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Walrasian versus Cournot behavior in an oligopoly of boundedly rational
firms
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Abstract An evolutionary oligopoly game, where firms can select between the best-reply rule and the Wal-
rasian rule, is considered. The industry is characterized by a finite number of ex-ante homogeneous firms that,
characterized by näıve expectations, decide next-period output by employing one of the two behavioral rules.
The inverse demand function is linear and all firms have the same quadratic and convex cost function (decreas-
ing return to scale). Based upon realized profits, the distribution of behavioral rules is updated according to
a replicator dynamics. The model is characterized by two equilibria: the Cournot-Nash equilibrium, where all
firms adopt the best-reply rule and produce the Cournot-Nash quantity, and the Walrasian equilibrium, where
all firms adopt the Walrasian rule and produce the Walrasian quantity.

The analysis reveals that the Walrasian equilibrium is globally stable as long as the rate of change of
marginal cost exceeds the sum of residual market price sensitivities to output. If not, the Walrasian equilibrium
loses stability and an attractor, representing complicated dynamics with evolutionary stable heterogeneity, arises
through a bifurcation. As the propensity of firms to select the more profitable behavioral rule increases, the
attractor disappears through a global bifurcation and the Cournot-Nash equilibrium can become a global Milnor
attractor. To sum up, the best-reply rule can be evolutionary dominant over the Walrasian rule and this can
lead an oligopoly to select the Cournot-Nash equilibrium.

Keywords Behavioral evolutionary oligopoly · Walrasian versus best reply · Bounded rationality · Nonlinear
dynamics
JEL Classifications: C62 · C73 · D21 · D43 · L13

1 Introduction

Industries are often populated by a limited number of firms taking decisions about next-period production in an
economic environment that can differ from the one postulated by the economic theory of perfect competition. In
many markets, for example, firms are not simply price takers but their decisions about the level of production
influence the selling price of the goods they produce. In this case, the choice of the optimal production level
requires to solve a strategic game, better known as the Cournot oligopoly game. The Cournot-Nash equilibrium,
proposed by Cournot in 1838, represents, under general assumptions, a Nash solution of this game.

Concerning firms, this equilibrium represents a more efficient solution in terms of output and profits than the
one of perfect competition, also known as Walrasian equilibrium, as the output is lower and the earned profits are
higher. Nevertheless, the Walrasian-equilibrium quantity can be evolutionary stable over the Cournot-Nash one.
In this regard, adopting the framework of the standard evolutionary game theory, Schaffer (1989) finds that in a
quantity-setting duopoly characterized by firms with identical and constant marginal costs only the Walrasian-
equilibrium quantity is evolutionary stable. The same result is obtained by Rhode and Stegeman (2001) for
stochastic evolutionary games and by Vega-Redondo (1997) for quantity-setting oligopolies where firms produce
homogeneous commodities and determine, by imitation, their output among a finite set of choices. In the latter
case, the only requirements are a downward sloping market demand and the existence of Walrasian equilibrium.
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Affiliation: LIUC - Università Cattaneo, Castellanza (VA), Italy.



2 Davide Radi

These results find additional strength in Vallée and ldızoğlu (2009), where the Walrasian equilibrium is proved
to be stable even under multiple and simultaneous homogeneous mutations, and in Apesteguia et al (2010),
where experiments confirm the evolutionary stability of the Walrasian equilibrium for oligopolies populated by
firms with asymmetric costs.

Schaffer (1989) underlines that these counter-intuitive results are due to an imitation process based on
relative profits that characterizes the evolutionary game theory and find an explanation in terms of spiteful
behaviors, i.e. a strategy is played just because it damages my competitors more than myself. A firm forgoes
playing the Cournot-Nash-equilibrium quantity, acts as a price taker and thus decreases its profits, but its
change of strategy harms its competitors that play the Cournot-Nash-equilibrium quantity more than itself;
see, e.g. Vallée and ldızoğlu (2009) and Riechmann (2006).

The mentioned findings about the evolutionary selection of the Walrasian-equilibrium quantity in oligopolies
rely on standard evolutionary games. In recent years, a new form of evolutionary game is proposed where the
imitation process is combined with behavioral dynamics. Introduced for the first time to model oligopolies in
Droste et al (2002), these games are inspired by the practice of relying on routines or consolidated management
procedures followed by complex organizations such as firms; see, e.g., Winter (1964) and Nelson and Winter
(1982). In fact, in these games, here named behavioral evolutionary games, agents select behavioral rules instead
of outputs to produce. A behavioral rule is a heuristic, or algorithm, adopted by a firm to determine the quantity
to be produced in the current period as a function of past observations; see, e.g. Nelson and Winter (1982) and
Droste et al (2002). One of the most well-known behavioral rules in quantity-setting oligopoly is the so-called
best reply with näıve expectations or Cournot behavior; see, e.g., Bischi et al (2010) and reference therein.
According to this rule, the quantity to be produced maximizes the firm’s profit under the belief that the
output of the competitors will not change. The resulting quantity dynamics follows a dynamic equation that
allows the Cournot-Nash-equilibrium output as the unique steady state. This behavioral rule has been tested
in Droste et al (2002) against the so-called rational behavioral rule, according to which a firm, being a perfect
foresight agent, always play a Nash equilibrium in a game contaminated with a number of best-reply firms.
The evolutionary selection of the two rules, which is based on a replicator dynamics, reveals that the cheaper
best-reply rule is successful and is adopted by some firms, although it has destabilizing effect in the output
dynamics, and bifurcation routes to complicated dynamics may occur.

Here, the best-reply dynamics is compared with the Walrasian rule, which is a non-Cournotion behavior
based on näıve expectations. The Walrasian rule, or Walrasian behavior, is built on the assumption that a firm
acting as price taker decides next-period output maximizing its profit. The resulting quantity dynamics leads
to a dynamic equation that allows the Walrasian-equilibrium output as the unique steady state.

The aim of this work is to study the evolutionary stability of the Walrasian-equilibrium quantity in the
framework of behavioral evolutionary game theory. The analysis focuses on the stability of the Walrasian equi-
librium in an evolutionary oligopoly game in which the Walrasian behavior is opposed to the best-reply rule
and quantity-setting firms have näıve expectations. Every period each firm decides on the level of production
according to one of the two behavioral rules. The choice about the behavioral rule is made on the basis of past
profits and it is revised at each new period based on an evolutionary mechanism. Thus, the behavioral rule that
was more successful in the previous period stands a higher chance to be adopted in future. The object of study
is a three-dimensional nonlinear dynamic systems in discrete time that includes population dynamics in the
form of a replicator equation; see, e.g., Cabrales and Sobel (1992), Hofbauer and Weibull (1996), Hofbauer and
Sigmund (2003) and Kopel et al (2014), and two output dynamics arising from the two behavioral rules. The
map that describes the dynamics of the model is piecewise smooth; see, e.g., di Bernardo et al (2008), Sushko
and Gardini (2010) and reference therein.

In summary, the main difference between this approach and the classical approach of evolutionary game
theory adopted in Schaffer (1989), Vega-Redondo (1997), Rhode and Stegeman (2001) and Vallée and ldızoğlu
(2009) is the strategic set of the evolutionary game. In the present setup, according to the evolutionary mecha-
nism, firms adopt a behavioral rule and the production pattern follows from this choice. Thus, the quantity to
be produced is determined only indirectly by the evolutionary mechanism and directly by the behavioral rule.

Following this approach, the Walrasian-equilibrium quantity that is proved to be evolutionary desirable with
respect to any other feasible output (see again Vega-Redondo (1997)) is not necessary selected. Two further
conditions are required for this to occur. First, the set of choices should include at least a behavioral rule such
that, if adopted by all firms, the Walrasian-equilibrium quantity is the fixed point of the output dynamics
and attracts each out-of-equilibrium sequence of outputs. Second, this behavioral rule should be evolutionary
desirable.

The analysis reveals that a behavioral rule that satisfies the first condition is evolutionarily desirable,
although its existence depends on the market configuration and the rate of change of marginal cost. In particular,
the proposed model is characterized by only two fixed points: a symmetric Cournot-Nash equilibrium and
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the Walrasian equilibrium. In the Cournot-Nash equilibrium, all firms adopt the best-reply rule and produce
the Cournot-Nash quantity. In the Walrasian equilibrium, all firms adopt the Walrasian rule and produce the
Walrasian quantity. For rate of change of marginal cost higher than the sum of residual market price sensitivities
to output, every production pattern generated by the Walrasian rule converges to the Walrasian quantity and
the Walrasian equilibrium is globally stable. However, for rate of change of marginal cost lower than the sum
of residual market price sensitivities to output, the out-of-equilibrium production patterns generated by the
Walrasian rule do not converge to the Walrasian quantity and the Walrasian equilibrium is unstable. The
loss of stability of the Walrasian equilibrium coincides with a bifurcation through which a non-equilibrium
attractor is created. The attractor represents a stable polymorphic state where the distribution of the two
behavioral rules fluctuates over time and the choice of the firms never polarizes towards a unique heuristic.
Increasing the intensity of choice, i.e. the intensity with which firms select the better performing behavioral
rule, the polymorphic state can disappear due to a global bifurcation. After the bifurcation, the Cournot-Nash
equilibrium can become a Milnor attractor. However, for a higher price reactivity to output, the Cournot-
Nash equilibrium becomes unstable and a 2-cycle appears through a degenerate flip bifurcation followed by a
persistence border collision. This attractor is such that all firms adopt the best-reply rule.

To sum up, as long as the Walrasian quantity can be attained, implying the existence of a behavioral
rule that allows this output, the Walrasian equilibrium is stable. This result is consistent with the economic
literature; see, e.g., Schaffer (1989), Vega-Redondo (1997) and Rhode and Stegeman (2001). However, the lack
of a behavioral rule that generates production patterns converging to the Walrasian quantity may result in firms
adopting the best-reply rule and producing the Cournot-Nash quantity. This finding provides an evolutionary
justification for the existence of Cournot oligopolies and for the adoption of the best-reply rule. Moreover, it
has some implications in terms of applied economics as the observation of Cournot-Nash output in an industry
does not exclude that firms follow an imitation learning based on relative performances.

As a final remark, it is worth underlining that in oligopoly theory there is a growing stream of literature
focused on the evolutionary competition among behavioral rules built upon different assumptions of rationality
and knowledge; see, e.g., Anufriev et al (2013), Bischi et al (2015), Cerboni Baiardi et al (2015) and Cavalli
et al (2015). In this regard, the present model is the only one that includes a behavioral rule that leads to the
Walrasian-equilibrium quantity.

The paper is organized as follows. Sect. 2 introduces the model. Sect. 3 contains a detailed analysis of
the equilibria, of their asymptotic stability and of the monomorphic dynamics. Sect. 4 discusses the condition
under which a polymorphic attractor exists and shows the global bifurcation through which the Cournot-Nash
equilibrium becomes a Milnor attractor. Sect. 5 provides some insights about the frequency distribution of the
average output of the oligopoly and discusses the possible practical implications of the results. Sect. 6 concludes
and provides some ideas for further work to be put on the agenda. All proofs are in the Appendix.

2 Model Setup

Let us consider an oligopoly with N ex-ante identical firms producing homogeneous goods. At time t ∈ N, the
goods are sold in a market characterized by the following inverse demand function:1

P (Q (t)) = max [a− bQ (t) , 0] (1)

where Q (t) is the total output of the industry, a > 0 is the reservation price and b > 0 measure price sensitivity
to output. Moreover, let qi (t) denote the output of producer i, i ∈ {1, 2, 3, . . . , N}, at time t and let us assume
that the cost to produce that output is given by the following cost function characterized by a positive curvature,
also known as rate of change of marginal cost, equal to 2c:

C (qi (t)) = cqi (t)
2

(2)

which implies that firms adopt a homogeneous technology of Cobb-Douglas type with decreasing-return to scale
and the price of the production inputs is constant; see, e.g., Fisher (1961), Alós-Ferrer (2004) and Bischi et al
(2010) for similar assumptions.

Given inverse demand function (1) and cost function (2), the profit function of firm i at time t is given by

Π (Q−i (t) , qi (t)) = P (Q−i (t) + qi (t)) qi (t)− C (qi (t)) (3)

where Q−i (t) + qi (t) = Q (t).

1 A linear price function is obtained by assuming that the utility function of the representative consumer is quadratic; see, e.g.,
Bischi et al (2010) and Vives (2001)
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By assumption, firms can choose between two behavioral rules: the best-reply rule and the Walrasian rule.
Assuming that firm i selects the best-reply rule, then its next-period output qi (t+ 1) solves the following
optimization problem:

max
qi≥0

Π
(
Qe−i (t+ 1) , qi

)
(4)

where Qe−i (t+ 1) is the output decision of the rest of the industry as expected by firm i at time t + 1. In
contrast, if firm i adopts the Walrasian rule, it behaves as a price taker and its next-period output qi (t+ 1)
solves the following optimization problem:

max
qi≥0

[peW (t+ 1) qi − C (qi)] (5)

where peW (t+ 1) is the market price as expected by Walrasian firms at time t+ 1 based on the information at
time t. By assumption, firms have näıve expectations. This implies Qe−i (t+ 1) = Q−i (t) for best-reply firms
and peW (t+ 1) = p (t) for the Walrasian firms.2 Therefore, a Walrasian firm does not take into account the
effect that its own level of production and the one of the competitors (negative externalities) have on the market
price of the produced goods. Nevertheless, Walrasian firms are aware that prices may change over time due to
factors not related to the production side.

In summary, to determine the level of production for the next period, first of all, each firm has to select one
of the two behavioral rules, i.e. either best-reply rule or Walrasian rule. Let r (t) ∈ [0, 1] denote the probability
of adoption of the best-reply rule at time t and consequently 1 − r (t) denotes the probability of adoption of
the Walrasian rule. Furthermore, let us indicate by x (t) the level of production of a best-reply firm at time t
and by y (t) the level of production of a Walrasian firm at time t. Then, qi (t) ∈ {x (t) , y (t)}, for i = 1, . . . , N .
Assuming näıve expectations and solving the optimization problem (4), we obtain the result that a best-reply
firm produces the following quantity of goods:

x (t+ 1) = Tx (x (t) , y (t) , r (t)) =

R (x (t) , y (t) , r (t)) if peBR (t+ 1) > 0

0 if peBR (t+ 1) = 0
(6)

where R is the classical reaction function or best-reply correspondence (see, e.g. Bischi et al (2010)) given by

R (x (t) , y (t) , r (t)) =
a− b (N − 1) q̄ (t)

2 (b+ c)
; peBR (t+ 1) = P ((N − 1) q̄ (t) +R (x (t) , y (t) , r (t))) (7)

and

q̄ (t) = r (t)x (t) + (1− r (t)) y (t) (8)

is the average level of production of a single firm at time t.3 Moreover, assuming näıve expectations and solving
the optimization problem (4), a Walrasian firm produces the following quantity of goods:

y (t+ 1) = Ty (x (t) , y (t) , r (t)) =

W (x (t) , y (t) , r (t)) if p (t) > 0

0 if p (t) ≤ 0
(9)

where4

W (x (t) , y (t) , r (t)) =
p (t)

2c
=
a− bNq̄ (t)

2c
(10)

For r = 0, function Ty depends only on the level of production of Walrasian firms, i.e. y, and equation (9)
defines a quantity dynamics that is qualitatively equivalent to the one of the cobweb model (see, e.g., Hommes
(1994)) with non-negativity constraint.

Firms can revise their decisions about the behavioral rule to be adopted at each time period t ∈ N. By
assumption, the probability of adopting a behavioral rule is profit-based, and is approximated by the following

2 Note that p (t) indicates the price at time t, while P (·) indicates the inverse demand function or price function.
3 Let us note that x (t+ 1) ≥ 0 if and only if peBR (t+ 1) ≥ 0.
4 Let us note that y (t+ 1) ≥ 0 if and only if p (t) ≥ 0.
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evolutionary dynamics (also known as replicator equation; see, e.g., Cabrales and Sobel (1992) and Hofbauer
and Sigmund (2003)):5

r (t+ 1) = Tr (x (t) , y (t) , r (t)) =
r (t)

r (t) + (1− r (t)) eβ∆Π(x(t),y(t),r(t))
(11)

where

∆Π (x (t) , y (t) , r (t)) = (P (N (x (t) r (t) + (1− r (t)) y (t)))− c (x (t) + y (t))) (y (t)− x (t)) (12)

is the difference at time t between the profit made by a Walrasian firm and the profit made by a best-reply
firm. Moreover, β takes positive values and is the so-called intensity of choice, i.e., it measures the propensity
of firms to switch to the more profitable behavioral rule. A large value of β means a strong propensity to switch
to the behavioral rule that performed better in the last period in terms of relative profits.6

By definition of the production function Tx and Ty, the levels of output are always non negative, say
x, y ≥ 0. Moreover, variable r is considered to be included in [0, 1], which is an invariant set for Tr. Thus,
coupling the output dynamics (6) and (9) with the replicator dynamics (11), we obtain the following map
T := R2

+ × [0, 1]→ R2
+ × [0, 1]:

(x (t+ 1) , y (t+ 1) , r (t+ 1)) = T (x (t) , y (t) , r (t))

= (Tx (x (t) , y (t) , r (t)) , Ty (x (t) , y (t) , r (t)) , Tr (x (t) , y (t) , r (t))) (13)

where N ∈ [2,+∞) and β, a, b, c ∈ (0,+∞). From the definition of the map, we have the result that the phase
plane of the dynamical system can be divided into several regions where the system is defined by different smooth
functions. On the boundaries of the regions, the map is continuous but not differentiable. Let q̄ = rx+(1− r) y,
then the boundaries of non-differentiability are given by the curves

BC1 := q̄ =
a

bN
, where p (t) = 0, and BC2 := q̄ =

a

b (N − 1)
, where peBR (t+ 1) = 0. (14)

Thus, the phase space is partitioned into three regions, in each of which a different smooth function is to be
applied. The three regions are:

Ω1 =
{

(x, y, r) |0 ≤ q̄ < a
bN

}
Ω2 =

{
(x, y, r) | abN ≤ q̄ <

a
b(N−1)

}
Ω3 =

{
(x, y, r) | a

b(N−1) ≤ q̄
} (15)

and, in these regions, map T is defined as follows:

(x, y, r) ∈ Ω1 :
(
x
′
, y
′
, r
′
)

= (R (x, y, r) ,W (x, y, r) , Tr (x, y, r))

(x, y, r) ∈ Ω2 :
(
x
′
, y
′
, r
′
)

= (R (x, y, r) , 0, Tr (x, y, r))

(x, y, r) ∈ Ω3 :
(
x
′
, y
′
, r
′
)

= (0, 0, Tr (x, y, r))

(16)

where
′

indicates one-period step.

5 In the modeling framework of this paper, the replicator dynamics describes the time evolution of the probability of selecting a
behavioral rule. This interpretation is beyond the evolutionary one originally proposed in biology, and it is consistent with the usual
random matching hypothesis adopted in game theory; see, e.g., Hauert et al (2006), van Veelen (2011) and references therein. As
underlined by an anonymous referee, abandoning the probabilistic interpretation of the state variable r would require that r takes
only rational numbers of type 0, 1/N, 2/N, . . . , 1. This modeling choice implies the loss of the mathematical tractability of the model
and is employed in Vriend (2000), where a genetic algorithm confirms that firms select the Walrasian quantity whenever a learning
mechanism based on relative performances, as the one implied by the replicator equation (11), is considered. The development of
a computational model as the one in Vriend (2000) but based on behavioral rules would represent an interesting way of testing the
results of the current paper.

6 According to equation (11), firms can decide to switch to a less sophisticated behavioral rule, such as the Walrasian one, once
they have experienced the more advanced best-reply rule. In this framework, it is a common approach to associate an additional
fixed cost to the more sophisticated behavioral rule. In the current model, as long as it is small enough, such a cost would not
affect the results and thus is omitted for the sake of simplicity.
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3 Equilibria, asymptotic stability and monomorphic dynamics

Model (13) describes the dynamics of an evolutionary oligopoly game where firms select behavioral rules that
determine the output dynamics of the industry. This section is devoted to investigating existence and stability
of fixed points of the model and its global dynamics when the population of firms is monomorphic, i.e. either
all best-reply firms or all Walrasian firms, by means of analytical arguments.

As a first step, let us underline the main properties of map (13). It is a three dimensional dynamical system
that evolves inside the three-dimensional phase space (x, y, r) ∈ R2

+× [0, 1], where R+ = [0,+∞). The boundary
planes r = 0 and r = 1, where all firms agree on employing the same behavioral strategy, respectively Walrasian
and best reply, are invariant sets of the map. On these planes, the dynamics is governed by the two-dimensional
restrictions of map (13) on them. An attractor lying on one of these two-dimensional restrictions of the phase
space may be transversely attracting so that it attracts trajectories starting outside the restriction, i.e. from
r (0) ∈ (0, 1). In this case, an attractor for the restriction is also an attractor of map T defined in (13). Otherwise,
the attractor for the restriction may be transversely repelling and it may not be reached by trajectories coming
from outside the invariant subspace. It is possible to demonstrate (proof in Appendix) the following result
showing that all the possible equilibria7 of the evolutionary oligopoly game belong to the two boundary planes
r = 0 and r = 1.

Lemma 1 The following monomorphic states are fixed points of model (13):

– The Walrasian equilibrium, E0 =
(
q∗W

b+2c
2(b+c) , q

∗
W , 0

)
∈ Ω1, where each firm adopts the Walrasian rule and

its production, the market price and its profit are:

q∗W =
a

2c+ bN
, p∗W = 2cq∗W and Π (E0) = c (q∗W )

2
(17)

– The Cournot-Nash equilibrium, E1 =
(
q∗CN , q

∗
CN

b+2c
2c , 1

)
∈ Ω1, where each firm adopts the best-reply rule

and its production, the market price and its profit are:

q∗CN =
2c+ bN

2c+ b (N + 1)
q∗W , p∗CN = (2c+ bN) q∗W and Π (E1) = (c+K) (q∗W )

2
, K > 0 (18)

No other fixed points exist.

As expected, the level of production of the whole oligopoly at the Walrasian equilibrium, namely Q∗
W =

Nq∗W , is larger than at the Cournot-Nash equilibrium, namely Q∗
CN = Nq∗CN . Then, the market price at the

Walrasian equilibrium, which equals the marginal cost, is lower than the one at the Cournot-Nash equilibrium.
These variables influence the economic performances of firms, the profit of which is higher at the Cournot-Nash
equilibrium than at the Walrasian equilibrium, i.e. Π (E1) > Π (E0) > 0.

Another economic variable that plays a key role in the output dynamics is the potential level of production
of a Walrasian firm at the Cournot-Nash equilibrium. Although there are not Walrasian firms, this virtual level
of production, being larger than the one of a best-reply firm, indicates that, at the Cournot-Nash equilibrium,
the profit of a Walrasian firm would be higher than the one of a best-reply firm, and by continuity this holds true
also in a neighborhood of the equilibrium. Similar considerations indicate that a Walrasian firm outperforms a
best-reply firm in a neighborhood of the Walrasian equilibrium as well. This leads to a counter intuitive stability
result. Notwithstanding that firms are better off in the Cournot-Nash equilibrium, it is possible to demonstrate
(proof in Appendix) the following result about the evolutionary stability of the Walrasian equilibrium and
transverse instability of the Cournot-Nash equilibrium.

Proposition 1 The Walrasian equilibrium is locally asymptotically stable if and only if ∂2C
∂y2 > −∂P (E0)

∂y , i.e.
bN < 2c. The Cournot-Nash equilibrium is transversally unstable.

This result confirms, in a dynamic and behavioral framework, the findings by Schaffer (1989), Vega-Redondo
(1997) and Rhode and Stegeman (2001) about the evolutionary dominance of the Walrasian-equilibrium quan-
tity over the Cournot-Nash one. Moreover, as also observed in Schaffer (1989), the profit-quantity dynamics
reveals that Walrasian firms act as spiteful players toward best-reply firms, i.e. behaving as a Walrasian firm
damages the best-reply firms more than the Walrasian firm itself. In short, in a sufficiently close neighbor-
hood of the Cournot-Nash equilibrium, a Walrasian firm acts as a free rider toward a best-reply firm, i.e. it
makes extra profits by producing more and taking advantage of the high prices experienced thanks to the lower
level of production of best-reply firms. Thus, the Walrasian behavior represents a profitable deviation from the
Cournot-Nash equilibrium, as shown in the time series of Figure 1. The figure shows that as long as the number
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Fig. 1 Example of spiteful behavior by Walrasian firms in a neighborhood of the Cournot-Nash equilibrium. Profit dynamics

(as percentage of Π (E1)) of a Walrasian firm
ΠW (t)
Π(E1)

%, dashed line, and of a best-reply firm
ΠBR(t)
Π(E1)

%, solid line. ΠBR (t) =

P (Q (t))x (t)−C (x (t)) and ΠW (t) = P (Q (t)) y (t)−C (y (t)). The trajectory generated by the initial condition E1 − (0, 0, 0.01)
shows that a Walrasian firm outperforms a best-reply firm. This decreases the probability of adopting the best-reply rule, see r (t)
depicted in the second line, as well as the profits of all firms in the long run. The parameters are: a = 1, b = 0.1, c = 0.51, N = 10
and β = 1.

of Walrasian firms is small, r is close to one, being Walrasian is more profitable than being in the Cournot-Nash
equilibrium.

Note that Proposition 1 implies that the Walrasian equilibrium may not be locally asymptotically stable.
This is an important addition to the findings in Schaffer (1989), Vega-Redondo (1997) and Rhode and Stegeman
(2001). In fact, the instability of the Walrasian equilibrium is not related to the evolutionary dominance of the
Walrasian-equilibrium quantity but it is caused by coordination problems in the quantity dynamics, which is a
peculiarity of the behavioral approach. In particular, whenever the sum of the residual market price sensitivities
to output8, i.e. bN , exceeds the rate of change of marginal cost, i.e. 2c, even if all firms are Walrasian the output
dynamics do not converge to the Walrasian-equilibrium quantity, unless it is initially selected. Thus, for such
market configurations, the strategic set of the evolutionary game, which is made of the best-reply rule and the
Walrasian rule, does not include a behavioral rule that, once adopted by all firms, allow to have long-run output
patterns that converge to the Walrasian-equilibrium quantity and this precludes the stability of the Walrasian
equilibrium.

This aspect clearly results from the investigation of the dynamics of model (13). By eigenvalue analysis9,
the Walrasian equilibrium has always a stable manifold outside r = 0, which means that the evolutionary
dynamics attracts trajectories towards the invariant set where the Walrasian equilibrium is. Nevertheless, this
equilibrium is also characterized by an unstable manifold along the invariant set r = 0 whenever bN > 2c. This
means that, once all firms are Walrasian, it is the Walrasian rule itself that prevents the convergence to the
Walrasian equilibrium. This result marks the difference between a classical evolutionary game and a behavioral
evolutionary game. In a behavioral evolutionary game, the local stability of an evolutionary dominant strategy
requires a behavioral rule that allows that strategy to be played.

These results are obtained within a modeling framework such that firms make the so called supernormal
profits by playing the Walrasian equilibrium, i.e. Π (E0) > 0. According to the general equilibrium theory or the
theory of perfect competition, this can only be a short-term situation. In the long term, new firms will enter the

7 Steady states of model (13) are named equilibria instead of fixed points for analogy with both economic and game theory.
8 As b measures market price sensitivity to output and the oligopoly includes N firms each characterized by a residual demand

function, bN can be also seen as the sum of the residual market price sensitivities to output.
9 Note that 0 < λW3 < 1, where λW3 is the eigenvalue computed of the Walrasian equilibrium and associated to the eigenvector

orthogonal to the subset r = 0. See proof of Proposition 1 in Appendix.
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industry pushing profits to zero. Nevertheless, the theoretical results provided here are quite general. Indeed,
it is enough to assume the existence of some fixed costs to have Π (E0) = 0 (or even Π (E0) < 0, abnormal
losses). As the imitation dynamics is based on relative performance, these fixed costs will not influence the
dynamics of the oligopoly and the validity of Proposition 1.

These results refer to the local dynamics of model (13). For more general results, a detailed analysis of
the global dynamics is required. This can be done following the approach proposed in Bischi et al (2015) and
Cerboni Baiardi et al (2015). The first step is to study the restriction of map (13) on its two invariant sets,
i.e. r = 0 and r = 1. The restriction of the map to the invariant set r = 0 reduces to a two-dimensional
dynamical system without evolutionary dynamics, which is easier to investigate. Adopting this method, the
following Proposition (proof in Appendix) provides a global analysis of the dynamics in the invariant set r = 0.

Proposition 2 (Pure Walrasian behavior) The following statements hold true for the dynamics of model
(13) in the invariant subset r = 0:

– For ∂2C
∂y2 > −∂P (E0)

∂y , after at most two iterations the dynamics is bounded in the segment

A =

{
(x, y, r) |y ∈

[
0,
a

2c

]
, x =

c (N − 1)

N (b+ c)
y +

a

2N (b+ c)
, r = 0

}
(19)

and the transversely attracting Walrasian equilibrium, E0, is a global attractor with respect to the invariant
set r = 0.

– For ∂2C
∂y2 = −∂P (E0)

∂y , the Walrasian equilibrium undergoes a degenerate flip bifurcation and region A is filled

with 2-cycles. One of these 2-cycles, namely CW1 =
{
C̄W , CW

}
, lies on the borders of region A and undergoes

a persistence border collision. CW1 is the only 2-cycle, among those filling region A, that persists in the plane
r = 0 after the bifurcation.

– For ∂2C
∂y2 < −∂P (E0)

∂y , the Walrasian equilibrium is unstable and either the 2-cycle CW1 (if b (N − 1) < 2c <

bN) or the 2-cycle CW2 =
{
C̄W , ĈW

}
(if 2c < b (N − 1)), with ĈW = (0, 0, 0) ∈ Ω1, attracts all the points

of the restriction r = 0 except for E0.
The 2-cycles CW1 and CW2 are transversely repelling.

The quantity dynamics of the map T in the invariant set r = 0 is qualitatively the same of the one implied
by the price dynamics of the cobweb model with nonnegative price constraints, downward linear demand
function, quadratic costs and constant expectations; see, e.g., Hommes (1994). Then, the stability condition
of the Walrasian equilibrium is equivalent to the well-known stability condition of the cobweb model, i.e. the
absolute value of the relative slopes of supply and demand has to be less than one.

Similarly, the restriction of the map to the invariant set r = 1 reduces to a two-dimensional dynamical
system without evolutionary dynamics, which is easier to investigate. Adopting this method, the following
Proposition (proof in Appendix) provides a global analysis of the dynamics in the invariant set r = 1.

Proposition 3 (Pure best-reply behavior) The following statements hold true for the dynamics of model
(13) in the invariant subset r = 1:

– For ∂R(E1)
∂x > −1, after at most two iterations the dynamics is bounded in the segment

B =

{
(x, y, r) |x ∈

[
0,

a

2 (c+ b)

]
, y = max

[
N (b+ c)

c (N − 1)
x− a

2c (N − 1)
, 0

]
, r = 1

}
(20)

and the transversely repelling Cournot-Nash equilibrium, E1, attracts all the points of the invariant set r = 1.

– At ∂R(E1)
∂x = −1, the Cournot-Nash equilibrium undergoes a degenerate flip bifurcation and region B is

filled with 2-cycles. One of these 2-cycles, namely CCN =
{
C̄CN , CCN

}
, lies on the border of region B and

undergoes a persistence border collision. CCN is the only 2-cycle, among those filling region B, that persists
after the bifurcation.

– For ∂R(E1)
∂x < −1, the Cournot-Nash equilibrium, E1, is unstable and the 2-cycle CCN attracts all the points

of the restriction r = 1 except for E1.
The 2-cycle CCN is transversely attracting.

The quantity dynamics in the invariant set r = 1 is similar to the well-known best-reply dynamics where
all outputs are homogeneous; see, e.g., Fisher (1961). As indicated in Proposition 3, the convergence to the
Cournot-Nash quantity depends on the slope of the reaction function, which imposing the condition of being
greater than −1 leads to the Fisher’s stability condition (see condition (6.1) in Fisher (1961)) b (N − 3) < 2c.
This one and the stability condition of the Walrasian equilibrium underline the conclusion that increasing
marginal costs are a stabilizing factor. This is reasonable, since increasing marginal costs tend to inhibit large
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output variations and thus to make the constant rivals’ output assumption a better one, as also pointed out

in Fisher (1961).10 Moreover, the condition ∂R(E1)
∂x = −1 implies the instability of the Walrasian equilibrium,

showing that the Cournot model is always more likely to be stable whatever the number of firms if each firm
takes its own effect on price into account than if it does not.

4 Evolutionary stable heterogeneity and learning to play Cournot-Nash equilibrium

The scope of this section is to determine the conditions under which a behavioral rule is evolutionary dominant
over the other one, firms learn to play the Cournot-Nash equilibrium and evolutionary stable heterogeneity,
i.e. attractors characterized by behavioral heterogeneity, emerges. To this aim, the analytical results for the
dynamics of the map in the two invariant sets r = 0 and r = 1 are complemented with a numerical analysis
devoted to study the structural changes in the dynamics of the model and the related economic implications as
the rate of change of marginal cost decreases. This investigation reveals three dynamic scenarios that correspond
to three different situations in terms of evolutionary dominance of the two behavioral rules:

– The first scenario, which refers to the case of rate of change of marginal cost larger than bN , is characterized
by local asymptotic stability of the Walrasian equilibrium;

– The second scenario, which refers to the case of rate of change of marginal cost smaller than bN but larger
than b (N − 3), is characterized by a unique and polymorphic attractor with the oligopoly populated by both
best-reply firms and Walrasian firms. Increasing the intensity of choice, the polymorphic attractor disappears
through a global bifurcation and the Cournot-Nash equilibrium may become the unique attractor;

– The third scenario, which refers to the case of rate of change of marginal cost smaller than b (N − 3), is
characterized by a unique attractor given by a 2-cycle where all firms coordinate on the best-reply rule.

Concerning the first scenario, numerical simulations show that the Walrasian equilibrium is globally stable
except for a set of at most zero measure that includes the Cournot-Nash equilibrium and its stable manifold.
Then, the Walrasian behavior is evolutionarily dominant and, in the long run, the industry is populated only
by Walrasian firms that produce the Walrasian-equilibrium quantity.

Decreasing the rate of change of marginal cost, the loss of stability of the Walrasian equilibrium marks the
transition from the first to the second scenario. In this second dynamic scenario, the points of the invariant
plane r = 0 are attracted by a 2-cycle, either CW1 or CW2 , and the Cournot-Nash equilibrium attracts the
points of the invariant plane r = 1. Numerical simulations confirm the existence of a further 2-cycle CM ={(
x, y, r

)
, (x̄, ȳ, r̄)

}
, such that r, r̄ ∈ (0, 1). It originates when the Walrasian equilibrium loses stability and

one of the 2-cycles that fills region A (see Proposition 2) undergoes a bifurcation (of transverse eigenvalue +1)
through which CM appears. Numerical simulations show that this 2-cycle is unstable and is surrounded by an
attractor consisting of two disjoint closed curves; see Figure 2. Originated through a supercritical Neimark-
Sacker bifurcation of the 2-cycle CW2 , this attractor represents a polymorphic state where the probability of
adoption of each behavioral rule changes over time but the choice of the firms never polarizes towards a single
heuristic. Numerical experiments confirm that this invariant set is globally stable, except for the fixed points
and the 2-cycles, and related stable sets. This scenario is also known as evolutionary stable heterogeneity ; see,
e.g. Cerboni Baiardi et al (2015).

The presence of evolutionary stable heterogeneity underlines the fact that the two behavioral rules act in
different ways and have an output-dependent level of evolutionary attractiveness. In fact, the related polymor-
phic state is characterized by a cyclical dynamics with large fluctuations in the level of the output whenever
the industry is mainly populated by Walrasian firms and with almost constant level of outputs otherwise. Thus,
Walrasian firms destabilize the output dynamics. However, as the quantity dynamics deviates from the Wal-
rasian output, the best-reply behavior becomes evolutionarily attractive and more and more firms start to adopt
this rule. The increase in the number of best-reply firms has a stabilizing effect on the quantity dynamics and
the overall level of production gets closer to the Cournot-Nash quantity. At this point, the Walrasian behavior
becomes evolutionarily attractive and the number of Walrasian firms increases. Then, the fluctuations in the

level of production start to increase again and the loop goes on. Compare the time series of q̄(t)
q∗W

% and r (t) in

10 It is worth pointing out that, despite the assumption of constant expectations as in Theocharis (1960), the well-know Theocharis’
stability result that more than three firms implies instability of the Cournot-Nash equilibrium does not hold within this modeling
setup due to the assumption of non constant marginal costs.
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Fig. 2 Attractor of map (13) projected onto three planes. The attractor surrounds the 2-cycle CM and is made of two separate
closed curves, although it does not clearly result from the picture. Dynamics along the attractor of the average level of production

(as percentage of the Walrasian quantity),
q̄(t)
q∗
W

% in second line, of the average profit of a single firm,
Π̄(t)
Π(E0)

% in third line, and

of the probability of being a best-reply firm, r (t) in the third line. Let us point out that Π̄ (t) = ΠBR (t) r (t) + (1− r (t))ΠW (t)

and the average
Π̄(t)
Π(E0)

% over the entire period is 98.86%. The parameters are: a = 1, b = 0.1, c = 0.48, N = 10 and β = 0.01.

Case b (N − 3) < 2c < bN .

Figure 2 that refer to the dynamics along the inner attractor (polymorphic state) depicted in the first line of
the same Figure.

Decreasing further the rate of change of the marginal cost, a codimension two bifurcation marks the tran-

sition from the second to the third scenario. In particular, when ∂R(E1)
∂x = −1, the internal attractor collapses

(Neimark-Sacker bifurcation) in the unstable 2-cycle CM , which merges (either fold or transcritical bifurcation)
with one of the 2-cycles that fill region B; see Proposition 3. Among those 2-cycles there is CCN , which lies on

the borders of region B. For ∂R(E1)
∂x < −1, the 2-cycle CCN persists as the unique attractor of the system while

CM disappears. This scenario is characterized by the evolutionary dominance of the best-reply behavior and by
persistent fluctuations in the quantity dynamics. Thus, the best-reply rule is evolutionarily dominant when it
has a destabilizing effect in the quantity dynamics. This is consistent with the architecture of the two behavioral
rules. In fact, the best-reply is based on a more sophisticated price expectation scheme, which allows it to have
a substantial better prediction of the next-period price, and so higher profits, for large output variations.

The conducted qualitative analysis of the dynamics of the evolutionary model reveals that attractors charac-
terized by fluctuations on quantity dynamics and distribution of behavioral rules can arise when the Walrasian
equilibrium loses stability. Thus, a further economic consideration regards the profitability of these dynamic
configurations. Let us start by pointing out that the industry experiences average profits along the 2-cycle
CCN that are not positive. This is an unsustainable economic situation in the long run as firms prefer to exit
the market than making non-positive profits. In contrast, in case of a stable polymorphic state, the average
profits are more similar to the ones observed at the Walrasian equilibrium, as shown, for example, in Figure
2. Here, long periods of time in which the oligopolistic industry is populated by a large fraction of best-reply



Walrasian versus Cournot behavior in an oligopoly of boundedly rational firms 11

0 1.5
0

1.5

x(t)

y(
t)

0 1.5
0

1

x(t)

r(
t)

0 1.5
0

1

y(t)

r(
t)

0 1.5
0

1.5

x(t)

y(
t)

0 1.5
0

1

x(t)

r(
t)

0 1.5
0

1

y(t)

r(
t)

0 1.5
0

1.5

x(t)

y(
t)

0 1.5
0

1

x(t)

r(
t)

0 1.5
0

1

y(t)

r(
t)

Fig. 3 Asymptotic dynamics of map (13) projected onto three planes. First line β = 0.01. Second line β = 6.3. Third line β = 10.
The other parameters are: a = 1, b = 0.1, c = 0.36, N = 10. Initial condition E0 + (0.01, 0.01, 0.5). Case b (N − 3) < 2c < bN .

firms and the average profit is slightly higher than the one at the Walrasian equilibrium are alternated with
short periods of fluctuating and sometimes negative profits in which the oligopolistic industry is populated by a
larger fraction of Walrasian firms. Overall, the average profit of a single firm in the polymorphic state is about
98.86% of the average profit made by a single firm in the Walrasian equilibrium. The polymorphic state can
be even more profitable, on average, than the Walrasian equilibrium. This occurs when the polymorphic state
is characterized by a large fraction of best-reply firms that reduce the total production level of the industry
increasing the single profit of each firm. For example, when the ratio between market price and marginal cost
variation rises, the attractor representing the polymorphic state gets closer to the invariant set r = 1; see Figure
3. In this case, the average profit made by a firm along the polymorphic state is 110% the profit a firm would
make in the Walrasian equilibrium; see Figure 4.

Concerning the profitability of the oligopoly, the intensity of choice is another element worth being men-
tioned. This parameter plays an important role when the polymorphic state, or inner attractor, exists. Numerical
simulations show that the inner attractor has contact with one of the two invariant sets, either r = 0 or r = 1,
when the intensity of choice increases. As observed through numerical analyses, for small differences between
the sum of residual market price sensitivities to output and rate of change of marginal cost, an increase in the
intensity of choice makes the inner attractor and the plane r = 0 collide. As a consequence, all the trajectories
starting with ric 6= 1 end up on the invariant plane r = 0 and converge to the unique attractor of this plane,
namely, either the 2-cycle CW1 or the 2-cycle CW2 . Along these cycles, the industry is populated by Walrasian
firms that experience only non-positive profits. Thus, as the intensity of choice increases, firms move from a
profitable situation, the polymorphic state, to a non-profitable situation. In this case, the evolutionary frenzy in
selecting the better performing behavioral rule, caused by a higher intensity of choice, turns out to be harmful
for the firms. In contrast, for larger differences between the sum of residual market price sensitivities to output
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Fig. 4 Dynamics along the attractor in Figure 3, first line, of the average level of production (as percentage of the Walrasian

quantity),
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best-reply firm, r (t) in the third line. The average
Π̄(t)
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% over the entire period is 110%.

and rate of change of marginal cost, an increase in the intensity of choice makes the inner attractor and the
invariant sets r = 1 collide. As a consequence, all the trajectories starting with ric 6= 0 end up on the invariant
plane r = 1 and converge to the unique attractor of this invariant plane, i.e. the Cournot-Nash equilibrium
(see in Figure 3 an example of the metamorphosis of the inner attractor as β increases). This further dynamic
scenario originates from a global bifurcation and represents the more profitable equilibrium situation of the
industry. Surprisingly, in the long run firms can learn to play the Cournot-Nash equilibrium despite its local
instability. Moreover, these examples show that the Cournot-Nash equilibrium and the 2-cycle CW1 can be stable
in Milnor’s sense.11

To sum up, the analysis of the evolutionary selection between a best-reply rule and a Walrasian rule under-
lines the fundamental role played by the quantity dynamics. The Walrasian behavior is evolutionarily dominant
for model (13) and the Walrasian equilibrium can be asymptotically stable, confirming the findings in Schaffer
(1989), Vega-Redondo (1997) and Rhode and Stegeman (2001). Nevertheless, certain market configurations
induce fluctuations in the output dynamics and the Walrasian equilibrium becomes unstable. Instability of
the Walrasian equilibrium and overshooting in the quantity dynamics cause the occurrence of a polymorphic
state or, alternatively, the global stability of the Cournot-Nash equilibrium. These findings represent a novelty
unobserved in previous contributions and an evolutionary justification for the existence of Cournot oligopolies
and for the adoption of the best-reply behavioral rule.

5 Quantitative dynamics and economic remarks

The results in the previous section provide a detailed overview of the local and global dynamics of the oligopoly
game, with special emphasis on the description of the different qualitative scenarios that can occur for different
constellations of the parameters of model (13). In this section, the focus lies on the quantitative aspect of the
dynamics, and on the frequency distribution of the average level of production of the oligopoly industry. The
aim is to analyze how often the oligopoly output is close to the Walrasian quantity or to the Cournot-Nash
quantity and how this is affected by the different market configurations. In doing so, the price function (1) is
considered to be affected by random noise, as follows:

P (Q (t)) = max [a− bQ (t) + ε (t) , 0] , ε (t) ∼ U [−ε, ε] (21)

11 A Milnor attractor is an invariant set with a stable set of positive measure but not attracting in the topological sense (i.e.
without an attracting neighborhood). In fact, initial conditions arbitrarily close to a Milnor attractor can generate trajectories that
are locally repelled out from the Milnor attractor itself; see, e.g. Milnor (1985) and Bischi and Lamantia (2005).
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where ε (t) is a uniform random variable that represents exogenous price variations. In the following analysis, the
parameter ε is considered to be both zero and positive. If ε is positive, the dynamics is affected by random noise
and model (13) takes the form of random dynamical systems; see, e.g., Arnold (1998). In this case, the market
price of the goods is influenced by two forces: an endogenous one, which is represented by the output choice
of firms, and an exogenous one, represented by a random process that is independently uniformly distributed.
The presence of random noise helps to test the robustness of the deterministic results with respect to possible
external disturbances.

Let us start the investigation turning to the evolutionary stable heterogeneity depicted in Figure 2 and the
related frequency distribution of the average level of production q̄. For a sample of two million observations,
the deterministic dynamics shows strong concentration of q̄ around the Walrasian quantity. Over 90% of the
observed average levels of production of the oligopoly are either equal to or close to the Walrasian quantity; see
Figure 5, panel (a). This indicates that, despite the heterogeneity in the choice of the behavioral rule, the total
level of production of the oligopoly is substantially similar to the one observed in the Walrasian equilibrium.
This result is not surprising as it is sufficient to increase slightly the rate of change of marginal cost so that
the stability of the Walrasian equilibrium is attained. In presence of random noise, specifically for ε = 0.01,
the frequency distribution of the average quantities changes as is characterized by a higher level of dispersion
(see panel (b) and panel (a) in Figure 5). In this case, only 20% of the observed average levels of production
of the oligopoly are equal to or close to the Walrasian quantity. Nevertheless, the Walrasian quantity is still
the modal observation and the output levels are concentrated in a small neighborhood of this quantity. Despite
this difference due to the random noise that acts as a destabilizing force in the quantity dynamics, the two
frequency distributions, the one with noise and the one without, are qualitatively similar.

Reducing the rate of change of marginal cost from 0.96 to 0.72, we move away from the set of values of the
parameters that ensures the stability of the Walrasian equilibrium. In this case, the frequency distribution of
average outputs for the model without noise (see Figure 6, panel (a)) shows a frequency of more than 90% of
average levels of production equal or almost equal to the Cournot-Nash quantity. This frequency distribution
refers to the quantity dynamics of Figure 3, first row. The shift of the modal observation is due to a substantial
increase in the probability of adoption of the best-reply rule. Let us observe that an increase in the rate of
change of marginal cost causes the unique attractor of model (13) to move from a region characterized by a large
concentration of Walrasian firm to a region characterized by a large concentration of best-reply firms; compare
the dynamics in the first rows of Figure 2 and Figure 3. Even in this case, the presence of a random force has
the only effect of increasing the dispersion of the average level of production around the modal observation,
which remains the Cournot-Nash quantity. This indicates that, although the Cournot-Nash equilibrium is not
evolutionarily stable, the average production of the oligopoly is close to the Cournot-Nash quantity.

The distribution of average outputs provides also further insights about the role played by the intensity-
of-choice parameter β. This parameter represents the intensity with which the firms choose the strategy with
higher relative performance. Therefore, as the Walrasian quantity offers better performance in terms of relative
profits in contrast to the Cournot-Nash quantity, it is reasonable to expect that the higher the β, the higher
the frequency with which the Walrasian output is observed. Nevertheless, the frequency distributions of Figure
6, obtained for β = 0.01, and of Figure 7, obtained for β = 10, indicate the opposite. The explanation for
this counterintuitive result relies again on the strategic set of the evolutionary oligopoly game. For bN > 2c,
neither the best reply nor the Walrasian rule generates sequences of out-of-equilibrium quantities that converge
to the Walrasian output. Therefore, when the intensity of choice rises, firms start to adopt the Walrasian rule
but not to produce the Walrasian output. In particular, the Walrasian rule is evolutionarily desirable and
will be adopted by firms as long as their output is similar to the one at the Walrasian equilibrium. This choice
destabilizes the output dynamics of the Oligopoly and makes firms produce an amount of goods that is different
from the Walrasian quantity. This output dynamics makes the best-reply rule evolutionarily desirable. Then, an
increase in the intensity of choice results in faster selection of the Cournot-Nash quantity. This typical nonlinear
dynamics explains the observation of frequency distributions with Cournot-Nash output as the modal value.

This game-theoretical evidence has some implications for applied economics. In fact, the tendency of output
levels to converge to the Walrasian competitive equilibrium highlighted by theoretical results on Cournot
oligopoly with imitation of successful firms, e.g., Schaffer (1989) and Vega-Redondo (1997), allows us to use
market outcomes as a proxy to infer the presence of imitation, as pointed out in Bosch-Domènech and Vriend
(2003). Our findings suggest caution in doing so as they show that a market characterized by non-Walrasian
output, specifically Cournot-Nash equilibrium, can be populated by imitators. This can occur in complex
economic environments where firms have to rely on routine or managerial practices, such as behavioral rules,
to determine next-period output.

A similar result is obtained in Alós-Ferrer (2004) but starting from different assumptions. In particular,
Alós-Ferrer (2004) shows that keeping record of past performance, instead of only last-period performance,
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Fig. 5 Frequency distribution of the individual average output q̄. Values of the parameters as in Fig. 2. The dashed line indicates
the Walrasian quantity, the solid line the Cournot-Nash quantity.
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Fig. 6 Frequency distribution of the individual average output q̄. Values of the parameters as in Fig.s 3 and 4, i.e. β = 0.01. The
dashed line indicates the Walrasian quantity, the solid line the Cournot-Nash quantity.

may result in the attainment of the Cournot-Nash equilibrium. Thus, the present findings and the one in Alós-
Ferrer (2004) provide two different possible game-theoretical justifications for profits commonly observed in
many oligopolistic markets, which are more consistent with the Cournot-Nash equilibrium than the Walrasian
one. In this respect, the game-theoretical literature offers other explanations that justifies the phenomenon.
For example, the capability of firms to select the Cournot-Nash equilibrium is also discussed in Riechmann
(2006), Vriend (2000) and Anufriev-Kopanyi (2017). However, the arguments used in these contributions are
based on a learning mechanism that differs from imitation based on social learning, i.e. chasing the best relative
performance, as it is in this work. In particular, Vriend (2000) underlines that a learning mechanism based on
individual learning, i.e. chasing the best absolute performance, makes firms play the Cournot-Nash equilibrium.

To sum up, learning through imitation based on relative performance can generate spiteful behavior. Never-
theless, in a complex environment where firms have to rely on routine or managerial practices, such as behavioral
rules, to determine next period production, the presence of spiteful behavior does not always prevail. In fact,
the combined effects of nonlinear dynamics can lead to surprising results.

As a final remark, it is worth noting that the frequency distributions of the average output of a single firm
do not depend on the size of the observations; compare panels (b) and (c) in Figures 5, 6 and 7. This suggests
the presence of an invariant distribution as steady state of our random dynamical system. This distribution has
different shapes for different constellations of the parameters.

6 Final remarks and conclusions

The proposed model represents a quantity-setting oligopoly characterized by evolutionary selection of two be-
havioral rules, namely, best-reply rule and Walrasian rule. Two types of equilibria are possible in this model. The
Cournot-Nash equilibrium, where all firms adopt the best-reply rule and produce the Cournot-Nash quantity,
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Fig. 7 Frequency distribution of the individual average output q̄. Values of the parameters as in Fig. 3 with β = 10. The dashed
line indicates the Walrasian quantity, the solid line the Cournot-Nash quantity.

and the Walrasian equilibrium, where all firms adopt the Walrasian rule and produce the Walrasian quantity.
Despite the better performance of each firm in the Cournot-Nash equilibrium, the Walrasian equilibrium is
the only locally asymptotically stable equilibrium of the oligopoly. Nevertheless, it becomes unstable for cer-
tain configurations of the parameters. In this case, there are three possible dynamic scenarios: A polymorphic
state, where each behavioral rule is adopted by a positive fraction of firms; a stable 2-cycle, where each firm of
the industry adopts the best-reply rule; a Milnor attractor, where each firm ends up producing the Cournot-
Nash quantity. This last scenario reveals that the Cournot-Nash equilibrium can be a stable equilibrium of the
behavioral evolutionary game.

This paper confirms and extends the results about the evolutionary stability of the Walrasian equilibrium
to a behavioral evolutionary oligopoly with quantity dynamics and firms characterized by näıve expectations.
Despite the peculiarity of the expectations, a different assumption should not lead to substantial different
conclusions. For example, both Walrasian equilibrium and Cournot-Nash equilibrium do not change in case of
the more sophisticated adaptive expectations (see, e.g., Hommes (1994) and Fisher (1961)) and so neither does
their evolutionary stability since it does not depend on expectations. The only foreseeable difference is a less
stringent stability condition of the Walrasian equilibrium as underlined in Hommes (1994), where a classical
cobweb model with adaptive expectations is analyzed, which implies less possibility to have a global bifurcation
through which the Cournot-Nash equilibrium gains global stability. This should not be a surprise, as näıve
expectations are the main driving force of output fluctuations which, paradoxically, are essential to a stable
Cournot-Nash equilibrium.

For future research, preference for outperforming opponents (classical example of rivalistic behavior in
oligopolies; see, e.g., Fouraker and Siegel (1963)) can be integrated into the model. For example, a firm could
be interested determining the next-period production in order to maximize its own profit and, at the same
time, to minimize the profits of the competitors. The resulting behavioral rule could be another example of
spiteful behavior that could be evolutionary dominant over both Walrasian and best-reply rule, as suggested
in Bosch-Domènech and Vriend (2003). Moreover, some form of individual learning combined with learning
through imitation, or social learning, can be considered; see, e.g., Vriend (2000). For example, the evolutionary
dynamics used to model social learning in this work can be modified to include individual learning.
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Appendix

Proof (of Lemma 1) From (13), it is straightforward to see that the steady states of the evolutionary model
are obtained for r = 0, r = 1 or any r∗ ∈ (0, 1) for which ∆Π = 0. With r = 0 (all Walrasian firms), map (13)



16 Davide Radi

becomes:

T 0 :=


x (t+ 1) = max

[
a−b(N−1)y(t)

2(b+c) , 0
]

y (t+ 1) = max
[
a−bNy(t)

2c , 0
] (22)

where the second component is uncoupled from the first one, i.e. it is a one-dimensional difference equation
(master equation) and it is piecewise linear, whereas the first component depends only on the second variable
(slave equation). Thus, by straightforward algebra, E0 is the only equilibrium when r = 0 and by simple
calculations p∗W and Π (E0) are obtained.

With r = 1 (all best-reply firms), map (13) becomes:

T 1 :=


x (t+ 1) = max

[
a−b(N−1)x(t)

2(b+c) , 0
]

y (t+ 1) = max
[
a−bNx(t)

2c , 0
] (23)

where the first component is uncoupled from the second one, i.e. it is a one-dimensional difference equation
(master equation) and it is piecewise linear, whereas the second component depends only on the first variable
(slave equation). Thus, by straightforward algebra, E1 is the only equilibrium when r = 1 and defining

K =
bN2 + 2c (N − 1)

(2c+ b (N + 1))
2 b

2 > 0 (24)

by simple calculation p∗CN and Π (E1) are obtained.
Let us now investigate the existence of other equilibria (x∗, y∗, r∗) with r∗ ∈ (0, 1). If (x∗, y∗, r∗) ∈ Ω1, thenx∗ = R (x∗, y∗, r∗)

y∗ = W (x∗, y∗, r∗)
∆Π (x∗, y∗, r∗) = 0

(25)

From the third equation of the system we obtain either x∗ = y∗ or r∗ = c(x∗+y∗)+bNy∗−a
bN(y∗−x∗) . Solving the first

and the second equation for x∗ = y∗, we obtain x∗ 6= y∗, which is a contradiction. Analogously, substituting

r∗ = c(x∗+y∗)+bNy∗−a
bN(y∗−x∗) in the first and second equation we obtain x∗ = −y∗− a

(N−1)c and x∗ = −y∗, respectively.

Thus, a further equilibrium inΩ1 cannot exist. An equilibrium (x∗, y∗, r∗) inΩ2 implies y∗ = 0, x∗ = R (x∗, 0, r∗)
and ∆Π (x∗, y∗, r∗) = 0. Solving, we obtain x∗ = a

2Nb+cN+c and r∗ = 2b+c
b . Since r∗ > 1, an equilibrium in Ω2

cannot exist. Moreover, the only possible equilibrium in Ω3 is (0, 0, r∗) which does not belong to such region.
Thus, E0 and E1 are the only possible equilibria of the model (13). �

Proof (of Proposition 1) A straightforward computation allows us to obtain the Jacobian matrix of model (13),
when r = 0 and (x, y, r) ∈ Ω1, given by

J (x, y, 0) =

 0 −b(N−1)
2(b+c)

b(N−1)(y−x)
2(b+c)

0 −bN
2c

bN(y−x)
2c

0 0 J33 (x, y, 0)

 where J33 (x, y, 0) = e−β(a−bNy−c(x+y))(y−x) (26)

which is singular and upper triangular. Thus, the associated eigenvalues are the diagonal entries and the
eigenvalues for the Jacobian matrix computed at the Walrasian equilibrium, i.e. J (E0), are:

λW1 = 0, λW2 =
−bN

2c
=

∂P (E0)
∂y

∂2C
∂y2

, λW3 = J33 (E0) = e−βc(
ab

(2c+bN)2(b+c) )
2

(27)

Imposing the well-known conditions for the local asymptotic stability of a fixed point, i.e. all eigenvalues of
J (E0) inside the unit circle, we obtain the first part of the proposition.

Similar computation allows us to obtain the Jacobian matrix of model (13), when r = 1 and (x, y, r) ∈ Ω1,
given by

J (x, y, 1) =

 ∂R(x,y,1)
∂x 0 b(N−1)(y−x)

2(b+c)
−bN

2c 0 bN(y−x)
2c

0 0 J33 (x, y, 1)

 where J33 (x, y, 1) = e−β(a−bNx−c(x+y))(y−x) (28)
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Thus, the eigenvalues for the Jacobian matrix computed at the Cournot-Nash equilibrium, i.e. J (E1), are:

λCN1 =
∂R (E1)

∂x
=
−b (N − 1)

2 (b+ c)
, λCN2 = 0, λCN3 = e

β a2b2

4c(2c+b(N+1))2 (29)

Noting that λCN3 > 1, the transverse instability of the Cournot-Nash equilibrium follows. �

Proof (of Proposition 2) The restriction of map (13) to the invariant plane r = 0 reduces to the two-dimensional
map T 0 : R2

+ → R2
+ defined in (22). Let us divide the plane R2

+ into the following three regions:

Ω0
1 =

{
(x, y) |0 ≤ y < a

bN

}
Ω0

2 =
{

(x, y) | abN ≤ y <
a

b(N−1)

}
Ω0

3 =
{

(x, y) | a
b(N−1) ≤ y

} (30)

The lines
B̃C1 := y =

a

bN
and B̃C2 := y =

a

b (N − 1)
(31)

mark the borders of non differentiability between regions Ω0
1 and Ω0

2 and between Ω0
2 and Ω0

3 , respectively.

By straightforward considerations, see Lemma (1), it follows that Ẽ0 =
(
q∗W

b+2c
2(b+c) , q

∗
W

)
∈ Ω0

1 , with q∗W =
a

2c+bN , is the unique fixed point of T 0.

For bN < 2c, we have that all points of region Ω0
2 and Ω0

3 are mapped in one iteration in Ω0
1 . In fact, all

points of region Ω0
2 are mapped in {(y, x) |y = 0, x ≥ 0} ∈ Ω0

1 and all points of Ω0
3 are mapped in (0, 0) ∈ Ω0

1 .
Moreover, the map T 0 is linear in Ω0

1 with a unique inner fixed point Ẽ0. The eigenvalues associated to Ẽ0 are
λ̃W1 = 0 and λ̃W2 = −bN

2c with −1 < λ̃W2 < 0. Thus, Ẽ0 is locally asymptotically stable and the image of region

Ω0
1 is the manifold spanned by the eigenvector v =

[
1, N(b+c)

c(N−1)

]′
associated to λ̃W2 :

x =
c (N − 1)

N (b+ c)
y +

a

2N (b+ c)
(32)

Noting that after one iteration y ∈
[
0, a2c

]
, it follows that the following region:

Ã =

{
(x, y) |y ∈

[
0,
a

2c

]
, x =

c (N − 1)

N (b+ c)
y +

a

2N (b+ c)

}
(33)

is invariant and attracts all points of R2
+ in at most two iterations. In addition, Ẽ0 ∈ Ã.

For bN = 2c, the eigenvalues associated to Ẽ0 ∈ Ã are λ̃W1 = 0 and λ̃W2 = −1. Then, the linearity of T 0 in
Ã implies a degenerate flip bifurcation through which an infinity of 2-cycles that fill region Ã are originated. It
follows that C̃W1 =

{
C̄W0 , CW0

}
, where

C̄W0 =

(
a

2 (b+ c)
,
a

2c

)
and CW0 =

(
a

2c− b (N − 1)

4c (b+ c)
, 0

)
(34)

are the borders of region Ã, is a 2-cycle. Since C̄W0 lies on the border of non differentiability B̃C1, we have that
C̃W1 undergoes a persistence border collision.

For b (N − 1) < 2c < bN , we have that T 0
(
CW0
)

= C̄W0 ∈ Ω0
2 and all points of subregion Ω0

2 are mapped in

CW0 in one iteration. Thus, C̃W1 is a 2-cycle for T 0. Moreover, we have that λ̃W1 = 0 and λ̃W2 < −1. Thus, Ẽ0

is a repellor and by the linearity of map T 0 is possible to exclude the existence of 2-cycles in Ω0
1 . This implies

that, except for C̃W1 , all 2-cycles that filled region Ã have disappeared. Since all points of Ω0
2 are mapped in

CW0 , all points of Ω0
3 are mapped in (0, 0), T 0 (0, 0) = C̄W0 and in Ω0

3 the map T 0 is linear with inside a unique
repellor Ẽ0, it follows that C̃W1 attracts all the point of R2

+ except for Ẽ0.

For b (N − 1) = 2c, C̄W0 collides with the border of non-differentiability B̃C2. Thus C̃W1 undergoes a border

collision bifurcation and disappears. Moreover, let us define ĈW0 = (0, 0). Since T 0
(
ĈW0
)

= C̄W0 , T 0
(
C̄W0
)

= ĈW0
and C̄W0 ∈ B̃C2, it follows that the 2-cycle C̃W2 =

{
C̄W0 , ĈW0

}
appears through a border collision bifurcation.

For 2c < b (N − 1), as T 0
(
ĈW0
)

= C̄W0 and T 0
(
C̄W0
)

= ĈW0 , it follows that C̃W2 is a 2-cycle for T 0. In

addition, since all points of Ω0
3 are plotted in ĈW0 , all points of Ω0

2 are mapped in Ω0
1 , and in this latter region

the map is linear with a unique inner repellor Ẽ0, it follows that C̃W2 attracts all the points of R2
+ except for

Ẽ0.
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Since ∂2C
∂y2 = 2c, ∂P (E0)

∂y = −bN and T 0 is the restriction of map (13) on the invariant plane r = 0, the

results on E0, CW1 , CW2 and region A, defined as in the statement of the Proposition, follow by the results on
Ẽ0, C̃W1 , C̃W2 and Ã.

By the smoothness of map (13) in a neighborhood of C̄W and CW , and from the Jacobian matrix of this
map when r = 0 (see, e.g., (26)) follows that the transverse eigenvalue of CW1 is given by J33

(
C̄W
)
J33

(
CW
)
.

Since J33

(
C̄W
)
> 1 and J33

(
CW
)
≥ 1 the transverse instability of CW1 follows. By similar considerations and

calculations we have that J33

(
C̄W
)
J33

(
ĈW
)
> 1, from which the transverse instability of the 2-cycle CW2

follows. �

Proof (of Proposition 3) The restriction of map (13) to the invariant plane r = 1 reduces to the two-dimensional
map T 1 : R2

+ → R2
+ defined in (23). Let us divide the plane R2

+ into the following three regions:

Ω1
1 =

{
(x, y) |0 ≤ x < a

bN

}
Ω1

2 =
{

(x, y) | abN ≤ x <
a

b(N−1)

}
Ω1

3 =
{

(x, y) | a
b(N−1) ≤ x

} (35)

The lines
B̄C1 := x =

a

bN
and B̄C2 := x =

a

b (N − 1)
(36)

mark the borders of non differentiability between regions Ω1
1 and Ω1

2 and between Ω1
2 and Ω1

3 , respectively.
By straightforward considerations, see Lemma (1), it follows that Ẽ1 =

(
q∗CN , q

∗
CN

b+2c
2c

)
∈ Ω1

1 , with q∗CN =
a

2c+b(N+1) , is the unique fixed point of T 1.

For b (N − 3) < 2c, we have that all points of region Ω1
2 and Ω1

3 are mapped in one iteration in Ω1
1 . In fact,

all points of region Ω1
2 are mapped in {(y, x) |y = 0, x ≥ 0} ∈ Ω1

1 and all points of Ω1
3 are mapped in (0, 0) ∈ Ω1

1 .
Moreover, the map T 1 is linear in Ω1

1 with a unique inner fixed point Ẽ1. The eigenvalues associated to Ẽ1 are

λ̃CN1 = −b(N−1)
2(b+c) and λ̃CN2 = 0 with −1 < λ̃CN1 < 0. Thus, Ẽ1 is locally asymptotically stable and the image of

region Ω1
1 is the manifold spanned by the eigenvector v =

[
1, N(b+c)

c(N−1)

]′
associated to λ̃CN1 :

y =
N (b+ c)

c (N − 1)
x− a

2c (N − 1)
(37)

Noting that, after one iteration, x ∈
[
0, a

2(b+c)

]
and y cannot be negative, it follows that the region:

B̃ =

{
(x, y) |x ∈

[
0,

a

2 (b+ c)

]
, y = max

[
N (b+ c)

c (N − 1)
x− a

2c (N − 1)
, 0

]}
(38)

is invariant and attracts all points of R2
+ in at most two iterations. In addition, Ẽ1 ∈ B̃.

For b (N − 3) = 2c, the eigenvalues associated to Ẽ1 ∈ B̃ are λ̃CN1 = −1 and λ̃CN2 = 0. Then, the linearity
(with respect to x) of T 1 in B̃ implies a degenerate flip bifurcation through which an infinity of 2-cycles that
fill region B̃ are originated. It follows that C̃CN =

{
C̄CN1 , CCN1

}
, where

C̄CN1 =

(
a

2 (b+ c)
,
a

2c

)
and CCN1 = (0, 0) (39)

are the borders of region B̃, is a 2-cycle. Since C̄CN1 lies on the border of non differentiability B̄C2, we have
that C̃CN undergoes a persistence border collision.

For 2c < b (N − 3), we have that T 1
(
CCN1

)
= C̄CN1 ∈ Ω1

3 and all points of subregion Ω1
3 are mapped in CCN1

in one iteration. Thus, C̃CN is a 2-cycle for T 1. Moreover, we have that λ̃CN1 < −1 and λ̃CN2 = 0. Thus, Ẽ1 is
a repellor and by the linearity of map T 1 (with respect to x) it is possible to exclude the existence of 2-cycles
in Ω1

1 and Ω1
2 . This implies that, except for C̃CN1 , all 2-cycles that filled region B̃ have disappeared. Moreover,

since all points of Ω1
2 are mapped in Ω1

1 , all points of Ω1
3 are mapped in CCN1 , T 1

(
CCN1

)
= C̄CN1 and in Ω1

1 the

map T 1 is linear with inside a unique repellor Ẽ1, it follows that C̃CN attracts all the point of R2
+ except for

Ẽ1.
Since ∂R(E1)

∂x = −b(N−1)
2(b+c) and T 1 is the restriction of map (13) on the invariant plane r = 1, the results on

E1, CCN and region B, defined as in the statement of the Proposition, follow by the results on Ẽ1, C̃CN and B̃.
By the smoothness of map (13) in a neighborhood C̄CN and CCN , and from the Jacobian matrix of this

map when r = 1, see, e.g., (28), follows that the transverse eigenvalue of CCN is given by J33

(
C̄CN

)
J33

(
CCN

)
.

Since J33

(
C̄CN

)
< 1 and J33

(
CCN

)
≤ 1, the transverse attractiveness of CCN1 follows. �
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