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Abstract

We obtain a quasi-analytical approximation of the survival probability in the credit risk model proposed in

Madan and Unal (1998). Such a formula, which by extensive numerical simulations reveals to be accurate and

computationally fast, can also be employed for pricing credit default swaps (CDSs). Specifically, we derive a quasi-

analytical approximate expression for CDS par spreads, and we use it to estimate the parameters of the model. The

results obtained show a rather satisfactory agreement between theoretical and real market data.
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1 Introduction

Pricing the risk of default is a fundamental task for several financial market players such as corporate bond investors,

credit derivative traders, banks, mortgage suppliers and insurance companies. To this aim, various models of credit

risk have been developed which are based on two different approaches: the structural approach and the reduced-form

approach.

Structural models describe the default event by means of one or more variables related to the capital structure of

the firm issuing the debt. For example, according to the first proposed structural model, which has been developed in

Merton (1974), a firm defaults if at the debt maturity the value of its assets is lower than the value of its obligations.

An improvement of this model is presented in Black and Cox (1976), where the possible occurrence of premature

bankruptcy as well as the debt seniority are taken into account. Other more sophisticated structural models are also

available which incorporate variables such as the interest rate (Longstaff and Schwartz, 1995; Briys and de Varenne,

1997; Bernard et al., 2005), tax benefits (Anderson and Sundaresan, 1996), debt restructuring (Ab́ınzano et al., 2009),

liquidation costs (Leland and Toft, 1996) and downgrade-triggered termination clauses (Feng and Volkmer, 2012). As

revealed by several empirical studies (see, e.g, Jones et al., 1984; Franks and Torous, 1989), such a kind of models

have a major issue: if the firm’s assets value is specified as a continuous-time stochastic process, then for short debt
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maturities the probability of default that the models predict turns out to be very close to zero, contrary to what

happens in reality (see, e.g, Crouhy et al., 2000; Bäuerle, 2002). In order to account for high short-term spreads, some

authors, see, e.g. (Zhou, 2001; Chen and Panjer, 2003), have proposed structural models with unexpected jumps in

the firm asset value. Nevertheless, this approach lacks analytical tractability, which makes it difficult to calibrate the

model parameters to observed credit spreads.

Instead, according to the reduced-form approach (see, e.g, Duffee, 1999; Duffie and Singleton, 1999; Madan and

Schoutens, 2008; Schoutens and Cariboni, 2009; Fontana and Montes, 2014) the default event is modeled as the first

jump of a counting process whose intensity, termed intensity of default, is not assumed to be firm-specific but is

prescribed exogenously. This allows one to take into account the possible occurrence of a sudden (unpredictable)

default event and henceforth the high credit spreads that are often experienced for short debt maturities can be

recovered. In addition, reduced-form models are relatively simple from a mathematical standpoint and thus they

usually offer a large amount of analytical tractability.

However, reduced-form models have the heavy drawback of not taking into account any information about the

capital structure of the firm. Such an issue has prompted some authors to develop hybrid models of credit risk in

which the reduced-form approach is combined with some structural variable (see, e.g, Madan and Unal, 1998, 2000;

Duffie and Lando, 2001; Cathcart and El-Jahel, 2003, 2006; Giesecke, 2006; Ballestra and Pacelli, 2014). Among these

models, the one proposed in Madan and Unal (1998) deserves a special attention as it is a parsimonious hybrid model.

In particular, it is mainly developed based on the reduced-form approach, but the default intensity, instead of being

prescribed exogenously, is specified as a convenient function of the firm’s equity value. This allows us to recover the

desirable features of both the structural and the reduced-form models, but at the same time the parameters involved

are only one more than the parameters of Merton’s model (see Merton, 1974). Therefore, the approach by Madan and

Unal turns out to be particularly appealing and suitable for practical uses.

Nevertheless, the model in Madan and Unal (1998) does not have an analytical closed-form solution. To be precise,

Madan and Unal have provided a closed-form expression for the survival probability, but, as pointed out in Grundke

and Riedel (2004), the procedure used to derive this formula is not mathematically correct. Consequently, as shown in

Grundke and Riedel (2004), where the default probability is computed by finite difference approximation, the closed-

form solution obtained by Madan and Unal yields a survival probability that can also differ substantially from the

true survival probability of the model. In order to compensate for the lack of a closed-form solution, an analytical

approximation of the survival probability of the model by Madan and Unal has been proposed in Ballestra and Pacelli

(2009). Such a formula is fairly accurate and computationally fast, but it is applicable only if one of the model

parameters is sufficiently small (as it is based on a perturbation approach, see Ballestra and Pacelli (2009)).

In the present paper, a quasi-analytical approximation of the survival probability in the model by Madan and

Unal (1998) is presented. Such a formula, which is based on a Laplace-transform approach, turns out to be very

accurate and computationally fast (an error of the order of 10−4 or 10−5 is obtained in a time of the order of 10−4

seconds). Remarkably, this analytical expression for the survival probability allows us to price credit default swaps

(CDSs) very easily. Specifically, a quasi-analytical formula to compute CDS par spreads is derived which is used in

this manuscript to calibrate the Madan-Unal credit risk model by fitting realized CDS par spreads. In particular,

CDS names with different Moody’s ratings are considered and the agreement between theoretical and empirical data

is rather satisfactory, especially if we think that the stochastic differential equations on which the model by Madan

and Unal stands involve only two unknown parameters.

We stress that the contribution of the paper is as follows: first of all, we derive an (exact) analytical expression

for the Laplace transform of the survival probability in the model by Madan and Unal (1998). Second, by applying a

formula for Laplace transform inversion, we obtain a quasi-analytical approximation of the survival probability that
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is very efficient from the computational standpoint, and also easy to implement. In particular, such an approximate

solution can be used with any set of parameter values (unlike the asymptotic expansion proposed in Ballestra and

Pacelli (2009), which requires one of the model parameters to be small) and, as revealed by numerical experiments

reported in Section 5, turns out to be significantly faster than the popular Crank-Nicolson finite difference method.

Finally, we derive a quasi-analytical approximation of CDS spreads and show how it can be used to estimate the

parameters of the model.

The paper is organized as follows. Section 2 introduces the model by Madan and Unal. Section 3 is devoted to the

calculation of the Laplace transform of the survival probability. Section 4 shows how to recover the survival probability.

Section 5 contains numerical experiments that validate the proposed approach. Section 6 presents a quasi-analytical

approximate formula to compute CDS par spreads. Section 7 shows the calibration of the model and the agreement

between theoretical and real market data. Section 8 concludes.

2 The mathematical model

In this section the basic facts about the model by Madan and Unal (1998) are recalled. Let us consider an indebted

firm, and let the discounted (or, as called by Madan and Unal, “relativized”) value of its equity at time t be defined

as follows:

A (t) =
e (t)

B (t)
(1)

where e is the firm’s equity value and B is the money market account:

B (t) = e
∫ t
0
r(θ)dθ (2)

and r is the default-free spot interest rate, which may be considered either deterministic or stochastic (see, e.g., Madan

and Unal, 1998). Madan and Unal assume that the discounted equity value follows the stochastic process

dA (t) = σA (t) dW (t) (3)

where σ > 0 is a constant volatility parameter and W is a standard Wiener process under the risk-neutral measure,

see, e.g., Björk (2009, pp. 102-104) and Elliott and Kopp (2005, pp. 167-171). In Madan and Unal (1998), the

choice of directly modeling the discounted equity value A (rather than the equity value e) aims to avoid to specify the

dynamics of the interest rate, which is incorporated in the dynamics of A. Thus, as explicitly declared in Madan and

Unal (1998), A serves as a sufficient statistic for assessing the risk of default.

The model by Madan and Unal bridges the gap between the structural and the reduced-form approach. In par-

ticular, as is typical of reduced-form models, it is assumed that default occurs as the first jump of a Poisson process.

However, in order to take into account structural information, the intensity of this process, i.e. the so-called default

intensity, is specified as a convenient function of the discounted equity value. Precisely, under the risk-neutral measure,

the default intensity, which we denote with φ, is modeled as follows:

φ (A (t)) =
c

(ln (A (t))− ln (δ))
2 (4)

where c > 0 and δ > 0 are constant parameters. A sound theoretical justification for this choice can be found in

(Madan and Unal, 1998), here we simply observe that according to (4) the probability of default is measured by the

distance of A from the critical value δ. In particular, when A reaches the threshold level δ, the intensity φ becomes
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infinite, and default occurs with certainty.

Note that a variety of authors agree on the fact that the probability of default of a firm is related to the value of its

equity. In fact, many of the structural models that are employed in the literature assume that default occurs as long

as the equity value reaches the zero level (see, e.g., Merton, 1974; Sepp, 2006). In addition, some empirical studies

highlight that corporate bond yields are significantly affected by the equity volatility (see, e.g., Campbell and Taksler,

2003; Kim and Stock, 2014). However, there are also other variables that can determine the default of a firm, for

example government taxes or liquidity. As reported by Duffee (1999), one of the main advantages of the reduced-form

approach is to take into account all these factors, which, instead of being modeled one by one (which would introduce a

large amount of analytical complexity) are somehow subsumed by the Poisson process driving the unexpected default.

For example, according to the model described above, we can have a significant probability of default even if the value

of the equity is relatively large, due to the reduced-form component specified as in (4).

Finally, as already mentioned, both the equity value process (3) and the default intensity (4) are written under

the risk-neutral measure. This is very common in reduced-form models, which are usually directly specified under a

risk-neutral measure that allows for martingale pricing and that is identified by direct calibration to market prices

(see, e.g., Duffee, 1999; Luciano, 2007; Pan and Singleton, 2008). Therefore, the survival probability that we are going

to obtain in the following is, actually, a risk-neutral survival probability, which can be used for pricing. Instead, if

the objective (real-world) probability were needed, then one should further extend the model by introducing a drift

parameter in (3) and by assuming that (4) incorporates a premium for the jump risk (see, e.g., Duffee, 1999; Pan and

Singleton, 2008). Nevertheless, the calculation of the objective survival probability is not taken into account by Madan

and Unal (as their model is designed for pricing), and goes beyond the purpose of the present paper.

Let us consider the partial differential formulation of the stochastic model (3) and (4). To this aim, let t1 and t2

denote two generic times, such that 0 ≤ t1 ≤ t2 and let Ψ (t1, a, t2) denote the probability that the firm survives up to

time t2 given no default prior to t1 and A (t1) = a. As shown in Madan and Unal (1998), Ψ depends only on the time

lag τ = t2− t1 and on a (the discounted value of the firm’s equity at time t1). Then, we can set Ψ (t1, a, t2) = H (a, τ).

It can be shown (see, e.g., Madan and Unal, 1998) that for a ∈ (δ,+∞) and τ ∈ (0, t2], the function H (a, τ) satisfies

the following partial differential equation:

∂H (a, τ)

∂τ
− σ2a2

2

∂2H (a, τ)

∂a2
+

cH (a, τ)

(ln (a)− ln (δ))
2 = 0 (5)

with boundary conditions

H (δ, τ) = 0, lim
a→+∞

H (a, τ) = 1 (6)

and initial condition

H (a, 0) = 1 (7)

Then, using the change of variable

x = ln
(a
δ

)
(8)

and setting

P (x, τ) = H (δex, τ) (9)

the partial differential problem (5)-(7) can be rewritten as follows:

∂P (x, τ)

∂τ
− σ2

2

∂2P (x, τ)

∂x2
+
σ2

2

∂P (x, τ)

∂x
+
cP (x, τ)

x2
= 0 (10)
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for x ∈ (0,+∞) and τ ∈ (0, t2], with boundary conditions

P (0, τ) = 0, lim
x→+∞

P (x, τ) = 1 (11)

and initial condition

P (x, 0) = 1 (12)

The partial differential problem (10)-(12) does not admit a closed-form solution. However, as shown in the next

Section, an analytical expression for the Laplace transform of P can be obtained.

3 A quasi-analytical Laplace-based solution

Let us consider the Laplace transform of P (x, τ) with respect to τ :

F (x, ω) = (LP ) (x, ω) (13)

where

(LP ) (x, ω) =

∫ +∞

0

e−ωτP (x, τ) dτ (14)

and ω ∈ C is the so-called variable conjugate to τ . Well-known properties of the Laplace transform are as follows (see

Tang, 2007, pp. 274-275, relations (6.11) and (6.17)):(
L∂P
∂τ

)
(x, ω) = ω (LP ) (x, ω)− P (x, τ),

(
LPe−aτ

)
(x, ω) = (LP ) (x, ω + a) , a ∈ R (15)

Moreover, if we define P (x, τ) =
∫ τ

0
P (x, y)dy, from the first of (15) we obtain:

(
LP
)

(x, ω) =
1

ω
(LP ) (x, ω) (16)

Taking the Laplace transform of (10)-(11) and using the first of (15) (together with relation (12)), we obtain the

following non-homogeneous differential equation:

ωF (x, ω)− 1− σ2

2

∂2F (x, ω)

∂x2
+
σ2

2

∂F (x, ω)

∂x
+
cF (x, ω)

x2
= 0 (17)

with boundary conditions

F (0, ω) = 0, lim
x→+∞

F (x, ω) =
1

ω
(18)

The general solution of the homogeneous differential equation associated to (17) can be obtained as follows: first

of all, as in Polyanin and Zaitsev (2003, p. 252, equation (2.1.2.135)), let us make the substitution

F (x, ω) = g (x, ω) e
x
2 (19)

so that the homogeneous differential equation associated to (17) is rewritten as follows:

−
(
h2 (ω)x2 +

2c

σ2

)
g (x, ω) + x2 ∂

2g (x, ω)

∂x2
= 0 (20)
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where

h (ω) =

√
2ω

σ2
+

1

4
(21)

Then, according to Polyanin and Zaitsev (2003, p. 249, equation (2.1.2.115)), let us perform a further substitution

g (x, ω) = xλu (x, ω) (22)

where λ is the negative root of equation λ2 − λ− 2c
σ2 = 0, i.e.

λ =
1

2
−
√
σ2 + 8c

4σ2
(23)

Using (22) and (23), equation (20) is rewritten as follows:

x
∂2u (x, ω)

∂x2
+ 2λ

∂u (x, ω)

∂x
− h2 (ω)xu (x, ω) = 0 (24)

This differential equation has the following fundamental solutions (see, Polyanin and Zaitsev, 2003, p. 248, equation

(2.1.2.108) and Table 15):

u1 (x, ω) = xνIν (h (ω)x) , u2 (x, ω) = xνKν (h (ω)x) (25)

where Iν (·) and Kν (·) are the modified Bessel functions of the first and of the second kind, respectively, and

ν =

√
σ2 + 8c

4σ2
(26)

According to (19) and (22), we have F (x, ω) = e
x
2 xλu (x, ω). Therefore, starting from the fundamental solutions of

(24), we can obtain the fundamental solutions of the homogeneous differential equation associated to (17):

F1 (x, ω) = e
x
2 x

1
2 Iν (h (ω)x) , F2 (x, ω) = e

x
2 x

1
2Kν (h (ω)x) (27)

Then, using the method of variation of parameters described in Appendix A, we write down the solution of problem

(17)-(18):

F (x, ω) = F1 (x, ω)
2

σ2

∫ +∞

x

e−
z
2 z

1
2Kν (h (ω) z) dz + F2 (x, ω)

2

σ2

∫ x

0

e−
z
2 z

1
2 Iν (h (ω) z) dz (28)

Finally, by simple setting

y = h (ω) z (29)

relation (28) can be rewritten as follows:

F (x, ω) =
2F1 (x, ω)

σ2
√
h3 (ω)

∫ +∞

h(ω)x

e−
y

2h(ω) y
1
2Kν (y) dy +

2F2 (x, ω)

σ2
√
h3 (ω)

∫ h(ω)x

0

e−
y

2h(ω) y
1
2 Iν (y) dy (30)

Unfortunately, the integrals in (30) are not elementary integrals and cannot be evaluated using simple closed-form

expressions, at least to the best of our knowledge (symbolic calculation softwares such as Mathematica or Matlab

cannot find any analytical formula for these integrals). This can be easily understood if we think that the integral
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of the Bessel functions Iν or Kν alone, if performed analytically, leads to an infinite series of functions (see, e.g.,

Poularikas, 1999, p. 25-4).

Therefore, in the following, given that simple closed-form expressions cannot be obtained, the integrals in (30) are

evaluated by series expansions, which anyway allows for a fast and direct quasi-analytical calculation.

3.1 Analytical calculation of the integrals in (30)

Let us consider the power series expansions that define the two Bessel functions inside the integrals in (30) (see Polyanin

and Zaitsev, 2003, p. 772, formulae (S.2.6)):

Iν (y) =

∞∑
k=0

(
y
2

)2k+ν

k!Γ (k + 1 + ν)
(31)

Kν (y) =
π

2

∞∑
k=0

( y2 )
2k−ν

k!Γ(k+1−ν) −
∞∑
k=0

( y2 )
2k+ν

k!Γ(k+1+ν)

sin (πν)
(32)

where Γ is the well-known gamma function (see, e.g., Abramowitz and Stegun, 1972, p. 255, formula (6.1.1)). As we

can observe, the first integral in (30) requires us to compute Kν (y) when y varies in [h (ω)x,+∞), but the Bessel

series expansion (32) starts to become inaccurate if y is large. In fact, if y is large, the powers
(
y
2

)2k−ν
are large too,

and the accuracy of formula (32) is compromised by round-off and cancelation errors.

Therefore, in the present paper relation (32) is employed only for y ≤ y, where y is to be chosen properly (see

below). By contrast, for y > y, the Bessel function Kν (y) is computed using the asymptotic expansion

Kν (y) =

√
π

2y
e−y

(
1 +

+∞∑
i=1

qiy
−i

)
(33)

where

qi =

i∏
k=1

(
4ν2 − (2k − 1)

2
)

i!8i
(34)

which, according to Polyanin and Zaitsev (2003, p. 773, relation (S.2.6-6)) and Olver and Maximon (2010),

converges well for large values of y. By trial and error we have found that the value of y that (roughly) yields the

higher levels of accuracy is y = 7.5, which is then used in all the numerical simulations reported in the present paper.

In addition, we have also experienced that for values of y in the range [5, 10] the error related to the calculation of the

Bessel function Kν is always smaller than the error due to the numerical inversion of the Laplace transform performed

in Section 4 (more precisely, the survival probability is computed with an error which, at the leading order, is due to

the numerical inversion of the Laplace transform and not to the calculation of Kν). Instead, for values of y smaller

than 5 or larger than 10, the error due to the the calculation of Kν starts to be significant and in some cases can also

become larger than the error due to the Laplace transform inversion.

Substituting (31), (32) and (33) in (30), interchanging summation and integration and using simple algebraic
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manipulations, we obtain:

F (x, ω) =g1 (x, ω)

+∞∑
k=0

(
1
2

)2k
k!

∫ 7.5

h(ω)x
y2k+ 1

2−νe−
y

2h(ω) dy

2−νΓ (k + 1− ν)
−

∫ 7.5

h(ω)x
y2k+ 1

2 +νe−
y

2h(ω) dy

2νΓ (k + 1 + ν)


+ g2 (x, ω)

∫ +∞

7.5

e−l(ω)y

(
1 +

+∞∑
i=1

qiy
−i

)
dy + g3 (x, ω)

+∞∑
k=0

∫ h(ω)x

0
y2k+ 1

2 +νe−
y

2h(ω) dy

22k+νk!Γ (k + 1 + ν)

(35)

if h (ω)x ≤ 7.5, and

F (x, ω) = g2 (x, ω)

∫ +∞

h(ω)x

e−l(ω)y

(
1 +

+∞∑
i=1

qiy
−i

)
dy + g3 (x, ω)

+∞∑
k=0

∫ h(ω)x

0
y2k+ 1

2 +νe−
y

2h(ω) dy

22k+νk!Γ (k + 1 + ν)
(36)

if h (ω)x > 7.5, where

g1 (x, ω) =
πe

x
2 x

1
2 Iν (h (ω)x)

σ2
√
h3 (ω) sin (πν)

, g2 (x, ω) =

√
2πe

x
2 x

1
2 Iν (h (ω)x)

σ2
√
h3 (ω)

, g3 (x, ω) =
2e

x
2 x

1
2Kν (h (ω)x)

σ2
√
h3 (ω)

(37)

and

l (ω) =
1 + 2h (ω)

2h (ω)
(38)

Finally, algebraic calculations shown in Appendix B allow us to rewrite relations (35) and (36) as follows:

F (x, ω) =g1 (x, ω)

+∞∑
k=0

(2h (w))
2k+ 3

2−ν
(

Γinc

(
7.5

2h(w) , 2k + 3
2 − ν

)
− Γinc

(
x
2 , 2k + 3

2 − ν
))

22k−νk!Γ (k + 1− ν)

− g1 (x, ω)

+∞∑
k=0

(2h (w))
2k+ 3

2 +ν
(

Γinc

(
7.5

2h(w) , 2k + 3
2 + ν

)
− Γinc

(
x
2 , 2k + 3

2 + ν
))

22k+νk!Γ (k + 1 + ν)

+
g2 (x, ω)

l (ω)

e−w +

+∞∑
i=1

(−1)
i
li (ω)

e−ww
i−2∑
j=0,
i≥2

(
j!

(−w)
j

)
− E1 (w)

 qi
(i− 1)!


+ g3 (x, ω)

+∞∑
k=0

(2h (w))
2k+ 3

2 +ν
Γinc

(
x
2 , 2k + 3

2 + ν
)

22k+νk!Γ (k + 1 + ν)

(39)

if h (ω)x ≤ 7.5, and

F (x, ω) =
g2 (x, ω)

l (ω)


e−w +

+∞∑
i=1

(−1)
i
li (ω)

 e−w

w

i−2∑
j=0,
i≥2

(
j!

(−w)j

)
− E1 (w)

 qi

(i− 1)!


+ g3 (x, ω)

+∞∑
k=0

(2h (w))
2k+ 3

2 +ν
Γinc

(
x
2 , 2k + 3

2 + ν
)

22k+νk!Γ (k + 1 + ν)

(40)

if h (ω)x > 7.5. In (39) and (40), Γinc and E1 are the so-called incomplete gamma function and exponential integral
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function (see Appendix B), respectively, and

w = 7.5l (ω) , w = l (ω)h (ω)x (41)

It is important to observe that both the incomplete gamma function and the exponential integral function can be

evaluated very quickly on a personal computer using standard numerical algorithms, see e.g. Abramowitz and Stegun

(1972, Section 6.5, pp. 260-266), Amos (1980); Cody (2006), Press et al. (2007, Section 6, pp. 255-265) and Kalitkin

and Panin (2009).

4 A quasi-analytical approximate solution

The survival probability (9) can be obtained as the inverse Laplace transform of function F , namely

P (x, τ) =
(
L−1F

)
(x, τ) (42)

This task is accomplished using the algorithm of Gaver-Stehfest, which is a very efficient approach for numerically

inverting Laplace transforms (see, e.g., Gaver Jr., 1966; Stehfest, 1970; Kuznetsov, 2013). According to this method,

the survival probability is approximated as follows:

Pap (x, τ) =
ln (2)

τ

2M∑
k=1

αMk F

(
x,
k ln (2)

τ

)
, (43)

where:

αMk =
(−1)

M+k

M !

min(k,M)∑
j=b(k+1)/2c

jM+1

(
M

j

)(
2j

j

)(
j

k − j

)
(44)

b·c being the integer part of · and M is a positive integer which controls the accuracy of the approximation obtained.

In particular, the optimal values of M depend on the function being antitransformed. However, small values of M are

often sufficient in order to obtain very accurate estimations of the antitransform. On the other hand, large values of

M are not recommended because, as k in (43) increases, the terms of the sum (43) tend to increase in magnitude (with

alternating sign), and round-off instabilities may occur (Davies and Martin, 1979; Kuhlman, 2013; Kuznetsov, 2013).

In the numerical experiments performed in the present paper we set M = 6, which, by trial and error, yields the most

accurate numerical results. By direct numerical simulation, we have found that for M = 7 and M = 8 the survival

probability is computed with an error which is at most one order of magnitude larger than the error obtained using

M = 6. Instead, for M < 6 or M > 8, the accuracy of formula (43) starts to degrade and, in particular, for M ≥ 10

the survival probability is often calculated with not even two correct digits (due to the aforementioned numerical

instabilities). Finally, we have experienced that the time required in order to obtain the survival probability increases

(approximately) linearly with M , this meaning that all the terms in the sum (43) take (approximately) the same time

to be computed.

Finally, for computational reasons, the series in (39) must be truncated at some positive integer, which in all the

numerical simulations carried out in this work is chosen equal to 30. In fact, by numerical experiments we have found

that keeping only the first thirty terms of each series appearing in (39) is sufficient to compute the Laplace transform

F with essentially no error.

Remark 1 Relation (43) is actually a quasi-analytical approximate solution for the survival probability of the model
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by Madan and Unal. We would like to remark that the analytical expression of the Laplace transform of the survival

probability (relations (39) and (40) in the previous section) and the quasi-analytical approximation of the survival

probability (relation (43)) are the main theoretical contributions of the paper.

5 Validation of the Laplace transform approach

Let us evaluate the performances of the quasi-analytical approximation (43). To this aim, we compute the survival

probability for different values of the parameters σ and c. In particular, the set of values employed include also

σ = 0.36633 and c = 0.003419, which have been estimated in Madan and Unal (1998) from historical series of

defaultable bond prices. Note that in the present paper the parameters σ and c are expressed in annual units.

Moreover, as far as the volatility is concerned, following, for example, Hull (2009) (Section 11.3, p. 222), the decimal

notation (rather than the percentage notation) is employed.

As far as the time to maturity τ is concerned, following Ballestra and Pacelli (2009), we consider both τ = 3 months

(Test Case 1.a, Table 1), τ = 1 year (Test Case 1.b, Table 2), and τ = 10 years (Test Case 1.c, Table 3). Moreover,

for each test case, we compute the survival probability in correspondence of different values of x, which are chosen as

in Ballestra and Pacelli (2009). For the reader’s convenience, we recall that, according to (8), x measures the distance

between the equity value and the default barrier.

Let Pap denote the approximate survival probability obtained using the proposed formula (43), and let RelErr

denote the relative error of Pap, which is evaluated as follows:

RelErr =
|Pap (x, τ)− P (x, τ)|

P (x, τ)
(45)

Note that P , the exact solution of problem (10)-(12), is not available. Nevertheless, in order to measure the

accuracy of the quasi-analytical approximate solution obtained in this paper, we need to compute P with a sufficiently

large degree of exactness. Therefore, a very accurate estimation of P is obtained by finite difference approximation

(as we can rely on the fact that the finite difference method, if used in conjunction with very refined meshes, allows

one to compute P with, say, any desired accuracy). In particular, problem (10)-(12) is discretized using the popular

Crank-Nicolson finite difference scheme, and a very large number of collocation nodes (100000) is employed in both

the x and the τ directions. By trial and error, we have found that such a procedure allows us to evaluate P with at

least 6 correct digits (let us also do mention that it takes some ten of minutes in order to obtain such a very accurate

approximate solution).

Moreover, the computer time required in order to obtain Pap is denoted as CPUTime. To provide a better

understanding of the performances of the proposed method, we specify that all the numerical simulations are carried

out on a computer Intel Core i7 CPU (2.3 GHz) and the software programs are written using Matlab 8. The results

obtained are shown in Table 1, Table 2 and Table 3. In these tables, we also report results obtained using the finite

difference method (FDM). In particular, in order to give an immediate comparison between formula (43) and the

FDM, we directly show the computer time which is taken by the Crank-Nicolson finite difference scheme in order to

achieve (approximately) the same error RelErr that is obtained using the quasi-analytical approximation (43).

We observe that Pap is a very accurate approximation of the survival probability. In fact, the relative errors are

always of the order of 10−4 or 10−5. Such a level of accuracy is considerable higher than the level of accuracy that is

usually required in everyday business practice. Moreover, formula (43) allows us to compute the survival probability

extremely fast, as CPUTime is always of the order of 10−4 seconds.

Moreover, the quasi-analytical approximation proposed in the present paper is significantly more efficient than the
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finite difference method. In fact, to obtain the survival probability with (roughly) the same accuracy, formula (43)

takes an extremely smaller time than the Crank-Nicolson scheme (more than one hundredth of times smaller).

Nevertheless, to make a fair comparison between the proposed quasi-analytical approximation and the finite dif-

ference approach, we shall also acknowledge what follows: while the quasi-analytical approximation yields, in one

numerical simulation, the survival probability at only one point (x, τ), the finite difference method yields, in one

numerical simulation, the survival probability on an entire grid of points in the (x, τ) domain. At the same time,

however, the finite difference method requires one to generate a mesh, to store large arrays of data and to solve a set

of linear systems, and thus it is usually considered (for instance, by practitioners) more difficult to implement than a

direct quasi analytical formula such as formula (43).

Table 1 goes here.

Table 2 goes here.

Table 3 goes here.

Finally, in Figure 1 we report the survival probability obtained using formula (43) in Test Cases 1.a, 1.b and 1.c.

As we may observe, the analytical formula (43) yields a very smooth approximation of the survival probability (with

no spurious oscillations or spikes), which is always contained in the interval [0, 1] (note that Figure 1 refers to the case

σ = 0.36633 year−1/2 and c = 0.003419 year−1, but the results obtained using the other values of σ and c reported in

the tables above are analogous).

Figure 1 goes here.

6 Pricing credit default swaps

The survival probability of a firm plays a crucial role in the pricing of credit default swaps (CDSs). Therefore, in this

section we show how the quasi-analytical approximate solution (43) can be used to value CDSs, and, in particular, to

compute CDS par spreads.

A CDS is a financial derivative issued by a protection seller that, under the payment of premiums, insures a

protection buyer against the risk of default of a third (underlying) entity. Specifically, let us consider a risky bond

issued by either a corporate or a sovereign borrower, with face value N and maturity T . Then, a CDS can be used to

transfer credit risk from the bondholder (the protection buyer) to a trader (the protection seller) willing to take on
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the risk. In order to enter the contract, the protection buyer makes predetermined payments to the protection seller,

until the possible default of the bond issuer or the maturity date of the bond, whichever comes first.

In the present paper, following a common approach (see, e.g., Madan and Schoutens, 2008; Schoutens and Cariboni,

2009; Hao et al., 2013) the flow of payments from the protection buyer to the protection seller is assumed to be

continuous. In particular, in the time interval dt prior to maturity, the protection buyer pays (if the bond has not

defaulted yet) an amount equal to sNdt, where s is the so-called CDS spread.

The risk that the bond defaults is modeled using the approach by Madan and Unal described in Section 2. Therefore,

let us consider the process (1) where A denotes the discounted value of the equity of the reference entity issuing the

risky bond. Then, the current value (at time t = 0) of the premium payments, i.e. the so-called premium leg, is given

by:

sN

∫ T

0

e−rτP (x0, τ) dτ (46)

where r is the risk-free interest rate, which is here assumed to be constant, P is the survival probability defined as in

(9) and, according to (8), we set

x0 = ln
(a0

δ

)
(47)

a0 being the value of A at time t = 0 and δ being the default threshold (see (4)).

Following a quite common approach (see, e.g., Duffie and Singleton, 1999; Pan and Singleton, 2008) we assume that

in case of default, the buyer receives a fractional recovery of par at the default date. Specifically, the protection seller

must pay to the bondholder (1−R)N where R ∈ [0, 1] is the so-called recovery rate, which, according, for example,

to Altman and Kishore (1996), Cathcart and El-Jahel (2003), Jankowitsch et al. (2008), Hao et al. (2013) and Madan

(2014), is assumed to be constant. Therefore, the current value of the sum paid by the protection seller, the so-called

default leg, is (see, e.g., Schoutens and Cariboni, 2009):

− (1−R)N

∫ T

0

e−rτdP (x0, τ) (48)

Pricing the CDS amounts to finding the par spread s = s∗ (T ) such that the premium leg is equal to the default leg

(see, e.g., Schoutens and Cariboni, 2009):

s∗ (T ) =
(1−R)

(
−
∫ T

0
e−rτdP (x0, τ)

)
∫ T

0
e−rτP (x0, τ) dτ

(49)

which upon integration by parts can be rewritten as follows:

s∗ (T ) = (1−R)

(
1− e−rTP (x0, T )∫ T
0
e−rτP (x0, τ) dτ

− r

)
(50)

The above par spread can be computed using the Laplace transform derived in Section 3. Indeed, setting

G (x0, T ) =

∫ T

0

e−rτP (x0, τ) dτ (51)

and using Laplace transform properties analogous to the second of (15) and (16) we have

(LG) (x0, ω) =
1

ω
F (x0, ω + r) (52)
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where F is defined in (13). Then, using (42), (51) and (52), relation (50) can be rewritten as follows:

s∗ (T ) = (1−R)

(
1− e−rTP (x0, T )

Q (x0, T )
− r
)

(53)

where Q is the inverse Laplace transform of (52).

In (53) the survival probability P is replaced with the quasi-analytical approximation (43). Moreover, using again

the Gaver-Stephest algorithm to antitransform (52), a quasi-analytical approximate expression for the CDS par spread

can be obtained:

s∗ (T ) ≈ (1−R)

(
1− e−rTPap (x0, T )

Qap (x0, T )
− r
)

(54)

where

Qap (x0, T ) =

2M∑
k=1

1

k
αMk F

(
x0,

k ln (2)

T
+ r

)
(55)

and αMk is defined as in (44).

7 Calibration to CDS spreads

Let us calibrate the model by Madan and Unal by fitting relation (54) to real market data. We proceed as follows.

First of all, the recovery rate R is set to 0.4, which is a very typical value in the literature (see, e.g., Altman and

Kishore, 1996; Jankowitsch et al., 2008; Madan, 2014). In order to investigate wether the model parameter are stable

over time, the calibration is repeated at several different times, hereafter referred to as “calibration dates” (those

reported in Tables 4-9).

The volatility σ needed in (53) is obtained as the historical volatility of the equity of the firm issuing the bond

underlying the CDS considered. In particular, such a value is obtained as the variance of the daily returns on equity

experienced in the five years prior to the calibration date considered. This yields an estimation of the daily volatility,

from which an estimation of the annual volatility is obtained by considering 1 year = 252 days, see for example,

the procedure outlined in Hull (2009, Section 17.1, pp. 372-373). We remark that we have also tried to use equity

returns on a time period of two years (rather than five years), but the results obtained do not change substantially

(the volatility values differ only for few percentage points).

Furthermore, the interest rate r is chosen equal to the 5-year Eurirs observed at the calibration date considered

(let us recall that the Eurirs, or Euro Interest Rate Swap, is the fixed rate that European banks use to trade interest

rate swaps among themselves).

Once that σ, r and R are available, the remaining model parameter c and δ (see equation (4)) are obtained by fitting

realized CDS spreads. This is done using a calibration procedure analogous to the one proposed in Hao et al. (2013).

Specifically, let s∗emp (T ) denote the market value of the CDS spread observed at the calibration date considered, with

time left to maturity T . Following Hao et al. (2013), let us consider a set of CDSs written on the same entity, with

different maturities: T1 = 1 year, T2 = 2 years, T3 = 3 years, T4 = 4 years, T5 = 5 years, T6 = 7 years and T7 =

10 years. The parameter c and the value δ are then obtained by minimizing the root mean squared error (RMSE)

between the empirical CDS spreads and the theoretical ones:

RMSE (c, δ) =

√√√√1

7

7∑
i=1

(
s∗emp (Ti)− s∗ (Ti)

)2
(56)
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where s∗ (Ti) is evaluated using (54). We remark that RMSE is a function of the model parameter δ as it depends on

the initial value x0 (through the probability P (x0, τ)) which in turn depends on δ (see (47)). Note that RMSE also

varies with the calibration date (at which the empirical data are collected), even if, to keep the notation simple, we

do not explicitly indicate it.

The calibration of the model by Madan and Unal is done for six CDSs traded on the European market and written

on firms whose equities are listed on the Frankfurt Stock Exchange (each of these firms has a different Moody’s rating).

As far as the calibration dates are concerned, we consider various different times in the years 2014 and 2015, which

may be thought of as years of relative financial stability. In addition, we also choose some calibration dates in the year

2008, i.e. in the midst of the past worldwide financial crisis.

The result obtained are reported in Tables 4-9. Note that in these tables, in order to provide a better understanding

of the fitting error with respect to the level of CDS spreads, we show a relative error RRMSE which is defined as

follows:

RRMSE (c, δ) =
RMSE (c, δ)√

1
7

7∑
i=1

(
s∗emp (Ti)

)2 (57)

As we can observe, in the years 2014 and 2015 the model fits the term structures of the CDSs considered particularly

well. In fact, RRMSE is never greater than 11.29% (value experienced for Wal-Mart Stores Inc., see Table 4), and

in most of the cases, is smaller than 10%. Moreover, always in the years 2014 and 2015, the parameters typical of

the model by Madan and Unal, i.e. c and δ, exhibit a rather good stability over time. Actually, for some of the

CDSs considered (namely William Cos Inc., Sealed Air and Safeway Inc., see Tables 6, 7 and 8), the parameter δ

approximately doubles when passing from 31/01/2014 to 31/07/2015. Nevertheless, the quantity ln(δ), i.e. the one

that truly matters in the model by Madan and Unal (according to (4), the default intensity depends on the parameter

δ only through ln(δ)), is rather stable. Finally, we also observe that the rates of variation of c and δ for the years 2014

and 2015 are roughly similar, for size, to the rates of variation of parameters that are experienced when calibrating

other models for CDS pricing (see, e.g., Bianchi, 2012; Das and Hanouna, 2009).

Instead, for the year 2008, the agreement between theoretical and empirical data is worse than for the years 2014

and 2015. In fact, for the year 2008, RRMSE is, on average, around 10%, and ranges up to 16.41% (value experienced

for Ford Motor Company, see Table 5). Therefore, for the year 2008 the model has a smaller explanatory power, which

is presumably due to the following reason: in times of crisis, besides the equity value, there are also other factors that

may significantly influence the default of a firm. For example, a variable that surely plaid a relevant role during the

2008 financial breakdown is the small liquidity of the markets. Now, as already noticed, in the model by Madan and

Unal these “other factors” are somehow accounted for by the default intensity (4). Nevertheless, the reduced-form

approach (4) provides only a broad description of the variables other than the equity value, and thus some discrepancy

in pricing the risk of default occurs.

We shall also acknowledge, however, that the fitting errors obtained for the year 2008 can be deemed quite satis-

factory anyway, due to the following reasons: first of all, the model by Madan and Unal is not so complex from the

mathematical standpoint, and thus we have a nice trade-off between analytical simplicity and goodness-of-fit; second,

the parameters which we have tuned in order to fit CDS spreads are only two. Note, indeed, that a better agreement

could be achieved if not only c and δ, but also the recovery rate R (or even the volatility σ) were chosen such to

minimize the error (56), see, e.g., Das and Hanouna (2009). Nevertheless, this is left as a future work as it goes beyond

the scope of the present paper. Third, the errors that are often experienced when fitting CDS spreads are often as

large as those which we obtain for the year 2008, or even much larger. For example, the errors in Bianchi (2012) are,
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on average, around 10%, whereas Koziol et al. (2015) reports that “...more than one half of CDS premia are mispriced

by less than 20%, which is tolerable for various applications. However, the top 5% of deviations take very large values

that are even above 100%.”.

Furthermore, the value of c and δ obtained for the year 2008 exhibit, in some cases, significant variations and

they are not, on the overall, as flat as those estimated for the years 2014 and 2015 (for example, for Sealed Air, at

31/01/2008 c = 0.01118 whereas at 31/10/2008 c = 0.07490, see Table 7). This clearly reflects the shock that hit the

European economy in 2007-2008.

Table 4 goes here.

Table 5 goes here.

Table 6 goes here.

Table 7 goes here.

Table 8 goes here.

Table 9 goes here.

8 Conclusions

A quasi-analytical approximation of the survival probability in the model by Madan and Unal (1998) is presented.

This formula, which is obtained using a Laplace-transform approach, is easy to implement and, as shown by several

numerical experiments, also very accurate and fast. In addition, it is shown that the analytical expression obtained

can also be used for pricing credit default swaps. Specifically, a quasi-analytical approximation of CDS par spreads
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is derived which can be used to estimate the parameters of the model by fitting term structures of empirical credit

spreads. This is done in this paper and the results obtained reveal that the model by Madan and Unal provides a

rather satisfactory description of real market data.

A Deriving formula (28)

According to Polyanin and Zaitsev (2003, Section 0.2.1-6, p. 46), the general solution of the non-homogeneous equation

(17) is as follows:

F (x, ω) = C1F1 (x, ω) + C2F2 (x, ω) + F1 (x, ω)

∫
2F2 (x, ω) dx

σ2W (F1 (x, ω) , F2 (x, ω))
− F2 (x, ω)

∫
2F1 (x, ω) dx

σ2W (F1 (x, ω) , F2 (x, ω))
(58)

where F1 and F2 are given by (27) and C1 and C2 are arbitrary constants and

W (F1, F2) = F1
∂F2

∂x
− ∂F1

∂x
F2 (59)

is the so-called Wronskian determinant. According to Polyanin and Zaitsev (2003, Section S.2.6-4, p. 772), we have

W (F1 (x, ω) , F2 (x, ω)) = −ex (60)

Substituting (27) and (60) in (58) we obtain

F (x, ω) = F1 (x, ω)

(
C1 +

2

σ2

∫
e−

x
2 x

1
2Kν (h (ω)x) dx

)
+ F2 (x, ω)

(
C2 −

2

σ2

∫
e−

x
2 x

1
2 Iν (h (ω)x) dx

)
(61)

so that, using elementary integral calculus, we can write

F (x, ω) = F1 (x, ω)

(
C1 −

2

σ2

∫ x

1

e−
z
2 z

1
2Kν (h (ω) z) dz

)
+ F2 (x, ω)

(
C2 +

2

σ2

∫ x

1

e−
z
2 z

1
2 Iν (h (ω) z) dz

)
(62)

Then, by imposing the boundary conditions (18), we obtain

C1 =
2

σ2

∫ +∞

1

e−
z
2 z

1
2Kν (h (ω) z) dz, C2 =

2

σ2

∫ 0

1

e−
z
2 z

1
2 Iν (h (ω) z) dz (63)

so that, upon substitution of (63) in (62), relation (28) easily follows.

B Deriving formula (39)

Let us consider relation (35):

F (x, ω) = g1 (x, ω)

+∞∑
k=0

(
1
2

)2k
k!

(
I1 (k)

2−νΓ (k + 1− ν)
− I2 (k)

2νΓ (k + 1 + ν)

)
+ g2 (x, ω) I4 + g3 (x, ω)

+∞∑
k=0

I3 (k)

22k+νk!Γ (k + 1 + ν)

(64)
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where

I1 (k) =

∫ 7.5

h(ω)x

y2k+ 1
2−νe−

y
2h(ω) dy, I2 (k) =

∫ 7.5

h(ω)x

y2k+ 1
2 +νe−

y
2h(ω) dy (65)

I3 (k) =

∫ h(ω)x

0

y2k+ 1
2 +νe−

y
2h(ω) dy, I4 =

∫ +∞

7.5

e−l(ω)y

(
1 +

+∞∑
i=1

qiy
−i

)
dy (66)

Then, using the change of variable

m =
y

2h (ω)
(67)

the integrals I1 (k) can be rewritten as follows:

I1 (k) = (2h (ω))
2k+ 3

2−ν
∫ 7.5

2h(ω)

x
2

m2k+ 1
2−νe−mdm (68)

so that

I1 (k) = (2h (ω))
2k+ 3

2−ν
(

Γinc

(
7.5

2h (ω)
, 2k +

3

2
− ν
)
− Γinc

(
x

2
, 2k +

3

2
− ν
))

(69)

where Γinc is the incomplete gamma function:

Γinc (x, γ) =

∫ x

0

mγ−1e−mdm (70)

The integrals I2 (k) and I3 (k) can be treated analogously, which yields (the details are left to the reader):

F (x, ω) =g1 (x, ω)

+∞∑
k=0

(2h (w))
2k+ 3

2−ν
(

Γinc

(
7.5

2h(ω) , 2k + 3
2 − ν

)
− Γinc

(
x
2 , 2k + 3

2 − ν
))

22k−νk!Γ (k + 1− ν)

− g1 (x, ω)

+∞∑
k=0

(2h (w))
2k+ 3

2 +ν
(

Γinc

(
7.5

2h(ω) , 2k + 3
2 + ν

)
− Γinc

(
x
2 , 2k + 3

2 + ν
))

22k+νk!Γ (k + 1 + ν)

+ g2 (x, ω) I4 + g3 (x, ω)

+∞∑
k=0

(2h (w))
2k+ 3

2 +ν
Γinc

(
x
2 , 2k + 3

2 + ν
)

22k+νk!Γ (k + 1 + ν)

(71)

The integral I4 in (66) can be rewritten as follows:

I4 =

∫ +∞

7.5

e−l(ω)ydy +

+∞∑
i=1

qi

∫ +∞

7.5

y−ie−l(ω)ydy (72)

Using the change of variable

w = l (ω) y (73)

we obtain:

I4 =
1

l (ω)

∫ +∞

w

e−wdw +

+∞∑
i=1

qil
i−1 (ω)

∫ +∞

w

w−ie−wdw (74)

where w = 7.5l (ω). Using integration by parts, it is easy to show that

∫ +∞

w

w−ie−wdw =
(−1)

i−1

(i− 1)!
E1 (w) +

e−w

wi (i− 1)!

i−1∑
j=1,
i≥2

(−1)
j+1

wj (i− 1− j)! (75)
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where

E1 (w) =

∫ +∞

w

e−w

w
dw (76)

is the exponential integral function. Substitution of (75) in (74) yields:

I4 =
1

l (ω)
e−w +

+∞∑
i=1

qil
i−1 (ω)

 (−1)
i−1

(i− 1)!
E1 (w) +

e−w

wi (i− 1)!

i−1∑
j=1,
i≥2

(−1)
j+1

wj (i− 1− j)!

 (77)

Using simple algebra, the integral (77) can be rewritten as follows

I4 =
1

l (ω)


e−w +

+∞∑
i=1

(−1)
i
qil

i (ω)

 e−w

w

i−2∑
j=0,
i≥2

j!
(−w)j

− E1 (w)


(i− 1)!


(78)

and thus by substituting (78) in (71) we obtain (39). Analogous calculations allow us to obtain (40).
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x = 0.1 x = 0.3 x = 0.5

σ
=

0.
2

c = 0.0001

Pap (x, t) 0.664179 0.996519 0.999885
RelErr 2.28× 10−6 2.96× 10−5 5.98× 10−6

CPUTime 7.02× 10−4 s 7.09× 10−4 s 7.09× 10−4 s
CPUTime(FDM) 1.5× 10−1 s 1.5× 10−1 s 1.5× 10−1 s

c = 0.003419

Pap (x, t) 0.593848 0.984269 0.996297
RelErr 1.30× 10−4 2.62× 10−5 7.77× 10−6

CPUTime 7.02× 10−4 s 7.09× 10−4 s 7.09× 10−4 s
CPUTime(FDM) 1.5× 10−1 s 1.5× 10−1 s 1.5× 10−1 s

c = 0.01

Pap (x, t) 0.493836 0.960973 0.989223
RelErr 5.41× 10−5 1.66× 10−5 1.01× 10−5

CPUTime 7.02× 10−4 s 7.09× 10−4 s 7.09× 10−4 s
CPUTime(FDM) 1.5× 10−1 s 1.5× 10−1 s 1.5× 10−1 s

σ
=

0.
3
66

33

c = 0.0001

Pap (x, t) 0.385026 0.882216 0.991760
RelErr 1.57× 10−5 2.43× 10−4 1.97× 10−5

CPUTime 7.02× 10−4 s 7.09× 10−4 s 7.09× 10−4 s
CPUTime(FDM) 1.5× 10−1 s 1.5× 10−1 s 1.5× 10−1 s

c = 0.003419

Pap (x, t) 0.361489 0.866956 0.986917
RelErr 1.58× 10−4 3.87× 10−5 8.85× 10−5

CPUTime 7.02× 10−4 s 7.09× 10−4 s 7.09× 10−4 s
CPUTime(FDM) 1.5× 10−1 s 1.5× 10−1 s 1.5× 10−1 s

c = 0.01

Pap (x, t) 0.322611 0.839607 0.977228
RelErr 1.77× 10−4 2.54× 10−4 1.05× 10−4

CPUTime 7.02× 10−4 s 7.09× 10−4 s 7.09× 10−4 s
CPUTime(FDM) 1.5× 10−1 s 1.5× 10−1 s 1.5× 10−1 s

σ
=

0.
5

c = 0.0001

Pap (x, t) 0.276656 0.733495 0.941621
RelErr 8.23× 10−6 2.25× 10−5 1.23× 10−4

CPUTime 7.02× 10−4 s 7.09× 10−4 s 7.09× 10−4 s
CPUTime(FDM) 1.5× 10−1 s 1.5× 10−1 s 1.5× 10−1 s

c = 0.003419

Pap (x, t) 0.265110 0.722009 0.936146
RelErr 9.01× 10−4 1.10× 10−3 2.81× 10−4

CPUTime 7.02× 10−4 s 7.09× 10−4 s 7.09× 10−4 s
CPUTime(FDM) 1.5× 10−1 s 1.5× 10−1 s 1.5× 10−1 s

c = 0.01

Pap (x, t) 0.244788 0.700548 0.924142
RelErr 1.68× 10−4 4.39× 10−5 5.87× 10−4

CPUTime 7.02× 10−4 s 7.09× 10−4 s 7.09× 10−4 s
CPUTime(FDM) 1.5× 10−1 s 1.5× 10−1 s 1.5× 10−1 s

Table 1: Test Case 1.a (τ = 3 months).
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x = 0.1 x = 0.3 x = 1.0

σ
=

0.
2

c = 0.0001

Pap (x, t) 0.349843 0.843351 0.999882
RelErr 4.51× 10−5 1.68× 10−4 7.71× 10−6

CPUTime 7.02× 10−4 s 7.09× 10−4 s 7.09× 10−4 s
CPUTime(FDM) 1.5× 10−1 s 1.5× 10−1 s 1.5× 10−1 s

c = 0.003419

Pap (x, t) 0.283917 0.790570 0.996251
RelErr 1.71× 10−4 7.43× 10−5 9.94× 10−6

CPUTime 7.12× 10−4 s 7.21× 10−4 s 6.21× 10−4 s
CPUTime(FDM) 1.5× 10−1 s 1.5× 10−1 s 1.5× 10−1 s

c = 0.01

Pap (x, t) 0.178015 0.739602 0.980558
RelErr 8.30× 10−5 2.49× 10−4 1.28× 10−5

CPUTime 7.02× 10−4 s 7.09× 10−4 s 7.09× 10−4 s
CPUTime(FDM) 1.5× 10−1 s 1.5× 10−1 s 1.5× 10−1 s

σ
=

0.
36

63
3

c = 0.0001

Pap (x, t) 0.177009 0.523283 0.989540
RelErr 9.39× 10−6 3.90× 10−5 3.69× 10−6

CPUTime 7.02× 10−4 s 7.09× 10−4 s 7.09× 10−4 s
CPUTime(FDM) 1.5× 10−1 s 1.5× 10−1 s 1.5× 10−1 s

c = 0.003419

Pap (x, t) 0.160673 0.499600 0.984303
RelErr 1.55× 10−4 9.92× 10−5 3.61× 10−5

CPUTime 7.12× 10−4 s 7.21× 10−4 s 6.21× 10−4 s
CPUTime(FDM) 1.5× 10−1 s 1.5× 10−1 s 1.5× 10−1 s

c = 0.01

Pap (x, t) 0.135103 0.459339 0.974208
RelErr 1.62× 10−4 7.59× 10−5 1.09× 10−4

CPUTime 7.02× 10−4 s 7.09× 10−4 s 7.09× 10−4 s
CPUTime(FDM) 1.5× 10−1 s 1.5× 10−1 s 1.5× 10−1 s

σ
=

0.
5

c = 0.0001

Pap (x, t) 0.119156 0.369622 0.926503
RelErr 5.08× 10−6 2.89× 10−5 1.79× 10−5

CPUTime 7.02× 10−4 s 7.09× 10−4 s 7.09× 10−4 s
CPUTime(FDM) 1.5× 10−1 s 1.5× 10−1 s 1.5× 10−1 s

c = 0.003419

Pap (x, t) 0.112036 0.357429 0.882173
RelErr 9.69× 10−5 4.94× 10−5 8.10× 10−4

CPUTime 7.12× 10−4 s 7.21× 10−4 s 6.21× 10−4 s
CPUTime(FDM) 1.5× 10−1 s 1.5× 10−1 s 1.5× 10−1 s

c = 0.01

Pap (x, t) 0.099880 0.335637 0.907967
RelErr 1.71× 10−4 7.85× 10−5 3.93× 10−4

CPUTime 7.02× 10−4 s 7.09× 10−4 s 7.09× 10−4 s
CPUTime(FDM) 1.5× 10−1 s 1.5× 10−1 s 1.5× 10−1 s

Table 2: Test Case 1.b (τ = 1 year).
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x = 0.6 x = 1.0 x = 5.0

σ
=

0.
2

c = 0.0001

Pap (x, t) 0.546453 0.816622 0.999957
RelErr 3.40× 10−5 1.47× 10−4 4.16× 10−7

CPUTime 7.02× 10−4 s 7.09× 10−4 s 7.09× 10−4 s
CPUTime(FDM) 1.5× 10−1 s 1.5× 10−1 s 1.5× 10−1 s

c = 0.003419

Pap (x, t) 0.479364 0.764244 0.998538
RelErr 3.28× 10−5 1.24× 10−4 2.77× 10−7

CPUTime 7.12× 10−4 s 7.21× 10−4 s 6.21× 10−4 s
CPUTime(FDM) 1.5× 10−1 s 1.5× 10−1 s 1.5× 10−1 s

c = 0.01

Pap (x, t) 0.387399 0.682195 0.995730
RelErr 9.34× 10−5 2.12× 10−4 1.46× 10−6

CPUTime 7.02× 10−4 s 7.09× 10−4 s 7.09× 10−4 s
CPUTime(FDM) 1.5× 10−1 s 1.5× 10−1 s 1.5× 10−1 s

σ
=

0.
36

63
3

c = 0.0001

Pap (x, t) 0.226708 0.408389 0.999702
RelErr 2.95× 10−5 4.97× 10−5 7.88× 10−5

CPUTime 7.02× 10−4 s 7.09× 10−4 s 7.09× 10−4 s
CPUTime(FDM) 1.5× 10−1 s 1.5× 10−1 s 1.5× 10−1 s

c = 0.003419

Pap (x, t) 0.210616 0.388423 0.997948
RelErr 4.61× 10−5 5.40× 10−5 7.31× 10−5

CPUTime 7.12× 10−4 s 7.21× 10−4 s 6.21× 10−4 s
CPUTime(FDM) 1.5× 10−1 s 1.5× 10−1 s 1.5× 10−1 s

c = 0.01

Pap (x, t) 0.184530 0.354745 0.994485
RelErr 4.11× 10−5 6.59× 10−5 6.15× 10−5

CPUTime 7.02× 10−4 s 7.09× 10−4 s 7.09× 10−4 s
CPUTime(FDM) 1.5× 10−1 s 1.5× 10−1 s 1.5× 10−1 s

σ
=

0.
5

c = 0.0001

Pap (x, t) 0.119854 0.226610 0.985602
RelErr 9.21× 10−7 7.40× 10−5 2.72× 10−4

CPUTime 7.02× 10−4 s 7.09× 10−4 s 7.09× 10−4 s
CPUTime(FDM) 1.5× 10−1 s 1.5× 10−1 s 1.5× 10−1 s

c = 0.003419

Pap (x, t) 0.113995 0.218369 0.982908
RelErr 1.78× 10−5 8.97× 10−5 2.66× 10−4

CPUTime 7.12× 10−4 s 7.21× 10−4 s 6.21× 10−4 s
CPUTime(FDM) 1.5× 10−1 s 1.5× 10−1 s 1.5× 10−1 s

c = 0.015

Pap (x, t) 0.103820 0.203756 0.977661
RelErr 1.38× 10−5 8.38× 10−5 2.55× 10−4

CPUTime 7.02× 10−4 s 7.09× 10−4 s 7.09× 10−4 s
CPUTime(FDM) 1.5× 10−1 s 1.5× 10−1 s 1.5× 10−1 s

Table 3: Test Case 1.c (τ = 10 years).
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Figure 1: Survival Probability, c = 0.003419, σ = 0.36633.
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Wal-Mart Stores Inc. (Moody’s rating: Aa2)

Calibration date σ a0 δ ln(δ) c RRMSE

31/07/2015 0.1790 64.78 19.32 2.96 0.00184 7.61%

30/04/2015 0.1762 69.87 21.11 3.05 0.00173 3.73%

30/01/2015 0.1752 76.53 22.64 3.12 0.00153 6.04%

31/10/2014 0.1665 61.45 19.75 2.98 0.00146 7.96%

31/07/2014 0.1678 55.16 17.91 2.88 0.00151 8.59%

30/04/2014 0.1719 57.43 18.51 2.91 0.00149 11.29%

31/01/2014 0.1728 54.70 17.92 2.89 0.00160 10.66%

31/10/2008 0.2023 44.44 7.28 1.99 0.04080 6.95%

31/07/2008 0.1972 37.88 6.48 1.87 0.01459 9.79%

30/04/2008 0.2014 37.80 6.74 1.90 0.01164 11.16%

31/01/2008 0.2069 33.97 5.52 1.71 0.01658 8.91%

Table 4: Calibration results.
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Ford Motor Company (Moody’s rating: Baa3)

Calibration date σ a0 δ ln(δ) c RRMSE

31/07/2015 0.2171 13.41 3.80 1.33 0.00650 8.95%

30/04/2015 0.2241 14.35 4.02 1.38 0.00600 9.01%

30/01/2015 0.2318 13.13 4.58 1.52 0.00650 7.49%

31/10/2014 0.2320 10.89 3.73 1.32 0.00700 7.31%

31/07/2014 0.2376 12.99 3.41 1.23 0.00780 10.60%

30/04/2014 0.2498 11.80 3.26 1.18 0.00794 9.54%

31/01/2014 0.2578 11.16 3.09 1.13 0.00851 4.95%

31/10/2008 0.4684 18.20 1.21 0.19 0.02060 1.10%

31/07/2008 0.3868 24.31 1.44 0.37 0.05730 3.79%

30/04/2008 0.3498 29.75 1.36 0.30 0.05723 16.41%

31/01/2008 0.3466 32.00 1.23 0.21 0.05939 16.04%

Table 5: Calibration results.
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Williams Cos Inc. (Moody’s rating: Ba1)

Calibration date σ a0 δ ln(δ) c RRMSE

31/07/2015 0.2673 48.13 15.85 2.76 0.00408 7.32%

30/04/2015 0.2684 45.44 14.16 2.65 0.00427 6.64%

30/01/2015 0.2629 38.2 14.77 2.69 0.00419 5.21%

31/10/2014 0.2506 43.50 14.44 2.67 0.00358 3.89%

31/07/2014 0.2498 41.43 13.01 2.57 0.00351 3.53%

30/04/2014 0.2522 30.35 9.79 2.28 0.00358 4.08%

31/01/2014 0.2904 29.46 8.27 2.11 0.00419 6.02%

31/10/2008 0.3074 12.21 2.14 0.76 0.09400 13.74%

31/07/2008 0.2784 17.15 2.61 0.95 0.02800 12.66%

30/04/2008 0.2950 18.77 2.59 0.95 0.03270 13.46%

31/01/2008 0.3462 17.30 1.83 0.61 0.04120 8.04%

Table 6: Calibration results.
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Sealed Air (Moody’s rating: Ba3)

Calibration date σ a0 δ ln(δ) c RRMSE

31/07/2015 0.2959 48.72 13.49 2.59 0.00430 4.17%

30/04/2015 0.2953 39.30 11.05 2.39 0.00432 3.58%

30/01/2015 0.2911 35.57 10.75 2.36 0.00453 5.99%

31/10/2014 0.2820 27.75 8.79 2.15 0.00443 7.19%

31/07/2014 0.2776 24.18 7.73 2.02 0.00478 4.08%

30/04/2014 0.3049 23.37 6.16 1.81 0.00434 4.85%

31/01/2014 0.3274 22.96 5.87 1.75 0.00409 4.64%

31/10/2008 0.2739 12.66 2.27 0.99 0.07490 13.99%

31/07/2008 0.2505 13.34 3.62 1.28 0.06250 13.06%

30/04/2008 0.2343 17.27 3.95 1.29 0.02050 12.27%

31/01/2008 0.2238 16.46 4.49 1.50 0.01118 13.15%

Table 7: Calibration results.
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Safeway Inc. (Moody’s rating: B1)

Calibration date σ a0 δ ln(δ) c RRMSE

31/07/2015 0.2576 30.92 8.32 2.11 0.00877 8.60%

30/04/2015 0.2680 30.92 8.09 2.09 0.00857 9.89%

30/01/2015 0.2742 30.92 8.29 2.12 0.00869 6.08%

31/10/2014 0.2758 27.66 7.69 2.04 0.01220 6.38%

31/07/2014 0.2812 25.79 6.28 1.90 0.01057 5.32%

30/04/2014 0.2868 24.42 6.34 1.85 0.01118 6.11%

31/01/2014 0.2872 20.67 4.52 1.51 0.01468 11.18%

31/10/2008 0.2548 14.91 1.32 0.27 0.06300 11.21%

31/07/2008 0.2713 15.09 1.70 0.53 0.03587 11.98%

30/04/2008 0.2685 17.90 1.93 0.66 0.03082 12.79%

31/01/2008 0.2864 18.44 1.86 0.62 0.03960 12.25%

Table 8: Calibration results.
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MGM Resorts International (Moody’s rating: B2)

Calibration date σ a0 δ ln(δ) c RRMSE

31/07/2015 0.3885 17.85 3.70 1.31 0.03345 7.16%

30/04/2015 0.4075 18.93 3.54 1.26 0.03219 5.93%

30/01/2015 0.4210 17.43 3.41 1.23 0.03342 6.72%

31/10/2014 0.4325 18.50 3.03 1.11 0.03049 3.62%

31/07/2014 0.4738 20.09 2.81 1.03 0.02729 6.03%

30/04/2014 0.5109 17.99 1.99 0.69 0.02930 5.52%

31/01/2014 0.5632 17.76 5.32 1.67 0.03371 6.05%

31/10/2008 0.5184 11.80 4.47 1.50 0.09978 2.69%

31/07/2008 0.4095 18.90 5.33 1.67 0.06503 6.42%

30/04/2008 0.3543 32.80 7.92 2.07 0.06118 7.94%

31/01/2008 0.3490 48.00 7.15 1.97 0.12075 12.90%

Table 9: Calibration results.
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