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Abstract—This paper develops a coordination control method
for a dual-arm exoskeleton robot based on human impedance
transfer skills, where the left (master) robot arm extracts the
human limb impedance stiffness and position profiles, and then
transfers the information to the right (slave) arm of the exoskeleton.
A computationally efficient model of the arm endpoint stiffness
behavior is developed and a co-contraction index is defined using
muscular activities of a dominant antagonistic muscle pair. A
reference command consisting of the stiffness and position profiles
of the operator is computed and realized by one robot in real-time.
Considering the dynamics uncertainties of the robotic exoskeleton,
an adaptive-robust impedance controller in task space is proposed to
drive the slave arm tracking the desired trajectories with convergent
errors. To verify the robustness of the developed approach, a study
of combining adaptive control and human impedance transfer
control under the presence of unknown interactive forces is
conducted. The experimental results of this paper suggest that
the proposed control method enables the subjects to execute a
coordination control task on a dual-arm exoskeleton robot by
transferring the stiffness from the human arm to the slave robot
arm, which turns out to be effective.

Index Terms—Impedance control, biomimetic, stiffness estima-
tion, adaptive robust control, coordination control.

I. INTRODUCTION

Assistive robot exoskeletons can provide motion support to
humans, especially be applicable to the elder or the patients
with impaired muscles that are not able to generate necessary
amount of forces to perform intended tasks [1], [2], [3]. On the
other hand, robotic exoskeletons are also used to strengthen
the power of healthy people and enhance their endurance for
heavy tasks. It has been verified that humans can interact
with changeable environments with steady and applicable
skills, which can be accomplished by the adjustment of the
mechanical properties of the upper limbs [4]. In some efforts
on dealing with the weakness of traditional tele-operation
interfaces, the concept of tele-impedance control has been
recently presented [5], [6]. Several related interaction works
verified the effectiveness of the control concepts [7], [8].
To establish a novel human machine interface, the motion
trajectories and impedance information are achieved by the left
(master) arm of the exoskeleton robot from the wearing human
body in real-time. Then the right (slave) arm of the exoskeleton
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receives the relevant profiles and performs the corresponding
manipulation.

Neuromotor experimental studies have shown that the
impedance of human joints can be voluntarily adapted during
motion tasks. If delicate impedance adaptation skills of the
human operator can be incorporated into the robot control, it
would greatly benefit the physical human-robot interaction [9].
It is well known that the limb endpoint visco-elastic properties
can be regulated by relevant muscles and pose configurations
in different ways. In [10], the regulation can be achieved by co-
contracting muscles acting on the limb, and it can be acquired
as well through the adaptation in the sensitivity of the reflex
feedback [11], or the selective control of limb configurations
[12]. In [13], [14], a position perturbation was implemented
to the hand, and the related forces and displacements were
acquired and recorded by the specified device. Then, the
impedance parameters were estimated by undergoing a post-
processing stage. In [15], the estimation of dynamic impedance
profiles using perturbation based methods in multi-joint arm
movements has been widely studied. However, perturbation
based approaches are hard to implement in the real-time
manipulation, for the intrusion of the external disturbances.
Consequently, some suitable human machine interfaces have
been investigated for real-time applications [5], [16], [17].

It is well known that surface electromyography (sEMG) sig-
nals have close relationships with muscle activations, muscular
forces and joint torque profiles. Therefore, sEMG signals are
widely used to capture the real-time joint/endpoint stiffness
profiles. In [18], a straightforward model which assumes a
linear relationship between the end-point stiffness and rectified
sEMG signals was applied in the fixed posture configuration.
In this linear model, a complex modelling of the muscular-
skeletal system seems to be necessary when estimating the w-
hole arm workspace stiffness [16]. However, related researches
on human motor behaviors presented that this complexity can
be solved by the central nervous system (CNS) in an efficient
way [19], [20].

Relevant observations about human neuromotor control of
the human arm endpoint stiffness found out that for realizing a
required endpoint stiffness direction, humans gravitate towards
maximize the use of limb postures [5], [21]. The configuration-
dependent properties of the joint and Cartesian stiffness were
explored and a reduced-complexity model of arm endpoint
stiffness was established in [22].

Considering that there are large external disturbances on the
human limb, the human will naturally make his muscles tight
so the impedance of his body will increase to compensate for
the disturbances. While the disturbances decrease, impedance
will be reduced and muscles are in relax. Considering how
humans can skilfully adapt impedance in various force inter-



active scenarios, we would like to transfer this flexibility to
the robot to compensate the disturbances. One possibility to
adapt the impedance is by using human-like adaptation. The
human-like adaptive method transfers the adaptive impedance
skill to the robot, which instead of automatic learning, extracts
impedance adaptation skills and then implements on the robot
to imitate humans compliance and adaptivity. Nowadays, in the
rehabilitation area, for reducing the workloads of the physical
therapist, the researchers have paid attentions to exoskeleton
robots. And our work is motivated by the previous studies in
this area. We proposed a method which transfers the human
stiffness and position profiles to the exoskeleton which could
follow the motions of the human with human-like skills.
And this method has great room for the development of the
rehabilitation area.

Impedance transferred by the human can be used as con-
trol signals for the robot manipulation. However, it may be
delicate to achieve desirable performances in the sophisticated
environment with perturbations only relying on the impedance
adaptation. To make a good performance on disturbance re-
jections and to achieve small tracking errors, it is necessary to
utilize the relevant robot automatic control. Recently, there
are some works conducted to investigate the disturbance
observer techniques in motion control [23], [24], [25], [26].
Disturbance observer-based control with a simple structure
can be used to compensate for various uncertainties, but it
cannot adequately compensate all the uncertainties if there
exists uncertain dynamics and fast varying perturbations.

In order to overcome the dynamics uncertainties, adaptive
control methods can be alternated [27], [28], [29]. Adaptive
control laws would attain an accurate tracking of the required
trajectories in the case that the external disturbances can be
parameterized. On the other hand, the adaptive laws may not
perform well when encountering unparameterizable uncertain-
ties through the adaptation process. In [30], [31], disturbance
observer based control and reinforcement learning are utilized
to approximate the uncertain dynamics and resist the time-
varying disturbances.

In this paper, a control framework which combines the
human stiffness transfer control and the adaptive control is
established. In [34], [35], [36], the combination of the human
stiffness transfer and the adaptive control is also investigated.
With the haptic communication with the environment, the
human operator perceives forces and transfers the adaptive
impedance to the robot. In contrast to the above works, we
investigated this specific area in a different way. Based on
the relevant research [22] on the profile between the sEMG
signals and the end-point stiffness, we utilized the sEMG
signals to transfer the human stiffness to the controller of the
exoskeleton. In addition, the adaptive control law also partic-
ipates in the control framework to get better performances on
rejecting the external disturbances in the dynamic movement.
We verified the effectiveness of our method through specific
experiments on a dual-arm exoskeleton robot platform.

In this paper, we followed the standard methods of identify-
ing human arm end-point stiffness in Cartesian space [14], and
applied the stochastic disturbances to the end point of the slave
robot. The external forces were collected by a force sensor

SRI-M3203 (Sunrise Instrument Co., Ltd), which was placed
at the endpoint of the slave arm of the exoskeleton robot.
The operator wears the exoskeleton robot and the motors of
the robot can record the real-time angles of the master robot
for the calculation of the Jacobian matrix. The sEMG signal
collector records the real-time signals of the related muscles.
These relevant equipments are shown in Fig. 1.

The contributions of this paper are as follow:
(1) An approach of coordination control of a dual-arm

exoskeleton robot is developed based on human impedance
transfer skills, where the human stiffness and position profiles
are transferred to the slave robot arm.

(2) The reference command consisting of the stiffness and
position profiles is computed and realized in real-time.

(3) An adaptive-robust impedance controller in task space
is developed to drive the slave arm of the exoskeleton track-
ing the desired trajectories with convergent errors when the
perturbations exist.

II. CARTESIAN STIFFNESS MODELLING OF HUMAN ARM

A. Conservative Stiffness Matrix

The congruence transformation with the stiffness matrices
between Cartesian space and joint space is usually a noncon-
servative mapping [37]. The transformation is given by

KJ (q) = JT
r (q)Kc(q)Jr(q) (1)

with the joint stiffness matrices KJ(q), the Cartesian stiffness
matrices Kc(q), the joint angle vector q, and the matrix
Jr(q) ∈ Rm×n which is assumed to be nonsingular in the
finite work space Ω is the manipulator Jacobian with n being
the number of joints of the human limb and m corresponding
to the task space dimensions.

The inverse transform can be described as follow [38]:

Kc(q) = (J+
r (q))TKJ (q)(Jr(q))

+ (2)

where J+
r (q) is the generalized inverse matrix of Jr(q).

Fig. 2 demonstrates the congruence transformation between
the joint stiffness matrix and Cartesian stiffness matrix and
its inverse mapping. The Jacobian matrix with the differen-
tial parameters in the joint and Cartesian spaces is usually
configuration-dependent. The matrix Jr would change as the
specified movements are carried out, which leads to the
stiffness matrix to be configuration-dependent.

In Fig. 2, the Cartesian stiffness D1 is expressed in an m
dimensions space. When the congruence mapping (1) is per-
formed, the corresponding joint stiffness C1 can be obtained
in the joint space and is expressed in n angles in the n-DOF
robot arm.

B. The Cartesian Stiffness Modelling of Human Arm

Humans are able to interact with the changeable envi-
ronments with steady and applicable skills, which can be
accomplished by the adjustment of the mechanical proper-
ties of the upper limbs [4]. Therefore, extracting impedance
adaptation skills from the human operator and incorporating
it into the robot control would be an economic method for
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Fig. 1. The relevant equipments of the endpoint stiffness estimation: i) The
upper limb exoskeleton robot; ii) The force sensor SRI-M3203 (equipped at
the end point of the slave robot arm to measure the perturbations); iii) The
sEMG signal collector.
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Fig. 2. The congruence mapping.

the human-robot interaction [9]. Generally speaking, the end-
point stiffness of the human upper limb is effected by the
relevant muscle groups and the pose configuration adjustments.
It implies that we are able to adopt the end-point stiffness
by contracting of relevant muscle groups as well as the pose
configuration adjustments.

According to the studies in neuromotor control of human
arm end-point stiffness, humans are likely to fully exploit the
use of limb postures to grasp a related end-point stiffness
direction [21], [22]. Therefore, in some specific applications,
the configuration-dependent effect of the joint stiffness matrix
can be neglected. Based on this consideration, the active joint
stiffness regulations KJ can be modeled as follow [22]:

KJ = accK̄J (3)

where K̄J represents the joint stiffness matrix of minimum
muscle activity, and acc a size-adjusting co-contraction index.
Index acc is influenced by the muscular activities which are
realized by the sEMG signals of the dominant antagonistic

muscle pair. The end-point stiffness of the human arm in
Cartesian space Kc can be represented as follow [22]:

Kc(q) = (J+
r (q))T

[
accK̄J − ZJ (q)

]
(Jr(q))

+ (4)

ZJ(q) =
∂τg(q)

∂q
(5)

where Kc ∈ Rm×n, n denotes the number of joints of the
human limb, m denotes the task space dimensions and m = n
is assumed in this paper. q ∈ Rn is a vector of n joint angles
of the arm. Jr(q) is the Jacobian matrix of the human arm,
and ZJ(q) defines the effect of gravity τg(q) on Cartesian
stiffness. In order to get the precise performances of relevant
posture configurations, a novel way of obtaining the Jacobian
matrix is implemented in our work [22]. In detail, the operator
is required to wear the master arm of the exoskeleton robot to
obtain the Jacobian and transfer it to the controller in real-time.

In addition, A compact model in estimating the human
arm gravitational torque is used in this paper [22], [39]. The
definition is shown as follow:

τg(q) =

nJ∑
i=1

JT
comi

(q)mig (6)

where Jcomi ,mi, nJ and g indicate the centre of mass Ja-
cobian, the mass of the ith limb, the joint number, and the
gravitational vector, respectively.

III. HUMAN ARM ENDPOINT STIFFNESS ESTIMATION

To estimate the end-point stiffness of the human arm in
(4), we firstly need to acquire acc, K̄J , Jr(q), ZJ . Just as
mentioned before, the Jacobian matrix can be obtained by
the exoskeleton robot in real-time, and the structure of the
exoskeleton robot arm is represented in Fig. 3. As a result,
to obtain the other two parameters is the major portion. Since
that muscular activations are highly related to the active joint
stiffness [17], and that muscular activations can be reflected
from sEMG signals, we achieved and processed the sEMG
signals of related muscles by using specific tools.

The target end-point stiffness Kc is suggested to use in the
dynamic movements of the human limb. In this direction, it is
necessary to identify Kc in different posture configurations and
different co-contraction amplitudes of relevant muscle groups.
In this experiment, three different co-contractions of muscle
groups are taken into consideration. The measurement of the
three co-contractions is to obtain the sEMG signals while the
operator is contracting his muscles and applying the forces
of 4 N, 8 N and 12 N. The operator is asked to exert such
three different forces along 6 directions [±X,±Y,±Z] on
the force sensor. Meanwhile, the force data is shown for the
operator to maintain the forces with visual feedback. In detail,
the minimum-activity group is used to estimate the parameter
K̄J , and the other two groups are used to estimate of the index
acc.

Six different positions are implemented in the experiments.
There are two indicators when choosing these configurations:
the comfort of the operator and the avoidance of the singularity
of the Jacobian matrix. In each position, arm joints were
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Fig. 3. The structure of the exoskeleton robot arm.

allowed to vary within the redundant manifold to realize three
distinct angles of the related joint. It would be 18 arm con-
figurations. Furthermore, in each configuration, three different
co-contractions of muscle groups were required: minimum-
activity, middle-activity and high-activity. As a result, it would
have 54 groups of data for estimating the end-point stiffness.

During the experiment, sEMG data from relevant muscles
(Biceps and Triceps Brachii) was obtained by using surface
electrodes (as is shown in Fig. 1) which are connected to the
sEMG signal collector. In signal processing stages, a bandpass
filter and a notch filter are used. The relative parameters in the
bandpass filter are chosen as 10 and 500 Hz and the parameter
in the notch filter is chosen as 50 Hz. All the filters were
realized by employing Butterworth filtering technique.

After collecting the experimental data, the next step is to
identify acc, K̄J from these data. A dynamic relation between
the displacements and forces is shown as follow [22], [40]:

Fx(f)
Fy(f)
Fz(f)

 =

Nxx(f) Nxy(f) Nxz(f)
Nyx(f) Nyy(f) Nyz(f)
Nzx(f) Nzy(f) Nzz(f)

x(f)y(f)
z(f)

 (7)

where Fx(f), Fy(f) and Fz(f) denote the Fourier transforms
of the endpoint forces along the axes of the Cartesian reference
frame; x(f), y(f) and z(f) denote the Fourier transforms of
the human endpoint displacements; Nij denotes the second-
order, linear model of each impedance transfer function of
each SISO (single input and single out) subsystem:

Nij(s) = Iijs
2 + Vijs+Kij , s = 2πf

√
−1 (8)

where Iij , Vij and Kij denote the endpoint inertia matrix, the
endpoint viscosity matrix and the endpoint stiffness matrix,
respectively.

In the post-processing phase, the stiffness matrices from
the minimum activity groups were utilized to calculate K̄J by

minimizing ∥∥∥K̄J − JT
r (q)KcJr(q)−

∂τg(q)

∂q

∥∥∥ (9)

In addition, we obtained the index acc with analyzing the
data of the mid and the high co-contractions of muscle groups.
A hyperbolic tangent function is employed to denote acc [8],
[41] :

acc = 1 +
r1[1− e−r2(MB+MT )]

[1 + e−r2(MB+MT )]
(10)

where MB and MT indicate the real-time sEMG signals of
Biceps and Triceps Brachii muscles, and r1 and r2 are constant
coefficients that can be identified by minimizing∥∥∥acc(p)K̄J − JT

r (q)KcJr(q)−
∂τg(q)

∂q

∥∥∥ (11)

IV. DUAL-ARM EXOSKELETON SYSTEM DESCRIPTION

A dual arm exoskeleton robot consisting of two 4-DOF
exoskeleton platforms has been developed for the experiments
in SCUT lab, as shown in Fig. 4. Each arm has 4 joints,
such as shoulder abduction/adduction joint, shoulder rotation
joint, elbow joint, wrist joint. The shoulder rotation joint and
elbow joint of the exoskeleton are used in the experiments.
The kinematical chain is similar to the upper limb of a human
being. In the developed exoskeleton, each joint contains a
high-resolution encoder (2048 pulse/cycle) and a hall effect
sensor used for position sensing and measurements. The
robotic exoskeleton is developed using DC motors as actuators,
and Maxon DC flat brushless motor EC45 is chosen as the
driver unit. To get a better performance of the impedance
capability, each joint of the robot have been embedded a
harmonic transmission driver.

The subject wears one exoskeleton arm and controls the
trajectories of the moving arm as the master and the other
exoskeleton arm performs as the slave. Meanwhile, sEMG
signals are acquired from Biceps and Triceps Brachii muscles
of the subject. The master exoskeleton robot collects the real-
time tracking of the human arm kinematics and calculates the
real-time human arm Jacobian. While the human arm Jacobian
and the sEMG signals are transferred to the controller, the
endpoint stiffness can be calculated by the muscular co-
activations and trajectories.

V. CONTROL DEVELOPMENT OF SLAVE EXOSKELETON

The dynamics of the robotic exoskeleton in joint space can
be described by

M(q)q̈ + C(q, q̇)q̇ +G(q) + d = B(q)τ (12)

with q = [q1, . . . , qn]
T ∈ Rn, the symmetric positive

definite inertia matrix M(q) ∈ Rn×n , the Centripetal and
Coriolis torques C(q̇, q) ∈ Rn×n , the gravitational torque
vector G(q) ∈ Rn , the external disturbances d(t) ∈ Rn,
and the control inputs τ ∈ Rk, and a full rank known
input transformation matrix B(q) ∈ Rn×k for the robotic
manipulator.

The equation of motion of the manipulator could be rewrit-
ten in terms of Cartesian coordinates x ∈ Rn. We assume
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Fig. 4. The developed dual-arm exoskeleton.

that the relationship between the Cartesian coordinates and
the joint coordinates is shown as follows:

ẋ = Jr q̇ (13)

where Jr ∈ Rn×n is the Jacobian matrix. Considering the
differential of (13) with respect to time, we obtain

ẍ = Jr q̈ + J̇r q̇ (14)

Since we assume that Jacobian matrix Jr is nonsingular

q̈ = J−1
r (ẍ− J̇r q̇) (15)

Integrating (13), (15) into (12), we can obtain

Mẍ+ Cẋ+ G +D = U (16)

where

M = J+T
r M(q)J+

r

C = J+T
r (−M(q)J−

r J̇r + C(q, q̇))J+
r

G = J+T
r G(q)

D = J+T
r d

U = J+T
r B(q)τ

To make a better control performance, we consider an
impedance model with virtual force as follow

Mdẍd + Cdẋd +Kcxd = f (17)

where Md and Cd are the desired inertia, damp-
ing,respectively, and Kc represents the Cartesian stiffness of
the endpoint of manipulator and it is calculated by (4) in
section II, and f can be regarded as a virtual force.

There are some structure properties of the dynamic equation
(16), which will become useful when designing the specific
control system.

Property 5.1: [42] There exists the bounded symmetric pos-
itive definite matrix M, i.e., λmin(M)I ≤ M ≤ λmax(M)I ,
with the minimum eigenvalues λmin(M) and maximum
eigenvalues λmax(M) of M.

Property 5.2: [42] The skew-symmetric matrix Ṁ − 2C
satifies ∀u ∈ Rn, uT (Ṁ − 2C)u = 0.

Property 5.3: There exist inequalities ∀x ∈ Rn, ∀ẋ ∈ Rn,
||M + Md|| ≤ c1, ||C + Cd|| ≤ c2 + c3||q̇||, ||G|| ≤ c4 ,
||Md|| ≤ c5 and ||Cd|| ≤ c6, supt≥0||D|| ≤ c7, with the finite
positive constants ck > 0 (1 ≤ k ≤ 6), and a finite non-
negative constant ck ≥ 0 (k = 7).

Considering a desired motion trajectory xd(t), which is
bounded and uniformly continuous and has bounded and
uniformly continuous derivatives up to the third order, we need
to design a control law such that for any (x(0), ẋ(0)) ∈ Ω,
(x, ẋ) converge to a manifold specified as Ω where

Ωd = {(x, ẋ)|x = xd, ẋ = ẋd} (18)

Definition 5.1: Consider a time varying positive function δ,
which will converges to 0 as t → ∞ and be bounded by

lim
t→∞

∫ t

0

δ(ω)dω = ρ < ∞

where ρ is a finite constant [43].
In the actual implementation, we choose δ = 1/(1 + t)2 in

the experiment.
Let e = x − xd, ẋr = ẋd − ϖe, s = ė + ϖe, where ϖ

is diagonal positive definite. Based on (16), we consider the
robust adaptive control law given by

U = −Kms−
7∑

i=1

sĉiΦ
2
i

∥s∥Φi + δi
− f

˙̂ci = −σiĉi +
γiΦ

2
i ∥s∥2

Φi∥s∥+ δi
(19)

where Km is a suitable definite constant; Φ1 = ∥ẍr∥, Φ2 =
∥ẋr∥, Φ3 = ∥q̇∥∥ẋr∥, Φ4 = 1, Φ5 = ∥ė∥, Φ6 = ∥e∥ and Φ7 =
1; γi > 0, δi(t) > 0 and σi(t) > 0 such that

∫ t

0
δi(ω)dω =

ai < ∞ and
∫ t

0
σi(ω)dω = bi < ∞.

The external force exerted at the end point of the slave arm
can be viewed as a perturbation in the robotic dynamics. The
control (19) is designed to make the slave track the desired
trajectory and reject the perturbation.

Compared with the previous results [22], in the proposed
robust adaptive control (19), the second item of the controller
is designed to approximate the dynamics uncertainties, where
ĉi is the estimation of the upper bound of the adaptive
parameter ci. The item f is designed to reject the perturbation
by the transferred impedance. Compared with the previous
results [24] which did not consider the impedance model,
in the paper, the combination of the impedance model (17)
and the adaptive control (19) can approximate the uncertain
dynamics.

Theorem 5.1: Consider the robotic exoskeleton described
by (16), by the control law (19), the following holds for any
(x(0), ẋ(0)) ∈ Ω:

i) s would converge to a set that containing the origin and
the convergence rate could represent as e−νt.

ii) e and ė asymptotically converge to zero as t → ∞.
Proof : i). By taking (19) into (16), we can obtain the

following closed-loop system as

Mṡ = −Kms−
7∑

i=1

sĉiΦ
2
i

∥s∥Φi + δi
− ξ −Kcxd − Cs (20)

5



where ξ = (Md+M)ẍr+(Cd+C)ẋr+G+D+Mdϖė+Cdϖe.
Consider the Lyapunov candidate function with c̃i = ĉi−ci:

V =
1

2
sTMs+

7∑
i=1

1

2γi
c̃2i (21)

then

V̇ = sT (Mṡ+
1

2
Ṁs) +

7∑
i=1

c̃i ˙̃ci
γi

(22)

From Property 5.1, we have 1
2λmin(M)sT s ≤ V ≤

1
2λmax(M)sT s+Λ, where Λ is a positive constant. By using
Property 5.2, the time derivative of V along the trajectory of
(20) is

V̇ = −sTKms−
7∑

i=1

∥s∥2ĉiΦ2
i

∥s∥Φi + δi
+

7∑
i=1

c̃i ˙̃ci
γi

−sTKcxd − sT ξ

≤ −sTKms− sTKcxd +

7∑
i=1

∥s∥ciΦi −
7∑

i=1

∥s∥2ĉiΦ2
i

∥s∥Φi + δi

+
7∑

i=1

c̃i(−
σi

γi
ĉi +

Φ2
i ∥s∥2

Φi∥s∥+ δi
)

≤ −sTKms+
∥Kc∥
2

(∥s∥2 + ∥xd∥2) +
7∑

i=1

(∥s∥ciΦi

− ∥s∥2ĉiΦ2
i

∥s∥Φi + δi
− σi

γi
ĉic̃i +

Φ2
i ∥s∥2(−ci + ĉi)

Φi∥s∥+ δi
)

≤ −sT (Km − ∥Kc∥
2

)s+
∥Kc∥∥xd∥2

2

+
7∑

i=1

Φi∥s∥ciδi
Φi∥s∥+ δi

−
7∑

i=1

σi

γi
(c̃i + ci)c̃i

≤ −sT (Km − ∥Kc∥
2

)s−
7∑

i=1

σi

2γi
c̃2i +

∥Kc∥∥xd∥2

2

+
7∑

i=1

Φi∥s∥ciδi
Φi∥s∥+ δi

+
7∑

i=1

σi

2γi
c2i

≤ −νV + κ (23)

where κ = ∥Kc∥∥xd∥2

2 +
∑7

i=1
Φi∥s∥ciδi
Φi∥s∥+δi

+
∑7

i=1
σi

2γi
c2i , ν =

min(
2λmin(Km− ∥Kc∥

2 )

λmax(M) ,mini=1,2,...7(σi)).

To guarantee ν > 0, the design parameters Km − ∥Kc∥
2 =

(Km − ∥Kc∥
2 )T > 0 and σi > 0, (i = 1, 2, ...7).

Therefore, we can get the equation V̇ ≤ −νV + κ, which
indicates that s converges to a set that containing the origin.
Furthermore, the convergence rate could represent as e−νt.

By integrating both sides of the above equation, we can get
the following equation

V (t) ≤ (V (0)− κ

ν
)e−νt +

κ

ν
≤ V (0) +

κ

ν
(24)

Thus, for s, we have 1
2s

TMs ≤ V (0) + κ
ν , then

we can obtain ∥s∥ ≤ 2
V (0)+κ

ν

λmin(M) . As for
∑7

i=1
1

2γi
c̃2i ≤

V (0) + κ
ν , we could obtain maxi=1,2,...7(c̃i) ≤ 2(V (0) +

κ
ν )(maxi=1,2,...7(γi)).

Therefore, the closed-loop signals s, c̃i are bounded in the
compact set, we can conclude that V is bounded, which
indicates that s ∈ Ln

∞.
ii)From (24), we have s ∈ Ln

∞. From s = ė+ϖe, it can be
obtained that e, ė ∈ Ln

∞. As we have established e, ė ∈ Ln
∞,

we can have the conclusion that x(t), ẋ(t), ẋr(t), ẍr(t) ∈ Ln
∞,

and ẋ(t) ∈ Ln
∞.

As a result, all the signals on the right hand side of (20)
are bounded and we can have the conclusion that ṡ and ẍ
are bounded. Hence, we could obtain that s → 0 as t → ∞.
Consequently, e → 0, ė → 0 as t → ∞. To conclude, e → 0,
ė → 0 as t → ∞.

VI. EXPERIMENTS

A. Control Structure

The powered exoskeleton includes the four-layer control ar-
chitecture as exoskeleton, distributed embedded system (Elmo
driver), servo motor and control unit. From Fig. 5 we can know
that the position and angular velocity can be read from the
joint sensors and the power signals are generated to activate the
actuators. The developed control architecture includes three
components: 1) the exoskeleton for sensing and actuation; 2)
a motion unit for preforming the lower controller to produce
drive force for the exoskeleton joints, nominally running at 1
kHz; 3) a host computer performing a developed application
and controlling the graphical display, nominally updating at
100 Hz. The low-level control is realized in real-time by Elmo
driver connecting to the computer through CAN bus. The
experiment software was developed using Visual C++. The
graphical interface shows position sensing signals and tunes
controller parameters in experiment trials.

Upper limb 

exoskeleton

Maxon motor

Elmo driver

Control 

computer

Human interface

Fig. 5. The control system.

B. Experimental Setup

To testify the effectiveness of the proposed method, a dual-
arm exoskeleton robot is used in this experiment while one
arm is worn by human limb as the master and the other arm
is performed as the slave. The human controls the trajectories
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of the master robot arm and the sEMG signals are acquired
from Biceps and Triceps Brachii muscles of the subject and
are used to calculate the dynamic stiffness. The master robot
arm collects the real-time positions of the human arm and
calculates the human arm Jacobian. The experiments are
mainly conducted in the presence of the external perturbations
which are exerted at the end-point of the slave robot arm.

The purposes of the experiments can be presented as:
(1) When the external perturbations are not exerted at

the end-point of the slave robot arm, the slave arm of the
exoskeleton robot can follow the trajectory of the master robot
arm in synchronization.

(2) If the human limb is in relax state, the slave arm can
not reject the existing perturbations which are applied to the
end point of the moving slave arm.

(3) In the same situation of (2), the slave arm of the
exoskeleton robot is capable of resisting the external pertur-
bations well if the human limb stiffens up.

Four subjects participated in the experiments and they were
different in age, height and weight (male, 53kg, 171cm and 24
years old; male, 62kg, 170cm and 26 years old; male, 65kg,
181cm and 22 years old; male, 62kg, 172cm and 25 years
old). The perturbations applied at the end-point of the slave
robot arm were random and nonlinear according to different
subjects. The perturbations were about 12N in the experiment
of subject 1, about 9N in the experiment of subject 2, about
15N in the experiment of subject 3, and about 14N in the
experiment of subject 4.

The external perturbation would be only applied to the end
point of the exoskeleton robot in specified periods shown
in Table 1. There are four phases in each sub-period and
every phase is designed to be 10 seconds. In the first phase,
the subject is instructed to keep relax such that the stiffness
transferred to the exoskeleton robot is small. In the Cartesian
space, the slave robot arm follows the master well in real-
time (phase I). In phase II, the perturbation is applied to the
slave robot arm. As a contrast to phase II, the operator’s limb
stiffens up in phase III . Phase IV is the beginning of the other
sub-period and it has the same situation of phase I. It should
be noted that the master robot arm is always moving during
the whole period and the perturbations can be applied to the
robot limb in any position in phase II and phase III.

TABLE 1
THE EXPLANATION OF FOUR PHASES IN EXPERIMENT

perturbation limb muscles
phase I none relax
phase II applied relax
phase III applied stiffen up

phase IV (phase I
of the next sub-period) none relax

C. Experimental Result and Analysis

The experimental results of the control performances of
the exoskeleton robot are shown in Figs. 6–12. Fig. 6 shows
the reference and actual trajectories of the slave robot arm.

Figs. 7 and 8 show the Cartesian errors and the Cartesian
stiffness in X/Y direction. Fig. 9 shows the sEMG signals of
agonistic/antagonistic muscle pairs. Figs. 10 and 11 present the
co-contraction index acc of the Cartesian stiffness estimation
model and the adaptive parameters of the controller. The
stiffness ellipsoids are shown in Fig. 12.

In phase I, no external perturbation is exerted to the ex-
oskeleton. When the perturbation is applied to the end point
of the slave in phase II, the cartesian errors in X/Y direction
increase obviously. The slave can not precisely follow the tra-
jectory of the master robot arm because of the perturbation and
the relaxation of the subject’s muscles. When the perturbation
is removed, the cartesian errors in X/Y direction (7) come
back nearly zero quickly. It means that the slave can follow the
trajectory of the master robot after the perturbation is removed.
It is observed that the transferred stiffness of each direction in
cartesian coordinates is small in phase II for the reason that
the sEMG signals of human limb is in relax situation.

In contrast to phase II, the muscles of the subject’s limb
stiffen up in phase III. It can be shown in Fig. 9. The amplitude
differences of the transferred stiffness between phase II and
phase III in Fig. 8 are obvious. Also, we can see that the
values of the co-contraction index acc in Fig. 10 vary in the
same tendency with the sEMG signals. It is observed that the
position errors become smaller than that in phase II. Compared
phase II with phase III in Figs. 7 and 8, we can see that the
proposed impedance transfer skills are effective to reject the
external perturbations.

Fig. 11 shows the convergence of the adaptive parameters.
At the beginning of the first phase, the 7 parameters are
relatively large but tend to decrease and converge to 0. In the
second phase, an external disturbance is acted on the slave
limb, and the parameters increase rapidly. Then they converge
to 0 again. In the third phase, the increase of the parameters
is due to the tension of muscles while performing stiffen up
in this phase. The adaptive parameters of the controller are
able to converge to 0 so as to maintain the stability of the
controller. Furthermore, Fig. 12 shows the stiffness ellipsoids
which depend on the Cartesian stiffness. The human subject
determines the movements and the stiffness which would be
transferred to the slave robot arm. The long axis of the ellipse
indicates the highest stiffness while the short axis indicates
the lowest stiffness.

Subjects 1-4 are different from each other so the movements
of their trajectories and errors are various. The ranges of
the stiffness in Cartesian space, sEMG signals and the co-
contraction indexes acc are different according to the subjects’
self-qualities. Results in Figs. 6–12 suggest that the coordina-
tion control is effective for the exoskeleton robot. Based on
human impedance transfer skills, the slave robot arm obtains
the impedance information calculated from the human’s sEMG
signals and then uses the coordination control method to track
the desired trajectory generated by the master. The proposed
controller shows efficiency among different subjects.

VII. CONCLUSIONS

In this paper, coordination control of a dual-arm exoskeleton
robot based on human impedance transfer skills has been pro-
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Fig. 6. Tracking trajectories in Cartesian Space of 4 subjects
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Fig. 7. Cartesian errors of 4 subjects

posed, where the master arm of the exoskeleton robot extracts
the human limb impedance stiffness and position profiles,
and then transfers to the slave arm of the exoskeleton. A
computationally efficient model of the arm endpoint stiffness
behavior is developed and a co-contraction index is defined
using muscular activities of a dominant antagonistic muscle
pair. A reference command which consists of the stiffness and
position information of the operator is computed and realized
by the master robot arm in real-time. Considering the dynam-
ics uncertainties of the slave exoskeleton robot performing
manipulation, the impedance control incorporating adaptive
robust control in the task space has been developed to drive the
slave arm of the exoskeleton to track the desired trajectories
and make tracking errors convergent. To verify the stableness
of the proposed method, an investigation which combines
human operation and impedance control under the presence

0 10 20 30 40

0

20

40

60

time (sec)

ca
rt

es
ia

n 
st

iff
ne

ss
 (

N
/m

)

 

 

phase1 phase2 phase3 phase4

cartesian stiffness in Y direction
cartesian stiffness in X direction

(a) subject 1

0 10 20 30 40

0

10

20

30

40

50

time (sec)

ca
rt

es
ia

n 
st

iff
ne

ss
 (

N
/m

)

 

 

phase1 phase2 phase3 phase4

cartesian stiffness in Y direction
cartesian stiffness in X direction

(b) subject 2

0 10 20 30 40

0

10

20

30

40

50

time (sec)

ca
rt

es
ia

n 
st

iff
ne

ss
 (

N
/m

)

 

 

phase1 phase2 phase3 phase4

cartesian stiffness in Y direction
cartesian stiffness in X direction

(c) subject 3

0 10 20 30 40

0

10

20

30

40

50

time (sec)

ca
rt

es
ia

n 
st

iff
ne

ss
 (

N
/m

)

 

 

phase1 phase2 phase3 phase4

cartesian stiffness in Y direction
cartesian stiffness in X direction

(d) subject 4

Fig. 8. Cartesian stiffness of 4 subjects
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Fig. 9. SEMG signals of 4 subjects

of unknown interactive forces is conducted. By designing the
specific experiment and analyzing the experimental results, we
demonstrated the efficiency of the proposed technique.
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