Synthesis of 2-acetamido-2-deoxy-3-O-sulfonato -D-galactopyranose sodium salt

Toshihiko SAWADA¹, Osami HABUCHI* and Hirofumi NAKANO*

*Department of Science (Chemistry) Aichi University of Education, Kariya 448-8542, Japan

Introduction

T. Okuda et al. reported the molecular cloning and characterization of GalNAc 4-sulfotransferase.¹ In the work, the commercial monosulfated compound 1 and 2 (Figure 1) were used as the markers to characterize the products of the enzyme. We prepared 3-O-sulfated compound 3, and also used it as one of the markers. Here we report the synthesis of 3 from D-galactosamine hydrochloride in detail, and discuss ¹H and ¹³C NMR chemical shifts for the compound 1, 2, 3, and GalNAc 4.

Figure 1. Structures of GalNAc(4SO₄) 1, GalNAc(6SO₄) 2, GalNAc(3SO₄) 3, and GalNAc 4.

Results and Discussion

Scheme 1. (a) Ac₂O, py, rt; (b) BnOH, BF₃·OEt₂, CH₂Cl₂, reflux; (c) 60% NaH, MeOH, rt; (d) benzaldehyde, ZnCl₂, rt; (e) py·SO₃, rt; (f) ion-exchange resin Na⁺; (g) 5% Pd-C, 95% EtOH-H₂O, H₂, rt.

D-Galactosamine hydrochloride was treated with pyridine and acetic anhydride as the usual manner² to give the acetylated compound **5** in 70% yield as shown in Scheme 1. Next, the compound **5** was glycosylated with benzyl alcohol by utilizing boron trifluoride ethyl ether complex as a promoter to afford the benzyl β -*O*-glycoside **6** in 51% yield. The structure of **6** was established by ¹H NMR measurement. The signal for H -1 appeared as a doublet with a $J_{H-1, H-2}$ coupling of 8.3 Hz. The β -selective glycosylation was caused by neighboring group participation of 2-acetamido group.³ The β -*O*-glycoside derivative **6** was de-*O*-acetylated with methanolic sodium methoxide (MeOH/NaOMe) at rt for 4 h to afford colorless needles of **7** in 87% yield.

1. Graduate student, Aichi University of Education

On the basis of ¹H NMR data, the compound 7 was confirmed to keep β configuration and had only one acetyl group attributed to 2-acetamido group. The signal for H-1 exhibited a $J_{H-1, H-2}$ coupling of 8.5 Hz,⁴ and the signal for N-acetyl group appeared as a singlet at 1.80 ppm. The triol 7 was treated with an excess of benzaldehyde and 3 molar excess amounts of zinc(II) chloride to give 4,6-O-benzylidene derivative 8 in 74% yield.⁵ The newly formed 6-membered ring involving benzylidene group is present in the chair conformation as indicated in Scheme 1. O-Sulfation of 8 with sulfur trioxide pyridine complex followed by ion exchange chromatography gave the sulfated compound 9 in 62% yield.⁶ Under the reaction conditions, the selective 3 -O-sulfation of 8 was accomplished without release of the 4,6-O-benzylidene group. Final hydrogenation of 9 with 5% Pd-C in 95% ethanol-water afforded the target molecule 3 in 78% yield. The compound 3 was used as one of the markers.¹

¹H NMR data of the compound 1, 2, 3, and 4 are summarized in Table 1. The proton signal for the position bonded to O-sulfonato group was shifted downfield relative to the corresponding signal for 4. For example, the α -H-4 signal of 4-O-sulfated compound 1 was shifted downfield by 0.75 ppm relative to the corresponding signal in the spectra of 4. The α -H-6 signal for 6-O-sulfated compound 2 appeared at 4.09 ppm more downfield than the corresponding signal for 4. From the chemical shifts of the proton signal observed in the standard compounds, the downfield shift of α -H-3 signal for compound 3 by 0.75 ppm relative to the corresponding signal for 4 indicates that compound 3 bears sulfate group at position 3.

	GalNAc(4SO ₄)	GalNAc(6SO4) 2	GalNAc(3SO4) 3	GalNAc 4
			,	
α ⁻ Η-1	5.14	5.11	5.14	5.11
<i>β</i> •H·1	4.56	4.53	4.68	4.52
~H-9	4.03	4.00	4 91	4 09
βH·2	3.75	3.75	3.88	4.02 3.76
,				
α [−] H·3	3.93	3.81	4.43	3.58
β •H•3	3.71	3.60	4.27	3.57
αH-4	4.62	3.91	4.18	3.87
<i>β</i> •H•4	4.56	3.86	4.12	3.82
~ዞ. 5	4 11	4 91	4.03	3 78
	4.11	9.21	2.00	2.10
<i>β</i> H•5	3.68ª	3.80	3.64	3.98
<i>α</i> H−6	3.66	4.09	3.65	3.62
<i>β</i> •H•6	3.72	4.05	3.63	3.68

Table 1. ¹H NMR data (D_2O) of the compounds 1-4.

* Chemical shift was assigned by HMQC.

¹³C NMR data of the compounds 1-4 are shown in Table 2. The carbon signal for the position bearing O -sulfonato group was shifted downfield relative to the corresponding signal for 4. For example, the α -C-4 signal of 1 appeared at 79.71 ppm more downfield by 8.26 ppm than the corresponding signal of 4. The C-6 signal for 2 was shifted downfield less than 3.5 ppm relative to the corresponding signal in 4. Therefore, the downfield shift of α -C-3 signal for compound 3 by 4.47 ppm relative to the corresponding signal for 4 indicates that bears sulfate group at position 3.

	GalNAc(4SO4) 1	GalNAc(6SO4) 2ª	GalNAc(3SO4) 3	GalNAc 4	
α ⁻ C·1	93.81	91.00	94.13	93.86	
/} ·C·1	98.17	95.34	97.85	98.27	
α ⁻ C-2	53.51	50.17	51.18	53.12	
β ·C•2	56 .87	53.56	54.68	56.54	
α •C•3	69.36	72.72	78.47	74.00	
/} ·C·3	73.00	71.94	80.90	78.04	
α-C-4	79.71	68.25	69.96	71.45	
<i>β</i> •C•4	78.64	67.50	69.22	70.72	
α ⁻ C·5	72.80	68.41	73.23	70.26	
β ·C·5	77.24	67.22	77.68	73.40	
α-C-6	64.04	67.58	63.97	64.09	
<i>β</i> •C•6	63.90	67.09	63.76	63.86	

Table 2. ¹³C NMR data (D_2O) of the compounds 1-4.

^a Chemical shifts were assigned by HMQC.

Experimental Section

General method. ¹H and ¹³C NMR spectra were recorded with a JEOL LA-400 spectrometer operating at 400 MHz and 100.4 MHz. Chemical shifts were referenced to TMS.

$\label{eq:preparation} Preparation of 2-acetamido-1, 3, 4, 6-tetra-O-acetyl-2-deoxy-\beta-D-galactopyranose \ (5).$

D-Galactosamine hydrochloride (1.00 g, 4.64 mmol) was treated with Ac₂O (4.5 cm³) and pyridine (7.0 cm³) at rt for 5 h. The mixture was cooled to 10 °C, then, was poured into water to liberate colorless powder. The powder was filtered and washed with water and ethanol to give compound 5 (1.27 g, 70%); ¹H NMR (400.0 MHz, CDCl₃) δ =1.92 (s, 3H, CH₃CO), 2.00 (s, 3H, CH₃CO), 2.03 (s, 3H, CH₃CO), 2.11 (s, 3H, CH₃CO), 2.15 (s, 3H, CH₃CO), 4.00 (td, 1H, *J*_{5,68}=*J*_{5,6b}=6.5 Hz, *J*_{4,5}=1.1 Hz, H-5), 4.07 (dd, 1H, *J*_{68,6b}=11.2 Hz, *J*_{5,68}=6.5 Hz, H-6a), 4.15 (dd, 1H, *J*_{68,6b}=11.2 Hz, *J*_{5,6b}=6.5 Hz, H-6b), 4.43 (dt, 1H, *J*_{2,3}=11.3 Hz, *J*_{1,2}=9.1 Hz, H-2), 5.06 (dd, 1H, *J*_{2,3}=11.3 Hz, *J*_{3,4}=3.3 Hz, H-3), 5.36 (dd, *J*_{3,4}=3.3 Hz, *J*_{4,5}=1.1 Hz, H-4), 5.38 (s, 1H, NH), 5.68 (d, 1H, *J*_{1,2}=9.1 Hz, H-1); ¹³C NMR (100.4 MHz, CDCl₃) δ =20.62 (q, CH₃), 20.65 (q, CH₃), 20.88 (q, CH₃), 23.31 (q, CH₃), 49.85 (d, C-2), 61.28 (t, C-6), 66.33 (d, C-4), 70.32 (d, C-3), 71.89 (d, C-5), 93.06 (d, C-1), 169.54 (s, C=O), 170.14 (s, C=O), 170.21 (s, C=O), 170.37 (s, C=O), 170.72 (s, C=O).

Preparation of benzyl 2-acetamido-3,4,6-tri-O-acetyl-2-deoxy- β -D-galactopyranoside (6).

A mixture of compound 5 (2.00 g, 5.13 mmol) and BnOH (1.06 cm³, 10.24 mmol) and BF₃·OEt₂ (1.56 cm³, 12.31 mmol) in dry CH₂Cl₂ (10.0 cm³) was refluxed for 5 h. The mixture was washed with aqueous solution of NaHCO₃, and water, then, dried over Na₂SO₄, and evaporated. The residue was recrystallized from CH₂Cl₂ -hexane to give compound 6 (1.16 g, 51%) as colorless crystals; ¹H NMR (400.0 MHz, CDCl₃) δ =1.89 (s, 3H, CH₃CO), 1.97 (s, 3H, CH₃CO), 2.05 (s, 3H, CH₃CO), 2.13 (s, 3H, CH₃CO), 3.87 (td, 1H, *J*_{5,6a}=*J*_{5,6b}=6.7 Hz, *J*_{4,5}= 1.1 Hz, H-5), 4.06 (ddd, 1H, *J*_{2,3}=11.2 Hz, *J*_{2,NH}=8.5 Hz, *J*_{1,2}=8.3 Hz, H-2), 4.13 (dd, 1H, *J*_{68,6b}=11.5 Hz, *J*_{5,6a}=6.7 Hz, H-6a), 4.19 (dd, 1H, *J*_{68,6b}=11.5 Hz, *J*_{5,6b}=6.7 Hz, H-6b), 4.59 (d, 1H, *J*_{gem}=12.2 Hz, OCH (<u>H</u>) Ph), 4.64

(d, 1H, $J_{1,2}$ =8.3 Hz, H-1), 4.89 (d, 1H, J_{gem} =12.2 Hz, OCH (<u>H</u>) Ph), 5.18 (dd, 1H, $J_{2,3}$ =11.2 Hz, $J_{3,4}$ =3.4 Hz, H -3), 5.22 (d, 1H, $J_{2,NH}$ =8.5 Hz, NH), 5.33 (dd, 1H, $J_{3,4}$ =3.4 Hz, $J_{4,5}$ =1.1 Hz, H-4), 7.27-7.36 (m, 5H, arom. H); ¹³C NMR (100.4 MHz, CDCl₃) δ =20.63 (q, CH₃), 20.68 (q, CH₃), 23.39 (q, CH₃), 51.41 (d, C-2), 61.50 (t, C-6), 66.75 (d, C-4), 69.97 (d, C-3), 70.71 (C-5+OCH₂Ph), 99.73 (d, C-1), 128.04 (d, arom. CH), 128.07 (d, arom. CH), 128.46 (d, arom. CH), 136.93 (s, arom. C), 170.21 (s, C=O), 170.26 (s, C=O), 170.42 (s, C=O), 170.49 (s, C=O).

Preparation of benzyl 2-acetamido-2-deoxy- β -D-galactopyranoside (7).

Compound 6 (0.30 g, 0.68 mmol) was dissolved in dry MeOH (6.0 cm³) and treated with 60% NaH (1 mg) at rt. After a few minute, colorless powder separated out. After stirring for 4 h, the mixture was neutralized by acetic acid. The crystals were filtered and washed with MeOH to give compound 7 (0.18 g, 87%); ¹H NMR (400.0 MHz, DMSO-d₆) δ =1.80 (s, 3H, CH₃CO), 3.42-3.45 (m, 1H, H-5), 3.45 (d, 1H, *J*_{2,3}=9.3 Hz, H-3), 3.54 (d, 2H, *J*_{5,6}=4.9 Hz, H-6), 3.65 (s, 1H, H-4), 3.80 (q, 1H, *J*_{1,2}=*J*_{2,3}=*J*_{2,NH}=9.3 Hz, H-2), 4.32 (d, 1H, *J*_{1,2}=9.3 Hz, H-1), 4.49 (d, 1H, *J*_{gem}=12.3 Hz, OCH (H) Ph), 4.50-4.54 (m, 1H, C-4-OH), 4.55-4.63 (m, 2H, C-3-OH+C-6 -OH), 4.76 (d, 1H, *J*_{gem}=12.3 Hz, OCH (<u>H</u>) Ph), 7.23-7.34 (m, 5H, arom. H), 7.65 (d, 1H, *J*_{2,NH}=9.3 Hz, NH); ¹³C NMR (100.4 MHz, DMSO-d₆) δ =23.07 (q, CH₃), 52.00 (d, C-2), 60.48 (t, C-6), 67.49 (d, C-4), 69.23 (t, OCH₂ Ph), 71.33 (d, C-3), 75.37 (d, C-5), 101.11 (d, C-1), 127.14 (d, arom. CH), 127.20 (d, arom. CH), 128.07 (d, arom. CH), 138.24 (s, arom. C), 169.34 (s, C=O).

Preparation of benzyl 2-acetamido-4,6-O-benzylidene-2-deoxy- β -D-galactopyranoside (8).

A mixture of compound 7 (0.19 g, 0.61 mmol) and $ZnCl_2$ (0.25 g, 1.83 mmol) in benzaldehyde (4.0 cm³, 39. 4 mmol) was stirred for 11 h at rt. The mixture was poured into water (10 cm³), and colorless powder separated out. The powder was filtered out, washed with Et₂O to give compound 8 (0.18 g, 74%); ¹H NMR (400.0 MHz, CD₃OD) δ =1.94 (s, 3H, CH₃CO), 3.55 (d, 1H, $J_{5,6a}$ = $J_{5,6b}$ =1.6 Hz, H-5), 3.77 (dd, 1H, $J_{2,3}$ =10.8 Hz, $J_{3,4}$ =3.4 Hz, H-3), 4.07 (dd, 1H, $J_{2,3}$ =10.8 Hz, $J_{1,2}$ =8.5 Hz, H-2), 4.17 (dd, 1H, $J_{6a,6b}$ =12.4 Hz, $J_{5,6a}$ =1.6 Hz, H -6a), 4.21 (d, 1H, $J_{3,4}$ =3.4 Hz, H-4), 4.26 (dd, 1H, $J_{6a,6b}$ =12.4 Hz, $J_{5,6b}$ =1.6 Hz, H-6b), 4.56 (d, 1H, $J_{1,2}$ =8.5 Hz, H-1), 4.61 (d, 1H, J_{gem} =12.1 Hz, OCH(H)Ph), 4.90 (d, 1H, J_{gem} =12.1 Hz, OCH(H)Ph), 5.65 (s, 1H, CH), 7.23 -7.38 (m, 8H, arom. H), 7.56-7.58 (m, 2H, arom. H); ¹³C NMR (100.4 MHz, CD₃OD) δ =23.02 (q, CH₃), 54.18 (d, CH), 68.14 (d, CH), 70.28 (t, CH₂), 71.62 (d, CH), 71.65 (t, CH₂), 76.89 (d, CH), 102.03 (d, CH), 102.49 (d, CH), 127.71 (d, arom. CH), 128.70 (d, arom. CH), 128.85 (d, arom. CH), 129.01 (d, arom. CH), 129.35 (d, arom. CH), 129.91 (d, arom. CH), 139.19 (s, arom. C), 139.70 (s, arom. C), 174.04 (s, C=O).

Preparation of benzyl 2-acetamido-4,6-O-benzylidene-2-deoxy-3-O-sulfonato- β -D-galactopyranoside sodium salt (9).

Compound 8 (20 mg, 0.05 mmol) was treated with SO₃·py (42 mg, 0.26 mmol) at 45 °C for 14.5 h. After addition of MeOH, the mixture was subjected to ion-exchange resin Na⁺. The residue was purified by silica gel column chromatography to give compound **9** (12.8 mg, 62%); ¹H NMR (400.0 MHz, CD₃OD) δ =1.94 (s, 3H, CH₃CO), 3.60 (d, 1H, $J_{5,68}$ = $J_{5,6b}$ =1.7 Hz, H-5), 4.17 (dd, 1H, $J_{68,6b}$ =12.4 Hz, $J_{5,68}$ =1.7 Hz, H-6a), 4.25 (dd, 1H, $J_{68,6b}$ =12.4 Hz, $J_{5,68}$ =1.7 Hz, H-6a), 4.25 (dd, 1H, $J_{68,6b}$ =12.4 Hz, $J_{5,66}$ =1.7 Hz, H-6b), 4.25 (dd, 1H, $J_{2,3}$ =11.1 Hz, $J_{1,2}$ =8.3 Hz, H-2), 4.48 (dd, 1H, $J_{2,3}$ =11.1 Hz, $J_{3,4}$ =3.3 Hz, H-3), 4.60 (d, 1H, $J_{3,4}$ =3.3 Hz, H-4), 4.62 (d, 1H, J_{gem} =12.2 Hz, OCH (H) Ph), 4.68 (d, 1H, $J_{1,2}$ =8.3 Hz, H-1), 4.90 (d, 1H, J_{gem} =12.2 Hz, OCH (<u>H</u>) Ph), 5.64 (s, 1H, CH), 7.24-7.36 (m, 8H, arom. H), 7.53-7.56 (m, 2H, arom. H); ¹³C NMR (100.4 MHz, CD₃OD) δ =23.14 (q, CH₃), 51.86 (d, C-2), 67.98 (d, C-5), 70.26 (t, C-6), 71.76 (t, OCH₂Ph), 75.24 (d, C-4), 76.64 (d, C-3), 102.25 (d, CHPh), 102.27 (d, C-1), 127.66 (d, arom. CH), 128.66 (d, arom. CH), 128.92 (d, arom. CH), 129.32 (d, arom. CH), 129.79 (d, arom. CH), 139.16 (s, arom. C), 139.68 (s, arom. C), 173.88 (s, C=O).

Preparation of 2-acetamido-2-deoxy-3-O-sulfonato-D-galactopyranose sodium salt (3).

Compound 9 (12.8 mg, 0.031 mmol) was dissolved in 95% EtOH-H₂O (4.0 cm³) and 5% Pd-C (25.0 mg) was added. Hydrogenolysis was carried out under H₂ atmosphere for 24 h at rt. The mixture was filtered (Celite), and concentrated. The residue was purified by gel-filtration to afford compound 3 (7.8 mg, 78%); ¹H NMR (400.0 MHz, D₂O) δ =1.90 (s, 3H, β -COCH₃), 1.92 (s, 3H, α -COCH₃), 3.59-3.68 (m, β -H-5+ α -H-6+ β -H-6),

3.88 (dd, 1H, $J_{2,3}$ =11.0 Hz, $J_{1,2}$ =8.5 Hz, β -H-2), 4.03 (t, 1H, $J_{5,6}$ =6.2 Hz, α -H-5), 4.12 (d, 1H, $J_{3,4}$ =3.2 Hz, β -H-4), 4.18 (d, 1H, $J_{3,4}$ =3.0 Hz, α -H-4), 4.21 (dd, 1H, $J_{2,3}$ =11.2 Hz, $J_{1,2}$ =3.7 Hz, α -H-2), 4.27 (dd, 1H, $J_{2,3}$ =11.0 Hz, $J_{3,4}$ =3.2 Hz, β -H-3), 4.43 (dd, 1H, $J_{2,3}$ =11.2 Hz, $J_{3,4}$ =3.0 Hz, α -H-3), 4.68 (d, 1H, $J_{1,2}$ =8.5 Hz, β -H -1), 5.14 (d, 1H, $J_{1,2}$ =3.7 Hz, α -H-1); ¹³C NMR (100.4 MHz, D₂O) δ =24.92 (q, α -CH₃), 25.13 (q, β -CH₃), 51.18 (d, α -C-2), 54.68 (d, β -C-2), 63.76 (t, β -C-6), 63.97 (t, α -C-6), 69.22 (d, β -C-4), 69.96 (d, α -C-4), 73.23 (d, α -C-5), 77.68 (d, β -C-5), 78.47 (d, α -C-3), 80.90 (d, β -C-3), 94.13 (d, α -C-1), 97.85 (d, β -C-1), 177.53 (s, α -C=O), 177.76 (s, β -C=O).

References

- (1) Okuda, T.; Mita, S.; Yamauchi, S.; Fukuta, M.; Nakano, H.; Sawada, T.; Habuchi. O. J. Biol. Chem. 2000, 275, 40605-40613.
- (2) Bergmann, M.; Zervas, L. Ber. 1931, 64, 975-980.
- (3) Ellervik, U.; Magnusson, G. J. Org. Chem. 1998, 63, 9314-9322.
- (4) Bruce G. T. Structure and Conformation of Carbohydrates. In *Glycoscience: Chemistry and Chemical Biology I*; Fraser-Reid, B. O., Tatsuta, K., Thiem, J., Eds; Springer, 2001; pp 4-42.
- (5) Koto, S.; Hirooka, M.; Yago, K.; Komiya, M.; Shimizu, T.; Kato, K.; Takehara, T.; Ikefuji, A.; Iwasa, A.; Hagino, S.; Sekiya, M.; Nakase, Y.; Zen, S.; Tomonaga, F.; Shimada, S. Bull. Chem. Soc. Jpn. 2000, 73, 173-183.
- (6) Fukunaga, K.; Shinoda, K.; Ishida, H.; Kiso, M. Carbohydr. Res. 2000, 328, 85-94.