
uFLIP-OC: Understanding Flash I/O Patterns on
Open-Channel Solid-State Drives

Ivan Luiz Picoli

IT University of Copenhagen

Denmark

ivpi@itu.dk

Carla Villegas Pasco

IT University of Copenhagen

Denmark

carv@itu.dk

Björn Þór Jónsson

IT University of Copenhagen

Denmark

bjth@itu.dk

Luc Bouganim

INRIA Saclay & UVSQ

France

Luc.Bouganim@inria.fr

Philippe Bonnet

IT University of Copenhagen

Denmark

phbo@itu.dk

ABSTRACT
Solid-State Drives (SSDs) have gained acceptance by providing the

same block device abstraction as magnetic hard drives, at the cost

of suboptimal resource utilisation and unpredictable performance.

Recently, Open-Channel SSDs have emerged as a means to obtain

predictably high performance, based on a clean break from the

block device abstraction. Open-channel SSDs embed a minimal

flash translation layer (FTL) and expose their internals to the host.

The Linux open-channel SSD subsystem, LightNVM, lets kernel

modules as well as user-space applications control data placement

and I/O scheduling. This way, it is the host that is responsible for

SSD management. But what kind of performance model should the

host rely on to guide the way it manages data placement and I/O

scheduling? For addressing this question we have defined uFLIP-

OC, a benchmark designed to identify the I/O patterns that are best

suited for a given open-channel SSD. Our experiments on a Dragon-

Fire Card (DFC) SSD, equipped with the OX controller, illustrate the

performance impact of media characteristics and parallelism. We

discuss how uFLIP-OC can be used to guide the design of host-based

data systems on open-channel SSDs.

CCS CONCEPTS
• General and reference → Evaluation; • Information sys-
tems → Information storage systems; Flash memory;

KEYWORDS
Open-channel SSDs, NAND Flash, Benchmarking, uFLIP-OC

ACM Reference format:
Ivan Luiz Picoli, Carla Villegas Pasco, Björn Þór Jónsson, Luc Bouganim,

and Philippe Bonnet. 2017. uFLIP-OC: Understanding Flash I/O Patterns

on Open-Channel Solid-State Drives. In Proceedings of APSys ’17, Mumbai,
India, September 2, 2017, 8 pages.
https://doi.org/10.1145/3124680.3124741

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

APSys ’17, September 2, 2017, Mumbai, India
© 2017 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-5197-3/17/09.

https://doi.org/10.1145/3124680.3124741

1 INTRODUCTION
Solid State Drives (SSDs) have replaced magnetic disks in data cen-

ters. Cloud providers now expect SSDs to provide predictably high

performance, as well as high resource utilisation, for their dynamic

workloads. As traditional SSDs offer the same interface as mag-

netic hard drives to abstract a radically different physical storage

space, however, resource utilisation is suboptimal and performance

is often unpredictable [6, 9]. An emerging option for fulfilling the

requirements of cloud providers is based on open-channel SSDs,

which expose their media geometry and parallelism to the host [1].

As it is the host’s responsibility to manage data placement and I/O

scheduling, it becomes possible to avoid redundancies and exploit

optimisation opportunities in the storage stack. The question is

then: how should a data system that relies on open-channel SSDs

be designed? More precisely, the question is whether some I/O

patterns should be favoured, while others should be avoided. This

is the question studied in this paper.

Recently, He et al. [5] discussed the “unwritten contract” of tradi-

tional SSDs, i.e., SSDs equippedwith an embedded Flash Translation

Layer, that provide the block device abstraction (initially defined

for magnetic hard drives): a linear space of logical block addresses

(LBAs) associated with read and write operations. According to He

et al., systems implemented on top of SSDs should follow five rules:

(i) request scale rule: submit large requests or many outstanding

requests, (ii) locality rule: favour locality to minimise misses in the

FTL mapping table, (iii) aligned sequentiality: write sequentially
within a block, (iv) grouping by death time: group on the same

blocks data that is updated or deleted together, and (v) uniform data
lifetime: favour data structures where data are updated/deleted in

batch. But do these five rules still apply on open-channel SSDs?

And if not, then what rules do apply?
Before we can answer these questions, however, we need a tool to

understand the performance characteristics of open-channel SSDs.

Bouganim et al. defined the uFLIP benchmark in 2009, as a means

of characterizing the performance of flash-based SSDs [2]. More

specifically, the goal was to understand the impact of the FTL on

the performance of simple I/O patterns. As it turned out, the bench-

mark showed that different SSDs behaved in different ways and

that the complexity of the FTL introduced significant performance

variability. With open-channel SSDs, however, the FTL is out of

the equation. Furthermore, while the simple I/O patterns defined

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The IT University of Copenhagen's Repository

https://core.ac.uk/display/147570052?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/3124680.3124741
https://doi.org/10.1145/3124680.3124741

APSys ’17, September 2, 2017, Mumbai, India Ivan Luiz Picoli et al.

in the uFLIP micro-benchmarks could possibly yield a performance

model, the uFLIP benchmark assumes a block device abstraction

which is not supported by open-channel SSDs. Note that existing

papers focusing on SSD performance and error patterns, such as

Meza et al. [7], Ouyang et al. [8] or Grupp et al. [4] all make similar

assumptions. In Linux, LightNVM instead introduces the PPA inter-

face, a new interface that relies on a hierarchical address space and

vector data commands (each read or write command can target up

to 64 addresses).

In this paper, we redesign the uFLIP benchmark for the PPA

interface. More specifically, we make the following contributions:

(1) We design uFLIP-OC, a variant of the uFLIP benchmark,

adapted to the characteristics of the PPA interface of open-

channel SSDs (Section 3).

(2) We apply the uFLIP-OC benchmark on an open-channel

SSD composed of the DFC equipped with the OX controller

(Sections 4 and 5).

(3) We revisit the five rules of He et al. and discuss the path

towards a new performance contract for open-channel SSDs

based on the uFLIP-OC benchmark (Section 6).

2 BACKGROUND
In this section we briefly review the main characteristics of open-

channel SSDs and the uFLIP benchmark before proceeding to our

contributions.

2.1 Open-Channel SSDs
Solid-State Drives (SSDs) are composed of tens of storage chips

wired in parallel to a controller through a number of channels. Each

storage chip can be abstracted as the minimal unit of parallelism

in the SSD (also called LUNs). NAND flash LUNs are organized in

planes, blocks and pages. Persistent memory, such as ST-MRAM

or 3D Xpoint, is expected to be organised as a collection of sectors.

Open-channel SSDs expose their internals to the host.

LightNVM, the Linux open-channel SSD subsystem, defines the

Physical Page Address (PPA) interface that differs from the tradi-

tional block device abstraction in two ways. First, the address space

is hierarchical. Each address specifies channel and LUN, as well as

a media-specific address. For NAND-flash, each PPA contains chan-

nel, LUN, block, plane, page and sector. Open-channel SSDs can

make the dimensions of their address space known (i.e., number of

channels, number of LUNs per channel, number of planes per LUN,

number of blocks per plane, number of pages per block, number of

sectors per page). Second, the PPA interface supports vector I/Os.

Read and write requests can be applied on up to 64 PPAs at a time.

Note that write requests must be issued at page granularity, while

the read request granularity can encompass any number of sectors.

2.2 uFLIP
uFLIP defines a collection of nine micro-benchmarks, each com-

posed of a few I/O patterns. An I/O pattern is a sequence of I/Os,

where each I/O is defined by: the time at which it is submitted (in

this paper, we only consider consecutive patterns, where a thread

submits a new I/O as soon as the previous one has completed); the

I/O size (by default we consider 4KB I/Os); the I/O mode (read or

write); and the address at which the I/O is targeted. Each micro-

benchmark focuses on varying one of these I/O parameters, such

as address alignment, locality, delays, order and parallelism. The

performance of the specific I/O patterns then together define the

performance characteristics of the SSD. In the original uFLIP bench-

mark the addresses are defined in the logical block address (LBA)

space exposed by SSDs with embedded FTLs. In the next section,

we revisit the uFLIP benchmark in the context of the PPA interface.

3 BENCHMARK DESIGN
The requirements of uFLIP-OC are derived from the characteristics

of open-channel SSDs:

• With open-channel SSDs, media characteristics are exposed

to the host. We should explore their impact on performance.

• The PPA interface supports vector I/Os. We should compare

the parallelism obtained with vector I/Os to the parallelism

obtained with a number of concurrent outstanding requests.

• I/Os are partitioned in the PPA space across channels and

LUNs. We should explore the characteristics of intra-channel

and inter-channel parallelism.

We define uFLIP-OC as a collection of four micro-benchmarks,

organised in two thematic groups that focus on: (i) media charac-

teristics and (ii) parallelism. Each micro-benchmark consists of a

sequence of I/Os, at page granularity, on a given block. The blocks

involved in a benchmark are erased prior to its execution. We do

not consider random patterns, as they are not directly supported

on open-channel SSDs. In the uFLIP terminology, we consider par-

titioned sequential reads or writes executed in parallel by varying

number of threads. Table 1 summarizes the uFLIP-OC benchmark.

Note that while the table defines a specific range of values that ap-

ply to the device under study in this paper, the micro-benchmarks

can be adapted to any device geometry.

3.1 Media Characteristics
There is significant heterogeneity in the various non-volatile mem-

ories that compose the storage chips at the heart of open-channel

SSDs. NAND-flash can be available as SLC (single bit per cell),

MLC/TLC/QLC (two/three/four bits per cell) or 3D NAND (a three

dimensional array of cells that each stores one or more bits). Differ-

ent NAND-flash types exhibit different performance and endurance

characteristics. Other types of non-volatile memories, such as ST-

MRAM or 3D-Xpoint, only increase this heterogeneity. By design,

these characteristics are exposed to the host.

Data sheets, if available, can help set out expectations for (i) per-

formance, with a latency range for page writes/reads, as well as

(ii) endurance, with guaranteed minimum number of program/erase

cycles per block. But they cannot be used to characterise the inter-

play of reads and writes or to characterise the impact of wear on

performance. We thus design two micro-benchmarks to identify

these characteristics.

µOC0: Read/Write Performance of a single LUN. This first micro-

benchmark is executed by a single thread, accessing a single LUN.

There is no form of parallelism. We focus on the latency and

throughput of reads and writes at page granularity. We consider

various mixes of reads and writes ranging from 100% read, to 100%

uFLIP-OC APSys ’17, September 2, 2017, Mumbai, India

Table 1: uFLIP-OC micro-benchmark overview. Unspecified geometry components can be selected arbitrarily.

Name Parallelism Pattern Threads Pages Definition (“:” = loop, “()” = grouping, “;” = order, and “|” = choice)

µOC0 No Sequential 1 1 Block=0–63: Page=0–511: (WWWW | WWWR | WRWR | WRRR | RRRR)

µOC1 No Sequential 1 1 Loop: (Erase; Page=0–511: W; Page=0–511: R)

µOC2 Multi-LUN Round-Robin 1 1 Block=0–63: Page=0–511: LUN=0–3: (W | R)

Threads Round-Robin 1, 2, 4 1 Block=0–63: Page=0–511: LUN=Ti : (W | R) — Ti is the thread identifier

µOC3 Vector I/Os Round-Robin 1 1, 2, 4, 8 Block=0–63: Page=0–511: Channel=0–7: (W | R) — I/Os are issued as vectors

Threads Round-Robin 1, 2, 4, 8 1 Block=0–63: Page=0–511: Channel=Ti : (W | R) — Ti is the thread identifier

writes with three intermediate mixes of reads and writes (25%

reads/75% writes, 50% reads/50% writes, 75% reads/25% writes).

Our goal is twofold. We aim at characterizing (i) latency variance

on a LUN with different mixes of read and write operations, and

(ii) throughput variance across LUNs on the SSD.

µOC1: Impact of Wear. This micro-benchmark sacrifices a block

to study the impact of wear on performance. It focuses on a single

block, accessed by a thread that loops through cycles of erase, writes

and reads on the entire block, until an erase fails and the block is

definitely classified as a bad block. Our goal is to trace the evolution

of erase, write and read latency as a function of erase cycles, as well

as the number of failures of page reads/writes.

3.2 Parallelism
Parallelism is the essence of SSDs: storage chips are wired in par-

allel onto each channel, several channels are wired in parallel to

the controller, and the controller is multi-threaded. As we observed

above, we should explore parallelism (i) within and across channels,

as well as (ii) parallelism due to vector I/Os (a read/write com-

mand applied on multiple PPAs) and concurrent outstanding I/Os

(either asynchronous I/Os or I/Os submitted by different threads).

We design two micro-benchmarks to characterise the impact of

parallelism on performance.

µOC2: Intra-Channel Parallelism. This micro-benchmark focuses

on parallelism across LUNs, within a channel. A single thread issues

write I/Os at page granularity on a number of LUNswithin a channel

in round-robin fashion
1
. The number of LUNs targeted, as well

as the modality of the I/Os (read or write) are the factors in this

experiment. The measurements focus on throughput.

µOC3: Inter-Channel Parallelism. This micro-benchmark focuses

on parallelism across channels. A number of threads issue I/Os

at page granularity on a single LUN per channel. There are three

factors in this experiment: the number of submitting threads (from

one to the number of channels), the number of PPAs targeted in

each I/O (ranging from the number of PPA per page to 64 PPA

addresses), and the modality of each I/O (read or write).

4 EXPERIMENTAL FRAMEWORK
We apply the uFLIP-OC benchmark to an open-channel SSD, based

on the DFC equipped with the OX controller. This is the first non-

commercial open-channel SSD available to the research community.

1
Thus eliminating concurrency issues that we consider in µOC3

Other open-channel SSDs include research prototypes (Cosmos

OpenSSD
2
), as well as commercial systems (CNEX Labs Westlake,

Radian RMS-325). Evaluating these systems with uFLIP-OC is a

topic for future work. In this section, we give a brief presentation

of the DFC and the OX controller. In the next section, we present

the results of the benchmark.

4.1 DragonFire Card (DFC)
TheDragonFire Card (DFC) is a programmable SSD device, designed

by DellEMC and NXP. It is composed of two boards: a main board

and a storage board. The main board is equipped with an LS2088A

SoC, based on ARMV8, 16 GB of RAM and an SD card. It provides

connectivity via 4 PCIe Gen3 lanes and 4x10G Ethernet. A Linux

variant, with a block device controller and full-fledged FTL, runs on

the main board. The storage board is composed of an FPGA board,

equipped with an embedded storage controller for 4 DIMM slots.

The storage board is connected to the main board via 2x4 PCIe Gen3

lanes. The storage board can be equipped with various forms of

DIMMs: RAM, Flash or other forms of NVM. For the experimental

results, we have equipped the storage board with two modules of

four Micron MLC NAND chips each, organized in 16 KB pages, 512

pages per block, 2048 blocks per LUN spread in 2 planes, and 4

LUNs per chip. The total storage capacity for all eight channels is

512 GB.

An open-source community
3
is organized around this hardware

platform with teams working on a wide range of issues, from

open-channel SSDs to video processing and genomics. For example,

VVDN provides support for the Linux installation.

4.2 OX Controller
OX is the first open-source LightNVM-enabled NVMe controller. It

has been designed to execute I/O commands in parallel. Figure 1

shows the I/O command flowwithin the controller; colors represent

thread responsibilities.

• blue threads consume the NVMe queue located on the host.

After dequeuing the NVMe command from the host memory

queue, the blue thread dispatches it to an OX submission

thread (red). OX has one blue thread per host core.

• red threads translate NVMe commands into commands that

are submitted to the media layer (purple). On DFC, the media

layer is located inside the storage card FPGA, which is ac-

cessed via an interface library. For our experiments, we only

2
http://www.openssd-project.org/wiki/Cosmos_OpenSSD_Platform

3
https://github.com/DFC-OpenSource

http://www.openssd-project.org/wiki/Cosmos_OpenSSD_Platform
https://github.com/DFC-OpenSource

APSys ’17, September 2, 2017, Mumbai, India Ivan Luiz Picoli et al.

Figure 1: I/O Flow within the OX controller

consider NVMe commands that conform to the LightNVM

specification. OX has one red thread per channel.

• purple threads are responsible for media I/O completion.

These threads check for completed NAND I/O commands in

the purple queues and post completion to the appropriate

completion queue (green). Note that for data commands, data

is transferred directly between host memory and the FPGA

via DMA.

• green threads are responsible for NVMe I/O completion.

These threads check for completed I/O commands in the

green queues and post a completion NVMe queue entry in

the host memory.

We consider one blue thread per host core, and one thread per

channel for red, purple and green threads. OX is released as an

open-source project.
4

4.3 Workload
We have defined a tool, called FOX, to submit the uFLIP-OC I/O

patterns on open-channel SSDs. FOX is a user-space tool that relies

on the liblightnvm library
5
to submit I/Os to open-channel SSDs

via LightNVM. Liblightnvm relies on IOCTL calls for submitting

commands. As a result, each I/O is synchronous. We thus rely on

commands submitted by multiple threads to obtain concurrent out-

standing I/Os. FOX is open-source and available to the community
6
.

4
https://github.com/DFC-OpenSource/ox-ctrl

5
https://github.com/OpenChannelSSD/liblightnvm

6
https://github.com/DFC-OpenSource/fox

Figure 2: µOC0: Impact of read/write mix on latency.

5 EXPERIMENTAL RESULTS
In this Section, we present the results of the uFLIP-OC benchmark

applied to the DFC equipped with OX. We start by discussing the

impact of media characteristics and then the impact of parallelism.

We discuss lessons we can derive from these results about the SSD

performance contract of He et al. [5] in the next section.

5.1 Media Characteristics
5.1.1 Latency Variance. We apply µOC0 and measure latency

for various mixes of read and write operations. Recall that each

I/O is executed at page granularity. A mix of 25%R and 75%W

corresponds to a sequence of three writes followed by one read.

In this micro-benchmark, a single thread submits I/Os to a single

LUN and a given channel. Based on the data sheets of the NAND

chips, we expect that writes take between 1.6 and 3.0 msec while

reads take approximately 150 usec. The write characteristics are

due to the nature of the MLC NAND chip, which stores two bits

per cell, and the first (“low”) bit must be written before the second

(“high”) bit. As the MLC chip exposes pairs of pages encoded on

the same cells, the consequence is that (i) pairs of pages must be

written together and (ii) the “low page” is written before the “high

page”. So, we expect that write latency will oscillate between two

values and that read latency will be stable and low. Existing work on

open-channel SSDs [1] suggests that reads will be slowed down by

writes. Figure 2 presents the results of µOC0 for the various mixes

of read and write operations. In each experiment, the number of

I/Os submitted is equal to 32768, which corresponds to writing

or reading 64 blocks. For 100% reads, we observe stable latency

but much higher than what could be expected from the data sheet.

This suggests that the overhead associated with reads (essentially

ECC check) is significant. For 100% writes, we observe three bands:

(i) from 2.2 to 3.0 msec, (ii) from 1.0 to 1.3 msec and (iii) around

800 usec. The first two bands correspond to what we expect for

high and low pages. The third band corresponds to write latency

below what is expected from the NAND chip. Our hypothesis is

that some form of write-back is implemented within the DFC. Write

performance for mixes of reads and writes confirm this hypothesis.

Any mix of read and writes reinforces this third band, which is

https://github.com/DFC-OpenSource/ox-ctrl
https://github.com/OpenChannelSSD/liblightnvm
https://github.com/DFC-OpenSource/fox

uFLIP-OC APSys ’17, September 2, 2017, Mumbai, India

Figure 3: µOC0: Heatmap of throughput for the entire SSD.

faster than NAND. As soon as the ratio of reads is greater than

50%, then the latency of writes is stable below 1.0 msec while read

latency increases dramatically. Reads are blocked by writes and the

cost of NAND writes is reflected in the latency of reads. At 50%

reads, read latency can reach above 4 msec. Such degradation in

performance does not result from the hidden cost of writes alone.

We observe here the result of read disturbances, where reads must

be retried because of interference from writes.

5.1.2 Throughput Variance. We apply µOC0 on every LUN for

all channels and measure throughput. We focus on 100% read and

100% write workloads. Our goal is to visualise variance across

LUNs in the SSD. Figure 3 shows a heatmap to represent the result.

We feared that performance would be uneven because we tend to

experiment mostly with channel 0 and LUN 0 on each channel. But

the results show little variance across LUNs. Throughput is stable

at 16 MB/sec per LUN for writes and 38 MB/sec per LUN on reads.

Note that this throughput is the result of sequential, synchronous

I/Os on one LUN at a time. There is no form of parallelism involved.

5.1.3 Wear. In order to measure the impact of wear (i.e., the

number of erases performed on a block) on performance, we sacri-

fice a block and conduct µOC1. While we do not really know the

state of the block we choose for this experiment, it is one of the less

used blocks of the system. The NAND flash data sheet indicates a

guarantee of 3,000 erase cycles per block. Based on Cai’s outstand-

ing study of NAND flash errors[3], we expect that the open-channel

SSD will exhibit a low number of failures up to a point where the

number of failures will increase steeply and negatively impact the

performance of all operations.

Figure 4 shows the result of µOC1. We observe the first read

failure only after 5,872 erases, or almost double the factory guar-

antee of the underlying NAND. This shows that ECC introduces

high latency for reads but provides perfect error correction un-

til wear reaches a given threshold. We remark that this tradeoff

between read latency (due to ECC) and read failure rate is a key

characteristic of open-channel SSDs. On the other hand, the erase

process must apply increasingly larger voltages to avoid failure.

Figure 4: µOC1: Impact of wear (erase cycles) on latency (left
axis) and read failures (right axis).

The voltages are applied in a stepwise fashion, so the cost of erase

operations increases regularly throughout the experiment. So, on

the DFC equipped with the current generation of NAND chips,

there is a correlation between erase latency and failure rate. This

result suggests that it might possible to assume that reads never

fail until erase latency reaches a given threshold. This would have

a major impact on the design of host-based FTLs or application-

specific FTLs that today assume that I/Os might fail at page, block or

die level and deploy considerable engineering resources to design

failure handling mechanisms.

A surprising outcome of this experiment is that write latency

remains constant and unaffected by wear. This is a worrying char-

acteristic that can be linked to the write-back mechanism identified

with µOC0. Writes always complete fast, and failures are only iden-

tified on reads. Note, however, that this behaviour makes sense

under the assumption that reads never fail.

Finally, note that we stopped the experiment after 17,000 erase

cycles; at this point the failure rate for reads had reached 10%.

5.2 Parallelism
5.2.1 Intra-Channel Parallelism. We first focus on parallelism

within a channel with µOC2. Write or read I/Os at page granularity

are sent to a varying number of LUNs within one channel in a

round-robin manner, either using one thread or multiple threads.

We expect that requests are executed in parallel on the different

LUNs and that throughput increases in proportion to the number

of LUNs until the channel becomes a bottleneck (i.e., writes are

blocked until the channel is ready).

Table 2 shows the throughput of µOC2 when targeting 1, 2 and

4 LUNs within a channel. Consider first write requests issued by

multiple threads. Performance for 1 LUN is the same as in µOC0

at approximately 16 MB/sec. While throughput increases nearly

linearly with the number of LUNs, it does not increase by a factor

corresponding to the number of LUNs. We believe that this must be

due to overhead on the DFC and OX controller. With only a single

thread issuing synchronous writes, throughput is nearly the same,

due to write-back on the DFC; control is given back to the thread

very quickly, but when the threads returns to LUN 0, it must wait

for the completion of all previous writes.

APSys ’17, September 2, 2017, Mumbai, India Ivan Luiz Picoli et al.

Table 2: µOC2: Impact of intra-channel parallelism on
throughput.

100% Writes 100% Writes 100% Reads
Multiple Threads Single Thread Multiple Threads

Throughp. Scaling Throughp. Scaling Throughp. Scaling

LUNs (MB/s) Factor (MB/s) Factor (MB/s) Factor

1 16.81 — 16.81 — 37.09 —

2 27.22 1.62 23.47 1.40 49.77 1.34

4 37.85 2.25 33.45 1.99 49.73 1.34

Table 3: µOC3: Impact of inter-channel parallelism on write
throughput: Vector I/Os vs Multiple threads.

Vectored I/O Parallel I/O
(Single Thread) (Multiple Threads)

Total Throughput Scaling Throughput Scaling

I/O size Pages (MB/s) Factor Threads (MB/s) Factor

32 KB 1 44.37 — 1 45.86 —

64 KB 2 80.35 1.81 2 94.37 2.06

128 KB 4 117.84 2.66 4 119.90 2.61

256 KB 8 128.59 2.90 8 127.23 2.77

For reads, the story is different, as synchronous reads must

be completed before handing back control. With one thread (not

shown) the throughput is not affected by the number of LUNs con-

sidered. With multiple thread, throughput is increased when two

threads issue read requests in parallel; as the maximal throughput

per channel is 50MB/s, further threads do not increase throughput.

5.2.2 Inter-Channel Parallelism. We now turn to parallelism

across channels with µOC3. We first explore the impact of vector

I/Os (a single command applied to up to 64 PPAs) and compare it to

the impact of outstanding concurrent I/Os submitted by different

threads. On the DFC, equipped with MLC NAND, page granularity

corresponds to 8 PPAs (1 PPA per sector, 4 sectors per page and 2

pages per plane). We thus experiment with vector I/Os applied to

multiples of 8 PPAs (8, 16, 32 and 64). Each group of 8 PPAs corre-

sponds to a page located on a separate channel, so our experiment

targets 1, 2, 4 and 8 channels. We consider outstanding concurrent

I/Os submitted by a thread dedicated to a given channel. We ex-

periment with 1, 2, 4 and 8 threads so that potential inter-channel

parallelism is the same for vector I/Os and concurrent I/Os. When

the number of targeted channels is less than 8, the experiment

targets each channel in turn in round-robin fashion.

Table 3 shows the write throughput for vectored and concurrent

I/Os. First, we observe that even when a single channel is targeted

at a time (8 PPAs or a single thread), throughput is more than 40

MB/sec, i.e., better than the throughput obtained with intra-channel

parallelism. This is because targeting each channel in a round-robin

fashion effectively hides a significant portion of the time spent

writing on NAND. Less time is spent waiting for a LUN to become

available and as a result throughput is increased. As expected, both

vector I/O and concurrent I/O take advantage of inter-channel

parallelism. The throughput when targeting two channels, with

16 PPAs or two threads, is twice the throughput obtained with 1

channel, with 8 PPAs or 1 thread. When targeting four or eight

channels throughput is increased up to 130 MB/sec, but not by a

factor of two when doubling the number of channels targeted. The

throughput obtained with vector I/O and concurrent I/Os is similar.

With 32 threads, each targeting a LUN (there are 8 channels and 4

LUNs/channel on the DFC), we reach 300 MB/sec throughput for

writes and 400 MB/sec throughput for read. So, reaching maximum

throughput for the device requires some level of concurrent I/Os,

either due to asynchronous I/Os issued from the kernel (e.g. pblk)

or multiple threads in user space via liblightnvm.

Figure 5 shows the latency obtained for various mixes of reads

and writes issued with concurrent I/Os. More specifically, each

thread issues either read or write on a separate LUN. We observe

that read latency remains low, stable and unaffected by writes.

As suggested by previous work [1] separating reads and writes

leads to minimal latency variance. An interesting effect is observed,

however, with 100%W, where the write times have a much less

predictable latency than when mixed with reads, while throughput

is not affected.

6 IMPACT ON PERFORMANCE CONTRACT
The unwritten SSD contract and the five rules identified by Hen

et al. [5] were defined for SSDs equipped with embedded FTL. Let

us revisit how these five rules apply to open-channel SSDs in light

of the results of the uFLIP-OC benchmark applied on the DFC

equipped with the OX controller.

(1) Request scale rule: Our results show that there is a tension

between max throughput (that requires a queue of outstand-

ing requests an each LUN) and low latency variance (that

requires separation of writes from reads). The request scale

rule does not allow to cope with this trade-off. It is up to sys-

tem designers to consider data placement and I/O scheduling

strategies that strike an appropriate balance for generic or

application-specific FTLs.

(2) Locality rule: Locality might lead to interferences between

reads and writes on a same LUN and thus high latency vari-

ance. This rule is thus not applicable.

(3) Aligned sequentiality rule: This rule still holds, and is indeed

trivial to enforce with the PPA address space. Alignment

within a block requires that writes start at page 0 in a given

block.

(4) Grouping by death time rule & Uniform data lifetime rule:
These rules focus on requirements for data placement; open-

channel SSDs make it possible for the host to take such deci-

sions without impediment. Our benchmark results, however,

show another requirement on data placement: reads and

writes should be isolated to preserve low latency variability.

Note that none of these rules account for media characteristics. Our

results indicate that aggressive assumptions can be made about the

absence of read failures in the upper layers of the system. More

work is needed to generalise the results and identify whether a set

of design rules, favouring specific I/O patterns, can be derived for

open-channel SSDs in general. In particular, an open question is

how different types of media, different generations of storage chips,

uFLIP-OC APSys ’17, September 2, 2017, Mumbai, India

Figure 5: µOC3: Impact of parallelism on latency for mixes
of reads and writes.

or even different ECC design decisions will impact the performance

of an open-channel SSD.

7 CONCLUSION
In this paper, we have presented the uFLIP-OC benchmark, a collec-

tion of micro-benchmarks designed to characterise the performance

of open-channel SSDs. We have applied it to the DFC, the first pub-

licly available non-commercial open-channel SSD, equipped with

the OX controller, and discussed the results in detail. We believe

that our micro-benchmarks can be used to define a new perfor-

mance contract for open-channel SSDs. Our benchmark will also

be useful for the designers of open-channel SSDs, or for customers

comparing various open-channel SSDs for a given system. Future

work includes a detailed study of the role of media characteristics

on data systems design.

ACKNOWLEDGEMENT
This research was partially supported by the Coordination for the

Improvement of Higher Education Personnel (CAPES), Brazil, who

provided Ph.D fellowship for the first author.

REFERENCES
[1] Matias Bjørling, Javier Gonzalez, and Philippe Bonnet. 2017.

LightNVM: The Linux Open-Channel SSD Subsystem. In Pro-
ceedings of the USENIX Conference on File and Storage Tech-
nologies, (FAST), Santa Clara, CA, USA. 359–374.

[2] Luc Bouganim, B. Jónsson, and P. Bonnet. 2009. uFLIP: Un-

derstanding flash IO patterns. In Proceedings of the Biennial
Conference on Innovative Data Systems (CIDR).

[3] Yu Cai, Erich F Haratsch, Onur Mutlu, and Ken Mai. 2012.

Error patterns in MLC NAND flash memory: Measurement,

characterization, and analysis. In Design, Automation & Test
in Europe Conference & Exhibition (DATE). IEEE, 521–526.

[4] Laura M. Grupp, John D. Davis, and Steven Swanson. 2012.

The Bleak Future of NAND Flash Memory. In Proceedings of
the USENIX Conference on File and Storage Technologies (FAST).
USENIX Association, Berkeley, CA, USA, 2–2.

[5] Jun He, Sudarsun Kannan, Andrea C. Arpaci-Dusseau, and

Remzi H. Arpaci-Dusseau. 2017. The Unwritten Contract of

Solid State Drives. In Proceedings of the European Conference
on Computer Systems (EuroSys). ACM, New York, NY, USA,

127–144.

[6] Jaeho Kim, Donghee Lee, and Sam H. Noh. 2015. Towards

SLO Complying SSDs Through OPS Isolation. In Proceedings
of USENIX Conference on File and Storage Technologies (FAST).
183–189.

[7] Justin Meza, Qiang Wu, Sanjev Kumar, and Onur Mutlu. 2015.

A large-scale study of flash memory failures in the field. In

ACM SIGMETRICS Performance Evaluation Review, Vol. 43.
ACM, 177–190.

[8] Jian Ouyang, Shiding Lin, S Jiang, and Z Hou. 2014. SDF:

Software-defined flash for web-scale internet storage systems.

In Proceedings of the International Conference on Architectural
Support for Programming Languages and Operating Systems.

[9] Jingpei Yang, Ned Plasson, Greg Gillis, Nisha Talagala, and

Swaminathan Sundararaman. 2014. Don’t stack your log

on my log. In Proceedings of the Workshop on Interactions of
NVM/Flash with Operating Systems and Workloads (INFLOW).

	Abstract
	1 Introduction
	2 Background
	2.1 Open-Channel SSDs
	2.2 uFLIP

	3 Benchmark Design
	3.1 Media Characteristics
	3.2 Parallelism

	4 Experimental Framework
	4.1 DragonFire Card (DFC)
	4.2 OX Controller
	4.3 Workload

	5 Experimental Results
	5.1 Media Characteristics
	5.2 Parallelism

	6 Impact on Performance Contract
	7 Conclusion
	References

