penetrating contact. Connecting the rays (dashed lines) from
the center of mass to intersection points S1, . . . , S4, cut-off lines (think solid line),
cut-off segments (gray area) of polygon 1 and polygon 2 are shown in (a) and (b)
respectively.
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of mass. Connecting two intersection points of the extremal rays gives us the

cut-off line of the polygon, e.g. for polygon 1, the cut-off line is S1S4.

3. Compute the area A1 and the center of mass P1 of the segment of polygon 1

which is cut off by the line S1S4 (see Fig. 2.16 (a)).

4. The same processes are repeat for polygon 2 which give cut-off line S3S4, area

A2 and center of mass P2 of the cut-off segment in Fig. 2.16 (b).

5. The area A for elastic contact force Eq. (2.4) is

A = A1 + A2. (2.43)

6. The force point is given by the weighted averaged of the centroids P1 and P2

P =
P 1A1 + P 2A2

A
. (2.44)

7. Find the common end-point of the two cut-off lines, e.g. S4 in Fig. 2.17. The

cut-off vectors d1 and d2 can be choose as the vector from the common point

to the other end-point of the cut-off line.

8. The tangential direction t̂ is defined from the average of d1 and d2 weighted

by the areas A1 and A2

t̂ =
d1A1 + d2A2

A
. (2.45)

C1 C2

S1

S3

S2

S4

Polygon 1 Polygon 2

d2
d1 P

t̂

n̂

Fig. 2.17 Tangential t̂ and normal direction n̂ at force point P computed from the
cut-off vectors d1 and d2 of a penetrating contact.
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2.3 Time Integrator

The translational and rotational equations of motion of a particle can be written as

m
dr̈

dt
= F net, (2.46)

I
dθ̈

dt
= Tnet, (2.47)

where F net is the net force on the particle which includes the total force from the

contact in Eq. (2.18), the gravitational force and the force from the fluid. Tnet is the

net torque on the particle where the effect from the fluid will also be included in

addition to the one from Eq. (2.19). Mass m and moment of inertia I are obtained

from Eq. (2.26) and Eq. (2.37). Both equations of motion are solved using the

backward differentiation formula (BDF).

For the initial value problem of the first-order differential equation

ẏ(t) = f(t, y(t)), y(t0) = y0 (2.48)

the general k-step backward differentiation formula is given by

k∑
i=1

1

i
∇iyn+1 = τf(tn+1, yn+1) (2.49)

where τ is the step-size and the i-th backward difference ∇i is defined recursively as

∇0yl = yl, (2.50)

∇1yl = ∇i−1yl −∇i−1yl−1. (2.51)

The order of the method is given by k, e.g. we can simply expand the equations

with k = 2 to obtain the backward differentiation formula of 2nd-order (BDF2)

yn+1 −
4

3
yn +

1

3
yn−1 =

2

3
τf(tn+1, yn+1). (2.52)

The other first six members of the family are listed in [22] and they are stable up

to the 5th-order. Beyond 5th-order, BDF-methods are conditionally unstable, i.e.

guaranteed to have no convergence. BDF-methods are also known as “multistep

methods” (except for the first-order backward Euler) from the fact that they

need additional information from more than one previous step-size (e.g. yn−1) to

approximate the value for the next step. The methods are also “implicit” because
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the given formulations which need to be solved involve the later state of the system

f(tn+1, yn+1). Such implicit schemes can be solved either by Newton iteration or by

predictor–corrector approach of which we will implement for our discrete element

method. For stability reason, we use the second-order BDF in our DEM simulation

as BDF2 is also used as the time integrator for fluid phase. Apart from that, it

has turned out that BDF2 has the best accuracy to maintain static configurations

without noise: For higher order methods, vibration due to numerical noise occurs.

Gear Predictor–Corrector

The backward differentiation formula in the Gear predictor–corrector form after

Gear [23] (also known as multivalue method or Nordsieck methods [24]) is used to

solve the equations of motion of the particles because of its ability to neglect small

oscillations in the solution and to approximate the solution of some equations with

arbitrary large time-step. The solutions via the predictor-corrector form do not need

a matrix inversion or a solution of a non-linear system of equations which will be

explained in the following. Applying Gear predictor–corrector into the simulation

involves following three separate processes

• computation of the predictor step,

• the evaluation of the forces,

• computation of the corrector step with using the change in the forces from

previous step.

For a position vector r0, we can define its successive scaled time derivatives to be

r1 = τ
dr0
dt

, r2 =
τ 2

2!

d2r0
dt2

, r3 =
τ 3

3!

d3r0
dt3

, · · · , rn =
τn

n!

dnr0
dtn

. (2.53)

The value of the solution for the next time-step r0(t + τ) can be approximated by

using via the Taylor series at r0(t) as

r0(t+ τ) = r0(t) + τ
dr0(t)

dt
+
τ 2

2

d2r0(t)

dt2
+
τ 3

6

d3r0(t)

dt3
+ · · ·+ τn

n!

dnr0(t)

dtn
, (2.54)

substituting the successive scaled time derivatives into the equation gives us

r0(t+ τ) = r0(t) + r1(t) + r2(t) + r3(t) + · · ·+ rn(t) (2.55)
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Applying the same procedures to the time derivatives dr0(t+τ)
dt

, d2r0(t+τ)
dt2

, · · · , dnr0(t+τ)
dtn

the predictor of a six-value method can be computed as

rp0(t+ τ)

rp1(t+ τ)

rp2(t+ τ)

rp3(t+ τ)

rp4(t+ τ)

rp5(t+ τ)


=



1 1 1 1 1 1

0 1 2 3 4 5

0 0 1 3 6 10

0 0 0 1 4 10

0 0 0 0 1 5

0 0 0 0 0 1





r0(t)

r1(t)

r2(t)

r3(t)

r4(t)

r5(t)


(2.56)

which is simply a polynomial extrapolation of the solution and its derivatives (not

solving the differential equation yet). The matrix is the Pascal triangle matrix and

the vector on the left-hand side is known as the Nordsieck vector.

The actual approximation is done by adding a correction to the predicted values

rpn, i.e. the corrector step

rc0(t+ τ)

rc1(t+ τ)

rc2(t+ τ)

rc3(t+ τ)

rc4(t+ τ)

rc5(t+ τ)


=



rp0(t+ τ)

rp1(t+ τ)

rp2(t+ τ)

rp3(t+ τ)

rp4(t+ τ)

rp5(t+ τ)


+



c0

c1

c2

c3

c4

c5


∆r. (2.57)

This predictor–corrector method is available for both first- and second-order

ordinary differential equations (ODE) which means that our equations of motions do

not have to be transformed into a first-order system. For the second-order ODEs, ∆r

is the difference between the predicted and corrected value of the second derivatives

i.e. the predicted force and the corrected force (obtained from the force computations

in Section 2.1 with the predicted positions rp0(t+ τ) and velocities rp1(t+ τ))

∆r = rc2(t+ τ)− rp2(t+ τ). (2.58)

The coefficients c0, c1, . . . , c5 for the second-order ODEs of the form r̈ = f(r, ṙ) in

which the first derivatives also appear in the right-hand side (as in our case) is given

in Table 2.1. The coefficients for the first-order ODEs and second-order ODEs of

r̈ = f(r) can be found in [25, Table E.1 and E.2].

The time-scaled derivatives r1, r2, . . . were originally introduced by Nordsieck

[26] for the purpose of changing the step-size τ easily. We can simply multiply the
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Table 2.1 Gear corrector coefficients for second-order differential equations of the
form r̈ = f(r, ṙ).

Order Values c0 c1 c2 c3 c4 c5

2 3 0 1 1
3 4 1/6

5/6 1 1/3
4 5 19/90

3/4 1 1/2
1/12

5 6 3/16
251/360 1 11/18

1/6
1/60

components of the Nordsieck vector by the appropriate powers of τ ′/τ to change

the step-size from τ to τ ′. This will be become very handy as we can combine the

fluid code where the adaptive step-size is also implemented with the discrete element

method with less effort.

As the definition of the normal force (Fc,⊥ − Fd,⊥) is modeled as a harmonic

oscillator, the characteristic oscillation frequency ωc (which would correspond to

a particle which vibrates on a ground with the same Young’s modulus under the

influence of its own weight) can be determined from the smallest particle mass mmin

in the system and the two-dimensional Young’s modulus Y as

ωc =

√
Y

mmin

(2.59)

where the duration of a full period of an oscillation is

Tc =
2π

ωc

,

= 2π

√
mmin

Y
. (2.60)

For a collision of particles, the duration of a collision τc would be about half of the

period

τc ≈
1

2
Tc ≈ π

√
mmin

Y
. (2.61)

Since the resolution with 10 step-size is usually enough to resolve the collision of

the particles with the BDF solver, the step-size of a dry discrete element simulation

can be set at

τ =
1

10
π

√
mmin

Y
. (2.62)

For smaller time-steps, there is the danger that instabilities develop, aggregates of

particles “explode.” The time-step is valid only for dry granular materials: For

particles in fluid, the minimal time-step of ten times larger than the dry case may
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be used, as the fluid damps the relative motion of the particles so that the contact

time is longer than for dry particles.



Chapter 3

Simulation of the Fluid Part

3.1 Governing Equations

Compared to continuum materials, for granular materials from the same material,

the sound velocity is reduced considerably. It has been found that sound velocities

of an uncompressed granular packing are less than 10% for two-dimensional granular

assemblies (rods) compared to the space-filling packing (homogeneous material) in

simulations, and less than 1% for three-dimensional assemblies (plastic-beads) in

experiments [5], as the transfer of momentum can take place via the relatively narrow

particle interstices. As the sound velocity of the granular assembly will be much

smaller than that of the fluid, we will treat the flow as incompressible. In that case,

the two-dimensional Navier–Stokes equations for incompressible Newtonian fluid can

be written as

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂p

∂x
+ ν

(
∂2u

∂x2
+
∂2u

∂y2

)
+X,

∂v

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂p

∂y
+ ν

(
∂2v

∂x2
+
∂2v

∂y2

)
+ Y,

(3.1)

and the continuity equation as

∂u

∂x
+
∂v

∂y
= 0, (3.2)

with velocities in x- and y-directions u, v and pressure p as the unknowns. The

kinematic viscosity ν in the second terms of right-hand sides of Eqs. (3.1) can be

derived from the dynamic viscosity µf [Pa · s] and the density ρ [kg/m3] of the fluid

38
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as1

ν =
µf

ρ
(3.3)

This means that the effect from the viscosity on the motion of the fluid is not

expressed by the dynamic viscosity µf alone but the density of the fluid must also

be considered. With u = [u v]⊺ and f = [X Y ]⊺, the Navier–Stokes and continuity

equations can also be rewritten as

∂u

∂t
+ (u · ∇)u = −1

ρ
∇p+ ν∇2u+ f , (3.4)

∇ · u = 0, (3.5)

with the nabla operator in Cartesian coordinates ∇ =
[

∂
∂x

∂
∂y

]⊺
. Multiplying the

constant ρ into the Eq. (3.4) give us

∂ (ρu)

∂t
= − (u · ∇) (ρu)︸ ︷︷ ︸

Advection term

+ µf∇2 (ρu)︸ ︷︷ ︸
Diffusion term

−∇p+ ρf , (3.6)

where ρu is the momentum per unit volume of the fluid. The above equation means

that the rate of change of the momentum ∂(ρu)
∂t

is due to:

Advection term: The first term on the right-hand side of Eq. (3.6). This non-

linear term means that the momentum is transported by the flow itself.

Diffusion term: The second term on the right-hand side of Eq. (3.6) describes the

momentum is transferred from regions of high to regions of low momentum.

Pressure and external forces: The third and forth terms on the right-hand side

of Eq. (3.6) represent the pressure and body forces acting on the fluid.

3.2 Finite Element Methods

Solving the Navier–Stokes equations directly via numerical methods requires the

computation of second derivatives. To weaken the requirement on the smoothness

of the solution functions, several approximation methods have been developed. First

the residual function is defined as the difference between the exact solution of the

governing equations and the numerical approximation as linear combinations of some

trial functions. Then the residual function is set to zero on average by requiring it

1Since we have used µ to represent the friction coefficient in Section 2.1.3 for the simulation of
the granular part, µf [Pa · s] will be used to represent the dynamic viscosity throughout the thesis.
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to be orthogonal to the vector space spanned by a given arbitrary test function.

This approach is known as the method of mean weighted residuals while the test

function is sometime referred as the weighting function. The approach where the

basis functions of the same family are used for both approximated solutions and

the test functions is known as the Galerkin method2 while in the Petrov–Galerkin

method, different basis functions are used for the approximated solutions and the

test functions. The basis functions can be global polynomials, piecewise polynomials,

trigonometric polynomials, etc. The finite element method is a Galerkin method

with piecewise polynomials as its basis functions while Galerkin methods with

trigonometric functions are known as spectral methods. The order of the necessary

derivatives is then reduced via introduction integration by parts: This leads to the

weak form of the problem. This allows us to operate with flow-fields where only the

velocities have to be smooth functions, not their time derivatives.

3.2.1 The Weak Form of the Navier–Stokes Equations

In this section, we show the formal derivation of the Navier–Stokes equations which

we will use for the simulation. For simplicity, we rewrite the Navier–Stokes equations

Eq. (3.1) with the normalized pressure P = p/ρ as

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −∂P

∂x
+ ν

(
∂2u

∂x2
+
∂2u

∂y2

)
+X, (3.7)

∂v

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −∂P

∂y
+ ν

(
∂2v

∂x2
+
∂2v

∂y2

)
+ Y. (3.8)

For the x-component of the Navier–Stokes equations Eq. (3.7), we start with

multiplying it by a test function ϕ(x) and integrate the equation over the fluid region

∫∫
ϕ(x)

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+
∂P

∂x
− ν

(
∂2u

∂x2
+
∂2u

∂y2

)
−X

)
︸ ︷︷ ︸

Residual function, R

dx dy = 0 (3.9)

where the residual function R of Eq. (3.7) will be zero on average by requiring it to

be orthogonal to vector space spanned by the given test function ϕ(x), i.e. the inner

product of the two functions is zero∫∫
ϕ(x)R dx dy = 0 (3.10)

2Galerkin ascribed the method to Ritz, whose variational principle underlies the whole approach.
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This approach is known as the method of mean weighted residuals and the test

function ϕ(x) is sometime referred to as the weighting function.

Next, we will lower the order of Eq. (3.9) by applying the integration by parts

using the Gaussian divergence theorem. For v = [v1 v2]
⊺ where v1 and v2 are two

continuously differentiable functions on the closure of domain Ω, the two-dimensional

Gaussian divergence theorem is given as∫∫
Ω

∇ · v dΩ =

∫
Γ

v · n̂ dΓ∫∫ (
∂v1
∂x

+
∂v2
∂y

)
dx dy =

∫
Γ

(v1nx + v2ny) dΓ (3.11)

where Γ is the boundary around the domain, and n̂ = [nx ny]
⊺ is the unit normal

vector to Γ pointing outward. Substituting

v1 = ϕ(x)P, v2 = 0 (3.12)

into Eq. (3.11) gives us∫∫
∂

∂x

(
ϕ(x)P

)
dx dy =

∫
Γ

ϕ(x)Pnx dΓ. (3.13)

Expanding the partial derivative on the left-hand side with the product rule gives∫∫
ϕ(x)∂P

∂x
dx dy = −

∫∫
P
∂ϕ(x)

∂x
dx dy +

∫
Γ

ϕ(x)Pnx dΓ (3.14)

which corresponds to the fourth (pressure) term in Eq. (3.9). Similar procedures can

be performed on the diffusion term by substituting

v1 = ϕ(x)∂u

∂x
, v2 = ϕ(x)∂u

∂y
(3.15)

into Eq. (3.11) to obtain∫∫
ϕ(x)

(
∂2u

∂x2
+
∂2u

∂y2

)
dx dy

=

∫
Γ

ϕ(x)

(
∂u

∂x
nx +

∂u

∂y
ny

)
dΓ−

∫∫
∂u

∂x

∂ϕ(x)

∂x
+
∂u

∂y

∂ϕ(x)

∂y
dx dy.

(3.16)

Substituting Eq. (3.14) and Eq. (3.16) into Eq. (3.9) then with some arrangements,



42 CHAPTER 3. SIMULATION OF THE FLUID PART

the weak form of the x-component of the Navier–Stokes equations can be written as∫∫
ϕ(x)

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
−X

)
− P

∂ϕ(x)

∂x
+ ν

(
∂u

∂x

∂ϕ(x)

∂x
+
∂u

∂y

∂ϕ(x)

∂y

)
dx dy

=

∫
Γ

ϕ(x)

{
nx

(
ν
∂u

∂x
− P

)
+ ny

(
ν
∂u

∂y

)}
dΓ, (3.17)

which also allows us to lower the order of differentiation in the diffusion term of the

equation. With the same procedures, the equivalent result for the y-component of

the Navier–Stokes equations is∫∫
ϕ(y)

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
− Y

)
− P

∂ϕ(y)

∂y
+ ν

(
∂v

∂x

∂ϕ(y)

∂x
+
∂v

∂y

∂ϕ(y)

∂y

)
dx dy

=

∫
Γ

ϕ(y)

{
nx

(
ν
∂v

∂x

)
+ ny

(
ν
∂v

∂y
− P

)}
dΓ, (3.18)

where ϕ(y) is the test function for the y-component. The weak form of the continuity

equation Eq. (3.2) is simply∫∫
ψ

(
∂u

∂x
+
∂v

∂y

)
dx dy = 0, (3.19)

where ψ is the test function related to the pressure.

ΓD are the Dirichlet-type (fixed) boundaries where the velocities and pressures

are given, and ΓN are the Neumann-type boundaries where the normal derivative

of the function is specified. The boundary conditions that are appropriate for the

above weak formulations are:

For u:

u = U on ΓD
u , (3.20)

nx

(
ν
∂u

∂x
− P

)
+ ny

(
ν
∂u

∂y

)
= Fx on ΓN

u . (3.21)

For v:

v = V on ΓD
v , (3.22)

nx

(
ν
∂v

∂x

)
+ ny

(
ν
∂v

∂y
− P

)
= Fy on ΓN

v , (3.23)

where U , V , Fx, Fy and ΓD
u + ΓN

u = ΓD
v + ΓN

v = Γ are specified. By restricting the
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test functions to vanish on the Dirichlet portions of the boundary (ϕ(x) = 0 on ΓD
u ,

ϕ(y) = 0 on ΓD
v ) the weak form of the Navier–Stokes equations under the above

boundary conditions are∫∫
ϕ(x)

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
−X

)
− P

∂ϕ(x)

∂x
+ ν

(
∂u

∂x

∂ϕ(x)

∂x
+
∂u

∂y

∂ϕ(x)

∂y

)
dx dy

=

∫
ΓN
u

ϕ(x)Fx dΓ, (3.24)∫∫
ϕ(y)

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
− Y

)
− P

∂ϕ(y)

∂y
+ ν

(
∂v

∂x

∂ϕ(y)

∂x
+
∂v

∂y

∂ϕ(y)

∂y

)
dx dy

=

∫
ΓN
v

ϕ(y)Fy dΓ. (3.25)

3.2.2 Discretization of the Weak Form

We start by approximating the velocities and pressure as the linear combination of

the basis functions φ
(x)
i , φ

(y)
i , and ψi

u =
Nx∑
i=1

uiφ
(x)
i = φ⊺

(x)u, (3.26)

v =

Ny∑
i=1

viφ
(y)
i = φ⊺

(y)v, (3.27)

P =

NP∑
i=1

Piψi = ψ
⊺P , (3.28)

where ui, vi, and Pi are the nodal values of the velocities and pressures which are to

be determined as the solutions of the Navier–Stokes equations. Nx and Ny indicate

the number of velocity nodes in the fluid domain Ω and on the boundaries. The

total number of velocity nodes NT is

NT = Nx +Ny. (3.29)

NP is the number of pressure nodes.

The test functions which we implemented in the weak form of the Navier–Stokes

equations can also be written as the linear combinations of the same basis functions

φ
(x)
i , φ

(y)
i , and ψi

ϕ(x) =
Nx∑
i=1

φ
(x)
i Φ

(x)∗
i = φ⊺

(x)Φ
∗
(x), (3.30)
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ϕ(y) =

Ny∑
i=1

φ
(y)
i Φ

(y)∗
i = φ⊺

(y)Φ
∗
(y), (3.31)

ψ =

NP∑
i=1

ψiΨ
∗
i = ψ

⊺Ψ∗, (3.32)

where Φ
(x)∗
i , Φ

(y)∗
i and Ψ∗

i are the nodal values of the test functions. By substituting

(approximated) velocities u, v, pressures P , and the test functions ϕ(x), ϕ(y)

and ψ into Eq. (3.24), Eq. (3.25) and Eq. (3.19) with the corresponding definitions

above, the weak form of the Navier–Stokes equations is obtained in matrix-vector

representation

M u̇+ [K +N(u)]u+ CP = f , (3.33)

C⊺u = 0, (3.34)

In our approach, where the particles are described in Cartesian coordinates, we will

also use the discretized Navier–Stokes equations in Cartesian coordinates, so that,

e.g. u1 denotes the Nx-column-vector of nodal velocities in the x-direction. The

partitioned matrices in block-notation are named as

Mass matrix, M =

[
M1 0

0 M2

]
,

Viscous or diffusion matrix, K =

[
K1 0

0 K2

]
,

Non-linear advection matrix, N(u) =

[
N1(u) 0

0 N2(u)

]
,

Constraint matrix, C =

[
C1

C2

]
, C⊺ =

[
C⊺

1 C⊺
2

]
,

f =
{
f⊺

1 f⊺
2

}⊺
,

u =
{
u⊺

1 u⊺
2

}⊺
.

In the following, when we write the matrices with the respective basis functions,

indices α and β stand for the spatial dimensions. We further use the Einstein

summation convention: where for any subscripted variable which appears twice (and

only twice) in any term of an expression, the subscripted variables are assumed to

be summed over. However, when the spatial index appears in parentheses as (α), no

summation is implied. The matrices and their dimensions in terms of basis functions
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Eq. (3.30)–(3.32) are then

Mα =

∫
φ(α)φ

⊺
(α) : (Nα ×Nα), (3.35)

Nα(u) =

∫
φ(α)

(
φ⊺

(1)u1

∂φ⊺
(α)

∂x1
+φ⊺

(2)u2

∂φ⊺
(α)

∂x2

)
: (Nα ×Nα), (3.36)

Kα =

∫
ν

(
∂φ(α)

∂xβ

∂φ⊺
(α)

∂xβ

)
: (Nα ×Nα), (3.37)

Cα =

∫
−
∂φ(α)

∂xα
ψ⊺ : (Nα ×NP ). (3.38)

On the right-hand side of the discretized Navier–Stokes equation, we have the volume

forces

fα =

∫
φ(α)Xα +

∫
ΓN
α

φ(α)Fα, (3.39)

which is a Nα × 1 column vector. Detailed derivations are given in Appendix A.

In mechanics, constrained problems can be formulated as differential-algebraic

equations (DAE) which allow a favorable formulation (commonly used in numerical

analysis [17]) as

M(t, q)u̇+G⊺(t, q)λ = f(t,u,v), (3.40)

G(t, q)u = 0. (3.41)

This is an equation of motion for the masses M , the Jacobian of the constraints G,

the time derivatives of the velocities u̇ and the external forces f , with the Lagrange-

multipliers λ (see Appendix B for more detailed derivations). The continuity

equation in our fluid problem Eq. (3.2) can be understood as a constraint on the

compressibility and the spatial discretization of the Navier–Stokes equations. With

the Galerkin method it turns out to be an index-2 formulation of the differential-

algebraic equations as Eq. (3.40)–(3.41) [22]. Comparison with Eq. (3.40) shows that

the pressures in Eq. (3.33) indeed play the role of Lagrange multipliers. They inhibit

in- and outflows which would violate the incompressibility condition defined by the

continuity equation. Non-smooth changes of the pressures from one time-step to

the next are in principle possible in this formulation without necessarily affecting

later time-steps: There is no need for a smooth time-evolution of pressures as in the

pressure-relaxation approach of the Marker-and-Cell [27] approach, which may lead

to a hysteretic dynamics which will be difficult to control for moving boundaries. On

the other hand, if the pressures fluctuate too strongly, the velocity field may become
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noisy, which may destabilize the simulations. Too large fluctuations may indicate

that the time-step of the simulation is too large (compared to the dynamics of the

fluid). This may not necessarily destabilize the simulation, at least when implicit

time integrators are used, as in our case.

3.2.3 Choice of Elements

The main goal of this study is to simulate flows of fluids in which particles with

arbitrary polygonal shapes are suspended (respectively, for high particle density, the

flow through the pore space of a granular assembly). Therefore, from the geometrical

point of view, we are only considering triangular elements because only they can

discretize the pore space between polygonal particles adequately by triangulation.

For general flow simulations, it has been argued that quadrilateral meshes will give

higher accuracy than the triangular ones, but this has only been shown for stratified

flow fields where the element boundaries are more or less parallel to the stream lines.

For the case of particle-laden flows which generate small vortices, one can expect

that triangular meshes give a better discretization than rectangular elements due

to symmetry reasons: Circular shapes (of vortices) can be more easily be composed

from (triangular) sectors than square shaped elements.

In general, in order to obtain a stable simulation of incompressible flows via the

finite element method, the approximations of the pressures should be at least one

order smaller than of the velocities. This is known as Ladyzhenskaya–Babuska–

Brezzi (LBB) condition [28] and the methods which use different approximation

order for velocities and pressures are known as mixed interpolation method. A few

choices of triangular elements which are LBB stable are shown in Table 3.1 where

“P” stands for polynomial and the subscripts indicate the order of the polynomial.

3.2.4 Taylor–Hood Element

For the sake of simplicity, geometrical advantage and numerical stability we choose

the P2P1-elements from Table 3.1 where the pressures are approximated with affine

functions while the velocities are approximated with quadratic functions for our

spatial discretization. Since the Navier–Stokes equations are of higher order in the

velocities than in the pressures, and this should be represented in the choice of

elements, we avoid the usage of elements with linear velocity: P+
1 P1 and P1P1 on a

4-patch. P2P0 is not suitable because no pressures on the boundaries are available:

The forces on the particles from the fluid cannot be computed. We do not use P+
2 P1
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Table 3.1 List of triangular elements which are LBB stable.

Name Sketch Comments

P+
1 P1 Simple.

First-order.
Cubic bubble function on .
Lower memory usage.
Computationally cheaper.
Might be unstable due to Checkerboard pressure mode.

P1P1

on a
4-patch

First-order. Best element with linear velocity.
Element is partitioned into four smaller triangles.
First-order approximation of velocities in each triangle.
Also known as Bercovier–Pironneau element [29].

P2P0 Simple.
Discontinuous pressure.
High memory usage and CPU-time consumption.
Not much improvement in accuracy (first-order).

P2P1 Simplest second-order element.
Also known as Taylor–Hood element [30].

P+
2 P1 Second-order.

Cubic bubble function.
“Better accuracy” than P2P1.
Higher memory usage and CPU-time consumption.

Velocity
Velocity and continuous pressure
Discontinuous pressure

elements, because the (rather non-local) cubic bubble function has no immediate

physical meaning, and we don’t know how it will affect the flow over a porous space.

The affine approximation (first-order polynomial) of a test function ψ(x, y) inside

an element e can be written as

ψ(x, y) = ae + bex+ cey =
{
1 x y

}
ae

be

ce

 , (3.42)

where ae, be, ce are the unknown coefficients for the element e. From Eq. (3.42), the

nodal values Ψ1, . . . ,Ψ3 of the test function on the vertices P1(x1, y1), P2(x2, y2),
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P1(x1, y1)

P2(x2, y2)

P3(x3, y3)

Fig. 3.1 Triangular element with vertices P1(x1, y1), P2(x2, y2) and P3(x3, y3) in
counterclockwise orientation.

P3(x3, y3) of the triangle in Fig. 3.1 can be written as
Ψ1

Ψ2

Ψ3

 =

1 x1 y1

1 x2 y2

1 x3 y3



ae

be

ce

 .

Multiplying the inverse of the matrix on both sides of the equation to solve for the

unknown coefficients we obtain,
ae

be

ce

 =

1 x1 y1

1 x2 y2

1 x3 y3


−1

Ψ1

Ψ2

Ψ3

 , (3.43)


ae

be

ce

 =

A1 A2 A3

B1 B2 B3

C1 C2 C3



Ψ1

Ψ2

Ψ3

 , (3.44)

where the elements of the inverse matrix are,

A1 =
x2y3 − x3y2

2∆e

, B1=
y2 − y3
2∆e

, C1 =
x3 − x2
2∆e

, (3.45)

A2 =
x3y1 − x1y3

2∆e

, B2=
y3 − y1
2∆e

, C2 =
x1 − x3
2∆e

, (3.46)

A3 =
x1y2 − x2y1

2∆e

, B3=
y1 − y2
2∆e

, C3 =
x2 − x1
2∆e

, (3.47)
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and ∆e is the area of the triangular element

∆e =
1

2

∣∣∣∣∣∣∣
1 x1 y1

1 x2 y2

1 x3 y3

∣∣∣∣∣∣∣ . (3.48)

The test function can be written as the linear combinations of the shape functions

ψ by substituting Eq. (3.44) into Eq. (3.42)

ψ(x, y) =
{
1 x y

}A1 A2 A3

B1 B2 B3

C1 C2 C3



Ψ1

Ψ2

Ψ3

 ,

=
{
ψ1(x, y) ψ2(x, y) ψ3(x, y)

}
Ψ1

Ψ2

Ψ3

 ,

= ψ⊺Ψ, (3.49)

where the shape functions are defined as

ψ1(x, y) = A1 +B1x+ C1y,

ψ2(x, y) = A2 +B2x+ C2y,

ψ3(x, y) = A3 +B3x+ C3y.

(3.50)

Next, we want to consider another coordinate system which will simplify the

shape functions considerably especially when it comes to integration of the functions.

Let P (x, y) be a arbitrary position inside a triangle with area ∆e as shown in Fig. 3.2.

P1(x1, y1)

P2(x2, y2)

P3(x3, y3)

P (x, y)

∆1

∆2

∆3

x

y

Fig. 3.2 A triangle with area ∆e partitioned into three smaller triangles, where ∆1

is the area of △PP2P3, ∆2 is the area of △PP3P1, and ∆3 is the area of △PP1P2.
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The triangle can be partitioned into three smaller triangles with areas ∆1, ∆2, ∆3

by connecting P with the vertices P1, P2, P3. The ratios between the areas of the

partitioned triangles and the whole total area ∆e can be written as

L1 =
∆1

∆e

, L2 =
∆2

∆e

, L3 =
∆3

∆e

, (3.51)

where L1, L2, L3 vary between 0 and 1. These ratios can be used as the coordinates of

the point inside the triangle P (L1, L2, L3) (see Fig. 3.3) which is known as local area

coordinates, oblique coordinates [31] or barycentric coordinates. This means we work

with a redundant coordinate system, not with the minimal amount of base vectors

as is usually common practice. Because there are three variables (L1, L2, L3) in this

coordinate system instead of two, we have a constraint between these variables,

L1 + L2 + L3 = 1, (3.52)

where the sum of the ratios is always equal to one. This leaves us with two degrees

of freedom as in a two-dimensional Cartesian coordinate system. Note that when

point P lies on one of the edges, the area coordinate with the same index as the

opposite vertex will be zero. The centroid of the triangle in the area coordinate is

located at (1/3,
1/3,

1/3). The local area coordinate is useful for checking if a given

point is inside a triangle: If the range of any of the coordinate Li is not within 0

and 1, the given point is not located inside the triangle.

P1(1, 0, 0)

P2(0, 1, 0)

P3(0, 0, 1)

Pc(
1/3,

1/3,
1/3)

P6(
1/2,

1/2, 0)

P4(0,
1/2,

1/2)
P5(

1/2, 0,
1/2)

Fig. 3.3 Vertices and midpoints of a triangle in local area coordinates.

Using the definitions in Eq. (3.45), the area of the partitioned triangle △PP2P3
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can be written as

∆1 =
1

2

∣∣∣∣∣∣∣
1 x y

1 x2 y2

1 x3 y3

∣∣∣∣∣∣∣ ,
=

1

2

{
(x2y3 − x3y2) + (y2 − y3)x+ (x3 − x2)y

}
,

= ∆e

{
A1 +B1x+ C1y

}
.

From the above derivations, it turns out that the local coordinates are also an affine

approximation with Ai, Bi, Ci as the coefficients
L1

L2

L3

 =

A1 B1 C1

A2 B2 C2

A3 B3 C3



1

x

y

 =


ψ1

ψ2

ψ3

 , (3.53)

are shape functions in Eq. (3.50). Using Eq. (3.43) and Eq. (3.44), the transformation

from area coordinates to Cartesian coordinates is
1

x

y

 =

 1 1 1

x1 x2 x3

y1 y2 y3



L1

L2

L3

 . (3.54)

P1

P2

P3

1

1

1

P1

P2

P3

P1

P2

P3

ψ1(x, y) ψ2(x, y) ψ3(x, y)

Fig. 3.4 First-order piecewise polynomial (affine) shape functions ψ1(x, y), ψ2(x, y)
and ψ3(x, y).

With the shape functions written in local area coordinates (see Fig. 3.4)

ψ =
{
ψ1(x, y) ψ2(x, y) ψ3(x, y)

}⊺
=
{
L1 L2 L3

}⊺
,
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the partial derivatives of ψ become very straightforward:

∂ψ

∂x
=
{
B1 B2 B3

}⊺
, (3.55)

∂ψ

∂y
=
{
C1 C2 C3

}⊺
. (3.56)

For the evaluation of the integral of a two-dimensional element, we can use∫∫
Lα
1L

β
2L

γ
3 dx dy =

α!β!γ!

(α+ β + γ + 2)!
2∆e . (3.57)

For one-dimensional line element with length L this reduces to∫
Lα

1L
β
2 dS =

α!β!

(α + β + 1)!
L . (3.58)

ϕ1(x, y) ϕ2(x, y) ϕ3(x, y)

ϕ4(x, y)

ϕ5(x, y)

ϕ6(x, y)

P5

P1

P2

P3

1

1

1

1

1

1

P4

P6

Fig. 3.5 Second-order piecewise polynomial (quadratic) shape functions
ϕ1(x, y), . . . , ϕ6(x, y).

The quadratic approximation (see Fig. 3.5) of a test function ϕ(x, y) is defined

using the area coordinates as

ϕ(x, y) = α1 + α2L1 + α3L2 + α4L
2
1 + α5L1L2 + α6L

2
2. (3.59)
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For all six nodal values (vertices and midpoints in Fig. 3.3) of the test function can

be written as 

Φ1

Φ2

Φ3

Φ4

Φ5

Φ6


=



1 1 0 1 0 0

1 0 1 0 0 1

1 0 0 0 0 0

1 0 1/2 0 0 1/4

1 1/2 0 1/4 0 0

1 1/2
1/2

1/4
1/4

1/4





α1

α2

α3

α4

α5

α6


,



α1

α2

α3

α4

α5

α6


=



0 0 1 0 0 0

−1 0 −3 0 4 0

0 −1 −3 4 0 0

2 0 2 0 −4 0

0 0 4 −4 −4 4

0 2 2 −4 0 0





Φ1

Φ2

Φ3

Φ4

Φ5

Φ6


. (3.60)

Substituting the coefficients in Eq. (3.59) with the above and using the relation in

Eq. (3.52), the quadratic shape functions can be written as

φ =
{
φ1 φ2 φ3 φ4 φ5 φ6

}⊺
,

=
{
L1(2L1 − 1) L2(2L2 − 1) L3(2L3 − 1) 4L2L3 4L3L1 4L1L2

}⊺
. (3.61)

3.2.5 Time Integrator

We have explained the spatial discretization of the Navier–Stokes Eq. (3.1) and the

continuity Eq. (3.2) equation. Next, the time integrator must be chosen. We have

chosen the backward differentiation formula of second-order (the same integrator

we use for the particles, see Section 2.3). It is not only A-stable (able to obtain

the solution of certain differential equations with transcendental solutions with

arbitrary large time-step), but also L-stable (small perturbations are not damped

out to zero3) [17]. Furthermore, it is implicit, i.e. there is no von Neumann

stability condition which would limit the time-step for small spatial discretizations,

an important aspect, as we can expect that our triangular grid inside the pore-

space can become very small. The main purpose in choosing the finite element

discretization was to obtain a continuous discretization for the whole space, to allow

an exact discretization of the pore space and a smooth interpolation in the case

3In principle, the higher than second order BDF-methods can be imagined to damp out small
perturbations, even if those are hydrodynamic instabilities which are physically significant.
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where particles (boundaries) move, so that grid points have to be located. For

the time integrator, other considerations become relevant. Some are related to the

stability of the integrator itself, other are related to the stability with respect to

the time-step and the spatial discretization, and a third aspect is for our simulation

how well the integrator fits to the time integrator for the particles. For a first-order

ordinary differential equation (ODE) ẏ = f(y) we have

yn+1 −
(1 + ωn)

2

1 + 2ωn

yn +
ω2
n

1 + 2ωn

yn−1 = +τn
1 + ωn

1 + 2ωn

ẏn+1. (3.62)

Eq. (3.62) is the version of BDF2 with variable step-size τn[32] where ωn = τn/τn−1

is the step-size ratio. When the ratio is ωn = 1, we obtain the version of BDF2

with fix step-size Eq. (2.52) as introduced in Section 2.3. Substituting the time

derivative of the velocities u̇ in Eq. (3.33) with Eq. (3.62) gives us the DAE-form for

the Navier–Stokes equation in the FEM-formulation with variable step-size version

of BDF2 [28]: 1 + 2ωn

τn(1 + ωn)
M +K +N(un+1) −C

C⊺ 0

{un+1

P n+1

}

=

M
[
1 + ωn

τn
un −

ω2
n

τn(1 + ωn)
un−1

]
+ fn+1

0

 . (3.63)

Since Eq. (3.63) is implicit, the values of the un+1 and P n+1 are computed

using Newton–Raphson iteration with the appropriate predictor for the velocity

via “generalized leapfrog”:

uP
n+1 = un + (1 + ωn) τnu̇n − ω2

n (un − un−1) , (3.64)

as the initial guess. The from the solution un+1 compute the required predictor data

for the next time-step with

u̇n+1 =
3un+1 − 4un + un−1

2τn
. (3.65)

This shows that the method is indeed implicit, so that we are not bound by upper

limits for the time-step due to the von Neumann stability condition. Using the local

truncation error,

dn =
(1 + ω−1

n )2

1 + 3ω−1
n + 4ω−2

n + 2ω−3
n

(un+1 − uP
n+1), (3.66)
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we can compute the next time-step as

τn+1 = τn

(
ε

max ∥dn∥

) 1
3

, (3.67)

where the value of coefficient ε that we usually work with is 10−3.

As the BDF2-method is not self-starting (i.e. at the first time-step, data from

“before” the initial conditions are needed in Eq. (3.64)) and consistent initial

conditions are also needed for the pressure, so that the incompressibility condition

is not violated, we start our algorithm from a stationary state as obtained via

Newton–Raphson iteration for the stationary Navier–Stokes equation. Alternative

approaches have been proposed using one step of the trapezoid method [28], but

this does not get around the problem of finding suitably consistent initial conditions

for the pressures)

This approach of integrating out the time dimension via a solver for ordinary

differential equations (ODE), instead of discretizing the time direction also via

finite elements is sometimes referred to as “semi-discretization”. Generally, using

ODE-solver for integrating out the time-evolution of partial differential equations is

referred to as “method of lines” [33]. The advantage of using semi-discretizations is

that the mature theories for the field of numerical ODE’s are available which classify

the solvers with respect to accuracy and stability: For other approaches (Newmark-

method), no such understanding exists, while incorporating finite elements in

the time domain would enforce continuity, which would render the possibility of

obtaining discontinuous pressures in time in the DAE-formulation practically useless.

A final consideration in the choice of BDF2 was that the same time integrator can

be used with with our polygonal discrete element simulation: That the integration

process can be conducted in parallel reduces the risk that the integrator of one

program part feeds noise into the other program part.

3.2.6 Newton–Raphson Method

The Newton–Raphson Method is a root-finding method which starts with an initial

guess x0 and iterates through the process until the difference between current

approximated value and the previous one is small enough. For finding the root

for a function f(x), i.e. the value of x such that f(x) = 0, the Newton–Raphson
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method (which can be derived from the Taylor expansion [34]) is given as

xi+1 = xi −
f(xi)

f ′(xi)
, (3.68)

where the subscripts indicate the iteration steps (not time evolution). Note that the

method requires the evaluation of both the function f(x) and its derivative f ′(x) at

xi. The equation uses the slope of the function at xi and extends its tangent line

until it crosses zero. The next guess xi+1 is then set to be the abscissa of the zero

crossing (see Fig. 3.6). This process is repeated with the next guess until the residue

(f(xi)/f
′(xi) = xi − xi+1) is lower than a certain tolerance. The method converges

quadratically, i.e. in each iteration, the number of valid digits doubles [24].

f(x)

x

xi

f(xi)

Tangent line equation: f(xi) + f ′(xi)(x− xi)

xi

xi+1

Fig. 3.6 Geometrical interpretation of the Newton–Raphson method: The local
derivative f ′(xi) of the function is extrapolated to find the next guess xi+1.

The Newton–Raphson method can be extended higher dimensions and used to

solved nonlinear systems of equations; instead of the derivative, the Jacobian is used.

For a set of n simultaneous equations of the form,

F (x) = 0, (3.69)

where F (x) = [F1(x) F2(x) . . . Fn(x)]
⊺ and the variables x = [x1 x2 . . . xn]

⊺, a

set of linear equations for the residue vector ∆x(i+1) which is used to compute the

next guess x(i+1) is given as4

J
(
x(i)
)
·∆x(i) = F

(
x(i)
)
, (3.70)

where the superscripts indicate the iteration-step and J is the Jacobian of F ,

J =
∂F

∂x
. (3.71)

4Detailed derivation can be found in [24].
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With the Newton increment ∆x(i) from solving the linear algebraic equation

Eq. (3.70), next guesses can be computed as

x(i+1) = x(i) −∆x(i). (3.72)

This process is then repeated until the residue∆x(i) is lower than a certain tolerance

as in the one-dimensional case.

The Gâteaux derivate of a function F in the direction of an arbitrary increment

∆x,

F ′
G(x)∆x = lim

ε→0

F (x+ ε∆x)− F (x)

ε
, (3.73)

is used to define the left-hand side of Eq. (3.70) when applying Newton’s method in

solving the flow problem Eq. (3.63). We start with rewriting the Navier–Stokes

Eq. (3.7) Eq. (3.7) and continuity Eq. (3.2) equations by substituting the time-

derivative terms with the BDF2 formulation Eq. (3.62) as

H(un+1, vn+1, Pn+1) =
1 + 2ωn

τn(1 + ωn)
un+1 −

1 + ωn

τn
un +

ω2
n

τn(1 + ωn)
un−1

+ un+1
∂un+1

∂x
+ vn+1

∂un+1

∂y
+
∂Pn+1

∂x

− ν

(
∂2un+1

∂x2
+
∂2un+1

∂y2

)
−X, (3.74)

V (un+1, vn+1, Pn+1) =
1 + 2ωn

τn(1 + ωn)
vn+1 −

1 + ωn

τn
vn +

ω2
n

τn(1 + ωn)
vn−1

+ un+1
∂vn+1

∂x
+ vn+1

∂vn+1

∂y
+
∂Pn+1

∂y

− ν

(
∂2vn+1

∂x2
+
∂2vn+1

∂y2

)
− Y, (3.75)

C(un+1, vn+1) =
∂un+1

∂x
+
∂vn+1

∂y
. (3.76)

Using the definition at Eq. (3.73), the resulting Gâteaux derivative of the horizontal

equation Eq. (3.74) in the above at the guesses u(i), v(i), P (i) and the Newton

increment ∆u(i), ∆v(i), ∆P (i) is

H ′
G

(
u(i), v(i), P (i)

) (
∆u(i),∆v(i),∆P (i)

)
= lim

ε→0

H
(
u(i) +∆u(i), v(i) +∆v(i), P (i) +∆P (i)

)
−H

(
u(i), v(i), P (i)

)
ε

,

= Ωn∆u
(i) +∆u(i)

∂u(i)

∂x
+ u(i)

∂∆u(i)

∂x
+∆v(i)

∂u(i)

∂y
+ v(i)

∂∆u(i)

∂y
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+
∂∆P (i)

∂x
+ ν

(
∂2∆u(i)

∂x2
+
∂2∆u(i)

∂y2

)
, (3.77)

where Ωn = (1 + 2ωn)/(τn(1 + ωn)). Analogously, for the vertical and continuity

equations we have

V ′
G = Ωn∆v

(i) +∆u(i)
∂v(i)

∂x
+ u(i)

∂∆v(i)

∂x
+∆v(i)

∂v(i)

∂y
+ v(i)

∂∆v(i)

∂y

+
∂∆P (i)

∂y
+ ν

(
∂2∆v(i)

∂x2
+
∂2∆v(i)

∂y2

)
, (3.78)

C ′
G =

∂∆u(i)

∂x
+
∂∆v(i)

∂y
. (3.79)

Using the same approach from Section 3.2.1, the weak forms for the Gâteaux

derivatives are obtained as∫∫
ϕ(x)

(
Ωn∆u

(i) +∆u(i)
∂u(i)

∂x
+ u(i)

∂∆u(i)

∂x
+∆v(i)

∂u(i)

∂y
+ v(i)

∂∆u(i)

∂y

)
−∆P (i)∂ϕ

(x)

∂x
+ ν

(
∂∆u(i)

∂x

∂ϕ(x)

∂x
+
∂∆u(i)

∂y

∂ϕ(x)

∂y

)
dx dy, (3.80)∫∫

ϕ(y)

(
Ωn∆v

(i) +∆u(i)
∂v(i)

∂x
+ u(i)

∂∆v(i)

∂x
+∆v(i)

∂v(i)

∂y
+ v(i)

∂∆v(i)

∂y

)
−∆P (i)∂ϕ

(y)

∂y
+ ν

(
∂∆v(i)

∂x

∂ϕ(y)

∂x
+
∂∆v(i)

∂y

∂ϕ(y)

∂y

)
dx dy, (3.81)∫∫

ψ

(
∂∆u(i)

∂x
+
∂∆u(i)

∂y

)
dx dy, (3.82)

where ϕ(x), ϕ(y) and ψ are the test functions. Discretization of the weak form can

be done by rewriting the guesses, Newton increments and test functions as linear

combinations of the basis functions (as in Section 3.2.2),

u(i) = φ⊺
(x)u

(i), ∆u(i) = φ⊺
(x)∆u

(i), ϕ(x) = φ⊺
(x)Φ

∗
(x),

v(i) = φ⊺
(y)v

(i), ∆v(i) = φ⊺
(y)∆v

(i), ϕ(y) = φ⊺
(y)Φ

∗
(y),

P (i) = ψ⊺P (i), ∆P (i) = ψ⊺∆P (i), ψ = ψ⊺Ψ∗.

The resulting equations in matrix-vector representation are 1 + 2ωn

τn(1 + ωn)
M +K + L −C

C⊺ 0


≡ J

{
∆u(i)

∆P (i)

}
≡ ∆x

, (3.83)
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where the partitioned matrices M , K and C are the same as those in Section 3.2.2,

with

L =

[
L1 L1,2

L2,1 L2

]
, (3.84)

∆u(i) =
{(

∆u
(i)
1

)⊺ (
∆u

(i)
2

)⊺}⊺
. (3.85)

The matrices in L are defined as,

Lα =

∫
φ(α)

(
φ⊺

(1)u
(i)
1

∂φ⊺
(α)

∂x1
+φ⊺

(2)u
(i)
2

∂φ⊺
(α)

∂x2
+
∂φ⊺

(α)u
(i)
α

∂xα
φ⊺

(α)

)
, (3.86)

Lα,β =

∫
φ(α)

(
∂φ⊺

(α)u
(i)
α

∂xβ
φ⊺

(β)

)
. (3.87)

Note that u
(i)
1 and u

(i)
2 are the guesses for the Newton–Raphson method which

are given, hence the formulation in Eq. (3.83) is linear. The resulting matrix is

equivalent to the Jacobian J and the vector is equivalent to the residual vector

∆x = {(∆u(i))⊺ (∆P (i))⊺}⊺ in Eq. (3.70). The Jacobian is also a sparse matrix i.e.

(contains a large number of zero-elements, see Fig. 3.7) which allows us to make use

of the functions for sparse matrices in MATLAB to store the Jacobian for saving

memory and speed up the computing time. The right-hand side F of Eq. (3.70) can

be obtained by substituting un+1 and P n+1 in the DAE-form for the Navier–Stokes

equation in the FEM-formulation Eq. (3.63) with the guesses u(i) and P (i). Finally,

the residual vector ∆x is obtained by solving the linear algebraic equation

J∆x = F , (3.88)

then with it, the next guesses are computed as in Eq. (3.72).

We have tested three different solvers on the linear systems of the form Ax = b

Eq. (3.88): The unsymmetric multifrontal LU factorization (UMFPACK) [35], the

generalized minimal residual method (GMRES)5 and the biconjugate gradient

stabilized method (BiCGSTAB(l)). All three methods are known for their efficiency

when solving sparse linear systems and are available in MATLAB as built-in

functions: x = A\B, gmres() and bicgstabl() respectively. The Krylov-subspace-

based iterative solvers (GMRES and BiCGSTAB(l)) are based on the idea of

orthogonal vectors and applicable to non-symmetric matrices. In GMRES [36],

a sequence of orthogonal vectors are computed, combined and formulated into

5There is an established GMRES-FEM-method, but it is for compressible flows.
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Fig. 3.7 The Jacobian matrix for the Newton–Raphson method when solving flow
problem with FEM. Number of velocity nodes is 6576 and pressure nodes is 957.
The non-zero elements are shown in black.

a least squares problem. The approximated solution of the linear systems x is

obtained by minimizing the Euclidean norm of the residual in the least squares

problem. On the other hand, BiCGSTAB(l) [37] minimizes the residual constructed

from the bi-conjugate gradient (Bi-CG) residuals and the l degree minimal residual

polynomials. Compared to the original Bi-CG method, BiCGSTAB(l) has much

better convergence behavior and does not need the computation of the transpose

matrix in Bi-CG. Fig. 3.8 shows our profiling results of the mentioned methods

with Jacobian matrices of different number of nonzero elements in our simulation.

The profiling results of GMRES are excluded from the graph to improve the

readability as the time consumption of the GMRES is about 30 times higher than

the BiCGSTAB(l). We found that the Krylov-solvers turned out to be inefficient

in our case as the velocities and the pressures in have different scaling. Bandwidth

reduction (reordering of the nonzero elements closer to the diagonal) via the Cuthill–

McKee algorithm [38] shows no significant improvement on the BiCGSTAB(l) either.

Due to the different magnitudes between the velocities and the pressures, we are

taking both the absolute error

ϵabs = |∆x|, (3.89)

and relative error

ϵrel =

∣∣∣∣ ∆x

x(i+1)

∣∣∣∣ , (3.90)
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Fig. 3.8 Profiling results of solving the linear system Ax = b with matrices A of
different number of nonzero elements using BiCGSTAB(l) (black), BiCGSTAB(l)
with Cuthill–McKee (gray) and UMFPACK (white).

into account when evaluating the residual for stopping the Newton–Raphson

iterations. The iterations is terminated when all elements ∆xa in the residual vector

are smaller than

max
(
ϵ̃rel
∣∣x(i+1)

a

∣∣ , ϵ̃abs), (3.91)

where the relative tolerance ϵ̃rel = 10−6 and absolute tolerance ϵ̃tol = 10−8. As the

solution vector contains both velocities and pressures, and the relative magnitude

of the pressures is about 20 times larger than of the velocities, in a future version a

parameter will be introduced which will fix the relative magnitude of the tolerances

between pressures and velocities.

The Newton–Raphson method does critically depend on the starting value:

While for suitable starting values, they convergence is quadratic, for unsuitable start-

ing values the iteration diverges very fast towards infinity. For the implementation

in the BDF2-scheme, the predicted value of the velocities via “generalized leapfrog”

Eq. (3.64) and the pressure from previous time-step are usually sufficient starting

values. A diverging iteration has usually been the signature of other problems in

the simulation (unsuitable or inconsistent grid, problematic boundary conditions or

sudden, unphysical changes in the boundary conditions like abrupt force changes

between the particles).
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3.3 Automatic Mesh Generation

In order to combine the finite element method with the discrete element method,

the very first step is to generate the triangular finite element meshes for the Taylor–

Hood elements (Section 3.2.4) in the fluid phase around the particles. For the finite

element method, triangular meshes should be close to equilateral and certainly not

degenerate. A large angle in a triangle gives a bad approximation of the derivatives

and thus a large error, so as a rule of thumb, all angles should be smaller that

135◦ [39]. To guarantee the quality of the mesh, we need a fully automatic mesh

generator which is capable of generating valid grids (in the FEM-sense: space-

filling and without obtuse angles) “on the fly” in every time-step over arbitrary

domains. The information of the specified geometric boundary of the domain and

the required distribution of the element size should be sufficient, without additional

assumptions. This leads to our development of an automatic mesh generation

using the constrained Delaunay triangulation and relaxation algorithm to optimize

the meshes [40]. In principle, a mesh-refinement at high gradients of the flow-

fields (velocities, pressure) would be desirable to improve the accuracy, but in the

current version of the program, a mesh-generation for a flow around several hundred

parameters was ambitious enough.

3.3.1 Constrained Delaunay Triangulation

Meshes generated by using Delaunay triangulation have the following properties:

1. To avoid degeneracies, a Delaunay triangle is constructed when only three grid

points are co-circular.

2. The interior of a circumcircle associated with each Delaunay triangle contains

no other grid point.

3. The domain formed by the resulting Delaunay triangles is a convex hull of the

grid points.

These properties maximize the minimum angle for all triangles and tend to avoid

triangles with sharp corners. Therefore, the Delaunay triangulation is a good tool to

generate meshes for the finite element method as we need the triangular mesh to be

as equilateral as possible. Dual to the Delaunay triangulation is the Voronoi lattice

(see Fig. 3.9). The Voronoi cell around a mesh point is that region which is closer

to that mesh point than to any other point. In turn, each vertex of a Voronoi cell
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is the center of a circle on which all three corners of a triangle from the Delaunay

triangulation are situated. In other words, each Voronoi vertex is associated with a

particular Delaunay triangle.

Fig. 3.9 Delaunay triangulation of set of a randomly positioned grid points ( )
inside a rectangular domain. The corresponding Voronoi diagram is shown with

and its vertices as . The interior of a circumcircle associated with each
Delaunay triangle contains no other grid point.

However, the mathematically strict definition for the Delaunay triangulation is

not suitable to generate the meshes needed for systems with particles inside the

fluid, as the corresponding domain is not simply connected any more. Running the

Delaunay-triangulation without precaution for our simulation would create triangles

with edges which cut through neighboring particles (see Fig. 3.10 (a)). A Delaunay

constructions which fulfills these additional conditions (but not necessarily all

conditions of the mathematically exact Delaunay construction) is called constrained

Delaunay triangulation. The introduction of the constraints leads to violatons of the

“properly” Delaunay triangulated meshes as the interior of a circumcircle of some

Delaunay triangles may contain other grid points as shown in Fig. 3.10 (b).
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(a) (b)

Fig. 3.10 Mesh generation around particles with (a) mathematically exact
Delaunay triangulation, where triangles are cutting through a particle and (b)
constrained Delaunay triangulation: Introduction of the constraints leads to not
so properly Delaunay triangulated meshes, i.e. the circumcircle of a triangle (in
thick lines) contains other grid points.

3.3.2 Relaxation Algorithm

In order to process the constrained Delaunay triangles in Section 3.3.1 even further,

we are going to introduce a method to systematically improve the quality of the

meshes with a “relaxation algorithm” where edges of a triangular mesh are treated

as linear springs which are under compression (if the edge is shorter than the average

of the three edge lengths) or tension (if an edge is longer than the average of the

three edge lengths) as long as the triangles are not equilateral and which try to relax

towards an equilibrium of an equilateral shape.

Relaxation Algorithm in One Dimension

We start with the explanation with a one-dimensional case where points x1, x2, . . . , xn

are randomly positioned on a straight line as shown in Fig. 3.11. To obtain

equidistant points, we introduce linear springs with spring constant k. The force

Fi between neighboring points depends on the average distance between the points,

equal to

x̄ =
1

m− 1

n−1∑
i=1

(xi+1 − xi) . (3.92)

Then one obtains Hooke’s law for a linear chain for x2, . . . , xn−1

Fi = k ((xi+1 − xi)− x̄− [(xi − xi−1)− x̄]) , (3.93)

which means that springs are under compression if their endpoints are closer than

x̄ and under tension if their endpoints are at a larger distance than x̄. This reduces
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to

ẍi = xi+1 + xi−1 − 2xi, (3.94)

with spring constant k = 1 and unit mass. Accordingly, the xi will experience

forces from the left and the right, and the sum of this forces will give the direction

towards the equilibrium positions. If such a grid-point xi(t) oscillates around an

equilibrium position x0i , x
0
i is the time-independent approximation to xi(t), which is

equivalent to the zero order. If there is no equilibrium, the zero order approximation

will change with time and move towards the actual equilibrium position. Zeroth-

order time-integrators can be obtained by manipulating higher order integrators and

introducing controlled errors, e.g. for the second-order Verlet method [41] which is

convenient to obtain the position vector r(t) from position-dependent accelerations

r̈ as

rn+1 = 2rn − rn−1 + τ 2r̈n +O(τ 4). (3.95)

Then, we obtain a zeroth-order integrator by introducing a first-order error

rn = rn−1 +O(τ), (3.96)

as

rn+1 = rn + τ 2r̈n +O(τ). (3.97)

As can be seen in Fig. 3.11, this integrator is able to obtain the equilibria of

mechanical systems described in Eq. (3.94).

The convergence can be derived in the follwowing way: For a particle positioned

at xn = x0 + ρ in a potential

Ψ(ρ) = ψ0 + ψ2ρ
2 + · · · , (3.98)

where ψ2 > 0 and the equilibrium is at x0, the acceleration of the particle (for unit

mass) is

ẍ(ρ) = −∇Ψ(ρ) = −2ψ2ρ+ · · · . (3.99)

Substituting the above equations into the zeroth-order approximation Eq. (3.97)

xn+1 = x0 + ρ+ τ 2 (−2ψ2ρ+ · · · )

≈ x0 + ρ (1− 2ψ2τ
2)︸ ︷︷ ︸

−1<···<1

, (3.100)
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Fig. 3.11 Convergence of randomly spaced n points on the y-axis with interactions
of linear springs between neighboring points towards the equilibrium (equidistant
spacing) using the integrator from Eq. (3.97). The endpoints x1 and xn are fixed so
that their position will not change.

shows us that for sufficiently small time-step 0 < τ < 1/
√
ψ2 , the resulting the new

position xn+1 will be closer to the equilibrium x0 than the old position xn = x0 + ρ.

Only for the force equilibrium at ρ = 0, no force acts on the particle and the particle

will remain there. On the other hand, unphysical oscillations from one step to the

next will occur if the time-step is too large and the amplitudes may even diverge

beyond a certain critical time-step.

Relaxation Algorithm in Two Dimensions

F 3

r3

F 1

r1

F 2

r2

Fig. 3.12 Edges of triangular mesh treated as linear spring for relaxation algorithm.
r1, r2 and r3 are the position vectors of the vertices.

For the two-dimensional case which should be used for th grid-relaxation,

additionally the directions must be introduced. Again we want to use the zeroth-

order method to relax the vertices of a triangular mesh to obtain a mesh with
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triangles which are as close to equilateral as possible. As shown in Fig. 3.12, the edges

of the triangle are treated as linear spring. Using the oriented particle connections

l12 = r1 − r2 and l13 = r1 − r3, the force F 1 on r1 can be written as

F 1 = −
(
|l12| − l̃

) l12
|l12|

−
(
|l13| − l̃

) l13
|l13|

, (3.101)

where l̃ is the arithmetic mean length of all three of the triangles edges. Like in the

one-dimensional case, point r1 will experience an attracting force from r2 or r3 if

the distance between them is larger than l̃, and a repulsive force if the distance is

smaller than l̃. With the force definition and the zeroth-order method in Eq. (3.97),

we can run the relaxation algorithm on triangular meshes to improve the quality

of the meshes in a systematic way. During the process, the constrained Delaunay

triangulation can be performed again after some relaxation steps in order to prevent

triangles from overlapping with the boundaries. The actual time consumption of

our remeshing algorithm is not a concern: For a fluid simulation around granular

particles, the fluid part (in particular, in our case, the solver) can be expected to

take much more computer time than the remeshing or the relaxation algorithm.

Moreover, the time consumption may increase as the introduction of the particles

introduces an additional smaller timescale with the particle collision time, compared

to the fluid alone, at least for high viscosities. On the other hand, simulations

nevertheless indicate that for the Reynolds numbers achievable, the collision time

for simulations with fluid were larger than for particle simulations without fluid.

Fig. 3.13 (b) shows the resulting meshes by applying the relaxation algorithm

on the constrained Delaunay triangles in Fig. 3.10 (b). One can use the following

equation to measure the quality of a triangle [42, 43]

q =
4
√
3A

l212 + l223 + l231
, (3.102)

where A is the area of the triangle and l12, l23 and l31 are the length of the triangle’s

edges. While an equilateral triangle (l12 = l23 = l31) has q = 1, q > 0.6 is still

considered to be of good quality . The application of the relaxation algorithm in

Fig. 3.13 (b) reduces the number of bad quality meshes from 17% to 6%. Also the

number of meshes close to equilateral triangle (q > 0.95) increases from 7% to 38%.

The remaining triangles are near or connected to the boundaries have fixed vertices

therefore not much can be done geometrically to improve the quality via relaxation

algorithm.

One can extend the relaxation algorithm even further by stiffening the springs in
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(a) (b)

Fig. 3.13 (a) Constrained Delaunay triangulation and (b) the application of the
relaxation algorithm. Bad quality meshes (q ≤ 0.6) are shown in dark gray.

the regions where higher accuracies are needed to obtain finer meshes. Fig. 3.14

shows result of mesh adaption due to an external field. The region with light

shading indicates high amplitude (region where higher accuracy is needed) while

the dark region indicates low amplitude. By setting the values of the spring

constants proportional to the field’s amplitude, we were able to generate finer

meshes in the field with high amplitude from an ordinary square grid systematically

and automatically and improve the resolution and accuracy. While such a mesh-

refinement has turned out to be very practicable, for performance reasons we would

be equally interested in mesh coarsening in regions where the field gradients are

small, so that the number of grid points and the computer time could be reduced

considerably. Unfortunately, we have currently no algorithm available for that

purpose.
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Fig. 3.14 Grid adaption (right) by applying the relaxation algorithm on a triangular
mesh of a square grid with a Gaussian potential (left).



Chapter 4

Simulation of Flow Problems with

Free Boundaries

Before we put the granular particles in our flow simulation, we will use our finite

element code to simulation flow problem with free surface to “test the waters”. As

a minimum requirement, one can consider that the flow field is computed so that

the volume does not increase and flow velocities are correctly reproduced. The

motion of the fluid surface is obtained by integrating out the velocities obtained

from the FEM-simulation with integrators for ordinary differential equations (ODEs)

without the need of additional data structures or interpolated mesh points as in the

front tracking method. This approach minimizes the computational overhead for

the surface, both with respect to data structures and to mathematical formalism

[44]. As verification, we compare water column simulations with the lubrication

approximation by Huppert [45] for high viscosity fluid and with the experimental

data for water by Martin and Moyce [1] for low viscosity fluid.

4.1 Philosophy of the Surface Computation

While there is a mathematically developed theory for continua and their discretiza-

tions, the treatment of the respective surfaces is in a much less mature state. All

standard solutions which deal with surfaces in fluid flow have their drawbacks,

as the computational complexity is increased considerably compared to the flow

problem without surfaces. Among the first approaches was the marker-and-cell

method [27, 46] for finite differences where the introduction of the “markers”

and the respective boundary conditions leads to totally new mathematical entities

(interpolations, new mesh points) which are absent in the original flow problem

69
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and the respective simulation approach. Several standard methods have evolved

which are used to deal with surfaces which we nevertheless will try to avoid:

Level set methods [47] have become standard tools to smoothly interpolate data

which are available only on discrete meshpoints of (usually) rectangular grids.

Nevertheless, these methods in computer science with a relatively weak focus on

symmetries like Galilean invariance or isotropy which are relevant for mechanical

problems. We cannot be sure that the solutions would be the same under a

rotation of the coordinate system (which is partly due to the underlying grid), nor

does a computer-graphics based smooth interpolation guarantee that the physical

properties of the surface are consistent with the underlying fluid. For finite element

simulations, the modeling of the surface with an additional advection equation has

been proposed [48], but the mathematical complexity of introducing an additional

partial differential equation to the Navier–Stokes equations may be too demanding

for many users both with respect to the additional mathematical effort and the

underlying mathematical assumptions.

As we have a finite element simulation described in Chapter 3 which allows to

restructure and remesh the grid in every time-step, we would rather stick with our

FEM-grid without introducing additional data structures for a variety of reasons:

“Economy of thought”: “Ockham’s razor” is the principle which states that

unnecessary principles should not be introduced to solve a problem: When

our grid already defines the boundary, why introduce another “grid” for the

boundary? In particular, we are rather averse to introduce an entity which

does not exist in nature: What is the surface of the fluid should simultaneously

be its physical boundary, so the surface information should also be sufficient

to model the boundary without additional theoretical assumptions or models.

Mechanic impedance: When we introduce, additionally to the boundary, a

geometric entity with which the fluid interacts, there is a risk that this will alter

the mechanic impedance (the way and speed that mechanic signals propagate

over the boundary, or how they are reflected there) without the possibility to

control or evaluate this effect.

Practicability: We also want to simulate porous media with particles and many

thousand fluid interstices etc. . Introducing such an immense number of

additional boundaries, including the corresponding overlaps or intersections

may lead to non-unique algorithmic choice.
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Analogy: Finite elements methods in structural mechanics don’t need additional

data structures to describe the surfaces. So shouldn’t we be able to do without

additional constructs als in fluid modeling?

4.2 Surface Modeling via ODE-Integrators

Integrators for ordinary differential integrators (ODEs) used in mechanics are

basically methods to predict from positions xi(t) and velocities vi(t) the values for

xi(t + τ). From this standpoint, it should be sufficient to chose a suitably chosen

ODE-solver, together with the positions of the surface xi(t) and the velocities vi(t)

obtained from the FEM-code to obtain the new surface positions xi(t). Since we do

not want to deform our P2P1-elements into something with curved boundaries, we

move only the corners of the triangles and interpolate the center points of the edges

accordingly (see Fig. 4.1).

4.2.1 Choosing the Integrators

Surface

Fluid bulk

x
(i,j)
n+1

x
(i+1,j)
n+1x

(i−1,j)
n+1

v
(i−1,j)
n τ

v
(i,j)
n τ

v
(i+1,j)
n τ

Fig. 4.1 Free surface modeling: moving the surface of the fluid using the obtained
velocities from the finite element method. In order to avoid deformation in the
P2P1-elements, only the corners of the triangles will be moved, and the midpoints
are interpolated accordingly.

The semi-discrete implementation is already implemented in our FEM-equations

i.e. a FEM-grid with finite difference formulation of the time-evolution. Advancing

the surface points of the FEM-grid with ODE-integrators will change the grid

points in every time-step, and also make changes in the neighboring layers of points

necessary, but as we have already opted for an approach which allows to restructure
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the mesh in every time-step, there results no additional burden from this approach.

In the simplest case, with the position of the surface at the discrete time-step n

is given for the lattice site (i, j) as x
(i,j)
n , and the velocity obtained by our FEM-

procedure on the free surface as v
(i,j)
n (for a sketch, see Fig. 4.1) we could compute

the new position of the lattice point via an Euler-integration for a timestep τ as

x
(i,j)
n+1 = x

(i,j)
n + v(i,j)n τ. (4.1)

Of course, due to the bad stability- and accuracy-properties of the Euler-method, it

is advisable to look for ODE-solvers with better numerical properties, i.e. essentially

for higher order solution alternatives for Eq. (4.1).

Since we have to make use of the velocities at the intervals which are determined

by the BDF2-integration of the internal flow, we have the velocity available only

at discrete times. Therefore, one-step methods (i.e. Runge–Kutta-type methods

which use several function evaluations per time-step) are not suitable. Multi-step-

methods, on the other hand, can compute new values xijn+1 from the old values

xijn , x
ij
n−1, x

ij
n−2, . . . and the corresponding derivatives vijn , v

ij
n−1, v

ij
n−2, . . . . (Our BDF2-

integrator is also a multistep-method, but due to the implicitness of the equations,

it is not suitable for the surface computation.) For changing positions of the x . . .

near the surface, interpolation-methods for retracting surfaces and extrapolation

for advancing will become necessary.1 Due to the imponderables with respect

to interpolation, and because the v . . . are computed with limited accuracy order

anyway, a too higher order for the integrator of the surfaces is not suitable: A

high order of the integrator, with larger errors (noise) on the input data will lead

to a large error (or noise) for the surface computation. As a test-case, we chose

to investigate gravity waves: An initial sinusoidal surface wave of not too large

amplitude (and therefore, non-turbulent flow) evolves with time in a domain which

is bounded by walls on the left and the right. Because the evolution is intuitively

clear (viscous damping of the amplitude, vanishing amplitude on the walls), one can

detect problems with the algorithms (perturbations spreading out from the near-

wall region, unphysical wriggles forming on the surface, etc.) immediately from the

graphical output. The effect of the integrator for gravitation waves in Fig. 4.2 was

investigated and we found that the second-order Adams–Bashforth (AB2) method

among various multi-step methods turned out to have the best volume conservation

1Interpolation methods for varying timesteps instead of the equidistant n, n+1, . . . are already
available as standard tools in the field of numerical ODE’s.
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Fig. 4.3[49]

x
(i,j)
n+1 = x

(i,j)
n + τ

(
3

2
v(i,j)n − 1

2
v
(i,j)
n−1

)
. (4.2)

Both Euler Eq. (4.1) and third-order methods gave worse results: The Euler method,

because it lacks accuracy and stability i.e. the order is lower than the accuracy with

which the velocities are obtained, and the third-order methods probably because the

accuracy order is the same as the order of the noise for the velocity computation, so

the noise from the velocities is propagates as if were a physical signal. We refrained

from rescaling the volume etc. to see the immediately conservation ability for the

integrators.
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Fig. 4.2 Snapshots from the time evolution of the gravity wave with the triangular
meshes in (a), pressure distribution in (b), flow velocities in (c) and (d).

4.2.2 Using Interpolated Velocities

We have up to now only discussed how to obtain the new positions from the “old”

velocities using the either the Euler method eqs. Eq. (4.1) or the AB2 Eq. (4.2).

We also have to discuss at which position we evaluate the velocities. Since with

the FEM-simulation an we have Eulerian formulation where the evaluation of the

velocities takes place at given grid-points, we should not just use the old positions

at different time-steps: As the philosophy of our method is, rather than trace the
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Fig. 4.3 Time evolution of the volume for the surface integration with Euler and
Adams–Bashforth of second order . The exact value is 32[m2]. When the motion
of the surfaces slows down, the increase of the error also slows down. Symbols are
not drawn for every time-step to keep the figure readable.

movement of the lattice points in a Lagrangian way, to predict the new position of

the surface nodes xn+1, we choose for the Adams–Bashforth method

xn+1 = xn + τ

{
3

2
vn(xn)−

1

2
vn−1(xn)

}
, (4.3)

i.e. using both current vn and previous flow velocities vn−1 at the the current position

of the grid-point xn. If the surface grid-point xn is inside the fluid domain of the

previous step (n − 1), e.g. the surface is falling, we obtain the flow velocity of the

previous step at that position vn−1(xn) via interpolation. This interpolation from

the FEM-method inside the domain is unique and smooth. Unfortunately, if the

grid-point is located a the region where there was no fluid at the previous time-step,

we have to abandon the use of Eq. (4.3) and just use the velocities of the grid point

at the previous time-step in AB2 (see Fig. 4.4),

xn+1 = xn + τ

{
3

2
vn(xn)−

1

2
vn−1(xn−1)

}
, (4.4)

i.e. instead of the velocity of the flow field at the position, we use the velocity of the

moving material point.
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Fluid surface at n

Fluid surface at n− 1

Fluid bulk at n− 1

Fig. 4.4 Choosing the velocity data for the ODE-integrator to compute the surface
node for the next time-step (n + 1): Using the interpolated value vn−1(xn) if the
current surface node is inside the fluid domain of previous step (n − 1). If the
current surface node is located a the region where there was no fluid at the previous
time-step, use the velocities of the grid point at the previous time-step .

4.3 Boundary Conditions

While the common boundary conditions in fluid mechanics are no-slip conditions,

these conditions are obviously invalid at the fluid surface, else it would not be

possible that a fluid meniscus which touches a boundary rises or falls. The necessity

for the modification in comparison to conventional fluid simulations becomes obvious

in Fig. 4.5. The fluid flow on the wall inside the boundaries of the fluid is indeed

implemented as no-slip boundary condition ( in Fig. 4.5). However, to model

realistically the movement of the water front near a solid boundary, we have to give

Expected
Movement

Surface

Fluid

Expected
Movement

B
ou

n
d
a
ry

Surface

Fluid

Fig. 4.5 Treatment of boundary conditions near the between the surface and the
solid wall: Enforcing no-slip condition (normal and tangential velocities set to zero)
on the boundaries nodes except the ones of the outmost element. For the outmost
element , the normal nodal velocity is set to zero while the tangential velocity is
computed. Pressures on the surface are set to zero. For other nodes which do not
touch the wall (including the surface nodes) the velocities are computed.
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up the conventional no-slip condition in tangential direction between fluids and solids

near the surface: Obviously, the water surface must be allowed to move. That does

not mean that the water flow occurs directly at the the boundary: It is much more

easy to imagine that fluid moves from the free surface towards the boundary as shown

in Fig. 4.6 (or, for falling water levels, from the boundary towards the free surface),

as in Fig. 4.2 (c)). When one fills up a glass with water, the fluid meniscus rises with

a finite velocity, proportional to the filling rate. For the boundary, this manifests

with a finite vertical velocity, incompatible with non-slip periodic boundaries. While

non-slip boundary conditions are a reasonable extrapolation for macroscopic volume

elements towards the boundary (vanishing momentum transfer), they are unsuitable

to describe surface wetting phenomena (finite material transport). While the normal

component of the flow velocity on the wall is still zero, the tangential velocity

component on the fluid surface which contacts the wall must be computed from

Eq. (3.63), not be assigned. An element of the finite element method may represent,

depending on the problem, either a finite domain or an infinitesimal domain of the

problem. Accordingly, the velocities of more or less nodes have to be computed, and

there a priori three choice to compute the tangential velocity:

1. for the outmost node of the outmost element,

2. for the outmost element (for our P2-discretization of the velocities, that would

mean three nodes) or

3. for the nodes of several elements near the boundary.

As for the actual issue with the finite element is the condition of the resulting

matrices, which must be inverted to complete the Newton–Raphson-step, the

Fluid Surface

(a) (b)

Fig. 4.6 Physical (black arrows) and finite element flow (gray arrows). Comparison
between flow at at no-slip boundary (a) and the rising of the surface near a no-slip
boundary (b). While on length-scales smaller than the mesh size, there may be
microscopically more complicated flow patterns as in (b), for macroscopic modeling
this leads to the computation of the tangential velocity.
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issue has to be resolved according to numerical practicability rather than due to

theoretical argument. For large viscosities (ν = 10−1 [m2/s]), it is enough to move

only the outmost lattice point, i.e. the contact point between surface and boundary.

For small viscosities, it turned out that the wave front propagation needed the

computation of the tangential velocities of at least one element (three nodes) else

the simulation became unstable. As far as the inclusion of more nodes is concerned:

As the results for one and two elements were consistent, we stuck to the computation

of the tangential velocities for a single element. For a free surface in the absence of

surface tension, every node on the surface is force-free so the pressures are set to zero

as boundary conditions. The initial pressure profile we computed with zero pressure

on the surface, which in the fluid bulk lead to a hydrostatic pressure distribution,

where the pressure was higher below “hills”, and lower under “valleys” of the wave.

4.4 Simulation of the Collapse of a Water Column

Beyond the volume conservation, which is basically only a consistency criterion, the

true physicality of the simulation approach will manifest in the actual spreading

of a fluid front. For the verification of our algorithm, we choose to simulate the

collapse of a water column, i.e. the time evolution of a water-“step” which is a

popular test-case, especially for Lagrangian (particle-based) methods. As discussed

in Section 4.3, for a free surface in the absence of surface tension therefore for every

node on the surface (including the vertical face), the pressures are set to zero. Setting

the pressures only on the horizontal face to zero leads to hydrostatic pressure profile

which would be the same as for a bounding wall, therefore inhibit any time evolution

of the water column (see Fig. 4.7). This approach makes it easy to control the time

for the “breaking of the dam”, while is experimentally rather difficult to remove a

wall without disturbing the neighboring fluid.

4.4.1 Water Column with High Viscosity

We start to discuss the problem for high viscosity, where analytical reference data are

available and the computation is more stable and less computationally demanding.

Huppert [45] derived the dependence on time t of the advance of the front Z in the

lubrication approximation as

Z(t) = 1.411

(
gq3

3ν

) 1
5

t
1
5 (4.5)
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Fig. 4.7 (a) Hydrostatic pressure profile which inhibits the movement of the water
column resulting from setting the boundary conditions of the pressures: only
pressure nodes on the horizontal face (thick line) are set to zero which means that
the flow is of the water step is blocked. (b) Every node on the surface (thick line)
is set to zero which is the “correct” pressure profile in the moment where the wall
is removed and the water step is allowed to flow towards the right.
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Fig. 4.8 Time evolution for the fronts in for the collapse of the square water column
at ν = 10−1 [m2/s]. The corner travels towards the right.

for an initial area q, gravity g and viscosity ν. In the lubrication approximation,

effects other than the viscosity, i.e. effects due to inertia, surface tension etc. are

being neglected and the height h of the water column is much smaller than its width

l [50]. Thought the latter assumption is rather problematic for our case, our data in

Fig. 4.9 compare rather well with Eq. (4.5) at ν = 10−1 [m2/s]. Changes of ν over a

reasonable range of parameters did not lead to any changes in the curve. One could

interpret the good correspondence as either a confirmation of our simulation method

by the lubrication approximation or vice versa. The lubrication approximation

predicts a faster advance than the one found in the simulation (Fig. 4.9): This is

consistent with the fact that the lubrication approximation neglects inertia effects,

which the simulation takes into account, and which delay the propagation of the
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front. In Fig. 4.8 the shape of the corner is preserved as a nook and travels towards

the right: This is an effect of our purely hydrodynamic simulation: When we

tentatively included surface tension, the nook vanished.
Z
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Fig. 4.9 Comparison of the time evolution of the advancing wave front under the
lubrication approximation ( ) with our simulation ν = 10−1 [m2/s] ( ).

4.4.2 Water Column with Low Viscosity

0.11s 0.22s0.087s

Initial Filling

0.04
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0 0.05 0.1 0.15 0.2 0.25

x

y

Fig. 4.10 Advance of the fluid front according to the experiment of Martin and
Moyce [1] for the collapse of a fluid column of 57 × 57 [mm] at ν = 10−6 [m2/s].
The line-width is approximately the width of the shadows in the original frames,
graphics is flipped compared to Martin and Moyce, for easier comparison with the
simulation.

For the “breaking dam problem” at higher Reynolds numbers, no reliable

analytical results exist. Therefore, we have to compare our simulation with
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experimental data rather than with other simulations or theories. Especially the

experiment by Martin and Moyce [1] is of interest, as for their dimensions of the

vessels, air resistance can be neglected, exactly the condition which we have in our

simulation. We have extracted the outlines of the evolution of the step (slightly

smoothed, as the surface is denoted by shadows of strongly varying width due to

scattering by the menisci on the walls in the rather dark snapshots where the frames

are taken in the 1950’s with a high-speed camera of 300 frames per second) and

associated them with the corresponding points in time in Fig. 4.10. In the following,

we focus on the shape for short time scales, which we consider more meaningful

for the verisimilitude of the simulation than the long-term time evolution. For long

times, geometric details are smeared out and momentum-conservation and energy-

decay dominate which is why it is the preferred regime for particle methods [8].
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Fig. 4.11 Time evolution for the fronts in for the collapse of the square water
column at ν = 10−6 [m2/s] and step-size ∆t = 1.0 × 10−5. The corner travels
downward as in Fig. 4.10.

In the experiment Fig. 4.10, waves are forming, the surface looses convexity both

on the left and on the right side. This may be due to the fact that the “release” of the

dam is experimentally not unproblematic, as Martin and Moyce fixed impregnated

paper with wax and the release was accomplished by melting the wax instantaneously

by the current flow from an array of batteries. It is this dynamics which may trigger

the formation of waves. What is striking in the high-speed pictures of Martin and

Moyce [1] is, that the initial sharp step-shape between initial water level and vertical

boundary (dotted oval in Fig. 4.10) is rather well preserved during the collapse,

at least within the limits set by the shadows due to light scattering by the fluid

meniscus. Moreover, the upper surfaces looses convexity both on the left and on the

right side. For high viscosity ν = 10−1 [m2/s] in Fig. 4.8 in Section 4.4.1, the cusp

from the initial square profile had traveled fast towards the front. In Fig. 4.11 and

the enlarged portion of the columns in Fig. 4.12, for the flow with low viscosity (ν =

10−6 [m2/s]) one can see that the upper right corner of the column travels downward

as observed in the experimental data in Fig. 4.10. The resilience of the “corner” on
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Fig. 4.12 Comparison of flow patterns at the upper right corner of the column for
high (a) and low (b) viscosity at t = 0.0375 [s]. For high viscosity fluid, the upper
right corner travels towards the front while for low viscosity fluid, the corner travels
downward.

the right is rather surprising, not to say counter-intuitive, but as the pressures in

upper right corner are negligible, there are no forces which could cause the decay of

the angle. The differenct behavior of the corner can be understood when we look at

the flow field in the simulation in Fig. 4.11: While for high viscosity fluid, the flow

field of the upper right corner points diagonally downward out of the fluid front, for

low viscosity the flow field points downward parallel to the front. On the left side

of the simulation in Fig. 4.11, a nook-shaped surface instability develops between

t = 0.1 and 0.2 [s] which would be suppressed if surface tension were implemented:

The fluid level sinks faster than the meniscus on the left boundary. The height

gradient and the flow away from the boundary introduces a “downhill-flow” towards

the right, which bumps into the slower moving surface and flushes up a wake, as in

water rapids.

While the shape of the wave-front for low viscosity flow may looks unphysical,

Fig. 4.13 Snapshots showing the shape of the wave-front for low viscosity flow.
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Fig. 4.14 Comparison of the computed time evolution of the advance of the fronts
with viscosity of ν = 10−1( ), ν = 10−2( ), ν = 10−3( ), and ν = 10−6( ), with the
experimental data of Martin and Moyce [1] ( ).

the intention of this study was to find out how accurately the flow velocity could be

reproduced with large grid size for a purely “hydrodynamical simulation” without

the implementation of surface tension; For physical systems, adhesion with the

surface and surface tension will modify the shape, but not the flow velocity.

Further, the stability of the simulation for such relatively large mesh sizes proof

that “stability” is often not an issue for the FEM-simulation.

In Fig. 4.14 we show the time evolution of the advance of the front of water

columns with different viscosity with the experimental data from Martin and Moyce

[1]. For low viscosities, i.e. that of water, we were able to obtain a very good

agreement with the experimental data (diamonds in Fig. 4.14). That the speed of

the wavefront from the experiment is reproduced correctly by the simulation is also a

corroboration of the validity of the FEM-approach, as the surface modeling with the

AB-integrator works with the velocities from the FEM-approach without needing

the additional data structures as the conventional ones.



Chapter 5

Simulation of Fluid with

Suspended Particles

This chapter shows how we combine the simulation for the granular particles with

the simulation for the fluid. This includes the choice of boundary conditions of the

fluid, and the computation of external forces on the particles. The particle-fluid

simulation is then being verified via the computation of the wall correction factor.

5.1 Coupling the Discrete Element Method and

the Finite Element Method

ii+ 1

riri+1

ω
v

Fig. 5.1 Non-slip boundary conditions on the nodes around the particles:
Velocities vbci = v + ω × ri on the i-th node are computed from the predicted
velocity v and angular velocity ω of the particle.

We have shown in Chapter 2 and Chapter 3 that we have working formulation of

both particle and fluid simulation. For the fluid to “see” the particle, the boundary

condition of the interfaces are set to non-slip, i.e. the flow velocities of the fluid

83
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boundary around the particle are computed from the predicted velocity and angular

velocity of the particle (see Fig. 5.1) as the velocities of the respective point on the

particle boundary. Fig. 5.2 shows the flowchart of the simulation when combining

the particle simulation with the fluid simulation. The box with gray background

indicates that the process belongs to the discrete element method in Chapter 2.

Initialize particle
geometries and set
physical parameters

Predictor →
Update of Particle

Outline

Overlap and
force computations

Corrector step

Set boundary conditions
with new particles’ velocities

Solve the BDF2-FEM formulation
with Newton–Raphson method

Mesh generation

Set boundary conditions
for FEM

Compute stationary
solution of the flow

Update of Particle Outline

Compute forces from fluid
on the particles

Set boundary conditions

Solve the BDF2-FEM formulation
of the Navier-Stokes equations
with Newton–Raphson method

Mesh generation

Corrector step

Fig. 5.2 Flowchart of the simulation fluid with suspended polygonal particles.
Processes which belong to the discrete element method are on the left (in gray).

After solving the BDF2-FEM formulation of the Navier–Stokes equation, the
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force from the flow which acts on the particle is computed by integrating the fluid

stress tensor over the particle’s surface [51]

FD =

∫
Γ

{−pδij + µf ((∇u) + (∇u)⊺)} · n̂ dl, (5.1)

where the first part describes the normal forces on the boundary due to the pressure,

and the second part the tangential forces due to the drag. The δij is the usual

Kronecker delta with

δij =

0 if i ̸= j,

1 if i = j,
(5.2)

µf [Pa · s] is the dynamic viscosity, and the Jacobian matrix ∇u denotes the velocity

gradient

(∇u)ji =
∂uj
∂xi

. (5.3)

n̂ denotes the normal vector of the surface element pointing outwards from the

particle (see Fig. 5.4). Eq. (5.1) is comprised of a pressure part (form drag)

FDp
x =

∫
Γ

−p · nx dl, (5.4)

FDp
y =

∫
Γ

−p · ny dl, (5.5)

which becomes finite when the particle moves different velocities than the fluid in

the propagation direction. The viscous part (friction drag)

FDv
x = µf

∫
Γ

2nx
∂u

∂x
+ ny

(
∂u

∂y
+
∂v

∂x

)
dl, (5.6)

FDv
y = µf

∫
Γ

2ny
∂v

∂y
+ nx

(
∂u

∂y
+
∂v

∂x

)
dl (5.7)

is finite if the fluid velocity is different from the particle velocity to the left and right

in propagation direction and a velocity gradient towards the particle boundary is

finite. The shape of the object and the angle of attack determine which type of drag

will have higher effect on the object. If the object has a streamlined body, the drag

force will be dominated by the viscous part; whereas if the object is a bluff body, the

force will be dominated by the pressure part (see Fig. 5.3). To put the computation

of the force in practice, in our code:

• We look for all FEM-elements whose have an edge which is on the border of a

particle boundary. (Elements which have only a corner on a particle boundary
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do not have to be dealt with, as these corners are also corners of particles with

edges on the particle boundary.)

• For each element, we compute the form drag and friction drag using the

numerical equivalents for for Eq. (5.1), respectively Eq. (5.4)–(5.7) which will

be discussed in the following sections.

• The resulting force is then obtained by summing all the fluid forces which result

from elements on the particle boundary. Additionally, the external forces have

to be computed.

• Finally, from the forces on the boundary the torques on the particle are

evaluated.

High

Low

Effect of
form drag

Effect of
friction drag

Low

High

Fig. 5.3 The effect of the form drag and friction drag on the object immersed in
fluid depends on the shape and angle of attack: streamlined body (top) will be
dominated by the friction drag, bluff body (bottom) will be dominated by the form
drag (modified according to Nakayama et al. [52].)

5.1.1 Form Drag

The forces can be obtained from the elements which are attached on the particle’s

edge (see Fig. 5.4). Recall that in Chapter 3 we explained that the approximation

of pressures with P2P1-elements uses affine functions as

p = ψ⊺p,
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∆e

u1, v1, p1 u5, v5

u4, v4

u2, v2, p2

u6, v6

u3, v3, p3

n̂

L

Fig. 5.4 Computation of the fluid force on the particle from the nodal values (ui,
vi, pi) of an FEM-element ∆e. n̂ denotes the normal vector of the surface element.
As only the forces on lines of finite length are relevant, elements which have only a
corner on the boundary of the particle do not have to be treated.

and the shape functions ψ can be written in the local area coordinates ψ =

{L1 L2 L3}⊺ so that we have the pressures as

p = L1p1 + L2p2 + L3p3. (5.8)

To obtain the form drag in x-direction, we substitute the above into Eq. (5.4)

FDp
x = −nx

∫
Γ

(L1p1 + L2p2 + L3p3) dl. (5.9)

For the element ∆e in Fig. 5.4, since the integration will be performed along the

edge from the first to the second node on the particle’s boundary, L3 will be zero

along the edge, so the drag force becomes

(FDp
x )∆e = −nx

∫
Γ

(L1p1 + L2p2) dl, (5.10)

Integrating over the one-dimensional line element Eq. (3.58) yields

(FDp
x )∆e = −nx

p1 + p2
2

. (5.11)

which is the average of the nodal value of the pressures on the particle’s edge, where

L is the length of the edge. The y-direction form drag is obtained analogously as

(FDp
y )∆e = −ny

p1 + p2
2

L. (5.12)
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5.1.2 Friction Drag

The computation of the viscous part of the force is more complicated as it involves

the gradients of the velocities which in the P2P1-elements are approximated with

quadratic functions. We start with the computation of the partial derivative of u

with respect of x using the local coordinates L = {L1 L2 L3}⊺,

∂u

∂x
=

∂u

∂L1

∂L1

∂x
+

∂u

∂L2

∂L2

∂x
+

∂u

∂L3

∂L3

∂x
,

=
∂L⊺

∂x

∂u

∂L
. (5.13)

The velocity u is written again as the linear combination of the basis functions

u = φ⊺u, (5.14)

where the φ are formulated in local area coordinates as

φ =
{
L1(2L1 − 1) L2(2L2 − 1) L3(2L3 − 1) 4L2L3 4L3L1 4L1L2

}⊺
. (5.15)

Here, u = {u1 u2 . . . u6}⊺ are the nodal values of the velocities obtained as the

solution of the Navier–Stokes equations. Substituting the velocities into Eq. (5.13)

yields

∂u

∂x
=
∂L⊺

∂x

∂φ⊺

∂L
u (5.16)

=
∂L⊺

∂x
,

4L1 − 1 0 0 0 4L3 4L2

0 4L2 − 1 0 4L3 0 4L1

0 0 4L3 − 1 4L2 4L1 0

u. (5.17)

Referring back to Eq. (3.55) and Eq. (3.56) in Section 3.2.4, we know that both ∂L
∂x

and ∂L
∂y

are independent from the local coordinates

∂L

∂x
=
{
B1 B2 B3

}⊺
, (5.18)

∂L

∂y
=
{
C1 C2 C3

}⊺
, (5.19)

and can be computed from positions of the vertices of the triangular mesh using

Eq. (3.46) and Eq. (3.47). Now it is clear that to evaluate the integral on the velocity
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gradients Eq. (5.1), we only have to evaluate the matrix ∂φ⊺
∂L∫

Γ

∂u

∂x
dl =

∂L⊺

∂x

[∫
Γ

∂φ⊺

∂L
dl

]
u, (5.20)

using Eq. (3.58). Again with Fig. 5.4 as an example where L3 = 0 along the particle’s

edge, we obtain

∫
Γ,1→2

∂φ⊺

∂L
dl =

∫
Γ

4L1 − 1 0 0 0 0 4L2

0 4L2 − 1 0 0 0 4L1

0 0 −1 4L2 4L1 0

 dl

=

1 0 0 0 0 2

0 1 0 0 0 2

0 0 −1 2 2 0

L. (5.21)

When the connecting edge is formed by the second and third nodes (L1 = 0),

∫
Γ,2→3

∂φ⊺

∂L
dl =

−1 0 0 0 2 2

0 1 0 2 0 0

0 0 1 2 0 0

L, (5.22)

and if the edge is formed by the first and third nodes (L2 = 0),

∫
Γ,1→3

∂φ⊺

∂L
dl =

1 0 0 0 2 0

0 −1 0 2 0 2

0 0 1 0 2 0

L. (5.23)

Using the above approach, we can compute the friction drag from an triangular

element which is attached on the particle’s boundary.

5.1.3 Modeling a Shadow around the Particle

In three dimensional granular materials, one region of the pore-space is practically

never closed off from another region, there are practically always channels between

the particles. In two dimensions, as in Figure 5 a), by default it is easy that already

three particles form a region of the pore-space which is separated from the remaining

pore-space. To model the pore-space in such a way that blocking of pore regions

is avoided also in two dimensions as in the realistic three dimensional system, the

particles are modeled with a core, whose boundary is a boundary of the fluid, and

a “shadow” which is used to for the computation of the interaction between the
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(a)
Thin layer of fluid

(b) (c)

Fig. 5.5 Separated space in straightforward modeling of two-dimensional particles
without shadow in (a), (b) Fluid space (white), shadow by which the particles
interact (light gray) and core (dark gray) which forms the boundary of the fluid flow
and (c) Three-dimensional arrangement of grains which leads to flow between the
particles along the thick lines which is supposed to be mimicked by the shadow on
the left.

granular particles. Inside this shadow, the fluid flow is computed as for the empty

space to obtain a connected pore space, so that no sub-volumes are closed off, as

would be the case for three dimensional particles, see Fig. 5.5. The size ratio between

the whole particle and the core is about 1 : 0.72. The physical meaning of the pore

space is that it is formed by particle asperities of the rods which are equivalent to

the two-dimensional particles so that a connected pore space is formed (see Fig. 5.6).

Fig. 5.6 Pore space formed by particle asperities of the rods which are equivalent
to the two-dimensional particles.
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5.2 Stability and consistence: Two Square Parti-

cles in Fluid

In this section, we will investigate various effects on the simulation under “adverse”

condition, to see which influences would destabilize the simulation so much that it

would become infeasible. First, the physics in the simulation should be independent

of the structure of the underlying grid. Before we tested for correctness, we at least

wanted to see whether there are any artifacts which would even prevent consistency.

A simple test was conducted by releasing two particles (which were separated

with equal distance from the left and right wall, respectively) from the height

of 10.0 [mm] inside a domain of size 60.0 × 30.0 [mm] The difference of dropping

velocities in this symmetrical configuration would indicate possible problems due to

lack of symmetry, stability etc.. Square particles (with length 4.24 [mm]) were chosen

as the right angles at the corners will give the worst flow singularities imaginable

for convex particles. After the particles are released, they sink under the influence

of gravity and come in contact with the ground which is also treated as a particle in

the discrete element method. The dynamic viscosity of the fluid is set to 10−3 [Pa · s]
which gives a Reynolds number of 9.8×10−5. The density for both particles and the

wall is 104 [kg/m3] while the density of the fluid is 1 [kg/m3]. Both discrete element

method and finite element method use the same fixed time-step τ = 7.5 × 10−5 [s].

This means that 15 time-steps are needed to resolve a single dry collision, i.e. a

collision between particles which are not slowed down by the surrounding fluid and

which have no cohesive interaction.

In Fig. 5.7, we show the snapshots of the pressure distribution and the velocity

field of the fluid around the particles before and after their collision with the ground.

In order to observe the effect of the fluid on the particles, we compare with the same

configuration without the fluid. In the plot of the center of mass (in y-direction)

of the particle on the left for both simulations in Fig. 5.8, we can see that when

the particles are sinking, the pressure below them increases. The increase of the

pressure and velocity gradient in the fluid results in a larger force which decelerates

the particles. Therefore, in fluid the velocity of the particle is decreasing before

the collision while in the dry case the velocity of the particle is maximal during

the collision. That the amplitude of the form drag is larger than the friction drag

indicates that we are in the regime which is dominated by the pressures as shown

in Fig. 5.3. Due to the damping effect from the fluid, the particles take longer time

to reach the bottom compared to the situation without fluid. We can also see that
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t = 0.08st = 0.04s

t = 0.02st = 0.00s

0.02 0.04 0.060.02 0.04 0.06
0

0.01

0.02

0.03

0

0.01

0.02

0.03

Fig. 5.7 Snapshots with velocity fields and pressure distributions of two square
particles sinking under the influence of gravity after being released in a symmetrical
configuration.

the particle bounces upward after the collision for the dry case but not in the fluid

which additionally damps the kinetic energy.

The spikes in the form drag are due to the sudden shape changes of the finite

element grid in the constrained Delaunay decomposition during the simulation. The

time integration with these forces (positions and velocities) is nevertheless stable.

This shows that the stiffly stable integrator the BDF2 fulfilled its purpose: Forces

with non-smooth time-evolutions can be integrated up to smooth velocities and

positions for the particles. In this examples, the triangular meshes were chosen so

large that the edge length were comparable to the edge length of the particle (is that

true, then it should also be mentioned further above). This results in significant force

changes during remeshing. While these force changes could be reduced by choosing

a smaller grid size, in this example we wanted to see whether the limit (minimal

degrees of freedom for the mesh, therefore maximal speed for maximal size of the

triangles) would still give a feasible simulation of the particles (smooth velocities

and trajectories). In our approach, the effect on the particles is more important, as

the particle trajectories can more easily be measured experimentally than the flow

field between neighboring particles, so we would be willing to work with unphysical

flow fields as long as the particle flow is correct for certain cases.

Such stability is not a matter of course: In the next step, we wanted to test how

our simulation was affected by the order of the integrator for the particles. When we
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Fig. 5.8 Above: Form drag and friction drag from the fluid on the left particle.
Below: Center of mass (in y direction) of the left particle for both simulation with
and without fluid.

replaced the Gear predictor-corrector of second order (BDF2) with the fifth order

(BDF5) for the particles the combined fluid-particle code either “explodes”, (the

forces oscillate with increasing magnitude), or residual oscillations with a period of

a single time-step remain if the force from the fluid is reduced by over an order

of magnitude. This is rather surprising, as the higher order BDF5 is constructed

so that the stability should be rather better than BDF2, and for the non-smooth

interactions of the DEM-particles we never encountered any problems. As the BDF5

integrator uses the information of five time-steps, BDF2 uses the information of only

two time-steps: The delayed arrival of the forces from the particles creates noise for

the flow field which cannot be damped out by the fluid part, and feeds back into the

particles. We have to draw the conclusion that time integrators which by themselves

as stable for fluid or particle simulations can be incompatible (even if they are of the

same family) and lead to instabilities if two in itself stable simulations are combined.

Further destabilization can occur if the mesh is restructured too much between the

predictor and the corrector step: for large meshes, the change of the flow from

one mesh to another is not smooth, which in itself does not necessarily lead to a

breakdown of the simulation.
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5.2.1 Verification with Wall Correction Factor

While drag coefficients are the conventional quantity which are used to characterize

the fluid resistance for bodies in infinite regions, for systems with many particles the

wall correction factor (how much larger is the drag in a narrow geometry compared

to the infinite system) is a more meaningful parameter. Although the particles in

our simulation are convex polygons, we compare the value of the wall correction

factor λ(k) with Richou et al. [53] for a circular cylinder due to lack of comparable

reference data for polygonal shape. For this, we chose a dodecagon (12 corners) as

an approximation to the circular shape, to see how close we come to the values for

circular particles. We selected this force computation for sinking particles between

walls because it allows conclusions concerning the accuracy of the particle simulation

and fluid simulation together with the treatment of the boundaries.

The system is set up so that a circular cylinder with radius r is released in a

channel of width 2b as shown in Fig. 5.9. The wall correction factor λ(k) of the drag

force is given as

λ(k) =
Fy(k)

µ · U0

, (5.24)

where FY (k) is the vertical drag force, µ is the dynamic viscosity of the fluid, U0 is

the terminal (sinking-) velocity and k is the aspect ratio between the radius r and

the half of the channel width b

k =
r

b
. (5.25)

The two parallel walls are of height 0.75 [m], while the particle is released at a

0.
7
[m

]

r

0.
75

[m
]

b

Fig. 5.9 Dimensions of the system for
computing the wall correction factor.
The width of the system is determined
by Eq. (5.25).

rmax

rmin

rmax

rmin

Fig. 5.10 Initial orientations of the
polygon for computing the wall correction
factor with corner-down (left) and edge-
down (right).
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height of 0.7 [m]. Since the cross-section of our cylinder is a polygon instead of a

perfect circular disk, there is a certain arbitrariness in the choice of the “radius” of

the corresponding approximated disk. While the distance between the center to a

corner was rmax = 0.015 [m], alternatively we could also use the the closest distance

to the boundary

rmin = rmax · cos (π/n), (5.26)

where n = 12 is the number of corners of the polygon (see Fig. 5.10), or the radius

of the disk with the same area A,

raver =
√
A/π . (5.27)

The aspect ratio of k is fixed to 0.125 which gives wall correction factor λ(k) =

10.8020 for circular particles at Re = 2 × 10−4[53]. For our dodecagon, the system

width b will be

bmax = rmax/0.125, (5.28)

bmin = rmin/0.125, (5.29)

baver = raver/0.125, (5.30)

respectively. Computations are both done for particle for “corner-down” and “edge-

down” orientations (see Fig. 5.10). The density of the fluid is 1000 [kg/m3] while

the density of the particle is 5000 [kg/m3]. The viscosity of the fluid is chosen as

500 [Pa · s] so that we obtain Reynolds number comparable to Re = 2 × 10−4 in

Richou et al. [53].

In Table 5.1, we compare our numerical results with Richou et al. for the aspect

ratio k = 0.1250. As we are far enough away from the ground (the measurements

are taken in the upper third of the vessel), our values are not corrected with respect

to the influence from the ground, and our results are close to Richou et al. with

deviation of the order of 0.2% to 6%. The value from Richou et al. deviates from

the theoretical values from the formulae by Faxen and Takaishi (cited after Richou)

by up to 0.23%. If we assume that the most important contribution is the distance

from the particle to the wall, the value for rmax for the edge-down particle is the

closest to that of disks, and the agreement can be considered excellent.

It is interesting to compare how other approaches fare in the computation of

this problem. The limiting value for the terminal velocity for a particle falling in

a fluid was computed by Ristow [2] via a MAC-scheme. While the MAC-grid itself

was square, the particle was assumed to be circular, so that the varying overlap
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Table 5.1 Comparison between our numerical and Richou et al.’s results of wall
correction factor λ(k) for k = 0.1250.

Corner-down Edge-down

rmax rmin raver rmax rmin raver

n = 12
U0 [mm/s] 5.89 5.74 5.86 6.12 5.94 5.97

λ(k) 11.24 11.54 11.29 10.83 11.14 11.09

λ(k), Richou et al. (circular disk) 10.8020
λ(k), Faxen (1946). (circular disk) 10.5574
λ(k), Takaishi (1955). (circular disk) 10.7958

between particle and meshes was implemented by the boundary conditions of on the

particle: Choosing the velocity as no-slip (zero) led to velocities with a negative sign

inside the mesh-grids closest to the particle wall compared to the nearest velocities

outside the particles, with different magnitudes depending on the distance of the

mesh points inside and outside the particle to the particle boundary. A remeshing

and an exclusion of the particle volume from the fluid domain in this approach was

not possible. In his study, the fluctuations (see Fig. 5.11 (right)) due to the varying

overlap of the particle over the meshes varied between 2.6% and 5.6% for particle’s

diameter of 1 [cm] to 3 [cm] while the particles had to be resolved in each direction

with the order of then grid-points, i.e. hundreds of MAC-meshes. In Fig. 5.11 (left),

we show our data for a comparable channel and particle diameter of 3 [cm] and

Re ≈ 35 where the fluctuations are only 0.56%, while the particle occupies the area

of about 15 FEM-triangles. Even taking the larger number of degrees of freedom for
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Fig. 5.11 Left: Vertical velocities for a sinking particle via our DEM-FEM code
for diameters D = 3 [cm], µ = 1.0 [Pa · s], Re ≈ 35. Right: Terminal velocity after
Ristow [2, Fig. 2] via a MAC-scheme.
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the FEM into account, our approach is vindicated with respect to smoother data

for the force evolution with much smaller number of the degrees of freedom. The

snapshots of the same simulation are shown in Fig. 5.12.

t = 1.00st = 0.50st = 0.25st = 0.00s

0.05 0.1 0.15 0.2 0.250.05 0.1 0.15 0.2 0.250.05 0.1 0.15 0.2 0.250.05 0.1 0.15 0.2 0.25

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Fig. 5.12 Snapshots with velocity fields and pressure distributions of sinking a
dodecagon under the influence of gravity for the computation of the terminal
velocity.

We can conclude that the common approach of “macroscopic simulations” which

use superficially “cheap” round particle simulations and “cheap” square grids for

particle in fluid is not economic at all, as one has to deal with much smaller

grids and smaller step-sizes and obtains much noisier force-fields acting on the

particles nevertheless. For the future purpose of simulating fluidization phenomena

in landslides and earthquakes, such large noise-amplitudes endanger the physicality

and therefore the meaning of the whole simulation. With our current approach with

polygonal particles in triangular grids, we see that we can obtain minimal noise

amplitudes and minimal degrees of freedom while results for round particles are still

reproducible.



Chapter 6

Applications of the Code

Using the approaches discussed in the previous chapters we conducted two kinds of

numerical experiments: one with a rather slow dynamics, another one relatively more

“violent”. The former will be the investigation of the compaction due to tapping in

two-dimensional granular columns: Here the motion of the particles is not significant,

the distance covered is only a fraction about 2% of the particle diameter over the

whole simulation time scale. The latter is the collapse of a granular column in fluid.

For both simulations, we compare the dry system with the system immersed in a

viscous fluid.

6.1 Effect of the Surrounding fluid on the Com-

paction of Granular Materials by Tapping

Conventionally, the equilibrium state is considered to be the state which is

obtained after “long enough” times so that no changes takes place any more.

For many physical systems, the relaxation from the non-equilibrium state to

the equilibrium proceeds exponentially. Nevertheless, near phase transitions the

relaxation is according to power law behavior, and accordingly, when critical points

are approached, there is a mixture between power-law and exponential behavior. In

the field of “slow dynamics”, phenomena which show power-law (or slower) behavior

even though the system is not near a phase transition are of particular interest.

Power-law behavior allows the methodology (mathematical and otherwise) from the

field of phase transitions to be applied, while even slower relaxation is associated

with disorder transitions (“spin glass systems”).

98
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Since the compaction due to tapping is logarithmically slow [54, 55, 56], the

relaxation of granular materials is considered as a paradigm of the field of “slow”

dynamics For realistic granular materials, the questions of what is an equilibrium

state is not easily settled as the definition of “long enough” in the present of static

(Coulomb) friction, which acts effectively as a constraint of motion, is still not clear.

If a granular material which is initially in a static state is excited, depending on the

excitation (shaking, vibration, pneumatic driving . . . ), the resulting density may be

higher or lower than that of the static state before the excitation. The compaction

under tapping (acceleration of boundaries) of granular columns is here investigated

computationally so that between the excitations, the system can return again to a

static state for both the case of dry material, as well as for particles fully immersed

under a Newtonian viscous fluid.

6.1.1 Previous Studies

Most of the experiments conducted to investigate tapping were for round glass beads

[57, 58, 59, 60]. However, more irregularly shaped [61] and even needle-shaped

particles [62] particles have been investigated recently. In the following, and for

the sake of the simulation, we will assume that the propagation of the “shock” will

be through the granular material only, though in particular in the experiment it

cannot be excluded that some components are transferred also by the walls. Since

the process has a logarithmically slow dynamics, the rule-based models [62, 63, 64]

have been preferred in computational investigations in order to cover large time

scales like cellular automata have been used. They nevertheless have the problem

that physical parameters are difficult to incorporate, while basic physical principles,

like Newton’s “action equal to reaction” principle cannot be applied here. Only

recently, discrete element simulations also have been used [65]. Due to the slowness

of the dynamics, analytical investigations have been undertaken [66] despite the

complexity of the system. One point which should not be forgotten about granular

compaction with tapping is that the long-time limit is not necessarily the densest

packing available for a given kind of material: For some materials, higher packings

have been obtained by first evacuating the vessel with the granular filling and then

letting the air stream in [67]. This also shows that the phenomenology of fluid-

immerse particle systems may be considerably more rich than for dry system, even

if only the effect on the particles is concerned.
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6.1.2 Outline of this Study

We are interested in the difference between dry and fluid-immersed particle systems

in the short time dynamics when a relatively viscous fluid (µf = 1[Pa · s], thousand
times the viscosity of water) is introduced into the pore space. While conventionally

round granular materials are used in the context of tapping, for our polygonal

particles reordering via rotation and rolling is hardly possible, so a different

phenomenology can be expected. We limit ourselves to the initial time of the

compaction as the numerical solution of the flow field is rather more costly than

the DEM-simulation. Nevertheless, as there are hardly any codes for microscopic

simulations, we can obtain informations about the system which are hardly accessible

otherwise. Moreover, we can try to extrapolate to long-term limits by reducing or

altogether switching off the static friction, as will be shown in Section 6.1.5.

Introduction of viscous fluid into the tapping experiment can lead to two

possibilities:

1. One can imagine that it will increase the damping in the relaxation process.

Under these conditions, the dynamics would be slowed down even further.

2. When particle do not push only neighboring particles, but also buoyancy and

inertia of the surrounding fluid transmit the tapping impulse, an improvement

in the transmission of the excitation through the granular column can be

expected.

The question is which element will gain the upper hand: The additional damping

and lubrication by the fluid or the enhanced transmission. For this problem, our

simulations allows to set the idealized parameters, while an experiment would be

affects by changes in the surface chemistry and friction.

6.1.3 Initialization and preparation of the System

The particle shape is constructed using the first method discussed in Section 2.2.1:

By inscribing regular polygons into ellipses (semi-major axis of 1.2, semi-minor axis

of 1, diameter of 5 [mm]) and randomizing the shapes and sizes by changing the

radius rays for the corners randomly by ±10%. Only convex particles are used. The

corner numbers of the particles range between 5 and 9. The initial configuration of

the granular packing is constructed by dropping the 195 particles in the dry DEM-

simulation from initial positions with the center on a regular grid (Fig. 6.1 (a)) and
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Fig. 6.1 (a) Initialization of the system with 195 particles. (b) system with the
particles settled down which is used as initial configuration. (c) Enlarged region of
(b) showing the pore space and triangular meshes around the particles.

wait until the particles have settled down and the vibrations in the agglomerate

are damped out (Fig. 6.1 (b)). In the initial grid (Fig. 6.1 (c)), a stripe of particles

is removed near the left and right boundary to allow the development of stronger

disorder than what is possible if the positions are occupied regularly. Then the

resulting packing is used as the initial configuration for both the dry and the

immersed system.

The friction coefficient of µ = 0.3 (both for the static and dynamic friction, both

between particles as well as between particles and walls) is used for the dry system

as well as for the system of immersed particles, to clear up the differences in the

dynamics which come from the introduction of the fluid. For many particle materials,

the friction coefficient of the fluid-immersed particles would probably be lower. The

Young’s modulus is Y = 106[N/m] (respective to a depth of 1[m]), the damping

constant is 1.5. The Young’s modulus may look small compared to the ones for three

dimensional materials like stone, which are of the order of several hundred gigapascal

but the sound propagation occurs by the contact of particles which in the physical

reality are microscopically rough, i.e. only the contacting surface asperities lead to

the propagation of sound: In that respect, our Young’s modulus is meant to model
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an averaged, smooth surface which is softer than the corresponding asperity-filled

surface of actual experimental materials. The density of the granular particles is

5000[kg/m2] (again, respective to a depth of 1[m]), while the bulk density (including

the pore space) varies between 4195[kg/m3] and 4280[kg/m3], e.g. the porosity of

around 0.39 (including particle shadows), 0.16 (without the particle shadows). It is

not possible in the current code to fill in fluid as in physical systems gradually, so we

have to submerge the system into the fluid all in one. Accordingly, this would lead

to a fast change of interparticle forces due to the effect of the buoyancy. To offset

this effect, for a fluid with density ρ = 1000[kg/m3] and a final target density of the

grains σ = 6000[kg/m3], we set up the particles of the dry system with a density

σ− ρ : When the system is reinitialized with fluid, the equilibrium positions for the

dry systems are then exactly the equilibrium positions of the particle system with

fluid.

6.1.4 Tapping

Tapping (i.e. inserting a shock/pressure wave from the bottom of the system) has

the dual effect that there is a sound wave propagated through the system while the

particle positions are perturbed in such a way that a positional reordering becomes

possible. For modeling the tapping, i.e. conferring an impulse to the particle system

via the boundaries, we have several possibilities. The tapping can be implemented

as

1. a displacement of the boundaries,

2. or a specification of a velocity of the boundary (without displacing the

boundary at all),

3. or as a combination of both.

Because sudden displacements of a neighboring particle can lead to very large shocks,

we opted for keeping the wall position constant and change only the (dummy)

velocity on the walls surface. Next we have to decide which boundaries we want to

manipulate: We can tap either only a part of the boundaries, i.e. the floor, or all the

boundaries. In physical systems, tapping the floor of a cylindrical vessel will lead to a

propagation of the shock also along the cylinders walls: To transmit momentum only

through tapping of the bottom, it would have to be unconnected to the cylinder’s

walls. Because very often it is not clear in the experimental systems how the

tapping affects the bottom system, we decided to investigate both possibilities:
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Tapping of the bottom was used so that the upward propagation of the shock

wave through the system could be measured (Section 6.1.6), and the differences

in shock propagation with and without fluid could be identified. Tapping of the

whole boundary (Section 6.1.6) was used to enforce a more physical macroscopic

settling of the granular matrix.
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Fig. 6.2 Time evolution of the acceleration of a particle in the lowest layer of the
dry simulation (black) and wet simulation (gray) as well as intensity of the original
pulse (dashed line).

The pulse is constructed from a Gaussian

f(t) = a exp

(
−(t− b)2

2c2

)
, (6.1)

where the amplitude of the pulse a is chosen as 100, b = 5× 10−4 and c = 1× 10−4,

see Fig. 6.2. The time between the beginning of one pulse and the beginning of

the next is 0.4[s]. Together with the magnitude of the pulse, we rather quantify

the response, i.e. we give time evolution of the acceleration for a particle in the

lowest layer. The ratio between average acceleration by the pulse and gravitational

acceleration (9.81[m/s2]) was Γ̄ = 17.3, with a maximal value of Γmax = 64.4. While

for the system in fluid, the ratio was Γ̄ = 18.8, with a maximal value of Γmax = 32.7.

As can be seen in Fig. 6.2, the acceleration of a particles contacting the wall is not

exactly equal to the acceleration of the wall itself: The response for the dry system

is only a part of the upward slope, while the the system with fluid, the particle

accelerations is proportional beyond the maximum of the Gaussian, but in both

cases, the amplitude is smaller.
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6.1.5 Evolution of the center of mass

We monitor the evolution of the center of mass over time as the parameter of the

relaxation, rather than the density: As our system does not have many particles, the

uppermost layer consists of relatively many particles, compared to the total system.

Therefore, it is difficult to define the upper boundary of the system and therefore the

density with respect to the upper layer. To avoid ambiguities, as different particles at

the upper layer may be displaced at different speeds (some might even be displaced

upward), and to be able to compare systems of different dimensions, we use the

position of the center of mass scaled to 1 as the parameter which is observed for the

settling.
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Fig. 6.3 Position of the center of mass for reducing the coefficient of friction µ.

Vibration of particles in sliding contact is known to lead to continuous slipping

(“creep” [18]). Therefore, we computed the relaxation of the dry system without

fluid from the initial configuration when the friction coefficient is reduced from 0.3

to lower values down to 0.0, see Fig. 6.3. The packing density increases (i.e. the

center of mass is lowered) monotonously with lowered coefficient of friction. This

should give a plausible long-term limit, as vibration or tapping leads to a momentary

reduction of the contact, which allows slipping, as would a reduction of the friction

coefficient. The packing for vanishing static friction with coefficient µ = 0.0 is

therefore a limiting case for the packing density, though it may not be actually

reached, depending on the parameters (amplitude, frequency) of the tapping pulse.

Fig. 6.4 shows that the the center of mass is lowered not according to a logarithmic
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dependence, but according to a power law. Additionally, one can see in Fig. 6.3 that

the vibration is damped stronger if the friction coefficient is high. Why one could

say that this should be predictability so, one should remember that our friction law

is not exact, but a model (see section 2.1.3): That the damping improves with the

friction model shows that the model is physical. With respect to the two energy

dissipation mechanisms in the contact model one can say the following: The effect

of the normal damping in Eq. (2.7) is weaker than that of the Coulomb friction from

Eq. (2.16).

6.1.6 Results

Tapping of the Bottom Only

The shock wave induced by the tapping on the bottom is shown in Fig. 6.5 as the

height of that particle which experiences the strongest dislocation from one time-

step to the next versus time. In principle, this way of plotting actually shows the

propagation of the sound wave, and the maxima of the sound wave at different times

allows to identify the sound velocity. Nevertheless, there are several particles at

different height are only weakly connected themselves in the granular matrix, so that

their rattling inside a “cage” of particles which are stiffly connected in the matrix is

hardly damped, especially for the system without fluid (strings of the same symbols

at different height in Fig. 6.5). The sound wave in the dry system propagates with

a speed of 2.36 [m/s], while in the immersed system, it propagates with 3.68 [m/s].

The sound velocity of the continuum material would be 14.1 [m/s] for the dry and
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Fig. 6.4 “Final” potential energy of the wide system with different coefficients of
friction µ in double logarithmic plots ( ) and the fitting (solid line).
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Fig. 6.5 Shock propagation through the system for the dry (∗) and the immersed
system ( ) for tapping of the bottom. The symbols denote the position of the particle
with the maximal dislocation over the time of the vibration pulse (see Fig. 6.2) for
a given time-step. The wavefronts for the immersed system are indicated by the
dash-dotted line, for the dry system by the dashed line to guide the eye.

12.9 [m/s] for the immersed material due to the density difference necessary due to

the initialization. We repeat that the fluid is incompressible, while the pressure

wave propagates only through the granular matrix. The corresponding fronts of

the sound waves are indicated in Fig. 6.5 with dash-dotted (immersed system) and

dashed (dry system) lines. The fluid immersed system shows a significantly higher

sound velocity than the dry system. This means that the surrounding fluid helps to

stiffen the interparticle contacts (see Fig. 6.6) and speed up the propagation speed

of the shock wave. The sound wave is so much higher than in [5], because due to

the compaction on the bottom, the particle contacts are pre-stressed and therefore

much stiffer than on the surface.

The compaction results for the system which is tapped on the bottom are

dry (weak) link (stronger) link with fluid

Fig. 6.6 The incompressible fluid helps to stiffen the interparticle contacts and
leads to higher sound velocity.
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shown in Fig. 6.7. The vibrations are damped more strongly (actually, practically

overdamped) in the fluid than in the dry system. While initially, the centers of mass

of both the dry and the immersed particle system started out at 1, the center of

mass of the dry system falls faster, as can be seen by the increasing distance between

the gray and the black curve in Fig. 6.7.
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Fig. 6.7 Compaction of system with tapping only the bottom for the dry (above,
solid line in gray) and the immersed particles (above, solid line in black), as well as
the latter zoomed (below).

Tapping of the Whole Wall

The compaction results for the system for which the tapping is felt at the whole wall

are shown in Fig. 6.8. The initial response amplitude for the system with tapping

of the whole boundary is about 11 times as large than for tapping with the same

intensity on the bottom only. The compaction is consistent with the previous section.

As in the case of tapping of the bottom, when the whole boundary is tapped, the

center of mass in the dry system falls faster: With both systems’ initially centers of

mass of at 1, the gray curve for the dry system separates from the black curve for

the immersed system in Fig. 6.8.
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Fig. 6.8 Compaction of system for with tapping the whole wall for the dry (above,
solid line in gray) and the immersed particles (above, solid line in black), as well as
the latter zoomed (below).

6.1.7 Summary

Our simulation has shown that the addition of (an incompressible) fluid to a granular

assembly can increase the sound velocity in the system, compared to the dry case.

The introduction of fluid into the slow dynamics of compaction of granular particles

via tapping even for our single parameter with only one value for the density and

viscosity showed a considerable variation of effects. For the dynamics of the settling

of the center of mass, introducing the fluid makes the settling slower, even though

the sound propagation is faster.

6.2 Collapse of Granular Column in Fluid

The following research was the article [68] where collapse of a granular column in a

viscous liquid is experimentally investigated. We tried to simulated a similar system,

but mostly due to problems with the high computational effort in the fluid domain,

we could not come close to the particle number of the experimental system, which

for the two-dimensional case would have been of the order of 16000 particles. We

simulate the collapse of granular column in fluid and compare it with the system of
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(d) Dense: Final(c) Loose: Final

(b) Dense: Initial(a) Loose: Initial
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Fig. 6.9 Preparation of the granular columns with loose packing ϕ = 0.767 in (a)
and (c), as well as dense packing ϕ = 0.793 in (b) and (d). After the preparation,
the step with the particles is released by removing the non-contacting particles on
the right.

the same configuration without the fluid. The convex particles are also constructed

in the similar way as in the previous section by inscribing regular polygons into

ellipses (semi-major axis of 1.2, semi-minor axis of 1) and randomize the shapes and

sizes by adding random numbers of ±10% of the radius to the corners. The numbers

of corners of the particles range between 6 and 9. As the experimental paper [68]

used two different granular structures, a loose and a dense one, we decided to use

these different packing densities also in the simulations. To obtain columns with

different bulk densities as in Fig. 6.10, the granular columns are constructed by

dropping the particles in the dry DEM-simulation in different initial configurations:

(a) For the loose column, the particles’ initial configuration are arranged so that

the centroids are positioned on a square grid as in Fig. 6.9 (a).

(b) On the same square grid arrangement, particles’ with 80–120% of the original

radii are used to produce system with larger size dispersion.

(c) For the dense column, the centroids are positioned on a hexagonal grid as in

Fig. 6.9 (b).

(d) Then, on the same hexagonal grid arrangement, particles’ with 80–120% of

the original radii are used to increase its size dispersion.
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The resulting volume fractions ϕ are shown in Fig. 6.10 (a)–(d) respectively.

(d) n = 90
φ = 0.810
n̄c = 3.611

(c) n = 95
φ = 0.793
n̄c = 3.526

(b) n = 90
φ = 0.789
n̄c = 3.211

Number of contacts

(a) n = 90
φ = 0.767
n̄c = 3.211
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Fig. 6.10 The distribution of the number of contacts n̄c for the granular columns
with different volume fractions ϕ and number of particles n.
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Fig. 6.11 Snapshots of the collapse of granular column in fluid for system with
volume fraction of 0.789.

A column of particles on the right side is fixed as a wall, see Fig. 6.9. The

remaining particles which are supposed to move are released from the initial positions

and wait until all the particles have settled down. Though the initial positions

from which the particles are dropped differs from square to hexagonal, the resulting
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packing does not reflect this initial configuration: The volume fractions differ only

by 5.3% and the contact numbers by 10.3% (see Fig. 6.10).

After the particles have settled down, the non-contacting particles which were

previously fixed on the right side of the column in Fig. 6.9 are removed to release

the granular column at t = 0.1 [s]. Both the dry and the immersed system are

conducted from the same initial particle configuration (position, orientation). As

mentioned in the tapping section, the dry system is simulated with particle’s density

of 5000 [kg/m3], while the immersed system with particle’s density of 6000 [kg/m3],

inside a fluid with density 1000 [kg/m3] to offset the effect of buoyancy. The

snapshots of the collapse of granular column for the system immersed in fluid with

volume fraction of 0.789 is shown in Fig. 6.11.

The maximum position of the front over time is given in Fig. 6.12. The decrease

in the final positions of the fronts in the immersed systems is due to the damping

effect from the fluid on the rolling motion of the particles. This shows that for

our system immersed in fluid, rolling of particles becomes less important than for

the corresponding dry systems. Nevertheless, the small number of particles for

such system makes comparisons with experimental results difficult. Rondon et al.

found experimentally that a granular column made of glassbeads will show a faster

collapse for loose packings, and a slower collapse with dense packings [68]. Beyond
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Fig. 6.12 Time evolution of the front position for the dry system (gray) and the
system with particles immersed in fluid (black) with different volume fraction ( :
0.767, : 0.789, : 0.793 and : 0.810). The oscillatory motion of the wave front for
the dry case comes from the rolling forward and backward of the foremost particle.
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the article [68], there is also a video where one can see that Rondon’s mobility of the

granular front is partially due to secondary avalanches which form on steps which

resulted from the initial decay of the front. In our numerical experiments with

smaller number of particles and only small size dispersion the advancing fronts are

rather independent to the volume fraction. In the current state of the research, it

cannot be decided whether the reason that the result is mostly independent of the

initial density is the small number of particles, or the dimensionality (two dimensions

instead of three).
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Fig. 6.13 Sedimentation of 252 polygonal particles of different shapes in a fluid
domain of size 135.6× 90 [mm] with about 3700 triangular elements.
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6.3 Sedimentation of Multiple Particles in a Fluid

Sedimentation is the common term for the the deposition sand settling of granular

materials in fluids. In Fig. 6.13, we shows the snapshots of the simulation of 252

particles (radius of about 3.0 [mm]) sedimenting in the fluid (µf = 1 [Pa · s], ρ =

1000 [kg/m3]) using the same approach as the above. The Reynolds number of the

system is up to Re ≈ 4.2. This shows that our code is able to handle more particles,

with arbitrary convex shape. A single run of the immersed system took up to four

weeks in a dual-core Mac mini. The most expensive part was the computation of

the free fluid, which was resolved by triangles about 1/12th of a particle area.



Chapter 7

Epilogue: Beyond the Scope of

this Thesis

In this chapter, limitations and possible improvements of the current program are

addressed. Necessary extensions, which affect performance and stability, as well as

desirable and possible extensions, and further possible applications of the code in

the current form and with smaller and large modifications are discussed here.

7.1 Performance improvements for future simula-

tions

Grid coarsening The main limitation in the current form is that it is not possible

to coarsen the grid of the fluid domain automatically. This means that even

in regions where the flow field varies only marginally, so that much larger

grids could be used, a grid size similar to the one with strongly varying

flow is necessary. While automatic re-meshing towards smaller grids for

better stability and accuracy is implemented and works, the mesh cannot be

coarsened beyond a standard size of meshes. This is related to the fact that the

mesh size at the boundary cannot be set automatically, which basically limits

the triangle size. This is a big obstacle performance-wise, as the computation

for “dummy regions” of the flow which serve only to put the boundaries far

away consume considerable CPU-time.

Parallelization of the solver Currently, the MATLAB-code uses the UMFPACK-

package [35] for its built-in sparse solver, which is very efficient even for

badly ordered systems. While efficiency for a single core is quite high, the

114
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bottleneck comes with the parallelization: While setting a larger number

of cores is possible, it only increases the CPU-usage for the system, while

the speed of the algorithm does not increase. This means, the algorithms

looks for possibilities for faster solution and distributed execution, but

does not find any. Attempts to use Krylov-space solvers, whose iterative

matrix-vector multiplications allows straightforward parallelization, turned

out impracticable: The convergence was so bad, even for GMRES and the

newest, most powerful member of the family, BiCGSTAB(l), that nowhere

the necessary accuracy for the continuation of the Newton-iteration could be

reached. Even using the first digits of the numerical solution as starting

value did not improve the convergence. We have to conclude that the

equations are scaled to badly that the usage of Krylov-solvers is not possible.

Using straightforward preconditioners did not improve the convergence.

Beyond UMPFPACK, very view alternative codes for sparse solvers exist.

Other parallelized multi-frontal codes are the MUMPS-package [69] and the

PARDISO-package [70] and it would be desirable to implement them (there

are also MATLAB-interfaces) and benchmark them against UMPFPACK. In

the end, this means that improvements in the parallelization of the algorithm

must be left to the developers of the sparse linear algebra packages.

Parallelization via domain decomposition Domain decomposition is a stan-

dard method for many explicit solvers which use relaxation methods. Unfor-

tunately, for the finite element discretization and the non-linear systems which

occur in our simulations, no mathematically exact domain decomposition (lo-

cal computation of the solution on independent subdomains and modification

of the boundaries using additional computations and global communication).

What seems feasible is nevertheless the geometrical distribution of domains

with stationary flow on the boundaries onto different cores. This would at

least speed up the computation for initial phases of the problem, and for

problems with non-violent flow changes.

7.2 Problems which can be tackled by the pro-

gram in its current form

Apart from performance- and system-size issues, the following problems can now be

tackled by the simulation:
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Damping of foundations under water A current problem in the field of civil

engineering with respect to foundations is that there is no method to a priori

compute the effect of groundwater or saturated water on the damping of

foundations. In general, computations are done via finite element methods

where the damping parameter is introduced ad hoc. Accordingly, settling of

foundations under vibration is a common problem which affects building (e.g.

pillars for fast train tracks) which have been unaccounted for in the planning

stage [71]. With our current problem, we can investigate settling effects and

damping effects based on assumptions on the grain interaction.

Brazil-nut effect for liquid-fluid mixtures The rising of larger particles

among smaller particles (“brazil-nut effect”, “size segregation”) in dry granular

materials happens gradually under continuous excitations: Reordering due

to shaking or convection causes the smaller particles to move below larger

particles, so that the larger particles rise. Buoyancy plays no role in this case,

as even particles with higher density (steel) may rise above particles with lower

density (glass beads).

In fluid-saturated media, a much more violent rising of lighter larger bodies

over heavier granulates can be observed: The head of plastic pins rise abruptly

over the surface of layer of loosely deposited sand they were buried in, due

to mere tapping, without continuous excitation. In this case, the pin heads

have indeed lower density than the surrounding sand. The interplay between

granular reordering and fluid dynamical effects, including buoyancy is not yet

understood. This phenomenon may be relevant for the fluidization where

during earthquakes, sewage ducts start rising in the streets, blocking traffic

and rescue effects: In both cases, the triggering mechanism is of relatively

short duration, while the reordering which follows (including fluidization) will

continue when the excitation is already over. The interplay between the

granular matrix, the buoyancy (which may actually be the energy source for

the processes) and the flow in the pore space can be investigated at least in

principle with our program.

Fluidization of fluid-saturated granular materials As for the rising of

particles, fluidization due to external vibrations can be investigated with the

code in the current form. Fluidization may be a bit more difficult, as the

reordering of the granular matrix will be over a wider area and the densities

will vary more strongly: this poses higher demands on the grid generation,

which may need an extension beyond the current stage of the algorithm.
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Flow problems in slopes Calculated over decades as average, land slides due

to strong rains cost more lives in Japan than earthquakes. While in principle

the explanation is that ”the landslide was triggered by strong rain in the

area, the slopes near the landslide can be supposed to have suffered exactly

the same precipitation, while no landslide occurred. In other words, the real

reason for landslides, which can be suspected to be an interaction between

fluid and soil, is still unclear. One can imagine that changes of pressures on

the soil due to the filling of the pore space with water may lead to shear

bands which provide subterranean channels for the water which hollow out

the soil even further. The sudden appearance of springs during strong rains

on slopes is considered a sure sign of danger: This may be flow in shear bands,

nevertheless, the mechanism for that is not understood either. Such scenarios

can be microscopically investigated with out code at least in two dimensions.

Biaxial compression without fluidWhile biaxial compression with the granular

part of the simulation has been performed years ago [72] for the case of

dry particles. Nevertheless, for many technical problems not this “drained”

experiment, but the undrained case is relevant where the pore space is

filled with water. Up no now there is no micromechanic understanding how

lubrication effects and modified inertia will modify the strength behavior.

7.3 Desirable extensions for future simulations

For some applications, some limitations of the simulation code have already been

noticeable. In the following, some desirable modifications for the programs are listed

which can be implemented with predictive programming effort.

7.3.1 Extensions which would improve speed, accuracy or

stability

While the simulation code was written over a period of six years, is was nevertheless

not possible to include various desirable features which could help to improve speed

and stability due to relatively small modifications of the program in its current form.

Nevertheless, these extensions need a more profound understanding of the related

mathematical issues.

Field-dependent grid-refinement While the algorithm is already beyond the

test-stage, a field-dependent grid refinement can be implemented. This is done
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by “stiffening” the springs which consist the edges of the triangles, according

to the absolute value of the fields, respectively their gradients. This means

that vortices moving inside a domain of stratified flow can be simulated with

smaller gridsize and therefore, better accuracy.

Periodic boundary conditions Periodic boundaries are rather difficult to realize

for finite element methods. For finite difference methods, the field amplitudes

are only defined at the stencils, so that with suitable offsets, arbitrary jumps

in the field can be introduced. Accordingly, it is very easy to create a pressure

gradient so that periodic pipe flow flow is introduced. For finite elements, the

fields in the whole domain are given via piecewise linear polynomials, so that

the flow is continuous. The constructs which are necessary to obtain periodic

boundaries with a linear increase of the pressure are explained in Gresho et

al. [28, pp. 707–712].

For spatially periodic flows in x-direction, it would be easier to set the flow

velocities on the lower (and/or) upper boundary and set the connectivity of

the nodes for the elements so that the grid points on leftmost boundary are

simultaneously the grid points on the rightmost boundary. In that case, no

step-like change of the pressure would be necessary.

Improvement of the convergence criteria Currently, the Newton–Raphson

iteration uses the absolute change of the solution Eq. (3.72) as convergence

criterion. While both pressures and velocities occur in the equations, and

because the units are in SI-units1, the numerical values for the pressures

and the velocities have altogether different magnitudes. Currently, relative

weighting of pressures versus velocities is not implemented. A more subtle

treatment of the convergence issue may improve the speed of the simulation

at least in those regimes where the flow does not vary too much.

Stabilization by projection The numerical integration step Eq. (3.63) is a self-

consistent solution of the finite element equations for the velocities under

the constraint of incompressibility, which leads to pressures as Lagrange

parameters. While the equations are solved via Newton–Raphson iteration, so

that the solution fulfills the incompressibility according to convergence criteria,

it is still possible that the solutions violate the incompressibility condition.

1The use of dimensionless units makes no sense, as the fluid system has an all together different
set of dimensionless units than the granular system, so the need to exchange the forces between
both systems and to verify the physicality with experiments makes SI-units the most attractive
choice.
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An additional evaluation of the error, i.e. the degree to which the solution

violates the incompressibility may be a useful tool to determine convergence,

respectively to adapt the time-step.

A violation of the incompressibility seems to be in particular a problem for fast

moving particles in narrow channels for the fluid. Problems with the violation

of constraints for differential algebraic equations are nowadays usually dealt

with via stabilization by projection [73], which means that only that part of the

solution is used which is in the “constraint manifold”, i.e. the mathematical

space which fulfills the constraint. Such an additional projection step may be

necessary to improve the stability of the simulation in particular for violent

particle motion, i.e. for simulations of land slides and the evaluation of damping

effects of the fluid in soils on foundations under sudden external load.

7.3.2 Extensions which make additional phenomenology

accessible for simulation

Hydrophilic or hydrophobic character of particles It turns out that e.g.

sinking velocities of particles depend on the hydrophilic or hydrophobic

character of particles relative to the respective character of the surrounding

fluids. Particles with hydrophobic coating sink fastest in water. [74]. While

in our current simulation, the hydrophilic or hydrophobic affinity is not

implemented, it would be easy to include forces acting on the boundary

additional to the pressures and drag on the surfaces.

Free surfaces with surface tension For the free boundaries in Chapter 4, the

evolution is currently only according the velocities on the surface. Surface

tension can be introduced by specifying forces (pressures) on the nodes of the

surface which are computed based on the curvature of the surface. Due to

the correspondence between third order splines and the elastic tension of rods

due to curvature. Accordingly, surface tension can be computed as a pressure

proportional to the curvature term of splines which connect neighboring surface

elements. A test version of the program showed indeed a faster vanishing of

wrinkles on the surface of the fluid.

Wetting and non-wetting character of surfaces While surface tension can be

understood as the curvature described by the spline connecting neighboring

surface nodes, the wetting property can be understood as the slope of the

splines on the node which lies on the solid surface which consists the fluids
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boundary: According to the character, the contact angle for that slope can

be between 0◦ and 90◦ (high wetting) or between 90◦ and 180◦ (low wetting).

While we have tested an implementation of splines which are computed by the

support points, other mathematical forms exist which take the slope at the

end into account [75]. The physicality can be tested by the rising height and

the shape of fluid menisci in communicating vessels.

Contacting multiple fluid surfaces Contacting multiple fluid surfaces, such

the collapse of a breaking wave so that its tip reaches again the original fluid

surface, is computationally rather problematic: For the current state of the

program, there is no remeshing included for the case that a simply connected

becomes non-simply connected. Further, a collision detection is necessary

to determine where the contact between the approaching fluid fronts closes.

The advancing of the fluid front itself should be treatable with the methods

described in Chapter 4. Also, computation of the fluid flow itself for non-

simply connected FEM-domains itself will not pose any problems, as that is

the geometry for which the program is written anyway. When the issue of the

grid change is solved, from the point of fluid equations, an empty cavity can

collapse without any resistance.

Free surfaces for particulate surfaces While free surfaces of fluids are well

mathematically well defined, for assigning a fluid surface to a rough granular

surface one is on relatively less save ground. While in principle it should be

possible to work with adhesion and surface tension so that the fluid surface

on a particle bed forms by itself, it is not clear whether the resulting surface

might not contain inclusions which do neither belong to the granular nor to

the fluid space, but are filled with “air”. Such multiple contact problems for

are computationally and algorithmically certainly very complex. It would be

easier to define a fluid surface on phenomenological grounds, nevertheless, if

there are crevices between surface particles, it is difficult to give necessary

conditions for the surface. Probably the easiest way to define the surface will

be to define it with a fit to the granular slope along a line through the centers

of mass of the surface particles: For that approach, there is already experience

with the necessary algorithms [76].
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7.4 Possible extensions

In the following, some possible extensions are listed which are obvious due to the

program structure. While the necessary programming effort is rather speculative, it

is nevertheless the minimum of what can be expected in terms of necessary work.

Gas-Fluid simulation, Bubbling In principle it should be possible to simulate

bubbles inside the fluid as empty spaces where the surrounding fluid boundary

has some surface tension, while the pressure of the gas domain is added as

pressure on the fluid boundary.2 As long as the density of the gas is much

smaller than that of the surrounding fluid, the flow processes in the gas can

be neglected.

Fluid-fluid simulation For two different fluid domains, the resulting equations

in Eq. (3.63) will become block-diagonal. The interaction between both fluids

will then be via the pressures on the boundary between the fluids. Simulations

with two fluids will be most interesting if one fluid is hydrophilic and the other

hydrophobic. Accordingly, there will be surface tension and repulsive forces

between the different fluids acting on the boundary between the domains. As

the velocities calculated with the FEM-method are a result of both inertial,

internal and external forces, it should again be possible to advance the

boundaries with the velocities which are computed on the boundary via the

FEM-code.

Gas-fluid-fluid simulation The exploration of oil- and gas-fields deals with the

problem that there are usually hydrophilic (water) and hydrophobic (oil)

layers, together with layers of hydrophilic and hydrophobic rock, as well

as domains filled with gas. The interaction on the boundaries would be

determined between the respective forces between the fluids, respectively

the forces between solids an rocks. The actual practical problem for such

simulations is the large number of parameters which have to be included in

the simulation: 2 for the fluid-solid boundaries, and 3 × 2 for the fluid-fluid

boundaries, including 3 parameters on triple boundaries.

While the particle number would be much too small if for the particle size

sand grains would be assumed (or the corresponding sand stone composed of

2Pressures can be used to uphold boundaries with our simulations: Instead of specifying walls
non-slip and no-inflow conditions, it is possible to set the pressure to the corresponding hydrostatic
values so that the fluid boundary does not move to model e.g. a vessel.
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similar sized grains), to simulate macroscopic volumes, for channels in rock

realistic dynamics could be simulated.

Non-isothermal flow Non-isothermal flow can be realized for the simulation by

simulating the heat equation on the same grid as the fluid: Additionally, for

the heat flow in the granular space, the triangular mesh must be extended

over the granular particles, which is easy, taking e.g. the center of mass

of the polygons as center and triangulating the polygon towards the edges.

Solving the heat equation (respectively, the diffusion equation) on a FEM-

grid is a standard procedure. Additionally, the viscosity has to be defined as

temperature dependent. The simplest approach would then be to solve the

heat equation in one sub-step, update the element-point dependent viscosities

and then compute the solution for the Navier–Stokes equation.

Three dimensions The biggest problem with three dimensions is the CPU-time,

rather than the algorithm. Imagining that we have a two-dimensional domain

with 100×100 = 104 triangles, for the corresponding three dimensional domain

we would have 100 × 100 = 106 tetrahedra, two orders of magnitude more.

In comparison, the additional necessary velocity degrees for the z−directon

(a factor of 1.5) or the nodes which have to be added to a triangle to

obtain tetrahedral elements (10 instead of 6, an additional factor of 1.7) are

negligible. A three-dimensional DEM simulation has been available in the

group [77] now for considerable time, the algorithmic problems are elsewhere.

While the solution of the FEM-equations can proceed as in two dimensions,

the three-dimensional pore space between three dimensional polyhedra is

much more complicated than between two-dimensional polygons. Obtaining

a three-dimensional mesh between three-dimensional polyhedra is the actual

algorithmic challenge for such a simulation.

7.5 Future simulation topics

With some of the above mentioned less complex program modifications, there are

some research topics which could be undertaken in the nearer future.

Earthquake dynamics with dry and fluid-filled granular shear layers

The behavior of shear zones which are filled with rubble and water, as in

the case of earthquake faults in the ocean, is hardly understood. While

there shear simulations for zones filled with granulate, where the shear
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zone can expand and contract [78], there are no simulations where there is

additionally incompressible fluid and the volume is held constant: That is

the actual situation when land masses start moving in large earthquakes.

Nevertheless, running the simulation with periodic boundary conditions once

that modification is available would remove some artificial choices at least for

the boundaries.

Fluidization in earthquakes For the simulation of the fluidization in earth-

quakes, the mesh coarsening will be a necessary requirement, so that

additional buffer zones with fluid can be created without unduly inflating the

computational effort.

Landslides For the simulation of landslides, a meaningful determination of the

fluid zone inside the granular heap will be necessary. In that case, it will be

possible to vary the pore space by changing the width of the “particle shadow”

and to determine critical porosities, as well as mechanisms like shear-band

formation under the weight of the accumulated fluid and the actual fluid flow

in such shear bands.

Space-resolved turbulence For this, the field-dependent mesh refinement and

the realizations of periodic boundary conditions will be necessary. Making use

of the adaptive grid, it seems worthwhile to investigate the relative accuracy of

results for turbulence with fixed and with adaptive grid: Would it be possible

to beat the accuracy for fixed grid if the mesh can actually be adapted to the

actual spatial distribution of the flow field?



Chapter 8

Summary

We have discussed a two-dimensional microscopic (fluid goes around the particles)

simulation method for polygonal granular particles in an incompressible Newtonian

fluid. Our approach uses only the finite elements (FEM) for the incompressible

Newtonian fluid and the discrete elements (DEM) for the particles without the

need of additional data structures for the boundaries. In the discrete element

method, polygonal particles are used: The force is proportional to the area

overlap. The equations of motion of the particles from the corresponding force

laws (elastic contact force, dissipative and frictional forces) are solved via the

backward differentiation formula of 2nd-order (BDF2). The implementation of

the incompressible Navier–Stokes equations via the Galerkin finite element method

(FEM) is formulated as differential algebraic equations (DAE) with the pressures

as the Lagrange parameters. The time integration is again via the Backward-

Difference Formula of second order (BDF2) while the resulting non-linear equations

are solved with the Newton–Raphson methods. The grid is obtained for Taylor–

Hood elements from Delaunay triangulations with additional post-processing via

the relaxation algorithm. For the combination of particle and fluid phase, using

the implicit scheme—BDF2 as the integrator for both phases turned out to be

stable. Even with the dynamic remeshing approach, we are able to obtain reasonable

and “stable” results without large fluctuation in the pressure with reasonable CPU

times; the remeshing effort is computationally much cheaper than the solution of

the equations. For verification of the DEM-FEM code, we computed the wall

correction factor for a regular dodecagon and compared it with analytical and

simulation reference data for circular cylinders. Depending on the radius definition,

the deviation from the simulation data is smaller than the latter’s deviation from

the analytical values. Any further quest for single-particle results would only to
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“precision without accuracy”: Realistic particles in granular materials in general are

rough or have varying diameters and no symmetry, so the many-particle problem

will be rather affected by the disorder (position of the particles and their variation

in shape) than due to errors in the drag coefficient in the second digit.

We extend our fluid simulation method to free surfaces simulation via FEM:

The motion of the surface elements is integrated out according to the velocity data

obtained from the FEM-scheme on the surface. As we perform the time-integration

of the FEM-code, the second-order Adams–Bashforth method turns out to be the

most suitable integrator for the surface motion. We verified our free surfaces code

by simulating the collapse of a water column. For the speed of the wavefronts, we

get excellent agreement for large viscosity with the lubrication approximation. The

agreement of the results with the experimental data for water is a further gratifying

result. Compared to conventional efforts, which try e.g. to solve partial differential

equations for the motion of the surface, the additional effort in our method with

respect to new data structures, modeling assumptions etc. is negligible.

Using the developed code, we compare the compaction due to tapping in dry

granulates to that with the system immersed in a viscous fluid to investigate the

competition between a slowing-down of the dynamics due to the viscous forces of

the fluid and the improved transmission of the tapping pulses through the fluid in

the pore space. Our simulation has shown that the addition of fluid to a granular

assembly can increase the sound velocity in the system, compared to the dry case.

The high viscosity slowed down the compaction, irrespective whether the system

was tapped only on the ground or on the whole boundary. The center of mass of a

nearly square system drops faster for the dry case than for immersed particles. The

granular column simulations show that for systems immersed under fluids, rolling

of particles becomes less important than for the corresponding dry systems.

In this thesis, a working simulation code which can handle multiple polygonal

particles in an incompressible Newtonian fluid has been developed. The current

limitation of the our system size is due to the computation of the free fluid via FEM.

Nevertheless, we have established a basis for future studies on problems which deal

with the interaction between fluids and particles via the DEM-FEM approach. The

limitations and possible improvements of the simulation are addressed in the next

chapter.



Appendix A

Discretization of the Weak Form

of the Navier–Stokes Equations

In this chapter, we show the derivation of the discretized weak form of the Navier–

Stokes Eq. (3.33) and continuity Eq. (3.34) equations, namely the matrices Mα, Kα,

etc. in Eq. (3.35) through Eq. (3.38) in detail. We start with the definitions of the

approximated velocities, pressure and the corresponding test functions as the linear

combination of the basis functions φ(x), φ(y), ψ in vector representation

u = φ⊺
(x)u, ϕ(x) = φ⊺

(x)Φ
∗
(x),

v = φ⊺
(y)v, ϕ(y) = φ⊺

(y)Φ
∗
(y),

P = ψ⊺P , ψ = ψ⊺Ψ∗,

where u, v, and P are the nodal values of the velocities and pressures which are

to be determined and Φ∗
(x), Φ

∗
(y) and Ψ∗ are the nodal values of the test functions.

The weak form is given in Section 3.2.1 as∫∫
ϕ(x)

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
−X

)
− P

∂ϕ(x)

∂x
+ ν

(
∂u

∂x

∂ϕ(x)

∂x
+
∂u

∂y

∂ϕ(x)

∂y

)
dx dy

=

∫
ΓN
u

ϕ(x)Fx dΓ, (3.24)

for the x-component of the Navier–Stokes equations and∫∫
ψ

(
∂u

∂x
+
∂v

∂y

)
dx dy = 0, (3.19)
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for the continuity equation. The discretization can be done by substituting the

approximated values u, v, P and the test functions ϕ(x), ϕ(y), ψ into Eq. (3.24)

and Eq. (3.19) with the basic properties of the transpose operation of a = [ax ay]
⊺,

b = [bx by]
⊺ and c = [cx cy]

⊺

a⊺b = b⊺a,

(a+ b)⊺ = a⊺ + b⊺,

(ab)⊺ = b⊺a⊺,

a (b⊺c) = (ab⊺) c,

and the vector identity

(a+ b) · c = a · c+ b · c,

in mind. Using the properties of the transpose we can first rewrite the test functions

as

ϕ(x) = φ⊺
(x)Φ

∗
(x) = (Φ∗

(x))
⊺φ(x),

ϕ(y) = φ⊺
(y)Φ

∗
(y) = (Φ∗

(y))
⊺φ(y),

ψ = ψ⊺Ψ∗ = (Ψ∗)⊺ψ,

then continue with the discretization as the following:

Time derivative and the external force terms in Eq. (3.24) will give matrix

M1 and the first term in f 1:∫∫
ϕ(x)

(
∂u

∂t
−X

)
dx dy

=

∫∫
(Φ∗

(x))
⊺φ(x)

(
∂φ⊺

(x)u

∂t
−X

)
dx dy,

=

∫∫
(Φ∗

(x))
⊺φ(x)

(
φ⊺

(x)

∂u

∂t
−X

)
dx dy,

= (Φ∗
(x))

⊺
[ ∫∫

φ(x)φ
⊺
(x) dx dy

M1

·∂u
∂t

−
∫∫

φ(x)X dx dy

First term in f1

]
. (A.1)
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Advection terms are discretized to N1(u):∫∫
ϕ(x)

(
u
∂u

∂x
+ v

∂u

∂y

)
dx dy

= (Φ∗
(x))

⊺
[ ∫∫

φ(x)

(
φ⊺

(x)u

(
∂φ⊺

(x)u

∂x

)
+φ⊺

(y)v

(
∂φ⊺

(x)u

∂y

))
dx dy

]
,

= (Φ∗
(x))

⊺
[ ∫∫

φ(x)

(
φ⊺

(x)u
∂φ⊺

(x)

∂x
+φ⊺

(y)v
∂φ⊺

(x)

∂y

)
dx dy

N1(u)

·u
]
. (A.2)

Diffusion term is discretized to K1:∫∫
ν

(
∂u

∂x

∂ϕ(x)

∂x
+
∂u

∂y

∂ϕ(x)

∂y

)
dx dy

=

∫∫
ν

[(
∂φ⊺

(x)u

∂x

)(
∂(Φ∗

(x))
⊺φ(x)

∂x

)
+

(
∂φ⊺

(x)u

∂y

)(
∂(Φ∗

(x))
⊺φ(x)

∂y

)]
dx dy,

=

∫∫
ν

(
∂(Φ∗

(x))
⊺φ(x)

∂x

∂φ⊺
(x)u

∂x
+
∂(Φ∗

(x))
⊺φ(x)

∂y

∂φ⊺
(x)u

∂y

)
dx dy,

= (Φ∗
(x))

⊺
[ ∫∫

ν

(
∂φ(x)

∂x

∂φ⊺
(x)

∂x
+
∂φ(x)

∂y

∂φ⊺
(x)

∂y

)
dx dy

K1

·u
]
. (A.3)

Pressure term to C1:

−
∫∫

P
∂ϕ(x)

∂x
dx dy = −

∫∫
∂ϕ(x)

∂x
P dx dy,

= −
∫∫

∂(Φ∗
(x))

⊺φ(x)

∂x
ψ⊺P dx dy,

= (Φ∗
(x))

⊺
[
−
∫∫

∂φ(x)

∂x
ψ⊺ dx dy

C1

]
P . (A.4)

Neumann-type boundary term to f 1:∫
ΓN
u

ϕ(x)Fx dΓ =

∫
ΓN
u

(Φ∗
(x))

⊺φ(x)Fx dΓ = (Φ∗
(x))

⊺
[ ∫

ΓN
u

φ(x)Fx dΓ

Part of f1

]
. (A.5)
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Continuity equation : ∫∫
ψ

(
∂u

∂x
+
∂v

∂y

)
dx dy = 0,

(Ψ∗)⊺

[∫∫
ψ

(
∂φ⊺

(x)u

∂x
+
∂φ⊺

(y)v

∂y

)
dx dy

]
= 0,

(Ψ∗)⊺

[
−
∫∫

ψ
∂φ⊺

(x)

∂x
dx dy

C⊺
1

·u−
∫∫

ψ
∂φ⊺

(y)

∂y
dx dy

C⊺
2

·v

]
= 0. (A.6)

Putting the resulting equations Eq. (A.1–A.6) leads us to the following

(Φ∗
(x))

⊺

[∫
· · ·

]
= 0, (Φ∗

(y))
⊺

[∫
· · ·

]
= 0, (Ψ∗)⊺

[∫
· · ·

]
= 0,

where the nodal values Φ∗
(x), Φ

∗
(y) and Ψ∗ of the test functions can be placed outside

of the brackets. Considering the arbitrary property of the nodal values1 they will

be dropped out from the resulting equations.

1Φ∗
(x) = Φ∗

(y) = Ψ∗ = 0 tells us nothing about the equations.
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Differential-Algebraic Equations

In this chapter we will discuss the formulation of differential-algebraic equations

(DAE) by as example the simple pendulum. This allows us to discuss the particular

properties of the DAE-formulation in comparison to approaches where the pressures

are dealt with in a different way than as Lagrange multipliers, highlight the

advantages and possible numerical problems. Considering a pendulum with mass

m suspended from a string with length l from the origin in Fig. B.1. We start by

introducing the Lagrange’s equations of motion

d

dt

(
∂L

∂q̇k

)
− ∂L

∂qk
= 0, k = 1, . . . , n, (B.1)

where q1, . . . , qn are the generalized position coordinates and q̇1, . . . , q̇n are the

generalized velocities. The Lagrangian L is defined with the kinetic energy T and

the potential energy U

L = T − U. (B.2)

B.1 Polar Coordinate System

The common way to describe the simple pendulum problem (with a point-mass

as bob) is by using the polar coordinate system (θ, r), which we mention

here for completeness sake. This approach gets around the problem of dealing

with two dependent variables (x, y) by annihilating one variable via a coordinate

transformation. The kinetic energy, potential energy and the Lagrangian can be
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l cos θ

q̇ = [ẋ ẏ]⊺

(0, 0)

mg

θ

q = [x y]⊺

l

Fig. B.1 Simple pendulum problem with point mass m suspended from a string
with length l from the origin.

written as

T =
1

2
m
(
θ̇l
)2
, (B.3)

U = mgl(1− cos θ), (B.4)

L =
1

2
mθ̇2l2 −mgl +mg cos θ, (B.5)

where g denotes the gravitational acceleration and θ is the angle measured from the

vertical (We will use the italic g, as is common in the field of DAE’s, in various

instances are the constraint function). Substituting L into the Lagrange’s equations

of motion Eq. (B.1) with k = 1 and q1 = θ, the equation of motion is obtained as a

second order ordinary differential equation (ODE)

θ̈l = −g sin θ. (B.6)

An obvious disadvantage of the approach is that it depends on the geometry: For

the simple geometric case of a constant radius, the approach with polar coordinates

solves the problem automatically, while in the case where no appropriate coordinate

system is available, coordinate transformations become more cumbersome. Another

drawback in the given formulation with Lagrangian is that e.g. forces which are

difficult to dealt with in a Lagrangian framework (friction) must be neglected in the

derivation and be incorporated later into the derived equations: If such forces do

not allow a formulation in polar coordinates, the approach collapses.
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B.2 Cartesian Coordinate System with DAE

The pendulum can be dealt with directly in Cartesian coordinates (x, y) which are

not independent of each other via Lagrange multipliers. To be consistent with the

previous section, we outline again the approach via the Lagrangian, though the

coefficients with multipliers can also be directly inserted into other equations of

motion (in that case, obtaining the additional equations will need other, less formal

arguments). We use the “Lagrange function”

L = T − U − λ1g1(q)− · · · − λmgm(q) (B.7)

where g1(q) = 0, . . . , gm(q) = 0 are the constraint functions which describe the

relations between the variables q1, . . . , qn, and λi are the Lagrange multipliers. When

such constraints are introduced to a system, the number of the degrees of freedom

is equal to the difference between number of variables and number of constraints.

The constraint for our pendulum problem is that the distance l between the mass

point and the origin is constant in the system

x2 + y2 − l2 = 0. (B.8)

As we have two variables (x and y) and one constraint, the degrees of freedom will

be 1 which is the same as in the polar coordinate system. Additional to the kinetic

energy T and potential energy U we also need to define the constraint function g

for the pendulum system as

T =
1

2
m
(
ẋ2 + ẏ2

)
, (B.9)

U = mgy, (B.10)

g = x2 + y2 − l2 (B.11)

(It is common to write the constraint function g so that it is zero if the constraint is

fulfilled: In that case, the deviation from zero immediately indicates the numerical

error of the method). Inserting Eq. (B.9)–(B.11) into Eq. (B.7) leads to

L =
1

2
m
(
ẋ2 + ẏ2

)
−mgy − λ

(
x2 + y2 − l2

)
, (B.12)

so Eq. (B.1) with ∂L
∂x
, ∂L

∂y
, ∂L

∂λ
becomes

mẍ = −2xλ, (B.13)
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mÿ = −mg− 2yλ, (B.14)

0 = x2 + y2 − l2. (B.15)

The physical meaning of Lagrange multiplier λ in the pendulum problem is the

tension in the string which maintains the mass point on the desired trajectory.

Obviously, the constraint forces −2λx/m,−2λy/m are in radial direction, as should

be the case for a centripetal force, so that the purely formal arguments also lead to

the intuitive physical result. While we have used only gravity as external force, we

could add any imaginable force term in x- and y-direction, even impact-like forces:

The Lagrange-multiplier formalism would also be applicable in this case, and impact

like forces would be compensated by impact-like changes of λ.

The general form of a constrained mechanical system can be written in vector

notation using generalized position coordinates q = [q1 . . . qn]
⊺, velocities u =

[q̇1 . . . q̇n]
⊺ and λ = [λ1 . . . λm]

⊺

q̇ = u, (B.16)

M(t, q)u̇ = f(t,u,v)−G⊺(t, q)λ, (B.17)

0 = g(t, q), (B.18)

where f are the applied forces (not including constraint forces) [22]. Using

the subscript notation hxy = ∂
∂y

(
∂h
∂x

)
for partial derivative, the positive definite

generalized mass matrix M is defined as

M(q) = Tq̇q̇ = Tuu =


Tq̇1q̇1 Tq̇1q̇2 · · · Tq̇1q̇n

Tq̇2q̇1 Tq̇2q̇2 · · · Tq̇2q̇n
...

...
. . .

...

Tq̇nq̇1 Tq̇nq̇2 · · · Tq̇nq̇n

 , (B.19)

and the constraint Jacobian with the dimension of (m× n) as

G =
∂g

∂q
=


∂g1
∂q1

∂g1
∂q2

· · · ∂g1
∂qn

∂g2
∂q1

∂g2
∂q2

· · · ∂g2
∂qn

...
...

. . .
...

∂gm
∂q1

∂gm
∂q2

· · · ∂gm
∂qn

 . (B.20)

By differentiating the constraints Eq. (B.18) with respect to time, the constraints at
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velocity level is then

dg

dt
=
∂g

∂q

dq

dt
= Gu. (B.21)

For DAE’s, various indices are defined, the higher the index, the higher the numerical

complexity. The differentiation index 1 indicates that no differentiation is necessary,

one necessary differentiation of the equations is “index 2”, and so on. Because

differentiation “roughens” the solution (and increases the amplitude, as each time

differentiation leads to an additional factor of 1/τ , with τ the time-step), the

numerical implications of higher indices are immediately clear. Hence, the index

2 formulation (velocity level) of the differential-algebraic equations can be written

as [17].

q̇ = u, (B.22)

M(t, q)u̇+G⊺(t, q)λ = f(t,u,v), (B.23)

G(t, q)u = 0. (B.24)

For the simple pendulum problem we have

M[
m 0

0 m

]{
ẍ

ÿ

}
+

G⊺[
2x

2y

]
λ =

f{
0

−mg

}
, (B.25)

[
2x 2y

]
G

{
ẋ

ẏ

}
= 0, (B.26)

where the time derivative of the constraint shows that the inner product between the

position vector [x y]⊺ and the velocity vector [ẋ ẏ]⊺ is zero, i.e. the position vector

(in radial direction) and the velocity vector (tangent to the circular trajectory) are

orthogonal to each other.

Comparison with the Navier–Stokes equations in DAE-formulation Eq. (3.33)

shows that the pressures indeed play the role of Lagrange multipliers. As the

formulation with Lagrange-multipliers allowed also to deal with impact-like forces

via fast (non-continuous) variation of λ, the DAE-formulation of the Navier–stokes

equations allows an impact-like formulation for the pressures. The only limit in this

case is the impact of the pressure variations on the velocities: If the variation of the

velocities becomes unstable, the time integration will fail.



Appendix C

Using MEX-Files in MATLAB

With a built-in graphics library and huge collection of high-level numerical routines

MATLAB is the programming language of choice for scientific computing. It’s built-

in toolboxes which work out of the box allow one to have an efficient way to develop

the code and immediate inspection of the data through visualization without the

need to go through the process of installing and loading the necessary modules.

However, when dealing with huge amount of conditional statements in long iterations

or multiple nested loops1, one may hit a performance bottleneck with MATLAB

script as the programing language itself is an interpreted language, i.e. the program

lines are translates and executed line by line.

MATLAB allows the inclusion of subroutines from compiler languages such as

C, C++, or Fortran; they can be called directly as if they were ordinary MATLAB

functions. In this approach the C, C++, or Fortran code are compiled and

made available as MATLAB executable (MEX). It enables the high performance

of compiler languages while working within the MATLAB environment. In this

chapter, it is shown how to rewrite a MATLAB function into a Fortran/MEX

subroutine and the related solutions/workarounds for the problems which had to

be faced during the development of the simulation are discussed.

C.1 Outer Product Computation of two Vectors

The subroutine for the Jacobian matrix in our FEM-code contains around 500 lines

(Fortran/MEX-code), which is too long as an example. Instead, we show how to

1An example is the constructing the Jacobian matrix J for the Newton–Raphson iterations
in Eq. (3.88), where different if-conditions for element nodes for the boundary (and for different
boundary conditions) and for nodes in the computation domains are incorporated.
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write a Fortran/MEX subroutine for a function which computes the outer product

of two vectors a = [a1 a2 . . . am]
⊺ and b = [b1 b2 . . . bn]

⊺

S = a · b⊺ =


a1b1 a1b2 · · · a1bn

a2b1 a2b2 · · · a2bn
...

...
. . .

...

amb1 amb2 · · · ambn

 . (C.1)

The implementation of the function in MATLAB can be written as the following:

1 function [sn , s, si , sj] = outerproduct_m(m, a, n, b)

2 % Computes the outer product of two vectors

3 % a (length = m) and b (length = n)

4 % and returns the resulting matrix as a sparse matrix:

5 % A vector s with the matrix entries and two index vector

6 % si and sj.

7

8 s = zeros(1, m*n);

9 si = zeros(1, m*n);

10 sj = zeros(1, m*n);

11 sn = 0;

12

13 for i = 1:m

14 for j = 1:n

15 sn = sn + 1;

16 s(sn) = a(i)*b(j);

17 si(sn) = i;

18 sj(sn) = j;

19 end

20 end

21

22 return

The function takes the vectors and their sizes as input arguments, and returns

vectors s, si, and sj which are all the same length sn. Entry of vector s(i)

contains the elements of matrix S located at the si(i)th row and the sj(i)th

column in “sparse storage” form. This data structure is the same data structure

that is used to construct the Jacobian matrix J for the Newton–Raphson iterations

in (Eq. (3.88)), which is indeed a sparse matrix (with filling ratio below 0.3%).
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C.2 Writing the Fortran/MEX-file

C.2.1 Preparation

The extension of the Fortran/MEX file should be the same as the usual respective

compiler languages. That means for the Fortran-files, .F should be used (as for the

gfortran-compiler). The file starts must begin with the inclusion of the Fortran

header file fintrf.h which contains the declarations of the MATLAB (Application

Program Interface) API function so that MATLAB is able to associate the Fortran-

file-name under the respective MATLAB-function call. As in all higher programming

languages, dummy names in the subroutines must not be the same as those for the

function call in the calling program.

1 #include "fintrf.h"

Then we define the gateway routine mexfunction() as

3 subroutine mexFunction(nlhs , plhs , nrhs , prhs)

which serves as the entry point to the Fortran subroutine. The mexfunction()

subroutine must be defined in all Fortran/MEX-file regardless of the intended

function name. The arguments of the subroutine are the following

nlhs is the number of output arguments of the function.

plhs is an array containing the pointers to the output arguments.

nrhs is the number of input arguments of the function.

prhs is an array containing the pointers to the input arguments.

C.2.2 Declaring the Variables

5 implicit none

6 integer :: nlhs , nrhs

7 mwPointer :: plhs(*), prhs (*)

8 mwPointer :: mxGetPr

9 mwPointer :: mxCreateDoubleMatrix

10 integer*4, external :: mexPrintf

11 character *120 line

12 integer *4 :: line_out
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The above declares arguments of the mexfunction() subroutine and the MATLAB

API functions (mxGetPr(), mxCreateDoubleMatrix() and mexPrintf()) used in

this MEX-file. The variables line and line_out are needed for displaying messages

to the terminal.

Then the variables which stores the input/output data of MATLAB are declared

with their corresponding pointers suffixed with _ptr. These variables will be used

in the actual computation.

14 integer (kind=4), parameter :: maxn = 10000

15 integer (kind =4) :: m

16 real (kind =8) :: m_dble

17 real (kind=8), dimension(maxn) :: a

18 integer (kind =4) :: n

19 real (kind =8) :: n_dble

20 real (kind=8), dimension(maxn) :: b

21 integer (kind =4) :: sn

22 real (kind=8), dimension(maxn*maxn) :: s

23 real (kind=8), dimension(maxn*maxn) :: si

24 real (kind=8), dimension(maxn*maxn) :: sj

25

26 mwPointer :: m_ptr

27 mwPointer :: a_ptr

28 mwPointer :: n_ptr

29 mwPointer :: b_ptr

30 mwPointer :: sn_ptr

31 mwPointer :: s_ptr

32 mwPointer :: si_ptr

33 mwPointer :: sj_ptr

Notice that for variables of integer-type m and n, we have also declared their

double precision counterparts (_dble). This is because MATLAB stores all numeric

variables as double-precision floating-point values. The input data from MATLAB

will be copied as double precision values into memory locations for the Fortran

program then converted to integer type.

After the declaration part, one should check whether the correct input and output

arguments are provided by the user during runtime. Passing the wrong number of

arguments causes segmentation violation and crashes MATLAB without giving user

any useful information for debugging. Instead of provoking such difficult to debug

program crashed, understandable error message should be issues.

35 if ( nrhs .ne. 4 ) then

36 write(line , ’("Four inputs required .\n")’)

37 line_out = mexPrintf(line)
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38 return

39 elseif ( nlhs .ne. 4 ) then

40 write(line , ’("Four outputs required .\n")’)

41 line_out = mexPrintf(line)

42 return

43 endif

C.2.3 Reading Input from MATLAB

The pointers which point to the memory locations of the input data from MATLAB

are obtained from the function mxGetPr().

45 m_ptr = mxGetPr( prhs (1) )

46 a_ptr = mxGetPr( prhs (2) )

47 n_ptr = mxGetPr( prhs (3) )

48 b_ptr = mxGetPr( prhs (4) )

Then, the input data (double precision type) are copied to the memory locations

into Fortran variables using the mxCopyPtrToReal8() subroutine, where the first

argument is the name of the pointer obtained from the previous step, the second

argument is the Fortran variable to be copied into, and the third is the number of

elements in the input data.

50 call mxCopyPtrToReal8(m_ptr , m_dble , 1)

51 m = int(m_dble)

52 if ( m .gt. maxn ) then

53 write(line ,’("M (=",i0 ,") should be less than MAXN (=",

54 + i0 ,")\n")’) m, maxn

55 line_out = mexPrintf(line)

56 return

57 endif

58 call mxCopyPtrToReal8(a_ptr , a, m)

59 call mxCopyPtrToReal8(n_ptr , n_dble , 1)

60 n = int(n_dble)

61 if ( n .gt. maxn ) then

62 write(line ,’("N(=",i0 ,") should be less than MAXN (=",

63 + i0 ,")\n")’) n, maxn

64 line_out = mexPrintf(line)

65 return

66 endif

67 call mxCopyPtrToReal8(b_ptr , b, n)

Variables m_dble and n_dble which hold the number of elements in each vectors are

converted into integer type as mentioned in Section C.2.2. Then they are compared
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with maxn to make sure that the input data from MATLAB are not larger than the

variables a and b initialized in the declaration section of the code.

C.2.4 Actual Computation

The computation of the outer product comes after the copying of the necessary

data from MATLAB. It is advantageous to perform the actual computation

of the Fortran/MEX file in another subroutine, i.e. outerproduct_f_comp() in

Section C.2.6. In that case, literally the same routine can be used in a Fortran-file

for the development of the Fortran-routine and for the MEX-file, without tedious

recopying of MEX-headers etc.

69 call outerproduct_f_comp(m, a(1:m), n, b(1:n),

70 + s(1:m*n), si(1:m*n), sj(1:m*n), sn)

C.2.5 Output to MATLAB

Next we discuss how the arguments are passed back to MATLAB. We start from the

preparation of the output arguments plhs() using function

mxCreateDoubleMatrix(m,n,i). The function creates an m-by-n array in MATLAB

and returns the resulting pointer to the created array. The last input argument of the

function is the complex flag: 1 for imaginary data, 0 otherwise. Then, the data are

copied into a MATLAB array pointed by the pointers e.g. sn_ptr using subroutine

mxCopyReal8ToPtr(). Notice that in this step, we convert all non-double precision

data to double precision via DBLE().

72 plhs (1) = mxCreateDoubleMatrix (1, 1, 0)

73 plhs (2) = mxCreateDoubleMatrix(sn , 1, 0)

74 plhs (3) = mxCreateDoubleMatrix(sn , 1, 0)

75 plhs (4) = mxCreateDoubleMatrix(sn , 1, 0)

76 sn_ptr = mxGetPr(plhs (1))

77 s_ptr = mxGetPr(plhs (2))

78 si_ptr = mxGetPr(plhs (3))

79 sj_ptr = mxGetPr(plhs (4))

80 call mxCopyReal8ToPtr(DBLE(sn), sn_ptr , 1)

81 call mxCopyReal8ToPtr(s(1:sn), s_ptr , sn)

82 call mxCopyReal8ToPtr(DBLE(si(1:sn)), si_ptr , sn)

83 call mxCopyReal8ToPtr(DBLE(sj(1:sn)), sj_ptr , sn)
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C.2.6 Actual Computation Subroutine

The actual computation of the outer product is as follows. The subroutine is similar

to the MATLAB version except for the additional declarations for the variables.

90 subroutine outerproduct_f_comp(m, a, n, b, s, si, sj, sn)

91 implicit none

92 integer (kind=4), intent(in) :: m

93 real (kind=8), dimension(m), intent(in) :: a

94 integer (kind=4), intent(in) :: n

95 real (kind=8), dimension(n), intent(in) :: b

96 real (kind=8), dimension(m*n), intent(out) :: s

97 real (kind=8), dimension(m*n), intent(out) :: si

98 real (kind=8), dimension(m*n), intent(out) :: sj

99 integer (kind=4), intent(out) :: sn

100 integer (kind =4) :: i, j

101

102 sn = 0

103 do i = 1, m

104 do j = 1, n

105 sn = sn + 1;

106 s(sn) = a(i)*b(j);

107 si(sn) = i;

108 sj(sn) = j;

109 enddo

110 enddo

111

112 return

113 end subroutine outerproduct_f_comp

C.3 Compiling and Using Fortran/MEX-file

For our computation environment with Apple’s OS X, the Fortran compilers which

we found work well with the MEX-files are the following:

1. GNU Fortran (gfortran)’s binary from the Tools page at the R for Mac OS

X developer’s site.2

2. GNU Fortran from Homebrew3 which is an open source software package

management system for OS X. The installation of gfortran can be done

through: $ brew install gcc

2http://r.research.att.com/tools/
3http://brew.sh/

http://r.research.att.com/tools/
http://brew.sh/
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Other versions GNU Fortran compilers (such as the one from hpc.sourceforge.

net) may lead to segmentation violations, program exceptions and other kinds of

program crashes. To compile, the following command at the MATLAB terminal

prompt must be executed:

>> mex outerproduct_f.F

MATLAB will autodetect the installed Fortran compiler. If the installed compiler

cannot be found, one can copy mexopts.sh from <path to matlab>/bin/ to the

working directory and modify the file accordingly:

1. Provide the full path to gfortran in FC,

2. the full path to libgfortran.dylib in FC_LIBDIR,

3. and the full path to libgfortranbegin.a in FC_LIBDIR2.

These provide MATLAB the paths to the GNU Fortran libraries and executable

installed in the system. To compile the source code with the modified option file,

>> mex -f mexopts.sh outerproduct_f.F

If the compilation is successful, it produces a compiled file with the extension

.mexmaci64 for 64-bit Intel-based Mac.

The MEX-file is called like an ordinary MATLAB’s function, i.e. the name of

the file without the extension is used, with arguments on the right-hand side of the

function in round brackets and output arguments on the left-hand side (for multiple

arguments, in angular brackets).

>> n = 1000

>> a = rand(1,n)

>> b = rand(1,n)

>> [snf, sf, sif, sjf] = outerproduct_m(n, a, n, b);

C.4 Remark

Fig. C.1 shows the time consumption of the MATLAB and Fortran/MEX functions

for different vector size. One can see that if the size of the vector is not large enough,

the difference in the computation time is not that grave. Creating a MEX-file can

hpc.sourceforge.net
hpc.sourceforge.net
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Fig. C.1 Time consumption of both MATLAB ( ) and Fortran/MEX ( ) version
outer product functions for different vector sizes for MATLAB version R2014a on
Mac OS X 10.10.

be more trouble than it is worth if the functions are not performance critical. For

our example of an outer product, the Fortran/MEX version of the same function

needs around 80 lines of additional code to pass the arguments between MATLAB

and Fortran. Not to mention that slight mistakes in handling the data (e.g. wrong

data type, wrong array size, etc.) might crash MATLAB without giving any useful

information for debugging. Therefore, one should start from optimizing the original

MATLAB codes in a program and only convert the bottleneck MATLAB functions

into MEX-files. Usually these are the functions which use a lot of if-conditions

in for-loops such as the construction of the sparse Jacobian matrix in our FEM-

code which make them difficult to vectorize in MATLAB for better performance.

Since MATLAB version 6.5 it has been promised that the MATLAB interpreter will

precompile complicated functions if no effective interpreter execution seems possible;

nevertheless, for several of our performance critical functions, the execution time was

still not comparable with that for the MEX-codes.
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