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Abstract

English. Several unsupervised methods
for hypernym detection have been inves-
tigated in distributional semantics. Here
we present a new approach based on a
smoothed version of the distributional in-
clusion hypothesis. The new method is
able to improve hypernym detection after
testing on the BLESS dataset.

Italiano. Sulla base dei metodi non
supervisionati presenti in letteratura,
affrontiamo il task di riconoscimento di
iperonimi nello spazio distribuzionale.
Introduciamo una nuova misura di-
rezionale, basata su un’espansione
dell’ipotesi di inclusione distribuzionale,
che migliora il riconoscimento degli
iperonimi, testandola sul dataset BLESS.

1 Introduction and related works

Within the Distributional Semantics framework,
semantic similarity between words is usually ex-
pressed in terms of proximity in a semantic space,
where the dimensions of the space represent, at
some level of abstraction, the contexts in which
the words occur.

Our intuitions about the meaning of words al-
low inferences of the kind expressed in example
(1), and we expect Distributional Semantic Mod-
els (DSMs) to support such inferences:

(1) a. Wilbrand invented TNT → Wilbrand
uncovered TNT

b. A horse ran → An animal moved

The type of relation between semantically sim-
ilar lexemes may differ significantly, but DSMs
only account for a generic notion of semantic re-
latedness. Furthermore, not all lexical relations

are symmetrical (see example (2)), while most of
the similarity measures defined in distributional
semantics are, like the cosine.

(2) a. I saw a dog → I saw an animal
b. I saw an animal � I saw a dog

Hypernymy is an asymmetric relation. Au-
tomatic hypernym identification is a very well-
known task in literature, which has mostly been
addressed with semi-supervised, pattern-based ap-
proaches (Hearst, 1992; Pantel and Pennacchiotti,
2006). Various unsupervised models have been
proposed (Weeds and Weir, 2003; Weeds et al.,
2004; Clarke, 2009; Lenci and Benotto, 2012;
Santus et al., 2014), based on the notion of Distri-
butional Generality (Weeds et al., 2004) and on
the Distributional Inclusion Hypothesis (DIH)
(Geffet and Dagan, 2005) which has been derived
from it.

1.1 The pitfalls of the DIH
The DIH aims at providing a distributional corre-
late of the extensional definition of hyponymy in
terms of set inclusion: x is a hyponym of y iff the
extension of x (i.e. the set of entities denoted by
x) is a subset of the extension of y. The DIH turns
this into the assumption that a significant number
of the most salient contexts of x should also ap-
pear among the salient contexts of y. While this
is consistent with the logical inferences licensed
by hyponymy (cf. (2)), it does not take into ac-
count the actual usage of hypernyms with respect
to hyponyms. Consider for instance the following
examples:

(3) a. A horse gallops ?→ An animal gallops

b. A dog barks ?→ An animal barks

These inferences are truth-conditionally valid:
whenever the antecedent is true, the consequent is
also true. However, they are not equally “prag-
matically” sound. In fact, the fact that one uses
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horse dog animal
gallop 216 – 7
bark – 869 16

Table 1: Co-occurrence frequency distribution ex-
tracted from the ukWaC corpus

a sentence like A dog barks does not entail that
in the same situation one would have also used
the sentence An animal barks. The latter sen-
tence would be pragmatically appropriate only in
cases in which one knows that something is bark-
ing, without knowing which animal is producing
this sound. However, the latter condition hardly
applies, since barking is a very typical feature of
dogs: knowing that something is barking typically
entails knowing that it is a dog, since we know that
barking is something dogs do. The same argument
also applies to the case of horse and galloping.

The problem of the DIH is that the assumption
it rests on, namely that the most typical contexts
of the hyponym are also typical contexts of the
hypernym, is not borne out in practical language
usage because of pragmatic constraints. The most
typical contexts of an hyponym are not necessar-
ily the typical contexts of its hypernym. This is
also proved by a simple inspection of corpus data,
as reported in Table 1. Despite animal (161, 107)
is more frequent than dog (128, 765) and horse
(90, 437), its co-occurrence with bark and gallop
is much lower than the ones of the hyponyms:
bark and gallop are not typical contexts of animal.

If the inferences in (3) are pragmatically odd,
the following ones are instead fully acceptable:

(4) a. A horse gallops → An animal moves
b. A dog barks → An animal calls

Salient features of the hypernym are indeed sup-
posed to be semantically more general than the
salient features of the hyponym. Santus et al.
(2014) tried to capture this fact by abandoning the
DIH and introducing an entropy-based measure to
estimate of informativeness of the hypernym and
hyponym contexts, under the assumption that the
former have a higher entropy, because they are
more general (e.g. move vs. gallop).

In this paper, we address the same issue by
amending the DIH, to make it more consistent
with the actual distributional properties of hy-
ponyms and hypernyms. Therefore, we introduce
AHyDA (Automatic Hypernym Detection with

feature Augmentation), a smoothed version of the
DIH: given a context feature f that is salient for
a lexical item x, we expect co-hyponyms of x to
have some feature g that is similar to f , and an hy-
pernym of x to have a number of these clusters of
features. To remain in the animal sounds area, we
expect a dog to bark and a duck to quack and an
animal to produce either of those sounds or to co-
occur with a more general sound-emission verb.

2 AHyDA: Smoothing the DIH

All the measures implementing the DIH are based
on computing the (weighted) intersection of
the features of the hyponym and the hypernym.
This is then typically divided by the hyponym
features. AHyDA essentially proposes a new way
to compute the intersection of the hyponym and
hypernym contexts. Given a lexical item x, we
call Fx the set of its distributional features. Note
that features need not be pure lexical items. In
general, we define f as a pair (fw, fr) where fw
is typically a lexical item, and fr is any additional
contextual information, in the present case a
pattern occurring between x and fw, as explained
in section 3.1. The core novelty of AHyDA is to
use a smoothed version of Fx, called F ′

x.

The idea is shown in figure 1, which provides
a simplified graphical example of the intersection
operation. Consider a case where the target
horse has some feature with gallop as a lexical
item, for example a feature f = (gallop, sbj)
meaning that horse is a possible subject of gallop.
Given what we have said in Section 1.1, we do
not expect animal to share this horse-specific
property. So, instead of looking for this par-
ticular feature among the ones of animal, we
generate a new set Nhorse(gallop) of features
g = (gw, fr) such that gw is a neighbor of
gallop and is a feature (with the same syntactic
relation sbj) of some neighbor of horse. Sup-
pose that run, move, and cycle are neighbors of
gallop. As run and move are also features of
some neighbor of horse (e.g., lion), we would
have Nhorse(gallop) = {gallop, run,move}.
Conversely, since cycle is not a feature of a close
neighbor of horse, it would not be included in the
expanded feature set.
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Figure 1: An example of smoothed intersection.
Black arrows indicate semantic similarity with
gallop, items with the blue background are the
ones included in Nhorse(gallop).

Mathematically, we define the expanded feature
set F ′

x as follows:

F ′
x = {(f,Nx (f)) ∀f ∈ Fx} (1)

Nx (f) = {g|g = (gw, fr)} (2)

where the following conditions hold for g:

d (fw, gw) < k ∧ ∃y|d (x, y) < h ∧ g ∈ Fy (3)

where d(x, y) is any distance measure in the se-
mantic space, k and h are empirically set thresh-
old values.
Nx (f) is generated by looking for features g that
are similar to fw, We then check whether this new
feature is shared by some neighbor of the target x,
and eventually include g in Nx (f). This allows us
to redefine the intersection operation between F ′

x

and Fy as:

Fx
′∩̂Fy = {f |f ∈ Fx ∧Nx (f) ∩ Fy �= ∅} (4)

When expanding a feature f into Nx(f), we
expect to find in Nx(f) features that express
the same “property” in different ways. We ex-
pect these features to be shared by hypernyms
more than co-hyponyms, because hypernyms are
supposed to collect features from all their hy-
ponyms, while co-hyponyms lack those of other
co-hyponyms (e.g. lions run but do not gallop).
AHyDA is thus defined as follows:

AHyDA (x, y) =

∑
f∈Fx

|F ′
x ∩ Fy|

|Fx|
(5)

Importantly, AHyDA only considers the aver-
age cardinality of the intersections, without look-
ing at the feature weights. Moreover, the formula

is asymmetric (like the others implementing the
DIH), and therefore it is suitable to capture the
asymmetric nature of hypernymy.

3 Experiments and Evaluation

3.1 Distributional Space

Each lexical item u is represented with distribu-
tional features extracted from the TypeDM ten-
sor (Baroni and Lenci, 2010). In TypeDM, dis-
tributional co-occurrences are represented as a
weighted tuple structure, a set of ((u, l, v), σ),
such that u and v are lexical items, l is a syntag-
matic co-occurrence link between u and v and σ is
the Local Mutual Information (Evert, 2005) com-
puted on link type frequency. Hence, each lexical
item u is represented in terms of features of the
kind (l, v).

In addition to the sparse space, we also pro-
duced a dense space of 300 dimensions reduc-
ing the matrix with Singular Value Decomposition
(SVD). This additional space was used to retrieve
neighbors during the smoothing operation, as it al-
lowed us to perform faster and more accurate cal-
culations for cosines. The sparse space was in-
stead employed to retrieve features and get their
weights.

3.2 Data set

Evaluation was carried on a subset of the BLESS

dataset (Baroni and Lenci, 2011), consisting of tu-
ples expressing a relation between nouns.

BLESS includes 200 English concrete nouns as
target concepts, equally divided between living
and non-living entities. For each concept noun,
BLESS includes several relatum words, linked to
the concept by one of the following 5 relations:
COORD (i.e. co-hyponyms), HYPER (i.e. hyper-
nyms), MERO (i.e. meronyms), ATTRI (i.e. at-
tributes), EVENT (i.e. verbs that define events
related to the target). BLESS also includes the
relations RANDOM-N, RANDOM-J, RANDOM-V,
which relate the targets to control tuples with ran-
dom noun, adjective and verb relata, respectively.

By restricting to noun-noun tuples, we got
a subset containing these relations: COORD,
HYPER, MERO, RANDOM-N. We preprocessed the
dataset in order to exclude lexical items that are
not included in TypeDM. As reported in table 2,
the distribution (minimum, mean and maximum)
of the relata of all BLESS concepts is not even,
and therefore we took this into account while
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relation min avg max
coord 6 17.1 35
hyper 2 6.7 15
mero 2 14.7 53
ran-n 16 32.9 67

Table 2: Distribution (minimum, mean and maxi-
mum) of the relata of all BLESS concepts

evaluating our results.

3.3 Evaluation

We compared AHyDA with a number of direc-
tional similarity measures tested on BLESS, with
the goal of evaluating their ability to discriminate
hypernyms from other semantic relations, in par-
ticular co-hyponyms. Given a lexical item x, Fx

is the set of its distributional features, wx(f) is the
weight of the feature f for the term x:
WeedsPrec - quantifies the weighted inclusion of
the features of a term x within the features of a
term y (Weeds and Weir, 2003; Weeds et al., 2004;
Kotlerman et al., 2010)

WeedsPrec(x, y) =

∑
f∈Fx∩Fy

wx(f)∑
f∈Fx

wx(f)
(6)

ClarkeDE - a variation of WeedsPrec, proposed in
(Clarke, 2009)

ClarkeDE(x, y) =

∑
f∈Fx∩Fy

min(wx(f), wy(f))∑
f∈Fx

wx(f)
(7)

invCL - a new measure introduced in (Lenci and
Benotto, 2012), to take into account not only the
inclusion of x in y but also the non-inclusion of
y in x. The measure is defined as a function of
ClarkeDE (CD).

invCL(x, y) =
√

CD(x, y)(1− CD(x, y)) (8)

We used the cosine as a baseline, since it is
a symmetric similarity measure and is commonly
used to evaluate semantic similarity/relatedness in
DSMs. In the definition of Nx(f), the target and
feature neighbors are identified with the cosine,
setting the k and h parameters to 0.8 and 0.9 re-
spectively.

To avoid biases due to the relata distribution
among concepts, for each target x, we computed

the minimum and maximum number of items hold-
ing a relation with x, and performed maximum

minimum ran-
dom samples where each relation is presented with
minimum relata, and then averaged the results.
For example, consider the situation where x has
3 hypernyms, 6 co-hyponyms, 6 meronyms and
12 random nouns. In this situation, the minimum
number of relata for x would be 3, while the maxi-
mum would be 12. Therefore, we would perform 4
random sampling for each relation, averaging the
results in order to obtain a singular measurement
for each relation in the end.

We adopted the same evaluation methods de-
scribed in Lenci and Benotto (2012): plotting the
distribution of scores per relation across the BLESS

concepts, and calculating Average Precision (AP).

3.4 Results

Table 3 summarizes the Average Precision ob-
tained by AHyDA, the other DIH-based measures,
and the cosine. Although AHyDA’s improvement
is not big in hypernym detection, co-hyponyms get
lower values of AP, thus showing that smoothing
the intersection allows a better discrimination be-
tween the two classes. It is worth remarking that
the values for the other measures are generally
higher than those reported by Lenci and Benotto
(2012), because of the evaluation on the balanced
random samples of relations we have adopted. We
also reported, in table 4, the AP values obtained
through the standard measures, without employ-
ing the feature augementation procedure. Altough
values for hypernyms do not change much, the
main differences are in the coord values, which
are generally higher without feature augmentation.
As mentioned in section 3.1, the results for all the
measures are obtained using the sparse space. The
reduced space was employed to compute the Co-
sine baseline.

As regards the AP values for hypernyms, we
must notice that not all hypernyms in BLESS share
the same status: some of them are what we would
consider logic entailments (e.g. eagle → bird),
others depict taxonomic relations (e.g. alligator
→ chordate), some are not true logic entailments
(e.g. hawk ?→ predator)

Figure 2 shows the average score produced with
the new measure. Here hypernyms are neatly
set apart from co-hyponyms, whereas the distance
with meronyms and with the control group, ran-
doms, is less significative.
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measure coord hyper mero ran-n
Cosine 0.77 0.31 0.21 0.14
WeedsPrec 0.29 0.50 0.32 0.16
ClarkeDE 0.31 0.52 0.24 0.14
invCL 0.28 0.52 0.32 0.17
AHyDA 0.20 0.49 0.33 0.23

Table 3: Mean AP values for each semantic rela-
tion achieved by AHyDA and the other similarity
scores

measure coord hyper mero ran-n
Cosine 0.77 0.32 0.21 0.14
WeedsPrec 0.34 0.51 0.28 0.15
ClarkeDE 0.36 0.51 0.27 0.16
invCL 0.31 0.51 0.29 0.16

Table 4: Mean AP values for each semantic rela-
tion achieved by the cited similarity scores, with-
out employing feature augmentation

Figure 3 shows the average scores produced by
AHyDA when applied to the reverse hypernym
pair. It is interesting to notice that in this case
AHyDA produces basically the same results as
random pairs. This suggests that AHYDA cor-
rectly predicts that hyponyms entail hypernyms,
but not vice versa, thereby capturing the asymmet-
ric nature of hypernymy.

4 Conclusion

The Distributional inclusion hypothesis has
proven to be a viable approach to hypernym
detection. However, its original formulation
rests on an assumption that does not take into
consideration the actual usage of hypernyms in
texts. In this paper we have shown that, by adding
some further pragmatically inspired constraints,
a better discrimination can be achieved between
co-hyponyms and hypernyms. Our ongoing work
focuses on refining the way in which the smooth-
ing is performed, and testing its performance on
other datasets of semantic relations.
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