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Abstract

In this paper we propose a logical foundation of processes and their focused normal
forms. We use a linear meta-language based on substructural operational semantics to
describe focused forms of processes, and compare them to standard π-calculus processes
with their respective operational semantics.

The overall goal of this research is to understand how to reason about processes, multi-
party communication and global types, and how to mechanize properties such as deadlock
freeness and liveness. We are also interested in establishing the limitations of this approach.

1 Introduction

The π-calculus was developed by Robin Milner [Mil99] as a language to describe processes and
concurrent systems. Session types [HVK98] soon followed as a way to rule out nonsensical
processes, e.g. ones where send and receive actions don’t match. Even though the intuition was
there from quite early on [Mil92], it took over a decade until the seminal work by Caires and
Pfenning [CP10] provided a logical interpretation of π-calculus. Indeed, there is a Curry-Howard
correspondence between processes and linear logic, just as there is such a relation between
λ-calculus and intuitionistic logic.

Recently much work has been conducted in this area [CPPT13, Wad14, CMS14, LM16],
predominantly using logic to explain the π-calculus, deadlock freedom and session fidelity. A
lot less attention has been given to approaching the topic from the opposite side, striving to
derive new process calculi and their respective semantics from the logics. In this paper, we do
exactly this: we use a focused formulation of linear logic, combine it with forward chaining
cut-elimination, and arrive at a focused process algebra.

A technical contribution of our work is a case study of using a logical framework to encode
(focused) session types. We use a variant of the concurrent logical framework CLF [WCPW02]
to describe process calculi using substructural operational semantics (SSOS) [PS09]. Our
formulations are surprisingly elegant, and the notion of trace equivalence provided by the logical
framework represents commutative conversions adequately. A corollary of this observation is
that, when studying process algebras that are agnostic to the different interleavings of several
processes executing in parallel, we no longer have to worry about modeling interleavings – on
the trace level, these are captured by the equivalences provided by the logical framework.

The remainder of this paper is structured as follows. In Section 2, we give a brief introduction
to process algebra, the π-calculus, and different forms of operational semantics. In Section 3 we
direct our attention to SSOS and describe a variant of CLF that we will use in the subsequent
sections to derive process algebras and their respective operational semantics from logic. We
will look at two process algebras, one derived from standard, unfocused linear logic in Section 4,
the other reconstructed from focused linear logic in Section 5. We assess results and conclude in
Section 6.
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2 Process Algebra

We begin this section by introducing our variant of the π-calculus and its operational semantics.
We then move to discuss a typed version of the process algebra and show how the well-typed
processes belonging to principal cuts reduce to well-typed processes, which are the result of such
cuts.

2.1 Two-Layer Typed Processes

We present the two-layered system of session typed processes. The bottom layer is made out of
standard π-calculus processes, whereas the upper layer is a sequence of definitions with a final
process.

Channels α ::= � | x
Session Types A,B ::= a | 1 | A⊗B | A(B | A &B | A⊕B
Contexts ∆,Γ ::= · | ∆, x : A
Processes P,Q ::= fwdα x | endα | waitx.P | νxA.P | (P | Q)

| α〈y〉.P | α(y).P | α.case (P,Q) | α.inl;P | α.inr;P | nil
Extended Processes E,F ::= P | let x :=P in E

Transition Labels l ::= τ | x〈y〉 | x(y) | νy.x〈y〉 | x.inl | x.inr | x.inl | x.inr
| x.end | x.end

Where a simple typed process ensures a specific behavior while making some assumptions
about the environment in which it is executed, an extended process extends this concept into
a family of processes. When dealing with a single process P we abstract away the channel on
which it operates, which we denote as �. We reintroduce this channel when we connect P to
the environment E: in let x :=P in E process P operates on channel x.

The session types correspond to our fragment of linear logic, and include atoms and the
unit type, the multiplicative and the additive fragments of linear logic. A context provides an
association between channel names their respective session types.

The process fwdα x forwards messages between the channels α and x, process endα signals
the end of communication on α, process waitxP waits for the end of communication on channel
x and proceeds as P , νxA.P restricts the scope of x of type A within P , P | Q is the parallel
composition of P and Q, α〈y〉.P sends y on α and proceeds with P , α(y).P receives y on α
and proceeds with P , α.case (P,Q) offers to continue either as P or Q depending on the choice
made on α, whereas α.inl;P and α.inr;P signals the choice of either the left or right behavior
of α. Finally, the process nil represents a terminated process.

In the extend process E, a single P represents the final process to be executed. We expect
this process to be of type 1. Simple processes are incorporated into an extended process E via a
let-compositions let x :=P in E, where process P is now connected to x for E to consume.

Finally we have transition labels l: τ denotes an internal action; x〈y〉 denotes an output
of y over x; x(y) denotes an input of y over x; νy.x〈y〉 denotes scope extrusion, where the
scope of a restricted channel y is extended by sending it over x; x.inl and x.inr are respectively
the left choice and the right choice of case over channel x; and conversely x.inl and x.inr
request respectively the left and the right projection of a case; finally, x.end and x.end
respectively denote a process waiting for the end of communication on x and a process ending
all communication on x.
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2.2 Semantics

Semantic rules:

P l−→Q Process P steps to process Q with a trace l

P l−→Q
νx.P l−→νx.Q

res
P l−→Q

P | R l−→Q | R
par P l−→P ′ Q l−→Q′

P | Q τ−→P ′ | Q′
com

P
νy.x〈y〉−−−−→P ′ Q

x(y)−−→Q′

P | Q τ−→νy.(P ′ | Q′) close
P

x〈y〉−−→Q

νy.P
νy.x〈y〉−−−−→Q

open
x〈y〉P x〈y〉−−→P

out

x(y)P
x(z)−−→P{z/y}

in
x.case (P,Q) x.inl−−−→P

csl
x.case (P,Q) x.inr−−−→Q

csr

x.inl;P x.inl−−−→P
inl

x.inr;P x.inr−−−→P
inr

endx
x.end−−−→nil

end
waitx.P x.end−−−→P

wait

E l−→F Extended process E steps to extended process F with a trace l

fwd� x | P l−→fwd� x | P ′

let x :=P in E l−→let x :=P ′ in E

E l−→E′

let x :=P in E l−→let x :=P in E′

fwd� x | P l−→fwd� x | P ′ E l−→E′

let x :=P in E τ−→let x :=P ′ in E′

Congruence rules:

P | nil ≡ P (SNil) P | Q ≡ Q | P (SParC) P | (Q | R) ≡ (P | Q) | R (SParA)
νx.nil ≡ nil (SResNil) νx.νy.P ≡ νy.νx.P (SResC) P ≡α Q⇒ P ≡ Q (SRen)

x /∈ fn(P )⇒ P | νx.Q ≡ νx.(P | Q) (SScope) fwdy x | P ≡ P{y/x} (SFwd)
let x := P in let y := Q in E ≡ let y := Q in let x := P in E (SLetFloat)

Figure 1: Semantic and congruence rules of our calculus

Figure 1 presents the rules defining the labeled semantics and congruence relations of our
π-calculus, where we omit type annotations. The relation P ≡ Q is the reflexive, symmetric,
transitive and congruent closure generated by the given rules. The following side conditions
apply: rule (res) requires x /∈ fn(l); rule (par) requires bn(l) ∩ fn(R) = ∅; rule (close) requires
y /∈ fn(Q). A semantic step P l−→Q (resp. E l−→F ) is the smallest relation generated by the given
rules and congruence rules for P and Q (resp. E and F ).

Note that we do not communicate under prefixes, which is in line with standard semantics
of π-calculus. From the perspective of cut-elimination in logic, this is non-standard.

2.3 Type system

Figure 2 shows the session type system for the processes defined in Section 2.1. The type
judgment is on the form P �∆ ` A, where P is the process providing behavior A on the channel
�, consuming the channels declared in ∆. The typing rules correspond to linear intuitionistic
logic, and they are the same as Caires and Pfenning’s [CP10], but differ in that the channel in
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P � ∆ ` C Process P provides a behavior specified by type C
using variables with their behavior declared in ∆

fwd� x� x : C ` C ax
P � Γ ` A Q� ∆, x : A ` C

νxA.(P | Q) � Γ,∆ ` C
cut

end�� ` 1
1R

P � ∆ ` C
waitx.P � ∆, x : 1 ` C

1L

P � Γ ` A Q� ∆ ` B
νyA.� 〈y〉.(P | Q) � Γ,∆ ` A⊗B

⊗R
P � ∆, y : A, x : B ` C

x(y).P � ∆, x : A⊗B ` C
⊗L

P � ∆, y : A ` B
�(y).P � ∆ ` A(B

(R

P � ∆ ` A Q� Γ, x : B ` C
νyA.x〈y〉.(P | Q) � ∆,Γ, x : A(B ` C

(L

P � ∆ ` A Q� ∆ ` B
�.case (P,Q) � ∆ ` A &B

&R
P � ∆, x : A ` C Q� ∆, x : B ` C
x.case (P,Q) � ∆, x : A⊕B ` C

⊕L

P � ∆, x : A ` C
x.inl;P � ∆, x : A &B ` C &L1

Q� ∆, x : B ` C
x.inr;Q� ∆, x : A &B ` C &L2

P � ∆ ` A
�.inl;P � ∆ ` A⊕B

⊕R1

Q� ∆ ` B
�.inr;Q� ∆ ` A⊕B

⊕R2

∆ ` E : Γ Extended process E terminates using behavior abstractions declared in context Γ

P � Γ ` 1
Γ ` P

P � Γ1 ` A Γ2, x : A ` E
Γ1,Γ2 ` let x :=P in E

Figure 2: Typing for Two-Layer Processes

the conclusion is not named.

2.4 Cut reductions in π-calculus

In this section we show how possible cuts in the type system presented in Section 2.3 can
be described as concurrent processes, and how a semantic reduction step corresponds to the
application of the correspondent cut reduction, transforming well-typed processes into well-typed
reduced processes.

The application of a cut reduction requires that a formula on the right hand side of the
sequent be matched with a formula on the left hand side, which corresponds to a channel. Hence
the processes here take the form νx.(fwd� x | P | Q) where P is a process operating on the
standard channel �, Q expects communication to happen on x, and the two are linked by the
forwarder fwd� x which corresponds to the application of the axiom rule in the logic.
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νxA.(fwd� x | end� | waitx.P ) τ−→νxA.(fwd� x | nil | P )
νxA⊗B .(fwd� x | νyA.� 〈y〉.(P | Q) | x(y).R) τ−→νxB .νyA.(fwd� x | P | Q | R)
νxA(B .(fwd� x | �(y).P | νyA.x〈y〉.(Q | R)) τ−→νxB .νyA.(fwd� x | P | Q | R)
νxA &B .(fwd� x | �.case (P,Q) | x.inl;R) τ−→νxA.(fwd� x | P | R)
νxA &B .(fwd� x | �.case (P,Q) | x.inr;R) τ−→νxB .(fwd� x | Q | R)
νxA⊕B .(fwd� x | �.inl;P | x.case (Q,R)) τ−→νxA.(fwd� x | P | Q)
νxA⊕B .(fwd� x | �.inr;P | x.case (Q,R)) τ−→νxB .(fwd� x | P | R)

3 The CLF Framework

In this section we give a brief overview about a framework based on substructural operational
semantics that we will use as a meta-language to describe concurrent systems. In logical
frameworks based on the dependently typed λ-calculus, the prevailing method for representing
judgments are types, and derivations are correspondingly represented as objects. A rule with
premises J1 . . .Jn and conclusion J is represented by constants in the type theory, mapping
inhabitants of J1 . . .Jn into an inhabitant of J . Although extremely elegant, this way of
representing works best in the context of derivation trees, prevalent in logic, type systems, and
operational semantics, where we can establish the adequacy of the encoding, meaning that we
can show that every derivation tree has a unique representation in the logical framework and
that each canonical form in the logical framework corresponds to a valid derivation. Formally, we
call a representation adequate, if there is a bijection between individual derivations and objects.

The situation is quite different for representations of concurrent systems. Here, our adequacy
result should not identify individual derivation trees and objects in the framework, but instead
identify objects in the type theory with an entire equivalence class of derivations. This is a
subtle but important difference. Consider for example the representation of an operational
semantics of a programming language with non-deterministic choice. In such a language, the
result of a computation might be not be deterministically determined, in fact, each possible
trace of the operational semantics is represented as its own object, and these objects are in
general not equivalent (modulo α, β, and η conversions). In process algebra, however, we deal
with message exchanges. A trace records all the messages sent and received by the different
parties, and it is natural to consider two traces equivalent, if messages that do not depend on
each other, are exchanged. Equivalence classes, that have multiple manifestations, for example,
reorderings, are also called concurrent objects, and their representation is called adequate, if
there there is a bijection between the equivalence classes and an appropriately typed object of
the type theory.

The CLF framework is implemented as the logical framework Celf, which is available
for download from www.github.com/carstenschuermann/celf. We use it to describe the
representations of concurrent systems throughout this paper.

3.1 Syntax

We begin now with the presentation of the meta-language to describe the meta-language of
concurrent systems. Our presentation follows closely [SN11], which essentially describes a focused
system for linear logic. On the formula level, we distinguish negative and positive formulas,
where p denotes a pattern, and N a normal object that we define below. The logical framework
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that we consider here has only

Atomic Formulas P ::= a | P N

Negative Formulas A− ::= Πp : A+.B− | A−&B− | {A} | P
Positive Formulas A+ ::= ∃p : A+.B+ | ↓A− | !A− | 1.

The notation {·} used for defining negative formulas describes a polarity shift from positive
to negative formulas. For convenience, we have omitted notation for the inverse polarity shift,
which can always be derived. A pattern accounts for an inversion phase on the left following the
structure of a positive formula and is defined as follows

Patterns p ::= 〈〈p1, p2〉〉 | ↓x | !x | 1.

Next, we focus the presentation on the object level.
We write N for normal forms of negative formulas, M for normal forms or positive formulas,

and E for expressions. To simplify notation, we introduce atomic objects O. All three syntactic
categories are defined as follows:

Atomic Objects O ::= x | c | O M | π1O | π2O

Normal Objects N ::= λp.N | 〈N1, N2〉 | let E in {M} | O
Trace Objects E ::= · | p = O;E

Monadic Objects M ::= 〈〈M1,M2〉〉 |↓ N | !N | 1.
Before we declare the judgments, we need to introduce typing contexts for linear and unrestricted
variables

Linear Contexts: ∆ ::= · | ∆, u : A

Unrestricted Contexts: Γ ::= · | Γ, x : A

and signatures, for which we write Σ, which declare type families and constant symbols with
their respective types. If convenient, we use a mixed contexts instead where we write : for a
declaration in the unrestricted and :̂ for a declaration in the linear context.

Mixed Contexts: Γ ::= · | Γ, x : A | Γ, û:A

In the interest of space, we do not discuss the kind level in detail, but refer instead the
interested reader to the relevant literature [SN11]. In a slight derivation from this presentation,
we present the framework without spines, but instead with an explicit category for traces,
following [CPS+12]. Note, that in Celf syntax, uppercase variables are implicitly Π-abstracted.

3.2 Static Semantics
In this section we describe the typing judgments that define the static semantics of our framework.
We begin with the discussion of patterns, as this is the only judgment that is not mutually
dependent with others. Patterns correspond to maximal focused phases on the left.

Γ; ∆; p : A+ ` Γ′; ∆′ (Pattern decomposition)

The rules defining the judgment are depicted in Figure 3. The simplest cases of patterns are
those of unit, a linear or unrestricted variable subject to instantiation, ending the focus phase.
The rule ∃P represents dependent pairing.
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Γ; ∆; p1 : A+ ` Γ′; ∆′ Γ′; ∆′; p2 : B+ ` Γ′′; ∆′′

Γ; ∆; 〈〈p1, p2〉〉 : ∃p1 : A+.B+ ` Γ′′; ∆′′
∃P

Γ; ∆; 1 : 1 ` Γ; ∆
1P

Γ; ∆; ↓x : ↓A− ` Γ; (∆, x : A−)
↓P

Γ; ∆; !x : !A− ` (Γ, x : A−); ∆
!P

Figure 3: Pattern Decomposition

The remaining judgments define the static semantics of the various categories of objects,
including atomic, normal, trace, and monadic objects.

Γ; ∆ ` O ⇒ A− (Typing atomic objects)
Γ; ∆ ` N ⇐ A− (Typing normal objects)
Γ; ∆ `M ⇐ A+ (Typing monadic objects)
Γ; ∆ ` E ⇐ Γ′; ∆′ (Typing trace objects)

The judgments are mutually recursive and defined in the 4. The rules are presented as as
focused system and they are largely standard. We omit the precise definition of hereditary
substitutions used in rules app and ∃I and written as [M/p]A from this presentation in the
interest of space and because it is standard. Hereditary substitutions decomposes object M
following the structure given by pattern p, replaces variables by terms and normalizes the result,
all in one go. The details describing hereditary substitutions can be found in [SN11].

We only comment on trace objects. A trace

p1 = O1; . . . pi = Oi; . . . pn = On; ·

can be seen as a sequence of rewrite steps, rewriting a context pair

Γ0; ∆0 . . .Γi; ∆i . . .Γn; ∆n.

Here, each Oi describes which rule to apply, the head of Oi either refers to a constant c, the
name of a statically defined rule declared in the signature, or to a variable x, the name of a
dynamically defined rule, introduced by a previous step. The arguments in Oi can be seen as
the parameters to the rule, and the pattern pi results assigns names to the new introduced
assumptions in the context.

Example 3.1. Let us define the following signature, which is intended to count the number of
tokens represented in a linear context. We use Celf to describe the signature.

% Natural Numbers
nat : type.
z : nat.
s : nat → nat.

% Counting Predicate
count : nat → type.
token : type.

% Counting Rules
rule : token ( count N ( {count (s N)}.

In addition, let our linear context contain three tokens and the predicate count z. Starting
from the initial context pair Γ0; ∆0:

·; ·, u1 : token, u2 : token, u3 : token, c0 : count z
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Γ; ∆ ` O ⇒ A− Typing Atomic Objects

x : A− ∈ Γ

Γ; ∆ ` x⇒ A−
var c : A− ∈ Σ

Γ; ∆ ` c⇒ A−
const

Γ;u : A− ` u⇒ A−
lvar

Γ; ∆1 ` O ⇒ Πp : A+.B− Γ; ∆2 `M ⇐ A+

Γ; ∆1,∆2 ` O M ⇒ [M/p]B−
app

Γ; ∆ ` O ⇒ A−1 &A−2

Γ; ∆ ` π1O ⇒ A−1
proj1

Γ; ∆ ` O ⇒ A−1 &A−2

Γ; ∆ ` π2O ⇒ A−2
proj2

Γ; ∆ ` N ⇐ A− Typing Normal Objects

Γ; ∆; p : A+ ` Γ′; ∆′ Γ′; ∆′ ` N ⇐ A−

Γ; ∆ ` λp.N ⇐ Πp : A+.A−
ΠI

Γ; ∆ ` N1 ⇐ A− Γ; ∆ ` N2 ⇐ B−

Γ; ∆ ` 〈N1;N2〉 ⇐ A−&B−
&I

Γ; ∆ ` E ⇐ Γ′; ∆′ Γ′; ∆′ `M ⇐ A+

Γ; ∆ ` let E in {M} ⇐ {A+}
{}I Γ; ∆ ` O ⇒ P

Γ; ∆ ` O ⇐ P
blur

Γ; ∆ `M ⇐ A+ Typing Monadic Objects

Γ; ∆1 `M1 ⇐ A+
1 Γ; ∆2 `M2 ⇐ A+

2 [M1/p]

Γ; ∆1,∆2 ` 〈〈M1,M2〉〉 ⇐ ∃p : A+
1 .A

+
2

∃I
Γ; · ` 1⇐ 1

1I

Γ; ∆ ` N ⇐ A−

Γ; ∆ ` ↓N ⇐ ↓A−
↓I

Γ; · ` N ⇐ A−

Γ; · ` !N ⇐ !A−
↓I

Γ; ∆ ` E ⇐ Γ′; ∆′ Typing Trace Objects

Γ; ∆ ` · ⇐ Γ; ∆
empty

Γ; ∆1 ` O ⇐ A− Γ; ∆2; p : A− ` Γ′; ∆′ Γ′; ∆′ ` E ⇐ Γ′′; ∆′′

Γ; ∆1,∆2 ` p = O;E ⇐ Γ′′; ∆′′
cons

Figure 4: Static Semantics

we apply rule to u2 and c1, resulting in contexts

·; ·, u1 : token, u3 : token, c1 : count (s z).

As a second step, we apply rule to u1 and c1 and obtain

·; ·, u3 : token, c2 : count (s (s z)).

And finally, we apply the same rule one more time to u3 and c2 and obtain

·; ·, c3 : count (s (s (s z)))

as the final context pair Γ3; ∆3. Putting all pieces together we obtain that the trace is well-typed:

Γ0; ∆0 ` ↓c1 = rule u2 c0; ↓c2 = rule u1 c1; ↓c3 = rule u3 c2; · ⇐ Γ3; ∆3

8
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3.3 Definitional Equivalences
Our framework provides the standard equivalences α and β including and strict definition
expansions. In addition, for trace objects, our framework also provides a notion of equivalence
that is based on reordering the individual steps unless such a reordering would break dependencies.
Concretely, two trace objects E1 = (p1 = O1; p2 = O2;E′1) and E2 = (p2 = O2; p1 = O1;E′2)
are equivalent, written as E1 ≡ E2 iff O2 does not refer to p1 and O1 does not refer to p2

and E′2 ≡ E′1. The justification for this definition is that traces correspond to cuts modulo
commutative conversions. If we were to extend the example above and allowed two counters
that count in parallel, the different trace objects would be equivalent modulo interleavings of
the two traces.

4 Encoding Processes in Celf

We now move to describe a concrete Celf implementation of the two-layer system presented in
Section 2.1 and argue its adequacy.

4.1 Typed Processes
Encoding of the formulas and typing rules is presented below. We use o to stand for a type of a
session. Two type families, hyp : o → type and conc : o → type, describe, respectively,
typed variables on the left of a sequent and process terms of a certain type. This kind of
encoding is standard for representing sequent calculus in the LF methodology.
% Types and Judgments
o : type.
conc : o → type.
hyp : o → type.

% Formulas
one : o.
tens : o → o → o.
lolli : o → o → o.
with : o → o → o.
plus : o → o → o.

Unsurprisingly, the encoding of types can be formally described as a function:

pAq = A

p1q = one
pA⊗Bq = tens pAq pBq

pA(Bq= lolli pAq pBq

pA &Bq =with pAq pBq

pA⊕Bq = plus pAq pBq

The encoding of a context ∆ is equally straightforward: p∆q introduces a linear assumption
u :̂ hyp pAq for each u : A ∈ ∆.

p∆q = D

p·q = .
p∆, x : Aq= p∆q,x :̂ hyp pAq
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Having type families hyp and conc corresponding, respectively, to the left and right side
of the sequent, we continue by encoding the typing rules for simple processes presented on
Figure 2. We use the ( operator built into Celf to ensure that the assumptions are indeed
treated linearly. As usual, we make use of the Higher-Order Abstract Syntax (HOAS) to describe
hypothetical judgments as linear functions (see e.g. lolliR case).

% Typing
ax : hyp A ( conc A.
cut : conc A ( (hyp A ( conc C) ( conc C.

% The Multiplicative Fragment
oneR : conc one.
oneL : conc C ( (hyp one ( conc C).
tensR : conc A ( conc B ( conc (tens A B).
tensL : (hyp A ( hyp B ( conc C) ( (hyp (tens A B) ( conc C).
lolliR : (hyp A ( conc B) ( (conc (lolli A B)).
lolliL : conc A ( (hyp B ( conc C) ( (hyp (lolli A B) ( conc C).

% The Additive Fragment
withR : conc A & conc B ( conc (with A B).
withL1 : (hyp A ( conc C) ( (hyp (with A B) ( conc C).
withL2 : (hyp B ( conc C) ( (hyp (with A B) ( conc C).
plusR1 : conc A ( conc (plus A B).
plusR2 : conc B ( conc (plus A B).
plusL : (hyp A ( conc C) & (hyp B ( conc C) ( (hyp (plus A B) ( conc C).

The above rules are the representation of well-typed processes P � ∆ ` A. The encoding of
well-typed processes is therefore given as:

pPq = M

pfwd� xq = ax x
pνxA.(P | Q)q = cut pPq (λ̂ x . pQq)
pend�q = oneR
pwaitx.Pq = oneL pPq x
pνyA.� 〈y〉.(P | Q)q= tensR pPq pQq
px(y).Pq = tensL (λ̂y . λ̂x . pPq) x
p�(y).Pq = lolliR (λ̂y . pPq)
pνyA.x〈y〉.(P | Q)q = lolliL pPq (λ̂ x . pQq) x
p�.case (P,Q)q = withR 〈pPq , pQq〉
px.case (P,Q)q = plusL 〈λ̂x . pPq, λ̂x. pQq 〉 x
px.inl;Pq = withL1 (λ̂x . pPq) x
px.inr;Qq = withL2 (λ̂x . pQq) x
p�.inl;Pq = plusR1 pPq
p�.inr;Qq = plusR2 pQq

To argue adequacy, we show how the encoding gives well-typed derivations. We present only

10
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some of the translations, the others are obtained in a similar manner.

P � ∆ ` A p∆q ` pPq : conc pAq

fwd� x� x : C ` C x :̂ hyp pCq ` ax ^ x : conc pCq

P � Γ ` A Q� ∆, x : A ` C

νxA.(P | Q) � Γ,∆ ` C

pΓq ` pPq : conc pAq

p∆q, x :̂ hyp pAq ` pQq : conc pCq

p∆q ` λ̂ x . pQq : hyp pAq ( conc pCq

pΓq p∆q ` cut ^ pPq ^ (λ̂ x . pQq) : conc pCq

end�� ` 1 . ` oneR : conc one

P � ∆ ` C
waitx.P � ∆, x : 1 ` C

p∆q ` pPq : conc pCq
p∆q` oneL pPq : hyp one ( conc pCq x :̂ hyp one ` x : hyp one

p∆q, x :̂ hyp one ` oneL pPq x : conc pCq

P � Γ ` A Q� ∆ ` B

νyA.� 〈y〉.(P | Q) � Γ,∆ ` A⊗ B
pΓq ` pPq : conc pAq p∆q ` pQq : conc pBq

pΓq, p∆q ` tensR pPq pQq : conc (tens pAq pBq)

P � ∆, y : A, x : B ` C
x(y).P � ∆, x : A⊗ B ` C

p∆q, y :̂ hyp pAq, x :̂ hyp pBq ` pPq : conc pCq

p∆q, y :̂ hyp pAq ` λ̂x . pPq : hyp pBq ( conc pCq

p∆q ` λ̂y . λ̂ x . pPq : hyp pAq ( hyp pBq ( conc pCq x :̂ hyp ... ` x : hyp ...

p∆q, x :̂ hyp (tens pAq pBq) ` tensL (λy^ . λ̂x . pPq) x : conc pCq

4.2 Extended Processes and Reduction Rules
Besides simple typed processes, the system presented in Section 2.1 makes use of extended
processes. These lists of let-bindings associate every process with a channel on which it provides
a behaviour described in its type. In the Celf encoding, we will represent a single let binding
using a proc type family:
proc : conc A → hyp A → type.

An LF-object of type conc A is a process realising behaviour of A, while an object of type hyp A
can only be an assumption from the context.

Looking at the congruences described for these let bindings, it is meaningful to skip the
explicit encoding of lists of procs, and instead describe pEq as a (mixed, linear-intuitionistic)
context of proc C H assumptions. Notice that here elements of type hyp A in the context can
no longer be linear, as we use them as indices to type family proc. Indeed, pEq is a Celf
context G of schema block {h : hyp A, p :̂ proc P h}. In other words, an extended process
is encoded as:

pEq = G

pPqz = z : hyp 1, p :̂ proc pPq z
plet x :=P in Eqz = x : hyp A, p :̂ proc pPq x, pEqz where P is of type A

Next we present the operational semantics in our encoding. As we are interested only in
capturing reductions reconstructed on extended processes, we do not allow reductions directly
in simple typed processes. In our encoding simple processes are static, and it is in the extended
process environment E that things actually communicate. For instance, the cut reduction rule
simply pushes cut up: we do not reduce in a simple process (cut P (λx. Q x)) but instead
spawn two new let-bindings:
red/cut : proc (cut P (λx. Q x)) C (

{ Exists a. proc P a ⊗

11
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proc (Q a) C
}.

Simple let-bindings using axioms can be safely removed:
red/ax/left: proc D H (

proc (ax H) C (
{ proc D C }.

red/ax/right: proc (ax H) C (
proc (Q C) C’ (
{ proc (Q H) C’ }.

We think about these rules as defining a multiset rewrite system. Reading the rules above
directly as context transformations gives the following context transformations.

r : G 7→ G’ Rule r describes a transformation between mixed contexts G and G’

red/cut : (G, q :̂ proc (cut P (λx . Q x)) C ) 7→
(G, a : hyp _, p_1 :̂ proc P a, p_2 :̂ proc (Q a) C )

red/ax/left : (G, q_1 :̂ proc D H, q_2 :̂ proc (ax H) C ) 7→ (G, p :̂ proc D C )

red/ax/right : (G, q_1 :̂ proc (ax H) C, q_2 :̂ proc (Q C) C’ ) 7→
(G, p :̂ proc (Q H) C’ )

The rest of the reduction rules’ encodings are given below. We give them only as Celf code,
as it is easy to imagine what the context-rewriting rules will look like.
% Multiplicative fragment
red/one : proc oneR C (

proc (oneL D C) C’ (
{ proc D C’ }.

red/comm : proc (tensR P1 P2) H (
proc (tensL (λu1. λu2. Q u1 u2) H) C’’ (
{ Exists a. proc P1 a ⊗

Exists b. proc P2 b ⊗
proc (Q a b) C’’

}.

red/lolli : proc (lolliR (λu. P u)) C (
proc (lolliL Q1 (λv. Q2 v) C) C’’ (
{ Exists a. proc Q1 a ⊗

Exists b. proc (P a) b ⊗
proc (Q2 b) C’’

}.

% Additive fragment
red/with1 : proc (withR 〈 P1 , P2 〉) C (

proc (withL1 (λv. Q v) C) C’’ (
{ Exists a. proc P1 a ⊗

proc (Q a) C’’
}.

red/with2 : proc (withR 〈 P1 , P2 〉) C (
proc (withL2 (λv. Q v) C) C’’ (
{ Exists a. proc P2 a ⊗

proc (Q a) C’’
}.

red/plus1 : proc (plusR1 P) C (

12
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proc (plusL 〈 (λv. Q1 v), (λv. Q2 v) 〉 C) C’’ (
{ Exists a. proc P a ⊗

proc (Q1 a) C’’
}.

red/plus2 : proc (plusR2 P) C (
proc (plusL 〈 (λv. Q1 v), (λv. Q2 v) 〉 C) C’’ (

{ Exists a. proc P a ⊗
proc (Q2 a) C’’

}.

The observant reader will notice that we only have the principal cut rules. Viewed as a
process calculus, the congruence rules are missing, and viewed as cut elminiation, the commuting
cut rules are missing. The red/cut rule lifts the cut from the term into the context, and that
makes the two processes of the cut independent. When a reduction rule is applied, the relevant
processes are selected from the context without the need to care about their spatial location.

Furthermore, because of the definitional equality of CLF, which is described in Section 3.3,
we have that traces that differ only in the order of independent reduction steps are considered
equal.

4.3 Adequacy of the Encoding
As already discussed in Section 3, adequacy of the encodings for a concurrent system has to be
established between equivalence classes of derivations. Giving complete proofs of adequacy is
beyond the scope of this paper, instead we focus here on providing informal intuitions.

The rationale for adequacy of typing rules has already been partially sketched when the
encoding was introduced. It does not use the concurrency monad, instead it stays within the
LLF fragment of the system, which has canonical forms. Therefore in this fragment we do
not need to concern ourselves with commuting conversions and equivalence classes. Since the
correspondence between the typing rules of Figure 2 and their Celf encoding is tight, providing
an inverse of pJq is purely mechanical.

Theorem 1 (Adequacy: Processes).
All of the following are compositional bijections:

1. pAq where A is a well-formed type;
2. p∆q where ∆ is a well-formed context;
3. pP � ∆ ` Aq = p∆q ` pPq : pAq where D :: P � ∆ ` A is a correct typing derivation

according to the rules of Figure 2.

For extended processes, the adequacy is also easy to see. An extended process E is in fact
a list of let bindings which can be reordered using the commuting conversion, provided the
well-typedness of E is maintained. In the encoding pEq we have chosen for these extended
processes, we use context as an abstraction for these lists. Here as well the reordering is possible
if and only if the context remains well-formed after reordering.

Γ ` E pΓq, pEqy ` y : hyp one

P � Γ ` 1
Γ ` P

pΓq ` pPq : conc one
pΓq, y: hyp one, p :̂ proc pPq y ` y : hyp one

P � Γ1 ` A Γ2, x : A ` E
Γ1,Γ2 ` let x :=P in E

pΓ1q ` pPq : conc pAq pΓ2q, x : hyp pAq, pEqz ` ctx
pΓ1q, pΓ2q, x : hyp A, p :̂ proc pPq x, pEqz ` ctx

13
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Theorem 2 (Adequacy: Extended Processes).
An encoding function pΓ ` Eq is a compositional bijection. More precisely, there is a composi-
tional bijection between

1. well-typed extended processes Γ ` E,
2. and those G, D ` yk : hyp one where

i) G is a context of the form x0:hyp A0, ...,
ii) D is a context of the form y0:hyp B0, p0̂:proc P0 y0, ... ,
iii) the variable yi does not occur in Pi,
iv) the hyp-variables are used linearly by the processes Pj,
v) except the variable yk that is not used by any process.

We remark, first, that G is empty if the extended process is closed and, second, that the side
conditions iii) – v) are closely related to generative invariants [Sim12].

The adequacy of the encoding we give for reduction rules has to be carefully stated. First,
it is crucial to note that we do not aim at encoding all the possible process reductions, only
those that preserve well-typedness. Second, as we describe reductions directly on the extended
processes, a single context rewrite step in our Celf encoding corresponds to multiple steps of
extended process rewrites described in Figure 1.

To be more precise, instead of action tracing that is preserved as we traverse the list of
process bindings, we directly expose both parts of the communication when we describe the
reduction and rely on context equivalence to take care of any possible reorderings. Exposing two
communicating parties at once is consistent with the first observation, as we are interested only
in faithful representation of τ actions. Further, we make sure no communication will happen
within a simple process by lifting any communication (cut) to the extended process level.

Finally, we present an adequacy result for reductions. Informally it says that all interleavings
of extended process reductions are considered equivalent inside the framework.

Theorem 3 (Adequacy: Reductions).
If E is a well-typed extended process Γ ` E : ∆ and there is a reduction E τ−→F , then there is a
unique (modulo reordering in E) term describing application of context rewriting rules in order
to transform pΓq; pEq into pΓq; pFq.
Conversely if r is a trace of context rewrites (each context pair satisfying similar invariants as in
Theorem 2) then r : G; D 7→ G’; D’ then there exists a unique pair of extended processes
E and F such that E τ−→F . and pEq = D , pFq = D’ .

5 Focusing
Focusing was introduced by Andreoli [And92] as a way to reduce the search space of proof
search in classical linear logic. His observation is that “some proofs are the same up to some
irrelevant reordering or simplification of inference rules”. Since then alot of work has been done
on studying variations of focusing, including influential work by Dale Miller [?].

The most obvious example of that is the order in which invertible rules are applied. A rule

J0 . . . Jn
J

is considered invertible if the rules
J
J0

. . .
J
Jn
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are admissible. An informal reading is that applying invertible rules cannot go wrong – at least
when it comes to provability.

The second observation is that non-invertible rules can be chained together in a restricted
fashion. Whenever a non-invertible rule is applied, we can continue to only consider further
non-invertible rules applied to the principal formula’s subformulas.

In linear logic, we can divide the connectives into two disjoint groups. The positive connectives
consist of ⊗, 1 and ⊕, while the negative connectives include ( and &. All the positive
connectives have invertible left rules, and non-invertible right rules. Conversely, all the negative
connectives have non-invertible left rules, and invertible right rules.

Combining these ideas, we can consider proofs alternating between two phases: the inversion
phase –where invertible rules are applied– and the focus phase –where non-invertible rules are
applied. The logical content of these two phases is different like night and day: the inversion
phase contains essentially no information, while the focus phase is packed with information.
Another way to look at this is that the inversion phase corresponds to clerical work, while the
focus phase is experts work [?]. However we choose to think about these two phases, they are
completely separate, with explicit rules allowing to move from one phase to the other.

A final property which is often considered important is the possibility to only consider proofs
where the phases are maximal while maintaining provability. The possible shapes of a maximally
focused proof are dictated by the polarity of the formulas. This means that we get a strong
notion of normal forms for proofs.

Focusing and Sessions. We want to investigate this notion of normal form in the context of
process calculi. The presence of normal forms can be exploited when proving properties about
processes – given that the property respects normal forms.

As it turns out, focusing will have a very pleasing meaning in process calculi. All the
invertible rules correspond to type checking receiving operations, while all the non-invertible rules
correspond to sending operations. This is, in some, sense quite natural: receiving information
is a clerical work, while sending is an expert’s work, as a decision must be made about what
is sent. The two phases of focused sessions are thus interpreted as the sending phase and the
receiving phase.

5.1 Extending Processes to Focused Processes

We continue with the same types as before:

A,B ::= a | 1 | A⊗B | A(B | A &B | A⊕B

In the same way that proof search alternates between inversion and focusing, processes alternate
between sending and receiving. We have two variants of the sending phase, depending on
whether the sending occurs on a channel in the context or on the implicit “goal” channel. This
gives rise to the following three judgments:

• P � Γ ` A: The process P receives on Γ and A.

• S � Γ [A] ` B: The process S is sending on a channel with session type A.

• V � Γ ` [A]: The process V is sending on a channel with session type A.
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Corresponding to these judgments are three different kinds of processes:

P,Q ::= x(y).P | waitx.P | x.case(P, Q) | (x).P | case(P, Q)

| on x do V | do S | νxA.(P | Q)

S, T ::= fwd x | 〈S〉T | end | inl;S | inr;S | blur P
V,W ::= fwd | 〈S〉V | inl;V | inr;V | blur x.P

The receiving processes on x do V and do S mark the transition from a receiving phase to a
sending phase. on x do V starts to send according to the process V on the channel x, while
do S starts sending according to the process S on the return channel. In the same fashion, the
sending processes blur x.P ends a left-sending phase, and will continue as the receiving process
P with the channel it was sending on named x, and blur P will end a sending phase on the
implicit channel and enter a receiving phase.

Typing of these process terms is defined in Figure 5. Most of the typing rules are as before,
but the change of judgments imposes a specific structure on the processes. Interestingly, the
single axiom rule in the unfocused system emerges as two rules: axiom on the left and axiom on
the right. There are also four new rules governing the transition between phases: the two focus
rules select a channel to start sending on, while the two blur rules terminate a sending phase
and return to a receiving phase.

fwd� [A] ` A
axL

fwd x� x : A ` [A]
axR

end � · ` [1]
1R

P � Γ ` C
waitx.P � Γ, x : 1 ` C

1L

S � Γ ` [A] T � ∆ ` [B]

〈S〉T � Γ,∆ ` [A⊗B]
⊗R

P � Γ, y : A, x : B ` C
x(y).P � Γ, x : A⊗B ` C

⊗L

P � Γ, x : A ` B
(x).P � Γ ` A(B

(R
S � Γ ` [A] V � ∆ [B] ` C
〈S〉V � Γ,∆ [A(B] ` C

(L

P � Γ ` A Q� Γ ` B
case(P, Q) � Γ ` A&B

&R
P � Γ, x : A ` C Q� Γ, x : B ` C
x.case(P, Q) � Γ, x : A⊕B ` C

⊕L

S � Γ ` [A1]

inl;S � Γ ` [A1 ⊕A2]
⊕R1

S � Γ ` [A2]

inl;S � Γ ` [A1 ⊕A2]
⊕R2

V � Γ [A2] ` C
inl;V � Γ [A1&A2] ` C

&L1

V � Γ [A2] ` C
inr;V � Γ [A1&A2] ` C

&L2

V � Γ [A] ` C
on x do V � Γ, x : A ` C focusL

S � Γ ` [A]

do S � Γ ` A focusR

P � Γ, x : A ` C
blur x.P � Γ [A] ` C blurL

P � Γ ` C
blur P � Γ ` [C]

blurR

P � Γ ` A Q� ∆, x : A ` C
νxA.(P | Q) � Γ, ∆ ` C

cut

Figure 5: Typing for Focused Processes
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5.2 Adapting Operational Semantics

Extended processes are used to express where communication happens.

E ::= nil | let x :=P in E | let x :=V on y in E | let x :=S in E

We consider extended processes equal up to exchange, the computation rules for extended
processes are therefore the following:

let x :=P in let y := fwd on x in E 7→ let y :=P in E axL
let x :=P in let y := fwd x in E 7→ let y :=P in E axR
let x := (νy.(P | Q)) in E 7→ let y :=P in let x :=Q in E cut
let x := end in let y :=waitx.P in E 7→ let y :=P in E one
let x := 〈S〉T in let z :=x(y).P in E 7→ let y :=S in let x :=T in let z :=P in E comm
let x := 〈S〉V on y in let y := (z).P in E 7→ let z :=S in let x :=V on y in let y :=P in E lolli
let x :=do S in E 7→ let x :=S on E in focusR
let x :=on y do V in E 7→ let x :=V on y in E focusL
let x :=do S in E 7→ let s :=S in E focusR
let x :=blur P in E 7→ let x :=P in E blurR
let x :=blur y.P on y in E 7→ let x :=P in E blurL

5.3 Encoding Focused Processes

The representation of this process calculus in Celf follows the same pattern as that of Section 4.

Encoding of well-typed processes. The three kind of processes are each represented by
a type family. A receiving processes P such that P � Γ ` A is represented by the type class
conc A. A sending process S such that S�Γ [A] ` B is represented by the type class focL A B.
A sending process V such that V � Γ ` [A] is represented by the type class focR A.

A selection of the rules defining well-typed processes are:

axR : hyp A ( focR A.
axL : focL A A.
cut : conc A ( (hyp A ( conc C) ( conc C.
focusL : focL A B ( (hyp A ( conc B).
focusR : focR A ( conc A.
blurL : (hyp A ( conc B) ( focL A B.
blurR : conc A ( focR A.
oneR : focR one.
oneL : conc C ( (hyp one ( conc C).
tensR : focR A ( focR B ( focR (tens A B).
tensL : (hyp A ( hyp B ( conc C) ( (hyp (tens A B) ( conc C).
lolliR : (hyp A ( conc B) ( (conc (lolli A B)).
lolliL : focR A ( focL B C ( (focL (lolli A B) C).

Encoding of well-typed extended processes. In addition to proc P C from the earlier
section, we introduce two two new type families that represent sending processes.

proc : conc A → hyp A → type.
procR : focR A → hyp A → type.
procL : hyp A → focL A C → hyp C → type.
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The reading of procL C S C’ is that the process S is currently interacting on channel C, but is
defining the channel C’.

The rules describing the rewrite system is similar to earlier. Note that communication always
involves two processes, and in the focused version, one process will always be in the receiving
phase, while the other will be in one of the two possible sending phases.

6 Conclusion and Future Work

In this paper, we have developed a representation technique for processes in substructural
operational semantics (SSOS) and the logical framework Celf. This technique provides concise
and elegant representations of processes and their respective reduction semantics. Interleavings
are directed supported by Celf and represented as equivalent trace objects.

Furthermore, we have applied our framework to two examples: a process algebra based on
linear logic following closely [CP10], and a process algebra based on focused linear logic.

Closely related to our work is that of processes based polarized linear logic [PG15, PZ16].
Depending on its polarity, a channel can change directionality. In future work, we will will also
represent this logic in Celf, and investigate the interactions between polarization and focusing.

We plan to also study global types, multi-party computations and co-inductive proofs in the
focalized setting, building on prior work [CMSY15, CP16].
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A Appendix

Session Types in Celf

% Types and Judgments
o : type.
conc : o → type.
hyp : o → type.
proc : conc A → hyp A → type.

% Formulas
one : o.
tens : o → o → o.
lolli : o → o → o.
with : o → o → o.
plus : o → o → o.

%%%%%%%%%%
% Typing %
%%%%%%%%%%

ax : hyp A ( conc A.
cut : conc A ( (hyp A ( conc C) ( conc C.

% The Multiplicative Fragment
oneR : conc one.
oneL : conc C ( (hyp one ( conc C).
tensR : conc A ( conc B ( conc (tens A B).
tensL : (hyp A ( hyp B ( conc C) ( (hyp (tens A B) ( conc C).
lolliR : (hyp A ( conc B) ( (conc (lolli A B)).
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lolliL : conc A ( (hyp B ( conc C) ( (hyp (lolli A B) ( conc C).

% The Additive Fragment
withR : conc A & conc B ( conc (with A B).
withL1 : (hyp A ( conc C) ( (hyp (with A B) ( conc C).
withL2 : (hyp B ( conc C) ( (hyp (with A B) ( conc C).
plusR1 : conc A ( conc (plus A B).
plusR2 : conc B ( conc (plus A B).
plusL : (hyp A ( conc C) & (hyp B ( conc C) ( (hyp (plus A B) ( conc C).

%%%%%%%%%%%%%%
% Reductions %
%%%%%%%%%%%%%%

red/ax/left: proc D H (
proc (ax H) C (
{ proc D C }.

red/ax/right: proc (ax H) C (
proc (Q C) C’ (
{ proc (Q H) C’ }.

red/cut : proc (cut P (λx. Q x)) C (
{ Exists a. proc P a ⊗

proc (Q a) C
}.

% Multiplicative fragment
red/one : proc oneR C (

proc (oneL D C) C’ (
{ proc D C’ }.

red/comm : proc (tensR P1 P2) H (
proc (tensL (λu1. λu2. Q u1 u2) H) C’’ (
{ Exists a. proc P1 a ⊗

Exists b. proc P2 b ⊗
proc (Q a b) C’’

}.

red/lolli : proc (lolliR (λu. P u)) C (
proc (lolliL Q1 (λv. Q2 v) C) C’’ (
{ Exists a. proc Q1 a ⊗

Exists b. proc (P a) b ⊗
proc (Q2 b) C’’

}.

% Additive fragment
red/with1 : proc (withR 〈 P1 , P2 〉) C (

proc (withL1 (λv. Q v) C) C’’ (
{ Exists a. proc P1 a ⊗

proc (Q a) C’’
}.

red/with2 : proc (withR 〈 P1 , P2 〉) C (
proc (withL2 (λv. Q v) C) C’’ (
{ Exists a. proc P2 a ⊗

proc (Q a) C’’
}.

red/plus1 : proc (plusR1 P) C (
proc (plusL 〈 (λv. Q1 v), (λv. Q2 v) 〉 C) C’’ (
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{ Exists a. proc P a ⊗
proc (Q1 a) C’’

}.

red/plus2 : proc (plusR2 P) C (
proc (plusL 〈 (λv. Q1 v), (λv. Q2 v) 〉 C) C’’ (

{ Exists a. proc P a ⊗
proc (Q2 a) C’’

}.

Focused Session Types in Celf

% Types and Judgments
o : type.
conc : o → type.
hyp : o → type.
focL : o → o → type.
focR : o → type.

proc : conc A → hyp A → type.
procR : focR A → hyp A → type.
procL : hyp A → focL A C → hyp C → type.

% Formulas
one : o.
tens : o → o → o.
lolli : o → o → o.
with : o → o → o.
plus : o → o → o.

%%%%%%%%%%
% Typing %
%%%%%%%%%%

axR : hyp A ( focR A.
axL : focL A A.
cut : conc A ( (hyp A ( conc C) ( conc C.
focusL : focL A B ( (hyp A ( conc B).
focusR : focR A ( conc A.
blurL : (hyp A ( conc B) ( focL A B.
blurR : conc A ( focR A.

% The Multiplicative Fragment
oneR : focR one.
oneL : conc C ( (hyp one ( conc C).
tensR : focR A ( focR B ( focR (tens A B).
tensL : (hyp A ( hyp B ( conc C) ( (hyp (tens A B) ( conc C).
lolliR : (hyp A ( conc B) ( (conc (lolli A B)).
lolliL : focR A ( focL B C ( (focL (lolli A B) C).

% The Additive Fragment
withR : conc A & conc B ( conc (with A B).
withL1 : focL A C ( focL (with A B) C.
withL2 : focL B C ( focL (with A B) C.
plusR1 : focR A ( focR (plus A B).
plusR2 : focR B ( focR (plus A B).
plusL : (hyp A ( conc C) & (hyp B ( conc C) ( (hyp (plus A B) ( conc C).

%%%%%%%%%%%%%%
% Reductions %
%%%%%%%%%%%%%%
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red/ax/right : proc P C (
procR (axR C) C’’ (
{ proc P C’’ }.

red/ax/rightL : procL H P C (
procR (axR C) C’’ (
{ procL H P C’’ }.

red/ax/rightR : procR P C (
procR (axR C) C’’ (
{ procR P C’’ }.

red/ax/left : proc P H (
procL H axL C (
{ proc P C }.

red/ax/leftL : procL H’ P H (
procL H axL C (
{ procL H’ P C }.

red/ax/leftR : procR P H (
procL H axL C (
{ procR P C }.

red/cut : proc (cut P (λx. Q x)) C (
{ Exists a. proc P a ⊗

proc (Q a) C
}.

red/focusR : proc (focusR P) C (
{ procR P C }.

red/focusL : proc (focusL P C) C’’ (
{ procL C P C’’ }.

red/blurR : procR (blurR P) C (
{ proc P C }.

red/blurL : procL C (blurL (λu. P u)) C’’ (
{ proc (P C) C’’ }.

% Multiplicative fragment
red/comm : procR (tensR P1 P2) C (

proc (tensL (λu1. λu2. Q u1 u2) C) C’’ (
{ Exists a. procR P1 a ⊗

Exists b. procR P2 b ⊗
proc (Q a b) C’’

}.

red/one : procR oneR C (
proc (oneL D C) C’’ (
{ proc D C’’
}.

red/lolli : proc (lolliR (λu. P u)) C (
procL C (lolliL Q1 Q2) C’’ (
{ Exists a. procR Q1 a ⊗

Exists b. proc (P a) b ⊗
procL b Q2 C’’

}.
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% Additive fragment
red/with1 : proc (withR 〈 P1 , P2 〉) C (

procL C (withL1 Q) C’’ (
{ Exists a. proc P1 a ⊗

procL a Q C’’
}.

red/with2 : proc (withR 〈 P1 , P2 〉) C (
procL C (withL2 Q) C’’ (
{ Exists a. proc P2 a ⊗

procL a Q C’’
}.

red/plus1 : procR (plusR1 P) C (
proc (plusL 〈 (λv. Q1 v) ,

(λv. Q2 v) 〉 C) C’’ (
{ Exists a. procR P a ⊗

proc (Q1 a) C’’
}.

red/plus2 : procR (plusR2 P) C (
proc (plusL 〈 (λv. Q1 v) ,

(λv. Q2 v) 〉 C) C’’ (
{ Exists a. procR P a ⊗

proc (Q2 a) C’’
}.
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