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Abstract

For a pure component, we compute the characteristic isobaric inflection

curve (a.k.a. the Widom line) for the Soave-Redlich-Kwong (SRK) and Peng-

Robinson (PR) equations of state. Incidentally, we also show that using the

Redlich-Kwong (RK) equation of state leads to a closed-form representation of

the Widom line in the (T, v) plane. The SRK and the PR equations of state

lead to almost coincident predictions for the Widom line; furthermore, compar-

ing our numerical results with a correlation in reduced coordinates obtained by

regression of experimental cp data for CO2 and water shows that the increased

complexity of the SRK and PR equations (as compared to RK) allows improved

agreement with the experimental data.
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1. Introduction

As is well known, the physical properties of a pure substance that enters its

supercritical region by heating or cooling are strong functions of temperature

and pressure, which can greatly affect heat transfer rates in practical applica-

tions. For example, in a supercritical constant pressure process, all physical

properties of the substance show abrupt (but continuous) variations (as its be-

havior changes from liquid-like to vapor-like) within a narrow temperature range

across the pseudocritical temperature, at which the isobaric heat capacity of the
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Figure 1: Isobaric heat capacity for a van der Waals fluid as a function of reduced temper-
ature at different supercritical pressures (Pr = P/Pc shown in the legend being the reduced
pressure).

substance has a relative maximum, while its density, thermal conductivity, and

dynamic viscosity decrease drastically. In particular, as the pressure increases

further in the supercritical range, the relative maxima in the isobaric heat capac-

ity decrease and move to higher temperatures. Collectively, the temperatures

and pressures corresponding to the relative maxima in the cp are called the

pseudocritical (or Widom) line. However, at lower pressures (in particular at

the critical pressure), abrupt (discontinuous) physical property variations char-

acterize the substance in the neighborhood of its critical temperature, since any

property which can be represented as a second-order derivative of a thermo-

dynamic potential (such as, e.g., the isobaric heat capacity and the isothermal

and isentropic compressibilities) will blow up at the critical point in a first-order

transition.

Note that even the simplest (i.e., the van der Waals) EoS model that al-

lows for a liquid-vapor transition can reproduce qualitative agreement with the

aforementioned pseudocritical behavior of a pure substance. In fact, starting
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from the van der Waals EoS in reduced coordinates,
(

Pr +
3

v2r

)(

vr −
1

3

)

=
8

3
Tr, (1)

where Pr ≡ P/Pc, Tr ≡ T/Tc, vr ≡ v/vc (where the c subscript denotes a

critical value), and noting that the specific isochoric heat capacity for a classical

van der Waals fluid is a constant, cv = 3R/2 (with R denoting the universal

gas constant), it is easily seen that the isobaric heat capacity takes the form

(Johnston, 2014):

cp
R

−
cv
R

= ZcTr

(

∂vr
∂Tr

)

Pr

(

∂Pr

∂Tr

)

vr

=
4Trv

3

r

4Trv3r − (3vr − 1)2
. (2)

In Fig. 1, plots of this quantity as a function of (reduced) temperature at dif-

ferent supercritical pressures confirm that the relative maxima in the cp move

to higher temperatures as the pressure is increased further in the supercritical

range. In fact, a straightforward calculation shows that these relative maxima

are located for a van der Waals fluid at

Pr = 4Tr − 3, (and Tr ≥ 1) (3)

in the (Pr , Tr) plane, or, equivalently, at vr = 1 (and Tr ≥ 1) in the (Tr, vr)

plane.

To date, although the Widom line has been studied in simple model systems,

such as, e.g., a van der Waals or a Lennard-Jones fluid (Brazhkin and Ryzhov,

2011; May and Mausbach, 2012), a systematic discussion of the Widom line as

predicted by the classical cubic EoS models, i.e., the van der Waals, Redlich-

Kwong, Soave-Redlich-Kwong, and Peng-Robinson EoS has not been presented

in the literature heretofore and is the principal result reported herein.

2. Parametric Construction of Characteristic Curves

Since our main objective in this paper is to discuss predictions of the Widom

line based on different cubic EoS models, we first show that an assumption of

Redlich-Kwong fluid properties leads to a closed form representation of the

Widom line in the (T, v) plane. We begin by noting that the pseudocritical line

can be defined thermodynamically by the condition:
(

∂cp
∂P

)

T

= −T

(

∂2v

∂T 2

)

P

= 0, (4)
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where we have considered that cp =
(

∂h
∂T

)

P
in addition to

(

∂h
∂P

)

T
= v−T

(

∂v
∂T

)

P
.

Below, we will determine the Widom line by looking at the zero level set of
(

∂2T
∂v2

)

P
. Before switching to reduced coordinates Pr ≡ P/Pc, Tr ≡ T/Tc,

vr ≡ v/vc (where the c subscript denotes a critical value), we note that the

following two-parameter EoS (Schmidt and Wenzel, 1980)

P =
RT

v − b
− a

α(Tr)

(v + δ1b)(v + δ2b)
, (5)

with a and b denoting temperature-independent constants (while δ1,2 are pa-

rameters), comprises all four EoS models (i.e., van der Waals, Redlich-Kwong,

Soave-Redlich-Kwong, and Peng-Robinson) discussed herein. Now, in reduced

coordinates, Eq. (5) becomes

Pr =
Tr

x− Ωb
− Ωa

α(Tr)

(x+ δ1Ωb)(x+ δ2Ωb)
, (6)

where x ≡ Zcvr (Zc being the critical compressibility factor). With the SRK

and PR EoS, Ωa and Ωb are defined based on the following relations (Smith

et al., 2005):

a = Ωa
(RTc)

2

Pc
, and b = Ωb

RTc

Pc
. (7)

Note that with the RK EoS the definition for Ωa is with Tc raised to the 5/2

power (instead of T 2

c ) in the first of these relations. For example, with the van

der Waals EoS we have: δ1 = δ2 = 0, Zc = 3/8, Ωa = 27/64, and Ωb = 1/8,

and α(Tr) ≡ 1. On the other hand, RK fluid properties are obtained by letting

δ1 = 0, δ2 = 1, Zc = 1/3, Ωa = 1/[9(21/3 − 1)], Ωb = 1

3
(21/3 − 1), and

α(Tr) ≡ T
−1/2
r . These last coefficients are still valid with the SRK EoS except

that the α-function introduced by Soave (1972) incorporates a dependence on

the Pitzer acentric factor, i.e.,

α(Tr) =
[

1 +m(ω)(1− T 1/2
r )

]2

, (8)

where m(ω) = 0.48+1.574ω−0.176ω2. Finally, PR fluid properties are obtained

by letting δ1 = 1 +
√
2, δ2 = 1 −

√
2, Zc = 0.3074013, Ωa = 0.45723552,

Ωb = 0.077796074. The α-function for the PR EoS is the same as that in

Eq. (8), but with a slightly different prescription for m(ω), i.e.,

m(ω) = 0.37464 + 1.54226ω− 0.26992ω2. (9)
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Before turning to the principal result discussed herein, which relates to the SRK

and PR EoS models, we note that the pseudocritical line in the (Tr, x) plane

corresponding to a choice of RK fluid properties can be written down in closed

form after solving a quadratic equation, 0 = a0(x)+a1(x)T
3/2
r +a2(x)T

3
r , where

a0(x) =
Ω3

a

4

10x2 + 10Ωbx+ 3Ω2

b

x5(x+Ωb)5
, (10)

a1(x) =
Ω2

a

2

−5x4 − 10Ωbx
3 + 5Ω2

bx
2 + 4Ω3

bx+ 2Ω4

b

x4(x− Ωb)3(x+Ωb)4
, (11)

a2(x) =
Ωa

4

15x4 − 30Ωbx
3 − 9Ω2

bx
2 + 12Ω3

bx+ 8Ω4

b

x3(x− Ωb)4(x+Ωb)3
. (12)

After some easy algebra, the result is:

Tr =

{

Ωa
(x− Ωb)

x(x +Ωb)(15x4 − 30Ωbx3 − 9Ω2

bx
2 + 12Ω3

bx+ 8Ω4

b)
×

[

5x4 + 10Ωbx
3 − 5Ω2

bx
2 − 4Ω3

bx− 2Ω4

b + (5x2 − Ωbx− 2Ω2

b)×
√

−5x4 + 20Ωbx3 + 2Ω2

bx
2 − 8Ω3

bx− 5Ω4

b

]}2/3

. (13)

This locus is shown as the dot-dashed curve in Fig. 2. From this figure it also

appears that predictions for the Widom line based on SRK and PR EoS are

essentially identical for Tr values less than about 1.75; for larger values of Tr,

however, the two curves are distinct. In addition, the RK prediction for the

Widom line shows a significant departure from the Widom line (vr = 1, Tr ≥ 1)

for the van der Waals EoS; finally, there is a significant discrepancy between

the Widom lines for the SRK and PR EoS models as opposed to that for the

RK EoS. Similar considerations apply to Fig. 3, showing Widom lines from the

aforementioned EoS models in the (Pr , Tr) plane. Also shown is a correlation

obtained by regression of experimental cp data for CO2 and water from Smith

et al. (2013). In fact, based on their analysis of experimental data, these authors

claim that the corresponding states principle can be used to estimate the pseu-

docritical line of a pure substance. We assume that this conclusion is accurate;

however, there is still a noticeable difference in Fig. 3 between the Widom lines

for the SRK and PR EoS models and that from the Smith et al. (2013) corre-

lation. At least in part, such differences can be attributed to the temperature

dependence in the α-function for the SRK (or PR) EoS (Soave, 1972; Peng and

Robinson, 1976) being markedly different from that for the RK EoS. Since the
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Figure 2: Widom lines in the (Tr , vr) plane from the Peng-Robinson, Soave-Redlich-Kwong,
Redlich-Kwong, and van der Waals EoS models. Also shown are the Redlich-Kwong and van
der Waals binodal and spinodal curves.

Soave (1972) α-function passes the consistency test advocated by Le Guennec

et al. (2016), it can be used at supercritical conditions (for values of the acen-

tric factor in certain allowable ranges) up to a temperature T ∗

r = [1+m−1(ω)]2,

where it attains a relative minimum. However, as can be seen from Fig. 3, in

our case (i.e., with both the SRK and PR EoS models) the α-function never at-

tains its minimum in the supercritical range (for the values of the acentric factor

ω = 0 and ω = 0.34 considered herein), so the oft-quoted issue with the Soave

(1972) α-function that it might stop decreasing in the supercritical range as

the reduced temperature increases (Mahmoodi and Sedigh, 2016; Gasem et al.,

2001; Neau et al., 2009a,b) is not relevant here.
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