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Abstract

Fomitopsis pinicola is a species of Polyporales frequently encountered in Nordic temperate

and boreal forests. In nature, the fungus causes destructive brown rot in wood, colonizing

tree trunks often occupied by other Basidiomycota species. We mimicked these species-

species interactions by introducing F. pinicola to five white rot species, all common sapro-

trophs of Norway spruce. Hyphal interactions and mycelial growth in various combinations

were recorded, while activities of lignocellulose-acting CAZymes and oxidoreductases were

followed in co-cultures on two different carbon-source media. Of the species, Phlebia radi-

ata and Trichaptum abietinum were the strongest producers of lignin-modifying oxidoreduc-

tases (laccase, manganese peroxidase) when evaluated alone, as well as in co-cultures, on

the two different growth media (low-nitrogen liquid medium containing ground coniferous

wood, and malt extract broth). F. pinicola was an outstanding producer of oxalic acid (up to

61 mM), whereas presence of P. radiata prevented acidification of the growth environment

in the liquid malt-extract cultures. When enzyme profiles of the species combinations were

clustered, time-dependent changes were observed on wood-supplemented medium during

the eight weeks of growth. End-point acidity and production of mycelium, oxalic acid and oxi-

doreductase activities, in turn clustered the fungal combinations into three distinct functional

groups, determined by the presence of F. pinicola and P. radiata, by principal component

analysis. Our findings indicate that combinations of wood-decay fungi have dramatic dy-

namic effects on the production of lignocellulose-active enzymes, which may lead to diver-

gent degradative processes of dead wood and forest litter.

Introduction

Fungal interactions are dynamic processes in nature comprising not only pathogen-host and

symbiotic relationships, especially with plants, but also microbe-fungal and fungal-fungal

interspecies level activities in diverse habitats. Of these habitats, one of the most demanding

environments is dead wood [1]. In regard to the degradative saprotrophic (saprobic) processes,

the fungal community in decaying wood and woody debris may be under dynamic changes in
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the forest ecosystems [2–5]. Interactions between fungal species (interspecies activities and

responses) affect—either positively or negatively—the community composition and wood col-

onization strategies [6–7]. Thus, wood-decay fungi may confront each other in their habitats

with several strategies that are either mutualistic, neutral, or combative (antagonistic) hyphal

interactions [6, 8].

Competition between fungal hyphae of different species or intraspecies isolates arises from

competition of environmental resources, which is demanded by whether the resource territory

is already occupied or not [6]. The local abiotic and biotic factors are the driving forces for fun-

gal interactions, and the initial colonizers may create a priority effect on the success of later

occupants [4–5, 9]. Furthermore, availability of readily degradable and utilizable organic com-

pounds, such as plant litter and wood in the forest ecosystems, affect hyphal colonization [8].

To gain nutritional carbon from solid wood—the main lignocellulose material in nature—

saprotrophic fungi secrete a mixture of metabolites and enzymes to break and modify the cel-

lulose, hemicellulose, pectin, and lignin biopolymers of the composite wood cell wall structures

[10–12].

In dead wood, the wood-decaying fungi belonging to Basidiomycota class Agaricomycetes

are able to colonize and even decompose compact wood and lignified plant cell walls by pro-

duction of multiple arrays of carbohydrate active enzymes (CAZymes) and auxiliary oxidore-

ductases [11–12]. Expression and secretion of a wide array of these enzymes builds up the

white rot fungal decay system [13–15]. Another type of efficient degradation of wood is the

fungal brown rot decay, which is deficient of the key white rot signature enzymes such as class-

II peroxidases [10–11, 16] but is distinguished by a strong oxidative non-enzymatic attack

leading to destruction of wood cellulose and polysaccharides [17–18].

Lignin is the most recalcitrant of the plant biopolymers, and it is attacked and modified by

oxidoreductase enzymes secreted by the white rot fungi [11–12, 14, 19]. Evolution of lignin-

modifying ability was initiated (around -290 Ma) when the first class-II peroxidase encoding

genes appeared in the ancestors of Agaricomycetes [11]. The main wood polysaccharides—cel-

lulose and hemicelluloses–in turn are decomposed to oligo- and monosaccharides by fungal

secreted CAZymes including e.g. endoglucanase, xylanase, β-glucosidase, cellobiohydrolase

and lytic polysaccharide monooxygenase activities [20].

Contrary to the white rot Agaricomycetes, it is assumed that brown rot fungi primarily

decompose the wood polysaccharides—cellulose and hemicelluloses–non-enzymatically by

generating reactive oxygen species via Fenton chemistry [17–18,21–22], while expression and

functions of cellulose and hemicellulose degrading CAZymes has been studied with a few

model species of brown rot fungi [23]. Fenton reactions initiate wood decay by opening up the

xylem cell wall structure, which is followed by CAZyme expression [23]. According to the

accumulating fungal genomic information and phylogenomics, previous categorization of

wood-inhabiting fungi to either white or brown rot species is, however, now deforming into

several, more diverse fungal mechanisms and observable characteristics [12–13,15, 24]

Fungal communities in decaying wood have been investigated by molecular approaches

(DNA sequence-amplicon based fungal diversity studies) pinpointing combinations and suc-

cession of a few white rot and brown rot species, together with ectomycorrhizal and Ascomy-

cota species, in dead coniferous and deciduous tree species [5, 25–28]. However, only a few

studies were targeted on enzyme activities in decaying wood [29], or were conducted under

controlled conditions including fungal species-species interactions [7, 30].

For these reasons, and taking into account the recent fungal community studies, we

designed specific and ecologically justified wood-decay fungal species interaction experiments

under laboratory conditions, applying both solid media (agar plates) for detection of hyphal

interactions, and coniferous wood-containing semi-solid cultures to follow the effect of

Interaction activities of wood-decay fungi in combination cultures

PLOS ONE | https://doi.org/10.1371/journal.pone.0185171 September 27, 2017 2 / 21

design, data collection and analysis, decision to

publish, or preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0185171


different interactions on the production of wood carbohydrate-active and lignin-modifying

enzymes. The main purpose was to investigate, how the presence of the brown rot species

Fomitopsis pinicola (order Polyporales) influenced hyphal growth and secretion of extracellular

wood-decay enzymes by white rot species of Polyporales (Phlebia radiata, Trichaptum abieti-
num, Junghuhnia luteoalba) and Hymenochaetales (Porodaedalea laricis, former Phellinus
chrysoloma; Phellinus ferrugineovelutinus, former Phellinus ferrugineofuscus).

The selected Agaricomycetes species are well known for their ability to colonize and decom-

pose dead wood, especially Norway spruce, in boreal forests [26, 31–34] (Table 1). Our

research hypothesis was that the brown rot fungus would have a strong, either inhibiting or

promoting effect, on hyphal growth and production of wood-decay enzymes by the white rot

species, which would be observable in different species combinations and co-cultivations.

Materials and methods

Fungal isolates and culture conditions

Basidiomycota isolates of the class Agaricomycetes, order Polyporales, species Fomitopsis pini-
cola, Phlebia radiata, Trichaptum abietinum, and Junghuhnia luteoalba, and two species of the

order Hymenochaetales from the genera Phellinus and Porodaedalea (Table 1), were obtained

from the University of Helsinki Fungal Biotechnology Culture Collection (HAMBI/FBCC).

The fungal strains were originally isolated from basidiocarps growing on decaying wood in

boreal forest sites in Finland and identified morphologically. Their identity to species level was

confirmed by phylogenetic analysis of the ribosomal DNA ITS region (ITS1+5.8S+ITS2 as the

amplified region) (Fig A in S1 File). One isolate of each species was selected for the co-culture

experiments according to even and uniform hyphal growth on 2% malt extract agar (MEA)

Table 1. Fungal species systematics, wood-decay type and decay stages.

Fungal species, abbreviation and classification Isolatecode1 ITS sequence accession2 Wood-decay type3 Wood-decay stage4 Ref.

Fomitopsis pinicola (Sw.) P.Karst. (1881)

(Fp)

Fomitopsidaceae, Polyporales

1181 LT844580 BR Early [35]

Trichaptum abietinum (Dicks.) Ryvarden (1972)

(Ta)

Polyporaceae, Polyporales

0110 LT844582 WR Early [25]

Phlebia radiata Fr. (1821)

(Pr)

Meruliaceae, Polyporales

0043 LT844581 WR Early, secondary [1,36]

Junghuhnia luteoalba (P.Karst.) Ryvarden (1972)

(Jl)

Meruliaceae, Polyporales

1472 LT844583 WR Middle [37]

Porodaedalea laricis (Jacz. ex Pilát) Niemelä (2005)

(Phellinus chrysoloma)

(Pc)

Hymenochaetaceae, Hymenochaetales

0768 LT844584 WR Early [38]

Phellinus ferrugineovelutinus (Henn.) Ryvarden (1972)

(Phellinus ferrugineofuscus)

(Pf)

Hymenochaetaceae, Hymenochaetales

0945 LT844585 WR Middle [35]

1HAMBI-FBCC, HAMBI Fungal Biotechnology Culture Collection
2This study, see text in S1 File
3BR, brown rot; WR, white rot
4according to formation of fruiting bodies (basidiocarps) on decaying wood, as is described in the references.

https://doi.org/10.1371/journal.pone.0185171.t001
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(2% w/V malt extract, Biokar, France and 2% w/V agar, Yliopiston Apteekki), pH 5.5±0.05, at

25˚C, in the dark. The fungal isolates were pre-cultivated on MEA in 9 cm diameter petri

dishes at 25˚C, in the dark for one week before initiation of the co-cultivations.

Fungal co-cultures and hyphal growth on agar media

For inspection of mycelial interactions and measurement of hyphal growth rates, cultivations

on 2% MEA and ABTS agar plates were initiated for single-species, two-species combinations,

and for three-species co-cultures (Table 2). All cultivations were performed in three biological

replicates (agar plates were inoculated and analysed for each combination and single-species

culture). ABTS agar medium contained 5.6 mM glucose, 15 mM KH2PO4, 2 mM MgSO4 • 7

H2O, 0.9 mM CaCl2 • 2 H2O, 2.7 mM ammonium tartrate, 15 mM succinic acid, 0.02% (w/V)

yeast extract (LabM), 2.5% (w/V) agar (Yliopiston Apteekki), and 0.025% (w/V) ABTS (2,2’-

azino-bis(3-ethylbenzothiazoline-6-sulphonic acid, Sigma-Aldrich) [39]. MEA and ABTS agar

plate cultivations were started by transferring a mycelial 5 mm x 5 mm agar plug from pre-cul-

tivated MEA plates. Mycelial plugs were placed on the agar surface systematically and in even

distribution from the center of the plate, also in the co-cultures (Fig A in S2 File). Extension of

the mycelial front (hyphal growth) for each inoculant was recorded 1–5 times a week, depend-

ing on the rate of complete colonization of the agar plate, from three equal segments of the

growing mycelium, for a maximum period of eight weeks. Mycelial front extension was mea-

sured for each species in the cultivations from the three replicate plates, and the results are pre-

sented in (mm d-1) as mean values with standard deviation.

Fungal co-cultures in liquid media and sampling

In order to follow the effect of fungal interactions on enzyme production and activities, wood-

supplemented LN-AS (wood-LNAS medium) and ME broth medium cultivations were con-

ducted in three parallel 100 ml cultures in 250 ml Erlenmeyer flasks, following the same fungal

combination scheme (Table 2). The 2% (w/V) malt extract (Biokar) liquid medium (ME), pH

5.5, was prepared in Milli-Q water. The LN-AS (low nitrogen-asparagine succinate buffered

liquid medium, pH 4.5) [40–41] mineral medium was supplemented with 1 g ± 0.01 g (dry

weight) of a mixture of coniferous wood (Norway spruce and Scots pine) fine filings (sieved to

less than 5 mm particle size) as the carbon source prior to autoclaving (121˚C, 15 min, 1 atm).

Each flask was inoculated with two 5 mm x 5 mm sized mycelial plug of each fungal isolate

pre-cultivated on MEA plates for one week. The stationary submerged flask cultures were

incubated for eight weeks at 25˚C in the dark. Samples (1–2 ml) were taken from each flask

once a week, and stored at -20˚C. Samples were quickly thawed and centrifuged (13 000 g,

+4˚C, 2 min) before measuring the enzyme activities.

Production of mycelial mass in the ME broth cultures was determined after eight weeks of

cultivation using fiberglass filters (Whatman GFC) and overnight drying at 140˚C. Mycelial

dry weight was obtained by subtracting the dry weight of the filter from the total dry weight.

Table 2. Fungal combinations on agar media, in liquid medium and semi-solid coniferous wood co-

cultures. Species abbreviations are depicted in Table 1.

One species Two species Three species

Fp

Pr

Ta

Pc

Jl

Pf

FpPr

FpTa

FpPc

FpJl

FpPf

FpPrTa, FpPrPc, FpPrJl, FpPrPf,

FpTaPc, FpTaJl, FpTaPf,

FpPcJl, FpPcPf,

FpJlPf

https://doi.org/10.1371/journal.pone.0185171.t002
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Acidity (pH value) of liquid media cultures was measured at the end of the cultivation. Mean

average pH values with standard deviation of three replicate cultures are reported.

Enzyme activity and oxalic acid production measurements

Activities of selected CAZy [42] glycoside hydrolases and auxiliary oxidoreductases were mea-

sured from three parallel flask cultures (three biological replicates) of each co-culture species

combination and from single-species cultivations. Xylanase, β-glucosidase, laccase, and man-

ganese peroxidase (MnP) activities were determined according to the 96 well plate methods

previously developed [41, 43] using Tecan Infinite M200 plate reader spectrophotometer con-

nected to Magellan analytical software (version 7.1 SP1). Xylan from beech wood (1% w/V,

Sigma) and 1 mM 4-nitrophenyl β-D-glucopyranoside were used as substrates in the xylanase

and β-glucosidase assays, respectively. For xylanase activity assay, the calculated theoretical

detection limit was 1.67 μkat/L. For laccase activity measurements, ABTS (31 mM) in 50 mM

sodium malonate buffer (pH 4.5) was used as substrate, and formation of the green radical

product was followed at 420 nm [44]. MnP activity was kinetically determined in 50 mM

sodium malonate buffer (pH 4.5) at 270 nm as oxidation of Mn2+ to Mn3+ malonate chelates

[40–41]. Enzyme activities are reported as mean values (with standard deviation) of the three

replica culture samples. For each sample in all enzyme activity assays, three technical replica

reactions were measured. Exceptional reactions and values were abandoned according to stan-

dard deviation of the mean value. Each 96-well plate contained (i) either positive reference

enzyme samples (in three parallel reactions) in the laccase and MnP assays, or (ii) reaction

product reference samples, either 4-nitrophenol or xylose, in four different concentrations

(each in three parallel reactions) in the β-glucosidase and xylanase assays, respectively. Thus,

performance of each individual 96-well plate and data recording were confirmed.

Fungal produced oxalic acid was identified and quantified at the end-point of ME broth

cultures applying a UHPLC method optimized for analysis of fungal-produced organic acids

from liquid media cultures [45]. However, it was impossible to quantify oxalic acid from the

wood-LNAS medium cultures by this method due to interference of the medium components

in the chromatographic separation.

Statistical analyses

In order to observe potential correlation of fungal species combination to production of

enzyme activities in the wood-LNAS cultures during the eight weeks’ period of cultivation,

and to investigate correlation of cultivation end-point data (in the ME broth cultures), princi-

pal component analyses (PCA) were conducted using ggplot2 [46], ggbiplot (GitHub, Inc.

2016), ggrepel (GitHub, Inc. 2016), devtools [47], cluster [48], scales [47] and car [49] packages

in the R environment, software 3.2.5 [50]. Evolving clustering of species combinations at each

time point (wood-LNAS cultures) and at the end-point (ME broth cultures) was observed by

performing a k-means clustering with elbow method, and optimal number of clusters was

applied in the PCA calculation analyses [48] using the cluster package [51].

The effect of Pr or Ta in regard to production of β-glucosidase activity in the wood-LNAS

cultures (time points 4 to 8), were determined using one-way repeated measurements ANOVA

together with Tukey post hoc tests by using the IBM SPSS Statistics V22.0 package. The normal

distribution of the data set at each time point were tested with Shapiro-Wilk test and spheric-

ity were tested with Mauchly’s Sphericity test. Significance of each fungal species as well as

the number of species present in the co-cultures, in regard to production of the highest

enzyme activities was tested by UNIANOVA and applying Tukey post hoc tests. Significance

(P value�0.05) of level of confidence over 95% is indicated for the results.

Interaction activities of wood-decay fungi in combination cultures
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Results

Hyphal growth and mycelial interactions

In the single-species cultures, P. radiata was the most prominent in mycelial growth pattern

(8.8 mm d-1, hyphal front extension) on the MEA reference medium (Table 3). The Polypor-

ales species T. abietinum and F. pinicola were also fast in their hyphal extension rates, whereas

the two Hymenochaetales isolates (Porodaedalea laricis, Phellinus ferrugineovelutinus) demon-

strated the slowest hyphal extension patterns. In all of the fungal combinations in co-cultures

on MEA plates, F. pinicola demonstrated rapid hyphal growth, competing over the white rot

species within 17–41 days depending on the fungal combinations (Fig 1A and 1B; Fig H in S2

File). In most cases on agar media, F. pinicola hyphae colonized the plate fast extending over

the mycelia of the white rot species within 21–30 days forming a white-colored mycelium with

dense hyphal fronts upon confrontation (Fig 1A and 1B), suggesting for more of a combative

than antagonistic reaction. Of the white rot species studied, according to observations on

hyphal growth pattern on agar media, T. abietinum was the most competitive and P. ferrugi-
neovelutinus the least antagonistic species against F. pinicola.

F. pinicola was the fastest in hyphal extension on the agar media showing similar growth

rates on ABTS agar (5.1 mm d-1) and on MEA (Table 3). However, only the white rot species

produced a diffusible, green-coloured reaction product zone around their mycelia, being

indicative of secretion of oxidoreductases–mainly laccase–into the agar medium (Fig 1B).

Contrary to this, F. pinicola mycelium demonstrated no such ABTS-oxidative reactions.

Instead, presence of F. pinicola was noticed to slightly prevent formation of the green zones

and ABTS oxidation by the white rot species—except with J. luteoalba—in relation to the

extending hyphae at the later stages of growth (Fig 1B). Otherwise, hyphal interactions

between F. pinicola and white rot species followed similar patterns in the co-culture combina-

tions on both agar media (MEA and ABTS) studied (Fig 1A and 1B).

Enzyme activities: Laccase

Since all white rot species caused the formation of green-colour on ABTS-agar indicating

expression of laccase activity, it was expected that laccase would readily be generated by the

species on the semi-solid coniferous wood-LNAS and more rich liquid ME broth media as

well. In wood-LNAS cultures, however, variant activities of laccase–using ABTS as substrate in

laccase enzyme assays–were produced by the white rot fungi in co-cultures than in their sin-

gle-species cultures. The highest activities of laccase (up to 2 and 3 μkat L-1) were detected with

P. radiata (Pr) and T. abietinum (Ta), and in their co-culture combinations with F. pinicola
(Fp), on both wood-LNAS and ME broth media (Fig 2A and 2B). On the contrary, no laccase

activity was observed in single-species cultures of Fp on any of the growth media and sub-

strates tested (Fig 2A and 2B; Fig C and Fig D in S2 File).

Table 3. Hyphal growth rate of fungal isolates on malt extract and ABTS agar media.

Fungal isolate Malt extract agar (mm/day) ABTS agar (mm/day)

F. pinicola 1181 (Fp) 5.5 5.1

T. abietinum 0110 (Ta) 5.8 2.1

P. radiata 0043 (Pr) 8.8 4.8

J. luteoalba 1472 (Jl) 4.5 1.7

P. laricis 0768 (Pc) 1.7 1.0

P. ferrugineovelutinus 0945 (Pf) 3.0 1.5

https://doi.org/10.1371/journal.pone.0185171.t003
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On wood-LNAS medium, laccase activities produced by Pr and Ta were unaffected by F.

pinicola in the two-species co-cultures (Fig 2A). Similar pattern was observed on wood-LNAS

medium in the other three-species combinations of Fp with either Pa or Ta present (Table B

and Fig C in S2 File). In the three-species combination of FpPrTa (Table 1 and Table 2) on

wood-LNAS medium, however, a very different pattern of laccase activity was observable dur-

ing the eight weeks’ cultivation period showing activity peaks on week 3 and again on week 5

(Fig 2A), as an early (during weeks 1–4) and a late (during weeks 4–8) phase of combinatory

laccase activity. On the more rich (in carbohydrate content) malt extract ME broth, however,

the presence of F. pinicola caused a decline in laccase activities produced by Pr and Ta, which

was also observed in their three-species combination cultures (Fig 2B). In contrast to Pr and

Ta, only slight laccase activities were noted upon Fp interactions with Pc, Pf and Jl on wood-

LNAS medium (Fig D in S2 File), and no laccase activity was detectable in their three-species

co-culture combinations (FpPcJl, FpPcPf, FpJlPf; Table B and Fig D in S2 File).

Fig 1. Fungal mycelial interactions recorded after 4, 7 and 17 days of growth on agar media. Co-cultures of three fungal species, F. pinicola (Fp), P.

radiata (Pr), and J. luteoalba (Jl) on (A) malt extract agar, and (B) ABTS agar.

https://doi.org/10.1371/journal.pone.0185171.g001
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Enzyme activities: Manganese peroxidase

Activity of MnP–assayed as oxidation of Mn2+ ions to chelated Mn3+ complexes–was detect-

able in all of the white rot single-species cultures on wood-LNAS medium (Fig 3A; Fig E in S2

File), but only in Pr and Pf single-species cultures cultivated on ME broth (Fig 3B; Fig F in S2

File). As expected, no MnP activity was detected in any of the Fp single-cultures, either on

wood-LNAS or on ME broth. MnP activities were the most substantial in cultures of Pr and Pf

on both liquid media applied (Fig 3A and 3B; Table B in S2 File). Two-phase production of

MnP activity was observed in single-species cultures of Pr on both media, but with Fp appar-

ently slightly repressing MnP production by Pr in their two-species co-cultures (FpPr; Fig 3A).

Noticeable is the gradual slow increase in MnP production demonstrated by P. ferrugineovelu-
tinus (Pf) over eight weeks of cultivation, which was observed on both media studied (Fig 3A

and 3B). However, no such slow increase in MnP production was observed in the two-species

co-culture with F. pinicola (combination FpPf).

In case of the white rot species Ta, Jl and Pc, MnP activities were observed when the fungi

were cultivated on wood substrate (semi-solid ground wood-LNAS medium), with very low or

only occasional activity detected on ME broth (Fig E and Fig F in S2 File). Likewise with Pf, Fp

repressed production of MnP activity by Jl and Pc on wood-LNAS medium. Three-species co-

cultures, instead, presented different effects on MnP production patterns depending on the

white rot fungal combinations (Fig E and Fig F in S2 File). Combinations of FpPrTa, FpPrPc,

Fig 2. Effect of F. pinicola Fp on laccase activities produced in single-species and co-cultures of P. radiata Pr

and Trichaptum abietinum Ta during eight weeks of cultivation on (A) semi-solid wood-supplemented LNAS,

and (B) malt extract liquid medium. Mean average values (n = 3, three parallel cultures) with standard deviation are

presented at each time point. Fungal abbreviations and combinations, see Table 1 and Table 2.

https://doi.org/10.1371/journal.pone.0185171.g002
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FpPrJl and FpPrPf showed cyclic production of MnP activity on wood-LNAS, with FpPrTa

combination producing the highest activities comparable to MnP activity production by Pr

alone (Fig 3A). On ME broth, however, these combinations resulted with lower MnP activities

and a delayed cyclic MnP production by Pr (Fig 3B). No MnP activity, however, was observed

with three species combinations on ME broth including either Jl or Pf (Fig F in S2 File).

Enzyme activities: β-glucosidase

In single-species cultures, Fp and Pf produced detectable activities of β-glucosidase on ground

wood-LNAS medium (Fig 4A). No detectable β-glucosidase activity was, however, observed in

single-species cultures of the white rot species Pr, Ta, Pc, or Jl. In the two-species and three-

species co-culture combinations with Fp including Pr or Ta or both, presence of the white rot

species apparently caused a negative effect on β-glucosidase activity, particularly after the

fourth week of cultivation (statistically significant difference, P<0.05; Fig 4A). On the con-

trary, presence of Jl or Pf apparently enhanced β-glucosidase activity production by Fp,

whereas Pc had no effect on this enzyme activity (Fig 4A, Table B and Fig G in S2 File). Two-

species combination of FpPc demonstrated similar activities as Fp alone, thus indicating no

clear effect by the presence of Pc on total β-glucosidase activity. The three-species combination

Fig 3. Effect of F. pinicola Fp on manganese peroxidase (MnP) activities produced by Ta, Pr and Pf, in single-

species and co-cultures during eight weeks on (A) semi-solid wood-supplemented LNAS, and (B) malt extract

medium. Mean average value (n = 3, three parallel cultures) with standard deviation is presented at each time point.

Fungal abbreviations and combinations, see Table 1 and Table 2.

https://doi.org/10.1371/journal.pone.0185171.g003
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Fig 4. β-glucosidase activities (A) and endo-β-1,4-xylanase activities (B) in single-species and co-cultures during

eight weeks on ground wood-supplemented LNAS medium. Species abbreviations and combinations, see Table 1 and

Table 2. Mean values of three replicate cultures are presented with standard deviation (error bars).

https://doi.org/10.1371/journal.pone.0185171.g004
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of FpJlPf followed similar β-glucosidase activity pattern as observed with FpPf, thus indicating

strong influence by the combination of FpPf on β-glucosidase activity levels. Overall, produc-

tion of β-glucosidase upon interactions of F. pinicola and the white rot species on wood-LNAS

showed variations depending on the fungal combinations used.

Enzyme activities: Xylanase

In single-species cultures, Fp produced high xylanase activities on wood-LNAS with the

increase starting from the second week of cultivation (Fig 4B). The white rot species, on the

contrary, demonstrated little to no detectable xylanase activities (Fig 4B, Table B and Fig G in

S2 File) whereas in their two and three-species combinations, the white rot species may have

affected the observable xylanase activity. In co-cultures including Pr or Ta or both, xylanase

activities followed a similar low activity production pattern as was observed for white rot sin-

gle-species cultures (Fig 4B, Fig G in S2 File). In accordance to the pattern of β-glucosidase

production in co-cultures on wood-LNAS medium, presence of the white rot species Jl, Pf and

Pc apparently influenced a delay in the xylanase activity. After five weeks, however, a positive

effect was observed (Fig G in S2 File). The number of species in co-cultures was irrelevant to

the pattern of xylanase activities observed during the cultivation period (eight weeks). The

highest values of xylanase activity produced on wood-LNAS were detected at the end of culti-

vation (after eight weeks) in all co-cultures (Fig G in S2 File).

Enzyme activities: Effect of coniferous wood as substrate

In order to find out potential similarities in enzyme production patterns of the fungal co-cul-

tures, multivariate clustering analysis was performed at each time point (each week of cultiva-

tion) for activity values obtained in single-species and combinatorial cultures on wood-LNAS

medium. According to visualization of the computation by PCA, clustering of particular species

combinations was noticed on the basis of enzyme activities, with the oxidoreductases (laccase

and MnP) directing species clustering whereas the hydrolytic enzyme activities (β-glucosidase

and xylanase) determined the second main direction and clustering pattern (Fig 5). In this anal-

ysis, the two first principal components explained together 80% or more of the variation, except

on the third week of cultivation. Thus, the number of fungal species present was shown to influ-

ence CAZy glycoside hydrolase (GH) activities on hemicellulose and cellulose-derived oligosac-

charides (xylanase and β-glucosidase activities), after two to three weeks of fungal growth.

Regarding oxidoreductase activities (laccase and manganese peroxidase), the number of fungal

species present in co-cultures was statistically insignificant, whereas the selection of species in

the combination affected these activities.

Enzyme activity dynamics was observed as changes in clustering of the fungal combinations

over time, while co-cultures including P. radiata and T. abietinum together with F. pinicola
(FpPrTa) and the two-species cultivation of T. abietinum with F. pinicola (FpTa) were forming a

distinct cluster determined by the oxidoreductase activities during weeks 4–7 (purple circle, Fig

5). On week eight, MnP activity determined grouping of the three-species combination FpPrTa

with Pf single-species cultures. On the other hand, Fp in combination with Jl, Pf and Pc formed

a distinct cluster according to the hydrolytic enzyme activities (red circle, Fig 5), particularly

starting from cultivation week five. On week eight, two more enzyme activity groups formed,

based on their similarities in laccase activity level (orange and green circles, Fig 5).

Thus, dynamic changes of enzyme activity profiles occurred in the fungal co-cultures,

which can be especially observed in the changing positioning, cluster size, and number of fun-

gal combinations grouping in the most variable cluster (blue circle, Fig 5). Three-species co-

culture combination including Fp with both of the two strongest oxidoreductase producers, Pr
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and Ta, was distinct from the other clusters during weeks 3–5 (purple circle, Fig 5), apparently

due to strong laccase and MnP activity production by the latter species (Fig C and Fig E in S2

File). Notable was that co-cultures with Fp, as well as Fp single-species cultures, were strong in

xylanase and β-glucosidase activities, thereby directed by these activities into a distinct group

(in the left side, Fig 5) except in combination with Pc (FpPc).

End-point pH and production of oxalic acid

On wood-LNAS medium, the culture fluid pH increased in the white rot single-species cul-

tures during the eight weeks of cultivation, initiating from the originally buffered (by sodium

succinate) pH 4.5 value to pH values over 6.0 (up to pH 6.2 with Pf), whereas with Fp single-

culture and in the two-species combination FpPc, the wood-based cultures were acidified to

around pH 3.2 (Fig B in S2 File). Of the white rot species studied, Pc single culture was excep-

tional while causing no effect on the initial pH of the wood-LNAS medium.

On the more rich malt-extract (ME) medium, however, a more general acidification oc-

curred in co-cultures with Fp, with final pH values decreasing from the initial (pH 5.5) even as

low as to pH 1.7, similar to the values obtained in Fp single-species cultures (Table A in S2

File). With white rot single-species cultures, on the contrary, the end-pH values on ME me-

dium were stable (close to initial pH 5.5). Only exception was Pr with lower end-pH values in

single-species cultures (pH 4.3). With Pr present in the combinatorial cultures, acidity in-

creased but more moderately than in Fp single-cultures, resulting with end-pH values again

close to pH 4 (3.9−4.3). Thus, presence of Pr in the co-cultures could apparently prevent the

acidification seen when Fp was cultured alone.

In accordance to the very low pH values observed in Fp single-cultures, the fungus produced

large quantities of oxalic acid on the richer ME medium (between 30–62 mM, on week eight;

Fig 5. Principal component analysis including clustering of the CAZyme and oxidoreductase activities (xylanase, xyl; β-glucosidase, bglu;

laccase, lac; manganese peroxidase, mnp) of single-species and co-cultures produced at each time point on ground wood-supplemented LNAS

medium during eight weeks of cultivation. Fungal abbreviations and combinations, see Table 1 and Table 2.

https://doi.org/10.1371/journal.pone.0185171.g005
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Table A in S2 File). In co-cultures with Pr present, however, accumulated oxalic acid concentra-

tions were not more than 1.9 mM (combination FpPrJl), which is similar to the concentrations

(1.0 mM) obtained from Pr single-species cultures. Considering the results, Pr was apparently

the only white rot fungus producing detectable amounts of oxalic acid under these conditions.

In order to study the relationship of oxalic acid production with culture acidity, mycelial

growth and enzyme activities, and regarding fungal combinations in co-cultures, a second

clustering analysis was performed after eight weeks of growth on ME medium for the end-

point situation (Fig 6). As a result, noticeable clustering effects were observed. Single-species

cultures of Fp and combinations with the white rot species, excluding Pr, grouped together

forming a distinctive large cluster directed by end-pH, accumulation of oxalic acid and pro-

duction mycelium biomass (red circle, Fig 6). However, co-cultures including Pr apparently

clustered together with Pr single-species cultures, determined by the oxidoreductase activities

and forming a distinctive Pr-cluster (orange circle, Fig 6), except for the combination FpPrPf.

The latter combination grouped together with single cultures of Ta, Pc and Jl (green circle, Fig

6). The determining factors for fungal culture grouping were the oxidoreductase activities pro-

duced by Pr, oxalic acid production by Fp, and production of mycelia (determined as dry

weight) in single species and co-cultures.

Fig 6. Principal component analysis of acidity (poh), concentration of oxalic acid (oa), production of

mycelial mass (dry weight, dw), laccase activity (lac) and manganese peroxidase activity (mnp)

determined from co-cultures after eight weeks of cultivation on malt extract liquid medium. Distinct

clusters are marked: red circle, Fp single and co-cultures without Pr; orange circle, single-species cultures of

Pr and Pf together with co-cultures including Pr—except combination FpPrPf; green circle, white-rot single-

species cultures of Ta, Pc, Pf, Jl, and combination FpPrPf. Fungal abbreviations and combinations, see

Table 1 and Table 2.

https://doi.org/10.1371/journal.pone.0185171.g006
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Discussion

In this study, interactions of the brown rot fungus Fomitopsis pinicola were investigated in co-

culture combinations with five white rot fungal species of Agaricomycetes (Phlebia radiata,

Trichaptum abietinum, Junghuhnia luteoalba, Phellinus ferrugineovelutinus (formerly P. ferru-
gineofuscus) and Porodaedalea laricis (formerly Phellinus chrysoloma), either in two- or three-

species combinations. Our intention was to record hyphal interactions and also investigate,

how mycelial interactions affect production of wood-decaying enzyme activities in submerged

and ground-wood supplemented co-cultures on different carbon sources. Quite opposite to

the working hypothesis, our results indicate that in co-cultivations of two to three species

interacting, the major impact on enzyme activity profiles was noticed to be influenced by two

white rot species, namely P. radiata and T. abietinum, while the brown rot species F. pinicola
had less or no impact on their enzyme production. Secondly, it was noticed that on coniferous

wood substrate, significant variations were observed weekly in lignocellulose-degrading

enzyme activity profiles depending on co-culture age and the species combination.

Mycelial interactions and wood-decay enzymes

In regard to mycelial growth patterns on agar media, the isolate of F. pinicola proved to be a

supreme colonizer, particularly on malt-extract agar, with hyphae easily extending over the

mycelia of the other species studied. Upon these interactions, no visible mycelial blocks were

generated against F. pinicola by any of the white rot species studied. This is somewhat surpris-

ing, since it has been noted that saprotrophic wood-decaying fungi readily form mycelial

blocks upon hyphal confrontations [6]. However, in our study, the white rot Agaricomycetes

species reacted more antagonistically towards each other. Orange-yellow coloured mycelial

blocks were generated by P. radiata against a few of the other white rot species, but not in all

cases. Similar species-dependent variations in pigmentation of hyphal fronts in the interaction

strategies have been observed with other white rot fungal species [52].

It may be assumed that both the quality (which fungal species and isolates are selected for

the combinatorial cultures) and quantity (number of species and isolates in the co-cultures) of

fungal combinations would affect production and total activities of the fungal secreted wood-

decay enzymes and metabolites. Functional changes and wood-decay processes, however, are

difficult to follow in situ, in decaying wood in forest sites. The recent long-term surveys in

boreal and temperate forests in central and northern Europe, and in Fenno-Scandia, on wood-

decay fungal communities and their effects on wood structural and chemical parameters have

addressed the dynamics of fungal decomposition of wood [4, 26–28]. Also, pre-inoculated

Norway spruce trunks have been subjected as targets for fungal colonization in the long-term

forest site studies [2, 26], and trials for analysis of fungal biomass and enzyme activities during

the early phase of natural decomposition have been carried out [28–29]. Taking this into

account, we designed fungal interactive co-cultures with species noticed in the above men-

tioned studies to occupy Norway spruce wood as their natural substrate, and either co-existing

or dominating this habitat (like F. pinicola) in boreal forests [2, 4, 27].

Laccase activities in co-cultures

Previously, activities of extracellular wood-decay oxidoreductases, such as laccase, have been

observed to change upon interspecies level fungal interactions on liquid media [52–54]. With

the white rot Polyporales species Trametes versicolor, it was reported that in co-cultures with

other fungal species, laccase activity may be increased at the mycelial interaction zones in com-

parison to self-paired mycelia on agar plates [54]. The authors stated that increase in laccase

activity was more likely a response to the combative situation between species [54]. In our
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study, the highest laccase activities were observed in co-cultures including two white rot fungal

species (P. radiata and T. abietinum), and laccase activities were also increasing in some com-

binations including three species. The increase in laccase activities (or laccase production)

upon these interactions could be explained by competition for nutritional and habitat

resources, or more simply, as a defence reaction following mycelial confrontations [54–55].

As can be expected, increased laccase activities have been observed in interactive fungal co-

cultures of two white rot fungi that also demonstrate strong laccase production alone, in single

cultures [53]. This is in accordance to our results obtained with the laccase-producing white

rot species P. radiata and T. abietinum, and their summative laccase activity effect observed in

three-species co-cultures including Fp. It has been noticed that Basidiomycota fungi which are

incapable of laccase production in single cultures, may remain incapable in the presence of

other species [53]. Accordingly in our study, F. pinicola as well as Pc (Porodaedalea laricis)
demonstrated no laccase activity either in single-species cultures or in their paired two-species

co-cultures. In the case of F. pinicola, this is surprising, since three putative laccase (of the five

multicopper oxidase) encoding genes are present in the genome of this brown-rot species [11].

However, and in line with our results, no laccase proteins were found in the secretome of F.

pinicola cultivated on poplar wood-containing medium [56]. In conclusion, it may thereby be

stated that laccase expression and enzyme activity are not primarily influenced by contact with

other fungi or other fungal hyphae in the same habitat. Instead of being a combative factor and

defence response, production of laccase may be primarily a general response in white-rot fungi

of Polyporales resulting from mycelial growth on their lignocellulose and carbohydrate-con-

taining substrates, as has been suggested before [10, 12].

Furthermore, laccase was produced together with MnP activities by the white rot species P.

radiata and T. abietinum. Strong oxidoreductase encoding gene expression and enzyme pro-

tein production burst–involving a set of lignin-attacking class-II peroxidases and hydrogen-

peroxide producing oxidases—has been demonstrated to occur in P. radiata when growing in

solid-state cultures on spruce wood [14]. Thus, it may be suggested that in liquid co-cultures

supplemented with ground spruce wood and including either P. radiata or T. abietinum or

both species, elevated levels of laccase and class-II peroxidase activities indicate on-going

strong oxidative, early-phase degradation processes on lignocellulose components and poly-

saccharides, initiated by the white rot fungal secreted oxidoreductases. The multivariate analy-

ses, as depicted by PCA, accordingly indicated the determinant effect of laccase and MnP

production–mainly by P. radiata and T. abietinum—as the main directing factors for pheno-

type grouping of the fungal combinations.

The brown rot Polyporales species F. pinicola was present in all co-culture combinations,

which may explain prevention of laccase activity and enzyme production by a few of the white

rot species, except for P. radiata and T. abietinum. Surprisingly, no laccase activities were

detected for F. pinicola alone (in single-species cultures) on any of the culture media tested,

although laccase-like oxidoreductase (ABTS oxidation) activity and protein expression was

reported for another isolate of the species [57], and three laccase encoding genes have been

predicted from F. pinicola genome sequence [11]. Our results of non-detectable laccase activ-

ity, however, are supported by a previous study in which laccase activity was not observed in

cultures of brown rot fungi cultivated on liquid media [29]. This implies that F. pinicola laccase

production may be repressed under cultivation conditions adopted in our study.

Production of oxalic acid

Apparently, our results indicate that fungal secreted oxalic acid had an impact not only on the

culture medium acidity but also on generation of mycelial biomass and hyphal growth. F.
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pinicola was the highest producer of oxalate (30–61 mM concentrations) as quantified from

malt-extract medium cultures after eight weeks of growth, whereas minor concentrations were

produced by the white rot species P. radiata (1 mM). Strong production of oxalic acid is a

more general ability of brown rot fungi than in white rot species [58–60], and corresponding

(over 10 mM) concentrations of oxalate have been reported to accumulate in cultures of other

brown rot species [61–62].

In co-cultures on malt-extract liquid medium, P. radiata prevented acidification to some

extent, which may be due to active decomposition of oxalate produced by F. pinicola. P. radiata
genome includes several oxalate decarboxylase (ODC) encoding genes [14]. Fungal ODC and

oxalate oxidase enzymes degrade oxalate to carbon dioxide, and thus may aid white rot fungi

to maintain more stable concentrations of oxalic acid and acidity in their environment [60,

63]. No noticeable concentrations of formate (formic acid), which is a degradation product of

oxalate, were detected in the co-cultures as an indication of ODC activity. However, ODC

activity may not be ruled out completely since formate may have been further degraded to car-

bon dioxide by fungal formate dehydrogenase (FDH) [64].

Interactions between brown rot and white rot fungi

Differentiation of the wood-decaying Agaricomycetes to either brown rot or white rot fungi

is not so simplified and divided as was previously believed [15, 24], which may explain why

the white rot species, P. radiata and T. abietinum, formed their own cluster with Fp, which

was driven by similarities in activity levels of laccase and MnP, in the coniferous-wood sup-

plemented co-cultures while the other white rot species clustered together with F. pinicola
single-species cultures, with respect to end-point acidity and production of oxalic acid and

mycelial mass. On the other hand, some white rot species may be dependent on other fungi

for colonization and degradation of their wood substrate environments [2, 4–5, 26]. In the

case of the early-colonizing Porodaedalea laricis isolate (formerly Phellinus chrysoloma) [38]

single-species cultures demonstrated very low CAZyme activities which may indicate that in

nature, this fungus may live together with other fungal species, in order to obtain nutrients

and new hyphal habitats. Presence of other fungal hyphae and their metabolites, or wood

degradation products, may thereby stimulate expression of wood-decaying enzymes and

promote degradation processes of the “later” coming species [2, 4–5, 27]. In this study, the

early-colonizing characterized species F. pinicola and middle-colonizing species Phellinus
ferrugineovelutinus, and late-colonizing species Junghuhnia luteoalba (see also Table 1) dem-

onstrated higher β-glucosidase activities in two species co-cultures compared to their single-

species cultivations.

In regard to the superior colonizing ability of the brown rot species F. pinicola in our study,

it was surprising to find that white rot species (P. radiata and T. abietinum in particular) were

very capable for mycelial cohabitation and hyphal colonization of the same growth environ-

ment (agar plates or liquid media flask cultures) with F. pinicola without aggressive or strong

combative reactions. On the contrary, in our experiments, these three Polyporales species

shared more of a mutualistic than combative growth pattern. It has been noticed in long-term

(6 to 12 years) surveys that in the boreal forest site of Norway spruce logs pre-inoculated with

F. pinicola, the decaying logs were further occupied by various white rot fungal species–includ-

ing e.g. T. abietinum and Junghuhnia separabilima–which are more tolerant and competitive

for the long-term final degradation of wood [2, 26]. Accordingly in our study, the isolate of J.
luteoalba (initially isolated from decaying Norway spruce wood) was able to coexist together

with F. pinicola, as well as with the more robust white rot fungal species P. radiata and T.

abietinum.
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Conclusions

In this study, hyphal interactions on solid agar media demonstrated that F. pinicola mycelium

quickly dominates the white rot species in all combinations, regardless of the number of fungal

species introduced. Although F. pinicola hyphae extended in dense white mycelial zones over

the hyphae of the white rot fungal species, but simultaneously allowing expansion of the other

species’ mycelia, which indicated mutualistic instead of aggressively combating relationships

between the fungi studied. The mutualistic or cohabitation strategy was also supported by the

fungal enzyme production profiles in co-cultures on the ground-wood supplemented medium,

wherein the white rot species P. radiata and T. abietinum at first established oxidoreductase

activities (laccase and manganese peroxidase), apparently unaffected by the presence of the

brown rot species F. pinicola. On the other hand, a few white rot fungi (P. ferrugineovelutinus
and J. luteoalba) caused a slight positive effect on the later production of xylanase and β-gluco-

sidase activities in combination with F. pinicola. These results support that also upon naturally

occurring interactions of wood-decay fungi, the rapid oxidative first degradation phase of

wood is followed by a later, carbohydrate-active enzyme dominated second decay phase.

Our results imply that interspecies interactions of Agaricomycetes are dynamic factors to

be taken into account when unveiling the fungal and enzymatic decay of wood, and in investi-

gating the role of fungi in recycling of lignocellulosic carbon in the forest ecosystems. Our

results also indicate that saprotrophic fungi affect each other in multiple ways in their habitats,

thus indicating that the mycelial encounters including several species may in fact be beneficial

and even promotive for biodegradation of wood and cycling of forest organic carbon.
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