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Autism spectrum disorder (ASD) consists of a range of neurodevelopmental disorders involving problems of social interaction and 
communication, and stereotyped pattern or repetitive behaviors [1]. Neuronal connectivity is affected in ASD implicating both excitatory 
and inhibitory circuits [2-6]. Several genes are linked to ASD and many of these genes encode proteins that are involved in synapse 
formation and function [7,8]. The ASD mutations have been shown to dysregulate differentially synaptic function. Studies of syndromic 
ASD with mutations in a single gene have revealed dosage effects of synaptic proteins. Defects of homeostatic plasticity mechanisms 
may contribute to functional changes in neuronal circuits initially, but homeostatic mechanisms can also be activated as compensatory 
mechanisms which may be difficult to distinguish separately [9]. Understanding shared and gene defect-specific mechanisms involved in 
impaired synapse function in variants of ASD is essential for development of improved treatment strategies for ASD individuals.

Most excitatory synapses are located in dendritic spines. These small, thorn-like protrusions extend from the dendritic shaft at the 
postsynaptic regions of synapses. Alterations of dendritic spines reflect abnormalities in neuronal connections in the brain circuitries in 
ASD. Dendritic spine density shows age-dependent increase in ASD brains which suggests lack of developmental spine pruning and im-
paired elimination of functionally inappropriate neuronal connections [10].

Development of dendritic spines involves filopodia-like precursors. Filopodia search for appropriate positions along the axons to make 
contacts. Most contacts do not last long. Few contacts of the growing and retracting filopodia will be finally stable synapses on glutamater-
gic axons. Unlike glutamatergic synapses, GABAergic axons and dendritic filopodia do not form stable synapses. Instead of contacts made 
by dendritic or axonal protrusions, new GABAergic synapses are formed by new boutons at pre-existing axon-dendrite crossings [11]. 
Formation of stable and specific synaptic connections require proper axon-dendritic interactions and synaptogenic and anti-synaptogenic 
factors that strengthen the appropriate connections.

There is evidence that local calcium transients in dendritic filopodia play an important role in stabilization of filopodia-axon contacts 
[12]. Cell adhesion molecules contribute to the initial selection of appropriate synaptic partners. Disruption of intracellular calcium ho-
meostasis as well as many calcium adhesion molecule (CAMs) have been associated with ASD [13,14]. ASD mutations are found in neu-
roligins and neurexins [15] that instruct pre- and postsynaptic specialization and are critical for functional maturation of excitatory and 
inhibitory synapses. Neuroligins play a role in the control of excitatory and inhibitory balance and circuit-specific synapses. Synaptogenic 
factors involved in spatial specificity and timing, including Ephrin, Wnt, Netrin and Slit-Robo signaling, have also been linked to ASD 
[16,17].
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Activity-regulated genes have an important role in control of glutamatergic and GABAergic synapse development. Membrane depolar-
ization and transmitter release regulate hundreds of genes, including many genes implicated in the dysregulation of synapse formation in 
ASD. Activity-dependent positive and negative feedback loops regulated by activity-dependent transcription factors have been shown to 
be affected in ASD [18]. MeCP2 is an activity-dependent transcription factor that promotes the number and strength of excitatory synaptic 
connections at glutamatergic synapses and is critical for normal function of GABA-releasing neurons [19,20]. ASD-associated transcrip-
tion factor MEF2 restricts formation of excitatory synapses as an activity-dependent negative feedback loop [21]. Complex regulation of 
the downstream effectors of the transcription factors, including neurotrophins, provides an additional dimension to the regulation of 
synapse development and function in ASD [22].

The diversity of molecular mechanisms described in ASD reflects its genetic heterogeneity. Further studies are needed to investigate 
circuit-specific changes and to search for shared targets for treatment.
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