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Abstract

Mobile devices, especially smartphones, are nowadays an essential part of
everyday life. They are used worldwide and across all the demographic
groups - they can be utilized for multiple functionalities, including but not
limited to communications, game playing, social interactions, maps and
navigation, leisure, work, and education. With a large on-device sensor
base, mobile devices provide a rich source of data. Understanding how these
devices are used help us also to increase the knowledge of people’s everyday
habits, needs, and rituals. Data collection and analysis can thus be utilized
in different recommendation and feedback systems that further increase
usage experience of the smart devices.

Crowdsensed computing describes a paradigm where multiple autonomous
devices are used together to collect large-scale data. In the case of smart-
phones, this kind of data can include running and installed applications,
different system settings, such as network connection and screen brightness,
and various subsystem variables, such as CPU and memory usage. In addi-
tion to the autonomous data collection, user questionnaires can be used to
provide a wider view to the user community. To understand smartphone
usage as a whole, different procedures are needed for cleaning missing and
misleading values and preprocessing information from various sets of vari-
ables. Analyzing large-scale data sets - rising in size to terabytes - requires
understanding of different Big Data management tools, distributed comput-
ing environments, and efficient algorithms to perform suitable data analysis
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and machine learning tasks. Together, these procedures and methodologies
aim to provide actionable feedback, such as recommendations and visual-
izations, for the benefit of smartphone users, researchers, and application
development.

This thesis provides an approach to a large-scale crowdsensed mobile analyt-
ics. First, this thesis describes procedures for cleaning and preprocessing mo-
bile data collected from real-life conditions, such as current system settings
and running applications. It shows how interdependencies between different
data items are important to consider when analyzing the smartphone system
state as a whole. Second, this thesis provides suitable distributed machine
learning and statistical analysis methods for analyzing large-scale mobile
data. The algorithms, such as the decision tree-based classification and
recommendation system, and information analysis methods presented in this
thesis, are implemented in the distributed cloud-computing environment
Apache Spark. Third, this thesis provides approaches to generate actionable
feedback, such as energy consumption and application recommendations,
which can be utilized in the mobile devices themselves or when understand-
ing large crowds of smartphone users. The application areas especially
covered in this thesis are smartphone energy consumption analysis in the
case of system settings and subsystem variables, trend-based application
recommendation system, and analysis of demographic, geographic, and
cultural factors in smartphone usage.

Computing Reviews (1998) Categories and Subject
Descriptors:
H.1.1 Information Systems, Value of information
H.1.2 User/Machine Systems, Human factors
H.2.8 Information Systems, Data mining

General Terms:
Crowdsensing, Mobile Devices, Data Analytics

Additional Key Words and Phrases:
Data Cleaning, Machine Learning, Large-scale Data Analysis
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Chapter 1

Introduction

1.1 Motivation

Mobile devices, especially smartphones, are nowadays an important part of
everyday life. Different mobile applications support work life, well-being,
education, and leisure time. Because smartphones are flexible and easy to
carry, they have replaced multiple single-purpose devices, such as regular
mobile phones, pocket cameras, gaming consoles, maps, and navigators. To
enable all these multipurpose functionalities, smartphones have to implement
different sensing capabilities on their programming interface. Because of this,
smartphones provide a rich source of different types of data available: sensor
readings, running applications, system settings, and different subsystem
variables, such as CPU and memory usage. This information, especially
collected from multiple devices, can provide important insights in how people
behave and what kind of needs they have in their everyday life.

Guo et al. [1] define crowdsensing as a large-scale sensing paradigm
based on user-companioned everyday devices, including, for example, mobile
phones, tablets, and many wearable devices. In the future, many new
household devices, such as smart TVs, fridges, and cars, will join this
Internet-connected crowd. Crowdsensing is based on collaboration of a
heterogeneous crowd of smart devices. Analysis of that kind of data collected
from multiple devices can provide novel insights and help to consider what
is normal in the device community. Sometimes the term crowdsourcing
is used in the same meaning, but often it involves human-provided input,
whereas crowdsensing indicates an autonomous process where a crowd of
devices is used as self-supporting sensors [2].

Ganti et al. [3] remind us that there are challenges, but also a lot of
new opportunities in crowdsensing applications. Smartphones and other
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2 1 Introduction

mobile devices have become efficient with computational power, storage
space, and communication capabilities. Mobile devices are largely carried
along everywhere people go and whatever they do. These features also
make smartphones different than traditional sensor networks, where sensor
functionality and location were often considered for a single purpose only.

Often a cloud or single virtual machines are used for back-end processes,
such as managing data collection, data cleaning and processing, and the
actual analysis phase. Because smart devices produce easily large amounts of
data in a comparably short period of time, also techniques and technologies
related to Big Data processing and distributed computing environments
have to be considered. The data analysis output, for example, feedback,
visualizations, and recommendations, can thus be sent back to the devices
from the back-end service.

This thesis focuses on crowdsensing for smart devices, especially smart-
phones. It will cover three key topics: crowdsensed data collection, data
cleaning and processing procedures, and it will present three example cases
of how crowdsensed data analytics can be utilized. These example cases are
the following: First, we show how system settings and subsystem variables of
the smartphones can be adjusted to save energy and provide longer battery
life. Second, we analyze application trends and present a methodology
to improve application recommendations based on the actual success of
different applications. Third, we analyze mobile users worldwide and suggest
mobile usage as a novel cultural factor to define cultural boundaries between
countries.

1.2 Problem Statement

Holistic understanding of smartphone crowdsensed data is an important
open research topic. Complex interdependencies between application usage,
system settings, and different subsystem variables, together with a need
for real-life data, make holistic analysis challenging. This thesis aims to
provide techniques and methods for analyzing mobile usage in the wild and
generating actionable recommendations for optimizing smartphone function-
alities, such as energy efficiency, recommendation of suitable applications,
and understanding smartphone usage as a whole.

Jagadish et al. [4] define challenges for Big Data processing, which are
relevant to the crowdsensing applications especially taking into account the
amount of data smartphones are capable of producing in a short period of
time. Four of these challenges that are especially covered in this thesis, are:

• Data acquisition. The programming interfaces of the smartphones
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usually provide a wide set of sensors and other readings also for
third-party developers. These can be utilized for data collection. In
Section 2 we discuss in more detail for which purposes mobile data
have been collected.

• Information extraction and cleaning. Crowdsensed data is only
rarely usable directly, but there is a need for preprocessing and cleaning
procedures. In Section 4 we present attributes that are easy to collect
from smartphone platforms, and what kind of cleaning procedures we
have applied to these attributes.

• Modeling and analysis. The large scale of crowdsensed mobile data
sets is own challenge alone. In Section 5 we discuss distributed systems
and algorithms used to scope performance and effectiveness of the
analysis procedures. We also give examples of how these methodologies
have been utilized in our work.

• Interpretation. Understanding the analysis results is crucial when
aiming to provide recommendations that are of real utility back to
the devices. In Section 6, we present use cases for actionable, human-
readable recommendations and decision making based on the crowd-
sensed data analysis.

Taking into account these challenges, the research questions considered
in this thesis can be listed as the following:

RQ1. How do different data attributes have to be cleaned and preprocessed
to produce a reliable picture of the system state?

RQ2. How can crowdsensed data be used to present crucial factors of a
smartphone’s system state?

RQ3. What are the effects of subsystem variables, system settings, and their
combinations to smartphone energy consumption?

RQ4. How can smartphone energy consumption be improved by recommend-
ing better system state and subsystem variables?

RQ5. How can mobile recommendation systems be improved by analyzing
application popularity?

RQ6. What can be learned about mobile application usage and popularity
in real-life crowdsensed data?
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RQ7. How does mobile application usage reflect differences in user popula-
tion?

RQ8. What can be learned about cultural, demographical, and geographical
differences in crowdsensed smartphone usage?

Figure 1.1 presents how the research questions are covered in the publica-
tions listed below in Section 1.4 and also shortly summarizes methodologies
involved in each research question. The first four research questions closely
relate to smartphone energy analysis, even if findings and methodologies
may be useful also in other application areas. RQ1 reflects a need for
real-life data to understand actual usage cases and environments when
studying smartphone usage and, for example, energy consumption. RQ2
studies how data gathered by a crowdsensed system need to be preprocessed
and cleaned to produce reliable results. RQ3 derives analysis of complex
interdependencies between system settings and subsystem variables, and
RQ4 presents how these interdependencies can be modeled to generate
actionable, human-understandable energy recommendations.

RQ5 and RQ6 relate to application usage analysis. First, RQ5 manages
application popularity based on real-life crowdsensed data and answers
the question, what happens after applications are installed to the device?
Second, RQ6 focuses on the question how usage information can be utilized
for application recommendation systems. RQ7 and RQ8 aim to deepen the
understanding of smartphone usage in the wild. RQ7 delivers information
about the effect of culture and demography in smartphone application usage,
and RQ8 aims to describe smartphone usage as a modern cultural factor in
benefit of the research community.

1.3 Methodology

Machine learning algorithms and statistical tests are crucial to understand
interdependencies and relationships in the crowdsensed data. To generate
actual value out of the analysis output, we have to consider how these
results are presented in a human-readable, understandable and actionable
way. The aims of large-scale crowdsensed data analysis include providing
useful information out of the data to be used, for example, making decisions,
generating recommendations, and showing helpful visualizations based on
the data.

In the continuous sensing process, better usage suggestions on the device
side would also generate back to the data and its analysis process. This
phenomenon can be called the continuous feedback loop. Figure 1.2 presents
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Figure 1.1: Research questions and their matching publications along with
the methodology used.
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Figure 1.2: An example of a continuous feedback loop for crowdsensing
applications.

an example of the continuous feedback loop, where data collected from a
crowd of mobile devices is evaluated in the cloud back-end, and learning
output is sent back to the devices as recommendations and feedback.

Figure 1.3 visualizes the whole process required for crowdsensed systems
applying machine learning procedures and actionable feedback loop, where
devices are used not only to collect the data, but also benefit the analysis
output. The main phases of the system can be listed as the following,
numbers of the list matching the ones in Figure 1.3:

1. A smartphone application developed for data readings and collection
to perform the actual crowdsensing phase.

2. A back-end service or a cloud computing environment to manage load
balancing, data storage, and the data cleaning and analysis procedures,
which are next given in more detail.

3. Data cleaning and preprocessing to handle missing data items,
unexpected values, and develop further information from attribute
combinations and their interdependencies. For example, this thesis
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Figure 1.3: Example of a crowdsensing system that utilizes machine learning
and actionable feedback.
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gives approaches to clean system settings and subsystem variables
by defining their reasonable operation ranges, developing general
categorized usage of running applications, and present country based
on network and timezone information.

4. Machine learning algorithms to provide statistical information,
data models, and novel knowledge from the data. For example, this
thesis uses information analysis - mutual and conditional mutual
information - to present statistical associations, decision trees to
model transactions between system states, retention rates and trend
filters to understand application popularity, and the Kullback-Leibler
divergence to analyze differences in application usage.

5. Post-processing of algorithms’ output to provide actionable rec-
ommendations, feedback, visualizations, etc, to the devices and anal-
ysis environments. For example, this thesis presents how to provide
energy recommendations based on system settings and subsystem
variables, how to improve application recommendations based on the
trend filtering, and what can be learned about cultural, demographical,
and geographical differences in mobile usage.

6. The devices and other end-users, such as developers and researchers,
utilizing the output of the data analysis.

The main contributions of this thesis are to give approaches for (i) the
crowdsensed data cleaning and preprocessing, which is challenging with
the data collected from real-life conditions, (ii) providing suitable machine
learning and statistical analysis procedures that can handle large amounts of
data in a sufficient period of time, and (iii) generating actionable feedback,
such as recommendations and human-readable analysis results, that can
be utilized in the mobile devices themselves or when understanding large
crowd of smartphone users.

1.4 Thesis Contributions

The author of this work contributes the following published articles and
manuscripts under revision. When referring to the author, it indicates the
author of this thesis. These publications and manuscripts also construct the
outline of this thesis, and the main focus has been given to the work the
author has contributed herself.



1.4 Thesis Contributions 9

Publication I: Energy Modeling of System Settings: A Crowdsourced Ap-
proach. Ella Peltonen, Eemil Lagerspetz, Petteri Nurmi, and Sasu Tarkoma.
Published in the Proceedings of the IEEE International Conference on
Pervasive Computing and Communications, PerCom ’15, St. Louis, MO,
USA, March 23-27, 2015.

Contribution: The author was in the lead of the planning of the pub-
lication, implementing necessary distributed data mining and statistical
analysis algorithms, analyzing the data, and writing the publication. The
data collection itself is based on the earlier work done in the Carat project
lead by Dr Eemil Lagerspetz. Dr Petteri Nurmi and Prof. Sasu Tarkoma
gave important contributions to the planning and writing processes of the
publication.

Publication II: Constella: Crowdsourced System Setting Recommenda-
tions for Mobile Devices. Ella Peltonen, Eemil Lagerspetz, Petteri Nurmi,
and Sasu Tarkoma. Published in Pervasive and Mobile Computing, Volume
26, February 2016, pages 71 - 90.

Contribution: The publication extends Publication I with a novel recom-
mendation system for energy consumption of system settings and subsystem
variables. Some parts of the work is based on the author’s Master’s Thesis
published in 2013 at the University of Helsinki1. The author was respon-
sible for implementing the decision tree-based recommendation system,
perform the data analysis procedures, and write the publication. Dr Eemil
Lagerspetz, Dr Petteri Nurmi, and Prof. Sasu Tarkoma contributed to the
planning and writing process of the publication.

Manuscript I: Exploiting Usage to Predict Instantaneous App Popular-
ity: Trend Filters and Retention Rates. Stephen Sigg, Eemil Lagerspetz,
Ella Peltonen, Petteri Nurmi, and Sasu Tarkoma. A preprint is available in
https://arxiv.org/abs/1611.10161. Under submission and review to a
journal publication.

Contribution: The publication was lead by Prof. Stephan Sigg who
delivered the main ideas, methodology, and structure of the publication.
The author contributed by participating in the planning of the publication,
and implementing and running the application recommendation system for
the validation and use case of the trend filter analysis. The author also

1http://hdl.handle.net/10138/40924
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gave comments through the process and participated in the writing of the
publication together with other authors.

Manuscript II: The Hidden Image of Mobile Usage: Uncovering the
Impact of Geographic and Demographic Factors. Ella Peltonen, Eemil
Lagerspetz, Jonatan Hamberg, Abhinav Mehrotra, Mirco Musolesi, Petteri
Nurmi, and Sasu Tarkoma. Under submission and revision to a journal
publication.

Contribution: The publication started in collaboration between the au-
thor and researchers at University College London, Dr. Mirco Musolesi
and Dr. Abhinav Mehrotra. Most of the ideas that lead to the publication
were delivered through the author’s research visit to University College
London. The author was in the lead of the data analysis work, planning
the additional data gathering, such as the user background questionnaires,
and constructing the publication. Jonatan Hamberg and Dr Eemil Lager-
spetz contributed significantly to the implementation of the questionnaire
and data collection system, and together with Dr Petteri Nurmi and Prof.
Sasu Tarkoma, they participated by sharing ideas and in the writing process.

The thesis is organized as follows: Section 2 provides the state of the
art for mobile crowdsensing, presents the mobile dataset used as a source
of the analysis of the listed articles, and considers ethical issues related to
the crowdsensing mobile data. Section 4 discusses data cleaning procedures
and techniques, and presents the main attributes available in mobile devices
without complicated permission policies. Section 5 discusses distributed
machine learning and statistical analysis techniques used to generate the
results in the listed articles. Section 6 presents the main use cases of
this work, including actionable feedback and recommendation systems for
smartphones. Finally, Section 7 concludes the thesis with a summary of the
main findings, discussion of limitations, and possibilities for relevant future
work.

To summarize, the contributions of this thesis are the following:

• The thesis provides an approach for the crowdsensed mobile data
cleaning and preprocessing, which is challenging with the data
collected from real-life conditions. This thesis shows how interde-
pendencies and relationships between different context factors are
important to consider when analyzing mobile usage and aims to un-
derstand the smartphone system state as a whole.
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• This thesis provides suitable distributed machine learning and
statistical analysis procedures that can handle large amounts of
data in a sufficient period of time. The algorithms, such as the decision
tree-based classification and recommendation system, and information
analysis methods presented in this thesis, are implemented in the
distributed cloud-computing environment Apache Spark.

• This thesis provides approaches to generating actionable feedback,
such as recommendations and human-readable analysis results, which
can be utilized in the mobile devices themselves or when understanding
large crowds of smartphone users. Understanding smartphone usage
as a whole provides insights in how people use their devices and which
kind of needs they have for, for example, better battery life and finding
new and more successful applications.
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Chapter 2

Background: Crowdsensing for
Mobile Devices

Mobile devices, such as smartphones, tablets, and smart watches, are nowa-
days an important part of everyday life1. Mobile devices are nowadays used
instead of several previous hand-held devices, such as cameras, navigators,
and gaming consoles. In addition to applications, smart devices come with
a set of various sensors, settings, and other functionalities sometimes hidden
from the user. Always carried along and interacted with around 60 times
per day [5], they provide a rich source of information on the everyday habits
of their users.

Crowdsensing mobile usage data from large sets of users worldwide
provides an access to the real everyday life of people. No laboratory simula-
tions can provide such detailed and well covered information, because the
amount of possible usage combinations of different applications and system
settings rises to incalculable. On the other hand, application programming
interfaces of modern smartphone platforms provide various sets of easy to
access attributes. Indeed, smart device usage information can be increas-
ingly collected through non-obtrusive instrumentation of the device. For
example, the Carat [6]2 and Device Analyzer projects [7, 8]3 have collected
smartphone crowdsensed data worldwide.

Experiments conducted through a combination of laboratory measure-
ments, such as power meter measurements, and a large-scale analysis of
crowdsourced measurements demonstrate that the crowdsensing method-

1Newzoo ranked top 50 countries by the number of smartphone users, with average
smartphone penetration of 39.4% or total 2.4 bn smartphone users: https://newzoo.com/
insights/rankings/top-50-countries-by-smartphone-penetration-and-users/.

2The Carat project: http://carat.cs.helsinki.fi/
3The Device Analyzer project: https://deviceanalyzer.cl.cam.ac.uk/

13



14 2 Background: Crowdsensing for Mobile Devices

ology is capable of constructing models that accurately capture complex
interdependencies between system settings, sensors, and usage contexts,
providing an accurate view of the system state of the device. In contrast with
previous works, which have predominantly focused on capturing the effects
of specific sensors, system settings or applications [9, 10], a methodology
presented in this thesis focuses on interdependencies and the device as a
whole.

2.1 Mobile Crowdsensing

This thesis and multiple previous projects consider mobile devices and its
system state as a sensor. A wide sensor base of mobile devices makes
crowdsensing possible to be utilized for multiple purposes, and all the
possible application areas are impossible to list. A great part of previous
work has focused on analyzing device- or user-specific patterns, for example,
identifying potential malware infections on the smartphones [11], analyzing
network traffic and what it can reveal about the device and its user [12], or
identifying and characterizing the current user of the device [13].

As carry-on devices, smartphones are easy to utilize as sensors in various
conditions. One of the popular application areas is transportation mode
sensing, which often utilizes sensors like accelerometer, location information,
cell tower availability, and other network signals. For example, Koukoumidis
et al. [14] present a system called SignalGuru that uses a smartphone’s
camera to predict and analyze traffic signals on roads. Hemminki et al. [15]
use accelerometer and GPS location points to detect current transportation
mode, such as bus, train, or walking.

Mobile devices work as sensors also indoors in contrast to, for example,
GPS and network signals possible unaccessible or weak indoors. For example,
images captured by camera may be used to deliver information about the
usage context. Radu et al. [16] monitor indoor Wi-Fi networks, Gao et
al. [17] model indoor structures and landmarks, and Chon et al. [18] present
a methodology to deliver information of the place from images and audio
files collected by mobile crowdsensing.

A great interest has been given to recommendation systems that help
users, for example, to gain a longer battery life or choose more useful appli-
cations. In general, analyzing large-scale smartphone usage data provides
an access to a rich source for knowledge. Next, we consider the state of the
art in the mobile crowdsensing application areas that are especially focused
on in this thesis.
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2.2 Data Cleaning and Processing

The term data cleaning describes a process where errors, inconsistencies,
and missing items in the data set are removed, replaced, or otherwise
handled [19]. Data cleaning aims to improve data quality and remove
misleading values, for example, unnecessary default values that may affect
the reliability of the statistical distributions significantly. Data cleaning is
often mentioned as one of the key challenges when analyzing and processing
Big Data [20] and especially the data automatically collected from sensing
devices [21, 22, 23].

Based on the study of Strong et al. [24] from the year 1997, the data
quality has been an important issue at least the last twenty years. Rahm
and Do [19] provide an early review for data cleaning and preprocessing
procedures. They list, for example, the following challenges and problems
that are especially relevant for cleaning crowdsensed smartphone data:

• Cryptic values and abbreviations are common in smartphone environ-
ments where any spare data transmission should be reduced due to
the network costs (in terms of both energy consumption and money).
That may lead to shortened values and presenting nominal values
as integers, for example. In the data analysis phase, interpretation
of the data values should be considered right, and possible varying
presentation forms standardized so that comparison between different
device models is possible.

• Illegal values are, for example, min and max values should not be
outside reasonable or permissible range. For example, the battery
temperature cannot be very high or very low due to the sensor capa-
bility to read the lithium battery, and CPU usage should be given
between 0 and 1, or respectively, 0% to 100%.

• Misspellings and the like can appear in user-changeable settings, for
example, a wrongly selected timezone setting can be considered such.
A reasonable amount of system settings is adjusted automatically or
the user can only choose from the limited range of options, such as
screen brightness setting is often adjusted by a slider. Thus, the risk
of totally inconsiderable user-based inputs is quite small.

• Missing values can appear in the data due to a technical error, limited
access to the resource, or the presence of a default value that may
indicate a missing value. The missing values have to be recognized, re-
moved, and at least, not included in the data processing and analyzing
phases.
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• Varying value representations can appear due to, for example, different
manufacturers’ own changes in the API. Especially missing values can
be indicated as, for example, null, NaN, none, 0, or by a default value.
These values have to be recognized and combined, so that their value
can be considered as the same.

• Violated attribute dependencies mean situations where two or more
data factors should be corresponding, but for some reason they are not.
For example, that may be the case when the time between two samples
does not match the distance traveled between them, for example, it is
not possible to travel hundreds of kilometers in several minutes.

Data cleaning and management for different sensor readings have been
covered in some previous literature. They focus especially on sensor readings
in unreliable or noisy environments [25, 26]. To mention some relevant
examples, Williamson et al. [22] study data cleaning for wearable devices,
and Tong et al. [27] propose the CrowdCleaner for web-based crowdsensed
data.

The sensor-based readings are often proposed to be cleaned by machine
learning or other statistic approaches. Park et al. [21] use data cleaning
methods for accelerometers and light sensors using thresholds to prevent
outliers, episode dictionaries to model expected measurements, and the
longest common subsequences to detect errors and noise in the data. Also
Jeffery et al. [23, 28] present methodologies to manage missed and unreliable
data readings. Several database repairing schemes are also studied and
presented in the literature [29, 30].

In some cases human input is required for successful cleaning. Chu et
al. [31] use crowdsourcing to validate appropriate patterns in the data. More
often human work is involved to set parameters and threshold values [32], if
they are not possible to learn by statistical and other autonomous methods.
In our approaches, we prefer combining autonomous and human-driven
approaches, for example, setting ”natural” thresholds whenever available
but validating findings by statistical methods.

2.3 Generating Recommendations

Recommendations are a way to introduce users to better usage policies and
help them to learn hidden features of their smart devices. Great interest
has been given to help users understand their devices’ energy consumption
in terms of gaining a longer battery life. Another important topic considers
choosing the right applications out of millions of them available in the app
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markets. Next, this thesis covers the current state of the art related to these
topics.

2.3.1 Energy Recommendations

Mobile energy profiling refers to the process of characterizing the energy
consumption of a mobile device, including running applications, system
settings, sensors, and other subsystem variables and hardware components.
Energy profiling is typically carried out by constructing one or more statis-
tical models that can be correlated with specific system states with energy
consumption patterns. The goal of the energy modeling is to identify energy
bottlenecks at runtime and to provide actionable recommendations on how
the lifetime can be improved.

The previous research provides some insights in how people consider
their device’s battery life and how they tend to charge the device. Banerjee
et al. [33] conduct an user study showing that, for example, users tend
to leave their smartphones charging overnight or whenever it is otherwise
possible. They also provide a method to save energy especially focusing on
the screen brightness. Rahmati et al. [34, 35] study how people interact with
their device’s batteries and show that people can be divided into two groups:
those who charge regularly once or more a day regardless of the battery
level, and those who follow notifications and feedback given by a battery
manager. Ferrera et al. [36] study how understandable different battery
interfaces are, and note that users tend to have very limited knowledge what
to do when they face battery problems.

Improving the user’s understanding of the battery lifetime of their devices
requires human-readable energy recommendations. These recommendation
systems can provide warnings of bug-behavior applications, which for ex-
ample, Banerjee et al. [37] suggest in their study. Ma et al. [38] present a
system called eDoctor that monitors battery drain and gives suggestions
about possible energy-hungry applications and suspicious system events,
such as heavy network traffic. Pathak et al. [39] focus on monitoring the
operation system and especially abnormal CPU usage of the device. Shye
et al. [40] also focus on analyzing the effect of CPU and screen brightness
on the battery life.

The measurements for constructing energy models can be gathered either
using specialized hardware in laboratory conditions, such as the Monsoon
power monitor 4 or BattOr [41], or through the battery interface of the
device [6, 42, 43]. Benefits of the data-driven approaches include capability

4Monsoon Power Monitor: https://www.msoon.com/LabEquipment/PowerMonitor/
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to catch a large variety of real-life use cases. For example, Falaki et al. [10]
conduct an analysis of smartphone usage patterns, revealing that usage
patterns contain significant variation across users and that personalized
application usage models are essential for accurate prediction of battery
drain.

Agarwal et al. [44] build in MobiBug a data-driven approach for energy
diagnosis. The DeviceAnalyzer project [8, 45] is gathering rich measurements
of mobile device state, but the data has not yet been used for large-scale
analysis, and its high sampling cycle (even 100,000 per day from a single
device) can itself lead to unexpected and increased energy consumption.

The Carat application [6] is known as the first collaborative energy
profiler that performs its analysis with large-scale crowdsensed data. To the
best of our knowledge, the Constella model [46, 47] that bases on the data
collected in the Carat project, is the first model capable of constructing
fine-grained energy effects from crowdsourced measurements.

2.3.2 Application Recommendations

Choosing the most suitable applications out of millions available is becoming
a popular topic in the recommendation research field. Most application
markets integrate some version of recommendation systems by themselves,
for example, Google Play supports both personalized recommendations and
country-specific ”featured” and most popular application listings. Also,
several academic and commercial recommendation systems that focus on
suggesting new applications to the end users have been proposed. These
systems typically operate exclusively on top of a cloud back-end, requiring
large amounts of teaching data, and relying on computationally intensive
matrix factorization methods [48].

Most application recommendation systems operate directly on the mar-
ketplace and rely on application popularity, such as installation counts or
ratings to generate recommendations [49, 50]. However, studies on mobile
usage have shown that ratings and installation counts are often a poor
indicator of user interest. Users tend to try out several applications without
necessarily ever using them again [51, 52]. Some users may not uninstall
unnecessary applications but rather keep them, even if they are tried only
once. The same holds for ratings which do not necessarily reflect true user
interest. For example, many users give a one star rating for apps that do
not function properly on their device [52], and some applications, especially
games, even repay for higher ratings. It has been shown that usage patterns
are highly contextualized, with many applications only being used in specific
contexts [53], for example, tourism or transportation apps in a visited city.
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Some popular app recommendation systems include, for example, Ap-
pJoy [52] that considers a weighted model where recency, frequency, and
duration of interactions are taken into consideration. Other recommenda-
tion systems, such as GetJar [54] and Djinn [55], operate on binary usage
patterns. AppJoy relies on a constantly running background process that
monitors app use, while both GetJar and our technique can be used with
crowdsourced, infrequently sampled data. Also other works on integrating
context information, such as location or timing, as part of app recommen-
dations have been proposed [53, 56, 57, 58, 59, 60]. Recently, commercial
app recommendation systems, such as Aptoide5 and Cydia6, have emerged.

Our work in [61] uses application usage collected by crowdsensing from
real users and real use cases. It focuses on adapting classic content-based and
collaborative filtering techniques for mobile usage. Information learned from
the trend analysis can be further used to improve the existing application
recommendation systems.

2.4 Analyzing Mobile Usage

In addition to recommendations systems, there are also other essential
possibilities for benefiting crowdsensed data from mobile devices. Before
this, the full picture of how mobile devices have been used worldwide needs to
be covered. Various previous projects have focused, for example, presenting
the effect of context, timing, and location on smartphone usage. The main
challenges and limitations in these works is related to the lack of worldwide,
large-scale data, but in general, they give a picture how and why mobile
devices are used.

Ferreira et al. [62] present that social and spatial context have a strong
influence on application usage in general. They show that mobile applications
are more often used at home and alone, and a large part of interactions
with the phone can be considered as a ”micro-usage”, such as checking
notifications or just killing time. Hiniker et al. [63] show that app usage
reflects both instrumental (for some purpose) and ritualistic (more habitual)
behavior. The instrumental use can be, for example, looking up opportunities
and utilities, tracking sport or health activity, or getting in touch with
other people. The ritualistic usage includes different kinds of ”time killing”
activities such as browsing blogs or news, playing games, or checking social
media.

5The Aptoide meta-store: http://m.aptoide.com/
6The Cydia package management software for jailbroken iPhones: https://www.

cydiaios7.com/
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Multiple studies show that application usage reflects diurnal and daily
variation. Falaki et al.[10] perform a statistical analysis and show the
existence of the diurnal patterns with significantly risen activity during
daytime hours compared to nighttime hours. On the other hand, they note
that the exact patterns of individual users vary. Xu et al. [64] show that
news apps are the most popular in the early morning and sports apps in the
evening. Böhmer et al. [65] also note the risen popularity of news as well
as the built-in music app in the morning hours, Google Maps in the early
evening hours, and several games and e-readers in the late evenings. Both
studies agree on the risen application usage when moving around, with not
only traveling applications and maps, but also video and multimedia apps.
The same effect might be seen in the risen energy consumption when moving
around instead of staying stationary [46]. On the other hand, smartphones
are still widely used for communication purposes and the communication
apps are used evenly during the day [65]. Also, Jones et al. [66] study how
often the apps are revisited and show that the usage patterns depend on
the application and its functionality.

Verkasalo [60] shows that the location has significant correlation how
smartphones are used. Xu et al. [64] study geographical differences in
application usage in the US and show that 20% of applications can be
considered local. They also present that the US users tend to have multiple
applications for the same purpose, for example, several news applications.
Petsas et al. [67] show the similar effect that the most popular apps gain
the most downloads, and the users tend to have several apps from the same
categories. In general, user preferences for application usage seem to be
highly clustered.

Several studies show that there are also demographic and cultural bound-
aries in application usage. Seneviratne et al. [68] demonstrate that appli-
cation usage reflects the user’s gender and age. Zhao et al. [69] study over
100.000 Chinese smartphone users and find out that they can be clustered to
descriptive groups, such as, ”evening learners”, ”young parents”, ”financial
users”, and ”cat lovers”. They show that there is correlation between gen-
der, age, and income level to the application usage. Lim et al. [70] analyze
application download decisions across countries, finding the importance of
pricing, reviews, and app descriptions to vary across countries. Kang et
al. [71] compare the US and Korean smartphone users in terms of culture
and basic need, such as belongingness and self-actualization.

Mobile usage can also be used to identify cognitive or personal states.
Chittaranjan et al. [72] present that smartphone usage correlates with
the users’ Big Five personality traits. A system called MoodScope uses
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applications usage patterns and other smartphone sensors to identify the
user’s mood [73]. Lathia et al. [74, 75] present the EmotionSense system that
uses smartphones to track human behavior and changes in it. Sandstrom et
al. [76] use smartphone-based crowdsensing to show that people’s feelings
vary in different locations and situations.

In addition to everyday mood and emotions, smartphones may help
with mental illnesses. Gruenerbl et al. [77] show that smartphone sensors
can be used to aid even psychiatric diagnosis. They use an accelerator to
measure physical motion and GPS traces to detect travel patterns and aim
to predict manic episodes of bipolar disorder patients. The MoodScope
system’s results are also shown to correlate with the PhQ-9 depression
scores [78].

Understanding mobile usage may provide researchers and other par-
ties valuable information of people’s daily life patterns and their common
needs and preferences [79]. Obviously, that kind of knowledge also benefits
marketing and consumer targeting.

2.5 Large-Scale Data Analysis

Because of computational power and especially battery lifetime are lim-
ited in smartphones, a current popular approach is to collect and analyze
crowdsensed data on the back-end servers, which often means introduc-
ing cloud-computing services or a cluster of virtual machines. Large-scale
data processing power has become available for many users, developers,
and researchers thanks to the new cloud-computing environments that do
not require heavy hardware investments, but only a credit card. Amazon
Web Services 7 and Microsoft Azure 8 are examples of this kind of popular
cloud-computing services. The newest addition to the easy-to-access data
analysis family is Gluon 9, a collaboration project between Amazon and
Microsoft.

Even if these cloud-based computing resources are well available, there
are challenges in implementing effective machine learning support for mobile
crowdsensing. Understanding distributed environments and implementation
of scalable analysis algorithms becomes crucial, when data size and diversity
increase rapidly. Distributed environments require new paradigms compared
to the traditional single-machine computing. MapReduce [80, 81, 82] has
been seen as a leading new computational paradigm of the field, implemented

7https://aws.amazon.com/
8https://azure.microsoft.com/
9https://github.com/gluon-api/gluon-api/
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in Hadoop 10 and often used together with its machine learning libraries,
for example, Mahout 11 and SystemML [83].

Apache Spark 12 [84] provides a fast programming interface and supple-
mentary features to the MapReduce paradigm together with its machine
learning library MLlib [85] and programming interface MLbase [86]. These
machine learning platforms implement many of the key functionalities for
data analysis, such as, statistical tools for hypothesis testing and machine
learning algorithms for classification, regression, clustering, recommendation
making, topic modeling, and association analysis, and so on.

Users’ reluctance to participate in crowdsensing projects is seen as a
challenge, as well as researchers’ lack of skills for mobile development [87].
Systems like AWARE [88] help researchers to launch their crowdsensing
projects on a single platform without deep knowledge of smartphone app
development for multiple platforms. Also, systems like AWARE already
have a user base available, which reduces marketing and user acquisition
costs.

The Carat application [6] uses its own data collection procedures and
performs the analysis in the AWS Elastic Compute Cloud (EC2) service13.
We implement our algorithms with the Spark platform whenever there is no
library algorithm available or for some reason it does not fit the purpose
intended. For example, information metrics used in our work, such as mutual
information and conditional mutual information presented in Section 5.1,
are not currently part of the MLlib library. From user point of view, the
Carat provides actionable feedback from their battery life, which might have
been a crucial element for gathering such a large user base.

10http://hadoop.apache.org
11http://mahout.apache.org
12http://www.spark-project.org
13https://aws.amazon.com/ec2/
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The Carat Project

Launched in June 2012 and still operating, the Carat application [6, 46]
has been used to collect worldwide mobile usage data from Android and
iOS devices. The project has been started in collaboration between the
University of Helsinki, Finland, and University of California, Berkeley,
USA. To the best of our understanding, it is currently one of the most
comprehensive crowdsensed mobile data sources available including over
200 million samples from over 780,000 users.

To participate in data collection, users are not required to do anything
else except download the application from a stock market: Google Play, App
Store, or a separate Android package from the project website 1. The data
is collected to the Amazon EC2 cloud service and stored to the Amazon S3
data storage. Based on the analysis results, the clients show users actionable
recommendations that help them to increase their battery life [89].

3.1 Collecting Large-scale Mobile Data

The Carat data collection includes multiple attributes available without
extreme permissions. They are, for example, lists of the installed and running
applications, user-changeable system settings, such as screen brightness and
network type, and subsystem variables, such as CPU usage, memory state,
and battery level. Also, user-specific hash identifier (referred to as the
user’s Carat id), timestamp, device model, and operating system version
are recorded among others. Different mobile platforms offer varying list
of system attributes, and some Android manufacturers may have included
their own limitations to the programming interface. For these reasons, the

1The Carat project website: http://carat.cs.helsinki.fi/
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amount and quality of items in the data may vary by manufacturer and
operating system2.

Because some of the features have been included in the system later
than others, information available from specific years can vary. The newest
addition is the mobile country code, which has been collected since March
2016. New data items are collected all the time, so that the system can also
capture new device models, applications, and other changes in the market.

Originally designed for energy consumption research, the Carat sampling
procedure takes a sample every time 1% of battery has been drained. This
makes the data collection process very energy-efficient itself, but it also
increases the length of time spent between two samples, especially when
the smartphone is staying mainly idle. This may set some challenges in
the cases where the Carat dataset is used for other than energy-efficiency
research, for example, studying usage.

To respect user privacy, the Carat system does not collect any personal
or contact information, such as phone numbers, calls or text messages, or
exact location information. Ethical considerations are later discussed in
Section 3.5. Altogether, country information can be delivered when certain
factors of network and timezone are known, as we show in Section 4.5.
Preliminary efforts to publish the Carat data for application developers and
researchers have also been done [90], and the subset of the data consisting
of system settings and subsystem variables has already been published as a
part of our work [46]. This dataset is available on our website 3.

3.2 The Carat Data Statistics

Table 3.1 summarizes the statistics of the Carat data in June 2017. The
entire Carat data has over 784,000 distinct user records. 48.8% of these
were Android devices and 51.2% iPhones. There are more registrations to
the system, over 864,000, but it might be that some users never opened the
application again, so no samples have been sent to the back-end service.
There are almost 215 million samples, and more is coming to the system all
the time.

Different mobile platforms provide different context factors for third-
party applications depending on their policies. As an open-sourced platform,
Android provides the widest range of factors available and utilized by

2The full description of the data collection protocol can be find in https://github.

com/carat-project/carat/blob/master/protocol/CaratProtocol.thrift
3The Carat context factor dataset is available in: http://carat.cs.helsinki.fi/

#Research
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Registered users 864,079
Users with samples 784,165
Android users 382,667 (48.8%)
iOS users 401,498 (51.2%)
Samples 214,931,177
Android applications 603,854
iOS applications 167,482
Raw data size 1.2 TB
Compressed data size 315GB

Table 3.1: The Carat data statistics 2nd June 2017.

application developers. Thus, in most cases of this thesis and in our previous
work we consider the Android devices and a subset of the Carat data.

For example, we present an energy analysis of system settings and subsys-
tem variables in Section 6.1 based on containing around 11.2 million samples
from 150,000 active Android users. Modeling these energy combinations
is based on our previous work [46], as well as a recommendation system
Constella delivered on the basis of these energy models [47].

In another example that we later discuss in Sections 5.3 and 6.3, we
perform a large-scale comparison of application usage in different countries.
There we consider a subset of 5.65 million samples from Android devices.
For those samples, we can validate the country of origin by a method later
described in Section 4.5. To summarize, we compare the mobile country code
obtained by the network to the country that is indicated by the timezone
attribute. This procedure helps us to detect the country even when the
exact GPS or Wi-Fi based location is not available for privacy reasons. The
subset contains 25,323 Android users associated with 114 country codes,
out of which 44 countries have a significant number of users (100 or more).
Figure 3.1 presents the distribution of users whose country of origin can be
tested by our methodology. The majority of the users are from the USA,
but there is also a strong user base in Finland, India, Germany, and the
United Kingdom among others.

3.3 User Background Questionnaire

Understanding who the users are, can provide important new insights to the
smartphone usage. To collect more detailed information about the Carat
users’ demographic background, we sent a voluntary questionnaire within
the Carat app to all active Android users. The questionnaire includes basic
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Figure 3.1: Distribution of the Carat users whose country of origin can be
validated through their network’s mobile country code.

background information, such as gender and age group, and socio-economic
status, such as questions related to household situation and annual income.
The questionnaire also records the current GPS location of the user if a
permission were granted. Only adults (18 years or older) have been able to
answer the questionnaire.

The following information has been collected (each question as a single
choice):

1. Gender: female, male, or other;

2. Age group: 18-24, 25-34, 35-44, 45-64, or over 65 years old;

3. Current occupation: manager, professional, technician or associate pro-
fessional, clerical support, sales or services, agricultural or forestry or
fishery, craft and trade or plant and machine operations, entrepreneur
or freelancer, student, staying at home, retired, or no suitable option;

4. Highest completed education: elementary school or basic education,
high school or sixth form or other upper secondary level, vocational
school or trade school or other education leading to a profession,
undergraduate or lower university degree (Bachelor’s or equivalent),
professional graduate degree or higher university degree (Master’s or
equivalent), research graduate degree (PhD or equivalent);
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5. Household situation: living alone, living with other adult(s), living
alone with under-aged kid(s) (under 18 years old), living with other
adult(s) and kid(s);

6. Annual income, compared to the user’s country average: much lower,
lower, about the same, higher, or much higher;

7. Debt, as percentage of monthly income need to cover it: no debt, or
10%, 25%, 50%, or most of the income;

8. Savings, as a number of months possible to live off it: less than a
month, 1-3 months, 4-6 months, 7-12 months, or over a year;

9. Current coarse location, if user agrees to measure it: yes or no,
measured automatically if agreed.

The users’ answers can be linked to their application usage through
their Carat id, a unique hash code generated automatically for each user.
The questionnaire received 3, 293 responses from individuals in 44 countries.
This corresponds to 14.3% of active Carat users that have the latest Carat
version and thus the questionnaires available.

In comparison to the results from a prior questionnaire from 2013 [89],
the demographic distributions are quite similar with the exception of user
locations, where the majority now coming from Finland instead of the
United States. This can be caused by the marketing bias together with the
research lead switching from UC Berkeley to University of Helsinki between
the studies. Another bias considers gender: 10% of answers come from
female and around 87% from men. On the other hand, user questionnaires
performed by mobile applications have been reported to have high gender
biases before [91].

In terms of occupations, the most represented are professionals (34%),
technicians or associate professionals (14%), students (12%), and managers
(10%), so our questionnaire respondents are well employed. That may
also reflect the general picture of owners of mobile devices. Even if they
have become much cheaper in present years, there may still be financial
considerations in buying such a device. The distribution of education of
the respondents reflects this, too: 35% have an undergraduate degree, 30%
have a Master’s degree or equivalent, and 5% even have a PhD or research
graduate degree. 36% of the answers report their yearly salary is higher
than their country’s average and 7% that it is much higher. On the other
hand, age groups are evenly distributed: 12% of age 18 – 24, 30% of age 25
– 34, 28% of age 35 – 44, 27% of age 46 – 64 and 4% 65 years or older.
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Section 6.3.1 later discusses the analysis of how people in different
demographic groups use their smartphones. Utilizing also the country
attribute, Section 6.3.2 provides comparison between different demographic
and geographic influences on the mobile usage.

3.4 Limitations of the Carat Dataset

As discussed before, the Carat user population – or at least those who
voluntarily take also the questionnaires – seems to be biased towards well-
educated and affluent males. Since the Carat application itself does not
collect any background data, it is hard to say how well these distributions
represent the Carat user population in general. Because it has been mainly
marketed as an energy-saving application, the user base might be biased
towards people having energy issues in their smartphones.

The sampling period of the Carat application is set based on the energy
consumption: whenever the battery level changes, the system collects a
sample. These samples are sent to the cloud only if the actual Carat
application has been opened to avoid unwanted and potentially costly and
energy-influencing network traffic. This data collection method means that
the time distance between two samples is unpredictable and may vary a lot
between different users, usage cases, and device models. This makes utilizing
certain sensors, such as accelerometer and gyroscope, mostly impossible and
the Carat application does not collect this kind of data features requiring
more dense and interval-based sampling.

Some limitations, such as missing items and misleading default values,
can be managed by the data cleaning technologies we later discuss in
Section 4. On the other hand, these methodologies are never absolutely
complete, for example, in the case the default value given by the device
manufacturer seems to be coherent.

3.5 Ethical Considerations

Privacy and data security have become important issues for the crowdsensed
data analysis [3]. User-accompanied devices may reveal users’ daily routines
and locations of home and workplace, also for malicious purposes, and
unwanted marketing may become irritating in some cases. This is why we
take especially care of user privacy when working with the automatically
collected crowdsensed data.

The Carat system only considers aggregate-level data which contains
no personally identifiable information, such as exact location, calls, text
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messages, or phone numbers. Instead of the GPS location, only a distance
between two successive samples is stored to the database. Even if application
data and other possibly revealing information is collected, they are not
trusted to any third parties without the full consent of how the data will be
used. Our previous work [90] discusses our possible data sharing policies
and plans in more detail. For example, application names can be hashed or
displaced with descriptive categorical names, such as ”game” or ”flashlight”,
when the data is studied by third-party researchers or developers. It is also
possible, that developers can only gain access to the data collected from
their own application.

The privacy protection mechanisms of Carat are detailed in our previous
work [6]. The data collection of the Carat application is also a subject to
the IRB process of University of California, Berkeley. Users of Carat are
informed about the collected data and give their consent from their devices
when installing the application from the app market.

User questionnaires performed as a part of understanding the background
of the Carat users have been approved on 14 June 2016 by the IRB process
of the University of Helsinki, Finland. Participation in the study has been
voluntary and the users have been informed about the data collection and
management procedures. During the questionnaires, the exact location of
the user or some other privacy-sensitive information, such as mental state
and personality tests, have been collected but only with the consent of the
user.
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Chapter 4

Cleaning and Preprocessing
Crowdsensed Mobile Data

Crowdsensing for smart devices is based on automatized data gathering
processes. Hence, there is a possibility for unsuccessful readings and errors,
for example, in case the device itself is in an incapable state, or the man-
ufacturer or network operator limits accesses to certain factors. A good
example of this kind of behavior can be seen when Apple closed access
to the list of running processes from third-party developers on the iOS
version 9 1. The operation system Sailfish in the Jolla phones is claimed to
support also Android applications with an emulator, but in reality, most
of the sensor readings though the emulator were unsuccessful 2. Instead of
coherent values, manufacturers and network operators may provide different
default values, replacements, or empty fields. In addition, there is always a
risk of programming bugs especially in autonomous processes.

Smartphones are considered highly privacy sensitive devices, as discussed
before in Section 3.5. For that reason, there is a lack of some information,
for example, in the Carat data no exact location information has been
collected. Some useful information may be missing due to technical features,
such as application information provides only a slight view of the actual
functionality of the application. Thus, we need methods for developing new
information from existing data attributes.

Mobile devices provide a rich source for different settings, applications,
and other features that describe the usage context of the device. Some
of them are only possible to collect when special permissions are received,

1Preventing sysctl() call in iOS 9: https://developer.apple.com/videos/play/

wwdc2015/703/
2Jolla cannot provide compatibility: https://jolla.zendesk.com/hc/en-us/

articles/201440787
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Context Factor Mean Std Median

CPU use 75% 33% 91%
Distance traveled 680.5 m 53.23 km 0 m
Distance (> 0) 867.06 m 2.66 km 5.85 m
Battery voltage (V) 3.78 0.61 3.84
Screen brightness 61.82 87.96 -1
Screen brightness (0-255) 128.03 85.71 109
Temperature (◦C) 29.27 5.75 30
Wi-Fi signal strength (dBm) -61.29 13.02 -61

Table 4.1: Summary statistics of selected context factors. Previously pub-
lished [46, 47].

some of them are more easily available. In this work, we are interested
in features, later called also context factors, which does not require heavy
permission policies or come with standard permission routines. Together,
these factors define the system state of the device.

4.1 Nominal and Ordinal Attributes

Context factors consist of both nominal and ordinal attributes. For nominal
variables we use the different possible values as the categories, such as
network type that indicates information of Wi-Fi or mobile, and applications
come with their process names along other information, such as the human-
readable name and information whether they are running background or
foreground. Most of the context factors, such as screen brightness, battery
temperature, and CPU use, are ordinal-valued. Managing different data
types at the same time requires preprocessing, for example, discretization
of the ordinal-valued factors.

Another challenge is set by default and missing values, that may seem
obscure, for example, large negative values when considered missing battery
temperature or screen brightness provided out of normal setting range.
Some context factors come with possible calculation mistakes, for example,
distance traveled between two samples may seem to be thousand of kilo-
meters because of missing or default value in the location information of
another sample.

For nominal variables we use all the different values as categories. To
simplify the comparison of the context factors, we discretize ordinal-valued
into categories using an equal frequencies procedure, in other words, each
factor is divided into categories containing approximately the same number
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of values. The number of categories is determined empirically and based
on observations reported in previous studies related to the field. Summary
statistics of selected context factors are given in Table 4.1 and the different
categories are next discussed together with descriptions of each factor.

To be specific, we only discuss attributes given by the Android devices
in this section. That is because in most of the cases our research only covers
the Android devices due to the crucial differences compared to the iOS
platform.

4.2 User-changeable System Settings

System settings are collected via the Android programming interface. Char-
acteristically, they are visible to the user via system setting menus and the
user has control over them. This also sets the main challenge for managing
system settings: there are no proofs that users have adjusted them wisely.
At the same time, system settings out of reasonable range can easily be
considered as defaults, misreadings, or errors, because users can only control
them inside the allowed ranges.

The systems settings considered in this work are the following:

Network type is a categorical attribute describing the current method
used by the phone for Internet connectivity, for example, none, Wi-Fi,
mobile, or WiMAX, depending on the technology used. When the network
type equals mobile, detailed information about the connectivity type is
given by the attribute mobile network type. The user can modify the setting
by choosing the preferred networking strategy, such as allowing mobile data
connection or connecting to the preferred Wi-Fi available. Some general
settings, such as flight mode, affect the network type by suppressing all the
network connectivity.

Mobile data status describes the current status of the mobile data
interface. It is given as a categorical attribute and has one of the following
values: connected, disconnected, connecting, or disconnecting. The user can
modify the status allowing or disallowing the mobile data connection.

Mobile network type is a categorical attribute that specifies the mobile
data transfer standard currently being used on the phone. Examples of
values it can take include LTE, HSPA, GPRS, EDGE, and UMTS. The
list of possible mobile networks is broad and depends on the technologies
available in each country and by each operator. The user has the best
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control over the mobile network type setting when choosing a data plan,
which are widely marketed under the generalized names of 3G, 4G, and so
on. Some devices also allow the user to choose the preferred technology
later on, for example, in the case of lacking network coverages in rural areas.

Roaming describes whether mobile network traffic outside of the own
operator network is allowed. The value of the attribute is either disabled
or enabled, given as a binary attribute (0 or 1). The setting is possible
to modify in the networking settings, but also the network operator may
disallow it or it can be disabled in the customer data plan.

Screen brightness refers either to a manually adjusted brightness value,
given as a numeric value between 0 and 255 where a larger value implies
brighter screen, or automatic setting, given by value -1. Some devices
provide 256 as the largest value (full screen brightness), but all the other
values out of range [-1, 256] can safely be disregarded. The automatic
setting can vary in some devices, for example, based on the sensing of the
outside light. Therefore, knowing the setting parameter may not give the
actual brightness value that is currently used.

Based on the Carat data, when screen brightness is manually controlled,
the mean is around 128, or the exact midpoint. The distribution of the values,
shown in 4.1, indicates that almost the entire range of screen brightness
values is used, making it difficult to categorize screen brightness values in a
meaningful way. While small brightness values generally have lower energy
impact than higher values, or even automatic settings, they usually occur
only in specific situations, such as at night or while reading a book in a dimly
lit room. As these values are encountered very infrequently, their overall
energy benefits are small compared to using automatic setting. Based on
these observations, we opt for a binary split into manual and automatic
brightness especially when studying energy consumption. For some other
application areas, a different kind of split might be more useful.

4.3 Subsystem Variables

Subsystem variables are not directly available as a user-modifiable system
setting, but can give information about the state of the smartphone. For
example, if we notice a decreased Wi-Fi link speed or signal strength, we
can recommend that the user try to use the mobile network instead of Wi-Fi
in this context. In the energy analysis, these factors provide important
insights into what happens inside the smartphone.
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Figure 4.1: The frequency of all screen brightness settings. Previously
published [47].

Misreadings, defaults, and missing data points set the most important
challenge when managing and analyzing subsystem variables. At least, they
should come from a reasonable range and match the given Android API
description. Because manufacturers may set their own defaults, missing
values or unsuccessful readings, for example, it is not straightforward to
define ”good” values.

The subsystem variables considered in this work are the following:

Battery health is a categorical attribute determined by the smart battery
interface of the Android device. Values of the attribute are vendor-specific,
with examples of common values being Good, Bad, Overheat, and Unknown
failure. The value Good is the most common value in the Carat data. It
is even so common that any other value might be considered an abnormal
behavior.

Battery temperature is the temperature of the battery given in Celsius
degrees. We only considered positive values, because in normal conditions
the battery should not freeze under zero degrees. Also, some device manu-
facturers seem to provide high negative values when readings of the sensor
are not available. With median 30 ◦C and mean 29.27 ◦C, presented in Ta-
ble 4.1, we consider discretization over this value: over or under. Depending
on the research objectives, a more sophisticated split might provide more
information.

Battery voltage describes the current battery capacity in Volts. The
safe operating voltage of a smartphone Lithium-Ion battery is in the range
3 - 4.2V. The nominal voltage of such batteries is typically 3.7V. The mean,
the median, and the standard deviation presented in Table 4.1 reflect this
very closely. We consider three categories for voltage: Low (0 - 3V), Medium



36 4 Cleaning and Preprocessing Crowdsensed Mobile Data

(3 - 4.2V), High (4.2V+). Values lower than 0 and greater than 5 were
considered defaults or unsuccessful measurements.

CPU usage is a percentage (0-100%) that describes the fraction of the
CPU currently used. We consider measurements that reflect the percentage
of time the CPU is active. The CPU usage should be given by a value
between 0 and 1, and all the other values were considered defaults or missing
values. The mean and median in Table 4.1 indicate that CPUs are mostly
active. We split the CPU use around the mean, resulting in three categories:
Low (0 - 42%), Medium (43 - 85%), and High (86 - 100%).

Distance traveled is a location-based measurement between two samples,
given in meters. For privacy reasons, the Carat application does not gather
the exact location of the user, but uses distance measurements to determine
whether the device has been moving or not, for example, in a car. Most of the
values are during stationary periods or with little movement, especially when
taking into account around 100 meters standard error of coarse localization
services. Based on this observation and large statistical standard deviations,
we consider a split between stationary (less than 100 meters, later referred
to just as 0 meters) and non-stationary behavior (100 meters or more, later
referred to as greater than 0).

Mobile data activity describes how the mobile data interface is being
used. The value of this categorical attribute is one of the following: none,
out, in, or inout. Mobile data activity has cross-effect on multiple settings
that allow data connectivity in general, but in contrast to them, this factor
describes the actual occurrence. For example, the user might have allowed
the mobile data connection, but for some reason it may not be available.

Wi-Fi link speed is given in Mbps and is determined by the Android
API. The attribute does not provide the actual speed used, but the capability
of the closest cell tower. Thus, it better describes the maximum capacity
available than real usage, and we do not consider it much in our work. The
Wi-Fi link speed attribute might be useful if it is known that two or more
devices are connected to the same cell tower and share the connection and
thus the bandwidth, too.

Wi-Fi signal strength is given in dBm and is determined by the Android
API. We only consider RSS values in the range [-100, 0] due to the technical
limitations. Good Wi-Fi signal strength values are normally between -30 and
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-10dBm, and the worst, while still being connected, is -95dBm. We consider
four categories: Bad (-100 to -75dBm), Average (-74 to -61dBm), Good
(-60 to -49dBm) and Excellent (-49 to 0dBm). The mean RSS is between
the Average and the Good levels, and the Excellent and the Bad levels are
within one standard deviation. These values are in line with typical values
used in Wi-Fi positioning literature, and they were also restrictively tested
to match four ”bars” in the user interface.

4.4 Energy Measurements

Energy impact of system settings and subsystem variables is an important
new research field. To measure the energy consumption of the device, we
consider timestamps and battery levels reported by Carat and develop
energy rates. These reflect normalized energy consumption per time unit,
more formally defined as:

Energy rate = Δbattery level/Δtime (4.1)

The methodology used to derive rates and the validity of using energy rates
as a measurement for battery consumption has been validated and presented
in previous work by Oliner et al. [6].

The energy rate distribution coarsely follows power distance: fewer rates
of high energy consumption, in other words, only hours of total battery
life, and most of them indicating discharge level considerable normal. We
compare discharge rates routinely as consumption per second, but they can
also be interpreted to more human-readable format, as hours of battery life
in the given system state, as follows:

h =
100
rate

3600
(4.2)

The difference between two different system states can thus be denoted
as battery life gain. It measures how changes in context factors influence
the lifetime of a device on average. We usually give the battery life gain
as percentages compared to the average, but also actual hours of battery
lifetime left in the given combination of context factors might be considered.

As an example, Table 4.2 presents battery life gains of selected subsystem
variables and system settings we have studied in our work [46]. High CPU
use obtains the highest energy loss. The benefit of maintaining a balanced
CPU load is significant, as medium CPU use produces +5.72% energy
benefit compared to the average use. For screen brightness, the automatic
setting seems to improve battery life significantly, providing even +6.29%



38 4 Cleaning and Preprocessing Crowdsensed Mobile Data

Context Factor Value BL Gain

CPU use Low (0–42%) +3.24%
CPU use Medium (43–85%) +5.72%
CPU use High (86–100%) -2.48%

Distance traveled None -0.76%
Distance traveled >0 +8.20%

Battery voltage Low (0–3V) -16.60%
Battery voltage Medium (3–4.2V) -0.76%
Battery voltage High (4.2V+) +69.08%

Screen brightness Manual -4.96%
Screen brightness Automatic +6.29%

Wi-Fi signal strength Bad (-100 – -75 dBm) -2.29%
Wi-Fi signal strength Average (-74 – -61 dBm) +4.00%
Wi-Fi signal strength Good (-60 – -49 dBm) +6.29%
Wi-Fi signal strength Excellent(-48 – 0 dBm) +7.63%

Table 4.2: Battery life gains of selected context factors. Previously published
[46, 47].

better battery life compared to the average. Manual brightness, in contrast,
shows a major loss of battery life (-4.97%). Also, Wi-Fi signal strength
has a dominant effect on the energy consumption. When the Wi-Fi signal
strength is considered Bad, there is -2.29% power loss compared to the
average. Moving to the area of at least the average signal strength helps to
gain more battery life.

4.5 Detecting Country

All the useful information is not possible to read directly from the Android
API, but is derived from other collected factors. To protect user privacy,
the Carat system does not gather any location information. Instead, Carat
collects different attributes about the network usage, especially Mobile
Country Code (MCC) as well as the current timezone. In our work [92], we
propose a method to detect the country of the user without exact location
information, but only using the MCC and timezone attributes.

A mobile country code (MCC) is a three-digit value tied to a mobile
network. Each MCC corresponds to a single two-letter IANA country code3.
Unfortunately, the MCC is not available on Wi-Fi-only devices, such as

3http://www.iana.org/time-zones
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tablets, and some CDMA networks. From the beginning of March 2016 until
May 2017, the Carat dataset has 5.65 million samples with valid MCCs.

There are 69.7 million samples with the timezone information available in
the Carat dataset. The Android devices follow the IANA timezone database
format and give the timezones presented as the continent and the closest
big city, for example, America/New York or Europe/London. These values
can be further translated to the two-letter country codes (later referred to
as CC) similar to the MCC codes.

Both mobile country codes and timezone-based country codes can some-
times have errors or they can be misconfigured. We compare the MCC
and CC codes, and find that out of 5.83 million samples with valid MCC
and CC values, these two indicate the same country in 97% of the samples.
In those 3% of samples where MCC and CC indicate a different country,
there are distinct neighbor countries such as small European states, and
nearby countries in the same timezone. Difference in MCC and CC may be
caused by cross-border usage of the network infrastructures in neighboring
countries. Because some devices allow the user to adjust the timezone, there
is a possibility of misleading selections. For example, both Europe/Athens
and Europe/Helsinki represent the GMT+2 timezone but Athens is shown
first in the alphabetical list, so it might be chosen also by users outside
Greece for convenience.

Together with the automatic data collection in Carat, there are several
volunteering questionnaires run, as described in Section 3.3. 1153 users
have shared us their GPS location coordinates (latitude and longitude).
We compare these locations to the user’s sample history, take the MCC
codes from all the user’s samples, and find that, for 97% of the users, the
coordinates match the most common MCC among all the samples. This
means these people have been inside a single country for most of the time,
and help to trust the MCC and CC analysis as a country information source.

For large-scale comparison of application usage in different countries, we
consider a subset of 5.65 million samples in which the timezone-based CC
and MCC fields match. The MCC is obtained from the cellular network
infrastructure, and automatically converted to a two-character country code.
We compare MCC with the country that the city of the timezone field
corresponds to. This procedure increases the reliability of detecting the
country of the user, when the exact GPS or Wi-Fi-based location is not
available for privacy reasons. The subset contains 25,323 users associated
with 114 country codes, out of which 44 countries have a significant number
of users (100 or more). The majority are based in the USA, with strong
user bases also in Finland, India, Germany, and the United Kingdom.
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4.6 Applications

Running and installed applications can be seen as a fundamental factor of
smartphone usage. Different applications provide functionalities for well-
being, education, and leisure. There are plenty of applications available on
the app markets, for example, 2.2 million applications in the Google Play
store and 2 million in AppStore4. Different features can impact the choice of
the application, for example, search results, user recommendations, and ap-
plication description, and in the longer run, energy usage, performance, and
user experience. Without applications and their wide functionalities, even
smartphones would remain as regular phones. Interesting research questions
include application usage comparison, for example, between individual users
or user groups, countries, cultural areas, and so on.

The Carat application collects the following information from the running
and installed applications in the device: A package name is the real name of
the application, for example, com.facebook.katana is the package name
for the main Facebook application. Also this human-readable application
name will be collected, together with information if the app is a system app
or update to a system app, it’s human-readable version code, signatures
of the app from PackageInfo.signatures, and package that installed
the application, for example, in case of service and library applications.
Importance is an attribute to describe whether the application is running
foreground or background, or if it’s status is something else provided by
Android API, such as visible, service, or empty.

Application information collected by Carat has previously been used to
study their energy consumption [6, 89] and malware prediction [11]. In this
work, we present two example cases of application usage analysis: first, we
analyze application usage trends in Section 6.2 that is based on Manuscript I
attached to this thesis [61], and second, we present demographic, geographic,
and cultural boundaries in mobile application usage in Section 6.3 that is
based on Manuscript II attached to this thesis [92].

There are several challenges of analyzing application usage. First, any
application seems similar to the system, and separating system applications
from applications actually installed and used by the user is not always
straightforward. In some cases there is the system application status pro-
vided by an importance attribute, but it is not mandatory and sometimes
the difference between system app and another functionality app may be
difficult to define. For example, many manufacturers and network operators

4Numbers of existing applications are estimates: http://www.statista.com/

statistics/276623/number-of-apps-available-in-leading-app-stores/



4.7 Application Categories 41

provide their own, preinstalled applications for messaging, file management,
picture processing, calendars, and emails. Second, there is no knowledge
of the application’s functionality provided in the data. The name of the
application, and categories and descriptions given by the app market, may
give good guesses for which purpose the app is meant, but this information
first has to be gathered and processed. Thus, we next to consider this
functionality or labeling problem in more detail.

4.7 Application Categories

Often it is more useful to study what applications do or are used for than the
usage of single applications alone. For example, there are several messaging
applications with basically the same functionalities but different popularity
and language bases around the world. To avoid language and marketing
biases, we can consider applications through the categories they belong to,
such as communication, social apps, and different game genres.

There are two ways to label applications: by hand, which is clearly a
very ineffective method, or by using categories already provided by the
application markets. To obtain this categorization, we fetch the application
descriptions of all the applications existing in the Carat dataset as HTML
files from the Google Play store. Then we map the application names to
the corresponding categories. This way each user’s category usage can
be detected. In October 2016, there were 55 categories on Google Play.
The Carat dataset contains 97,000 different applications including system
processes, out of which 54,776 applications are available in Google Play with
at least one category assigned. Some apps can have multiple categories, such
as family oriented action games may belong to categories Family pretend
and Action games. To avoid inconvenience, these apps were considered once
in every category they belong in.

There are some challenges regarding using Google Play as a source for
category detection. Google Play is not available in China, so Chinese users
cannot be studied. In addition, not all the applications are available in
Google Play at all. For the same reason, the iPhone devices have to be
excluded, even if there is plenty of iOS data in the Carat dataset. It is not
possible to fetch application descriptions or categories from App Store in
the same way as we can do with Google Play.

The number of categories of Google Play has increased over the years,
but some application categories may still be too broad. For example,
the Tools category contains a lot of general applications, for example,
keyboards for different alphabets, flashlight apps, and other utilities such
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Figure 4.2: Distribution of users (%) between the top 31 (out of 55) Google
Play categories. Previously published [92].

as Carat, with very different use cases. Similarly, almost every user uses
the Communication category, since it contains common messaging apps,
some of which are preinstalled on most smartphones, for example, Google’s
Hangouts, Facebook Messenger, and WhatsApp. When looking at the most
used categories, leading categories are these two large ones: Tools (100%
of users used) and Communications (99% used). Figure 4.2 shows the
next popular categories, including, for example, other wide topics such as
Productivity, Social, and Travel and Local.



Chapter 5

Methodology for Analyzing
Crowdsensed Data

Data analysis methodology targets finding novel insights to the crowdsensed
data. When successful, these methods are capable of constructing models
that can capture complex interdependencies between the context factors.
Challenges on analyzing crowdsensed data are highly related to the way data
have been collected: there is often a need for cleaning and preprocessing, as
discussed in Section 4.

On the other hand, mobile crowdsensing systems are capable to produce
large amounts of multidimensional data in comparably short time, depending
on how many attributes have been collected and the sampling period.
This causes a need to perform effective machine learning procedures in a
distributed environment. This Section focuses on methodological approaches
to analyze large-scale mobile crowdsourced data in a suitable environment.

Several key statistical methods and algorithms essential to our work
will be introduced. We introduce information metrics from statistical
tools to measure the association between attributes, and methodologies to
understand popularity, trend, and application usage. The output of this
analysis procedure can be later utilized when making decisions or building
recommendations systems, as will be discussed later in Section 6.

5.1 Information Metrics

Information metrics are used to measure the strength of statistical associa-
tion between different context factors, such as system settings, subsystem
variables, application usage, or any other nominal or discretized ordinal
context factor available. Results of the information metrics can be used to
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rank features and provide insights to understand the effect of a given context
factor or a set of factors to measurable value, such as, energy consumption,
popularity, or usage.

Mutual information. To measure statistical association, we consider
the mutual information (MI) between two context factors. For assessing
the influence of a single context factor X to the target factor Z, the MI is
formally defined as:

MI(X,Z) =
∑
z∈Z

∑
x∈X

p(x, z) · log
(

p(x, z)

p(x) · p(z)
)
. (5.1)

Conditional Mutual Information. For higher order combinations con-
taining two or more context factors (denoted as X and Y in case of two
factors) and the target factor (denoted as Z), the conditional mutual infor-
mation (CMI) is formally defined as follows:

CMI(X,Y |Z) =
∑
z∈Z

∑
y∈Y

∑
x∈X

p(x, y, z) · log
(
p(z) · p(x, y, z)
p(x, z) · p(y, z)

)
(5.2)

By using CMI to analyze the impact of context factors combinations,
we can identify combinations that are as informative as possible while at the
same time minimizing redundancy between the different factors. Accord-
ingly, this usage style of information metrics can be understood analogously
to the use of (conditional) mutual information for the feature selection
techniques in machine learning research [93].

5.1.1 Energy Impact of System Settings and Subsystems

Next, we demonstrate these information metrics by examining how context
factors (system settings and subsystem variables in this case) affect the
energy consumption of the mobile devices. The work has been previously
published in two Publications attached to this thesis [46, 47]. We derive
a ranking for different factors based on their mutual information values,
presented in Table 5.1. The results of the MI analysis are well in line with
previous research [10, 40]. In particular, the major individual impact of CPU
use and traveled distance on battery consumption is clearly observable. The
results also contain some exceptions to the findings in the previous studies.
The most prominent example is screen brightness, which is commonly
considered as the most battery-heavy feature. In our analysis, screen
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Context Factor MI Estimate

CPU use 1.330
Distance traveled 1.069
Battery temperature 0.143
Battery voltage 0.099
Screen brightness 0.030
Mobile network type 0.019
Network type 0.018
Wi-Fi signal strength 0.014
Wi-Fi link speed 0.014
Mobile data status 0.013
Mobile data activity 0.005
Battery health 0.004
Roaming 0.0002

Table 5.1: Context factors’ impact on energy consumption, ordered by the
mutual information estimate. Previously published [46].

brightness results in a lower score than many other attributes. This may be
due to the fact that screen brightness often happens to be high for some
reason, for example, the device has been used to play a game with heavy
graphics assistance.

Similarly, we derive an energy effect for the context factor pairs by
considering the conditional mutual information. The results are listed
in Table 5.2. Compared to the results of individual context factors, the
combination of two factors gives more accurate explanations of the battery
consumption. CPU use gains significantly higher impact when combined
with another factor than when considered alone. Also factors related to
network connection, such as Wi-Fi signal strength and network type, are
more prominent when considered in conjunction with another context factor.
Capturing this kind of nuances in consumption is particularly beneficial
when giving suggestions to the end user on how to improve battery life. As
an example, we can observe that changing another system setting can help
to improve battery life in cases where high CPU use is mandated, such as,
when playing a game.

The top context factors according to energy consumption are battery
voltage, CPU use, battery temperature, and movement (distance traveled)
of the device, or combinations of these context factors. The effects of these
factors are mediated by other factors, which in turn can cause significant
increases or decreases in the energy consumption.
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Context Factors CMI
Battery voltage CPU use 4.29
CPU use Screen brightness 2.17
Battery temperature CPU use 2.07
CPU use Distance traveled 1.81
CPU use Wi-Fi signal strength 1.69
Battery voltage Distance traveled 1.53
Battery temperature Distance traveled 1.28
Distance traveled Screen brightness 1.26
CPU use Wi-Fi link speed 1.12
Battery voltage Screen brightness 1.08
Wi-Fi link speed Wi-Fi signal strength 0.99
Mobile data status Network type 0.95
Network type Wi-Fi signal strength 0.85
CPU use Mobile network type 0.80
Battery temperature Screen brightness 0.79
Distance traveled Wi-Fi signal strength 0.75
Network type Wi-Fi link speed 0.64
Mobile data status Wi-Fi signal strength 0.60
Battery temperature Battery voltage 0.56
Distance traveled Wi-Fi link speed 0.54
Battery voltage Wi-Fi signal strength 0.53
Mobile data status Wi-Fi link speed 0.46
CPU usa Network type 0.42
Distance traveled Mobile network type 0.37
CPU use Mobile data status 0.32
Battery voltage Wi-Fi link speed 0.27
CPU use Mobile data activity 0.27
Screen brightness Wi-Fi signal strength 0.26
Distance traveled Network type 0.20

Table 5.2: Top of the conditional mutual information estimates for pairs of
context factors for energy consumption rates. Previously partially published
[46].



5.2 Trend Mining 47

5.2 Trend Mining

Application popularity and trend analysis is an important part of under-
standing how smartphones are used. Some studies on mobile application
usage have characterized factors that drive download decisions [67, 94, 95]
without being able to determine what happens once the app has been in-
stalled. Some previous works have focused on overall usage and how that
is influenced by contextual factors [53, 96, 97]. Some analytics companies
use retention rates1 to describe successfulness of the apps. To the best
of our understanding, our study in attached Manuscript I [61] is the first
to independently analyze, what happens once the application has been
installed.

Retention Rates Retention rate on day d is defined as the percentage
of users that continue using the application d days after the first usage. To
estimate retention rates, we identify for each user and application the first
and last time the user launched the application.

Retention rates of the first week are presented in Figure 5.1. First day
retention rates for applications with at least 10 users are close to 50%,
compared to 80% reported by many analytics companies2. For applications
with at least 1000 users the retention rate rises to 62%. For the most popular
100 applications, the first day retention rate is even as high as 68% and after
7 days the retention rate remains higher than 50%. This analysis shows
that the retention rates largely depend on the initial number of users, and
popular apps stay healthy in terms of user base for longer periods of time.

Trend Analysis. While retention rate reflects the long-term attractive-
ness of an application to individual users, it does not cover instantaneous
popularity, usage trends, or seasonal patterns. Figure 5.2 presents usage
patterns of some automatically selected (based on the peak detection al-
gorithm) applications from first day of usage up until 100 days of usage.
The example indicates that application usage patterns do not always follow
a simple falloff pattern suggested by retention rates. Several rising trends
and again falling trends can be seen in Figure 5.2. For some and possibly
various reasons, these apps have became substantive again.

1http://info.localytics.com/blog/the-8-mobile-app-metrics-that-matter
2http://andrewchen.co/new-data-shows-why-losing-80-of-your-mobile-users-\

is-normal-and-that-the-best-apps-do-much-better/
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Figure 5.1: Retention rates of the first week. Previously published [61].
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Figure 5.2: App usage patterns up to 100 days. Previously published [61].

Based on these observations, we develop in [61] a methodology to deter-
mine the application life cycle. We characterize application trend patterns
to the following classes: Flop, Hot, Dominant, or Marginal apps. Figure 5.3
presents example cases of the Flop, Hot, and Dominant applications. When
applying this trend analysis to the Carat dataset, we find that 40% are
Marginal apps with a very limited user base in general. In the remaining
60%, the following patterns can be found: 0.4% are Dominant or gaining
constantly high popularity, 1% are Flops or falling in continuously popular-
ity, and 7% are Hot or continuously rising in popularity. These findings can
be utilized in application recommendation systems, as later presented in
Section 6.2.

5.3 Analyzing Similarity of Usage

Analyzing application usage data from a large population of people can
provide important insights in how applications and smartphones are used
in general in the wild. Because smartphones are largely considered to be
important daily life devices, this kind of data analysis opens the doors to
the routines, habits, and rituals people practice in their daily life.
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(a) Hot apps. (b) Flop apps (c) Dominant apps

Figure 5.3: Applications trend patterns with example apps. Previously
published [61].

The Carat dataset contains around 55, 000 applications. To get a gener-
ally representative picture of their functionality, we map them to the Google
Play categories (currently 55 possible) as presented in Section 4.7, but the
same metric may also be used with an application-based approach.

Usage Vectors. We generate binary category vectors for each user con-
sidering whether that user has used a category or not (1 for usage, 0 for
none). For each country (or any similar group of users), we construct the
probability distribution of category usage within the country, represented
as the fraction of users in the country having used that category.

Formally, for each category ci ∈ C,C = c1, c2, ..., ck where k is a number
of categories, we define the probability of its use within a country n as

ci,n =

∑
j ui,j ∈ Un

|Un| (5.3)

where Un is the set of users in country n and ui,j is 1 if user j used category
i and 0 otherwise.

Now Cn = c1,n, c2,n, ..., ck,n, is the category use probability vector for
country n.

5.3.1 Demographic Usage Differences

To understand demographic differences in the application usage, we need
to benefit from the definition of the category usage vectors above and the
mutual information metric described in Section 5.1. We consider different
demographic attributes collected from the Carat user by the questionnaire
described in Section 3.3: age group, gender, current occupation, highest com-
pleted education, household situation, and the following economic factors:
amount of debt, amount of savings, and level of monthly salary. In addition
to these, we consider country as a similar factor affecting smartphone usage.



50 5 Methodology for Analyzing Crowdsensed Data

Attribute Mutual Information Gain

Country 4.60
Occupation 2.78
Education 2.14
Savings 2.12
Debt 1.99
Salary 1.96
Age 1.94
Household 1.57
Gender 0.59

Table 5.3: Demographic attributes sorted by information gain against
application usage. Previously published [92].

To use categorical application usage as a target factor for the mutual
information metric, we consider the usage vector as a single data element.
Thus, the mutual information can be considered between each demographic
attribute and the application usage vectors. Table 5.3 describes the results
of the analysis, sorted by the information gain. We can see that the
country attribute is characterized by the highest information gain compared
to the other attributes, such as gender and age, whose information is
significantly lower in comparison. The high information gain for country
strongly motivates to detect in more detail how countries differ in terms of
mobile use.

Similar analysis can be performed conversely between individual applica-
tion categories and the demographic attribute as a target factor. Table 5.4
shows the results of this analysis. For country, the category of the Weather
applications gives the best information gain, probably because weather is
more predictable in some countries than in others. Occupation is related,
for example, to the Business and Finance applications, that is probably
caused by academic and professional workers benefiting from the mobile
techniques in their work. The household attribute that indicates whether
the person is living alone, with other adults, or with kids, is best described
by categories of family-related applications, such as Family music videos,
Parenting, and Dating, the last probably for those living alone.

5.3.2 Geographic Usage Differences

Understanding how different attributes affect application usage provides us
with interesting insights, but is needed also to compare and cluster users
and user groups together. Comparison of application usage between users,
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Attribute App categories with highest information gain

Country Weather, Game action, Finance, Family pretend
Occupation Business, Game adventure, Finance, Family pretend
Education Finance, Game adventure, Shopping, Music and audio
Savings Game adventure, Game simulation, Entertainment, Per-

sonalization
Debt Finance, Books and references, Game simulation, Family

music video
Salary Game adventure, Business, Game casual, Game simulation
Age Game adventure, Weather, Business, Family music video
Household Family music video, Dating, Family action, Parenting
Gender Business, Game casual, Personalization, Books and refer-

ence

Table 5.4: Application categories that gain the highest information against
each demographic attribute. Previously published [92].

or a set of users, requires a suitable similarity metric. We use there the
Kullback-Leibler divergence (KL), which is a relative entropy metric used
to detect how a probability distribution diverges from another.

Kullback-Leibler Divergence. To compare the usage vectors with each
other, we use the Kullback-Leibler divergence (KL). For two probability
vectors it is formally defined as

KL(Cn||Cm) =

k∑
i=1

Cn(i) log

(
Cn(i)

Cm(i)

)
(5.4)

However, since the KL divergence is not symmetric and it does not
satisfy the triangle inequality, in our analysis we use the logarithmic sum of
two-way KL divergences as a distance metric, so that the distance between
two user countries is given by

dist(Cn, Cm) = log (KL(Cn||Cm) +KL(Cm||Cn)) (5.5)

As an example case, we present how the KL divergence is used to
compare usage in different countries. The work is presented in the attached
Manuscript II [92]. Figure 5.4 gives a dendrogram presentation based on
the KL divergence between 44 countries well represented in the Carat
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Figure 5.4: A dendrogram visualization of the Kullback-Leibler divergence
between countries. Previously published [92].

data. There, we can see three main branches in the dendrogram. The
topmost group contains mostly European countries. Its subgroups roughly
correspond to southern (the top five countries), central (the next seven),
and eastern Europe (the last six in the group). Brazil (br) may be included
due to the effect of language or history.

The middle branch in the dendrogram or the next group contains English-
speaking countries such as the USA, Australia, Canada, New Zealand, the
United Kingdom, and other countries with early adopters of the Carat app,
such as South Korea (kr) and Japan (jp). Norway (no) may be included
because of its location near the United Kingdom. The latter three countries
may also be included because the Carat user questionnaires have been only
presented in English, so those familiar with English applications may have
answered the questionnaire more readily than others.

The third main branch or group consists of the rest of the countries, with
some meaningful demographical or geographical groups, such as Columbia
(co) and Argentina (ar) in South America, and the Arab Emirates (ae),
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Figure 5.5: Usage of three main country clusters in several statistically
significant categories. Previously published [92].

Saudi Arabia (sa), Qatar (qa), Pakistan (pk) and India (in) in Asia. Iran
(ir), the Philippines (ph) and Estonia (ee) were not grouped close to other
countries.

These three main groups visible in Figure 5.4 follow certain geographical,
cultural, and language boundaries. These differences between application
usage are also visible when looking at the application category data in
greater detail. In Figure 5.5, we compare application category usage in
certain categories strongly correlated with different cultural value factors.
In general, the ”English speaking” group uses a wider set of applications,
and it seems to be statistically significantly high in almost every application
category.

The ”Mixed” group is characterized by lower application usage across
the board, but higher than the other groups in two categories: Sports and
Racing games. Some categories, such as Food and Drink, Medical, and
Shopping are almost equally popular in both of the groups ”non-English
European” and ”Mixed”, but surpassed by the ”English-speaking” group.
Weather apps are, on the other hand, popular in the groups ”non-English
European” and ”English-speaking”, but less used in the ”Mixed” group.
That may be because the weather clearly is more predictable in some areas
than others.

Communication apps are very popular in all the groups. Although
the ”Mixed” group has low usage in most categories, it also has very high



54 5 Methodology for Analyzing Crowdsensed Data

usage of the Productivity and Social applications. On the other hand, the
”English-speaking” group has the highest usage in almost all categories.
This may be due to the fact that almost all apps have an English version,
and many services, retailers, restaurants, and public places in Europe and
the USA have dedicated apps3.

Demographic, cultural, geographical, and other differences in application
usage may be utilized by marketing, social research, and many other areas.
Later in Section 6.3 we analyze deeper these differences with different use
cases, and compare application usage to the existing cultural factor model.

3 McDonalds France is available in English: https://play.google.com/store/apps/
details?id=com.md.mcdonalds.gomcdo&hl=en.
The city of Wien has a dedicated mobility app: https://play.google.com/store/apps/
details?id=at.wienerlinien.wienmobillab.
Hyde Park club dedicated app: https://play.google.com/store/apps/details?id=

com.hydepark.
The Finnish weather map in English: https://play.google.com/store/apps/details?
id=com.nordicweather_sadetutka.
Sydney’s Central Park has an app to aid sightseeing: https://play.google.com/store/
apps/details?id=com.beaconmaker.android.centralpark.



Chapter 6

Decision Making and Actionable
Recommendations

Understanding smartphone usage as a whole can provide novel insights to the
user’s needs for smartphone functionality. The most important target here
is to provide the users with the best smartphone usage experience possible.
Figure 6.1 provides an example of questions that need to be answered to
improve smartphone utility. In terms of performance and energy-efficiency,
there are choices to do for the network connectivity: mobile data or Wi-Fi
connection? When can the user charge the device next time, and what is
the overall condition of the battery? How many applications has the user
installed, and how many of them are actually in use? What needs does the
user have, and which applications meet these needs the best?

The user’s location and occupation may affect the set of application
functionalities in need: local transportation apps to support commuting,
the best utility apps for a more effective working life, and maybe some task
management apps to balance work and leisure? There might be a favorite
game even if it uses a lot of battery life, but the user favors continuing to
play it. The users cannot always choose applications by themselves, but are
supposed to use those that are popular in the community they are living
in, for example, for networking and social media. And when there are new
applications available in the app market, how can the user know whether
they are worth installing?

To understand these needs and answer these kinds of questions, we
need to focus on analyzing the context of the user - including their daily
routines, functionalities they require from their smartphones, and so on -
and the context of the device including, for example, the device model and
operation system version as well as memory and CPU loads. Supporting
the smartphone user experience requires understanding the battery life

55
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Figure 6.1: An example: Overall picture of the user’s needs and smartphone
usage as a whole.
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limitations, user’s needs, and in general the factors that have an influence
on smartphones.

In this section, we present three example cases for making decisions and
actionable recommendations based on the crowdsensed mobile data that
has been collected in the Carat project. In every case, the methodology
presented in this thesis for data cleaning and preprocessing as well as
machine learning and statistical analysis of the results, are required. These
examples aim to provide actionable feedback and new insights about the
smartphone usage based on the crowdsensed data analytics. These example
cases, with corresponding publications, can be listed as the following:

• Energy recommendations for system settings and subsystem
variables. Many context factors of smartphones affect the device’s
energy consumption, but there are often complex interdependencies
between them, which make it difficult to determine the optimal energy
saving policy and right settings for a given situation. We present a
system called Constella to provide actionable and human-readable
energy recommendations for system settings and subsystem variables.
The analysis work has previously been published in the attached
Publication I [46] and the decision tree-based recommendation system
in the attached Publication II [47].

• Application trend analysis. Understanding what happens after
an application has been installed to the device, helps us to value the
potentiality of applications. We present a novel app-usage behavior
trend measure that provides instantaneous information about popu-
larity of applications. Based on the application trends, traditional
app recommendation systems can be evaluated and improved. The
work is based on the attached Manuscript I [61].

• Demographic, geographic, and cultural effects on mobile ap-
plication usage. Smart devices and functionalities they provide are
nowadays an integral part of everyday life and part of modern life.
Based on the user questionnaire performed for the Carat users, we
study demographic, geographic, and cultural effects on smartphone
usage. In addition to this, we also propose a method to use application
usage data as a modern cultural factor. Understanding demographic
factors, geographic differences, and cultural boundaries in application
usage supports application developers, social researchers, and other
people involved in the application ecosystem. The work is based on
the attached Manuscript II [92].
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6.1 Energy Modeling of System Settings

The processing and transmission power of smartphones continues to grow [98],
while their battery technology remains largely unchanged [99]. Consequently,
energy efficiency remains a high priority for current smartphone operating
systems, and increasingly, for applications. The importance of energy effi-
ciency has also been highlighted in several user studies, which have shown
that users actively take measures to optimize the power consumption of their
device [89, 100, 101]. Understandably, longer battery life provides better
user experience and less struggle to find out the next charging possibility.

Mobile users are often forced to actively seek countermeasures to pro-
long the lifetime between successive recharges [33, 36]. Examples of these
countermeasures include killing battery hungry applications or tasks, and
manipulating context factors either through switching off specific sensors or
adjusting individual system settings. Previous research has predominantly
focused on the former task [6, 37, 38, 39]. In our previous work [46, 47],
we demonstrate how the crowdsensed data-analysis approach can be used
to obtain new insights into battery consumption. Especially, we provide a
novel method to measure the energy effect of the combinations of different
system settings and subsystem variables.

To demonstrate our methodology, we next provide an analysis of the
energy effect of certain selected context factors. We have selected CPU
use (Low, Medium, or High) and temperature (over or under 30◦Celsius)
from subsystem variables, and distance (motion or stationary) and screen
brightness (automatic or manual) from system settings. Preprocessing of
these context factors have been discussed in Sections 4.2 and 4.3. In all
cases of the example, the network connection type has been a cellular data
connection. Table 6.1 presents the estimated time in hours to drain the
battery from 100% to 0%, while actively using a smartphone with the given
context factor and value combination. With different values of CPU use,
battery temperature, movement, and screen brightness, the battery life time
ranges from 3.45 to 9.12 hours.

Table 6.1 demonstrates that the main deciding factor for battery life
is the temperature: the lower the temperature, the longer the battery life.
Traveling instead of staying still seems to increase battery life. This may be
due to users driving and not using their mobile phones. After these factors,
the CPU is the most dominant, and changing screen brightness brings the
smallest, but still significant, battery life differences. These results show
that while the CPU use alone is a good indicator of energy consumption,
significant battery life gains can be obtained by considering more complex
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Battery
temp.

Distance
traveled

CPU use Screen
brightness

Battery
life (h)

Under 30◦C >0 Low Automatic 8.83 – 9.12
Under 30◦C >0 Low Manual 8.49 – 8.82
Under 30◦C >0 High Automatic 8.09 – 8.24
Under 30◦C >0 Medium Automatic 7.65 – 7.89
Under 30◦C >0 Medium Manual 7.34 – 7.60
Under 30◦C >0 High Manual 7.27 – 7.41
Under 30◦C None Medium Automatic 6.57 – 6.64
Under 30◦C None Low Automatic 6.28 – 6.35
Under 30◦C None Medium Manual 6.13 – 6.20
Under 30◦C None Low Manual 5.88 – 5.96
Under 30◦C None High Automatic 5.78 – 5.82
Over 30◦C >0 Low Automatic 5.08 – 5.22
Under 30◦C None High Manual 5.00 – 5.04
Over 30◦C >0 Low Manual 4.73 – 4.88
Over 30◦C >0 High Automatic 4.62 – 4.69
Over 30◦C >0 Medium Automatic 4.59 – 4.70
Over 30◦C >0 Medium Manual 4.28 – 4.39
Over 30◦C None Medium Automatic 4.25 – 4.29
Over 30◦C >0 High Manual 4.08 – 4.14
Over 30◦C None Medium Manual 4.06 – 4.09
Over 30◦C None Low Automatic 4.02 – 4.06
Over 30◦C None High Automatic 3.91 – 3.94
Over 30◦C None Low Manual 3.74 – 3.78
Over 30◦C None High Manual 3.45 – 3.46

Table 6.1: Estimated battery life in hours for selected combinations of four
context factors. Previously published [46, 47].

context factor combinations. In addition to this, battery temperature and
distance traveled can be used together to predict battery life very well.

The complex combinations of the context factors, such as those listed in
Table 6.1, can be used to decide which factors to change to improve battery
life, while keeping others constant. For example, while moving and playing
a game, the CPU use is often high. If the phone can be kept relatively
cool, 78% more battery life can be expected compared to warmer battery
(increase from 4.08h to 7.27h). Further savings can be obtained by switching
screen brightness from manual to the automatic setting.
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Based on these observations, we deliver a recommendation system that
can effectively summarize relationships between the context factor com-
binations and present transmission from a system state to another in a
comparable easy manner. Constella [47] is a novel recommendation system
for system settings and subsystem variables.

Constella relies on a decision tree-based recommendation model for
capturing the energy impact of different context factors at once. Decision
trees have been shown to provide a user-friendly and understandable repre-
sentation for complex relationships [102], which is essential for improving
users’ trust in the recommendations. The decision tree model also provides
a compact and compressible representation of relevant information which
can be efficiently stored and used on a smartphone without a considerable
impact on battery life.

The decision tree organizes context factor combinations into a logical
structure and turns them into human-readable and actionable recommen-
dations. The tree model can be learned efficiently on the cloud-computing
back-end, and sent back to each client device. The clients can then generate
recommendations independently by following paths of potential system state
changes within the decision tree model. This makes it possible to generate
energy recommendations also offline whenever the usage context changes:
indoors and outdoors, with or without network connectivity, and so on. In
the future, separate decision trees can be computed, for example, in the
case of different applications or application combinations used.

Figure 6.2 presents an example of the Constella decision tree. Imple-
mentation details and more detailed examples are provided in Publication
II attached to this thesis [47]. The example tree splits for three context
factors: first the network type that splits the data into three parts. For
each sub-branch, we can calculate an expected value of battery lifetime
(EV). On the second level, there is a split by screen brightness after the
network type ”mobile” and by distance traveled after network type ”Wi-Fi”.
If the device currently remains connected to the Internet via the mobile
network with manual screen brightness, we can find at least two one-step
changes to consider: if EV4 is better than EV5 (the current expected value),
we can suggest switching to automatic screen brightness instead of the
manual setting. If EV2 is also better than EV5, we can also show the
recommendation for changing the network type. With more than one step,
we can also go deeper in the tree, depending on the size and depth of the
tree.

To remain clear these examples present only a limited number of the
context factors. In reality, the trees will have more splits and options
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Figure 6.2: Example of the decision tree used for energy recommendations.
EV = Expected value of battery lifetime in a given node. Previously
published [47].
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Figure 6.3: An example of the context factor energy recommendations.
Previously published [47].

available. Figure 6.3 shows how the system setting and subsystem variable
recommendations might be seen in the user interface. By adjusting the
settings as suggested, users also participate in the continuous feedback loop
with new and more informative data items to gather.

6.2 Application Trend Based Recommendations

Next, we focus on one of the fundamentals in the smartphone functionality:
the applications. Choosing the right application for the right purpose is an
important open research question. More generally, choosing an application
that has any future in terms of upcoming new versions, security updates,
and development support, is crucial. Our analysis of application trends
focuses on app life cycle that characterizes usage behavior as discussed in
Section 5.2. Next, we consider how trend information can affect application
recommendations. The work is attached to this thesis as Manuscript I [61].

We implement the Slope One Prediction model that compares a user’s
profile to other users with similar usage history [103]. Slope One is considered
to be a representative example of current state-of-the-art app recommenders,
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and also other popular systems based on a closely similar approach [55, 104].

The Slope One Prediction and especially its well-known implementation
in the AppJoy system [103] operates on so-called usage scores, which are
constructed by aggregating the following information: (i) time elapsed since
the last interaction with an app, (ii) frequency of the user interactions with
an app, and (iii) total duration of time the user has interacted with an app.
Due to the infrequent sampling period of the Carat application, we focus
on the amount of interactions, in other words, how often the application
has been seen in the user’s sample history.

Recommendation model. The Slope One Prediction model compares a
user’s profile to other users with similar application usage history. Formally,
we define S(u) as the set of applications used by user u. Given an application
i and user u, we define Ru,j as the set of relevant applications j used by other
users together with i, in other words, Ru,j = {i|i ∈ S(u), j /∈ S(u),#Si,j >
0} where Si,j is the set of users who have used both i and j. The relevance
of application j for user u is then given by:

P (uj) =
1

size(Ru,j)

∑
i∈Ru,j

(devi,j + ui). (6.1)

Here dev is the average of the usage scores between users who have used
both i and j:

devi,j =
∑

w∈Si,j

υw�j − υw�j
size(Sj,i)

. (6.2)

Given the relevance scores P (uj), the algorithm returns the top−N items
with the highest score as recommendations.

We run the Slope One-based recommendation system together with our
trend filter analysis for a subset of the Carat data containing 4, 500 users
and their 1, 000 most frequently used applications. We select October 2014
to be the test period due to little seasonal fluctuations, and as training
data we selected all the Carat data accumulated between January 2014 and
September 2014. Given the test data, we used the Slope One to generate
recommendations in an incremental fashion for each of the four weeks in
October 2014.

We counted (i) how many recommended applications can be classified
as Flop or Hot apps by the trend filter analysis, and (ii) how they compare
with the total number of the Flop and Hot apps. We also calculated
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Week Rec. Hots Rec. Flops Total Hots Total Flops

1 8 5 219 163
2 7 6 229 158
3 8 7 232 154
4 10 9 225 150

Table 6.2: The Hot and Flop apps in the 20 best recommendations out of
top 1000 applications during a month. Previously published [61].

the following evaluation metrics proposed in the previous literature [105]:
temporal diversity, novelty, and accuracy. Diversity presents how the
recommendations change over time, whereas novelty describes how many
new recommendations there are seen compared to the later ones. The novelty
of the recommendations relates closely to the trends, because changes in
the application trends should affect new recommendations. Formally these
metrics are defined as follows:

diversity(L1, L2, N) =
|L2 \ L1|

N
(6.3)

novelty(L1, N) =
|L1 \At|

N
(6.4)

accuracy(L1, A) =
size(L1 ∩A)

size(A)
(6.5)

Table 6.2 presents an analysis of the top-20 recommendations given to
all the users during the period of four weeks. In each row there is first the
number of the week (from the beginning of October), and then in order
the number of recommended Hot apps, the number of recommended Flop
apps, the total number of Hot apps in the week, and the total number of
Flop apps in the week. Table 6.3 gives statistics of diversity, novelty, and
accuracy, first considering all the given recommendations and then without
the Flop applications.

In Table 6.2 we can see that the number of Hot apps recommended for
each week is small and comparable to the number of recommended Flops.
Given that we have generated in total 90,000 recommendations for 4,500
users each week, the amount of Hot recommended corresponds to a very
small percentage of the entire set of recommendations. More than 200
applications each week can be classified as Hot, and about 160 as Flop. On
average, only 3.6% Hot apps are recommended, compared to 4.3% Flops.
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Week Diversity Novelty Accuracy
Div. w/o
Flops

Nov. w/o
Flops

Acc. w/o
Flops

1 - - 0.02 - - 0.02
2 0.80 0.98 0.03 0.90 0.90 0.12
3 0.62 0.81 0 0.54 0.73 0.10
4 0.56 0.75 0.11 0.50 0.68 0.11

Table 6.3: Diversity, novelty, and accuracy statistics of the 20 best rec-
ommendations out of top 1000 applications during a month. Previously
published [61].

Table 6.3 shows that when the Flops are removed from the recommen-
dations, both novelty and diversity decrease, but accuracy increases slightly.
The main reason for this behavior is that the metrics used to generate
recommendations require a sufficient amount of usage before an app is
recommended. However, once sufficient usage has been observed, the app
can already be past its ”best before” date as the recommendation model
does not differentiate between the Hot and Flop apps.

Integrating usage trend information as part of the recommendation
process can help to overcome this issue and improve the overall quality
of the application recommendations. We suggest that, among others, the
applications with the Flop pattern might be reasonable to remove completely,
and the weight given to the Hot applications might be increased. Thus, we
can warn users for using applications that might be losing their popularity
and soon becoming less supported when their developers’ focus changes to
the new projects. Focusing on the Hot applications users gain the benefits
of the applications with a strong user base: security updates and developing
towards new features.

6.3 Insights into Demographic, Geographic, and
Cultural Factors in Mobile Usage

Sometimes mobile applications are used not because they are popular in
general, but because they are popular in the users’ context: in their coun-
try or among their family and friends. On the other hand, not only the
application’s popularity affects the usage of the applications, but also the
application functionality, and the user’s background, needs, and desires. It is
easily understandable that people of different background and demography
consider different use cases more important than others.
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Figure 6.4: Comparison between different age groups.

Next, we show that indeed, demography, geography, and culture play
an important role when considering application usage. Understanding these
factors in the mobile application usage will help many stakeholders in their
work, including application developers, social researchers, and other parties
involved in cultural studies or mobile application ecosystem.

6.3.1 Demographic Factors

The user questionnaire run for the Carat user base (described in Section
3.3) provides background information to analyze in more detail how people
of different age, education level, and so on use their smartphones. We call
these features demographic factors on smartphone usage.

From the questionnaire data we choose four factors for more detailed
analysis: age group, education, occupation, and household situation. Ed-
ucation and occupation gain a high mutual information in the analysis
performed in Section 5.3.1, and the age and household situation are in-
cluded because of the general interest. The country information gained the
highest mutual information and it will be discussed next in Section 6.3.2.
Out of all the answers, we consider those groups with ten or more responses.
For example, there are hundreds of students and professionals, but only a
few respondents staying at home with kids, or working in agriculture. There
are 55 different application categories in Google Play. For convenience, the
categories were sorted by the highest standard deviation among the usage
of each answer group to highlight the differences between the groups.
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Figure 6.5: Comparison between different occupation groups.

Figure 6.4 presents the comparison between the age groups, all of them
included: 18 – 24 (12% of respondents), 25 – 34 (30%), 35 – 44 (28%), 45 –
64 (27%), and over 65 years old (4%). The underage children were excluded
from the study. The application categories considered interesting due to the
standard deviation-based analysis are Video players, Health and Fitness,
Productivity, Music and Audio, and Photography. The graph presents
comparison the average usage, in percentages. Compared to the other user
groups, elder people tend to use less of all the categories. Especially ”trendy”
categories, such as Health and Fitness do not gain popularity in this group.
Elder people might be excluded from the marketing and target audience of
these apps, even if caring for your health does not become less important
with age. On the other hand, the health apps are the most popular in people
of 45 – 64 years old. People of working age (35 – 44 years old) seem to be the
most active users of Video players and Music and Audio - both categories
that might be considered to gain their greatest audience from young people.
It is possible that these kinds of applications provide relaxation during work
days and thus gain their popularity in this age group.

Figure 6.5 compares different occupational backgrounds. Out of 13
possible choices in the questionnaire, we consider the following four groups:
students (12% of answerers), professional (34%), retired (5%), and technician
or associate professional (14%). The application categories considered in
this case are: Health and Fitness, News and Magazines, Music and Audio,
Productivity, and Travel and Local. Retired people follow the same pattern
considered in the case of elder people in general: they seem to use less than
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Figure 6.6: Comparison between different education backgrounds.

average in all the categories. Professional and associate professionals seems
to use considerable amounts of the productivity applications, maybe to
help in their work. Technicians and associate professionals have the highest
usage of the traveling apps in comparison: maybe they gain more free time
than students and professionals, and use it for more smartphone-oriented
tasks compared to retired people.

The comparison between education levels is presented in Figure 6.6. The
following groups are considered out of seven different options: vocational
school or trade school or other education leading to a profession (11%
of respondents), undergraduate or lower university degree (Bachelor’s or
equivalent) (35%), professional graduate degree or higher university degree
(Master’s or equivalent) (30%), and research graduate degree (PhD or
equivalent) (5%). The application categories considered are the following:
News and Magazines, Shopping, Personalization, Video players, and Travel
and Local. Interestingly, people with vocational school or corresponding
seem to use all the categories more than people with other educational
backgrounds. Especially the News and Magazines and Shopping categories
are more popular among them than the other groups. It seems that the
highest educational group including PhD and corresponding use the Shopping
applications as much as the average, but the lower university degree holders
use them significantly less. On the other hand, having a PhD seems to
reduce a need for Personalization apps, as well as News and Magazines and
Video players.

Figure 6.7 presents the differences between household situations. There
the following groups are considered: living alone (19% of respondents),
living with other adult(s) (48%), living alone with under-aged kid(s) (30%),
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Figure 6.7: Comparison between different household situations.

and living with other adult(s) and kid(s) (3%). The following application
categories are considered: Health and Fitness, Shopping, Weather, Personal-
ization, and Finance. People taking care of their kids alone seems to prefer
Shopping and Whether applications highly compared to the people in other
household situations. At the same time, their time seems to be limited for
the Health and Fitness and Personalization apps. Living alone without
other adults seems to reduce a need for the Finance applications, maybe
because there is no other person to help with financial issues. Health and
Fitness are the most popular among people living alone, too.

6.3.2 Geographic Factors

Comparing demographic information across countries gives us an insight to
application usage worldwide. Understanding how demographically speaking
similar people - for example, people of the same age, education, and occu-
pation - use their smartphones in different countries can provide important
insights on geographic and cultural boundaries. As already discussed in
Section 6.3.1, we study in more detail several demographic factors including
occupation and education. We also include the household status to highlight
some common, interesting clusters. Countries with less than 10 respondents
to the questionnaire are excluded, leaving 21 in total out of 44 countries
included in the comparative study in Section 5.3.2.

In Figure 6.8, we compare the four most widely represented occupations
(student, professional, retired, and technician or assistant professional)
within 21 countries. In Figure 6.9, we present a similar comparison between
the best represented educational levels (education leading to a profession,



70 6 Decision Making and Actionable Recommendations

Figure 6.8: Comparison between different occupation groups in the selected
countries. The colormaps are based on the KL differences.
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Figure 6.9: Comparison between different education backgrounds in the
selected countries. The colormaps are based on the KL differences. As far
as the PhD degree is concerned, the values for Estonia (ee) are missing.

Bachelor’s degree, Master’s degree, and PhD equivalent degree). In both
figures, the darker color indicates closeness (the KL divergence between
countries close to 0) and lighter color a longer distance (the higher KL
divergence, see Section 5.3.2).

As seen in Figure 6.8, professionals in Australia, Canada, the USA, and
the United Kingdom use application categories similarly, indicated as a dark
cluster in the North-Eastern corner of the colormap. The same cluster is
visible in all the educational groups in Figure 6.9, and we may conclude
that highly educated people or those working as professionals seem to use
their mobile devices similarly in these Western, English-speaking countries.

Another cluster is visible in the South-Western corner of the colormaps,
including Qatar (qa), India (in), and Indonesia (id). Especially students and
people with PhD or equivalent degree are presented in this cluster, indicating
similarities in application usage of academic people in these countries. It is
possible that these groups also have a higher smartphone penetration, and
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Figure 6.10: Comparison between different household situations in the
selected countries. The colormaps are based on the KL differences.



6.3 Insights into Demographic, Geographic, and Cultural Factors in Mobile
Usage 73

the use of English may be required in studies. Highly educated people are
often considered to be builders of rising societies, and they may adapt faster
to new technologies such as mobile device functionalities in everyday use.

For professionals and Master’s degree holders there is also a third cluster
in the middle of the colormaps. This cluster includes European countries:
Denmark (dk), Germany (de), Italy (it), France (fr), Belgium (be), Spain
(es), and Greece (gr). The application category usage of this group is
different from the previously mentioned English-speaking cluster, as also
seen in Figure 5.4 presented in Section 5.3.2.

Interestingly, students seem to use applications differently in each coun-
try, as there are no clear clusters in the students’ colormap. This might be
because university students may travel to faraway countries to study, while,
for example, vocational studies are commonly done in the same or nearby
countries. The colormap of retired people is darker than the others overall,
which means their application use is more similar through all the considered
countries, but are few strongly similar clusters. This may be a result of
people having used different sets of applications, not adopting new ones as
a group. Technicians and associate professionals have the lightest colormap
in comparison, indicating that the countries have the highest distances (and
thus less overall similarity) in this occupational category. This may be
caused by the wide range of actual professions and people with different
smartphone needs in the category.

6.3.3 Cultural Factors

In addition to the demographic and geographic factors, we also study how
culture affects mobile usage. Culture is a wide concept to define with some
difficulties. The culture of an individual or group can encompass all aspects
of life. For example, the Cambridge English Dictionary defines culture as
”the way of life, especially the general customs and beliefs, of a particular
group of people at a particular time.” Elements of culture may include
habits, rituals, and beliefs, as well as ways to perform everyday actions.

Cultural Value Model. In empirical research, Hofstede’s Cultural Val-
ues Model (VSM) [106, 107] is used with wide variety to represent cultural
values between countries [108]. The VSM model consists of six factors, given
by a country, that are made by questionnaire studies in different countries
around the world.

The VSM model has been previously used, for example, to study culture
in IT corporations [109], evaluate tourist services [110], study interna-
tional ethics [111], evaluate consumer decision making [112], analyze Doodle
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scheduling responses [113], and model emoji usage in different countries [114].
The VSM model is not free from criticism. Especially, McSweeney [115] ques-
tions the validity of defining culture boundaries based on politically agreed
national areas. Also, the model does not include minorities or subcultures
inside countries, or take into account immigration and emigration in the
global world, previously referred to as transnational mobility [116]. These
need to be taken into account when analyzing the results: assumptions can
be made only to present the measured cultural values, leaving the larger
picture of culture harder to capture.

In our work attached to this thesis as Manuscript II [92], we evaluate
differences between countries by comparing mobile usage to the six VSM
factors1, described in the following:

• Power distribution (PDI) describes whether unequal power distri-
butions are expected and accepted in the population. Cultures with
higher power distribution tend to be more hierarchical and persist more
inequalities compared to the cultures with lower power dimension.

• Individualism versus collectivism (IDV) describes how much
members of the population are supposed to take care of themselves
or stay integrated to the group, such as family. In cultures with
high individualism people define themselves as ”I”, compared to the
stronger ”we” feeling in countries with lower individualism.

• Masculinity versus femininity (MAS) describes strength of mas-
culine and feminine roles in the population, for example, in working
life. Cultures of high masculinity are more competitive, compared to
the lower masculinity (higher femininity) that stands on collaboration
and modesty.

• Uncertainty avoidance (UAI) describes whether members of the
population feel either comfortable or uncomfortable in new, unstruc-
tured, or unpredictable situations. A high level of uncertainty avoid-
ance implicates stricter codes of planning and caring for the future,
compared to more relaxed cultures of the lower score of this factor.

• Long versus short-term orientation (LTO) describes how mem-
bers of the population accept delays in either social, material, or
emotional gratification. Cultures with a high score of this factor are
more future-planning compared to those that score lower.

1The open-sourced VSM data matrix is available in: http://www.geerthofstede.nl/
dimension-data-matrix
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• Indulgence versus restraint (IVR) describes whether any gratifi-
cations are allowed to be relatively free (having fun by themselves) or
regulated by strict norms of the population. A high indulgent score
reflects higher importance of free leisure time compared to restraint
cultures of a lower indulgence score.

Several methodologies to clean and process the application usage data
have already been given in this thesis: Section 4.5 describes the process to
collect the country information, Section 4.6 how application data is collected
and cleaned, and Section 4.7 how application categories are delivered. In
Section 5.3, we present how application usage data is converted to the usage
vectors that are more flexible to process with different statistical methods.
Countries’ usage vectors are considered as the average of users, belonging
to the given country, that have used a certain category.

Next, we correlate the usage of all the application category and VSM
factor pairs separately. Table 6.4 summarizes the results and lists the
categories that have the highest positive or negative correlation for the VSM
factors.

Table 6.4 shows us several findings. For example, a low power dis-
tance that indicates low hierarchy in the culture, correlates significantly to
the use of Entertainment applications and other leisure-related categories,
such as Travel and Local, Sports, and Music and Audio. These same cate-
gories together with, for example, Health and Fitness are mostly related to
individualist cultures.

Collectivist cultures, those with higher power distance, and cultures
considered feminine seem to value family related categories, such as Family
create, Education games, and Family pretend. Masculine cultures correlate
with high use of Personalization apps. Long-term-oriented cultures seem
to prefer Sport, Casual and Word games, as well as Social apps. In short-
term-oriented cultures, there is a preference for Role playing games and a
need for Weather apps as well as Comics.

It is noticeable that categories with high correlations differ from those
with the highest usage in general (as presented in Figure 4.2), indicating
that the differences are more sophisticated and complex by nature. A
similar correlation analysis can also be performed reversely. There are nine
categories that correlate less than 0.2 (or -0.2, similarly) to at least five
VSM factors. The category Dating correlates slightly more (0.26) only
to the Individualism versus collectivism, and the category Events to the
Masculinity versus femininity (0.21). Game role playing has very low impact
in five categories, but gains more than 0.3 correlation to Long versus short-
term orientation. In addition to these, the category Beaty and a list of
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Power distance (PDI)
ρ Categories
< -0.5 Music & audio, Entertainment, Weather
< -0.4 News & magazines, Productivity, Travel & local, Sports,

Libraries & demo
< -0.3 Game trivia, Photography, Finance, Communication, Auto

& vehicles, Game card
> 0.3 Family create
> 0.4 Game action

Individualism versus collectivism (IDV)
ρ Categories
< -0.4 Family create, Game action
< -0.3 Game education
> 0.4 Books & references, Photography, Libraries & demo, Educa-

tion, Finance, Game words, Medical, Family music video
> 0.5 Auto & vehicles, Productivity, Sports
> 0.6 Weather, News & magazines, Travel & local, Health & fitness,

Music & audio, Entertainment

Masculinity versus femininity (MAS)
ρ Categories
< -0.4 Family pretend
< -0.3 Game board
> 0.3 Personalization

Uncertainty avoidance (UAI)
ρ Categories
< -0.4 Parenting, News & magazines, Family music video, Game

words
< -0.3 Education, Family education, House & home, Entertainment,

Books & references, Family brain games
> 0.3 Family create
> 0.4 Game action

Long versus short-term orientation (LTO)
ρ Categories
< -0.4 Game sports
< -0.3 Family music video, Game word, Social, Game casual
> 0.3 Maps & navigation, Game role playing
> 0.4 Comics, Weather

Indulgence versus restraint (IVR)
ρ Categories
> 0.3 Sports, Photography, Communication, Game words
> 0.4 Music & audio, Family music video, News & magazines,

Entertainment, Books & references

Table 6.4: The best category correlations to VSM factors with 44 countries.
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different game categories gain low correlation to every VSM factor. Indeed,
there are certain categories that are in general more independent from
the cultural model than the others. These categories can provide us with
insights to the applications that are similarly important through all the
studied countries.

To summarize, mobile usage reflects geographic, demographic, and
cultural boundaries and at the same time, it cannot be truly explained
only by those societal and cultural factors. We propose mobile usage as a
novel societal factor to consider in future studies that apply smart devices
worldwide.



78 6 Decision Making and Actionable Recommendations



Chapter 7

Conclusions

7.1 Summary of the Main Findings

This thesis has proposed methods and approaches to clean, analyze, and
utilize crowdsensed mobile data for actionable feedback and human-readable
recommendations. To summarize the main findings of the work, this section
revisits the research questions provided in the beginning of the thesis in
Section 1.2. Those research questions and their proposed, summarized
answers are the following:

RQ1. How do different data attributes have to be cleaned and pre-
processed to produce a reliable picture of the system state?

There is a need for cleaning mobile crowdsensed data before it is used
as an input of the analysis systems: the data contains misreadings,
missing values, manufacturer-specific default values, and other items
that have to be considered in more detail. We show that using natural
thresholds and statistical analysis of the items’ value ranges we can
include the valid data items in the analysis set and remove invalid
ones. The cleaning procedure has to be separately defined for each
crowdsensed data attribute, and that is where understanding the
collected data becomes so crucial.

RQ2. How can crowdsensed data be used to present crucial factors
of a smartphone’s system state?

Our work with system setting and subsystem variable analysis has
shown that these context factors, indeed, have a crucial effect on
smartphone energy consumption. Our findings are in line with the

79
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previous literature in the case of single context factors, and our re-
sults are possible to validate with the laboratory measurements, too.
Indeed, the crowdsensed data provides new insights to the real-life
use cases that are not even possible to model in limited laboratory
conditions.

RQ3. What are the effects of subsystem variables, system settings,
and their combinations to smartphone energy consumption?

We have shown that not only single factors affect smartphone energy
consumption, but the crowdsensed data reveals that the combinations
give even more detailed insights to the energy-hungry system settings
and subsystem variables. We show that the most accurate energy
impact is revealed when the system state of the device is analyzed as
a whole, taking into account all the possible combinations that system
settings, subsystem variables, and running applications can combine.
In this kind of analysis, the crowdsensed data provides valuable new
insights and gives possibilities to look for an almost unlimited number
of real-life system states compared to the more dependent laboratory
environments.

RQ4. How can smartphone energy consumption be improved by
recommending better system state and subsystem variables?

We propose a novel energy recommendation system Constella that can
take into account the whole system state of the device, including sub-
system variables, system settings, and applications. Most importantly,
the combinations of these context factors can be covered in the effec-
tive, decision tree-based approach. The Constella recommendation
system relies on the concept of the continuous feedback loop where
the data items are collected from the crowd, processed and analyzed
in the back-end cloud-computing environment, and the value of the
results is then sent back to the devices as human-readable, actionable
recommendations. Thus, the value of the analysis will be returned to
the sources of the data, also, to benefit of the future learning loops.
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RQ5. How can mobile recommendation systems be improved by
analyzing application popularity?

We suggest that the trend filtering methodology can be used to im-
prove current application recommendation systems. We show that the
traditional recommendation systems tend to favor also applications
that are already falling in popularity. We show how the trend filters
can be used to improve recommendation results by filtering out the
Flop applications that are already losing their popularity or increasing
the weight given to the Hot applications that show their potentiality
by gaining a significant user base fast.

RQ6. What can be learned about mobile application usage and
popularity in real-life crowdsensed data?

Understanding application usage in the wild provides several new
insights in how applications become popular or fall in popularity. Our
trend-filtering approach suggests a novel methodology to represent
popularity in addition to the traditional retention rates used by the
marketing analysis companies. We can characterize applications as
Hot, Flop, Marginal, or Dominant based on their lifetime success in
the crowd of mobile devices.

RQ7. How does mobile application usage reflect differences in user
population?

We compare crowdsensed mobile application usage to the existing
Cultural Value Model and find out that, indeed, there are correlations
between mobile application usage and known cultural factors. Our
study suggests that in the future, mobile application usage could be
seen as an additional demographical factor or at least as a reflection
of local societies. Our approach can potentially help different social
research areas and application developers targeting international mar-
kets.

RQ8. What can be learned about cultural, demographical, and
geographical differences in crowdsensed smartphone usage?

In addition to the knowledge of how applications are used as a whole,
different demographic, geographic, and cultural factors have shown
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to have a significant effect to the mobile usage patterns. We study
worldwide crowdsensed application usage and show that, indeed, there
are differences and similarities between certain areas. For example,
we can categorize 44 countries into three groups, including mainly
the English-speaking countries, the continental European countries,
and the mixed group of various Asian and Middle-Eastern countries.
Our research suggests that in addition to the demographic factors,
such as age group, gender, occupation, or education, the country is an
essential source of information when studying mobile usage in the wild.

7.2 Implications of the Research

The research in this thesis has shown that the crowdsourced data can and
should be utilized in the cases where previously only laboratory measurement
would be considered. Especially when studying real-life effects and use cases
in the wild, the large-scale crowdsensed mobile data provides essential
insights impossible or too expensive to model alone in laboratory conditions.
This is especially important in an energy consumption perspective, where
various different usage situations need to be included in reliable models.

The crowdsensed approach allows modeling real-life system state combi-
nations and reveals important interdependencies between different context
factors. This is especially seen in our energy modeling work, where we
show that system setting and subsystem variable combinations provide
more complex information about the battery life and overrun any single
sensor-based approaches to understanding mobile energy consumption.

The crowdsensed mobile data provides a possibility for independent,
large-scale studies that are not related to the marketing companies or mobile
manufacturers. For example, we have presented an independent study of
retention rates that provides information about application popularity. We
suggest novel methods to better understand application popularity and
trend patterns, and mobile usage all around the world, which provides
important insights for multiple parties involved in the mobile ecosystem.

We have shown that mobile application usage, indeed, reflects demo-
graphic, geographic, and cultural factors, which is crucial for application
developers to take into account when targeting their products worldwide.
There are several clear design implications: Understanding the target au-
dience, their needs, and habits regarding the mobile usage helps to design
suitable system features. Knowing the popularity of certain categories in
different areas eases the definition of general terms for the applications and
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make them easier to find. Understanding cultural differences in application
use helps to both target or generalize applications in the worldwide market.

7.3 Limitations

Even if the crowdsensed approaches can provide beneficial information to
utilize in many application areas, there are still existing challenges. Even
if many easy to use systems have been introduced, in most of the cases,
the best suitable crowdsensing application requires mobile development
skills and understanding of large-scale computing paradigms and distributed
machine learning algorithms. Not every researcher or developer has time or
opportunity to study all the necessary skills.

When it comes to mobile crowdsensing, data cleaning still has challenges
not fully solved. For example, every new addition to the context factor set
has to be studied independently to understand its natural value thresholds
and statistical distributions. When new data items have been collected and,
for example, new and more effective device models introduced, also the
statistical distributions and features used in the old models may become
dated. This means not only the learning phase but also the data cleaning
procedures have to be updated regularly.

The data collection itself sets its own challenges. Even if it is known that
the crowdsensing systems can provide large amounts of data in a comparably
short period of time, there still exists the cold start problem to first gain
the user base and then get enough data to start the analysis phases. Many
existing machine learning applications are based on previously collected
data sets and only rarely fully online-based learning systems are proposed.
Without sufficient training data, starting a new crowdsensing project and
implementing necessary machine learning procedures may be difficult.

User acquisition has often been seen as an important challenge where
there really is no silver bullet to solve it. The Carat system relies on energy
recommendations it gives back to the users as an additional value. The
truth still seems to be that not many people want to participate in research
projects without any other benefit. Giving out money or gift cards may
be out of the budget for many research teams, and even then, gaining a
representative user population might be challenging. First, when considering
mobile crowdsensing, only users with an appropriate smartphone can be
studied. There is always a group of people left outside, for example, in the
case of the Carat project, only Android and iPhone users can be considered
and even there, iOS provides significantly less information out of the device
compared to the Android system.
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Second, people owning a suitable smart device and volunteering to
participate in the research task do not necessarily correspond to the full
population using these devices. Based on the user questionnaires run for the
Carat population, there is a high bias towards well-educated men working in
professional occupations. Women and less educated people consist of a clear
minority. Interestingly, the age group seems to be the least biased attribute,
because even elder people are well represented in the Carat questionnaires.
Without fully working recruiting strategies, it seems hard to gain a well
representative user population.

Crowdsensing smartphone data gives a great responsibility to researchers
managing such privacy-sensitive information. Users should trust the policies
and storage strategies involved in the analysis process, and in the case of
industrial applications, also trust that no information learned from the data
is used harmfully or unpleasantly. Privacy and security questions still need
to be covered in more detail in the future.

7.4 Future Work

This thesis has presented several use cases for crowdsensed mobile data
analytics. On the other hand, there are still open questions and novel
application areas where the mobile devices and the Carat data can be utilized.
For example, the energy analysis can be enlarged to cover combinations of
different applications together with system settings and subsystem variables.
The Constella recommendation system should be analyzed in the wild with
its recommendations sent back to the user community. Thus, the real-
life effects of this kind of recommendation systems could be tested and
evaluated.

This thesis focuses on a single energy decision tree constructed from the
entire dataset, but it could be more beneficial to consider each device model
separately, or based on the user profiles. Together with understanding the us-
age context and application usage history, also the energy recommendations
could be improved even further. For example, the network infrastructures
differ between countries and different user populations have different needs
for their smartphones, so it is reasonable to consider that also their energy
profiles vary. Personal energy plans might be one of the next topics to
investigate. Characterizing users and their needs for their smartphones
could be used to generate more accurate application recommendations.

The demographic, cultural, and geographical analyses of this thesis have
focused on a limited number of data attributes available in the questionnaire
run for the Carat user base. More information about the user context could
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be collected, including but not limited to, for example, the user’s personality
traits, mental state, and daily habits and routines. From a cultural point of
view, also different personal beliefs, religion, and political opinions might be
considered, as well as identification with minorities and subcultures. There
is previous work about these topics, but the Carat user base provides a
special opportunity to study these topics worldwide with real users and
usage cases in the wild.

The user context analysis together with understanding of global and
local application trends provide a rich input also for new application rec-
ommendation systems. The current trend analysis presented in this thesis
focuses on the global trends, but in the future also local trends and popu-
larity inside certain demographical subgroups or geographical areas would
provide fruitful results.

7.5 Conclusion

This thesis has presented how crowdsensed mobile data can be used in
benefit of energy diagnosis, application popularity analysis, and demographic
insights. Smartphones have become a crucial part of modern everyday life
and it is clear that they and corresponding new smart devices in the future
will continue this trend. People have become used to being connected and
relying on a single device of multiple integrated functionalities for fun and
leisure as well as for work and education.

The crowdsensed data can be utilized for several application areas, but
it still also has challenges to solve. For example, the autonomous data
collection requires intensive cleaning strategies for functional information
retrieval. Large-scale data collection sets challenges for running effective
machine learning procedures and statistical analysis also in the cloud-
computing environment. Analysis results of the learning algorithms have to
be converted to human-readable form and visualizations to fully utilize their
value in the future. For example, recommendation systems and decision-
making tools can utilize crowdsensed data effectively.

This thesis has proposed methodologies to collect, clean, analyze, and
form the value out of the crowdsensed data. As an opinion of the author,
there are more pros than cons in the crowdsensed mobile data analytics. The
open challenges of the field only help to make applications and methodologies
stronger and easier to utilize in the future.
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