

This work can be found from:
https://doi.org/10.1109/MS.2017.4541037

To cite this work, use:

N. Mäkitalo, A. Ometov, J. Kannisto, S. Andreev, Y. Koucheryavy and T. Mikkonen, "Safe, Secure
Executions at the Network Edge: Coordinating Cloud, Edge, and Fog Computing," in IEEE Software, vol.
35, no. 1, pp. 30-37, January/February 2017. doi: 10.1109/MS.2017.4541037

@ARTICLE{makitalo2018executions,
author={N. Mäkitalo and A. Ometov and J. Kannisto and S. Andreev and Y. Koucheryavy and T.
Mikkonen},
journal={IEEE Software},
title={Safe, Secure Executions at the Network Edge: Coordinating Cloud, Edge, and Fog Computing},
year={2018},
volume={35},
number={1},
pages={30-37},
keywords={Computational modeling;Cyber-physical
systems;Programming;Safety;Security;Servers;Software;edge computing;fog computing;programmable
world;programming models;proximate connectivity;security and trust;software development;software
engineering;systems and software design},
doi={10.1109/MS.2017.4541037},
ISSN={0740-7459},
month={January},
}

Authors’ preprint version bellow.

Safe and Secure Execution at the Network Edge:
A Framework for Coordinating Cloud, Fog, and Edge

Niko Mäkitalo, Aleksandr Ometov, Joona Kannisto,
Sergey Andreev, Yevgeni Koucheryavy, and Tommi Mikkonen

Abstract

System design where cyber-physical applications are securely coordinated from the cloud may
simplify the development process. However, all private data are then pushed to these remote
‘swamps’, and human users lose the actual control as compared to when the applications are
executed directly on their devices. At the same time, computing at the network edge is still
lacking support for such straightforward multi-device development, which is essential for a wide
range of dynamic cyber-physical services. In this work, we propose a novel programming model
as well as contribute the associated secure connectivity framework for leveraging safe
coordinated device proximity as an additional degree of freedom between the remote cloud and
the safety-critical network edge, especially under uncertain environment constraints.
Keywords: Edge computing, programmable world, programming models, proximate
connectivity, systems and software design.

1 Motivation and Background

Today, the cloud has evolved into a ubiquitous solution for enterprises in their quest for a
unified digital platform. To this end, it represents a centralized infrastructure that has become
the control point to manage computing power, storage, processing, integration, and decision-
making assets for modern corporations. Boosting these processing and decision making
capabilities even further, there is a need to offer novel high-confidence technologies that will
have the capability to support billions of networked devices, as we are stepping into the era of
interconnected Cyber-Physical Systems (CPSs) [1].

The particularly challenging operating conditions of future CPSs are represented by the
areas of poor or unavailable infrastructure network connectivity, which need to be handled to
maintain sustainability and enable faster decision-making based on localized data intelligence
across heterogeneous system components. These considerations are underpinning the recent
trend to transition from the centralized cloud platforms toward the network edge, which is
essentially dispersing the cloud back to the origin – the end devices [2]. With advanced routers,
gateways, microservices, containers, and APIs, it is increasingly feasible to execute these
smaller, self-contained, and purpose-driven services that specifically target certain dedicated
functions required near the edge.

The distinct computing paradigms, such as ‘cloud’ (computations on a remote server),
‘fog’ (computations at the local area network level), and ‘edge’ (computations on end-devices)
computing, act similarly under conventional use cases, but become fundamentally different
when considering safety-critical CPSs that operate in dynamic and uncertain conditions [3].
Examples include overtaking control of a moving vehicle and hacking an industrial robot, where
various vulnerabilities may be exploited to hijack remote access to the capable factory
equipment.

To mitigate these vulnerabilities, new systems and software engineering methods are
required where networked machines can interact more freely, by forming connections according
to the actual demand and not because this is requested by the central managing entity. This calls

for revisiting the ways of interaction between the devices and their operating environment,
which becomes the target of this work. Its main contributions thus are an Action-Oriented
Programming model and the associated framework that can dynamically adapt to the edge and
the cloud according to particular environment and connectivity conditions. Further, it is
compared to mobile app-based and cloud-based CPS deployments. Finally, a framework to
enable secure coalitions and dynamic management of collective executions is also outlined.

2 Sensing and Actuation Executions at the Network Edge

Billions of smart CPS devices at the network edge require proximity-based communication
mostly with the cloud connectivity, but these two aspects have traditionally been addressed in
isolation [4]. At the same time, the lion’s share of CPS interactions is still about their users
(e.g., the concept of quantified self [5]), and the human element is tightly involved into the
decision-making process. The capability to switch from the cloud to the edge (or the app)
dynamically, based on the operating conditions and user requests, allows to control device
behavior more efficiently. In what follows, we focus on advancing software development
efforts, so that the said activities are executed on the network edge to boost the dynamic
adaptation of a CPS to complex environment constraints, while remaining mindful of human
perception.

2.1 Action-Oriented Programming Model

The proposed Action-Oriented Programming (AcOP) model builds upon the following
constructs. It roots in the so-called Social Devices paradigm [6], and the original concept is
tailored here to the context of edge computing as driven by the CPS evolution. The new model
is realized on top of JavaScript programming language, which enables deployment on a vast
number of hardware platforms.

Sensation – An input coming from the physical, cyber, or social world.
Instrumental to CPSs is observation of various events coming from the outer world, and

then acting upon these events. In AcOP, these observed events are named sensations. The
abstraction level of the sensations may vary, and in addition to observing physical world’s
phenomena, the processes in cyber and social worlds can be monitored as well. A concrete
example of a sensation is the changed sensor value, while a more abstract sensation is, e.g.,
when a friend is nearby, which combines data from different worlds (Facebook friendship and
Bluetooth signal strength values).

Capability – Physical objects as programmable JavaScript objects.
In AcOP, physical objects and digital (micro)services constitute programmable JavaScript

objects. They are described with AcOP capabilities that define the ways in which a certain
machine can interact with other machines and humans. An example here is the talking
capability where the device is able to translate text into speech. The capabilities produce
abstract capability sensations, such as “temperature has changed” or “coffee is ready”, which
are derived from raw sensations. These help the developers define scheduling policies for
collective executions.

Action – Joint behavior of machines and humans.
In the heart of our model are actions that define joint operations across multiple devices

and people. Typically, an action is a modular unit that determines how several devices interact
with each other over a certain period of time. Such actions are defined with JavaScript and
comprise three parts, a casting method used for selecting participating devices based on their
capabilities, an enabling condition and a body, used for programming the interactions by
utilizing the AcOP capabilities as well as the basic programming logic. The modularity of the
actions helps make them more generic, so that they may be exploited in many different

executions; similarly, the device capabilities may be employed by many actions.

Collective Execution – Coalition of trusted entities sensing and acting toward a
common goal.
In AcOP, a set of machines and humans form coalitions by engaging into trust negotiations.

These coalitions then collectively execute software where machines and humans interact and
cooperate. The key idea of the collective execution is detecting and maintaining information
about the sensations coming from the various worlds as well as from the coalition participants.
Then, collective execution attempts to schedule an action for a set of devices, which are selected
for specific roles in this action based on their capabilities and properties. In practice, collective
execution operates so that one device in a coalition at a time assumes the role of coordinator and
then executes the code responsible for scheduling the actions. At the same time in the
background, all of the other devices in a coalition contribute by exchanging information that is
essential for that particular execution via secure connections.

2.2 Traffic Emergency Context: AcOP Operation at the Network Edge
As a characteristic use case, we study the scenario where contemporary vehicles can call 911 in
emergency situations. Consider Fig. 1.a depicting a traffic accident, in which the car involved
would immediately report to the traffic monitoring system. The vehicle or the traffic system also
communicates the supporting information – or a sensation – to a set of executions. For instance,
Fire Department’s execution may detect the accident and schedule an action to leverage the
car’s talking capability to poll passengers whether they are unharmed as well as provide
instructions. The execution can also schedule further actions, e.g., command the traffic
monitoring system to send a drone to analyze if a fire has started, call an ambulance if an injury
was suspected [7], etc. The executions at the network edge do not prevent from leveraging cloud
services: in our example, for instance, the execution taking care of the emergency scene is
reporting to the traffic monitoring system about the current situation regardless of whether the
infrastructure connection is available or not. The system can then provide further information to
the families of victims.

Clearly, similar functionality might be achieved with conventional mobile applications and
– to some extent – with cloud-based services. However, these alternative solutions fall short of
providing adequate security and functional safety guarantees. Cloud-based coordination, for
example, might simply be too unreliable and slow for real-time coordination, especially in
sparsely populated and low network capacity areas with sporadic demand (e.g., traffic jam
caused by the accident). Purely mobile applications, on the other hand, do not have such support
for coordination by design. Additionally, this would require inclusion of coalition forming
capabilities into each enabled application and/or involvement of the authorities, so that the
established coalitions could be made secure and trusted. It would substantially complicate the
development process. Fortunately, AcOP makes it simple to develop coordination that takes
place at the network edge, which is much less prone to the erratic connections and can even
operate without any connection to the outside world. Further pain points of the traditional
approaches are summarized in Table 1.

Figure 1.a: Example operation of AcOP model in an emergency scenario: User and device states
(yellow and orange) are reported to collective executions (light blue). Actions (purple) are coordinating
the operation of various devices with capabilities (green). One device at a time acts as coordinator, but
the same app is executed collectively by multiple devices.
Figure1.b: The structure of the coalitions operating behind the collective executions of AcOP.

Table 1: Comparing mobile app (M) and cloud service based (C) approaches with our AcOP model
(A) for CPS development.

Detecting	and	handling	contingencies	 Support	
M ● Easy to catch the application’s errors with try-catch notation.

● Some recovery can be tried, but typically the app crashes which does not support functional safety.
● If the device starts malfunctioning, how to support functional safety and replace it with another one?
● How to handle errors that occur in the coordination or on other devices?

Stand-alone,
No functional safety

C ● Easy to catch errors that occur on the server side, and some contingencies on the device side can be
sent to the server side and solved there.

● Devices may be replaced with another device if such device is connected, the device owns desired
capabilities, and the device is located so that it makes sense to use the device.

● How to manage errors in between the cloud and devices if Internet connection is lost, or how to fix
poorly functioning connections?

Multi-device,
Limited functional

safety

A ● AcOP has contingency handlers for remote and coordination related issues. Within the handler
methods, developers can define ways for recovering from unwanted behavior, e.g., replace a
disconnected or malfunctioning device with another one, change the connectivity type, etc.

● It is also possible to reschedule an action, or take a completely different action.

Multi-device,
Improved functional

safety

Detecting	sensations	 Support	

M ● Easy to implement detection, e.g., when device location and/or orientation change (for instance, with
the use of delegate methods).

● How to detect state changes on other devices?

Single-source,
Privacy by Design

C ● Data coming from multiple devices and sensors can be streamed to the cloud services and processed
there when Internet connectivity is available.

● How does this approach scale when there are thousands of devices streaming data continuously and
the Internet connectivity is poor quality?

● Can the provider be trusted so that it does not save any data and use it without the user knowing?

Multi-source,
Privacy by Trust

A ● Collective execution is designed to be used for detecting sensation on a device that is participating in
the same execution. Then, for the task at hand, the sensations can be combined and processed from
as many sources as required.

● The sensations are only shared among the devices participating to the same execution, which only
contain information relevant for the execution. The data vanishes when the “on-the-fly” computation
ends.

Multi-source,
Privacy by Design

Reacting	to	sensations	 Support	

M ● When a sensation has been detected, the device can be instructed to act upon this event.
● How to select and command another device or a group of devices to act?

Internet not required,
No functional safety

C ● Cloud-based approaches are typically used for coordinating the CPS devices. The coordination,
however, relies on the Internet connectivity, and communication in latency-sensitive systems can
easily become a bottleneck.

● How to ensure real-time coordination without adequate Internet connectivity?
● How to operate and coordinate independently if there is no Internet connectivity?

Internet required,
No functional safety

A ● In a collective execution on the network edge, a device detects certain sensation(s) and attempts to
schedule an action. Actions are designed to serve as the output to the world, for commanding joint
operations between one or many devices when performing a certain task.

● Requires connectivity, but the connectivity does not have to be good quality Internet connection.
● The trusted entities can be used for replacing one device with another to support functional safety.

Internet not required,
Functional safety

Decentralizing	computation	and	cooperation	 Support	

M ● Particular tasks can be posted to be executed by the background cloud service. For instance, recent
serverless approaches (e.g., Google’s Cloud Functions, Azure Functions, and AWS Lambda) gained
certain popularity. While the developer is liberated from server management, the computation
distribution still takes place on the servers [8].

N/A

C ● The executions in cloud-based approaches can be either centralized or distributed when executed by
several services and machines [9].

● How to harness other (nearby) devices to perform computation in a safe and secure manner?

Internet required,
Privacy and security

not guaranteed
A ● Collective executions and actions can run on any of the edge devices capable of handling JavaScript.

It is natural to motivate such distribution: privacy and security of content and data to be utilized on a
specific device.

● In the collective executions, the coordination happens among trusted entities of the coalition.

Internet not required,
Privacy and security

guaranteed

Deployability	of	cooperation	 Support	

M ● Mobile apps are deployed onto the devices via application stores. The cooperation requires that the
other devices must have the same app installed and running.

● How to deploy cooperation in a flexible and safe manner, and without manual user input?

Static,
No constant Internet

connection
C ● Tasks can be deployed onto cloud services, where the devices are instructed to cooperate. This

requires constant connection between the devices and cloud in order to coordinate the operations.
● How to deploy a certain well-defined task to be executed by particular devices in all circumstances?

Dynamic,
Constant Internet

connection
A ● AcOP components for executing certain tasks can be downloaded/installed from a repository in

advance, or dynamically acquired at runtime whenever needed.
● It is enough if one of the participating devices has preloaded the AcOP components that are taking

care of the coordination. Hence on a zone where is no Internet connection, the device with the latest
version of the components gets selected to the role of the coordinator.

Dynamic,
No constant Internet

connection

3 Establishing Secure Communicating Coalitions

To liberate the programmers from considering coalition formation as part of the application
logic, an appropriate framework is required to enable operation of communicating peripherals,
e.g., in case of a traffic accident described in the previous section. Certain known approaches
exist already, thus bringing attention to the challenge of sandboxed executions in the emerging
CPSs (e.g., FlowFence [10]). However, sandboxed collective executions of the same piece of
software on the edge devices have not gained sufficient attention thus far.

Today, mobile devices may establish and utilize a direct link only if they have a reliable
connection to the coordinator, which is responsible for the secure connection management, or if
they trigger the connection themselves. In the latter case, no security and safety guarantees can
be provided by the operator. To mitigate this limitation, Public Key Infrastructure is commonly
utilized for enabling secure and authenticated communication when a connection to the
centralized authority is available [11]. Without it, many applications might become disabled if
but a single user leaves the network coverage. This particularly occurs in cases of disaster
and/or when a cellular connection is unreliable (network is overloaded) or unavailable (train,
airplane, elevator, etc.).

To augment the edge computing technologies, we propose to employ a secure
communication framework that we developed in a series of trials in a live cellular network [12].
Our system is built upon the advanced security protocols contributed by 3GPP specifications.
This novel framework applies the knowledge of distributed solutions to enable secure
communication. Accordingly, execution in people’s devices in the emergency scene enables
them to seamlessly join and leave a coalition without disrupting collective execution.

The main operation phases of the considered approach are illustrated in Fig. 1.b. The only
procedure that requires stable connectivity to the cloud is the coalition initialization. First, the
involved mobile devices receive their certificates with the corresponding secret and public keys.
These are utilized to establish secure direct connectivity with each relevant device. When a
device is willing to create a secure coalition with its “neighbors”, a request containing the public
identifiers of future coalition members is sent to the corresponding server. The coalition secret is
then generated and split between the coalition users.

A polling procedure is then triggered by the network to ensure that the subject devices are
actually willing to join this coalition. After the confirmations have been received, both coalition
certificate and coalition secret (based on the use of Lagrange polynomials) are delivered. After
these steps, secure direct interaction may continue over any conventional network. The
members of an existing coalition have the possibility to invite new devices as well as remove
the existing ones based on the flexible voting system, i.e., when k out of M coalition members
agree on a particular decision (runs automatically for machines and can be manual for humans).
This allows the coalition to be updated dynamically to manage collective executions in various
scenarios. For example, predefined “hidden” coalitions may be utilized in cases of disaster, thus
enabling operational stability.

4 Summary

Edge computing is increasingly demanded due to the CPS requirements for increased scalability
and functional safety – if the entities are coordinated by the cloud, a risk remains that without
reliable Internet connectivity the functional safety cannot be guaranteed. In cooperation at the
network edges, devices need to be able to trust each other, thus calling for dynamic coalitions
with secure and trusted topology. This, in its turn, improves functional safety since trusted
entities can cooperate and act as back-up options for one another in various CPS applications
(see Fig. 2): if one device fails, others are there to stand in. In order to achieve this, we proposed
an Action-Oriented Programming model and the associated framework that can dynamically
adapt to the edge and the cloud.

Figure 2: Considered application scenarios of cloud, fog, and edge computing for Action-Oriented
Programming model

References

[1] P. J. Mosterman and J. Zander, “Cyber-physical systems challenges: a needs analysis for
collaborating embedded software systems,” Software & Systems Modeling, vol. 15, no. 1, pp.
5–16, 2016.

[2] E. Elmroth, P. Leitner, S. Schulte, and S. Venugopal, “Connecting Fog and Cloud Computing,”
IEEE Cloud Computing, vol. 4, no. 2, pp. 22–25, 2017.

[3] R. Tandon and O. Simeone, “Harnessing Cloud and Edge Synergies: Toward an Information
Theory of Fog Radio Access Networks,” IEEE Communications Magazine, vol. 54, no. 8, pp.
44–50, 2016.

[4] R. Roman, J. Lopez, and M. Mambo, “Mobile edge computing, Fog et al.: A survey and
analysis of security threats and challenges,” Future Generation Computer Systems, 2016.

[5] M. Swan, “The Quantified Self: Fundamental Disruption in Big Data Science and Biological
Discovery,” Big Data, vol. 1, no. 2, pp. 85–99, 2013.

[6] N. Mäkitalo, J. Pääkkö, M. Raatikainen, V. Myllärniemi, T. Aaltonen, T. Leppänen,
T. Männistö, and T. Mikkonen, “Social Devices: Collaborative Co-located Interactions in a
Mobile Cloud,” in Proc. of the 11th International Conference on Mobile and Ubiquitous
Multimedia, p. 10, ACM, 2012.

[7] A. Mashkoor and M. Biro, “Towards the Trustworthy Development of Active Medical Devices:
A Hemodialysis Case Study,” IEEE Embedded Systems Letters, vol. 8, no. 1, pp. 14–17, 2016.

[8] A. Eivy, “Be Wary of the Economics of "Serverless" Cloud Computing,” IEEE Cloud
Computing, vol. 4, pp. 6–12, 2017.

[9] Y. Zhao, K. Yoshigoe, M. Xie, S. Zhou, R. Seker, and J. Bian, “Evaluation and Analysis of
Distributed Graph-Parallel Processing Frameworks,” Journal of Cyber Security and Mobility,
vol. 3, no. 3, pp. 289–316, 2014.

[10] E. Fernandes, J. Paupore, A. Rahmati, D. Simionato, M. Conti, and A. Prakash, “FlowFence:
Practical Data Protection for Emerging IoT Application Frameworks,” in Proc. of USENIX
Security Symposium, 2016.

[11] C. Adams and S. Lloyd, Understanding PKI: Concepts, Standards, and Deployment
Considerations. Addison-Wesley Professional, 2003.

[12] A. Ometov, P. Masek, J. Urama, J. Hosek, S. Andreev, and Y. Koucheryavy, “Implementing
secure network-assisted D2D framework in live 3GPP LTE deployment,” in Proc. of
International Conference on Communications Workshops (ICC), IEEE, pp. 749-754, 2016.

