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ABSTRACT

We study the explicit CP violation of the Higgs sector in the minimal supersymmetric

standard model with a gauge singlet Higgs field. The magnitude of CP violation is

discussed in the limiting cases of x ≫ v1, v2 and x ≪ v1, v2, where x and v1,2 denote

VEV of singlet and doublet Higgs scalars, respectively. Our numerical predictions of

the electric dipole moments of electron and neutron lie around the present experimental

upper limits. It is found that the large CP violation effect reduces the magnitude of

the lightest Higgs boson mass in the order of a few ten GeV.
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1. Introduction

The physics of CP violation has attracted much recent attention in the light that

the B-factory will go on line in the near future at KEK and SLAC. The central subject

of the B-factory is the test of the standard model(SM), in which the origin of CP

violation is reduced to the phase in the Kobayashi-Maskawa matrix[1]. However, there

has been a general interest in considering other approaches to CP violation since many

alternate sources exist. The attractive extension of the standard Higgs sector is the

two Higgs doublet model(THDM)[2], yielding both charged and neutral Higgs bosons

as physical states. The THDM with the soft breaking term of the discrete symme-

try demonstrates explicit or spontaneous CP violation[3,4,5]. On the other hand, the

recent measurements of the gauge couplings at MZ scale suggest the minimal super-

symmetric standard model(MSSM) is a good candidate beyond the standard model in

the standpoint of the unification[6]. In this model, CP violation has been investigated

with the soft symmetry breaking terms[7] since there is no CP violating source in the

Higgs sector at the tree level although two Higgs doublets exist[2]. However, the spon-

taneous CP violation could occur in the neutral Higgs exchange through a one-loop

potential suggested by Maekawa[8] in the MSSM. Unfortunately, the scenario to vio-

late CP spontaneously by radiative correction requires a lighter Higgs boson mass[9,10]

than its lower limit obtained at LEP[11].

The spontaneous CP violation in the extended supersymmetric model was dis-

cussed by some authors[12,13,14]. The most challenging approach is to add a gauge

singlet Higgs field N to the MSSM. This next-to-MSSM(NMSSM) was studied by many

authors especially in the interests of mass spectra of Higgs sectors[15,16]. The detailed

analysis of the mass spectra in this model was studied by Ellis et al.[16], in which CP
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violation in the Higgs sector was neglected. Although there is a ”NO-GO” theorem of

the spontaneous CP violation in the NMSSM[13], the radiative correction may open

the way to cause the spontaneous CP violation as shown by Babu and Barr[14]. In

this scenario, the light Higgs boson is also unavoidable. On the other hand, additional

singlet N could cause explicit CP violation in the Higgs sector even at tree level. In

this paper, we study the explicit CP violation of the Higgs sector in the NMSSM

phenomenologically. The lightest Higgs boson could be heavier than the Z0 boson by

including radiative corrections.

In section 2, the explicit CP violation is studied with the Higgs potential in general.

In section 3, the magnitude of the explicit CP violation is discussed in the special

limiting cases of the vacuum expectation values(VEV) of the singlet Higgs boson N .

In section 4, the numerical results are discussed by using the recent experimental

bounds such as masses of Higgs scalars and the electric dipole moments of neutron and

electron. Section 5 is devoted to summary.

2. Explicit CP violation in Higgs Potential

In order to give masses to all the quarks and leptons, and to cancel gauge anomalies,

at least two Higgs doublets H1, H2 are required in a supersymmetric version of the

standard model[7]. Our discussing model is the MSSM to which a gauge singlet Higgs

scalar N has been added with the requirement that the superpotential contains only

cubic terms[15,16] as follows:

W = hUQucH2 + hDQdcH1 + hELecH1 + λH1H2N − 1

3
kN3 + · · · , (1)

where Q, L, uc, dc and ec are usual notations of quarks and leptons, and the ellipsis
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stands for possible nonrenormalizable terms. The effective scalar potential is given as

VHiggs = VF + VD + Vsoft , (2)

VF = |λ|2[(|H1|2 + |H2|2)|N |2 + |H1H2|2] + |k|2|N |4

−(λk∗H1H2N
∗2 + H.c.) − |λ|2(H0

1H
0
2H

+∗H−∗ + H.c.) , (3)

VD =
g2

8
(H†

2σ̂H2 + H†
1σ̂H1)

2 +
g′2

8
(|H2|2 − |H1|2)2 , (4)

Vsoft = m2
H1
|H1|2 + m2

H2
|H2|2 + m2

N |N |2 − (λAλH1H2N + H.c.)

−(
1

3
kAkN

3 + H.c.) , (5)

where H1 ≡ (H0
1 , H

−), H2 ≡ (H+, H0
2 ), H1H2 ≡ H0

1H
0
2 − H−H+ and σ̂ ≡ (σ1, σ2, σ3).

The radiative effect of the top-quark and top-squark is significant for the mass spectra

of the Higgs bosons as pointed out by some authors in the MSSM[17]. This leading-log

radiatively induced potential is given as follows:

Vtop =
3

16π2

[

(h2
t |H2|2 + M2

sq)
2 ln

(h2
t |H2|2 + M2

sq)

Q2
− h4

t |H2|4 ln
h2

t |H2|2
Q2

]

, (6)

where we have assumed degenerate squarks: Mt̃L
= Mt̃R

= Msq ≫ mt. The potential

Vtop should be added to VHiggs in eq.(2).

In general, λ, k, Aλ and Ak are complex, however, by redefining the global phase

of the fields H2 and N , we can take

λAλ ≥ 0 , kAk ≥ 0 , (7)

without loss of any generality. If we allow CP violation explicitly in the Higgs scalar

sector, λk∗ is a complex.

The VEV of the Higgs potential VHiggs is composed of the neutral sector and the

charged sector written as

〈VHiggs〉 = 〈Vneutral〉 + 〈Vcharged〉 . (8)
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Our discussion is concentrated on the neutral Higgs sector because there is no CP

violation in the charged Higgs sector. Since the contribution of Vtop is not important

for qualitative studies of the explicit CP violation, we discuss the magnitude of CP

violation without Vtop in sections 2 and 3. However, Vtop contributes significantly to

the mass spectra of the Higgs bosons, so we include this effect in the numerical analyses

in section 4. Neglecting Vtop for simplicity, we can write

〈Vneutral〉 = λ2(|x|2|v1|2 + |x|2v2
2 + |v1|2v2

2) + k2|x4| − v2(λk∗v1x
∗2 + λ∗kv∗

1x
2)

+
g2 + g′2

8
(|v2

1| − v2
2)

2 + m2
H1
|v2

1| + m2
H2

v2
2 + m2

N |x2|

−λAλv2(v1x + v∗
1x

∗) − kAk

3
(x3 + x∗3) , (9)

where VEV’s of the neutral Higgs scalar fields are defined as follows:

v1 ≡ 〈H0
1 〉 , v2 ≡ 〈H0

2 〉 , x ≡ 〈N〉 . (10)

The VEV’s v1 and x are taken to be complex, and v2 is taken to be a real positive

number without loss of generality. Therefore, v1 and x are replaced with

v1 =⇒ v1e
iα , x =⇒ xeiω , (11)

where v1 and x in RHS are redefined to be real positive numbers, and we give familiar

definitions such as

tan β ≡ v2

v1

, v2 ≡ v2
1 + v2

2 . (12)

We also introduce a phase for λk∗ as follows:

λk∗ = λkeiϕ , (13)

where λ and k in RHS are redefined as positive real numbers. One can use the min-

imization conditions of Vneutral to re-express the soft supersymmetric breaking masses
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m2
H1

, m2
H2

, m2
N in terms of the three VEV’s and of the remaining parameters λ, k, Aλ,

Ak:

m2
H1

= λAλ

v2x

v1

cos(α + ω) − λ2(x2 + v2
2) + λk

v2x
2

v1

cos(ϕ + α − 2ω)

+
g2 + g′2

4
(v2

2 − v2
1) ,

m2
H2

= λAλ

v1x

v2

cos(α + ω) − λ2(x2 + v2
1) + λk

v1x
2

v2

cos(ϕ + α − 2ω)

+
g2 + g′2

4
(v2

1 − v2
2) ,

m2
N = λAλ

v1v2

x
cos(α + ω) + kAkx cos 3β − λ2(v2

1 + v2
2) − 2k2x2

+2λkv1v2 cos(ϕ + α − 2ω) . (14)

The presence of phases α and ω allows in principle for the spontaneous CP violation.

This case was discuused numerically by Babu and Barr[14]. We work in the vacuum of

α = 0 and ω = 0 since we consider the case of the explicit CP violation in this paper.

Let us study the masses of the Higgs scalars. The physical charged Higgs fields is

given by

C+ ≡ cos βH+ + sin βH−∗ , (15)

while the orthogonal combination corresponds to an unphysical Goldstone boson. The

physical charged Higgs boson mass is given as follows:

m2
C = m2

W − λ2v2 + λ(Aλ + kx cos ϕ)
2x

sin 2β
, (16)

where m2
W = g2v2/2. On the other hand, the neutral Higgs scalar masses are given

by 5 × 5 mass marix. Decomposing the neutral Higgs fields into their real imaginary

components

H0
1 ≡ S1 + iP1√

2
, H0

2 ≡ S2 + iP2√
2

, N ≡ X + iY√
2

, (17)
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shifting H0
1 , H0

2 , N by their expectation values, and expanding the neutral Higgs scalar

part of VHiggs, we get the mass matrix of the neutral Higgs scalars. After expressing

P1 and P2 in terms of the neutral Goldstone boson G0 ≡ cos βP1 − sin βP2 and its

orthogonal state A ≡ sin βP1 + cos βP2, we get 5× 5 mass matrix for the Higgs bosons

A, Y , S1, S2 and X as follows:

M2
Higgs =







MAY
AY MAY

S1S2X

(MAY
S1S2X)T MS1S2X

S1S2X





 , (18)

where MAY
AY , MAY

S1S2X and MS1S2X
S1S2X are 2 × 2, 2 × 3 and 3× 3 submatrices, respectively.

The matrix MAY
AY is the one for the Higgs pseudoscalars A and Y as follows:

MAY
AY =







λxv2

v1v2

(Aλ + kx cos ϕ) λv(Aλ − 2kx cos ϕ)

λv(Aλ − 2kx cos ϕ) λv1v2

x
Aλ + 3Akkx + 4λkv1v2 cos ϕ





 . (19)

The matrix MS1S2X
S1S2X is the one for the Higgs scalars S1, S2 and X as follows:

MS1S2X
S1S2X =































g2v2
1 + λv2x

v1

v1v2(2λ
2 − g2) 2λ2v1x

+λv2x
v1

(Aλ + kx cos ϕ) −λx(Aλ + kx cos ϕ) −λv2(Aλ + 2kx cos ϕ)

v1v2(2λ
2 − g2) g2v2

2 2λ2v2x
−λx(Aλ + kx cos ϕ) +λv1x

v2

(Aλ + kx cos ϕ) −λv1(Aλ + 2kx cos ϕ)

2λ2v1x 2λ2v2x
λv1v2

x
Aλ

−λv2(Aλ + 2kx cos ϕ) −λv1(Aλ + 2kx cos ϕ) −Akkx + 4k2x2































,

(20)

where g2 ≡ (g2 + g′2)/2. The matrix MAY
S1S2X is the mixing terms of the scalar and

pseudoscalar components as follows:

MAY
S1S2X =







kλv1x2

v
sin ϕ kλv2x2

v
sin ϕ 2kλvx sin ϕ

−2kλv2x sin ϕ −2kλv1x sin ϕ −2kλv1v2 sin ϕ





 . (21)

This submatrix is zero if CP is conserved, that is to say, ϕ = 0. Then, the matrix

M2
Higgs in eqs.(18) ∼ (21) is reduced to the one given by Ellis et al.[16].
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3. CP Violation in Special Limiting Cases

In general, CP symmetry is violated due to the scalar and pseudoscalar mixing

of eq.(21). Its magnitude depends on the values of the Higgs potential parameters,

especially, x. Following analyses of the Higgs mass spectra by Ellis et al.[16], we study

the magnitude of CP violation in the three special limiting cases: (A) x ≫ v1, v2 with

λ and k fixed, (B) x ≫ v1, v2 with λx and kx fixed and (C) x ≪ v1, v2. These limits

are discussed in the phenomenological standpoint.

(A) Limits of x ≫ v1, v2(λ, k fixed)

In this limit with Aλ, Ak ≃ O(x), the matrix M2
Higgs in eqs.(18)∼(21) becomes very

simple. Remaining only the terms of order O(x2), the Higgs scalar X and the Higgs

pseudoscalar Y almost decouple from other Higgs bosons since these mixing terms are

at most order O(x). The masse squares of X and Y bosons are an order of O(x2) and

then, those mixing is negligible small. The effect of X and Y contributes to our result

in the order of v1/x and v2/x through the mixings. Therefore, it is enough for CP

violation to consider 3 × 3 submatrix as to A, S1 and S2. Then, the mass matrix is

given in the A − S1 − S2 system as follows:

M2
Higgs =















2λxAσ/ sin 2β λkx2 cos β sin ϕ λkx2 sin β sin ϕ

λkx2 cos β sin ϕ g2v2 cos2 β + λxAσ tan β (λ2 − g2

2
)v2 sin 2β − λxAσ

λkx2 sin β sin ϕ (λ2 − g2

2
)v2 sin 2β − λxAσ g2v2 sin2 β + λxAσ cot β















(22)

where Aσ ≡ Aλ + kx cos ϕ is defined conveniently and Aσ is taken to be of O(x). By

rotating this matrix using U0 with

U0 =







1 0 0
0 cos β − sin β
0 sin β cos β





 , (23)
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we get simple form of the matrix M ′2
Higgs = UT

0 M2
HiggsU0 in the new basis of A−S ′

1 −S ′
2

as follows:

M ′2
Higgs =

















2λxAσ

sin 2β
λkx2 sin ϕ 0

λkx2 sin ϕ (g2 cos2 2β + λ2 sin2 2β)v2 (λ2 − g2)v2 sin 2β cos 2β

0 (λ2 − g2)v2 sin 2β cos 2β (g2 − λ2)v2 sin2 2β + 2λxAσ

sin 2β

















.

(24)

In this matrix, the (2-2), (2-3), (3-2) components are very small because these are order

of O(v2) but others are O(x2). Therefore, the submatrix of S ′
1 − S ′

2 system is almost

diagonal one. Now, we consider only A − S ′
1 submatrix, which leads to CP violation,

as follows:

M ′2
Higgs =







2λxAσ

sin 2β
λkx2 sin ϕ

λkx2 sin ϕ (g2 cos2 2β + λ2 sin2 2β)v2





 . (25)

Since this matrix has a hierarchical structure, one should investigate these mass eigen-

values carefully. While the pseudoscalar mass is very large as O(x), the scalar mass is

very small as O(v). In order to get the condition of positive eigenvalues, we take the

determinant of this matrix:

Det[M ′2
Higgs] ≥ 0 , (26)

which gives a constraint λkx2 sin ϕ ≤ O(xv). Since λ and k are constants, we get

sin ϕ ≤ O(v/x) , (27)

which means the scalar-pseudoscalar mixing vanishes in the x → ∞ limit. Therefore,

it is concluded that CP violation is minor in this limit.

(B) Limits of x ≫ v1, v2(λx, kx fixed)

This limit leads the NMSSM to the MSSM without the Higgs singlet field as dis-

cussed Ellis et al.[16]. In this limit with Aλ, Ak ≃ O(v), the X and Y boson decouple
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from other bosons, and then the matrix M2
Higgs in eqs.(18)∼(21) reduces to the same

3 × 3 matrix in eq.(22). However, masses of X and Y are same order of other Higgs

bosons in contrast with the case (A). Using the same orthogonal matrix in eq.(23), we

get also the similar matrix as the one in eq.(24) for the A− S ′
1 − S ′

2 system as follows:

M ′2
Higgs =

















2λAσ

sin 2β
λ k sin ϕ 0

λ k sin ϕ (g2 cos2 2β + λ2 sin2 2β)v2 (λ2 − g2)v2 sin 2β cos 2β

0 (λ2 − g2)v2 sin 2β cos 2β (g2 − λ2)v2 sin2 2β + 2λAσ

sin 2β

















, (28)

where the definitions λ ≡ λx and k ≡ kx are fixed to be constants, while λ and k

are order of O(1/x) . In contrast with the matrix of eq.(22), this matrix has not

a hierarchical structure in the considering limit since λ and k are finite numbers.

Therefore, the submatrix of S ′
1 − S ′

2 in eq.(28) are far from the diagonal matrix in

general. Now, let us discuss the magnitude of CP violation for the special case of

tanβ.

The first case is the one with tan β = 0 and ∞. Since sin 2β = 0, the submatrix

of the S ′
1 − S ′

2 system is exactly diagonal. The scalar-pseodoscalar mixing is occured

only in the A − S ′
1 submatrix. The mixing angle is given as follows:

tan 2θAS′

1
=

2λ k sin ϕ

(g2 cos2 2β + λ2 sin2 2β)v2 − 2λAσ

sin 2β

≃ − k

Aσ

sin ϕ sin 2β . (29)

Thus, the scalar-pseudoscalar mixing vanishes in tanβ = 0 or ∞ limit since it is

proportional to sin 2β even if sin ϕ ≃ 1. Then, the CP violation effect is expected

generally to vanish. However, we should pay attention to an exceptional case that the

CP violating effect depends on tanβ significantly. We will discuss this case in analyses

of the electric dipole moments of the section 4.

The second case is the one of tan β = 1, which gives cos 2β = 0. In this case, the
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scalar-pseodoscalar mixing is also occured only in the A−S ′
1 submatrix since the S ′

1−S ′
2

submatrix is exactly diagonal. Then, the S ′
1 − S ′

1 component is λ2v2 which is order of

O(v4/x2). This hierarchical structure of the mass matrix gives strong constraint for the

mixing angle as discussed in the limitting case (A). Applying the positivity condition

of the Higgs scalar mass in eq.(26) leads

sin ϕ ≤ O(
v

x
) . (30)

Thus, CP violation also vanishes in the case of tanβ = 1.

In order to get the finite CP violation, we should choose the region of tanβ 6= 0,

1 and ∞. If we could adjust the parameter such as

2λAσ ≃ g2v2 cos2 2β sin 2β , (31)

by choosing the suitable tan β, the large scalar-pseudoscalar mixing is expected. How-

ever, since the radiative correction Vtop becomes significant in this situation, we shall

give the numerical analyses in section 4.

(C) Limits of x ≪ v1, v2

In the x = 0 limit with Aλ, Ak ≃ O(v), the submatrix MAY
S1S2X is described as

MAY
S1S2X =

(

0 0 0
0 0 −2kλv1v2 sin ϕ

)

, (32)

where only the (2-3) component remains to be finite, that is, the scalar-pseudoscalar

mixing exists only in the X and Y mixing. Since squares of X and Y boson masses are

order of O(v3/x) and other matrix elements are at most O(v2), these bosons decouple

from other Higgs bosons except for the case of sin 2β = 0. Ellis et al.[16] have found

that the large tanβ or cotβ(sin 2β = 0) is not allowed by studying the constraint that
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the symmetry-breaking vacuum is a deeper minimum than the symmetry vacuum in

the case of x ≪ v1, v2. So, we do not need to consider the case of sin 2β = 0.

The submatrix of the X − Y system is given as follows:

M2
Higgs =







λAλv2

2x
sin 2β −kλv2 sin 2β sin ϕ

−kλv2 sin 2β sin ϕ λAλv2

2x
sin 2β + 2λkv2 sin 2β cos ϕ





 . (33)

Then, the the mixing angle is given as follows:

tan 2θXY = −2kλv2 sin 2β sin ϕ

2kλv2 sin 2β cos ϕ
= − tan ϕ , (34)

so the maximal mixing of the scalar-pseudoscalar is realized in the case of ϕ = ±π/2.

The phenomena induced by X and Y Higgs bosons may show the large CP violation.

However, the mass eigenvalues are infinite in the x = 0 limit, so the CP violation effect

on the low energy phenomena would vanish.

4. Numerical Discussion of Explicit CP violation

In this section, we show the numerical examples to realize the large CP violation.

Generally, the large CP violation could be caused by choosing x to be O(v). However,

then, the Higgs boson spectroscopy is very different from the MSSM because S1, S2 and

A bosons mix significantly with X and Y bosons. In our interest, we present numerical

study of the similar case to the MSSM spectroscopy, but the case with CP violation.

This is just the limit in case (B).

In the previous section, we have neglected the radiatively induced potential Vtop

for simplicity because the qualitative result is not changed even if we include it. Now,

we should include the Vtop term in our numerical analyses. In the leading-log approxi-

mation, this potential contributes only to the mass matrix element MS2

S2
in eq.(20) as
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follows:

MS2

S2
= (g2 + ∆)v2

2 +
λv1x

v2

(Aλ + kx cos ϕ) , (35)

where

∆ =
3h4

t

4π2

[

ln

(

M2
sq

m2
t

)

+ p

]

, (36)

where p denotes non-logarithmic terms. In the following calculations, we fix ∆ = 0.5,

which corresponds to Msq = 3TeV and mt = 175GeV with p = 1[14].

Fig.1

In Fig.1, we display a plot of the experimentally allowed region in the cos ϕ − λ

plane for fixed values of the other parameters, which are

x = 10v, k = 0.1, Aλ = v, Ak = v, tan β = 10 . (37)

One experimental constraint is that the two Higgs bosons have not been produced

in the decay of a real Z0[11]. The lower boundary(small λ) in Fig.1 corresponds to

mh1
+ mh2

= mZ0, where mh1
and mh2

are two lightest Higgs boson masses. The

other constraint is that a light Higgs boson has not been produced in the Z0 → Z0∗h

process, where h is a physical Higgs boson. If h =
∑5

i=1 αiΦi, where αi and Φi denote

mixing factors and neutral Higgs boson fields S1, S2, A, X, Y , respectively, the cross

section for this process is approximately proportional to |α1 cos β +α2 sin β|2m−1
h . The

non-observation of this process gives the upper boundary(large λ) in Fig.1 by mh ≥

(60GeV)|α1 cos β+α2 sin β|2[11]. In addition, the pseudoscalar and scalar bosons should

be heavier than 24GeV and 44GeV, respectively[11]. This constraints are satisfied in

the allowed region of Fig.1.
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In Fig.2, the allowed region of λ is shown in the case of tan β = 1 ∼ 100 at

cos ϕ = 0. Other parameters are fixed as given in eq.(37). It is remarked that the

allowed region vanishes below tanβ ≃ 1.5. This result is consistent with the qualitaive

discussion of (B) in section 3, in which ϕ is constrained to be very small at tanβ ≃ 1,

and ϕ ≃ π/2 is allowed at tan β = ∞. In both results of Figs. 1 and 2, we fix k = 0.1,

which gives the most wide allowed area of λ. As far as we take k = 0.03 ∼ 0.2, the

allowed region is obtained.

Fig.2

The electric dipole moment(EDM) of electron or neutron is very important quanti-

ties to constrain the phase ϕ. In our scheme, the EDM of electron is calculated in the

two-loop level as shown by Barr and Zee[18]. The neutron EDM is also predicted in

two-loop level. Both three gluon operator proposed by Weinberg[19] and quark-gluon

operator by Gunion and Wyler[20] are taken into account in our calculation. Since the

estimation of the hadronic matrix elements is model-dependent, the ambiguity with a

few factors should be taken into consideration in the prediction of the neutron EDM.

Here, we use the model proposed by Chemtob[21,22]. The recent experimental up-

per limit of the electron EDM is 4 × 10−27e · cm[23] and that of the neutron EDM is

11× 10−26e · cm[11]. It should be remarked that the Barr-Zee operator and the quark-

gluon operator are exceptional CP violating operators as discuussed in (B) of section

3. Since these operators have a term which is proportional to tan2 β, this term con-

tributes to the EDM significantly at tan β ≫ 1 even if the scalar-pseusoscalar mixing

is very small. In fact, we find the large predicted EDM at tanβ = 10 in Figs. 3 and
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4. In these figures, we give the numerical predictions of the electron EDM and the

neutron EDM in the allowed region of λ in Fig.1. The upper(lower) boundary of the

predictions corresponds to the upper(lower) one of λ in Fig.1. Those predictions lie

around experimental upper limits except for the region of cos ϕ ≃ ±1. If the small λ,

O(0.01), is taken, our predictions are below the experimental limits even if the phase

ϕ is a maximal one π/2. We expect both electron EDM and neutron EDM will be

observed around 10−27 ∼ 10−26e · cm in the near future.

Figs.3 and 4

Let us discuss about the mass of the lightest Higgs boson in our scheme. What

is the CP violating effect on it ? The top-loop effect seems to be significant in the

lightest Higgs boson mass in the case without CP violation[17]. We show the mass

of the lightest Higgs boson versus λ for fixed cos ϕ = 1, 0.5, 0, −0.5 in Fig.5. In

the region of λ = 0.01 ∼ 0.1, the CP violating effect reduces the magnitude of the

mass in the order of 10 ∼ 20GeV. The qualitative result is not so changed if we take

Msq ≪ 3TeV.

Fig.5
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5. Summary

We have studied the explicit CP violation of the Higgs sector in the MSSM with a

gauge singlet Higgs field. The magnitude of CP violation is discussed in the limiting

cases of x ≫ v1, v2 and x ≪ v1, v2. We have shown that the large CP violation

is realized in the region of tan β ≥ 1.5 for the case of x ≫ v1, v2 with the fixed

values of λx and kx. In other cases, the explicit CP violation is minor for the Higgs

sector. Since CP violation in the Higgs sector does not ocuur in the MSSM without

a gauge singlet Higgs field, CP violation is an important signal of the existence of the

gauge singlet Higgs field. In the present case of the Higgs sector, the predictions of the

electron EDM and the neutron EDM lie around the experimental upper limits. Our

results suggest that these EDM’s will be observed in the near future if CP is explicitly

violated through the Higgs sector in the NMSSM. Furthermore, we have found that

the large CP violation effect reduces the magnitude of the lightest Higgs boson mass

in the order of a few ten GeV. Thus, the explicit CP violation due to the gauge singlet

Higgs boson will give us interesting phenomena in the forthcoming experiments.
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Figure Captions

Fig.1

The allowed region in the cosϕ − λ plane for x = 10v, k = 0.1 Aλ = v, Ak = v

and tan β = 10. The lower boundary corresponds to mh1
+ mh2

= mZ0 and the upper

boundary is given by the nonobservation of Z0 → Z0∗h.

Fig.2

The allowed region in the tan β − λ plane at cos ϕ = 0. The notations are same as

in Fig.1

Fig.3

The predicted electron EDM in the allowed region in Fig.1. The lower(upper)

boundary corresponds to the lower(upper) one in Fig.1. The doted-line denotes the

experimental upper-limit.

Fig.4

The predicted neutron EDM in the allowed region in Fig.1. The lower(upper)

boundary corresponds to the lower(upper) one in Fig.1. The doted-line denotes the

experimental upper-limit.

Fig.5

The predicted lightest Higgs boson mass versus λ for cos ϕ = 1, 0.5, 0, −0.5 in

the case of ∆ = 0.5.
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