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Abstract. The feature interaction problem has been recognized as a
general problem of software engineering. The problem appears when
a combination of features interacts generating a conflict, exhibiting a
behaviour that is unexpected for the features considered in isolation,
possibly resulting in some critical safety violation. Verification of absence
of critical feature interactions has been the subject of several studies. In
this paper, we focus on functional interactions and we address the prob-
lem of the 3-way feature interactions, i.e. interactions that occur only
when three features are all included in the system, but not when only
two of them are. In this setting, we define a widely applicable definition
framework, within which we show that a 3 (or greater)-way interaction is
always caused by a 2-way interaction, i.e. that pairwise sampling is com-
plete, hence reducing to quadratic the complexity of automatic detection
of incorrect interaction.

1 Introduction

The specification of a complex software system may be simplified by decomposing
the system into features that identify units of functionality. Feature-oriented
software development of safety critical systems can simplify the configuration of
large systems, as well as their verification and certification, by concentrating the
verification efforts on single features, rather than on the whole system. But this
happens only if a high degree of independence between features can be assumed,
while frequently instead the feature interaction problem can be encountered, a
problem which occurs when the concurrent composition of two (or more) features
generates an unexpected behaviour.

The feature interaction problem has indeed been recognized as a general
problem of software engineering in all those contexts where features are the
basic functionality units that are composed to build up complex software sys-
tems [1,9,25,31], as also recently advocated in [2]. In particular, if a feature
interaction affects critical systems, it may cause safety requirements violation;
hence verification of the absence of feature interactions becomes a very important
aspect of safety certification. The question is how many features are required to
generate an interaction, two or more than two. In this paper, we concentrate on
the so-called “3-way interaction”. The problem was first discussed in the feature
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interaction detection contest at [18], where the community suggested that there
are two types of 3-way interaction: those reducible to an interaction between a
pair of features and those where the interaction only exists if all three features
are present. The latter were termed “true” 3-way interactions.

The very existence of such cases is still under discussion, in the sense that
there does not seem to be a consensus on the definition of the problem itself. For
example, in [17,18] the existence of 3-way interactions is negated but with no
proof. On the other end, in [3] an example of 3-way interaction is reported. The
question is quite important for the verification of safety critical systems that are
built by feature-oriented development: if we can limit the definition of features
to a framework where “true” 3-way feature interactions do not exist, then the
problem of checking for feature interactions can be reduced to checking features
pairwise, hence with reduced (quadratic) verification complexity. In order to give
a contribution to the New Feature Interaction Challenge [2], this paper offers a
framework of feature definition by condition-action rules and interleaved compo-
sition, and presents a definition of a feature interaction as when the execution of
one feature disallows the execution of another or when the two possible results
of the interleaved execution of two features are inconsistent with each other.
In this framework we then prove that any 3-way interaction is due to a 2-way
interaction. In regards to verification, this amounts to say that checking by pair-
wise sampling [20,21,26] the combinations of features is complete with respect
to feature interaction detection.

The proposed framework is contrasted with cases reported in the literature of
3-way interactions and discusses why these are not considered true 3-way interac-
tions according to our behavioural interpretation of composition and interaction.

In the following, we define a running example: the features of a metro train
(Sect. 2), and the formalisation of features and feature composition (Sect. 3). We
then prove that the interactions among three features can always be revealed
by checking for the 2-way interactions, therefore reducing the complexity of the
verification problem (Sect. 4). A section on related work concludes the paper.

2 Running Example

As an example, we consider a control system composed by the following features,
each feature devoted to the actuation of a separate requirement over safety-
related behaviour of a metro train, regarding the usage of emergency brakes and
the opening of doors, in normal situations or when a smoke sensor detects a
fire. The train can be travelling in a tunnel, in which case safety regulations
require that the train cannot be stopped even in case of fire. On the other hand,
doors, normally opened only at stations, cannot be opened, even in emergency
situations, when the train is running. If not in a tunnel, the train can normally
be running in the open air or at standstill in a station. We assume that there are
smoke sensors and that whether the train is running in a tunnel or at standstill
in a station or elsewhere is known to the system through proper positioning
sensors.
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SD Station & Doors: If the train is at a station, the doors are opened
DS Danger in Station: If the train is at a station and there is a danger

in the station, doors are closed and the train
leaves the station

EH Emergency Handle: If the emergency handle is pulled, actuate the
emergency brake

TB Tunnel & Brake: If the train is in a tunnel, disable the emergency
brake

FA Fire alarm: Raise a fire alarm when smoke is sensed
FB Fire alarm & Brake: If fire alarm is raised and the train is running,

actuate the emergency brake
FE Fire alarm & Escape: If fire alarm is raised, open the doors

It is easy to note that, due to some interactions between the above features,
we may have interacting behaviours. It is also apparent that, in order to provide
a safe global behaviour, some form of conflict resolution is needed, possibly
prioritizing some features with respect to others.

Below, we discuss all the possible interactions between the metro features
and address their detection.

For instance, EH interferes with TB since, if applied concurrently, i.e. when
the emergency handle is pulled and the train is in a tunnel, their actions conflict.

A 3-way interaction refers to those cases in which the interaction is generated
by the composition of three features. Apparently, in the metro example there is
a 3-way interaction among FA, FB, and TB. Assume that smoke is sensed while
the train is in a tunnel, FA and FB are applied in sequence:

smoke sensed
FA−−→ fire alarm raised

FB−−→ emergency brake

and interact with TB disabling the emergency brake. In the paper we will provide
a constructive technique to detect these interactions with pairwise analysis: such
a technique will detect that the interaction is between FB and TB.

3 Formalisation of Features and Feature Interaction

Feature interaction is due to a mutual interference resulting in an unexpected
behaviour. The most common way to define a feature interaction is based on
behaviours:

“A feature interaction occurs when the behavior of one feature is affected
by the presence of another feature” [1].
“A feature interaction is some way in which a feature or features modify
or influence another feature in defining overall system behavior” [32].



204 A. Fantechi et al.

Similar definitions can be found e.g. in [11,23,27]. This mutual influence
of features is often described in an action oriented way, by listing the pairs
of conflicting actions, and then deriving possible interactions between features
including these actions. In a complementary way, we consider a state-based app-
roach [24] and look at the effect of the features on a shared state. Indeed, any
time two features F and F ′ access a shared state, and at least one of the accesses
updates it, there might be an interaction.

The main purpose of this paper is to prove that, in the considered frame-
work, the behavioural interactions between three features are always due to the
interaction between two of the three considered features, therefore reducing the
complexity of the verification problem to look for pairwise interaction. To do
this we need to perform an analysis of the functional behaviour of feature com-
binations.

Without loss of generality, we define a framework in which features are
described as condition-action rules and systems behave as the parallel compo-
sition of features [23,30]. In this framework, inspired by the action systems [5],
if the action part of a condition-action rule of a feature is executed, it changes
the state of the system: the state of a system is seen as a set of predicates that
hold on some global, shared variables. A feature is said to be enabled when its
condition is satisfied by the current state of the system. The application of the
feature can occur only when it is enabled, having the effect of changing the state
of the system according to its action. The computation of the system is given
by a sequence of feature applications. When two or more features are enabled,
one is selected non-deterministically.

In this section, we define a formalisation for the computation state and give
the semantics of features in terms of transition systems.

3.1 Semantics of a Feature

Definition 1. Let S be a finite set of states. Given a set AP of atomic propo-
sitions, with p ranging in AP , a computation state s ∈ S is defined as a
conjunction of literals:

s :: = ⊥|p| ∼ p|s ∧ s

where ⊥ is the empty state, in which nothing is said on any atomic proposition.

Example 1. Examples of computation states are: s1 = doors open, s2 =
tunnel∧ ∼ doors open, s3 =∼ tunnel ∧ doors open ∧ smoke sensed.

We include negative atoms for convenience. An alternative modeling would have
been defining states as conjunctions of atomic propositions, in a closed world
assumption.

We assume the set of actions to be in correspondence with the set of predi-
cates, i.e. each action α has an effect on the truth value of a predicate p: α can
make p true or make p false.
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Definition 2. A feature is defined by a pair: F = 〈C, [A]〉, where C is a boolean
condition to be evaluated on the current state, and [A] is an (atomic) sequence
of actions on the state.

Example 2. The features of our running metro example can be specified as:
SD = 〈station, [open doors]〉
DS = 〈station ∧ danger, [close doors, leave station]〉
EH = 〈ehpulled, [activate emergency brake]〉
TB = 〈tunnel, [disable emergency brake]〉
FA = 〈smoke sensed, [raise fire alarm]〉
FB = 〈fire alarm raised ∧ running, [activate emergency brake]〉
FE = 〈fire alarm raised, [open doors]〉

An action α transforms a state s in a state α(s).

Definition 3. We say that action α writes p when α makes p true, i.e. α(⊥) =
p and that α writes ∼ p when α falsifies p, i.e. α(⊥) =∼ p.

For instance, action open doors writes doors open, disable emergency brake
writes ∼ emergency brake, and leave station writes ∼ station. We define now
the effect of an action on a general state.

Definition 4. Given a state s, and a literal p, we say that s |= p when p occurs
as a literal in the conjunction of literals representing s.

Definition 5. Let s be a state, p a predicate, and α an action writing p, we
define the effect of the application of α in s, α(s) by cases:

α(s) =

⎧
⎨

⎩

s ∧ p if s 	|= p and s 	|=∼ p
s if s |= p
ŝ ∧ p if s |=∼ p, i.e. s can be written as ŝ∧ ∼ p

We have a symmetric definition when α writes ∼p. For instance, let s be a
state not telling whether the doors are open or not, then:

close doors(s) = s∧ ∼ doors open

Therefore, action close doors is the identity when applied on a state with
doors already closed, and changes the truth value of doors open when initially
true, i.e.:

close doors(s∧ ∼ doors open) = s∧ ∼ doors open

close doors(s ∧ doors open) = s∧ ∼ doors open

To define the semantics of a feature, we model the effect on a state of a
sequence of actions as an atomic transition.

Definition 6. Let A be a sequence of actions α1, . . . , αn, we say s
A−→ s′ when

s′ = αn(αn−1(...α1(s)...)).
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Definition 7. We say that a feature F = 〈C, [A]〉 is enabled in a state s when
s |= C.

Definition 8. The semantics of feature F = 〈C, [A]〉 is the set of all pairs
of states (s, s′) ∈ S × S such that F is enabled in s and s

A−→ s′.
In such a case, we also write s

F−→ s′.

Example 3. As an example, consider feature FA, and a state s satisfying
smoke sensed. For simplicity we take s = smoke sensed. We have:

smoke sensed
FA−−→ smoke sensed ∧ fire alarm raised

3.2 Composition of Features

Definition 9. A software system is specified as the parallel composition of
features: F1|| . . . ||Fn.

Example 4. The metro system can be specified as : SD||DS||EH||TB||FA||
FB||FE.

The semantics of a software system composed of features is given as a
labeled transition system (S,S0,F ,→) where: S is the set of states, S0 ⊆ S is a
set of initial states, F is the set of features, and →⊆ S × F × S is a transition
relation, whose elements, written s

F−→ s′, are given by all the pairs of states s, s′

of the semantics of each feature F , according to Definition 8.

Definition 10. According to an interleaving semantics of the parallel composi-
tion, the semantics of a software system F1||F2, with F1 = 〈C1, A1〉 and
F2 = 〈C2, A2〉, is given by the labeled transition system (S,S0,F ,→), generated
by the alternative sequences of transitions possible from any initial state in S0,
applying one of the features, followed by the other one.

Hence, the application of features F1||F2 to an initial state s generates the
following transitions:

– s
F1−→ s′ F2−→ s′′ if s |= C1 and s′ |= C2

– s
F2−→ s′ F1−→ s′′ if s |= C2 and s′ |= C1

– s
F1−→ s′ if s |= C1 and s′ 	|= C2

– s
F2−→ s′ if s |= C2 and s′ 	|= C1

We write:

s
F1||F2====⇒ s′

as a shorthand for any sequence of transitions from s to s′ applying the features
in the parallel composition.
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Definition 10 easily extends to the parallel composition of n features:
F1|| . . . ||Fn:

s
F1||...||Fn======⇒ s′

is the result of applying, in any possible ordering, the features F1, . . . Fn.

Example 5. Let us consider F1||F2, where: F1 = 〈p, [α1]〉, F2 = 〈p, [α2]〉, α1

writes r, and α2 writes q. We have:

p
F1−→ p∧r

F2−→ p∧r∧q and p
F2−→ p∧q

F1−→ p∧r∧q

i.e. p
F1||F2====⇒ p∧r∧q and we have two traces from p to p∧r∧q.

It is not guaranteed that all traces of F1||F2 from s converge in a unique

state: it can happen that s
F1||F2====⇒ s′ and s

F1||F2====⇒ s′′ with s′ 	= s′′, as in the
following example.

Example 6. Now consider F1||F3 where F1 is as above, F3 = 〈p, [α3]〉, and α3

writes ∼ r. We have:

p
F1−→ p∧r

F3−→ p∧∼ r and p
F3−→ p∧∼ r

F1−→ p∧r

i.e. p
F1||F3====⇒ p ∧r and p

F1||F3====⇒ p∧∼ r

Example 6 introduces a feature interaction: feature F1 interacts with F3 since
F1||F3 can lead to different states, depending on the order of feature application.

In Sect. 3.3, we formalise the concept of interaction.

3.3 Formalisation of Interaction

We now give a formal definition of interaction between pairs of features.

Definition 11. There is an interaction in F1||F2, where F1 = 〈C1, [A1]〉 and
F2 = 〈C2, [A2]〉, when, given a state s enabling both, i.e. such that s |= C1 ∧ C2,
one of the following two situations occurs:

1. s
F1−→ sa, and sa 	|= C2 , or s

F2−→ sb and sb 	|= C1, or both, i.e.:

s
F2

���
��F1

����
�

s
F2
���

��F1

����
�

s
F2
���

��F1

����
�

sa
×
��

sb
F1��

or sa
F2 ��

sb
×
��

or sa
×
��

sb
×
��sd sc

2. s
F1||F2====⇒ sc, s

F1||F2====⇒ sd and sc, sd are inconsistent (that is, sc ∧ sd = false)
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s
F2

�����
��F1

�����
��

sa
F2 ��

sb
F1��

sc sd with sc ∧ sd ⇔ false

Example 7. There is an interaction of the first kind in SD||DS. In fact, in
case of danger, if DS is applied first, it takes to a state that satisfies the condi-
tion: ∼ station and where SD is no longer enabled.
There is an interaction of the second kind in EH||TB since they both can be
applied if the condition ehpulled∧tunnel holds, and their executions go to incon-
sistent states.

Dually, according to Definition 11, the system F1||F2 is interaction free either
if the features can never be applied in the same state (C1 ∧ C2 ⇔ false) or if
the execution of any of them does not falsify the condition of the other and the
order of execution is irrelevant, i.e. the diagram commutes:

s
F1

�������F2

�������

sa

F2 �����
��

sb

F1��			
		

sc
Definition 11 is extended straightforwardly to the parallel composition of

three features: the features interact when there exists a state s enabling all
of them, and the paths of the transition system rooted in s do not converge
in a common final state. This happens, for instance, in FA||FB||TB, taking
s = smoke sensed ∧ tunnel.

We also consider a second form of 3-way interaction arising in a situation
where such a state cannot be built. This happens when a feature is enabled by
p and another by ∼ p, for some p, and a third feature writes ∼ p (p resp.). As
the most general case, consider F1||F2||F3, where:

F1 = 〈p, [writes r]〉 F2 = 〈∼ p, [writes s]〉 F3 = 〈q, [writes ∼ p]〉

In this case the three features are not enabled together in any state, but the
triggering of F3 enables F2 as well, so that starting from a state in which F1

and F3 are enabled, we can derive the following diagram, rooted in p ∧ q, which
does not converge to a unique state. Actually, this 3-way interaction is due to a
pairwise interaction in the subsystem F1||F3:

p ∧ q
F1

		






 F3



�����

p ∧ r ∧ q
F3 ��

∼ p ∧ q
×
��∼ p ∧ r ∧ q
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4 No True 3-Way Interaction

Now, we can address the main point of the paper and prove that, under our
definition of feature interaction, any 3-way interaction is due to the interaction
between two of the considered features. We first observe that there is a construc-
tive way to find a (minimal) state enabling two (or more) features: it is sufficient
to take the conjunction of their conditions.

Proposition 1. Let F1, F2, and F3 be a triple of interacting features, then there
is an interaction between at least a pair of them.

Proof. The 3-way interaction means that for some s satisfying the conditions of
the three features we have one of the following cases:

Case 1. It is not possible to complete all the possible sequences of transitions

for s
F1||F2||F3======⇒ s′, i.e. one of the six sequences

s
F1 ��

F2

�������� F3

��







... sa
F3

��







F2

����
��

�
...

sc
F3 ��

sd
F2��

sg sh

stops either after one step or two steps, because the conditions of the remaining
feature(s) are not satisfied.

– Case 1a. (one step). Let a s
F1−→ sa with sa not satisfying the condition of F2

(resp. F3),

s
F1 ��

F2

�������� F3

��







... sa
F3

��








×��F2



���

...

sd
F2��

sh

then F1 interacts with F2 (resp.F3).

– Case 1b. (two steps). Let the subtree rooted in sa be incomplete, e.g.

s
F1 ��

F2

�������� F3

��







... sa
F3

��







F2

����
��

�
...

sc
×F3
��

sd
F2��

sh
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in this case, F2 interacts with F3.

Case 2. In the semantics of F1||F2||F3, there are (at least) two sequences of
transitions rooted in a common state and reaching two states which are incon-
sistent, i.e., for some s:

s
F1||F2||F3======⇒ s′ and s

F1||F2||F3======⇒ s′′

and s′ ∧ s′′ = false. We build the following tree and reason by cases. The tree
is partial since it is sufficient to find two sequences. We can assume that none
of them has F3 at the first step (the general result is obtained with a label
switching).

s
F2

������������
F1

		�����������

sa
F3

�����
��F2

�����
��

sb
F3

������F1

������

sc
F3 ��

sd
F2��

se
F3 ��

sf
F1��

sg sh si sj

– Case 2a. sg, sh are inconsistent (similar reasoning for si, sj): in this case the
subtree rooted in sa leads to inconsistent states, hence there is an interaction
in F2||F3.

– Case 2b. sg, si are inconsistent. Both sg and si are the result of the application
of F3. This means that already sc, se were inconsistent, hence the interaction
is in F1||F2.

– Case 2c. sh, sj are inconsistent. This entails that there is a predicate p true in
sh and false in sj (or vice-versa). We restrict our attention to the interested
tree fragment.

s
F2

����������
F1

���������

sa
F3 ��

sb
F3��

sd
F2 ��

sf
F1��

sh |= p sj |=∼ p

Assume p was false in s (similar reasoning with p true in s). Predicate p can
be true in sh only if there is a feature Fi writing p. As a consequence there is
another feature Fj writing ∼ p (otherwise, since Fi is also in the right path, p
would be true in sj). We can say that Fi 	= F1, since F1 makes the last step
before sj . Similarly, we can say that Fj 	= F2.

We are thus left with three cases:
(2.c.1) F2 writes p and F1 writes ∼ p
(2.c.2) F2 writes p and F3 writes ∼ p
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(2.c.3) F3 writes p and F1 writes ∼ p
We only show the proof of the first one, since the other cases use the same
reasoning. Let F2 write p and F1 write ∼ p. We consider the tree rooted in the
subset of s satisfying C1 ∧ C2 (we recall that, for the initial hypothesis of the
proposition, s satisfies C1 ∧ C2 ∧ C3). Either one path is blocked after one step,
or the tree is the following:

C1 ∧ C2F1

��







 F2

����������

F2 ��

sd
F1��

sa |= p sb |=∼ p

In both cases there is an interaction between F1 and F2.

– Case 2d. sh, si are inconsistent (Similar reasoning for sg, sj).

We redraw the interested fragment of the initial tree:

s
F2

�����
��F1

�����
��

sa
F3 ��

sb
F1��

sd
F2 ��

se
F3��

sh si

As discussed above, there must be:

– a predicate p with sh |= p and si |=∼ p;
– a feature writing p and a feature writing ∼ p.

One of these features must be F3, otherwise there is an inconsistency at the first
step proving the interaction between F1 and F2.

State si |=∼ p implies that F3 writes ∼ p.
If F1 writes p we consider the tree rooted in C1∧C3 and prove the interaction

between F1 and F3. Otherwise, F2 writes p, we derive the interaction between
F2 and F3. �

5 Related Work

Li et al. [19] define a technique for the analysis of feature interactions where
features are complex state machines and the paper defines how to abstract their
behaviour in a compact model. Abstraction makes analysis of the composition
of the models much simpler, though sound and complete, with respect to the
analysis of the composition of the base machines. The approach for analysing
the composition of the models is not far from the one proposed in this paper
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for analysing the pairwise composition of features (in our setting features are
already abstract).

Previous work on feature interactions addressed logical inconsistencies
between features, due to conflicting actions, nondeterminism, deadlock, invari-
ant violation, or unsatisfiability, as reported in [4]: that paper presents a method
for measuring the degree to which features interact in feature-oriented software
development, extending the notion of simulation between transition systems to
a similarity measure and lifting it to compute a behavioural interaction score in
featured transition systems.

In [29] a more general definition of feature interaction, in terms of a feature
that is developed and verified to be correct in isolation but found to behave differ-
ently when combined with other features, has been presented showing how such
behavioral interactions could be detected as a violation of a bisimulation [22].

In the action-based way to analyse features to detect interactions, pairs of
actions are typically defined to be conflicting in the domain description by an
expert. An interaction arises when, as a result of the features application, two
actions are executed, which were defined as conflicting in the domain description.
In this setting a true 3-way interaction is possible only if a triple of conflicting
actions exists in the domain, and no combination of two of them does. This is an
expert evaluation and we can rely on the results of feature interaction detection
contest at FIW2000 [17,18] where no such an example was found.

The state-based approach addressed in this paper analyses interacting fea-
tures (and their actions) looking at their effect on a shared state. In this line
there is the abstract semantics given in [24], where the state is a set of resources
and the operations on the shared state are abstracted to consider only their
access mode, namely read or write to some resources. Then features interact
when one of them accesses in write mode a resource accessed also by the other,
in any mode. The results presented in Sect. 4 can be extended to this semantics,
which is indeed not far from the one presented here.

An alternative formalisation of the same problem can be obtained using con-
textual Petri Nets with inhibitor arcs [6,7]. Indeed, the read-only arcs of the
contextual nets permit to model a (positive) condition which is not overwritten,
and the inhibitor arcs permit to model the negative conditions. A result similar
to ours – reduction of all triples of conflicting transitions to the conflict of a
pair of them – exists for regular Petri Nets, while, to the best of our knowledge,
nothing has been proved yet for the enriched ones.

In case of an interaction, some conflict resolution strategy should be applied,
and several resolution techniques are proposed in the literature [3,8,10,14,15,24].

5.1 Different Computational Models and Non-functional
Interactions

In order to discuss feature interactions, we have assumed that features are com-
putational bricks that are independently developed and can freely be composed
to achieve the desired functionality, possibly in an incremental development. In
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Fig. 1. This example appears in Sect. 9.1.1 “Higher-order Iteractions” of [3],

this setting, feature interactions resemble the classic notion of race condition in
multithreaded environments.

There are other ways to look at the feature interaction problem, either
because features are used to choose between alternative control flows or because
their composition is subject to non-functional constraints posed by available
resources. In both these views irreducible 3-way (or n-way) interactions can be
observed.

Features and Conditional Compilation. Within the Software Product Line
discipline, features are considered as units of functionality that may be present
or not in different products of the same family. According to our approach, this
can be obtained by composing or not certain features. An alternative common
way to achieve variability in product lines is by referring to presence conditions,
which tell which parts of a software component have to be included if a certain
feature is present.
In Apel et al. [3], presence conditions are configuration tags that drive condi-
tional compilation in a Java-like program including all the features. The example
reported in [3], which we reproduce in Fig. 1, is presented as a case of interac-
tion that occurs only if all three features are selected, and does not occur if only
two are. Indeed, the usage of conditional compilation directives makes line 29
executable only if all the three features UNDO, LOGGING and LOCKING are
selected. If line 29 contains an error (e.g. a null pointer access), this error occurs
only in products that include all the three features, and not in products that
include only two of them.

This case cannot be considered a 3-ways interaction according to our defi-
nition, since it is not an interaction error possibly occurring at run-time, but
rather an error that is present in the code anyway and is activated only if at the



214 A. Fantechi et al.

level of feature selection the proper feature combination is selected: in this way
it is not different from a similar error inside a single #ifdef, that is activated just
by selecting a single feature. For the detection of such an error it is not necessary
to recur to behavioral analysis, but for example a static analysis of the “150%
model”, that is, the code obtained by switching all the features on, can be able
to detect it.

Notice that the use of presence conditions reported in [3] is not amenable to
incremental development, as the code of each feature is intertwined with that of
the other features. A situation of this kind may occur also when delta-oriented
programming or modelling [28] is adopted, in which a new feature may be defined
as a set of changes to an existing program, or model. In this case, if a nested delta
contains an error (similarly to the null pointer access in line 29 in the example
above) this could be activated only if more features are included; again, a similar
error could be detected with proper static analysis techniques run on the deltas.
Notice also that similarly to this example, examples of interactions triggered by
the selection of n features but not triggered by the selection of n − 1 features
can be easily built for any n, as well as examples of interactions triggered only
by some particular set of selections of features.

Although presence conditions are of common use in product line development,
we tend to believe that in the case of incremental development of safety-critical
systems, even when configuration of different products is needed, the entangled
appearance of resulting code, as the one in Fig. 1, makes verification and cer-
tification of software more difficult. A development approach in which features
are separately implemented and verified and then composed appears to be more
suitable for this class of systems, and our results indicate that only pairwise
verification of possible interactions is needed.

Non-functional Interactions. Even if features are properly composed so that
they do not produce undesired functional feature interactions, non functional
ones can occur when features have to compete for the usage of shared (physical)
resources, other than shared variables. Typical cases are memory space and com-
putation time. The usage of such resources typically sums up, and if a maximum
usage threshold is globally reached, unexpected behaviour may occur. Hence, we
could have the case in which two out of three features do not exhaust available
memory, but all three of them do, or the case of a real-time system in which run-
ning only two out of three features satisfy real-time requirements, while running
all three does not.

In general, exceeding a resource usage threshold may be triggered by the
selection of n features but not triggered by the selection of n−1 features for any
given n, or may be triggered only by some particular set of selections of features.

6 Conclusions

We have addressed the problem of 3-way functional feature interactions, by giv-
ing a widely applicable definition framework within which we show that such
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cases can be always reduced to 2-way interactions, hence reducing the com-
plexity of automatic verification of incorrect interactions. We believe that other
definition frameworks based on feature composition concepts share the same
property. However, we have also pointed out at different definitions of feature
interactions which admit “true” 3-way interactions, either because they define
features through presence conditions scattered in different software artifacts, or
because non functional feature interactions are considered.
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