Some Properties of Generalized Denominator Ideals

Mitsuo KANEMITSU, Susumu ODA* and Ken-ichi YOSHIDA**

(Department of Mathematics, Aichi University of Education,

Igaya-cho, Kariya, Aichi 448-8542 JAPAN),

(*Matsusaka Commercial High School,

Toyohara, Matsusaka, Mie 515-0205 JAPAN) and

(**Department of Applied Mathematics, Okayama University of Science,

Ridai-cho, Okayama 700-0005 JAPAN).

(Received August 3, 1999)

Let R be a Noetherian domain and R[X] a polynomial ring. Let α be a non-zero element of an algebraic field extension L of the quotient field K of R and let π : $R[X] \longrightarrow R[\alpha]$ be the R-algebra homomorphism sending X to α . Let $\varphi_{\alpha}(X)$ be the monic minimal polynomial of α over K with deg $\varphi_{\alpha}(X) = d$ and write $\varphi_{\alpha}(X) = X^{d} + \eta_{1}X^{d-1} + \dots + \eta_{d}$. For $\gamma \in K$, put $I_{\gamma} = (R:_{R}\gamma) = \{b \in R \mid b\gamma \in R\}$. Let $I_{[\alpha]} := \bigcap_{i=1}^{d} I_{\eta_{i}}$, which is called a generalized denominator ideal of R (cf. [1]). Let $J_{[\alpha]} = I_{[\alpha]}c(\varphi_{\alpha}(X))$, where $c(\varphi_{\alpha}(X))$ denotes the fractional ideal of R generated by the coefficients 1, η_{1} , η_{2} , \dots , η_{d} of $\varphi_{\alpha}(X)$. Note that for $\alpha \in K$, $I_{[\alpha]} =$ I_{α} and $J_{[\alpha]} = I_{[\alpha]} + \alpha I_{[\alpha]}$. The element $\alpha \in L$ is called an *anti-integral element of degree d* over R if Ker $\pi = I_{[\alpha]}\varphi_{\alpha}(X)R[X]$. When α is an anti-integral element over R, we say that $R[\alpha]$ is an *anti-integral extension* of R. Also, α is called a *super-primitive element of degree d* over R if $J_{[\alpha]} \not\subseteq p$ for any $p \in Dp_{1}$ (R), the set of depth one prime ideals of R (cf. [4], [8]).

In [5], S. Oda and K. Yoshida studied some properties of a generalized denominator ideal $I_{[\alpha]}$ and the structure of a ring extension $R[\alpha]$ of R satisfying $I_{[\alpha]}R[\alpha]=R[\alpha]$. The related topics are also seen in [3].

In this paper, we study some relations between $I_{[\alpha]}R[\alpha] \cap R$ and $R[\eta_1, \dots, \eta_d]$, and some conditions that grade $(I_{[\alpha]}+I_{[\alpha]}) > 1$.

Throughout this paper, we use the following notation unless otherwise specified:

Let *R* be a Noetherian domain, and let α be a non-zero element of an algebraic field extension *L* of the quotient field *K* of *R*. Let π : $R[X] \longrightarrow R[\alpha]$ be the *R*-algebra homomorphism sending *X* to α . Let $\varphi_{\alpha}(X)$ be the monic minimal polynomial of α over *K* with deg $\varphi_{\alpha}(X) = d$ and write $\varphi_{\alpha}(X) = X^{d} + \eta_{1}X^{d-1} + \dots + \eta_{d}$, let $I_{[\alpha]} = \bigcap_{i=1}^{d} (R:_{R} \eta_{i})$ and let $J_{[\alpha]} = I_{[\alpha]}c(\varphi_{\alpha}(X))$.

All rings treated in this paper are commutative rings with identity. The reference of unexplained technical terms is [2].

Definition (cf. [1] and [7]). An element $\alpha \in L$ is called an *exclusive element* over R if $R[\alpha] \cap K = R$.

Proposition 1. Assume that α is a super-primitive element of degree d over R and that α is an exclusive element over R. If $I_{[\alpha]}R[\alpha] = R[\alpha]$, then α is integral over R and $R[\alpha]$ is a free R-module of rank d.

Proof. By Theorem 15 in [5], if $I_{[\alpha]}R[\alpha] = R[\alpha]$ then $R[\eta_1, \dots, \eta_d] \subseteq R[\alpha]$. Since α is exclusive, it follows that $A \cap K = R$. Therefore $R[\eta_1, \dots, \eta_d] \subseteq R$, and so $\eta_1, \dots, \eta_d \in R$. Since $\alpha^d + \eta_1 \alpha^{d-1} + \dots + \eta_d = 0$, we have that α is an integral element over R and $R[\alpha]$ is a free R-module of rank d.

Corollary 2. If p is a prime ideal of R such that $I_{[\alpha]} \subseteq p$, then $I_{[\alpha]}R[\alpha] \cap R \subseteq p$.

Proof. Suppose that $I_{[\alpha]}R[\alpha] \cap R \not\subseteq p$. Then there exists an element $s \in I_{[\alpha]}R[\alpha] \cap R$ and $s \not\in p$. Hence $I_{[\alpha]}R[\alpha]_p = R[\alpha]_p$. We have that $I_{[\alpha]} \not\subseteq p$ by Proposition 1. This is a contradiction. Thus $I_{[\alpha]}R[\alpha] \cap R \subseteq p$. \Box

Theorem 3. Let R be a Noetherian domain with quotient field K. If α is a super-primitive element of degree

d over R and α is an exclusive element, then we have that $\sqrt{I_{[\alpha]}R[\alpha]} \cap R = \sqrt{I_{[\alpha]}}$.

Proof. It is clear that $\sqrt{I_{[\alpha]}R[\alpha]} \cap R \supseteq \sqrt{I_{[\alpha]}}$. The converse inclusion follows from Corollary 2.

Remark. It is known that $I_{[\alpha]}R[\alpha] = R[\alpha]$ if and only if $R[\eta_1, \dots, \eta_d]$ is a flat extension over R and $R[\eta_1, \dots, \eta_d] \subseteq R[\alpha]$ (cf. [5, (15.1)]).

Theorem 4. Assume that α is a super-primitive element of degree d over R. Then

$$\sqrt{I_{[\alpha]}R[\alpha]} \cap R = \sqrt{I_{[\alpha]}R[\eta_1, \cdots, \eta_d]} \cap R \cap \sqrt{\stackrel{d}{\underset{i=1}{\cap}} (R[\alpha]:_R \eta_i)}.$$

Proof. By Remark above, $I_{[\alpha]}R[\alpha] = R[\alpha]$ if and only if $R[\eta_1, \dots, \eta_d]$ is a flat extension over R and $R[\eta_1, \dots, \eta_d] \subseteq R[\alpha]$. Let $p \in \text{Spec}(R)$. If $p \not\supseteq I_{[\alpha]}R[\alpha] \cap R$, then we have that $I_{[\alpha]}R[\alpha]_p = R[\alpha]_p$. Therefore $R[\eta_1, \dots, \eta_d]_p$ is a flat extension over R_p and $R[\eta_1, \dots, \eta_d]_p \subseteq R[\alpha]_p$. Since $R[\eta_1, \dots, \eta_d]_p = R[\rho[\eta_1, \dots, \eta_d]_p = R[\eta_1, \dots, \eta_d]_p$ is a flat extension over R_p and $R[\eta_1, \dots, \eta_d]_p$ is a birational extension over R_p and $R[\eta_1, \dots, \eta_d]_p$ is a birational extension over R_p and $R[\eta_1, \dots, \eta_d]_p$ is a birational extension over R_p and $R[\eta_1, \dots, \eta_d]_p$ is a birational extension over R_p and $R[\eta_1, \dots, \eta_d]_p$ is a birational extension over R_p and $R[\eta_1, \dots, \eta_d]_p$ is a birational extension over R_p and $R[\eta_1, \dots, \eta_d]_p$ is a birational extension over R_p and $R[\eta_1, \dots, \eta_d]_p$ is a birational extension over R_p and $R[\eta_1, \dots, \eta_d]_p$ is a birational extension over R_p and $R[\eta_1, \dots, \eta_d]_p$ is a birational extension over R_p and $R[\eta_1, \dots, \eta_d]_p$ is a birational extension over R_p and $R[\eta_1, \dots, \eta_d]_p$ is a birational extension over R_p and $R[\eta_1, \dots, \eta_d]_p$ is a birational extension over R_p and $R[\eta_1, \dots, \eta_d]_p$ is a birational extension over R_p and $R[\eta_1, \dots, \eta_d]_p \subseteq R[\alpha]_p$. Therefore $R[\eta_1, \dots, \eta_d]_p \subseteq R[\alpha]_p$, we have that $p \not\supseteq \bigcap_{i=1}^d (R[\alpha]:_R \eta_i)$. Conversely, if $p \not\supseteq I_{[\alpha]}R[\eta_1, \dots, \eta_d]_p \subseteq R[\alpha]_p$. Therefore $I_{[\alpha]}R[\alpha]_p = R[\alpha]_p$, and have $p \not\supseteq I_{[\alpha]}R[\alpha] \cap R$.

Considering Remark above, we have the following corollaries.

Corollary 5. If $R[\eta_1, \dots, \eta_d] \subseteq R[\alpha]$, then

$$\sqrt{I_{[\alpha]}R[\alpha]} \cap R = \sqrt{I_{[\alpha]}R[\eta_1, \dots, \eta_d]} \cap R.$$

Therefore $I_{[\alpha]}R[\alpha] = R[\alpha]$ if and only if $R[\eta_1, \dots, \eta_d]$ is a flat extension of R.

Corollary 6. If $R[\eta_1, \dots, \eta_d]$ is a flat extension over R, then $\sqrt{I_{[\alpha]}R[\alpha]} \cap R = \sqrt{\bigcap_{i=1}^d (R[\alpha]:_R \eta_i)}$. Therefore $I_{[\alpha]}R[\alpha] = R[\alpha]$ if and only if $R[\eta_1, \dots, \eta_d] \subseteq R[\alpha]$.

In Proposition 11 in [6], S. Oda and K. Yoshida proved that if grade $(I_{[\alpha]} + I_{[\alpha^{-1}]}) > 1$, then $\alpha R[\alpha] \cap R = I_{[\alpha^{-1}]}$.

We consider a condition that $grade(I_{[a]} + I_{[a^{-1}]}) > 1$.

Proposition 7. Then the following conditions are equivalent:

(1) grade $(I_{[\alpha]} + I_{[\alpha^{-1}]}) > 1;$

(2) $I_{[\alpha]} = I_{\eta_d}$ and η_d is a super-primitive element over R.

Moreover, if these conditions are satisfied, then α is a super-primitive element of degree d over R.

Proof. (2) \Rightarrow (1). Since $I_{[\alpha^{-1}]} = \eta_d I_{[\eta_d]} = \eta_d I_{[\eta_d]}$, we have that $I_{[\alpha]} + I_{[\alpha^{-1}]} = I_{\eta_d} + \eta_d I_{\eta_d} = J_{\eta_d}$. Since η_d is a superprimitive over R, we have that grade $(I_{[\alpha]} + I_{[\alpha^{-1}]}) > 1$.

(1) \Rightarrow (2). Since $I_{[\alpha]} = \bigcap_{i=1}^{d} I_{\eta_i}$, we shall show that $I_{[\alpha]} \supseteq I_{\eta_i}$. Let p be a prime divisor of $I_{[\alpha]}$. Since $I_{[\alpha]}$ is a divisorial ideal of R, we have that depth $R_p = 1$. Therefore $I_{[\alpha]} + I_{[\alpha^{-1}]} \not\subseteq p$. Since $I_{[\alpha^{-1}]} = \eta_d I_{[\alpha]}$, we see that $I_{[\alpha]}(1, \eta_d) R_p = R_p$. Consequently, $I_{[\alpha]}R_p$ is an invertible ideal of R_p and $I_{[\alpha]}^{-1} = (1, \eta_d) R_p$. Since $I_{[\alpha]}R_p = I_{\eta_a}R_p$, we have that $I_{[\alpha]} \subseteq I_{[\alpha]}R_p$. Therefore $I_{\eta_a} \subseteq I_{[\alpha]}$ and have $I_{[\alpha]} = I_{\eta_a}$.

Corollary 8. If the conditions of Proposition 7 hold, then $\alpha R[\alpha] \cap R = I_{\eta_d} = \eta_d I_{\eta_d}$ and in particular, $\eta_d I_{\eta_d} \subseteq \alpha R[\alpha]$.

Remark (cf. [8]). Assume that α is an anti-integral element over R. Then

- (1) $I_{[\alpha]} = R$ if and only if α is integral over R.
- (2) $J_{[\alpha]} = R$ if and only if $R[\alpha]$ is flat over R.

Theorem 9. The following statements are equivalent

(1) $I_{[\alpha]} + I_{[\alpha^{-1}]} = R;$ (2) $I_{[\alpha]} = I_{\eta_{\alpha}} and J_{\eta_{\alpha}} = R.$ Moreover, if one of these equivalent conditions is satisfied then all $\eta_1, \dots, \eta_{d-1}$ are elements of $R[\eta_d]$.

Proof. (1) \Rightarrow (2). Suppose that $I_{[\alpha]} + I_{[\alpha^{-1}]} = R$. Then grade $(I_{[\alpha]} + I_{[\alpha^{-1}]}) > 1$. By Proposition 7, we have that $I_{[\alpha]} = I_{\eta_d}$, and so $R = I_{[\alpha]} + I_{[\alpha^{-1}]} = I_{[\alpha]} + \eta_d I_{[\alpha]} = I_{\eta_d} + \eta_d I_{\eta_d} = J_{[\eta_d]}$.

(2) \Rightarrow (1). It follows that $R = J_{\eta_a} = I_{\eta_a} + \eta_d I_{\eta_a} = I_{[\alpha]} + \eta_d I_{[\alpha]} = I_{[\alpha]} + I_{[\alpha^{-1}]}$. Next, we shall prove that $\eta_1, \dots, \eta_{d-1} \in R[\eta_d]$. For any $P \in \operatorname{Spec}(R)$, put $p = P \cap R$. Since $J_{[\eta_d]} = R$, it follows that $R[\eta_d]$ is a flat extension over R (cf. [8]), and we have that $R[\eta_d]$ is a birational extension over R. Therefore $R[\eta_d]_p = R_p$. Since $R_p \ni \eta_d$, we have that $p \not\supseteq I_{\eta_d} = I_{\lceil \alpha \rceil}$, and so $p \not\supseteq I_{\eta_l}$ for any *i*. Therefore $\eta_1, \dots, \eta_{d-1} \in R[\eta_d]_p$ for all $P \in \text{Spec}(R[\eta_d])$. Hence $\eta_1, \dots, \eta_{d-1} \in R[\eta_d]$.

In the rest of this paper, we treat the case $I_{[\alpha]} = I_{n}$.

Remark. If $I_{[\alpha]} = I_{\eta}$ and $J_{[\eta]} = R$, then $R[\alpha]$ is a flat extension over R. For, it holds that $J_{[\alpha]} = I_{[\alpha]}(1, \eta_1, \eta_2)$..., η_d = $I_{\eta_1}(1, \eta_1, \dots, \eta_d) \supseteq I_{\eta_1}(1, \eta_1) = J_{\eta_1} = R.$

References

- [1] M. Kanemitsu, S. Oda and K. Yoshida, On finite generation of an intersection $R[\alpha] \cap K$, Bull. Aichi Univ. Edu. 48 (1999), 1-4
- [2] H. Matsumura, Commutative Algebra (2nd ed.), Benjamin, New York, 1980.
- [3] S. Oda, M. Kanemitsu and K. Yoshida, On rings of certain type associated with simple ring-extensions, Math. J. Okayama Univ. 39 (1997), 81-87.
- [4] S. Oda and K. Yoshida, Anti-integral extensions of Noetherian domains, Kobe J. Math. 5 (1988), 43-56.
- [5] S. Oda and K. Yoshida, The behaviour of generalized denominator ideals in anti-integral extensions, Math. J. Ibaraki Univ. 29 (1997), 1-7.
- [6] S. Oda and K. Yoshida, On constructions of principal ideals and denominator ideals in simple algebraic extensions, Algebra Colloquium 5 (1998), 355-360.
- [7] S. Oda and K. Yoshida, Remarks on an exclusive extension generated by a super-primitive element, Osaka J. Math., 32 (1995), 495-499.
- [8] S. Oda, J. Sato and K. Yoshida, High degree anti-integral extensions of Noetherian domains, Osaka J. Math. 30 (1993), 119-135.