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ABSTRACT 

In developing microsimulation models or research databases, it is common 
to discover that the desired data is not available from a single source. 
In such cases, practitioners can merge a pair of sample survey files to 
form a composite microdata file by linking record pairs. Statistical 
merging is a widely-used class of techniques which link records of sam­
ple units which have similar data attributes, but are not necessarily 
the same person or household. 

This paper describes a massive computational study undertaken to inves­
tigate empirically the impacts of merging scheme, distance function, and 
data measurement error on the statistical characteristics of the resul­
tant merge file. Over 7,000 merges of both randomly-generated files and 
national data sets were performed to test the procedures' ability (or 
lack thereof) to create composite files which replicate an actual sample 
drawn from the original population. 

The results indicate specific instances where merging works well and 
other cases in which it does not. The optimal-constrained merge tech­
nique with an absolute difference distance function appears to be the 
best of the methodologies in current use. Other distance functions pro­
posed in the literature yielded extremely poor matches when applied to 
sample survey data. The robustness of merge techniques when bias and 
noise are present is clearly demonstrated as is the need for a reason­
able number of variables in the distance function. 

In addition, the need for modifications to existing merge procedures 
which address their shortcomings is discussed and easily-implementable 
improvements described. 
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PREFACE 

The objective of this research study is to empirically analyze microdata 
files which have been matched using statistical merging techniques. To 
achieve this objective, two major research efforts were undertaken: one 
based on randomly-generated data from theoretically ideal distributions, 
and another which used sample survey data taken from a national data 
set. Although interrelated, these two sets of experiments and their re­
spective conclusions are presented separately in this report in order 
that a reader might focus on different sections according to his or her 
interests. 

The report has the following organization. Section 1 gives an overview 
of statistical file matching, highlighting the techniques in current use 
and the major research issues. Section 2 describes the statistical 
framework and experimental design for each phase of this study and in­
troduces terminology used throughout the remainder of the paper. 

In Section 3, the randomly-generated data experiments and their associ­
ated results are described in detail. Twelve distinct statistical popu­
lations were selected for test file generation, and six merge methods 
implemented. A total of 7,200 matched files were created and analyzed 
to test all combinations of merge scheme and population with 100 repli­
cations of each for statistical confidence. 

The findings from the second study phase, based on sample files drawn 
from the Survey of Income and Education, are presented in Section 4. 
Fifty constrained-optimal matched files were formed to evaluate the ef­
fects on merge file quality, if any, of distance function and data con­
dition (bias and noise). Contrasts are made with unconstrained proce­
dures employed under the same circumstances. 

Finally, an overall summary and set of conclusions for the study are 
given in Section 5. 



PART 1 

BACKGROUND AND OVERVIEW 
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The concept of microanalytic simulation models was developed by Guy 

Orcutt in the mid-1950's [24]. Today, these models abound in govern­

mental agencies and research organizations and are used widely for poli­

cy analysis and projection of program needs. Examples include the var­

ious versions of the Transfer Income Model (TRIM), the behavioral model 

DYNASIM, and the .tax policy simulations at the U.S. Department of the 

Treasury and at Brookings Institute. 

At the heart of these models are sample survey files, or microdata. 

These files consist of data records for a representative set of decision 

units (individuals, households, taxpayers, firms, etc.) which are pro­

cessed by the simulator individually with data collected to identify ag­

gregates, distributions, and interactions. By working at the record 

level, this modelling technique is very flexible and can accommodate as 

much detail as desired. 

1.1. Microdata Files 

While the recording unit may vary, microdata files usually repre­

sent the national population or a major subset such as taxpayers or So­

cial Security system participants. Various sampling schemes are used in 

collecting the data, hence each record includes a weight indicating the 

number of population units it represents. These weights often differ 

among records in a given file. 

Microdata files are created as byproducts of ongoing governmental 

programs, from legislative mandate, or as special comnnssioned studies. 

For example, both the I.R.S.'s Statistics of Income (SOl) and Social Se­

curity Earnings (SSA) files are drawn from data collected in the process 

of program implementation and control. The U.S. Constitution mandates 
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the taking of a decennial census, subsets of which . are used as micro­

data, and the Current Population Survey (CPS) is performed monthly to 

determine the unemployment rate, as required by law. The Survey of In­

come and Education (SIE) was a special study, as are numerous 

university-based surveys. 

For the model designer and user, there are several pertinent char­

acteristics of microdata files. First, they are expensive to create, on 

the order of $10 millions each. Hence, their construction is not a 

trivial undertaking. Second, several versions are often created to 

.. correct .. the data, for underreporting for example, through editing pro­

cedures. Third, a variety of sampling designs may be used, including 

stratified, clustered, and simple randomized, in order to combine infor­

mation richness with brevity. 

Fourth, the end product of these sometimes elaborate machinations 

is a multi-attribute representation of the underlying population, in­

cluding all interactions and distributions of the reported data items. 

The distributional and interaction details are especially important for 

microanalytic models since they operate at the record level and base 

their computations on combinations of item values. Finally, by virtue 

of taking a middle ground between a census and population aggregates, 

these files are efficient from both a computational and information­

content standpoint. 

1.2. Limitations of Individual Samples 

As illustrated by files such as the SOl and CPS, microdata are of­

ten collected primarily for the construction of aggregates or for pro-

gram implementation, analysis, and control. Their use as general 
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research data bases or in microanalytic simulation models is of second­

ary concern in the sample survey designs, an aspect which creates prob­

lems for these applications. 

As models are built and policy proposals are analyzed, data are of­

ten required which (a) are not part of the current program, study, or 

system, as when new tax deductions are .considered, or (b) are of superi­

or quality since sample survey items are deemed to be unreliable, as 

with business income on the CPS. 

The model user has four choices available: (1) commission a new 

study, at great expense and investment of time, (2) ignore the variables 

in question, and jeopardize the validity of the model's results, (3) im­

pute the missing or unreliable items into an existing file, using meth­

ods which often ignore the distributional and interaction characteris­

tics of the variables in question, or (4) merge a pair of microdata 

files to combine the information from two surveys. This last option, 

file merging, is currently in widespread use and is investigated in this 

paper. 

1.3. Microdata File Merging 

The basic idea behind file merging, or matching, is to combine one 

file A with another file B to form a composite file C with all data 

items from the two original files. This is accomplished by selecting 

pairs of records to match based on data items which are common to both 

files. The schemes for performing the matching process fall into two 

general categories: exact and statistical matching. 

Exact matching uses unique-valued common items to mate records 

for the same individual in both files. By using a unique identifier, 
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such as a social security number, the matching process is theoretically 

a simple sort and merge operation. Problems with this approach include: 

insignificant overlapping of samples causing few records to be matched, 

absence of or error in the "unique" identifiers, confidentiality re­

strictions which preclude legal linking of records, and the expense of 

handling a large number of exceptions. 

Statistical merging (also called synthetic, stochastic, or attri­

bute matching or merging) mates similar records using several common 

items with non-unique values. By matching like records, file C contains 

records which may be composites of two different persons, but whose at­

tributes are similar enough for research purposes. There are a variety 

of statistical merging schemes in use today, as discussed below. 

In choosing a methodology, exact matching is obviously preferable. 

But where such a match is not possible, statistical merging is often em­

ployed. 

1.4. Statistical Merging 

A pictorial description of statistical merging is presented in Fig­

ure 1.1. In this drawing, ai represents the weight of the i-th record 

in file A and bj the weights of the j-th record in file B. File C, the 

merged file, contains composite records formed by matching a record in 

file A with a record in file B, and assigning a merge record weight of 

wij• An interrecord dissimilarity measure dij• or distance function, is 

used to choose matched record pairs. The "distance" between a pair of 

records is usually determined from a user-defined function which com­

pares corresponding common items and assigns a penalty value for each 

item pair which differs significantly. These penalties are summed to 



6 

Figure 1.1. 

Statistical File Merging 

FILE A RECORDS FILE 8 RECORDS 

120001 AGtl STATEl I CAP, GAJNl I lsool AGtl STATEl SS, JNCl I 
lsoo I AGJ2 STATE2 I CAP, GAIN2 I 116001 AGI2 STATE2 SS,INC2 

lA• I X1 1i . .. X1Ri I Yli . .. Ysi I BJ X21j ... X2Rj I··· Zrj I 
RECORD COMMON FILE A COMMON FILE 8 
WEIGHT ITEMS ITEMS ONLY 

FILE C (COMPOSITE RECORDS) 

INTERRECORD DISSIMILARITY MEASURE (DISTANCE FUNCTION): 
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create a measure of dissimilarity, with a zero distance meaning all com-

mon items are identical or "close enough." 

There are two,general categories of statistical merges: uncon-

strained and constrained. In an unconstrained merge, file A is desig-

nated the base file and file B the augmentation file. Each base file 

record is matched with the most similar record in the augmentation file; 

the selected file B record is appended to the base file record and the 

base record's weight is used for wij• This is, in essence, sampling 

with replacement since some augmentation file records may not be matched 

while others may be used repeatedly. This is a very popular technique 

as evidenced by its use by Ruggles and Ruggles of Yale and NBER [41], 

Radner of the Social Security Administration [.37 J, <kner and Minarik at 

Brookings Institute [29,32], Statistics Canada [20], and the Bureau of 

the Census. 

In contrast, a constrained merge uses matching without replacement. 

The merging algorithm enforces constraints on the record weights in both 

files to ensure that each record is neither under- nor over-matched 

relative to the number of population units represented. Mathematically, 

the constrained merge model is as follows. 

m n 
I ai = I bj 

i=1 j=1 
(1. 1) 

n 
I wij = ai' i=1, ••• ,m, 

i=1 
(1. 2) 

m 
I wij =· bj. j=1, ••• ,n, 

i=l 
(1. 3) 

Wij >= 0, for all i and j. (1. 4) 
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Constraint (1.1) reflects the assumed equivalent underlying popula-

tion sizes for the two files, although files A and B have m and n rec-

ords, respectively. Some minor adjustments may be needed to accomplish 

this in practice. Again, Wij is the merged record weight for matching 

record i in file A with record j in file B, and the records are not 

matched if wij = 0. Constraints (1.2) and (1.3) allow any record to be 

matched one or more times but such that the merge file weights must sum 

to the original record weights. Negative weights are precluded by 

(1.4). This merging algorithm is currently used by Mathematica Policy 

Research. 

Pictorially, the constrained merge process is depicted in Figure 

1.2 where the leftmost set of circles, or nodes, represent file A rec-

ords with their respective weights, the rightmost nodes the file B rec-

ords and weights, and the connecting arcs the possible record matches. 

A set of wij merge record weights are shown which meet constraints 

(1.1)-(1.4). 

This merge technique can be further refined by requiring the pro-

cedure to 

m n 
minimize I I dijwij 

i=1 j=1 
(1.5) 

subject to (1.1)-(1.4). This model, originally proposed by Turner and 

Gilliam [48] and later derived by Kadane [25], seeks to find the best 

constrained match, the one with the minimum aggregate distance between 

matched records. This optimal constrained merge procedure requires the 

solution of a linear programming problem of extremely large dimensions, 

and is currently used by the U.S. Department of the Treasury [5,10,13, 

14]. 



Figure 1.2 

Constrained Merge Model 

2000 
w II= 400, dl1 =10 

100 

3000 
w mn=1500, dmn=100 

CPS . CPS Record Matches SOl 
Record Records with Assigned Records 
Weights Weights and Distances 
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1600 

3100 

SOl 
Record 

Weights 

9 
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1.5. Statistical Aspects of Merging Techniques 

Unconstrained procedures utilize (1.5), subject to (1.1), (1.2), 

and (1.4). thus, by dropping constraint set (1.3), the composite records 

match up well at the record level. However, file B item statistics in 

the composite file are distorted by their implicit reweighting of the 

augmentation records through over- and under-matching. This reweighting 

has a strong impact on important extreme values, variances, covariances, 

and other distributional aspects of the file B items, as shown below. 

While the constrained procedures may not match up as well at the 

record level, their merged files contain all of the information from the 

original files and preserve all statistical properties of the A and B 

data items. Further, if optimization is applied, the best overall con­

strained match is insured. Appendix A details, using two small example 

files, the effect of various merging schemes on the mathematical struc­

ture of the resultant composite file. 

All of these aspects influence the results of the microanalytic 

models and research studies which use the merge file. 

1.6. Underlying Merge Rationale 

When two files are merged, we assume that two files (X1,Y) and 

(X2,Z) are drawn from the same population, where X1 and X2 are the sets 

of common items in file A and B, respectively, and Y and Z the sets of 

items unique to file A and B, respectively (the alignment assumption). 

The objective of merging is to form a file (X1,X2,Y,Z) which corresponds 

statistically to a sample of (X,Y,Z) taken from the same population. We 

do this in order to make inferences about (Y,Z) and (Y,ZIX) 
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relationships, since we can already make (X,X), (X,Y), and (X,Z) infer­

ences from the two original files. 

1.7. Quality Considerations 

A strong theoretical justification for merging or an explanation of 

exactly what is being accomplished by a merge is not available in the 

literature. What is needed is both a measure of the "accuracy" of (X1, 

X2,Y,Z) in replicating (X,Y,Z), and a means for making decisions such 

as: are two files mergable? Is the composite file acceptable? 

Typical reported measures of match accuracy are: counts of X1-X2 

item agreements, item means, and percentage agreement by common item. 

The notion is that a file which matches well on the X-items matches well 

on the Y-Z relationships. Rarely reported are (1) comparisons of covar­

iances, such as cov(Y) in unconstrained matches and cov(Y,Z) versus ex­

pected cov(Y,Z), (2) conditional and joint frequences for augmentation 

variables, and (3) other Y-Z studies. Ruggles, Ruggles, and Wolff [42] 

are the only contributors in this area. Moreover, the following empiri­

cal data points out potential data problems measured by these types of 

statistical measures. 

1.8. Preliminary Empirical Data 

In a recent set of experiments to investigate the effect of merging 

techniques on resultant file quality, subsets of the 1975 SOI and 1975 

SIE were chosen, based .on a nine-state geographic region. There were 

7144 SOI records and 6283 SIE records, representing 12.7 million tax 

filling units, or approximately 15 percent of the population. The X­

variables used in the distance function were: age, race, sex, marital 
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status, family size, wage income, business income, property income, 

spouse's income, and adjusted gross income. The two files were merged 

three ways: unconstrained with SOI as base file, unconstrained with SIE 

as the base file, and optimally-constrained, all using the same distance 

function. 

In Table 1.1, the distribution of SOI wages and business income is 

shown for both the original file and the unconstrained merge file using 

the SIE as the base. Not only are the means not in agreement but the 

distributions are altered, and dramatically in the case of business in­

come. Of course, in the constrained merge, the distributions were iden­

tical to the originals. 

To evaluate the unconstrained procedure's effect on covariance 

structure, the vaFiance-covariance matrices of several common items were 

compared with the original matrices. The median percentage differences, 

by item, are shown in Table 1.2. In some cases, the median error is as 

small as 7 percent, but in others these second-order statistics differ 

greatly. Analysis of the constrained merge verified the expectation of 

zero error. 

1.9. Research Questions 

Despite the widespread use of merging as a data enrichment tech­

nique, there is a paucity of much-needed research in this area. Consid­

er the following questions. 
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Table 1.1 

SOI Item Distributions 

Total SOI Wages Total SOI Business Income 
Income Class ( $ Mi !lions) ($ Millions) 

($000's) Original Unconstrained Original Unconstrained 

< 0 0 0 - 712 - 86 

1-5 12,218 11,699 857 607 

5-10 22,535 21,124 836 1,194 

10-15 24,745 26,639 617 1,497 

15-20 10,326 23,882 677 909 

20-30 21,133 24,930 808 1,402 

30-50 9,597 10,141 785 964 

50-100 3,371 2,741 777 1,108 

100-200 1,010 136 298 601 

> 200 244 0 111 0 --
Total 115, 784 121,291 5,055 8,187 

Mean: $9,108 $9,542 $398 $644 



Table 1.2 

SOl Variance-Covariance Differences 

Common 
Variable 

Age 

Family size 

Wages 

Business income 

Farm income 

* Property income 

Sp.ouse income 

Adjusted gross income 

Median Variance-Covariance 
Error Relative to Original 

Unconstrained 
SIE 

31.2% 

35.5 

7.3 

72.1 

97.7 

78.5 

73.5 

9.9 

Unconstrained 
SOl 

26.4% 

17.4 

23.9 

38.4 

88.8 

850.4 

31.0 

24.4 

*Interest +dividend+ rental income. 

14 
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1.9.1. Constrained Versus Unconstrained Techniques 

When does either procedure create a match file which is statisti­

cally equivalent to a valid (X,Y,Z) sample drawn from the population? A 

goodness-of-match criterion is needed not only to answer this question 

but to compare alternative matching algorithms. 

1.9.2. Covariance of (Y,ZjX) 

What is the effect of omitting or including cov(Y,ZIX) in the 

matching methodology? Do correlated X-variables carry along their cor­

related Y and Z variables properly? 

1.9.3. Distance Functions 

How do the various dissimilarity measures affect the resultant 

merge file? What is a "correct" distance function? (See [25].) In 

practice, distance functions usually reflect the data aspects of great­

est importance in the target microanalytic model or database. 

For other research questions and issues surrounding merging activi­

ties, see [47] by the Federal Commdttee on Statistical Methodology. 

1. 10. Experimentation Overview 

In order to benchmark the various merging schemes and study the 

statistical aspects of the merge process, a series of experiments were 

performed. 

There were two phases to this work. The first phase makes use of 

randomly-generated data in a highly-structured experimental design which 

tests for statistical biases introduced by merge methodology/distance 
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function employed. By knowing the statistical distribution of the popula­

tion from which these hypothetical mic·rodata files are drawn, strong sta­

tistical tests are available for hypothesis testing in an "ideal" environ­

ment. 

A similar design is employed in the second study phase based on a 

public-use national data set. The 1975 SIE file was designated to be a 

test population from which a selected series of samples were drawn. Each 

record item is declared to be in set X, Y, or Z based on data type and 

correlations with other data items. The resultant set of files were 

merged pairwise in various combinations using a variety of distance func­

tions, merge schemes, and levels of data bias and error. By designating 

the full SIE file to be the population, the actual (X,Y,Z) is known, un­

like the usual case in practice. This availability of the complete popu­

lation provides an accurate standard for comparison with any merge file. 

The experimental design was structured to study the effect, if any, 

of the above parameters on Y-Z relationships, standard statistical tests, 

and measures of "goodness" of the match. The study also investigates the 

sensitivity of the various merge algorithms to the distance function used 

and to the introduction of bias and error. 



PART 2 

STATISTICAL FRAMEWORK AND EXPERD1ENTAL DESIGN 
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2.1 Notation and Overview of the Study 

Statistical matching methods have been developed for the purpose 

of combining the information from two microdata files, each collected 

from a separate sample survey, into a single composite file. The objec­

tive of statistical matching is to create a single file which is "equiv­

alent" to a valid sample taken from the population of interest. 

The two input files, A and B, are of the form (Xl,Y) and (X2,Z), 

respectively, where (Xl,Y) is a sample with multivariate observations 

(xi,yi) on each sampling unit, while (X2,Z) is another independent sam­

ple with multivariate observations (xj,zj) on each sampling unit. Note 

that sets Xl and X2 are measured on the same data items (e.g., wages, 

interest income, family size) but the observation sets Xl and X2 are 

measured on different sampling units arising from the two different sur­

veys. The data items (Xl,Y) and (X2,Z) are obtained from either strati­

fied or probability samples taken from the national population. The 

number of observations is typically large, e.g., in excess of 50,000 

records. 

From such files a statistical match would create a single file of 

the form (Xl2,Y,Z) where set Xl2 is a composite of Xl and X2. Presumab­

ly such a file would in practice be used as if it were a valid random 

sample taken from the population of (x,y,z) measurements. Statistical 

inferences would be made with standard methods developed to account for 

sampling variability of such random samples. 

A fundamental question to be addressed is: when do matched files 

really contain the same sampling variability as ordinary random samples? 

It is the goal of this project to empirically investigate the perf or­

mance of some known matching methodologies from this point of view. The 
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experimentation took the general form of (1) creating file A and file B 

from known populations, (2) statistically matching the two files, and 

(3) calculating a statistical summary of the matched files. By repeat­

ing these steps many times for each matching methodology, the empir­

ical sampling results of the matched files may be compared with the 

known sampling properties of valid random samples. 

2.2 Statistical Matching Issues to be Addressed 

2.2.1. Statistical Inference with Matched Files 

One objective of this work is to identify conditions under which 

the matching methodologies will perform well. If a matching technique 

produces matched (Xl2,Y,Z) files which behave like random samples 

(X,Y,Z), then the technique would be totally successful. This, however, 

may be too strict a requirement to reasonably expect. A weaker condi­

tion for judging a matching technique as acceptable would be to require 

that point estimates of the (x,y,z) population parameters be unbiased or 

consistent. Matched files which provided accurate estimates would be of 

great value, even if the precisions of such estimators were difficult to 

access. 

By conducting many replications of the matching process for known 

populations, it is possible to statistically study the properties of 

matched file estimators of key population parameters, such as cov(Y,Z). 

Since the success of a matching technique will quite possibly depend on 

the properties of the sampled population, the experiments were conducted 

for a variety of theoretical populations which are expected to affect 

the matched file estimators in different ways. 
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2.2.2. Constrained ·Versus Unconstrained Procedures 

As described previously, matching procedures may be divided into 

two principal types, "constrained" and "unconstrained. " In each case 

the (Xl,Y) file is linked, record-by-record, to the (X2,Z) file to form 

the (Xl2,Y,Z) composite file. In unconstrained matching, each record in 

the (Xl,Y) file is matched with the single closest record in the (X2,Z) 

file. The composite (xl2,y,z) record weight is the weight of the (xl,y) 

record. In constrained matching, each record in each file may be 

matched one or more times; however, for a given record, the sum of the 

linked record weights must equal the original weight. 

The desirable statistical characteristic of unconstrained matching 

is that the degree of association between Xl and X2 is closer at the 

unit level than the unit level association of Xl and X2 in a constrained 

match. The potential disadvantage of unconstrained matches is that the 

statistical characteristics of (Xl,Z) can be altered in the matching 

process (assuming the (X2,Z) file is the one that is unconstrained). 

The advantage of constrained matching is that all statistical properties 

of (Xl,Y) and (X2,Z) are preserved in the matching process. It must be 

noted that the statistical characteristics of (Xl,Z) might not be the 

same as for (X2,Z) even though the data item Xl can be accepted as stat­

istically equivalent to X2. The disadvantage of constrained matching is 

that unit level associations between Xl and X2 are not as close as can 

be obtained using unconstrained matching. However, for both constrained 

and unconstrained matching the ultimate test is whether or not the 

matched file generated is statistically equivalent to a valid sample of 

(X,Y,Z) drawn from the population of such data items. The question 
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becomes one of identifying the conditions under which either constrained 

or unconstrained matches produce valid results. 

2.2.3. Cov(Y,ZIX) 

If Y and Z are uncorrelated for given levels of X, i.e., 

cov(Y,ZIX=x)=O for all values x, then nonmatching methods distribution 

could be used to estimate the joint of (X,Y,Z) from information obtained 

from the unmatched files alone. As pointed out by Sims [46] if, under 

conditional independence, the joint distributions of (X,Y,Z) admit prob­

ability density functions, then 

fXYZ(x,y,z) = fXY(x,y) • fxz(x,z)/fx(x). (2.1) 

The probability density functions on the right hand side of the above 

equation could all be estimated from the separate (X1,Y) and X2,Z) 

files, and from this the joint distribution of (X,Y,Z) could be esti­

mated. Then any population parameters of interest could be estimated 

using this estimated joint distribution. However, when the data files 

are large the computational effort for this approach may be as great or 

greater than that for matching techniques. Furthermore, statistical 

properties for this estimation approach might require unusual methods 

not available in standard statistical computing packages. 

Current matching techniques usually accomplish the match by align­

ing X1 and X2 values which are close by some distance function criteri­

on. (See distance function discussion below.) Since information about 

Y and Z is not used in the matching criteria, it would seem that the 

created matched files will likely have sample cov(Y,ZIX=x) close to 0. 

This is because when several records have exactly the same x information 

the matching is accomplished within these records by arbitrary or random 
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selection. However, this might not be a problem if in fact there are 

only a few records with the same set of x values. Most matching pro-

jects have not included Y-Z relationships in the matching methodology 

even though it is not assumed that cov(Y,ZIX=x)=O. One of the major ob-

jectives of this project is to examine the results of matched files 

which do not use Y-Z relationships in the matching when in fact 

cov(Y,ZIX=x)*O. 

2.3. Distance Functions and Matching Methodologies 

The matching methodologies considered here all proceed by defining 

a distance function which measures the dissimilarity between a pair of 

records. This function assigns a value dij to any pair of records 

(xi,yi) and (xj,zj) from files A and B, respectively. For a given 

match, say, M, of the two files an overall distance DM is defined as a 

weighted sum of the distances of all matched record pairs as follows: 

(2.2) 

In unconstrained and constrained optimal matches, the final matched file 

is chosen as the match M* which minimizes DM over whatever class of pos-

sible matches is being considered. 

This study focuses on four types of distance functions. There are 

two major groups: weighted absolute difference methods and Mahalanobis 

distances. In addition, each of these types may be applied to the X 

items alone, or expanded to include all X, Y, and Z items. Each of 

these four types of distance functions is used in conjunction with both 

an unconstrained and the constrained-optimal matching scheme, thus giv-

ing eight primary matching methodologies for study. 
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2.3.1. Weighted Absolute Difference Measures 

Distance functions in this category are of the type used by the 

U.S. Department of the Treasury's Office of Tax Analysis [13] and the 

Social Security Administration's Office of Research and Statistics [37]. 

This function uses subjective weights, reflecting the relative impor-

tance of each data item, which are multiplied by the absolute differ-

ences of values of the corresponding items in the pair of records under 

consideration. Specifically, when only the X items are being consid-

ered, the distance between record i in file A and record j in file B is 

defined as: 

r 
dij = L sk•lx1ik - x2jkl' 

k=1 
(2.3) 

where x1ik and x2jk denote the kth data items in the respective files, r 

is the number of data items in X, and Sk is the subjective weight for 

data item k. 

This procedure can be expanded to include additional (X12,Y,Z) re-

lationships by adding other difference terms to the function definition. 

For example, to include some information about the relation of data item 

k of X and data item t of Y, an additional component of the distance 

function could be Stk"IY1it -x2jkl• The weight sk would be determined 

subjectively with the sign of the term corresponding to the sign of 

cov(~,Yk)• Similarly, relationships between the various X items them-

selves, X and Z items, and even Y and Z items could be included in the 

matching criteria. Of course, the choice of the subjective weights is 

an important one since they will have a strong impact on the matches ob-

tained. 



2.3.2. Mahalanobis Distance Metrics 

The other category of distance functions studied was proposed by 

Kadane [26]. One procedure~ which uses only the X items, defines 
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where LXX is the covariance matrix of the X variables. This is the 

Mahalanobis distance between two x values and, using only the X informa­

tion, it arises as the maximum likelihood solution for exact matching of 

normal random variables. It seems quite plausible that it will also 

perform well in statistical matching. 

Kadane also suggests a· procedure which employs full (X,Y,Z) infor-

mation. In this instance, file A is expanded from (X,Y) to 

V: (Xl,Y,Z), where zi = E(ZjX=xl1 , Y=yi) is the regression prediction 

for the missing Z data of record i. Likewise, file B is expanded to 

U = (X2,Y,Z) where Yj = E(YjX=x2j, Z=zj). S1 and S2, the covariance 

matrices of (Xl,Y,Z) and (X2,Y,Z), respectively, may be formed from L, 

the covariance matrix of (X,Y,Z). The match is performed using 

(2.5) 

A difficulty here is in obtaining accurate Lyz entries used in calculat­

ing S1 and S2• These must come from a source outside of the two files 

being matched or, if cov(Y,ZjX=x) = 0 is assumed, can be calculated as 

(2.6) 
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2.4. Experimental Design 

To gain insight into the impacts of merging scheme, distance func­

tion, and measurement error in the data, a set of experiments have been 

designed. The experimentation is organized as two phases, each using 

the same general methodology, but applied to different sources of data. 

Initially, randomly-generated data files are used to form "best case" 

conclusions. A second phase builds on these results by applying similar 

statistical tests to samples drawn from national data files. 

2.5. Phase I: Randomiy-Generated Sample Files 

In the face of the difficult theoretical problems involved with 

statistical matching, Monte Carlo simulations of the matching methods 

are a practical initial approach to understanding how these mathods per­

form. In this phase of the study, a known population is defined from 

which two independent samples (Xl , Y) and (X2,Z) can be generated and a 

statistically-merged file (Xl2,Y,Z) formed. A known population is re­

quired so that statistics from the matched file can be compared with 

known population parameters for evaluation of the performance of the 

matching method. 

It is not enough to match a single pair of samples. Since it is 

the validity of the matching process itself we wish to study, it is nec­

essary to repeat the simulation enough times to adequately study the 

sampling distribution of statistics based on the matching method. Such 

repetitions allow us to approach two questions concerning statistical 

matching methods: first, are estimators obtained from matched files 
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biased and, second, is the sampling variability of matched files approx­

imately the same as the variability in valid random samples? 

In choosing populations from which to generate the data, those hav­

ing variables with normal distributions are the best for the initial 

phase of this study for several reasons. First, strong statistical 

tests are available which will give insight into the behavior of the 

merge methodologies to more complicated sample survey populations on 

statistically well-defined data. Th.e transferability of the conclusions 

reached will be studied in the second testing phase. Also, normal popu­

lations are central to much of the existing theory of statistical match­

ing [25] and many populations of interest can be roughly approximated 

with normal distributions. Therefore, studying the methodologies under 

this controlled environment will yield "best-case" conclusions against 

which "actual case" results can be benchmarked. 

A balance must be struck between simulating a realistic problem and 

using a problem which is simple enough to be computationally feasible. 

Populations with four multivariate items (xl,x2,y,z) will be used to 

generate files with (xl1,xl2,y) and (x21,x22,z) observations. This is 

simple, but still allows nontrivial matching problems by having bivari­

ate X. 

The size of the generated files, while much smaller than true sam­

ple survey files, must be large enough to allow some investigation of 

the variability within a matched file. Hence, each simulated file A 

and B will have 200 records. 

Finally, the number of replications must be large enough to allow 

the large sample statistical analysis described in the following section 

to apply while also staying within existing computational limits. This 
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number is also influenced by the size of the biases we wish to have the 

power to detect. In this study 100 replications were used. 

2.5.1. Simulated Populations 

It is important to choose populations which address the controver­

sial areas of statistical matching. The following is a list of four 

pairs of population properties which were expected to be critical to the 

performance of the various merging methodologies: 

1. Cov(Y,ZIX=x) = 0 or Cov(Y,ZIX=x) * 0, 

2. R2z(X1,X2) high or R2z(X1,X2) low, 

3. R2y(X1,X2) high or R2y(X1,X2) low, 

4. Cov(X 1, x2) high or Cov(X1,x2) low. 

Properties 1 and 2 are deemed the most crucial as these may have a gen­

eral bearing on the performance of all of the matching schemes. Proper­

ties 3 and 4 are more related to the choice of which matching methodolo­

gy to employ. Cases from all 16 possible combinations of these proper­

ties are studied, although more attention is paid to properties 1 and 2. 

2.5.2. Computational Procedure 

For each population considered, it was necessary to generate k 

pairs of independent (X11,Xl2,Y) and (X21,X22,Z) files. Then, for each 

matching methodology of interest with that population, k matched files 

were created by merging these file pairs. Sample statistics were kept 

for each matched file to statistically compare the matched results with 

the actual population and the results known for valid random samples. 

Also by using each methodology on the same pairs of files, a randomized 

block design is created for comparing the competing methodologies. 
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2. 6. Phase II: Testing of National Microdata Files 

In contrast with artifically-generated data, the impact of matching 

methodology on the merging of actual microdata files is studied. This 

provides a more practical setting to compare the weighted absolute dif­

ferences distance functions, which are not specifically designed for 

normal data, with the Mahalanobis distances which are. 

The 1975 Survey of Income and Education is treated as a population 

and, from this file, five randomly-drawn samples of 1000 records each 

were drawn. The records of each file are divided into two new data sets 

by designating each record item to be in set X,Y, or Z and forming an 

(X,Y) file and an (X,Z) file. These files were be merged using the var­

ious methodologies, and examined using the evaluation design in the sec­

tion that follows. 

The data items designated for sets X, Y, and Z were selected to in­

clude each of the various types of data available on the file and dif­

ferent levels of correlation. Also, the files were merged using differ­

ent numbers of X-variables. The performance of the matching methodolo­

gies can be simultaneously evaluated, as in the Monte Carlo simulations, 

by comparison with known characteristics of the original records. 

The existence of measurement error is simulated by adding bias, un­

biased noise, and biased noise to subsets of the X variables prior to 

merging. The sensitivity of the distance function definitions and merg­

ing schemes to such error are then evaluated both at the record level 

and in the aggregate using the statistical evaluation design. 
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2.7. Statistical Evaluation of the Merged Files 

2.7.1. Bias for Matched File Estimators 

Does a matching methodology induce a bias in the estimation of im-

portant population parameters? To answer this question, the key para-

meters of interest will be cov(Y,Z) and cov(X,Z), with ~Z and Var(Z) al-

so of particular interest for unconstrained matching. Let a be a para-

meter of interest. Note that a will be known exactly, since we know the 

population from which we have samples. Also let Ti be the estimate of a 

derived from the ith matched file generated with some particular method-

ology. Now let ~T be the mean of all T which could have possibly been 

obtained as estimates of a from matched files. Then the matching pro-

cedure produces unbiased estimates of a if ~T =a. 

The question of biased estimators of a can then be addressed by 

comparing the observed _Ti with a. A simple test for ~T =a can be made 

by using 

where 

and 

z = .fk (T - a) /S, 

k 
T = L Ti/k, 

i~1 

k 
s2 - L (Ti - T)2/(k-1). 

i=1 

(2. 7) 

(2. 8) 

(2.9) 

For large values of k (including this study's k=lOO), z will have an ap-

proximate standard normal distribution if ~T =a. 
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As noted earlier, a randomized block design analysis would be 

available for comparing the Ti-9 biases of several methodologies simul-

taneously. 

2. 7. 2. Matched Samples versus Valid Random Samples 

Does the sampling variability of matched files resemble the varia-

bility in random samples? Here the major concern is with the overall 

sampling distribution of the (X,Y,Z) merged files or with simply the bi-

variate sampling distribution of (Y,Z) obtained from merged files. 

An excellent way to examine a multivariate sample is to divide each 

variable into classes and form a multiway contingency table of the sam-

ple. For example, for a (Y,Z) sample and selected values of a, b, c, d, 

e, and g, we can analyze the table below where fij is the observed fre­

quency of data in cell (i,j). 

z<• d d < z <= e e < z <= g g < z 

--
y<= a fu f12 flJ f 14 

a < y<= b f21 f22 f23 f24 
---

b < y<= c f31 f32 f33 f34 

c < y f41 f42 f43 f44 

Since the (Y,Z) population is known, the expected value for each fij may 

be calculated for random sampling. It is well known that the Pearson 

Chi-square statistic 
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has an approximate Chi-square distribution with 15 degrees of freedom 

when valid random sampling is done. This suggests that we calculate x2 

for each matched file we obtain using a given methodology. If the 

matched files are equivalent to random sampling, then these k x2 values 

should follow the appropriate Chi-square distribution. The Kolmogorov 

test can be used to test this, or we can simply describe the x2 values 

with a histogram. A similar procedure can be used to compare the sam­

pling variability of whole matched files with that of valid random sam­

pling. 

If we wish to bypass the file-by-file comparison of matched file 

distribution and random sampling, all matched file data could be pooled 

for a given methodology into a single table. The pooled distribution 

could then be compared with the expected values calculated from the 

known population. To test the hypothesis that the matched file samples 

were simple random samples, a single Pearson Chi-square statistic could 

be used. 



PART 3 

PHASE I: ANALYSIS OF SIMULATED POPULATIONS 
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3.1 Procedures 

3.1.1 Populations Studied 

Table 3.1 shows the 12 normal populations used in the Monte Carlo gen­

eration of random (X1,X2,Y) and (X1,X2,Z) samples. In each of these 12 

populations the means and variances of X1, X2, Y, Z were set equal to zero 

and one respectively, while the covariances were chosen to give a variety 

of interesting and comparable cases. The populations lA, 2A, 3A, 4A, SA, 

6A were all selected so that cov(Y,ZIX) = 0. The populations 1B, 2B, 3B, 

4B, SB, 6B were then constructed so that each of these contained the same 

covariances as the corresponding A population, except cov(Y,Z) was chosen 

to ensure that cov(Y,ZIX) was far from 0. For example, populations lA and 

1B have the same covariance structure except that cov(Y,Z) of lA forces 

cov(Y,ZIX) = 0, whereas 1B has a different cov(Y,Z) with cov(Y,ZIX) * 0. 

This distinction of cov(Y,ZIX) = 0 vs. cov(Y,ZIX) * 0 proved to be ex­

tremely important. It was clear from the outset that matching methods 

would have difficulty distinguishing a B population from the corresponding 

A population, since the marginal distributions of (X1,X2,Y) and (X1,X2,Z) 

would be the same for both A and B populations. Thus, the sample data 

would contain no information about cov(Y,Z) which would allow a B popula­

tion to be distinguished from the corresponding A population. The only 

real hope to make this distinction must necessarily come from some outside 

information not derived from the sample, which could then be incorporated 

in the matching methodology. Only Kadane's full (X,Y,Z) information method 

(see Section 2.3.2) proported to do this, so we felt it very important to 

include this method in the simulation. 
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Table 3.1 

Populations Used in the Simulation 
[All are Multivariate Normal (X1,X2,Y,Z) with E(X1) = E(XZ) = E(Y) • E(Z)=O 

and Var(X1) = Var(X2) = Var(Y) = Var(Z) = 1.] 

POP COVX1X2 COVX1Y COVX2Y COVXlZ COVX2Z 

1A o. 8 o. 9 0.9 o. 9 o. 9 
1B o. 8 o. 9 o. 9 o. 9 o. 9 
2A o. 8 0.1 0.1 o. 9 o. 9 
2B o. 8 0.1 0.1 o. 9 o. 9 
3A 0.1 o. 7 o. 7 o. 7 o. 7 
3B 0.1 o. 7 o. 7 o. 7 o. 7 
4A 0.1 0.2 o. 2 o. 7 o. 7 
4B 0.1 o. 2 0.2 o. 7 o. 7 
SA o. 8 o. 3 0.3 o. 3 o. 3 
SB o. 8 o. 3 o. 3 0.3 0.3 
6A o. 2 o. 3 0.3 o. 3 0.3 
6B o. 2 o. 3 o. 3 o. 3 o. 3 

NOTE: For A-populations, cov(Y,ZIX)=O and forB-populations, 
I cov(Y, ZIX) I>>O. 

COVYZ 

0.900 
o. 810 
0.100 
0.400 
o. 891 
0.980 
0.255 
o.soo 
0.100 

-0.700 
0.150 

-0.400 
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3.1. 2 Merging Methodologies and Experiment St_eps 

The simulation procedure was as follows. For each of the 12 popula-

tions, 100 pairs of independent (Xl,X2,Y) and (X1,X2,Z) samples, each of 

size 200, were generated. For each pair of generated samples, six matched 

files were created, one for each matching method under consideration. 

These methods are listed below. 

Method 1: absolute difference distance function on X-data, con­
strained. 

Method 2: Mahalanobis distance function on X-data, constrained. 

Method 3: Kadane's full (X,Y,Z) information distance function, 
constrained. 

Method 4: absolute difference distance function on X-data, uncon­
strained. 

Method 5: Mahalanobis distance function on X-data, unconstrained. 

Method 6: Kadane's full (X,Y,Z) information distance function, un­
constrained. 

It was decided to use the true population values of the (Xl,X2, Y,Z) 

covariance matrix in the distance functions of Methods 2, 3, 5, and 6. In 

actual practice one would employ estimates from the (Xl,X2,Y) and (Xl,X2,Z) 

samples in the distance functions. However, real problems will typically 

involve much greater sample sizes than the n = 200 used here, so that sam-

pling error in the estimation of the covariance matrix would be almost neg-

ligible. We felt that we would get a better estimate of the realistic per-

formance of these methods by using the true covariance matrix, rather than 

letting the sampling error in our simulation influence the results. 

For each combination of matching method and population we then gen-

erated 100 matched samples in this manner. We obtained estimates of the 

known population parameters from these matched samples. The quality 
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of these estimators could then be judged by considering the variation of 

these estimates over the 100 matched samples for each case. 

3.1.3 Questions Addressed 

This data enabled us to address the following important questions. 

1. How well is cov(Y,Z) estimated by these matching methods? 

2. Do the matched Y-Z samples behave as valid random samples from 

the Y-Z population? 

3. What is the relationship of the cov(Y,ZIX) to these methods? 

4. How well is var(Z) estimated by these methods? 

5. How well are cov(X1,Z) and cov(X2,Z) estimated by these 

methods? 

One of the main motivations for matching is to obtain information 

on the Y-Z distribution. Questions 1 and 2 address this directly. By 

including the A and B populations in this study we were in a position to 

answer question 3. Since these methods used the (X1,X2,Y) sample as 

base file, statistics involving only these variables would necessarily 

behave as valid statistics based on random sampling. However, since the 

matched samples would be appending Z-values to this base file through 

the matching procedures, it was important to see how statistics involv­

ing Z would behave. Constrained matching would necessarily retain the 

original Z sample, so any estimators based only on the Z-values would be 

done validly. However, unconstrained matching could possibly distort 

the marginal distribution of z. Thus, question 4 was designed primarily 

for evaluating unconstrained matching. 

There was the possibility in all methods that cov(X1,Z) and cov(X2,Z) 

might not be well estimated from the matched samples, even though the 
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original (X1,X2,Z) samples could provide valid estimates of these parame­

ters. Question 5 deals with this point. 

3.2 Estimation of Cov(Y,Z) 

Since the (X1,X2,Y,Z) populations are multivariate normal, a complete 

description of a population is given by the means, variances, and covari­

ances of its variables. From the (X1,X2,Y) and (X1,X2,Z) samples every­

thing can be validly estimated except the cov(Y,Z). Thus, the key question 

for the matching methods is: How well do the matched samples do for esti­

mating cov(Y,Z)? 

Tables 3.2A-F summarize the performances of the six matching methods 

for estimating cov(Y,Z). The true cov(Y,Z) can be compared with the mean 

estimate obtained over the 100 replications using a particular matching 

method. The sample standard deviation of the estimates then gives some in­

dication as to the variability of the estimates from sample to sample. To 

test for a bias in estimating cov(Y,Z) with a particular method one can 

look at the statistic T. If there is no bias caused by the matching pro­

cedure, then the sampling distribution of T should be approximately normal 

with mean 0 and variance 1. One can then do a test of significance for 

biased estimation. Values ofT greater than 1.96 in absolute value are 

evidence for biased estimation at the .OS significance level. 

It is clear from Tables 3.2A-F that all the matching procedures per­

form extremely poorly on the B populations where cov(Y,ZIX) * o. However, 

with some of the procedures on some of the A populations, where cov(Y,ZIX) 

= 0, the estimation of cov(Y,Z) is done quite well. Note that for each 

pair of A and B populations, which differ only in cov(Y,Z), the matched 
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Table 3. 2A 

Estimation of Cov(Y,Z) using Method 1 
Mean is the Mean Estimate over the 100 Replications. 

SD is the Estimated Standard Deviation of the Estimates. 
T = 10(Mean - CovYZ)/SD. 

POP COVYZ MEAN SD T 

lA 0.900 0.887 0.064 -1.98 
18 0.810 0.886 0.062 12.22 
2A 0.100 0.102 0.064 0.30 
28 0.400 0.102 0.062 -48.15 
3A 0.890 0.859 0.066 -4.79 
3B 0.980 0.861 · 0.067 -17.88 
4A 0.255 0.250 0.064 -0.72 
48 0.500 0.252 0.063 -39.15 
SA 0.100 0.096 0.075 -0.48 
5B -0.700 0.100 0.066 120.51 
6A 0.150 0.136 0.065 -2.09 
6B -0.400 0.134 0.065 82.56 

Table 3. 2B 

Estimation of Cov(Y,Z) using Method 2 
Mean is the Mean Estimate over the 100 Replications. 

SD is the Estimated Standard Deviation of the Estimates. 
T = 10(Mean - CovYZ)/SD. 

POP COVYZ MEAN SII T 

1A 0.900 0.891 0.063 -o .137 
1B 0.810 0.890 0.062 12.810 
2A 0•100 0.102 0.065 0.365 
2B 0.400 0.100 0.070 -42.780 
3A 0.890 0.867 0.065 -3.720 
3B 0.980 0.868 0.065 -17.060 
4A 0.255 0.252 0.058 -0.400 
4B 0.500 0.255 0.061 . 40.520 
SA 0.100 0.099 0.068 -0.170 
58 -0.700 0.104 0.075 107.520 
6A 0.150 0.147 0.061 -0.520 
6B -0.400 0.145 0.062 103 ... 800 
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Table 3. 2C 

Estimation of Cov(Y,Z) Using Method 3 
Mean is the Mean Estimate over the 100 Replications. 

SD is the Estimated Standard Deviation of the Estimates. 
T a 10(Mean- CovYZ)/SD. 

POP COVYZ MEAN SD T 

1A 0.900 0.876 0.063 -3.82 
1B 0.810 0.874 0.060 10.66 
2A o.1oo 0.097 0.061 -0.55 
2B 0.400 0.099 0.063 -47.60 
3A 0.890 0.864 0.065 -4.13 
3B 0.980 0.865 0.066 -17.36 

"4A 0.255 0.250 0.061 -0.75 
4B 0.500 0.252 0.066 -39.25 
SA o.1oo 0.089 0.066 -1.70 
5B -0.700 0.092 0.071 110.80 
6A 0.150 0.139 0.064 -1.66 
6B -0.400 0.140 0.067 81.12 

Table 3. 2D 

Estimation of Cov(Y,Z) Using Method 4 
Mean is the Mean Estimate over the 100 Replications. 

SD is the Estimated Standard Deviation of the Estimates. 
T = 10(Mean - CovYZ)/SD. 

POP COVYZ MEAN SD T 

1A 0.900 0.882 0.077 -2.34 
1B 0.810 0.886 0.078 9.74 
2A 0.100 0.102 0.061 0.33 
2B 0.400 0.10-2 0.059 -50.51 
3A 0.890 0.846 0.078 -5.64 
3B 0.980 0.845 0.079 -17.09 
4A 0.255 0.248 0.065 -1 .• 08 
4B 0.500 0.248 0.065 -38.77 
SA 0.100 0.101 0.070 0.14 
SB -0.700 0.100 0.079 101.27 
6A 0.150 0.145 0.075 -O •. q.7 
6B -0.400 0.146 o.o8o 68.25 
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Table 3. 2E 

Estimation of Cov(Y,Z) Using Method 5 
Mean is the Mean Estimate over the 100 Replications. 

SD is the Estimated Standard Deviation of the Estimates. 
T ~ 10(Mean- CovYZ)/SD. 

POP COVYZ MEAN SD T 

1A 0.900 0.882 0.079 -2.28 
1B . 0.810 0.885 0.079 9.49 
2A 0.100 0.102 0.063 0.32 
2B 0.400 0.103 0.062 -47.90 
3A 0.89.0 o.85o o.oeo -s.oo 
3B 0.980 0.847 0.079 -16.84 
4A 0.255 0.249 0.066 -0.91 
4B 0.500 0.248 0.066 -38.18 
SA 0.100 0.099 0.072 -0 .• 14 
5B -0.700 0.097 0.07.8 102.18 
6A 0.150 0.149 0.074 -0.14 
6B -0.400 0.149 0.078 70.38 

Table 3. 2F 

Estimation of Cov(Y,Z) Using Method 6 
Mean is the Mean Estimate over the 100 Replications. 

SD is the Estimated Standard Deviation of the Estimates. 
T = 10(Mean - CovYZ)/SD. 

POP COVYZ MEAN SD T 

1A 0.900 0.817 0.069 -12.03 
1B 0.810 0.817 0.069 1.01 
2A 0.100 0.093 0.057 -1.23 
2B 0.400 0.094 0.059 -51.86 
'3A 0.890 0.803 0.075 -11.60 
3B 0 .. 980 o.sos 0.071 -24.65 
4A 0.255 0.234 0.061 -3.44 
4B o.soo 0.235 0.057 -46.49 
SA 0.100 0.090 0.023 -4.35 
5B -0.700 0.093 0.023 344.78 
6A 0.150 0.135 0.030 -5.oo 
6B -0.400 0.136 0.028 191 ~ '43 
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samples' mean and standard deviation are nearly the same. This points 

out that for matching purposes the observed data gives no information 

for distinguishing the A and B populations. It is surprising that this 

happens even for Methods 3 and 6 which used Kadane's "full information" 

distance function. However, on close examination, we see that Kadane's 

procedure does not actually use cov(Y, Z) in the covariance matrix for 

the distance function. It enters only as part of a transformation of 

the original (X1,X2,Y) and (X1,X2,Z) data, with the matching only being 

accomplished through consideration of the original samples. 

In comparing the six methods, none of them do well for B popula­

tions, but for the A populations Method 2 did best. It only showed a 

bias for estimating cov(Y,Z) on population 3A with T = -3.72. The other 

five methods were all about the same in their performance for estimating 

cov(Y, Z) on the A populations. Generally they did not perform well on 

populations lA and 3A. The results are quite striking in the enormous 

failure of all these methods on the B populations where cov (Y,ZjX) * 0. 

3.3 Estimation of the Joint Y-Z Distribution 

Rather than focus on the cov(Y,Z) alone, it is also interesting to 

consider the overall estimation of the Y-Z distribution. To do this the 

Y-Z plane was divided into 16 equally probable regions for each popula­

tion. This was easily done by transforming Z toW= (Z-rY)/(1-r2).5, 

where r = cov(Y,Z). (Here Y and W are independent standard normal ran­

dom variables.) The Y-W plane was then divided by the grid given in 

Figure 3.1, and the fi, the number of matched sample (Y,W) pairs falling 

in region i, were recorded for each sample. 
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Figure 3.1 

Y-W Plane 
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A Chi-Square goodness of fit statistic 

X 2 = I 6 ' ( f i - 1 2. 5) 2 

i=l 12.5 

was then calculated for each sample. This x2 measures how well the 

sampled data corresponds to or "fits" the population distribution. 

Small values of x2 indicate a good fit while large values of x2 indicate 

a poor fit. If the matched samples behave like valid random samples, 

then the x2 values should have an approximate Chi-Square distribution 

with 15 degrees of freedom. 
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Tables 3.3A-F (at end of section) give the empirical sampling distri­

bution of the x2 values calculated for the 100 reps on each population 

using Methods 1 through 6. These empirical distributions may be judged 

against the Chi-Square distribution with 15 degrees of freedom whose exec­

ted values are shown in the same tables. We may declare a sample to be 

"unacceptable" if its x2 value is greater than 25. For valid sampling this 

will occur on 5% of the samples. So if a procedure exhibits much more than 

5% of its 100 x2 values greater than 25, then we have evidence that the 

procedure perform; poorly. 

Methods 1 and 2 did better than the other four procedures on this x2 

approach. On examining the tables we again see that for all B populations, 

even methods 1 and 2 perform terribly. Methods 1 and 2 did well on popula­

tions 2A, 4A, SA, and 6A, but not on populations 1A and 3A, although the 

results on 1A and 3A are not as disastrous as on the B populations. We 

have very strong evidence that the condition cov(Y, Z IX) = 0 is absolutely 

necessary for these procedures to do well, but in some instances there 

still may be difficulties even when cov(Y,ZIX) = O. 

3.4 Estimation of Var(Z) 

The estimation of var(Z) provides the most striking contrast between 

constrained and unconstrained matching. Since the original Z sample is 

wholly retained in constrained matching, the var(Z) is validly estimated by 

a constrained matched sample. This is again empirically demonstrated in 

Table 3.4A at the end of this section. However, for unconstrained matching 

some of the original Z-values may not be included in the matched sample, 

while other Z-values are included more than once. This seems to bias the 

estimates of var(Z) quite dramatically. !ables 3.4A-D show that 
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unconstrained matching will consistently underestimate var(Z). Apparently, 

extreme values of Z are linked to X values which are hard to match, so con­

sequently they get removed from the matched sample. This provides evidence 

that constrained matching is generally preferable to unconstrained matching. 

3.5 Estimation of Cov(X1,Z) and Cov(X2,Z) 

In Tables 3.5A-D we consider the estimation of cov(X1,Z) and cov(X2,Z) 

with Methods 1 and 2. Generally there is an indication of underestimation 

of these parameters when their values are high or, more accurately, when 

the multiple correlation R2(X,Z) is high. It is easy to see why this un­

derestimation will occur in the extreme case where X1 and Z have correla­

tion 1. In this case all the (X1,Z) values from the original (X1,X2,Z) 

file will lie on a straight line. But when the matched sample is created, 

the new (X1,Z) values in the matched sample will not all be on a straight 

line, due to the impossibility of getting the X-values matched to values 

which are exactly equal. Thus, the correlation between X1 and Z in the 

matched sample would be less than 1. This slight underestimation may be 

related to the small sample size used here, and may not prove to be so 

great a difficulty for the large samples of most real matching problems. 

This underestimation of cov(X1,Z) and cov(X2,Z) seems to be the reason 

why cov(Y,Z) was not well estimated for populations 1A and 3A. The combi­

nation of high cov(X1, Z) and cov(X2, Z) with high cov(Y, Z) can cause a dif­

ficulty even when cov(Y,ZjX) = 0. It is interesting to note that in these 

cases the empirical estimates of cov(Y,ZjX) were near zero, despite the 

direct estimates of cov(X1,Z), cov(X2,Z), and cov(Y,Z) being biased 

downward. For example, with Method 2 on population 3A, using the mean es­

timates, we have 
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cov(Y,ZjX) = cov(Y,Z)- [cov(X1,Z)Jt [var(Xl) cov(X,X2)] - 1 [cov(X1,Z)J 

cov(X2,Z) cov(X1,X2) var(X2) cov(X2,Z) , 

so the estimate of cov(Y,ZjX) is 

.024 = .867- [.081]t [1.012 .091]-1 [·681] 
.678 .091 .997 .678 • 

This suggests that these matching methods will effectively be forcing 

the matched sample to exhibit cov(Y,ZjX) = 0. 

3.6 Summary of Conclusions 

The following conclusions are strongly suggested by the simulation 

data. 

1. For the matching procedures considered here , the population 

must have cov(Y,ZjX) = 0 if the procedures are to perform 

well. 

2. For unconstrained matching, var(Z) is consistently underesti-

mated. Thus constrained matching is generally preferable as 

it completely avoids this difficulty. 

3. Cov(X,Z) can be underestimated when X and Z are highly corre-

lated, and this can lead to bias in the estimation of 

cov(Y,Z). 

4. Of the six methods considered here, Methods 1 and 2 seem best 

with Method 2 being slightly better than the remaining ap-

proaches. 

As a final remark, since the condition of cov(Y,ZjX) = 0 is an ex-

tremely strong one, which may not be realistically expected in many cases, 

there is concern as to the accuracy of these procedures in practice. The 

strategy of matching on the closeness of the observed X-values alone should 
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perhaps be modified to employ alternative procedures which can be devised 

where in good matches are directly defined in terms of their preservation of 

the distributional properties of the original samples, while imputing some 

outside information about the Y-Z distribution into the matched samples. 

While it is tempting to generalize these strong conclusions to the 

merging of actual microdata, there are three aspects of the simulation ex­

periments that tend to mitigate these findings in a broader setting. 

First, the number of X-variables was very small (two). This is shown in 

the following section to have a strong effect on the quality of merge 

files. Second, the data was normally distributed, a characteristic which 

is not typical for econometric and social science data, which tends to be 

either discrete or to follow unique distributions. Third, with file sizes 

of only 100 records, the number of file B match possibilities for a given 

file A record was limited; larger sizes would produce a greater variety of 

B-records in a given file and increase the likelihood of producing "attrac­

tive" matches. It should be noted that most of these limitations were 

brought about by machine time and capacity considerations. 
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Table 3.3A 

Frequency Counts for Chi-Square Goodness of Fit Statistics for the Matched 
Y-Z Samples: Method 1 (absolute value distance function, constrained) 

x2 Value 

Po_p_ulatioq 0-11.04 11.04-14.34 14. 3 4-18. 2 5 18.25-25.00 25.00-30.58 30.58-

(Expected) (25) (25) (2 5) (20) (4) (1) 

!A 16 13 21 14 12 24 

lB 0 3 5 22 12 58 

2A 31 20 23 21 4 1 

2B 0 3 5 21 24 47 

3A 5 8 19 30 18 20 

3B 0 0 0 0 0 100 

4A 23 22 24 24 7 0 

4B 0 2 7 38 15 38 

SA 27 26 21 19 7 0 

5B 0 0 0 0 0 100 

6A 28 21 24 21 4 2 

6B 0 0 0 1 1 98 
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Table 3.3B 

Frequency Counts for Chi-Square Goodness of Fit Statistics for the Matched 
Y - Z Samples: Method 2 (Mahalanobis distance function, constrained) 

x2 Value 

Population 0-11.04 11.04-14.34 14.34-18.25 18.25-25.00 25.00-30.58 30.58 

(Expected) (25) (25) (25) (20) (4) (1) 

lA 8 13 24 17 11 27 

1B 0 1 2 15 19 63 

2A 26 27 27 13 3 0 

2B 0 2 8 17 25 48 

3A 8 7 25 21 16 23 

3B 0 0 0 0 0 100 

4A 22 22 26 21 8 1 

4B 0 3 11 24 26 36 

SA 34 22 22 15 4 3 

SB 0 0 0 0 0 100 

6A 28 22 27 21 2 0 

6B 0 0 0 0 3 97 
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Table 3.3C 

Frequency Counts for Chi-Square Goodness of Fit Statistics of Matched Y-Z 
Samples: Method 3 (Kadane distance function, constrained) 

x2 Value 

Population O-ll.04 11.04-14.34 1 4. 3 4-18. 2 5 18.2 5-25.00 25.00-30.58 30.58-

(Expected) (25) (25) (25) (20) (4) (1) 

1A 7 15 18 19 13 28 

1B 1 7 8 25 18 41 

2A 27 21 23 24 4 1 

2B 0 2 2 27 24 47 

3A ll 7 17 29 12 24 

3B 0 0 0 0 0 100 

4A 21 20 25 26 6 2 

4B 1 4 9 27 27 32 

SA 23 31 24 21 1 0 

SB 0 0 0 0 0 100 

6A 21 25 31 20 3 0 

6B 0 0 0 0 2 98 
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Table 3.3D 

Frequency Counts for Chi-Square Goodness of Fit Statistics of Matched Y- Z 
Samples: Method 4 (absolute value distance function, unconstrained) 

x2 Value 

Po_pulation 0-11.04 11.04-14.34 14.34-18.2 5 18.2 5-25.00 25.00-30.58 30.58-

(Expected) (2 5) (25) (2 5) (20) (4) (1) 

1A 19 17 17 38 5 4 

1B 0 2 2 15 24 57 

2A 20 26 16 26 9 3 

2B 1 2 4 19 22 52 

3A 11 21 24 27 10 7 

3B 0 0 0 0 0 100 

4A 18 22 24 24 11 1 

4B 0 2 10 34 14 40 

SA 16 12 26 33 8 5 

5B 0 0 0 0 2 100 

6A 11 20 21 28 14 6 

6B 0 0 0 0 2 98 
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Table 3.3E 

Frequency Counts for Chi-Square Goodness of Fit Statistics of Matched Y -z 
Samples: Method 5 (Mahalanobis distance function, unconstrained) 

x2 Value 

Population 0-11.04 11.04-14.34 14.34-18.25 18.25-25.00 25.00-30.58 30.58-

(Expected) (25) (25) (25) (20) (4) (1) 

lA 17 15 26 26 12 4 

lB 2 0 3 17 19 59 

2A 21 21 20 27 7 4 

2B 0 3 3 21 24 49 

3A 14 20 19 28 14 5 

3B 0 0 0 0 0 100 

4A 18 25 22 26 8 1 

4B 0 5 10 27 22 36 

5A 18 17 20 30 10 5 

5B 0 0 0 0 0 100 

6A 12 16 23 32 11 6 

6B 0 0 0 2 1 97 
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Table 3.3F 

Frequency Counts for Chi-Square Goodness of Fit Statistics of Matched Y - Z 
Samples: Method 6 (Kadane's distance function unconstrained) 

x2 Value 

Population 0-11.04 11.04-14.34 14.34-18.2 5 18.2 5-25.00 25.00-30.58 30.58-

(Expected) (25) (2 5) (25) (20) (4) (1) 

lA 0 1 10 26 23 40 

lB 0 0 0 0 0 100 

2A 9 15 27 23 18 8 

2B 0 1 0 21 23 55 

3A 0 1 3 29 16 51 

3B 0 0 0 0 0 100 

4A 9 21 20 28 12 10 

4B 0 1 6 25 27 41 

SA 0 0 0 0 0 100 

5B 0 0 0 0 0 100 

6A 0 0 0 0 0 100 

6B 0 0 0 0 0 100 



Table 3.4A 

Estimation of Var(Z) = 1 Using Methods 1,2,3 
Mean is the Mean Estimate Over the 100 Replications. 

SD is the Estimated Standard Deviation of the Estimates. 
T = 10(Mean- 1)/SD 

POP MEAN SD T 

lA 0.9998 0.0946 -0.02 
2A o. 9998 0.0946 -0.02 
3A 0.9976 0.1045 -0.23 
4A 0.9976 0.1045 -o. 23 
5A o. 9902 0.1051 -o. 93 
6A 0.9903 0.1040 -0.93 

Table 3.4B 

Estimation of Var(Z) = 1 Using Method 4 
Mean is the Mean Estimate Over the 100 Replications. 

SD is the Estimated Standard Deviation of the Estimates. 
T = 10(Mean - 1) /SD 

POP MEAN SD T 

1A o. 9633 o. 0901 -4.07 
2A 0.9633 0.0901 -4.07 
3A 0.9283 0.0877 -8.18 
4A 0.9283 0.0877 -8.18 
SA 0.9797 0.1365 -1.49 
6A 0.9718 0.1436 -1.96 

53 
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Table 3.4C 

Estimation of Var(Z) a 1 Using Method 5 
Mean is the Mean Estimate Over the 100 Replications. 

SD is the Estimated Standard Deviation of the Estimates. 
T = 10(Mean - 1) /SD 

OBS POP MEAN SD T 

1 lA 0.9630 0.0927 -3.99 
2 2A. 0.9630 0.0927 -3.99 
3 3A 0.9336 0.0943 -7.04 
4 4A 0.9336 0.0943 -7.04 
5 SA o. 9777 0.1388 -1.61 
6 6A 0.9703 0.1436 - 2.07 

Table 3. 4D 

Estimation of Var(Z) = 1 Using Method 6 
Mean is the Mean Estimate Over the 100 Replications. 

SD is the Estimated Standard Deviation of the Estimates. 
T = 10(Mean- 1)/SD 

POP MEAN SD T 

1A 0.7931 0.0748 -27.66 
2A o. 7931 0.0748 -27.66 
3A o. 7 793 o. 0775 -28.48 
4A o. 7 793 0.0775 -28.48 
SA 0.1113 0.0182 -487.36 
6A 0.1528 0.0236 -358. 98 
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Table 3.5A 

Estimation of Cov(X1,Z) Using Method 1 
Mean is the Mean Estimate Over the 100 Replications. 

SD is the Estimated Standard Deviation of the Estimates. 
T = 10(Mean - CovX1Z)/SD 

POP COVX1Z MEAN SD T 

lA 0.9 0.890 0.062 -1.61 
2A 0.9 0.890 0.062 -1.61 
3A 0.7 0.676 0.057 -4.21 
4A 0.7 0.676 0.057 -4.21 
SA 0.3 0.296 0.067 -0.60 
6A 0.3 0.291 0.066 -.136 

Table 3.58 

Estimation of Cov(X2,Z) Using Method 1 
Mean is the Mean Estimate Over the 100 Replications. 

SD is the Estimated Standard Deviation of the Estimates. 
T • 10(Mean - CovX2Z)/SD 

POP COVX2Z MEAN SD T 

lA 0.9 0.883 0.066 -2.58 
2A 0.9 0.883 0.066 -2.58 
3A 0.7 0.671 0.064 -4.53 
4A 0.7 0.671 0.064 -4.53 
SA 0.3 0.294 0.073 -0.82 
6A 0.3 0.291 0.070 -1.29 
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Table 3. SC 

Estimation of Cov(x1;z) Using Method 2 
Mean is the Mean Estimate Over the 100 Replications. 

SD is the Estimated Standard Deviation of the Estimates. 
T = 1 O(Mean - CovX1Z) /SD 

POP COVXIZ MEAN SD T 

1A 0.9 0.893 0.063 -1.11 
2A 0.9 0.893 0.063 -1.11 
3A 0.7 0.681 0.060 -3.17 
4A 0.7 0.681 0.060 -3.17 
SA 0.3 0.298 0.066 -0 • .30 
6A 0.3 0.293 0.067 -1.04 

Table 3.50 

Estimation of Cov(X2,Z) Using Method 2 
Mean is the Mean Estimate Over the 100 Replications. 

SD is the Estimated Standard Deviation of the Estimates. 
T = 1 O(Mean - CovX2Z) /SD 

POP COVXZl MEAN SD T 

1A 0.9 0.887 0.065 -2.00 
2A, 0.9 0.887 0.065 -2.00 
3A 0.7 0.6 78 0.061 -3.61 
4A 0.7 0.6 78 0.061 -3.61 
SA 0.3 0.297 0.073 -0.41 
6A 0.3 0.295 0.071 -o. 70 



PART 4 

PHASE II: ANALYSIS BASED ON 

NATIONAL MICRODATA SET 
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The objective of this section is to empirically examine the statistical 

characteristics of selected matched files, given that the population charac­

teristics of the data are known. These comparisons will be used to evaluate 

the matching techniques. 

The primary statistical procedure employed in these comparisons is a si~ 

ple x2 goodness-of-fit test using percentage distributions and prespecified 

categories. In addition, matched file correlation matrices are compared di­

rectly with the population correlation matrix. N:> specific test for equality 

of correlation matrices was applied since direct observation of the correla­

tion matrices indicated that for certain data items there existed very large 

deviations. 

An absolute difference distance function was tested under conditions of 

noise, bias, and combined noise and bias. This same function was studied for 

sensitivity to the number of common variables used and the Mahalanobis dis­

tance function was tested on non-simulated data. Also investigated were the 

consequences of matching a sample with itself under a wide variety of circum­

stances, and the effect of using an unconstrained merging procedure instead of 

a constrained model. 

This work focuses upon the Y-Z distributions in the matched files and 

their relationship to the population Y-Z distributions, since the implied mo­

tivation for most statistical matching is the construction of Y-Z distribu­

tions. Prior to this study, published merge analyses paid almost exclusive 

attention to the relationship between Xl and X2 in the matched file and to the 

vector of Z means. However, in these previous studies, data limitations have 

been such that e~post testing of Y-Z distributions has not been possible. 

Fifty matched files were generated using the transportation model for 

empirical analysis of the issues mentioned above. These constrained matches 
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employed five samples of approximately 1000 records each, selected from the 

Survey of Income and Education family file. In addition to the constrained 

matches, a number of unconstrained matches were generated for comparison pur­

poses. 

4.1 Population, Samples, and Data Item Descriptions 

In this phase of the study, an extract of the Survey of Income and Ed­

ucation family file, resident in the Office of Tax Analysis' data library, was 

designated to be a base population. This particular file has 54,034 records 

representing a full population of approximately 78 million families. The data 

items selected for inclusion in the extract file were: family wage or salary 

income, interest income, countable assets, age of the family head, highest 

grade of school completed by the family head, sex of the family head, total 

annual family income, social security income, number of adults in the family, 

dividend income, family size, and race of the family head (see Appendix B for 

codebook descriptions). 

Five subsamples of approximately 1000 records were randomly selected for 

matching purposes. In addition, one of the subsamples (SIE5) was used to form 

"other subsamples" with the data items perturbed to silD.llate noise and bias. 

The five subsamples' identifiers and their respective sizes are: 

SIE1, 938 records; 

SIF2, 943 records; 

SIE3, 942 records; 

SIFA, 991 records; and 

SIE5, 951 records. 
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The weights on each file summed to approximately 1.4 million. The subsamples 

created from SIES and their characteristcs are described in Table 4.1. 

Table 4.1 

Files Created from Perturbations of SIES 

Name Modification(s) Made to Record It em(s) 

SIE6A Asset value reduced by 20% for si1111lated bias. 

SIE6B Asset value reduced by 10% for si1111lated bias. 

SIE7A 25% of the records have asset value multiplied by a random number 
between • 7 5 and 1.25 for si1111lated noise. 

SIE7B All asset values were multiplied by a random number between .75 
and 1.25 for si1111lated noise. 

SIE7C 25% of the records have asset value multiplied by a random number 
between .9 and 1.1 for simulated noise. 

SIE7D All asset values were multiplied by a random nUmber between .9 
and 1.1 for simulated noise. 

SIE8A 25% of the records have asset value multiplied by a random number 
between .7 and 1.0 for simulated noise and downward bias. 

SIE8B All asset values were multiplied by a random number between .7 
and 1.0 for simulated downward bias. 

NOTE: Samples SIE6A-8B are otherwise the same as SIES, and different 
random numbers were used for each randomly-perturbed 'record. 

Six items were designated as X, or common, variables: wages and sala-

ries, interest income, assets, age of family head, highest grade of head, and 

sex of family head. Total income, social security income, and number of 

adults were chosen to be theY variables (i.e., the variables unique to the 

first matching file, A). The variables selected to be set Z (i.e., the vari-

ables unique to the second matching file, B) were dividend income, family 

size, and race. 
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The Y-Z correlation matrix for the full population, and the differ­

ences between each subsample's Y-Z correlation matrix and the population 

correlations are given in Tables 4.2A-F. In addition, the population per­

centage frequency counts for all Y-Z item pairs are given in Tables 4.3A-I. 
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Table 4.2A 

Full SIE Population Y-Z Correlation Matrix 

Total Income 1.00 

Social Security - .14 1.00 

Number of Adults .44 - .04 1.00 

Dividends .33 .06 .02 1.00 

Family Size .34 - .17 .7 6 - .01 1.00 

Race - .12 - .OS - .02 - .04 .OS 1. 00 

Table 4.2B 

Difference Between SIE1 Correlation Matrix 
and Population Correlation Matrix 

Total Income 0 

Social Security .os 0 

Number of Adults .06 .o 1 0 

Dividends - .03 .11 .OS 0 

Family Size .03 - .17 .02 - .01 0 

Race - .12 .08 .02 - .04 .OS 0 

Table 4.2C 

Difference Between SIE2 Correlation Matrix 
and Population Correlation Matrix 

Total Income 0 

Social Security - .02 0 

Number of Adults - .o 1 - .03 0 

Dividends - .14 - .01 - .03 0 

Family Size - .04 .03 - .04 - .01 0 

Race - .04 - .o 1 - .02 - .04 .02 0 
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Table 4.20 

Difference Between SIE3 Correlation Matrix 
and Population Correlation Matrix 

Total Income 0 

Social Security .o 1 0 

Number of Adults .o 1 - .os 0 

Dividends - .OS .14 .02 0 

Family Size .OS - .04 .03 - .01 0 

Race - .08 - .07 .09 - .01 .11 0 

Table 4.2E 

Difference Between SIE4 Correlation Matrix 
and Population Correlation Matrix 

Total Income 0 

Social Security .03 0 

Number of Adults - .03 - .os 0 

Dividends .06 - .01 - .03 0 

Family Size - .07 - .03 - .01 - .02 0 

Race - .03 .06 - .06 .oo - .03 0 

Table 4.2F 

Difference Between SIES Correlation Matrix 
and Population Correlation Matrix 

Total Income 0 

Social Security - .02 0 

Number of Adults - .01 .02 0 

Dividends .02 - .03 - .02 0 

Family Size .03 - .01 .02 - .o 1 0 

Race - .08 .o 1 .00 - .01 - .03 0 



Table 4.3A 

Population 

Total Income and Dividend Joint Distribution (Percentage Counts) 

Dividends 

To tal In come $0 $1 under $1,000 $1,000 Plus 

Under $5,000 21.01 1.18 .16 

$5,000 under $10,000 20.20 1. 85 .58 

$10,000 under $15,000 16.7 5 2.24 .55 

$15,000 under $20,000 11.61 2.22 .56 

$20,000 under $25,000 6. 74 2.00 .54 

$25,000 Plus 6.84 3.09 1. 7 8 

Table 4.3B 

Population 

Total Income and Family Size Joint Distribution (Percentage Counts) 

Family Size 

Total Income 1 2 3 4 Plus 

Under $5,000 13.48 4. 85 1. 93 2.09 

$5,000 under $10,000 7.69 7. 71 2. 97 4.27 

$10,000 under $15,000 3. 57 6.23 3. 7 2 6.05 

$15,000 under $20,000 1. 20 4.06 2. 91 6.2 2 

~20, 000 under $25,000 .45 2. 65 1. 92 4.29 

$25,000 Plus .46 2. 89 2. 3 5 6.06 
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Table 4.3C 

Population 

Total Income and Race Joint Distribution (Percentage Counts) 

Total Income 

Under $5,000 

$5,000 under $10,000 

$10,000 under $15,000 

$15,000 under $20,000 

$20, 000 under $25,000 

$25,000 Plus 

White 

17.82 

19.52 

17.62 

13.2 5 

8. 70 

11.08 

Table 4.3D 

Population 

Race 

Nonwhite 

4.53 

3.11 

1. 94 

1.13 

.61 

.6 7 

Social Security and Dividend Joint Distribution (Percentage Counts) 

Social Security 

$0 

$1 under $3,000 

$3,000 Plus 

$0 

62.33 

12.92 

7. 9 

Dividends 

$1 under $1, 000 

9.44 

1. 59 

1. 55 

$1,000 Plus 

2. 38 

.79 

1. 01 
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Table 4. 3E 

Population 

Social Security and Family Size Joint Distribution (Percentage Counts) 

Social Security 

~0 

$1 under $3,000 

$3,000 Plus 

Family Size 

1 2 

17.26 17.42 

7.83 4.60 

1. 7 7 6. 3 5 

Table 4.3F 

Population 

3 

13.35 

1. 31 

1.14 

4 Plus 

26.20 

1. 56 

1. 21 

Social Security and Race Joint Distribution (Percentage Counts) 

Social Security 

$0 

$1 under $3,000 

$3,000 Plus 

White 

64.94 

13.36 

9.69 

Race 

Nonwhite 

9. 28 

1. 94 

.77 

66 



Table 4.3G 

Population 

Number of Adults and Dividend Joint Distribution (Percentage Counts) 

1 
2 

Number of Adults 

3 Plus 

Dividends 

$0 $1 under $1,000 

27.35 
37.38 
18.18 

Table 4.3H 

Population 

2.64 
6.28 
3. 66 

$1,000 Plus 

1. 02 
2.06 
1.09 

Number of Adults and Family Size Joint Distribution (Percentage Counts) 

1 
2 

Number of Adults 

3 Plus 

Family Size 

1 

26.62 
0 
0 

2 

2.05 
26.33 

0 

Table 4.3I 

Population 

3 

1. 41 
7.43 
6. 96 

4 Plus 

.95 
12.02 
16.00 

Number of Adults and Race Joint Distribution (Percentage Counts) 

1 
2 

Number of Adults 

3 Plus 

White 

26.05 
41.55 
20.22 

Race 

Nonwhite 

4.96 
4.23 
2. 7 4 

67 
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4.2. Matched Files Generated Using the Transportation Model 

A total of 50 matched files were generated using the Office of Tax Analy­

sis' optimal-constrained merge system (see [14] for description). The sub­

samples designated in the previous section were selectively matched pairwise 

using six different distance functions. These six distance models use the X 

vector of common data i teDB. 

4.2.1 Weighted Absolute Differences Model 

Model 1 is an absolute difference distance function where for record i 

from the first file and record j from the second file: 

dij = c1 + c2 + c3 + c4 + cs + c6 

where the six components are calculated as follOW's, the first component in the 

distance function for any given record match is 

C1 = min{ 400, 100 • I (File A wage - File B wage) -i- File A wage I} 
The index c 1 is the absolute value of difference in wages and salaries for any 

pair of A and B records divided by the File A wage, but constrained not to 

exceed 400. . For example, if the File A wages are $25,000 and the File B wages 

are $25, 5 96, 

c1 = min{400, 100 • 1<25,000- 25,596) T 25,0001} = 2.4. 

In this example the index C1 denotes the fact that the given B record has a 

wage which differs from the A by 2.4%. The upper limit of C1 = 400 is ar­

bitrary, but is intended to not allow differences in wages alone to determine 

a match for situations with large total distance, i.e., in excess of 400. 

The record distance function component, C2, is a penalty assessed for 

differences in countable assets and follows the same formula as C1. 

The index C3 denotes an index for differences in interest income between 

a pair of A and B records. Interval categories are used for the calculation 
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of C3, as defined in Table 4. 4. The index C3 has an upper limit of 52 which 

means that the greatest difference in property incomes has a distance function 

penalty equivalent to a 52% difference in wages. Hence, the matching algo-

rithm will try to maintain compatibility between the broad categories of prop-

erty income, but the penalty for noncompatibility is never very large. In the 

lower segment of the income distribution, the impact of C3 is to match records 

with zero property income together, whereas in the upper range of the income 

distribution the index C3 will keep records with large amounts of property 

income together, all else equal. 

Demographic factors included in the distance function are age, sex, and 

highest grade attained by head of household. The age penalty is defined by the 

variable c4 which is described in Table 4.5. The age penalty is based upon 

the age of the first person in the tax record. 

Table 4.4 

C2 = Interest Income Difference Index 

File A Interest File B Interest Income 
Income $0 $1-1000 $1001-10000 $10001-100000 $100001 or more 

0 0 13 26 39 52 

$ 1 - $ 1000 13 0 13 26 39 

$ 1001 - $ 10000 26 13 0 13 26 

$ 10001 - $1-00000 39 26 13 0 13 

$100001 and above 52 39 26 13 0 
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Table 4. 5 

C4 = Penalty Index for Difference in Ages 

File B Age 
65 and 

File A Age < 17 18 < 22 23 < 61 62 < 65 Over 

< 17 0 12 32 80 80 

18 < 22 12 0 24 80 80 

23 < 61 32 24 0 64 80 

62 < 65 80 80 64 0 40 

66 and Over 80 80 80 40 0 
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The penalty for age difference is never greater than an 80% difference in 

wages. The broad age categories are defined to represent school age and re-

tirement age. For example the age breakpoint of 62 represents early retire-

ment and 66 denotes regular retirement. The age 17 and less represents chil-

dren living at home, and the age interval 18-22 represents college or begin-

ning employment age. For the objectives of this matched file, persons with 

ages between 23 and 61 are not considered to be different, if all other fac-

tors are the same. However, a large penalty is imposed if a person 61 or 

younger is matched with a person 62 or older in order to differentiate persons 

eligible for Social Security income from those who are not. 

The penalty index for differences in highest grade attained by head-of-

household is calculated as follows: 

C5 = 16 • INT (!Grade of A Grade of Bl f 3) 

where INT(x) is a function whose value is the smallest integer less than or 

equal to x. This value never exceeds a 100% difference in wages and repre-

sents a graduated penalty for increased differences in highest grade attained. 

Note that there is no penalty for a difference of under three years, a penalty 

of 16 for a three to five year difference, and so on. 

The last penalty included in the distance function is the index c6 for 

difference in sex of head of household. If the A record and the B record have 

different sex codes then the index C6 is set equal to 100, which has the same 

impact as a 100% difference in wages. 

{ 
0 if A and B have the same sex code 

c6 
100 if A and B have different sex codes 

The distance function value for a given potential record match is the 

summation of variables Ck. 
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Distance Function Value for 
a given pair of A and B records 

More precisely, the notation for the variable Ck discussed above should 

be Cijk where i denotes the ith A record, j denotes the jth B record, and k 

denotes the index for income and demographic characteristics. 

dij = distance function value for the ith A record and the jth 
B record. 

6 
= L cijk• 

k=1 

The objective of the distance function is to try to force matches within 

the intervals defined for interest income, age, highest grade, and sex, and to 

try to obtain very close absolute agreement based upon wages and assets. 

4.2.2 Mahalanobis Distance Model 

Model 2 is the Mahalanobis distance function value for record i from the 

first file (A) and record j from the second file (B) is defined in (2.4) as: 

dij = (x1i- x2j)' <l:xx)-1 (x1i- x2j) 

where 

x1i is the vector of common data items from record i of file A, 

x2j is the vector of common data items from record j of file B, and 

LXX is the covariance matrix of the X variable from the population file. 

4.2.3 Other Constrained Models 

Model 3 is Model 1 without assets in the distance function, and Model 4 

is Model 1 without assets, age, and sex in the distance function. Model 5 is 

an absolute value percentage difference distance function using only wages and 

salaries, i.e., using only C1 from Model 1. Model 6 uses only the age, 
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highest grade attended, and sex components of Model 1, i.e., C4, C5, and C6 of 

Model 1. 

4.2.4 Matched Files Created 

The specifications of the 50 generated matched files using the transpor-

tation algorithm are given in Table 4.17. For matching purposes the Z ele-

ments of the file A samples, and the Y elements of the file B samples were 

ignored. 

These 50 matched files are in the following test classifications. 

Matched files 1-10: pairwise matching of all samples using an absolute dif­
ference distance function (model 1). 

Matched files 11-20: pairwise matching of all samples using the Mahalanobis 
distance function (model 2). 

Matched files 23-30: matching the sample SIES with itself under conditions of 
noise, bias, and combined noise and bias (model 1). 

Matched file 21: matching SIES with itself using the absolute difference 
distance function and six common variables (model 1). 

Matched file 22: matching SIES with itself using the Mahalanobis distance 
function (model 2). 

Matched files 31-38: matching samples SIE1 with SIES under conditions of 
noise, bias, and combined noise and bias (model 1). 

Matched files 40-43: pairwise matching of sample SIES with samples SIE1, 
SIE2, SIE3, and SIFA using absolute difference distance 
function with five common variables (model 3). 

Matched files 44-47: pairwise matching of sample SIES with samples SIE1, 
SIE2, SIE3, and SIFA using the absolute difference dis­
tance function with only three common variables (model 
4) 0 

Matched file 39: Sample SIES matched with itself using the absolute dif­
ference distance function with five common variables 
(model 3). 

Matched file 48: sample SIES matched with itself using the absolute dif- . 
ference distance function with three common variables 
(model 4). 
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Matched file 49: sample SIES matched with itself using the absolute dif­
ference distance function with only the common variable 
wages and salaries (model 5). 

Matched file 50: sample SIES matched with itself using the absolute dif­
ference distance function with only the two common vari­
ables age and highest grade attained (model 6). 

4.2.5 Tests Used to Compare Matched File Distributions with the 
Population Distributions 

Two tests were selected for COilllaring the Y-Z distributions in a matched 

file with the corresponding distributions in the population file. One method 

is to calculate a simple x2 statistic for each Y-Z pair, based upon cross-

tabulated, percentage for the categories specified in Tables 4.3-A-I, and us-

ing the population percentage counts from these tables as the expected values. 

The x2 statistic is calculated in the following manner. For a given cell K in 

a Y-Z table, 

where fm = weighted percentage of matched records in the k-th cell 

fp = weighted percentage of population records in the k-th cell taken 
from Table 4.3A through 4.31 
N 

x2 =I~ 
k-1 

N = number of cells in the Y-Z table, and 
degrees of freedom = (number of rows) (number of columns)-!. 

Also for simplicity, cell counts with less than one percent of the cumulation 

frequency were set equal to one, and all frequency counts were rounded to the 

nearest whole percent. This statistic was selected to neutralize the effect 

of having weighted samples with enormous cell values, where the slightest per-

centage difference will generate very large x2 figures. For example, a 

weighted sample with a weighted cell count of one million deviating by 1% from 

the population cell count would result in a cell x2 of 100, which by itself 



wou~d not pass a goodness-of-fit test with degrees of freedom less than or 

equal to 20. 
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Implied in the selection of a x2 goodness-of-fit test based upon percent­

age distributions is the assumption that percentage counts are sufficient to 

represent the data. That is, for most applications using microdata, a cell 

percentage count of 20.5% is just as useful as knowing that the actual w~ight­

ed frequency count is, for example, 287,000. Another important assumption for 

the goodness-of-fit test is that the appropriate cell-defining categories have 

been selected. For instance, if the categories for dividend income specified 

in Table 4.3A, 4.30, and 4;3G are sufficient for any use of dividend income, 

then x2 figures based upon these categories are meaningful. &wever, it IIJ.lSt 

be stated that for the purposes of this study, the categories were selected to 

have relevance with the restriction that low-count cells were avoided by ag­

gregation. Consequently, for a small-frequency data item (such as social se­

curity used in Tables 4.3D-F), the categories (zero, $1 to $2999, and $3000+) 

were selected so that cross tabulated counts using the other variables, cate­

gories are reasonable. 

The second test used in the study is the direct comparison of the Y-Z 

correlation matrix of a matched file with the population Y-Z correlation ma­

trix. The comparison is displayed by subtracting the population correlation 

matrix from the matched file correlation matrix. Ideally, the matrix obtained 

would be zero or have all elements very close to zero, hence the matched-file­

generated Y-Z distribution is statistically the same as the corresponding pop­

ulation Y-Z distribution. As will be presented later in the report, a direct 

test for equality of correlation matrices is not necessary ' because of large 

differences observed between the matched file and population statistics for 

dividends and total income, and family size and number of adults. 
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It must be noted that the matched file will be different to a certain ex­

tent from the population file since the samples which are used for matching 

are slightly different from the population. 

4.3 Comparison of Absolute Difference and Mahalanobis Distance Functions 

Matched files 1-20 identified in Table 4.6 can be used to compare matched 

files generated by an absolute difference distance function and a Mahalanobis 

distance function. Matched files 1-10 represent all pairwise matching of the 

five subsamples SIE1 through SIE5 selected from the population file using an 

absolute difference distance function. Matched files 11-20 represent all 

pairwise matching of the five subsamples SIE1 through SIE5 using a Mahalanobis 

distance function. 

Only the Y-Z distributions will be examined since the transportation 

model leaves all original distributions in their original form. For example, 

the covariance matrix for X1-Y in the matched file is the same as the corre­

sponding matrix in file A, and the covariance matrix for X2-Z in the matched 

file is identical to the corresponding matrix in file B. 

Table 4.7 summarizes this x2 statistic for each of the nine frequency 

count tables representing all Y-Z distributions. The rows in Table 4.7 were 

arranged to allow a direct comparison of Models 1 and 2 for the same input 

data files. For example, matched files 1 and 11 given in the first two rows 

of the table are for input data files SIE1 and SIE2 where matched file 1 uses 

Model 1 and matched file 2 uses Model 2. The row averages are for the average 

x2 for a given matched file for the nine Y-Z frequency tables. In all cases 

the average for the matched file using Model 1 is less than the matched file 

using Model 2 generated from the same input data files. 
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The following table is given to illustrate one of the x2 calculations in 

Table 4.8. Table 4.7 gives the percentage counts of records for the Y-Z dis-

tribution total income and dividend income in matched file 1. An interesting 

feature of constrained matching models is that the marginal distribution in 

Table 4. 7 are identical to the marginal distributions of the original files. 

For example, the marginal distribution of the Y variable total income in this 

table is identical to the marginal Y distribution in sample SIE1, and the mar-

gina! distribution of the Z variable dividend, in this table is identical to 

the marginal Z distribution in sample SIE2. 

Table4.7 

Matched File 1 

Total Income and Dividend Joint Distribution (Percentage Counts) 

Dividends 
Total Income $ 0 $1 - under $1,000 $1,000 Plus 

Under $5,000 20.5 1. 42 .39 
$5,000 under $10,000 17.2 7 2. 31 • 7 3 
$10,000 under $15,000 17.4 7 2. 34 .43 
$15,000 under $20,000 11.91 2.40 .72 
$20,000 under $25,000 7.30 2.32 .43 
$25,000 Plus 6. 79 4.07 .61 

The population percentages for the corresponding Y-Z distribution for Table 

4.7 are given in Table 4.3A and using the x2 figure previously defined, the 

resulted x2 is 1.3. With (6)(3)-1=17 degrees of freedom, a x2 of 1.3 indi-

cates that the distribution in Table 4.7 is, for all practical purposes, the 

same as the distribution in Table 4.3A, and consequently for this Y-Z distri-

bution the matched file is the same as the population file. However, this re-

sult is only true if the relevant categories are those in Tables 4.3A and 

4.7, and percentage distributions are sufficient for the data being repre-

sented. 
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The degrees of freedom for the Y-Z distributions are given in the bottom 

row of Table 4.8. It is observed in the column for total income and race, 

that the average x2 for matched files 1 through 10 is 2.5 with a standard de­

viation of 2.0. A rough interpretation of these figures is that the mean x2 

plus two standard deviations = 2.5 + 4 = 6.5, which is an acceptable x2 figure 

given DF = 11. In fact for matched files 1-10, the mean x2 plus two standard 

deviations yields an acceptable x2 for all Y-Z distributions with the excep­

tion of number of adults and family size. 

The average x2 for the Mahalanobis distance function for each Y-Z distri­

bution is given in the row averages for matched files 11 through 20. If ·two 

standard deviations are added to the mean x2 figures the resultant sum is an 

acceptable x2 in only five of the Y-Z tables. 

In summary, it is observed from Table 4.8 using the x2 test that the ab­

solute difference distance function is much better then than the Mahalanobis 

distance function. It is also observed that at the 5% level of acceptance, 

that all but one of the absolute value distance function Y-Z distribution are 

acceptable. 

Another way to co~are matched files with the population file, and to com­

pare one matching model with another is to observe the difference between the 

correlation matrix of a matched file and the correlation matrix of the popula­

tion file. Table 4.9A gives the result of subtracting the population correla~ 

tion matrix given in Table 4.1 from the average correlation matrix obtained 

from matched files 1-10. 

The blocked-in portion of Table 4.8 represents the Y-Z distribution where 

for the ideal match all entries should be zero or close to zero. It is ob­

served from Table 4.9A that these are significant differences from zero where 

the big differences are for the correlations between total income and 
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Table 4. 9A 

Average Correlation Matrix for Matched Files 1-10 Minus the 
Population Correlation Matrix (Absolute Difference Distance Function) 

Total Income 0 

Social Security .02 0 

Number of Adults .o 1 .o 1 0 

Dividends - .2 7 0 - .04 0 

Family Size .08 - .04 - .4 7 - .01 0 

Race .02 0 - .01 - .01 .03 

dividends, and between number of adults and family size. The difference be-

tween the population and the matched file distribution for family size and 

number of adults was also very evident from Table 4. 8. However, the differ-

0 

ence between the population and matched file distribution for total income and 

dividends was probably masked by classifying all dividends over $1,000 in the 

class $1,000 Plus. Another feature of the blocked portion of Table 4.9A is 

that six of the differences are negtive and only one is positive, reflecting 

the fact that the matched file correlations are, on the average, smaller in 

absolute value than the population correlations. 

Table 4.9B gives the difference between the average correlation matrix 

for matched files 11-20 and the population correlation matrix given in Table 

4.1. 

From Table 4.9B it is observed that the Mahalamobis distance function 

produces larger deviations from the population than the absolute difference 

distance function represented in Table 4.9A. The blocked-in portion of Table 

4.9B represents the Y-Z distributions and it is observed that correlation be-

tween family size and number of adults, between dividends and total income, 
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Table 4.9B 

Average Correlation Matrix for Matched Files 11-20 Minus the 
Population Correlation Matrix (Mahalanobis Distance Function) 

Total Income 0 

Social Security .02 0 

Number of Adults .o 1 .01 0 

Dividends - .32 .08 - .OS 0 

Family Size - .40 .12 - .7 7 .03 0 

Race .12 .07 ~08 - .01 .03 

and between family size and total income are very different from the popula-

0 

tion correlations. As observed in Table 4.9A, there is a strong tendency for 

the matched file Y-Z correlations to be smaller in absolute value than the 

population correlations. It is also observed from Tables 4.9A and 4.9B that 

the absolute value distance function is better than the Mahalanobis distance 

function. 

4.4 Comparison of Matched Files Generated with an Absolute Value 
Distance Function Using a Range of Common Variables 

Earlier in this chapter matching Models 1, 3, and 4 were specified. Es-

sentially Model 3 is the same as Model 1 with the data item assets left out. 

In the population file assets is strongly correlated (.57) with the common 

variable interest, moderately correlated (.38) with they variable total in-

come, and highly correlated (.70) with the z variable dividends. Model 4 is 

the same as Model 3 with the common data items age and sex left out. In the 

population file age is moderately correlated (-.22) with the common variable 

wages and salaries, moderately correlated (-.34) with the common variable 
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highest grade of family head, strongly correlated (.58) with the y variable 

social security, and moderately correlated (-.20) with the z variable family 

size. 

The objective of this section is to compare Models 1, 3, and 4 and conse­

quently to investigate the effect of altering the number of variables in the 

distance function. To achieve this objective matched files 9, 40, and 47 are 

grouped together representing samples SIES and SIE4 matched respectively with 

matching Models 1, 3, and 4. Matched files 4, 42, and 45 are grouped together 

representing samples SIES and SIE2 matched ··respectively with Models 1, 3, and 

4. Matched files 10, 43, and 44 are grouped together representing samples 

SIE1 and SIES matched respectively using matching Models 1, 3, and 4. Also 

matched files 7, 41, and 46 representing files SIES and SIE3 matched respec­

tively using matching Models 1, 3, and 4. 

Table 4.10 displays the x2 statistics as defined previously to compare 

Models 1, 3, and 4 using pairwise matching of sample SIES with samples SIE1, 

SIE2, SIE3, and SIE4. 

From Table 4.10 it is observed from the row average column that Model 4 

yields the largest average x2 statistic in three of the four groupings. It is 

also observed from Table 4.10 that Model 4 has the largest column average in 

seven of the nine frequency tables. Models 1 and 3 appear to generate matched 

files with the same overall differences from the population file. 

Once again it is very obvious that the Y-Z distribution for number of 

adults and family size is very poor, but the other distributions are not too 

bad given the fact that the samples are different from the population. 

Models 1, 3, and 4 can also be examined using the average correlation 

matrices for matched files using the different models. The correlation re­

sults for Model 1 were given in the previous section in Table 4.8. The 
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difference between the average correlation matrix using Model 3 and the popu-

lation correlation matrix is given in Table 4.11. The difference between the 

average correlation matrix using Model 4 and the population correlation matrix 

is given in Table 4.12. 

Table 4.11 

Average Correlation Matrix for Matched Files 40-43 Minus the 
Population Correlation Matrix (Model 3 Distance Function) 

Total Income 0 

Social Security - .02 0 

Number of Adults - .01 .02 0 

Dividends - .2 7 .02 .02 0 

Family Size - .07 .04 .45 0 0 

Race .02 .02 .os .o 1 .04 

Table 4.12 

Average Correlation Matrix for Matched Files 44-47 Minus the 
Population Correlation Matrix (Model 4 Distance Function) 

Total Income 0 

Social Security - .02 0 

Number of Adults - .01 .02 0 

Dividends - .25 .o 1 - .03 0 

Family Size - .11 - .01 - .58 0 0 

Race .04 .04 .o 1 - .01 .04 

The blocked-in portions of Tables 4.11 and 4.12 reflect the difference 

between the Y-Z distributions in the matched files using Models 3 and 4 and 

the population Y-Z distributions. As mentioned in the previous section, the 

0 

0 
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ideal match would have zero or near zero entries. However, as in the case for 

Model 1 observed in Table 4.8, there are significant differences in the match­

ed correlations for dividends and total income, and for family size and number 

of adults. These large differences are a result of the tendency for the 

matched file correlations to have smaller absolute values than the absolute 

values of the corresponding correlations in the full population. The popula­

tion correlation for dividends and family income is .33 as opposed to the av­

erage Model 3 corresponding correlation of .06, and the corresponding correla­

tion from the average results from Model 4 of .05. For family size and number 

of adults the population correlation is .76, the average Model 3 correlation 

is .31, and the average Model 4 correlation is .18. 

It should be noted that the entries in Tables 4.8, 4.11, and 4.12 out­

side the blocked-in section are for the correlations within the y's (given 

above the blocked-in portion), and for the correlations within the z's (given 

to the right of the blocked-in portion). Any nonzero entries outside the 

blocked-in portions are a consequence of differences between the samples and 

the population, since the transportation algorithm forces the within y and 

within z correlations to be the same as the sample values. 

In summary, the results of the section indicate that Models 1 and 3 are 

better than Model 4. The implication for matching is that it is possible to 

have too few common variables in the distance function. However, because of 

the mixed results from Models 1 and 3, it cannot be stated that too many com­

mon variables can degrade the accuracy of a generated matched file. 

4.5 Matching Under Conditions of Noise and Bias 

Samples SIE1 and SIES were matched using Model 1 and the results of this 

match are designated as matched file 10 in Table 4.7. Earlier in this 
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chapter, samples 6A-8B were identified as versions of SIES with noise and bias 

injected into the X variable assets. The purpose of this section is to com­

pare matched file 10 with matched files 31-38 which are identified in Table 

4.6. In all cases, matching Model 1 is used. 

Table 4.13 displays the x2 statistic as defined in the previous two 

sections for comparing sample SIE1 matched with SIES when bias and noise are 

injected into SIES. Match file 10 is for the unaltered sample SIES, matched 

file 31 has assets in SIES reduced by 29%, matched file 32 has assets in SIES 

reduced by 10%, matched file 33 has a 25% .noise factor in assets in 25% of the 

records in SIES, matched file 34 has a 25% noise factor in assets in all 

records in SIES, matched file 35 has a 10% noise factor in assets in 25% of 

the records in SIES, matched file 36 has a 10% noise factor in assets in all 

SIES records, matched file 37 has a 15% downward bias and noise factor in 

assets in 25% of the records in SIES, and matched file 38 has a 15% downward 

bias and noise factor in assets for all records in SIES. 

In Table 4.13 it is observed that the row average for matched file 10 is 

slightly better than the row averages for matched files 31-38. It is also 

observed from the column averages for matched files 31-38 when compared with 

the row entries for matched file 10 that, on the average, the x2 statistics 

for matched file 10 are better than the average tables for the matched files 

31-38. 

Once again, as in the two previous sections, the Y-Z distribution for 

number of adults and family size are very poor, and most of the other distri­

butions are reasonable. The empirical result taken from Table 4.13 is that 

moderate amounts of noise, bias, and combined noise and bias do not greatly 

affect the Y-Z distributions in matched files. 
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4.6 Results of Matching A Sample With Itself 

The sample SIES was matched with itself under a variety of conditions, 

i.e. , using all of the matching models and using the conditions of bias, 

noise, and combined noise and bias. The files of particular interest are 

described in Table 4.6 as numbers 21 (Models 5 and 1), 2 (Models 5 and 2), 39 

(Models 5 and 3), 48 (Models 5 and 4), 49 (Models 5 and 5), 50 (Models 5 and 

6) and 23-30 (noise and bias tests). 

Matched fi ,les 39, 48, 49, and 50 are unique in th8:t they are identical 

with sample SIES; that is, each sample record is matched with itself and with 

the matched weights equal to the record weights. There are 951 records in 

sample SIES and consequently there are 951 records in matched files 39, 48, 

49, and 50. The -correlation matrix for this file is identical to correlation 

matrix for SIES. 

Matched file 21 is slightly different from sample SIES. However, this 

matched file has 974 records which implies that all except 24 records have 

been matched with themelves. These 24 exceptions have been split and cross­

matched with each other. The consequences of the "mismatching" of 24 records 

can be observed in Table 4.14 where it is seen that the correlations are al­

most identical with the exception of race and family size which has an approx:­

imate difference of -.01. However, the percentage frequency in the table for 

race and family size are different between SIES and the matched file by less 

than .1%. 

Thus the matched results of matching a file with itself are perfect using 

Models 3, 4, 5, and 6 and near-perfect using model 1. However, the results 

obtained using model 2, the Mahalanobis distance function, are very poor by 

comparison. The difference between the correlation matrix from matched file 

22 and S IES is given in Table 4.15. 



Table 4.14 

Correlation Difference Matrix for Matched File 21 Minus SIES (Model 1) 

Total Income 0 

Social Security 0 

Number of Adults 0 

Dividends 0 

Family Size 0 

Race - .001 

0 

0 

0 

- .001 

.004 

0 

0 

- .004 

- ~.009 

0 

0 

0 

0 

0 

90 

0 

From Table 4.15 it is observed that matched file 22 is very different 

from SIES. These differences are probably due to the non-normal and discrete 

data distributions in the sample. 

Table 4.15 

Correlation Difference Matrix for Matched File 22 Minus SIES 

Total Income 0 

Social Security 0 0 

Number of Adults 0 0 0 

Dividends .365 - .071 .039 0 

Family Size - .49 .094 - .891 0 0 

Race .173 .o 79 .o 71 0 0 0 

The impact of bias and noise on sample data can be studied by comparing 

the characteristics of matched files 23-30. In all cases, the results are 

nearly identi cal to matched file 21, with correlati on di f f erences from matched 

file 21 less t han .003. Each of t hes e output f i les only differ from each 

other by less t han 7 of the 951 recor ds in SIES with the number of matched 
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records ranging from 967 to 974. The conclusion is that limited amounts of 

bias, noise, and combined bias and noise do not affect a matched file. 

4.7 Analysis of Unconstrained Procedures 

To investigate the impact of unconstrained procedures on the resultant 

composite file, a single sample file, SIE2, was merged with each of the four 

remaining sample files using an unconstrained method with the absolute differ-

ence distance function of Section 4.2.1. In each case, the weights for SIE2 

are not constrained and the other file is -'used as the base file. By observing 

the distributional statistics of a Z-variable, the effects of dropping the 

weight constraints are demonstrated. 

The means and standard deviations of the Z-variable dividend income are 
. 

shown in Table 4.16A for all five sample files. Table 4.16B shows the same 

statistics for SIE2 when used as file B. Not only do the means vary, depend-

ing on the base file, but the standard deviations are also distorted, as much 

as +38 percent from the original values. 

Noise and bias factors also influence the pattern of data in the X2 and Z 

variables as illustrated in Table 4.16C. Files SIE6A through SIE8B are iden-

tical to file SIES but with the X2 variables perturbed with noise or bias as 

described in Table 4.1. Table 4.16C demonstrates the impact of the X-data 

perturbations on the same fundamental statistics. The presence of bias or 

noise tends to decrease the Z-variance and distort even the means either up-

wards or downwards. 

Of course, all of these statistical changes are a result of the implicit 

modification of the weights on file B by the unconstrained merge process. 

Such variations are in contrast with constrained procedures which, as an inte-

gral part of the merge process, maintain the original (or equivalent) record 



File A 

SIE1 
SIE3 
SIE4 
SIE5 

*Percent 

Table 4.16A 

Dividend Income Statistics for Sample Files 

Sample File Mean 
Dividend Income 

Standard Deviation 

SIE1 
SIE2 
SIE3 
SIE4 
SIE5 

File B 

SIE2 
SIE2 
SIE2 
SIE2 

deviations 

$227 
194 
350 
353 
292 

Table 4.16B 

SIE2 Dividend Income Statistics 
After Unconstrained Merging 

$1,471 
1,717 
1,942 
2,929 
1,990 

Dividend Income from SIE2 
Standard 

Mean (Deviation*) Deviation (Deviation*) 

$176 ( -9.2%) $1,057 (-38.4%) 
268 (+38.1%) 1,922 (+11.9%) 
146 (-24.7%) 1,454 (-15.3%) 
186 ( -4.1%) 1,210 (-29.5%) 

from original SIE2 values per Table 4.16A 

Table 4.16C 

Unconstrained Merges: Noise and Bias Tests 

Dividends on File B 
File A File B Mean Standard Deviation 

SIE1 SIE5 $220 $1,713 
SIE1 SIE6A 317 1,557 
SIE1 SIE6B 294 1,433 
SIE1 SIE7A 283 1,418 
SIE1 SIE7B 216 1,028 
SIE1 SIE7C 258 1,371 
SIEl SIE7D 286 1,475 
SIE1 SIE8A 246 1,149 
SIEl SIE8B 295 1, 992 

SIES Original File 292 1,990 

92 
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weights and hence preserve all of the X2 and Z data items and their interrela­

tionships. 

In summary, this information seems to suggest not only that unconstrained 

approaches have difficulty maintaining the basic descriptive statistics of z­
variables, but are also influenced by bias and noise in the X-variables, two 

problems not encountered in constrained procedures. 

4.8 Summary and Results of the Real Data Empirical Investigation 

All of the issues outlined in the introduction of this chapter were 

addressed using the fifty constrained matched files defined in Section 4.2.4 

and the unconstrained matches discussed in Section 4.7. The pattern of the 

results obtained indicate that sufficient observations have been generated for 

some general conclusions. 

These results are: 

1. Absolute difference distance function yields significantly better results 

than Mahalanobis distance function. 

2. Noise and bias have a nominal effect on matched files. 

3. When a file is matched with itself using the transportation model with an 

absolute differences distance function, the desired matching of records 

is produced even under conditions of bias, noise, and combined noise and 

bias. 

4. All original statistical content in the input files is preserved with 

constrained matching. However, there is a tendency for the absolute 

value of correlations between the Y-Z items to be reduced from the popu­

lation values. 

5. The quality of a match is reduced if too few common variables are used in 

the distance function. 
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6. The absolute difference distance function generated acceptable Y-Z 

distributions in 8 of the 9 Y-Z distributions specified, using pe.rcentage 

distribution functions and the categories specified in Tables 4.3A-I. 

It is extremely interesting to note that the absolute difference distance 

function used with the transportation model generated the unacceptable Y-Z 

disbtributions when cov(YZ/X) was clearly non-zero. 

Perhaps the most important conclusion is that the next applied research 

topic in this area should be the identification and development of a matching 

criterion which has the ''known" Y-Z relati'onship included. That is, the 

matching function should exclude non-valid Y-Z patterns while encouraging the 

valid ones. This conclusion is based upon the empirical evidence that the 

transportation model using an absolute difference distance function produces 

acceptable Y-Z distributions in most situations, but not in all. Also it is 

reasonable to predict that in a proper environment with the necessary matching 

software and data that a matching function could be developed which would gen­

erate acceptable distributions for all Y-Z pairs. 

The long run implication of this conclusion is that statistical matching 

would be a very useful tool for data preparation in situations where, for ex­

ample, every five years population Y-Z characteristics are observed from a 

sample~ and during the intervening years file matching is done when the data 

is available only in Xl-Y and X2-Z collections. In this situation the popula­

tion Y-Z characteristics are used to match Xl-Y and X2-Z file such that the 

matched file Y-Z distribution conform to expected patterns. 



PART 5 

SUMMARY AND CONCLUSIONS 
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Herein has been presented one of the first research studies of its 

kind in this area: an in-depth computational work designed to achieve a 

foothold of understanding into the statistical nature of files formed by 

state-of-the-art merging techniques. The study views from dual aspects 

theoretical and direct-empirical -- an important set of questions unan­

swered by the literature. An enormous body of data has been created and 

analyzed; in the process, over 7,000 linear programming problems were 

solved with dimensions of up to 2,000 constraints and 1 million variables. 

Details of this research effort have been documented in the previous 

pages and, in this concluding section, several general conclusions sug­

gested by these results are presented. These interrelated summary conclu­

sions are organized under the following headings: (1) the viability of 

merging, (2) choosing a merge technique and distance function, (3) the ef­

fects of data perturbations, (4) improvements needed in existing methods, 

and (5) future research directions. 

5.1 The Viability of Merging 

There are several instances suggested by the studies in which specific 

statistical merging techniques perform well but others where merging to ac­

complish certain goals is perhaps not advisable. The study focused on the 

various merge techniques' abilities (or lack thereof) to preserve known re­

lationships between data items that came from and were unique to separate 

files. These relationships were expressed in the form of correlation and 

covariance statistics and cross-tabulations of pairs of such items. These 

are the so-called Y-Z relationships. 

There is evidence to suggest that applications requiring that these 

Y-Z relationships be preserved in "modestly broad" categories can obtain 
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generally good results from a merge file created by the transportation mod­

el and distance function described in (5.3) below. While data categories 

such as "wages between $5,000 and $10,000" and "age between 20 and 30 

years" would be considered "modestly broad," the categories "wages income 

between $5,000 and $5, 100'' and "age of 21 years" would not. Therefore many 

existing microsimulation models, such as the Treasury's Individual Tax 

Model, which do not have extremely strict requirements in this area are 

well-suited to the use of merged files. 

This is not to suggest that there ~cannot be any problems with using 

such files or that improvements cannot be made in their construction. The 

empirical study using SIE data demonstrated the ability of merged files to 

create acceptable Y-Z data relationships in most cases, but also provided 

an excellent example of the creation of illogical relationships. Specifi­

cally, several records were created to form single-person families contain­

ing two adults. While such spurious results lead to reasonable concerns 

about merging, it is clear that these erroneous record matches could have 

been easily avoided by adding a penalty to the process's distance function 

for each illogical match pair. The extension of this notion to less clear­

cut cases is discussed below. 

Another application of merge files is for correcting or expanding an 

existing file's items to account for underreporting. When, for example, 

items in a given file are not deemed sufficiently trustworthy, that file 

might be merged with another primarily to upgrade those particular items. 

If the files have many items in common, this use might be focused on either 

X1-X2 relationships or X1-Z relationships. Such relationships seem to be 

retained by merging. 
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In the instance where there is no relationship between the non-common 

items, for a given set of values for the common items, [cov(Y,ZIX)=O] this 

condition is replicated well by merge techniques. Of course this situation 

is not as useful as where there is such a relationship [cov(Y,ZIX)*O], a 

case current merging techniques have difficulty replicating. While the 

simulation study suggested that all nonzero relationships were forced to 

zero by the merge techniques studied, the testing based on SIE data indi­

cated that such relationships were only softened, not eliminated. This 

means that relationships which are not ~an explicit part of the merge proce­

dure (e.g., in the distance function) tend to be attenuated through random 

pairings but on average hold to a certain, although lesser, degree. Hence, 

the user of merge files should be cautioned about heavy reliance on them to 

reflect Y-Z relationships to a high degree of accuracy. 

5.2 Choice of Merging Model 

In summary, both studies indicated that the best results can be ob­

tained by applying an optimal-constrained merge model with an absolute dif­

ference distance function. 

With the simulation study, the constrained models yielded much better 

results than the unconstrained models and there was very little difference 

between constrained absolute difference and Mahalanobis distance functions. 

These conclusions were based, however, on experiments with small, normally 

distributed data files having few common variables, but with the advantage 

of a large number of replications to enhance the generality of the re­

sults. 

The study based on "real" data files verif ied the superiority of the 

constrained approach but found the Mahalanobis distance function to yield 
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extremely poor results, most likely a consequence of the presence of non­

normally distributed data. 

The number of common variables used in the distance function was also 

shown to have a strong effect on the representativeness of matched files. 

As expected, more variables seemed better than fewer, perhaps due to the 

procedures' inability to distinguish between records when only a few vari­

ables are used. 

5.3 Effects of Data Perturbations 

A notable finding from the SIE data study was the robustness of the 

constrained merge techniques when the variables used in a distance function 

are subjected to noise, bias, and both noise and bias. When the transpor­

tation model with an absolute differences distance function was used to 

match a sample file with itself, 99 percent of all records were matched 

correctly, even under varying levels and types of noise and bias. 

This lack of sensitivity to such prevalent conditions of sample survey 

data is a very positive result that enhances the attractiveness of merging 

schemes in general. 

5.4 Improvements Needed in Existing Methods 

It appears likely that current techniques, including the transporta­

tion model, could be improved with a modicum of additional research. For 

example, distance functions should be designed to account for known rela­

tionships among non-common variables and at the very least to rule out il­

logical matches. 

It is very clear from many aspects of the research that for merging 

methods to perform well in maintaining Y-Z relationships, the procedures 
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must inject some measure of control over those relationships. In the sim­

plest case, distance functions should associate heavy penalties with record 

matches that are illogical not only in terms of Xl-X2 data configurations 

but for Y-Z combinations as well. 

In the more general case, the higher-order statistical relationships 

between X, Y, and Z items should be incorporated into the merging proce­

dures. Research to identify more sophisticated distance functions or 

matching schemes which directly address data characteristics such as non­

normality and cov(Y,ZjX)*O should be undertaken to counteract shortcomings 

inherent in procedures which are quite robust along other dimensions. 

From a procedural point of view, it would be extremely useful for all 

merge file users if aggregate statistics for non-common variable pairs 

could be collected at regular (five- or ten-year) intervals in order to 

calibrate on-going merge models. Such information could be collected 

piecemeal and at various points in time for subsequent construction and 

maintenance of these statistical mosaics. For example, the correlations 

between some item pairs probably would not change dramatically from year­

to-year and would need to be updated or verified at much larger time inter­

vals. However, if such statistics were available, new merging schemes 

could likely be designed to incorporate them and perhaps eliminate the 

problems associated with cov(Y,ZIX) significantly different from zero. 

5.5 Further Research Directions 

In addition to the research topics described above, it is felt that 

this work is only a starting point for research into the theory and prac- . 

tice of microdata file merging. Much data was generated, but the time 

available for analysis has been extremely limited. 
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In general, this line of research should be continued (1) to devise 

merge methodologies which are better able to capture the Y-Z relationships, 

(2) to identify criteria to determine when a pair of files can be said to 

be "mergeable," and (3) to study the impact of merge technique at the model 

output level, as opposed to the data input level, to gauge models sensitiv­

ities to data perturbations from this source. 
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A-1 

It can be shown algebrically and understood intuitively that the statis-

tical merging technique chosen directly affects the statistical structure of 

the resultant composite file. The objective of this appendix is to il-

lustrate these effects using two small hypothetical data files. 

An Example Matching Problem 

The data files, called A and B, that we will use in our examples have 

three records and four records respectively. These records are completely de-

scribed in Figure A.1. Note that files A and B have some items in common and 

some that are not. The objective of merging would be to form a file of com-

posite records, each containing items from both files, as depicted in Figure 

1.1. As in all merging and matching techniques, the common items are used for 

identifying records with like attributes for matching purposes. 

The tabulations given in Table A.1 show that the weight totals for each 

file are equal, indicating identically-sized sample populations. If we let ai 

be the weight of the i-th record in file A and bj be the weight of the j-th 

record in file B, this property can be expressed mathematically as: 

(A. 1) 

Table A.1 also indicates that the weighted item sums are slightly different, 

indicating reporting or sample variations. 

Overview of the Matching Problem 

We shall let wij represent the weight assigned to the composite r ecord 

f ormed by merging record i of file A with record j of f ile B, with a zero 

value indicating that the records are not matched. Microdata file merging 



. Figure A. 1. Example Files A and B 

FILE A RECORDS: 

Reported 
Record Record Schedule Adjusted 
Number Weight Code Gross Income 

1 1000 1 16,000 

2 2000 1 12,000 

3 500 2 20,000 

Common 
Items 

FILE B RECORDS: 

Reported 
Record Record Schedule Adjusted 
Number Weight Code Gross Income 

1 1400 1 14,000 

2 400 2 19,500 

3 1500 1 11,000 

4 200 2 17,000 

Table A.1 

Item Tabulations for Example Files 
(Weighted) 

Description 

Population size 
Schedule code = 1 
Schedule code = 2 
AGI, Total (OOOs) 
Reported Deductions, Total 
Family size, avg. 
Transfer income (OOOs) 

File A 

3,500 
3,000 

500 
50,000 

9,800 
n.a. 
n.a. 

Reported 
Deductions 

3,200 

2,300 

4,000 

• Non-common 
Items 

Family 
Size 

2 

4 

3 

2 

File B 

3,500 
2,900 

600 
47,300 

n.a. 
2.65 

5,200 

A-2 

Transfer 
Income 

500 

0 

3,000 

0 
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may be viewed as a problem of finding a set of nonnegative values for all 

wij's. 

In order to guide the merge process to matching similar records a dis-

tance function, d, is used to measure the extent to which the attributes in 

any one record differ from the same attributes in another record. Intui-

tively, the parameter dij can be viewed as the "distance" between record i of 

file A and record j of file B, as illustrated in Figure A.2 below. In this 

example, file A record 2 (shown as point A2) is considered to be closer to 

file B record 1 (B1) than to file B record~ 2 (B2), that is d21<d22, since the 

schedule codes and AGI values are in closer agreement. 

A simplistic distance function will be used for illustrative purposes. 

(The effects of different dissimilarity metrics could also be studied using 

this example.) In this model, the interrecord distance will be defined as 

d 
ij 
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d21 
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+ { 0, if schedule codes agree 
25, if schedule codes differ. 

•B2 

18 20 22 

AGI, in thousands 

Figure A.2. Scatter Diagram of Selected Records 
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The following tableau can be used to summarize the matching problem. 

With a row for each record i in file A and a column j for each record in file 

B, a tableau cell (i,j) corresponds to a match possibility and an wij value. 

We will indicate a record match by including the composite record weight in a 

cell (wij>O) and use a blank cell to mean that the records are not matched 

(wij=O). The box inset in each cell contains dij' the distance function val­

ue. Row and column totals reflect the weights associated with the record. 

Tableau 0. Sample Tableau for Example Merge Problem 

FILE B RECORD 

FILE 1 2 3 4 
A RECORD 

20 50 50 35 

1 WI! WI2 WI3 w14 1000 

20 100 10 75 

2 w21 W22 W23 W24 2000 

85 5 115 30 

3 w31 w32 w33 W34 500 

1400 400 1500 200 

Problem Constraints 

Of course any values could be assigned to the wij variables. However, 

since the record weights are an integral part of any computations made with 

the data items, these composite record weights directly affect the merge 

file's numerical structure. For this reason, we may wish that the sum of the 

Wij values for any record in file A to equal the original record weight, 
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thereby not overmatching or undermatching that record and preserving that rec-

ord's intrinsic data structure. In our example, this translates to the fol-

lowing set of constraints that we may wish to be in force in our solution to 

the merge problem: 

w21 + x22 + X23 + X24 = a2 (A.2) 

WJ1 + XJ2 + XJJ + XJ4 = a3 

If, in addition, we wish to place the~same conditions on the file B 

weights, we could also require·: 

3 
L wij = bj, for j = 1, 2, 3, and 4. 

i=1 
(A.3) 

Since we assume that negative weights are not permitted, we always require the 

constraints: 

Wij ) 0, i = 1,2,3 and j = 1,2,3,4 (A.4) 

Also, we may wish to use the distance function values to achieve a best 

overall solution, so that our objective would be to require that the merge 

process: 

(A.5) 

In so doing, we minimize the aggregate interrecord distance for the entire 

file. 

Merging Techniques 

Three statistical merging approaches will be considered in this study: 

unconstrained, constrained, and constrained-optimal. Each of these can be 

described in terms of some or all of the expressions (A.l)- (A.S). 
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The first, unconstrained matching uses one file as a base and matches 

each record with the minimum-distance record in the other file. The merged 

records use the weights from the base file records. This problem can be de­

scribed mathematically by the set of expressions (A.1),(A.3),(A.4),(A.5) or 

(A.1),(A.2),(A.4),(A.5). In either case, one set of weight constraints is 

dropped from the problem. 

Using our example files, one unconstrained match would be to drop the 

file B constraints (A.3) and use file A as the base file. The solution which 

minimizes the total distance (A.S) is foun~ by matching each file A record 

with the minimum-distance file B record. This solution is shown in Tableau 1, 

where w11=1000, w23=2000, w32=500, and the remaining variables are zero. The 

result is a match with a low aggregate distance (42,500) and strong match sta­

tistics, but distortions in file B data. By applying these record weights to 

the file B data, as shown in the tabulations, note that not only are schedule 

code and AGI tabulations different, but the aggregate transfer income has in­

creased by $1,300,000 and the average family size has grown from 2.65 to 2.94. 

Because the weights on file A records are maintained by constraints (A.2), the 

tabulated values of these record items do not change. 

Tableau 2 illustrates the case in which file A weight constraints (A.2) 

are ignored but file B weight constraints (A.3) are enforced. The match solu­

tion for this situation is found by matching each file B record with the clos­

est record in file A. By using the file B weights for merged records, the 

column totals are maintained, but the row weight totals are altered. 

The result is, again, good match statistics and aggregate distance but 

distorted data values, this time in the file A items. Specifically, for file 

A, the schedule code tabulations are changed, total AGI has increased 

$2,400,000 and total deductions increased $530,000. 



Tableau 1. Unconstrained File B (Ignore B Weights) 

FILE B RECORD 

FILE 1 2 3 
A RECORD 

20 50 50 

1 1000 

20 100 10 

2 ~ 2000 

85 5 115 

3 500 

1400 400 1500 

Total solution distance = 42,500 

Description 

File A Record Data: 
Schedule code=l 
Schedule code=2 
Total AGI (OOOs) 
Total Deductions (OOOs) 

File B Record Data: 
Schedule code=1 
Schedule code=2 
Total AGI (OOOs) 
Transfer income (OOOs) 
Avg. Family Size 

Match Statistics (Wtd.) 
% Agreement on Schedule 
Average Absolute AGI 

Difference 

********************* 
WEIGHTED TABULATIONS 
********************* 

This Merged File 

3,000 
500 

50,000 
9,800 

3,000 
400 

45,750 
6,500 

2.94 

Code 100% 

1,214 

4 

35 

1000 

75 

2000 

30 

500 

200 

Original Value 

3,000 
500 

50,000 
9,800 

2,900 
600 

47,300 
5,200 

2.65 

n.a. 

n.a. 
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Tableau 2. Unconstrained File A (Ignore A Weights) 

FILE B RECORD 

FILE 1 2 3 
A RECORD 

20 so so 

1 1400 

20 100 10 

2 
~ 

1500 

8S s us 1 

3 400 

1400 400 1SOO 

Total solution distance = S1,000 

********************* 
WEIGHTED TABULATIONS 

Description 

File A Record Data: 
Schedule code=-1 
Schedule code=2 
Total AGI (OOOs) 
Total Deductions (OOOs) 

File B Record Data: 
Schedule code=l 
Schedule code=2 
Total AGI (OOOs) 
Transfer income (OOOs) 
Avg. Family Size 

Match Statistics (Wtd.) 
% Agreement on Schedule 
Aver age Absolute AGI 

Dif ference 

********************* 

This Merged File 

2,900 
600 

S2,400 
10,330 

2,900 
600 

47,300 
S,200 
2.65 

Code 100% 

1,4S7 

4 

3S 

1000 

7S 

2000 

30 

200 soo 

200 

Original Value 

3,000 
soo 

so,ooo 
9,800 

2,900 
600 

47,300 
5,200 

2.65 

n.a. 

n.a. 
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Tableau 3. Constrained Match 

FILE B RECORD 

FILE 1 2 3 
A RECORD 

20 50 50 

1 1000 

20 100 10 

2 400 400 ~ 1200 

85 5 115 

3 300 

1400 400 1500 

Total solution distance = 120,500 

********************* 
WEIGHTED TABULATIONS 
********************* 

Description 

File A Record Data: 
Schedule code=1 
Schedule code=2 
Total AGI (OOOs) 
Total Deductions (OOOs) 

File B Record Data: 
Schedule code=l 
Schedule code=2 
Total AGI (OOOs) 
Transfer income (OOOs) 
Avg. Family Size 

Match Statistics (Wtd.) 
% Agreement on Schedule Code 
Average Absolute AGI 

Difference 

This Merged File 

Same 

Values 

As 

Original 

80% 

2,942 

4 

35 

75 

30 

200 

200 

1000 

2000 

500 

Original Value 

3,000 
500 

50,000 
9,800 

2,900 
600 

47,300 
5,200 

2.65 

n.a. 

n.a. 

A-9 
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Therefore, in either case, unconstrained matching can drastically distort 

the values associated with one file or the other. This is of particular con­

cern in the case of the non-common data. The purpose of matching is to be 

able to draw inferences regarding relationships between one data file and the 

non-common items in another file. When the values from one file are dis­

torted, the reliability of such inferences is lessened and, thus, the objec­

tive of matching is being defeated. 

An attempt to remedy this distortion problem is to include both sets of 

weight constraints, (A.2) and (A.3). This~ is called constrained matching and 

is described mathematically by expressions (A.l)- (A.4), with the imposition 

of (A.S) being the special case of constrained-optimal matching. 

Tableau 3 depicts a constrained match. Note that all match weights in a 

row sum to the row total (original file A record weight) and column sums are 

similarly kept. By so doing, the original data structures are maintained and 

all tabulations are the same as those for the original files. 

This improvement is not without its costs. The trade-off is in terms of 

total solution distance and poorer match statistics. The aggregate distance 

and average AGI discrepancy have more than doubled plus schedule code agree­

ment has dropped 20 percent, relative to the unconstained matches. 

To improve this solution to the greatest extent possible, expression 

(A.S) can be included and a constained-optimal match sought. This optimiza­

tion problem can be solved iteratively by devising a series of improved match­

es, each of which merges a new pair of records and drops an existing record 

match, while simultaneously maintaining the weight totals. Tableaus 3 through 

3b illustrate this process. 

Calculations from Tableau 3 indicate that if the third record of A were 

matched with the second record of B (w32>0) and w33 set to zero, and 



Tableau 3a. Constrained Match, Improved Solution 1 

FILE B RECORD 

FILE 1 2 3 
A RECORD 

20 50 50 

1 1000 

20 100 10 

2 400 100 
~ 

1500 

85 5 115 

3 300 

1400 400 1500 

Total solution distance = 60,500 

********************* 
WEIGHTED TABULATIONS 
********************* 

Description 

File A Record Data: 
Schedule code=! 
Schedule code=2 
Total AGI (OOOs) 
Total Deductions (OOOs) 

File B Record Data: 
Schedule code=! 
Schedule code=2 
Total AGI (OOOs) 
Transfer income (OOOs) 
Avg. Family Size 

Match Statistics (Wtd.) 
% Agreement on Schedule Code 
Average Absolute AGI 

Difference 

This Merged File 

Same 

Values 

As 

Original 

97% 

1,657 

4 

35 

75 

30 

200 

200 

1000 

2000 

500 

Original Value 

3,000 
500 

50,000 
9,800 

2,900 
600 

47,300 
5,200 

2.65 

n.a. 

n.a. 

A-ll 



Tableau 3b. Constrained Match, Improved Solution 2 

FILE B RECORD 

FILE 1 2 3 
A RECORD 

20 so so 

1 900 100 

--
20 100 10 

2 soo ~ 

1500 

I 8S s 11S 
1 

3 I 300 

1400 400 1SOO 

Total solution distance = SS,SOO 

********************* 
WEIGHTED TABULATIONS 
********************* 

Description 

File A Record Data: 
Schedule code=1 
Schedule code=2 
Total AGI (OOOs) 
Total Deductions (OOOs) 

File B Record Data: 
Schedule code=1 
Schedule code=2 
Total AGI (OOOs) 
Transfer income (OOOs) 
Avg. Family Size 

Match Statistics (Wtd.) 
% Agreement on Schedule Code 
Average Absolute AGI 

Difference 

This Merged File 

Same 

Values 

As 

Original 

97% 

1,542 

4 

3S 

I 
7S 

30 

200 

200 

1000 

2000 

soo 

Original Value 

3,000 
soo 

so,ooo 
9,800 

2,900 
600 

47,300 
S,200 

2.6S 

n.a. 

n.a. 

A-12 
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adjustments made to the other positive weights to maintain the row and column 

totals, then the improved solution of Tableau 3a could be obtained. Note that 

with this match, total distance drops by one-half and there is a 97 percent 

schedule code agreement, improvement of $1,285 in average AGI discrepancy and 

the row and column totals are maintained. Further, by increasing w12 and 

dropping wzz, the next improved Tableau 3b can be obtained with a total dis­

tance lowered by 1000 and the average AGI discrepancy is proved by $115 over 

Tableau 3a. 

Finally, by increasing w14 and deleting w1z, the constrained-optimal so­

lution .of Tableau 4 can be obtained. This match not only has a total solution 

value and schedule code agreement which is comparable to the unconstrained 

matches, but has an average AGI discrepancy that is better than that of the 

unconstrained file A match of Tableau 2. 

In summary, this small example illustrates that while unconstrained file 

matching can yield a closer overall match, serious data distortions can be in­

troduced. These distortions can be overcome by constrained matching which re­

quires that the match file record weights sum to the original individual rec­

ord weights. And by devising a constrained-optimal match, not only are such 

data distortions eliminated but extremely close matches at the record level 

can be obtained. 



Tableau 4. Optimal Constrained Match 

FILE B RECORD 

FILE 1 2 3 
A RECORD 

20 50 50 

1 900 

20 100 10 

2 500 ~ 1500 

85 5 115 

I 400 

I 
3 

1400 400 1500 

Total solution distance = 51,500 

********************* 
WEIGHTED TABULATIONS 
********************* 

Description 

File A Record Data: 
Schedule code=1 
Schedule code=2 
Total AGI (OOOs) 
Total Deductions (OOOs) 

File B Record Data: 
Schedule code=1 
Schedule code=2 
Total AGI (OOOs) 
Transfer income (OOOs) 
Avg. Family Size 

Match Statistics (Wtd.) 
i. Agreement on Schedule Code 
Average Absolute AGI 

Difference 

This Merged File 

Same 

Values 

As 

Original 

97% 

1,400 

35 

75 

30 

- -

4 

100 

100 

200 

1000 

2000 

500 

Original Value 

3,000 
500 

50,000 
9,800 

2,900 
600 

47,300 
5,200 
2.65 

n.a. 

n.a. 

A-14 
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