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Abstract Many software systems today are configurable, offering customiz-
ation of functionality by feature selection. Understanding how performance
varies in terms of feature selection is key for selecting appropriate configur-
ations that meet a set of given requirements. Due to a huge configuration
space and the possibly high cost of performance measurement, it is usually
not feasible to explore the entire configuration space of a configurable system
exhaustively. It is thus a major challenge to accurately predict performance
based on a small sample of measured system variants. To address this chal-
lenge, we propose a data-efficient learning approach, called DECART, that
combines several techniques of machine learning and statistics for performance
prediction of configurable systems. DECART builds, validates, and determines
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a prediction model based on an available sample of measured system variants.
Empirical results on 10 real-world configurable systems demonstrate the ef-
fectiveness and practicality of DECART. In particular, DECART achieves a
prediction accuracy of 90% or higher based on a small sample, whose size is
linear in the number of features. In addition, we propose a sample quality
metric and introduce a quantitative analysis of the quality of a sample for
performance prediction.

Keywords Performance prediction · Configurable systems · Regression ·
Model selection · Parameter tuning

1 Introduction

Many software systems, such as databases, compilers, and Web servers, provide
configuration options for stakeholders to tailor the systems’ functional beha-
vior and non-functional properties (e.g., performance, cost, and energy con-
sumption). Configuration options relevant to stakeholders are often called fea-
tures [10,2]. Each system variant derived from a configurable software system
can be represented as a selection of features, called a configuration.

Performance (e.g., response time or throughput) is one of the most import-
ant non-functional properties, because it directly affects user perception and
cost [45]. Finding an optimal configuration to meet a specific performance goal
is often important for developers, system administrators, and users. Naively,
one could measure the performance of all configurations of a system and then
identify which is the fastest, or build a precise performance model linking fea-
ture selection and performance. Unfortunately, this is usually infeasible, as,
due to a combinatorial explosion of possible combinations of features, even a
small-scale configurable system can have a very large number of configurations.
Moreover, measuring the performance of an individual configuration might be
time-consuming in itself (e.g., executing a complex benchmark). Measuring
many configurations, or measuring slow runs, incur an unacceptable measure-
ment cost.

Typically, only a limited set of configurations can be measured in practice,
either by simulation [45] or by monitoring in the field [42]. We call this subset
of configurations (along with the corresponding performance measurements)
a sample, and all configurations of a system (along with their performance
values) the whole population. We want to predict the performance of config-
urations in the population based on a performance model built by measuring
only the sample. Predicting the performance of a new configuration based on
a given sample is likely less accurate than directly measuring its performance.
A key challenge is to balance measurement effort and prediction accuracy, by
using only a small sample (for example, a sample with a size that is linear in
the number of features) to predict the performance of other configurations in
the population with a high accuracy (say, above 90 %).

To address this challenge and to hit a sweet spot between measurement
effort and prediction accuracy, we aim at a data-efficient learning approach,
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which is recently gaining momentum in the community of machine learning
[11]. The key idea is to efficiently reuse available data and then make learn-
ing for many small-data problems. This is particularly useful if acquiring data
is expensive, such as in personalized healthcare, robot reinforcement learn-
ing, sentiment analysis, and community detection [11]. We bring these ideas
to performance prediction of configurable systems, proposing Data-Efficient
CART (DECART), a performance prediction method that suffices with a
small sample of measured configurations of a software system and that effect-
ively determines a reasonably accurate prediction model therefrom. DECART
works automatically and progressively with random samples, such that one
can use it to produce predictions, starting with a small random sample, and
subsequently extend it when further measurements are available. DECART
combines a previous approach based on plain CART (Classification And Re-
gression Trees) [15] with automated resampling and parameter tuning. Using
resampling, DECART learns a prediction model and determines the model’s
accuracy based on a given sample of measured configurations. Using parameter
tuning, DECART ensures that the prediction model has been learned using
optimal parameter settings of CART based on the currently available sample.

In summary, we make the following contributions:
– We propose a data-efficient performance learning approach, called DE-

CART, that combines CART with resampling and parameter tuning for
performance prediction of configurable systems. DECART builds, valid-
ates, and determines a prediction model automatically based on a single
given sample. In practice, if there is already a sample available, one can
produce predictions directly based on the sample using DECART.

– We demonstrate the effectiveness and practicality of DECART by means
of a set of experiments on 10 real-world configurable systems, spanning
different domains, with different sizes, different configuration mechanisms,
and different implementation languages. The evaluation is based on data
from 30 independent experiments. It shows that DECART effectively de-
termines an accurate prediction model based on a small sample and, more
importantly, the prediction accuracy estimated based on the sample can
represent the generalized prediction accuracy of the whole population.

– To evaluate the novel features and innovation of DECART, we compare
DECART to previous work based on plain CART [15]. Also, we empir-
ically compare three widely-used resampling techniques (hold-out, cross-
validation and bootstrapping) and three parameter-tuning techniques (ran-
dom search, grid search and Bayesian optimization). Our empirical results
demonstrate that DECART produces more accurate predictions than the
original CART-based method. Given that a systematic parameter tuning
is involved, DECART still works very fast, and the entire process of se-
lecting a prediction model takes, at most, seconds for all subject systems
(excluding the time to obtain the sample measurements).

– To explore why DECART works with small random samples, we propose
an analytical sample quality metric that quantifies a sample’s goodness of
fit to the whole population and thus provides a quantitative analysis of the
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quality of a sample for performance prediction. Previously, this was only
surveyed by an empirical analysis of performance distributions [15].

– We have implemented DECART and made the source code of our imple-
mentation of DECART publicly available at http://github.com/jmguo/
DECART/.

This article is based on an earlier conference paper [15]. Compared to that pa-
per, the text and the method have been significantly extended and improved.
First, we propose a systematic approach that combines typical CART with res-
ampling and parameter tuning to enable data-efficient performance learning,
to reduce measurement effort for validating a performance-prediction model.
Second, the previous approach tuned the parameters of CART using a set of
empirically-determined rules, which may not work when new subject systems
are considered, while DECART adopts systematic and automated resampling
and parameter tuning, such that the best prediction model with optimal para-
meter settings can be selected. Third, previously we only explored why the
learning approach works by a comparative analysis of performance distribu-
tions, which is empirical and subjective. By contrast, here we employ a quant-
itative analysis based on a new sample quality metric. Fourth, we extend the
previous conference paper’s set of subject systems to ten real-world config-
urable systems and collect results of 30 independent experiments to increase
statistical confidence and external validity. Finally, related work and discussion
are updated to include the latest progress in this area.

2 Problem Definition

We illustrate the problem of performance prediction of configurable systems
using the example of the configurable video codec x264.1 x264 is a command-
line tool to encode video streams into the H.264/MPEG-4 AVC format. For
the purpose of the example, we consider 16 encoder features of x264 (e.g.,
encoding with multiple reference frames or encoding with adaptive spatial
transformation). Users can configure x264 by selecting different features to
encode a video. After a feature is selected, the corresponding functionality
will be activated during the encoding process. We use the encoding time to
indicate the performance of x264 in different configurations. Even such a
simple case with only 16 features gives rise to 1152 configurations in total
(Note that not all feature combinations are valid). Table 1 lists a sample of
16 randomly-selected configurations of x264 and corresponding performance
measurements. Given such a small sample of measured configurations, how
can we determine the performance of other configurations?

Formally, we represent features of a configurable system as a set X of
binary decision variables. If a feature is selected in a configuration, then the
corresponding variable x is assigned the value 1, and 0 otherwise. The number
of all features is denoted N , that is, X = {x1, . . . , xN}. Let C be the set of

1 http://www.videolan.org/developers/x264.html
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Table 1 A sample of 16 randomly-selected configurations of x264 with corresponding per-
formance measurements in seconds

Conf. Features Perf.[s]

ci x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 pi

c1 1 1 0 1 1 1 1 0 1 0 0 1 1 0 0 1 651
c2 1 1 1 1 1 1 0 1 1 1 0 0 1 0 1 0 536
c3 1 1 1 1 0 0 0 0 1 1 0 0 1 0 0 1 581
c4 1 0 0 0 0 0 1 0 1 1 0 0 1 0 1 0 381
c5 1 1 0 1 0 0 0 1 1 1 0 0 1 0 1 0 424
c6 1 1 0 0 1 0 1 1 1 1 0 0 1 0 0 1 615
c7 1 0 1 0 1 1 1 0 1 1 0 0 1 0 1 0 477
c8 1 0 1 0 0 0 0 1 1 0 0 1 1 1 0 0 263
c9 1 0 0 0 0 0 1 1 1 0 0 1 1 1 0 0 272
c10 1 1 1 1 0 0 0 1 1 0 0 1 1 1 0 0 247
c11 1 0 0 0 0 0 0 0 1 0 1 0 1 0 0 1 612
c12 1 0 1 1 1 0 0 0 1 0 0 1 1 0 1 0 510
c13 1 1 1 1 0 1 1 0 1 0 1 0 1 0 0 1 555
c14 1 1 0 0 1 0 1 1 1 0 0 1 1 1 0 0 264
c15 1 0 1 0 0 1 1 1 1 0 0 1 1 0 0 1 576
c16 1 0 1 0 1 0 1 1 1 0 1 0 1 1 0 0 268

all valid configurations of the system in question. Each configuration c of a
system is represented as an N -tuple, assigning 1 or 0 to each variable in X.
For example, as we can see in Table 1, the x264 system has 16 features and
each of its configurations is a 16-tuple; for instance, c1 = (x1 = 1, x2 = 1, x3 =
0, x4 = 1, . . . , x16 = 1).

We assume that a performance benchmark is given, and that we can meas-
ure the performance of an arbitrary configuration c recording its actual per-
formance value y. Note that performance values or measurements we use
throughout this paper can be execution time, throughput, workload, access
time, response time, and so on, as detailed in Section 5.1. We denote the set C
of all valid configurations, along with their actual performance values Y , as the
whole populationW of the configurable system. Suppose that we acquire a set
of configurations CS ( C and measure their actual performance YS—together
forming the sample S (like in Table 1). The set CS can be an existing sample
already available or be acquired by random sampling. The task is to predict
the performance of configurations in C\CS based on the measured sample S.

3 DECART

We now present an overview of DECART, describe the basic principles of the
CART-based performance prediction model for configurable systems, and walk
through the steps of the DECART method. Finally, we introduce a metric to
quantify the quality of a sample used for learning in DECART.
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Figure 1 Overview of DECART

3.1 Overview

As shown in Figure 1, DECART begins with an initial sample of measured
configurations. Based on this sample, an automated process of model selection
is carried out, represented by the dashed box in the figure. When the resulting
performance prediction model is acceptable for stakeholders, DECART stops
(bottom right). Otherwise, we need to obtain an additional sample (i.e., meas-
ured configurations) and iterate again (bottom left) to produce an improved
model.

DECART employs a systematic process of model selection, that is, an it-
erative process of model training and validation, mainly based on CART, res-
ampling, and parameter tuning. Resampling partitions the input sample into
two sets, one used for learning, the other for validation. CART is used for
model training. Parameter tuning is used to explore the parameter space of
CART systematically and automatically. Before the search is done, a set of
parameter values are used to build candidate prediction models. After ex-
ploring the parameter space, the optimal prediction model with the highest
prediction accuracy will be selected and presented to the stakeholders.

3.2 CART for Model Training

DECART uses CART as a fundamental learning approach to train a perform-
ance prediction model for a given configurable system. We introduce CART
briefly by using the motivating example of Table 1. As formalized in Section 2,
the prediction problem is to find a function f that predicts the performance
value y for a configuration c based on an input sample S. The basic idea of
CART is as follows [6]: Sample S is recursively partitioned into smaller seg-
ments until a simple local prediction model can be fit into each segment, and
then all the local models are organized into a global prediction model, which
is represented as a binary decision tree.
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{c1, c2, ..., c16}
S

SL

x7 = 1?

{c8, c10}
SLL

ℓSLL
= 255

{c9, c14, c16}
SLR

ℓSLR
= 268

no yes

SRL

x3 = 1?

{c4, c5}
SRLL

ℓSRLL
= 402

{c2, c7, c12}
SRLR

ℓSRLR
= 508

no yes

SRR

x3 = 1?

{c3, c13, c15}
SRRL

ℓSRRL
= 571

{c1, c6, c11}
SRRR

ℓSRRR
= 626

yes no

SR

x15 = 1?
yes no

x14 = 1?
yes no

Figure 2 A sample prediction model of x264 learned by CART from the example of Table 1

Figure 2 shows a sample prediction model generated by CART from the
example of Table 1. CART starts with the sample S that contains 16 con-
figurations c1, c2, . . . , c16 and their performance measurements y1, y2, . . . , y16.
The sample S indicates an input sample, which is either an existing sample
already available or is acquired by random sampling. Then, CART partitions
the sample S into two segments SL and SR by performing a search over all
feature-selection variables in X for the best split that minimizes the total pre-
diction errors in its two resulting segments. For example, as shown in Figure 2,
the first best split for the x264 sample S is the feature-selection variable x14,
because choosing x14 to partition S produces the minimal prediction errors
in the two resulting segments SL and SR. Note that CART does not need
any domain knowledge to determine the best split feature. After partitioning,
all configurations with x14 = 1 go to the left segment SL, and all configura-
tions with x14 = 0 go to the right segment SR. Each segment is partitioned
recursively by further splits, such as the variables x7, x15, and x3.

For each segment Si, we use the sample mean of the actual performance
measurements as the local (prediction) model of the segment to make predic-
tion fast [5]:

`Si
=

1

|Si|
∑
yj∈Si

yj (1)

The elements of a local model are the configurations that are contained in the
corresponding segment. The local model of each segment identifies the common
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feature selection (i.e., the selected and deselected features in the corresponding
branch from the first split to the current split) and the average performance
of the configurations contained in the segment. For example, the local model
of the leftmost leaf in Figure 2 indicates the common feature selection (x14 =
1, x7 = 0) and the average performance `SLL

= 1
2 (y8 + y10) = 255 seconds for

the two configurations c8 and c10.
To penalize the prediction errors in each segment Si that uses the cor-

responding local model `Si , we adopt the most common and convenient loss
function, the sum of squared error [18]:∑

yj∈Si

L(yj , `Si) =
∑
yj∈Si

(yj − `Si)
2 (2)

Thus, the best split for each segment Si is determined to partition Si into
two segments SiL and SiR such that:∑

yj∈SiL

L(yj , `SiL
) +

∑
yj∈SiR

L(yj , `SiR
) is minimal (3)

Suppose that there are q leaves in the tree structure of a prediction model.
We organize all the local models of these leaves into a global model (i.e., the
learned tree model) as follows:

f(c) =

q∑
i=1

`Si
I(c ∈ Si) (4)

where I(c ∈ Si) is an indicator function that denotes if configuration c belongs
to a leaf Si. For example, the final prediction model for Figure 2 is specified
as follows:

f(c) = 255 · I(x14 = 1, x7 = 0)

+ 268 · I(x14 = 1, x7 = 1)

+ 402 · I(x14 = 0, x15 = 1, x3 = 0)

+ 508 · I(x14 = 0, x15 = 1, x3 = 1)

+ 571 · I(x14 = 0, x15 = 0, x3 = 1)

+ 626 · I(x14 = 0, x15 = 0, x3 = 0)

To determine to which leaf a configuration c belongs, we match the feature
selections of a configuration with the corresponding branch in the tree, from
the first split to a leaf. For example, in the tree shown in Figure 2, if a con-
figuration c satisfies x14 = 1 and x7 = 0, which is consistent with the feature
selections of the leftmost branch, then this configuration falls into the leftmost
leaf SLL. Thus, the predicted performance of configuration c is 255 seconds.

3.3 Initial and Additional Samples

There are three methods to acquire an initial sample of measured configura-
tions: (1) the feature-size heuristic randomly selects N configurations as the
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initial sample, where N equals to the number of features of a configurable
system [15,43,48]; (2) the feature-wise heuristic specifically selects NW con-
figurations in which each feature is selected, at least, once [36,37]; and (3) the
feature-frequency heuristic specifically selects NF configurations in which each
feature is selected and deselected, at least, once [33].

The feature-size heuristic is the easiest to use, since it only requires that a
sample reaches a certain size. In contrast, both the feature-wise and feature-
frequency heuristic must follow certain feature-coverage criteria by checking
predefined constrains. In practice, the configurations that we can measure,
or that we already have measured, are often limited and arbitrarily selected;
they may not meet any feature-coverage criterion. Moreover, checking feature-
coverage criteria can be time-consuming due to the constraints predefined
among features [28,34]. To minimize the cost of collecting a sample, DECART
adopts the feature-size heuristic to generate an initial sample simply satisfying
the size requirement. Also, acquiring additional samples follows the feature-size
heuristic, that is, randomly sampling N configurations with their performance
values to produce an additional sample.

3.4 Resampling

Our previous approach [15] uses the entire input sample S to train a prediction
model and evaluates the model by acquiring an additional set of measured
configurations. To reduce measurement effort, DECART aims at training and
validating a prediction model based on only the input sample. To this end, we
use resampling to partition the input sample into two data sets: the training set
is used to build a prediction model, and the validation set is used to evaluate
the prediction model.

There are three well-established resampling methods to partition a sample
S for training and validation [25,13]: hold-out, cross-validation, and bootstrap-
ping. Hold-out partitions an input sample S into two disjoined sets T and V ,
one for training and the other for validation, that is, S = T ∪V and T ∩V = ∅.
Cross-validation partitions an input sample S into k disjoined subsets of the
same size, that is, S = S1 ∪ . . . ∪ Sk and Si ∩ Sj = ∅ (i 6= j); each subset Si
is selected as the validation set, and all of the remaining k − 1 subsets form
the training set, together producing k groups of training and validation sets.
Bootstrapping relies on random sampling with replacement [13], and its basic
workflow is as follows: Given an input sample S with m configurations, boot-
strapping randomly selects a configuration b and copies it to another sample
S′, and then puts b back to S for the next selection; the above process is re-
peated m times, and thus sample S′ contains m configurations. Subsequently,
bootstrapping uses S′ as the training set and S \ S′ as the validation set.

We empirically compare the above three methods in Section 5.3 and demon-
strate the effectiveness of resampling in our setting.
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3.5 Parameter Tuning

We consider three well-established methods of parameter tuning of the un-
derlying learning method: random search, grid search, and Bayesian optim-
ization. Random search is straightforward: Given a parameter space with all
possible combinations of parameter values, random search selects a certain set
of parameter-value combinations randomly for evaluation. Grid search is an ex-
haustive search through a manually-specified subset of the parameter space of
a learning method [19]. It generates all possible combinations of parameter val-
ues, each of which forms a candidate prediction model for evaluation. Bayesian
optimization uses a Gaussian Process to model the surrogate function that is
used to approximate the true performance function, and it typically optimizes
the expected improvement, which is the expected probability that new trials
will improve on the current best observation [40].

In general, each parameter-tuning method tries a set of parameter values
and produces a group of candidate prediction models for evaluation. As shown
in Figure 1, before the search is done, all candidate prediction models will
be evaluated and the optimal one will be selected. We empirically compare
the three parameter-tuning techniques in Section 5.4 and demonstrate the
effectiveness of parameter tuning in our setting.

3.6 Model Validation

A prediction model is usually evaluated in terms of the prediction error rate.
Following prior work on performance prediction of configurable systems [36,37,
15,35,43,33,48], the prediction error rate of a prediction model is calculated
by the mean relative error (MRE):

MRE =
1

|V |
∑
c∈V

|actualc − predictedc|
actualc

(5)

where V is the validation set, actualc indicates the actual performance value of
configuration c in V , and predictedc is the performance value of configuration
c predicted by the model built. Correspondingly, the prediction accuracy is
1−MRE .

3.7 Stopping Criteria for Sampling

The stopping criteria for sampling are the key to the tradeoff between meas-
urement effort and prediction accuracy. As shown in Figure 1, after the model-
selection process searches over the parameter space and produces the optimal
prediction model with the lowest prediction error rate, stakeholders must de-
termine whether the prediction error rate of the produced model is acceptable.
If the model is still not satisfactory, an additional sample of measured configur-
ations will be collected to build an improved model. According to the theory
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of learning curves [30], a learning method based on a larger sample usually
produces a prediction model with a higher accuracy.

With the aid of resampling, a clear stopping criterion for sampling in DE-
CART is the prediction error rate on the validation set, which we call validation
error. Thus, stakeholders can stop sampling when the calculated validation er-
ror is acceptable (e.g., below 10%). Note that the validation error is calculated
only based on the small input sample, which may not represent the whole pop-
ulation of all configurations of a system. Moreover, what stakeholders really
care about is actually the generalized prediction error rate on new data (i.e.,
configurations not measured before), which we call generalization error. To
evaluate the effectiveness of our stopping criteria, we calculate both validation
error and generalization error and determine the correlation between them,
which we will explore in Section 5.

3.8 Sample Quality Metric

An interesting research question is why a learning approach based on CART
works with a small random sample at all. A general explanation from statist-
ical learning theory is that a regression method works well when the problem
it addresses or the data it evaluates does fit the regressive pattern it builds
[5]. As described in Section 3.2, CART builds a tree-like prediction model that
recursively partitions a sample and renders the total prediction errors in each
partition minimal; this way, the prediction model always fits the sample well. If
the sample can represent the whole population or reflect the important charac-
teristics of the whole population, then the prediction model built on top of the
sample also fits the whole population well and makes accurate predictions. To
empirically confirm the above analysis, in previous work [15], we conducted a
comparative analysis of several empirical performance distributions; we found
that CART works well when the sample has a performance distribution sim-
ilar to the whole population. However, our previous analysis on performance
distributions depends on empirical and subjective observations.

Here, we introduce a quantitative analysis approach of the quality of a
sample. In particular, we propose a sample quality metric to measure the dis-
tance between the input sample and the whole population. A smaller distance
indicates a better sample that represents the whole population more closely.

A major challenge is to find a proper metric to combine heterogeneous vari-
ables that have different scales and could give rise to unbalanced domination.
For example, feature selections are often encoded as Boolean variables with
the domain {0, 1} and performance values are numeric with domain [0,+∞].
A straightforward combination of feature selections and performance values
usually makes performance values dominate in the final results. However, if
we perform a normalization that projects performance values to the domain
[0, 1], then feature selections will dominate.

Our sample quality metric aims at measuring a sample’s distance or good-
ness of fit to the whole population. It relies on Pearson’s Chi-squared test.
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The key idea is to sum up the differences between observed and expected out-
come frequencies in terms of both feature selections and performance values.
By frequencies, the proposed metric mitigates the challenge of unbalanced
domination when combining heterogeneous variables with different scales.

Given the whole population W and a sample S, the distance between the
sample S and the whole population W must consider both feature selections
and performance values of configurations. First, we calculate the distance
Df (S,W ) between the sample S and the whole population W in terms of
feature selections. For each feature xi (i = 1 . . . N), we count the observed
(absolute) frequency of feature xi in sample S and in the whole population
W , respectively, denoted as OSxi

and OWxi
. Then, the probability Pxi

of feature

xi appearing in the whole population is calculated by
OW

xi

|W | , and the expected
frequency ESxi

of feature xi in sample S equals to Pxi
· |S|. Thus, following the

idea of the Chi-squared test, the feature-selection distance between S and W
is:

Df (S,W ) =

N∑
i=1

(OSxi
− ESxi

)2

ESxi

(6)

Intuitively, this distance sums up the differences in the frequencies of feature
selections between the sample and the whole population.

Second, we calculate the distance Dp(S,W ) between the sample S and the
whole populationW in terms of performance values. To collect reasonable res-
ults for performance values, we convert floating-point numbers to fit a certain
precision (e.g., rounding a floating-point number to the nearest integer). Note
that the fitting precision depends on the sensitivity of performance prediction,
which tolerates noise data to some extent. Thus, we collect all M distinct per-
formance values in the whole populationW , that is, {y1, . . . , yM}. Much like as
for the feature-selection distance, for each performance value yj (j = 1, . . .M),
we count the number of configurations holding performance value yj in sample
S and in the whole population W , respectively, denoted as OSyj and OWyj . The

probability of value yj appearing in the whole population is Pyj =
OW

yj

|W | , and
the expected frequency of value yj in sample S is ESyj = Pyj · |S|. Thus, the
performance-value distance between S and W is calculated as follows:

Dp(S,W ) =

M∑
j=1

(OSyj − ESyj )2

ESyj
(7)

Intuitively, the distance sums up the differences in the frequencies of perform-
ance values between the sample and the whole population.

Finally, we assume that both feature selections and performance values
contribute equally to the sample quality (which can be varied, if desired),
so the final distance between the sample S and the whole population W is
calculated by averaging the feature-selection distance and the performance-
value distance:

D(S,W ) =
Df (S,W ) +Dp(S,W )

2
(8)
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Note that, given two samples S1 and S2, we are able to calculate their
distances D(S1,W ) and D(S2,W ) to the whole population and thus compare
the quality of them.

4 Implementation

We implemented DECART using GNU R, Version 3.4.2 GNU R is a lan-
guage and environment for statistical computing and graphics. In particular,
we used the R package rpart to implement the underlying CART and to train
the performance models.3 Moreover, we used the R package rBayesianOp-
timization to implement Bayesian optimization.4 There are a set of paramet-
ers provided by the rpart package. By fixing other parameters using default
settings, we consider three key parameters:
– minsplit , an integer parameter, controls the minimum number of configur-

ations that must exist in a tree node for further partitioning.
– minbucket , an integer parameter, specifies the minimum number of config-

urations that must be present in any leaf node.
– complexity , a real-value parameter, controls the process of pruning a de-

cision tree, and it is used to control the size of the tree and to select an
optimal tree size.
As we aim at learning performance from a small sample of size N , we set

the upper bound of minsplit to the number of features N . Note that, in the
ten subject systems considered in Section 5, N is at most 52. Moreover, we
set the lower bound of minsplit to the minimum value 1. Thus, the domain of
minsplit , which theoretically can be any integer, has been significantly reduced
to [1, 52]. Since minsplit and minbucket have a strong dependency and usu-
ally minbucket = 1

3minsplit (as suggested by Williams [46]), we explore only
parameter minsplit and set minbucket automatically in terms of the above
equation. The default setting of complexity is 0.01. In previous work [15], we
set complexity to 0.001 and found that a smaller complexity works better for
a small sample. We delimit the domain of complexity to [10−6, 0.01].

Furthermore, testing all possible values of a parameter may not be neces-
sary, since the difference in predictions might be trivial. Therefore, we consider
all integer values of minsplit and the values of complexity with an incremental
multiplier of 10. This way, the parameter space Γ is considerably reduced and
has 52×5 = 260 combinations of parameter values in total. Every time the ran-
dom search is executed, it selects a combination of parameter values randomly
from the parameter space Γ . Grid search tries all combinations of parameter
values once it is performed. Bayesian optimization works based on a Gaussian
Process and performs a complex exploration of the parameter space in terms
of the expected probability to find better results. By using the well-established

2 http://www.r-project.org/
3 http://cran.r-project.org/web/packages/rpart/
4 https://cran.r-project.org/web/packages/rBayesianOptimization/
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package rBayesianOptimization, we set only the bounds of two parameters
minsplit and complexity and fix other parameters with default settings.

5 Evaluation

We conducted a series of experiments to evaluate DECART and to compare
it to the original CART approach [15]. We aim at answering the following
research questions:

RQ1: Which resampling technique is the best for DECART?
RQ2: Which parameter-tuning technique is the best for DECART?
RQ3: What is the accuracy and performance of DECART, compared to
plain CART?
RQ4: Does the validation error calculated on a sample represent the gen-
eralization error on other configurations?
RQ5: Does our proposed quality metric capture the quality of a sample
for performance prediction?

5.1 Subject Systems

We selected 10 subject systems to balance several criteria and increase external
validity (see Table 2 for an overview). In particular, we aim at covering multiple
domains (database systems, Web server, video encoder, compiler, etc.) with
different sizes in terms of numbers of features and configurations. Furthermore,
we selected systems that are practically relevant (e.g., Berkeley DB, SQLite,
Apache Web server) and have a distinct performance characteristic. For ex-
ample, HIPAcc is an image processing acceleration framework, which runs on
3D hardware whereas SQLite is designed to run also on embedded systems or
smart phones. This spread of applications allows us to draw conclusions about
the practicality of our approach for real-world systems in heterogeneous do-
mains. Next, we give a short overview of the systems including the benchmark
we used to measure performance.
– AJStats is a code-analysis tool for AspectJ programs. It can be customized

to collect different statistics, such as the number of aspects and pointcuts.
As a benchmark, we analyzed the code basis Orbacus, a customizable
CORBA implementation and measured analysis time.

– Apache is a prominent open-source Web server. We used the tools auto-
bench and httperf to generate load on the Web server. We increased the
load until the server could not handle any further requests and marked the
maximum load as the performance value.

– Berkeley DB C Edition (BDB-C) is an embedded database system, which
is one of the most deployed databases in the world, due to its low binary
footprint and customizability. We used the benchmark provided by the
vendor to measure response time.
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Table 2 Overview of the subject systems; LOC: lines of code; N : number of all features;
|W |: size of the whole population of all configurations

System Domain Language LOC N |W |
AJStats Code analyzer C 14 782 19 30 256
Apache Web server C 230 277 9 192
BDB-C Database system C 219 811 18 2 560
BDB-J Database system Java 42 596 26 180
Clasp Answer set solver C++ 30 871 19 700
HIPAcc Video processing library C++ 25 605 52 13 485
LLVM Compiler infrastructure C++ 47 549 11 1 024
lrzip Compression library C++ 9132 19 432
SQLite Database system C 312 625 39 4 653
x264 Video encoder C 45 743 16 1 152

– Berkeley DB Java Edition (BDB-J) is a complete re-development in Java
with full SQL support. Again, we used a benchmark provided by the vendor
measuring response time.

– Clasp is an answer set solver for normal logic programs. We measured
solving time for the standard problems provided by this solver’s benchmark.

– HIPAcc is a framework accelerating image processing by generating ef-
ficient low-level code based on a high-level specification. Our benchmark
consisted of a set of partial differential equations that were solved on an
nVidia Tesla K20 card with 5GB RAM and 2496 cores.

– LLVM is a compiler infrastructure that supports various configuration
options to tailor the compilation process. As benchmark, we measured the
time to compile LLVM’s test suite.

– LRZIP is a compression library. We used a generator specialized for bench-
marking compression algorithms to generate a file of 652MB size and meas-
ured the time for compression using different features of the library.

– SQLite is an embedded database system deployed over several millions of
devices. It supports several features in form of compiler flags. As bench-
mark, we used the benchmark provided by the vendor and measured the
response time.

– x264 is a video encoder implemented in C. Features adjust the output qual-
ity of encoded video files and encoding time. As benchmark, we encoded
the Sintel trailer (735 MB) from AVI to the H.264 codec and measured
encoding time.

5.2 Experiment Setup

For each experiment, we randomly selected a certain number of configurations,
together with corresponding performance measurements, from the whole pop-
ulation W of each subject system as the sample S for model training and
validation. We used all the remaining configurations as the testing set G, for
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calculating the generalization error. That is, G = W \ S. As prescribed in
Section 3.3, the sample size |S| starts with N (i.e., the number of all features
of a system) and progressively grows with an increment of N . Given a sample
S, we generated a training set T and a validation set V using resampling. For
hold-out, we set the partitioning ratio to 7 : 3, that is, 70% of the sample
S is used as the training set and 30% as the validation set. We adopted the
widely-used 10-fold cross-validation, that is, the sample S will be partitioned
into 10 subsets of the same size. Each subset is selected as the validation set
and all of the remaining subsets form the training set.

As described in Section 3.6, we calculate the error rate of a prediction
model in terms of the mean relative error, MRE , defined in equation (5).
The validation error is the error rate calculated on a validation set, and the
generalization error on a testing set. Correspondingly, the prediction accuracy
is 1−MRE .

To evaluate the accuracy of DECART in the presence of random samples of
different sizes, we conducted experiments using nine different sample sizes from
N to 9N , by an increment of N for each system. There are two exceptions: For
BDB-J, the size of the whole population (=180) is less than 7N (=196), so we
reduced the upper bound of the sample size to 6N ; for HIPAcc, a sample of
size 9N is still insufficient to achieve a validation error lower than 10%, so we
increased the upper bound of the sample size to 20N . Following equation (5),
we calculated both the validation error (based on the validation set) and the
generalization error (based on the testing set) for each subject system and
each sample size. A lower error rate indicates a higher accuracy.

For comparison, we replicated our previous approach using plain CART
with empirically-determined parameter settings [15]: Parameter complexity is
fixed to 0.001; minsplit and minbucket are set in terms of a set of empirical
rules: If |S| ≤ 100, then minbucket = b |S|10 + 1

2c and minsplit = 2 ·minbucket ; if
|S| > 100, then minsplit = b |S|10 + 1

2c and minbucket = bminsplit
2 c; the minimum

of minbucket is 2; and the minimum of minsplit is 4. As said previously, the
original CART approach uses the entire input sample S as the training set to
build a prediction model, and uses the testing set G to calculate the prediction
error rate.

In our experiments, the independent variables are the choice of the subject
system and the size of the input sample. The validation error, generalization
error, time cost of model selection, and sample quality metric are the dependent
variables.

All experiments have been performed on the same Windows 8 machine with
Intel Core i7-5600U CPU 2.60 GHZ and 8GB RAM. To reduce fluctuations in
the values of dependent variables caused by randomness (e.g., the random gen-
eration of input samples and the randomness of measuring the running time),
we evaluated each combination of the independent variables 30 times. That is,
for each subject system and each sample size, we performed our approach and
measured the values of all dependent variables 30 times.
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By a large number of iterations of independent experiments, many test
statistics are approximately normally distributed according to the central limit
theorem. Hence, to increase statistical confidence on the experimental results,
we performed a Z-test for each dependent variable at a confidence level of 95%.
For brevity, we report only the means and the 95% confidence intervals of the
experimental results. Here, the confidence interval is defined as [x̄− z∗ σ√

n
, x̄+

z∗ σ√
n

], where x̄ and σ are the sample mean and the sample standard deviation
of a random variable x, n is the number of tests and n = 30 in our experiments,
and z∗ is the Z-score and z∗ = 1.96 at the confidence level of 95%.

5.3 Comparison of Three Resampling Techniques

We fixed the parameter tuning to grid search and empirically compared three
resampling techniques: hold-out, 10-fold cross-validation, and bootstrapping.
For conciseness, Table 3 provides only the subset of experimental results for
five sample sizes from N to 5N .

In terms of the validation error (columns EV ), as shown in Table 3, 10-fold
cross-validation outperforms the other two techniques for 8 out of 10 subject
systems. But it does not work for Apache when the sample size equals to N ,
which is 9, since the required fold number is 10.

For Apache, hold-out produces the lowest mean of validation error, but
it suffers from a higher margin, which indicates that hold-out does not work
stably. In contrast, cross-validation produces a lower mean of validation error
than bootstrapping, and it tends to work stably with a small margin of val-
idation error. For SQLite, it is hard to determine which method is definitely
the best, since all validation errors produced are close.

In terms of the running time of resampling, hold-out is the fastest. 10-
fold cross-validation tends to be faster than bootstrapping but slower than
hold-out. All running time involving resampling usually takes seconds.

5.4 Comparison of Three Parameter-Tuning Techniques

We fixed the resampling to 10-fold cross-validation and empirically compared
three techniques of parameter tuning, including random search, grid search
and Bayesian optimization. Table 4 provides only the subset of experimental
results for five sample sizes from N to 5N .

In terms of the validation error (columns EV ), as shown in Table 4, grid
search outperforms the other two techniques for 9 out of 10 systems. Only for
SQLite, it is hard to determine which method is definitely the best, since all
validation errors produced are close.

In terms of the running time of parameter tuning, random search is clearly
the fastest because of its simplicity. Bayesian optimization is the slowest, since
it involves a complex process of exploring the parameter space. Grid search is
faster than Bayesian optimization but a little bit slower than random search.
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Table 3 Experimental results of comparing three resampling techniques in terms of the
validation error EV (%) and the running time (seconds); numbers in bold indicate the
lowest mean of validation error; Margin: margin of the 95% confidence interval; ‘–’ indicates
an unavailable case

System |S| Bootstrapping 10-fold cross-validation Hold-out

EV (%) Time (s) EV (%) Time (s) EV (%) Time (s)

Mean ±Margin Mean ±Margin Mean ±Margin Mean ±Margin Mean ±Margin Mean ±Margin

AJstats N 2.96 0.58 0.69 0.02 0.60 0.22 0.63 0.02 2.16 0.33 0.50 0.03
2N 1.97 0.20 1.32 0.03 1.49 0.26 1.20 0.02 1.88 0.24 0.88 0.02
3N 1.92 0.16 1.82 0.03 1.35 0.14 1.79 0.03 1.77 0.14 1.33 0.03
4N 1.84 0.07 1.94 0.05 1.47 0.16 1.84 0.03 1.87 0.09 1.78 0.03
5N 1.82 0.10 2.09 0.05 1.49 0.15 1.88 0.03 1.82 0.10 1.85 0.03

Apache N 17.87 3.3 0.22 0.00 – – – – 6.51 27.73 0.15 0.00
2N 17.79 3.01 0.45 0.01 5.8 2.30 0.42 0.01 3.56 14.95 0.34 0.01
3N 9.36 1.35 0.67 0.00 5.72 1.18 0.65 0.01 0.91 10.19 0.47 0.01
4N 8.44 0.61 0.88 0.00 6.40 1.59 0.85 0.01 0.86 9.48 0.68 0.02
5N 6.83 0.57 1.14 0.01 5.16 0.61 1.05 0.01 0.49 8.83 0.82 0.02

BDB-C N 89.6 32.25 0.59 0.00 17.67 7.84 0.60 0.02 76.38 29.19 0.38 0.01
2N 36.38 8.91 1.21 0.03 11.00 5.99 1.08 0.02 27.82 11.46 0.77 0.01
3N 19.04 4.06 1.76 0.04 6.53 2.59 1.65 0.03 15.88 6.33 1.15 0.01
4N 11.63 3.12 1.83 0.04 5.98 2.28 1.74 0.04 6.32 1.12 1.63 0.02
5N 6.36 1.44 1.87 0.04 2.89 0.92 1.83 0.04 5.71 1.14 1.71 0.03

BDB-J N 4.70 2.33 0.87 0.01 1.13 0.29 0.81 0.02 8.05 4.02 0.61 0.01
2N 1.76 0.20 1.80 0.02 1.26 0.24 1.67 0.03 1.71 0.17 1.23 0.01
3N 1.79 0.13 1.88 0.03 1.31 0.19 1.93 0.02 1.57 0.16 1.8 0.02
4N 1.58 0.12 1.92 0.04 1.36 0.22 1.93 0.02 1.66 0.14 1.96 0.05
5N 1.56 0.10 1.95 0.02 1.07 0.13 1.99 0.02 1.46 0.13 1.89 0.02

Clasp N 16.92 3.20 0.66 0.02 7.03 4.39 0.69 0.03 18.20 2.94 0.46 0.01
2N 10.38 2.05 1.32 0.02 5.31 2.13 1.20 0.01 7.47 1.39 0.89 0.01
3N 5.88 0.90 1.82 0.01 1.93 0.51 1.97 0.05 5.35 0.90 1.39 0.02
4N 4.88 0.98 1.91 0.02 2.05 0.54 1.96 0.04 4.14 0.74 1.94 0.03
5N 3.40 0.37 2.04 0.07 2.07 0.59 1.91 0.01 2.90 0.48 1.94 0.01

HIPAcc N 17.57 1.28 3.11 0.02 12.52 2.37 2.85 0.02 16.08 0.97 2.25 0.04
2N 16.16 1.03 3.46 0.02 12.94 1.23 3.49 0.03 15.70 0.98 3.49 0.06
3N 15.73 0.74 3.93 0.03 11.63 1.29 4.07 0.19 14.89 0.82 3.67 0.02
4N 14.83 0.67 4.45 0.03 12.18 0.85 4.32 0.03 14.69 0.64 4.14 0.10
5N 13.97 0.48 4.98 0.03 11.72 0.70 4.79 0.03 13.4 0.54 4.52 0.08

LLVM N 4.01 0.82 0.31 0.01 1.81 0.76 0.29 0.01 4.97 0.71 0.22 0.01
2N 3.85 0.50 0.60 0.01 2.04 0.56 0.59 0.01 4.47 0.58 0.45 0.01
3N 3.47 0.38 0.88 0.00 2.36 0.58 0.86 0.01 3.19 0.37 0.65 0.01
4N 3.16 0.37 1.2 0.01 1.74 0.28 1.09 0.01 2.80 0.26 0.93 0.03
5N 2.66 0.35 1.43 0.01 1.53 0.23 1.36 0.01 2.48 0.24 1.12 0.02

lrzip N 53.46 17.27 0.68 0.01 9.65 6.42 0.66 0.03 48.83 10.78 0.46 0.01
2N 34.46 5.73 1.36 0.01 12.81 3.82 1.36 0.03 42.72 10.39 0.89 0.01
3N 32.63 4.11 1.93 0.03 12.23 3.36 1.90 0.02 31.21 4.68 1.36 0.01
4N 22.39 3.09 1.97 0.01 11.57 3.07 1.99 0.03 21.12 3.24 1.86 0.02
5N 16.86 2.16 2.11 0.03 6.67 1.61 1.95 0.01 14.56 2.62 1.89 0.03

SQLite N 4.43 0.32 1.18 0.01 4.57 0.72 1.09 0.01 4.52 0.33 0.84 0.01
2N 4.58 0.24 1.57 0.01 4.50 0.41 1.60 0.01 4.61 0.21 1.63 0.01
3N 4.77 0.16 1.60 0.01 4.71 0.33 1.62 0.01 4.41 0.18 1.63 0.01
4N 4.58 0.16 1.63 0.01 4.53 0.30 1.65 0.01 4.49 0.15 1.63 0.01
5N 4.54 0.13 1.70 0.04 4.28 0.21 1.67 0.01 4.54 0.13 1.7 0.03

x264 N 23.17 6.11 0.51 0.01 4.27 2.54 0.45 0.00 16.69 6.63 0.34 0.01
2N 4.97 1.57 1.13 0.03 2.00 1.06 0.94 0.02 4.53 3.15 0.67 0.01
3N 2.88 0.88 1.68 0.04 0.68 0.39 1.39 0.02 1.96 0.47 1.02 0.01
4N 1.35 0.34 1.75 0.04 0.72 0.35 1.72 0.04 1.13 0.30 1.36 0.01
5N 1.21 0.28 1.85 0.03 0.92 0.40 1.75 0.03 0.90 0.19 1.64 0.01

Moreover, grid search takes only seconds to finish the search for the optimal
parameter values.

5.5 Comparison to Plain CART

We adopted 10-fold cross-validation and grid search for DECART and further
compared DECART to our previous approach based on plain CART. Table 5
provides only the subset of results for five sample sizes from N to 5N . For com-
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Table 4 Experimental results of comparing three parameter-tuning techniques in terms of
the validation error EV (%) and the running time (seconds); numbers in bold indicate the
lowest mean of validation error; Margin: margin of the 95% confidence interval; ‘–’ indicates
an unavailable case

System |S| Bayesian optimization Grid Search Random Search

EV (%) Time (s) EV (%) Time (s) EV (%) Time (s)

Mean ±Margin Mean ±Margin Mean ±Margin Mean ±Margin Mean ±Margin Mean ±Margin

AJstats N 2.23 0.57 6.01 0.15 0.60 0.22 0.63 0.02 5.06 1.81 0.07 0.02
2N 1.98 0.34 3.62 0.74 1.49 0.26 1.20 0.02 3.72 0.92 0.08 0.02
3N 2.23 0.27 2.87 0.52 1.35 0.14 1.79 0.03 3.96 0.62 0.07 0.02
4N 1.76 0.24 3.47 0.58 1.47 0.16 1.84 0.03 4.09 0.50 0.08 0.02
5N 1.64 0.16 3.89 0.62 1.49 0.15 1.88 0.03 3.67 0.49 0.08 0.02

Apache N – – – – – – – – – – – –
2N 9.43 3.44 6.1 0.49 5.80 2.30 0.42 0.01 29.62 4.94 0.02 0.00
3N 6.65 1.41 7.62 0.61 5.72 1.18 0.65 0.01 20.12 4.21 0.01 0.00
4N 7.67 0.97 2.80 0.48 6.40 1.59 0.85 0.01 29.48 2.85 0.01 0.00
5N 6.76 1.06 5.57 0.19 5.16 0.61 1.05 0.01 32.37 2.56 0.01 0.00

BDB-C N 34.05 10.17 7.09 0.21 17.67 7.84 0.60 0.02 483.09 210.08 0.02 0.00
2N 29.39 11.67 2.78 0.46 11.00 5.99 1.08 0.02 624.47 148.14 0.02 0.00
3N 28.82 5.23 4.92 0.94 6.53 2.59 1.65 0.03 35.37 7.75 0.02 0.00
4N 21.57 3.50 3.94 0.81 5.98 2.28 1.74 0.04 73.08 35.56 0.02 0.00
5N 20.30 2.57 4.56 0.80 2.89 0.92 1.83 0.04 35.81 3.12 0.02 0.00

BDB-J N 1.65 0.58 7.60 0.92 1.13 0.29 0.81 0.02 26.32 15.74 0.01 0.00
2N 2.40 0.36 2.76 1.04 1.26 0.24 1.67 0.03 41.06 14.02 0.02 0.00
3N 1.95 0.35 5.48 0.17 1.31 0.19 1.93 0.02 30.17 7.26 0.02 0.00
4N 2.01 0.26 5.24 2.23 1.36 0.22 1.93 0.02 11.97 8.51 0.02 0.00
5N 1.96 0.21 5.71 1.61 1.07 0.13 1.99 0.02 3.00 0.17 0.02 0.00

Clasp N 13.18 5.31 5.97 0.12 7.03 4.39 0.69 0.03 51.12 12.66 0.02 0.00
2N 8.13 1.92 4.48 0.67 5.31 2.13 1.20 0.01 56.60 8.48 0.02 0.00
3N 6.04 0.94 3.40 0.74 1.93 0.51 1.97 0.05 31.26 4.46 0.02 0.00
4N 4.58 0.69 3.38 0.42 2.05 0.54 1.96 0.04 35.86 5.5 0.02 0.00
5N 5.03 0.60 4.35 0.55 2.07 0.59 1.91 0.01 23.27 2.17 0.02 0.00

HIPAcc N 14.79 1.99 5.04 1.02 12.52 2.37 2.85 0.02 20.17 3.12 0.15 0.02
2N 15.51 1.24 6.81 0.88 12.94 1.23 3.49 0.03 20.81 1.8 0.14 0.02
3N 15.15 1.42 6.54 0.81 11.63 1.29 4.07 0.19 19.5 1.19 0.15 0.02
4N 12.62 0.70 4.29 0.90 12.18 0.85 4.32 0.03 17.76 0.93 0.17 0.02
5N 12.95 1.00 6.20 0.95 11.72 0.70 4.79 0.03 19.06 1.07 0.12 0.02

LLVM N 1.94 0.78 5.47 0.95 1.81 0.76 0.29 0.01 6.23 1.75 0.01 0.00
2N 3.34 0.88 8.15 0.29 2.04 0.56 0.59 0.01 7.18 1.07 0.01 0.00
3N 2.86 0.36 5.41 0.96 2.36 0.58 0.86 0.01 4.53 0.65 0.01 0.00
4N 2.08 0.30 3.32 0.74 1.74 0.28 1.09 0.01 5.38 0.63 0.01 0.00
5N 2.18 0.35 3.83 0.69 1.53 0.23 1.36 0.01 2.61 0.39 0.01 0.00

lrzip N 47.69 24.32 5.31 0.12 9.65 6.42 0.66 0.03 584.29 175.91 0.01 0.00
2N 31.59 8.35 4.99 0.57 12.81 3.82 1.36 0.03 563.61 97.48 0.01 0.00
3N 24.18 4.85 2.82 0.58 12.23 3.36 1.90 0.02 154.03 53.97 0.01 0.00
4N 23.23 3.63 3.20 0.32 11.57 3.07 1.99 0.03 369.57 83.52 0.01 0.00
5N 26.30 2.50 2.45 0.42 6.67 1.61 1.95 0.01 113.9 40.00 0.01 0.00

SQLite N 4.14 0.98 0.47 0.00 4.57 0.72 1.09 0.01 5.36 1.02 0.02 0.00
2N 4.29 0.77 0.47 0.00 4.50 0.41 1.60 0.01 4.65 0.55 0.02 0.00
3N 4.43 0.40 0.47 0.00 4.71 0.33 1.62 0.01 3.73 0.34 0.02 0.00
4N 4.58 0.40 0.47 0.00 4.53 0.30 1.65 0.01 4.46 0.64 0.02 0.00
5N 4.51 0.24 0.47 0.01 4.28 0.21 1.67 0.01 4.33 0.47 0.02 0.00

x264 N 7.34 3.59 6.30 0.13 4.27 2.54 0.45 0.00 39.93 8.82 0.01 0.00
2N 4.38 1.57 3.80 0.64 2.00 1.06 0.94 0.02 26.33 6.36 0.01 0.00
3N 2.67 0.67 4.51 1.15 0.68 0.39 1.39 0.02 23.60 3.42 0.01 0.00
4N 2.35 0.60 7.85 0.40 0.72 0.35 1.72 0.04 12.33 1.71 0.02 0.00
5N 2.06 0.22 6.12 0.89 0.92 0.40 1.75 0.03 5.83 0.73 0.01 0.00

parison, column ECART lists the prediction error rate of the previous approach
using plain CART [15].

Trend. For each system, we observe that the validation error, the generaliza-
tion error, and the sample quality metric, together with their margins of 95%
confidence intervals, decrease progressively when the sample size increases,
while the time cost increases slightly and steadily.

Accuracy. When the size of the input sample is N , the validation error and
the generalization error, along with their 95% confidence intervals, are located
below 10% for 4 subject systems (AJstats, BDB-J, LLVM, and SQLite).
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Table 5 Overview of validation errors EV (%), generalization errors EG (%), time costs
(seconds) of model selection, and sample quality QS ; ECART (%) denotes the prediction
error of using the original CART approach; numbers in bold indicate a lower EG than
ECART ; |S|: sample size; Margin: margin of the 95% confidence interval; ‘–’ indicates an
unavailable case

System |S| EV (%) EG (%) ECART (%) Time (s) QS

Mean ±Margin Mean ±Margin Mean ±Margin Mean ±Margin Mean ±Margin

AJstats N 0.60 0.22 3.41 0.49 2.94 0.50 0.63 0.02 1901.12 0.45
2N 1.49 0.26 2.77 0.36 3.04 0.38 1.20 0.02 1892.72 0.45
3N 1.35 0.14 2.43 0.31 2.72 0.41 1.79 0.03 1886.25 0.65
4N 1.47 0.16 2.13 0.24 3.02 0.39 1.84 0.03 1877.07 0.67
5N 1.49 0.15 1.93 0.06 2.73 0.34 1.88 0.03 1870.22 0.69

Apache N – – – – – – – – – –
2N 5.80 2.30 14.68 2.32 11.32 1.25 0.42 0.01 20.66 0.38
3N 5.72 1.18 10.16 1.04 10.23 1.04 0.65 0.01 18.29 0.44
4N 6.40 1.59 9.19 1.06 9.51 0.97 0.85 0.01 16.13 0.43
5N 5.16 0.61 8.99 0.94 8.64 0.74 1.05 0.01 14.57 0.49

BDB-C N 17.67 7.84 147.65 56.25 123.13 37.55 0.60 0.02 1276.58 0.59
2N 11.00 5.99 56.84 30.89 96.89 26.18 1.08 0.02 1268.23 0.59
3N 6.53 2.59 15.11 3.54 77.31 19.12 1.65 0.03 1260.82 0.65
4N 5.98 2.28 8.06 1.38 74.42 20.35 1.74 0.04 1252.70 0.65
5N 2.89 0.92 5.24 0.91 59.92 12.40 1.83 0.04 1244.12 0.62

BDB-J N 1.13 0.29 3.22 0.86 8.82 3.61 0.81 0.02 77.04 0.55
2N 1.26 0.24 2.07 0.10 3.67 1.32 1.67 0.03 65.01 0.57
3N 1.31 0.19 1.85 0.07 2.95 0.05 1.93 0.02 53.19 0.38
4N 1.36 0.22 1.68 0.11 2.96 0.07 1.93 0.02 42.06 0.44
5N 1.07 0.13 1.67 0.11 2.86 0.07 1.99 0.02 30.51 0.32

Clasp N 7.03 4.39 15.33 6.91 22.82 2.36 0.69 0.03 279.00 0.80
2N 5.31 2.13 8.27 1.28 17.61 1.00 1.20 0.01 270.32 0.83
3N 1.93 0.51 4.77 0.89 18.62 1.17 1.97 0.05 261.11 0.58
4N 2.05 0.54 3.01 0.40 18.65 1.13 1.96 0.04 253.37 0.81
5N 2.07 0.59 2.64 0.29 17.53 0.93 1.91 0.01 245.34 0.69

HIPAcc N 12.52 2.37 20.05 0.70 21.39 0.72 2.85 0.02 361.50 1.85
2N 12.94 1.23 18.35 0.62 20.14 0.39 3.49 0.03 342.35 2.19
3N 11.63 1.29 16.35 0.58 19.94 0.38 4.07 0.19 327.14 2.00
4N 12.18 0.85 15.06 0.74 19.75 0.33 4.32 0.03 313.87 1.82
5N 11.72 0.70 14.04 0.63 19.88 0.25 4.79 0.03 303.98 1.61

LLVM N 1.81 0.76 5.97 0.24 5.93 0.35 0.29 0.01 497.45 0.52
2N 2.04 0.56 5.04 0.32 4.73 0.30 0.59 0.01 492.08 0.32
3N 2.36 0.58 3.95 0.41 3.63 0.18 0.86 0.01 486.99 0.36
4N 1.74 0.28 3.18 0.35 3.42 0.17 1.09 0.01 481.89 0.31
5N 1.53 0.23 2.59 0.23 3.74 0.14 1.36 0.01 476.62 0.28

lrzip N 9.65 6.42 107.71 40.82 105.16 12.64 0.66 0.03 209.92 0.99
2N 12.81 3.82 61.14 20.28 107.18 16.08 1.36 0.03 201.22 0.74
3N 12.23 3.36 51.83 27.75 94.48 7.20 1.90 0.02 192.80 0.72
4N 11.57 3.07 18.87 3.10 105.04 13.86 1.99 0.03 183.36 0.62
5N 6.67 1.61 11.72 2.05 94.16 6.59 1.95 0.01 175.29 0.56

SQLite N 4.57 0.72 4.51 0.04 4.51 0.03 1.09 0.01 35.31 18.71
2N 4.50 0.41 4.50 0.03 4.49 0.02 1.60 0.01 21.09 8.16
3N 4.71 0.33 4.52 0.03 4.52 0.02 1.62 0.01 18.13 6.91
4N 4.53 0.30 4.51 0.02 4.51 0.02 1.65 0.01 15.47 3.05
5N 4.28 0.21 4.51 0.02 4.51 0.01 1.67 0.01 17.93 4.34

x264 N 4.27 2.54 10.28 2.95 12.30 3.20 0.45 0.00 58.87 0.60
2N 2.00 1.06 2.71 0.63 5.87 0.75 0.94 0.02 51.63 0.50
3N 0.68 0.39 1.73 0.57 8.26 3.27 1.39 0.02 44.58 0.42
4N 0.72 0.35 1.16 0.19 5.31 0.67 1.72 0.04 38.94 0.42
5N 0.92 0.40 1.11 0.24 4.31 0.32 1.75 0.03 33.20 0.49

When the sample size increases to 5N , 8 out of 10 subject systems (except
HIPAcc and lrzip) achieve around 10% or lower validation and generalization
errors at a confidence level of 95%.

Furthermore, since stakeholders care more about the prediction capability
for the configurations not measured before, we compare the generalization
error of DECART to the prediction error rate of using plain CART [15]. Shown
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in Table 5, we highlight the results of DECART in bold that are better than
the original CART approach. When the sample size reaches 5N , DECART
produces a lower error rate than CART for 8 out of 10 subject systems (except
Apache and SQLite, in which the results are very close).

Time Cost. For each subject system and each sample size, the time cost of
model selection measures the execution time of the entire process of training
and validating all candidate prediction models, each of which corresponds to
a particular combination of parameter values of the underlying CART. In our
implementation described in Section 4, at most 260 prediction models were
built and validated based on a given sample for each system. In the end,
the best prediction model with the lowest validation error was selected and
further used to calculate the generalization error. From Table 5, we observe
that the entire process of model selection took less than 5 seconds. In all
our experiments, the maximum time cost of model selection was required for
HIPAcc, when we increased the sample size to 10N , and it was only 7.60±0.12
seconds at a confidence level of 95%. Clearly, since DECART incorporates a
systematic processes of resampling and parameter tuning, it must be slower
than plain CART.

Sample Size. To evaluate the capability of DECART to learn from a small
sample, we define an explicit stopping condition for sampling as follows: Sampling
stops if the validation error reduces to 10% or below, at a confidence level of
95%. Table 6 lists the experimental results when the above stopping condition
was satisfied. We observe that the minimum sample size required for meeting
the stopping condition was 10N for HIPAcc, 5N for lrzip, and, at most, 3N
for all other 8 subject systems. Moreover, 6 out of all 10 systems require only
a small sample of size N .

To better understand the size of the input sample, we calculated the size
ratio |S||W | of the input sample compared to the whole population. In particular,
we consider the order of magnitude of the size ratio to make robust compar-
isons. For example, in the first row of Table 6, the size ratio of AJStats has
the order of magnitude 10−5, which indicates that the input sample is about
105 times smaller in size than the whole population. From Table 6, we can see
that the order of magnitude of the size ratio is 10−5 for two systems, 10−2 for
six systems, and 10−1 for two systems. We did not observe a direct correlation
between the required sample size and the size ratio, though. For example, both
HIPAcc and LLVM have an order of magnitude of size ratio 10−2, but the
required sample sizes of them, 10N and N , are quite different.

Representativeness of Validation Error. From Table 6, we see that the general-
ization error is slightly higher than the validation error. Specifically, when the
validation error is less than 10%, the generalization error also approximates
to 10%. All the observed generalization errors are below 16%, and 6 out of all
10 systems achieve a generalization error around 10% or below.

To disclose the correlation between the validation error and the general-
ization error, we collected all our experimental results where the sample size
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Table 6 Overview of the required sample size, size ratio, validation error EV (%), and
generalization error EG (%), to achieve a validation error of less than 10%, at a confidence
level of 95%

System |S| |S|
|W | EV (%) EG (%)

Mean ±Margin Mean ±Margin

AJstats N 2× 10−5 0.60 0.22 3.41 0.49
Apache 2N 9× 10−2 5.80 2.30 14.68 2.32
BDB-C 3N 2× 10−2 6.53 2.59 15.11 3.54
BDB-J N 2× 10−1 1.13 0.29 3.22 0.86
Clasp N 3× 10−2 7.03 4.39 15.33 6.91
HIPAcc 10N 4× 10−2 9.46 0.55 10.32 0.42
LLVM N 1× 10−2 1.81 0.76 5.97 0.24
lrzip 5N 2× 10−1 6.67 1.61 11.72 2.05
SQLite N 1× 10−5 4.57 0.72 4.51 0.04
x264 N 1× 10−2 4.27 2.54 10.28 2.95

ranges from N to, at most, 20N and performed a correlation analysis for each
system. The correlation is calculated in terms of two classic correlation coef-
ficients: Pearson’s r and Spearman’s rho [16]. Pearson’s r is computed on
the true values for each variable and evaluates the linear relationship between
two variables, while Spearman’s rho is computed on the ranked values for
each variable and evaluates the monotonic relationship between two variables.
Table 7 lists the correlation coefficients calculated for each system. According
to Salkind’s correlation scales [32], we observe that the correlations between
the validation error and the generalization error for 7 out of 10 subject systems
are strong (coefficients located between 0.6 and 0.8) or very strong (coefficients
located between 0.8 and 1.0) in terms of both Pearson’s r and Spearman’s rho.
The exceptions include three systems: AJstats, BDB-J and SQLite. These
systems tend to produce a very low validation error even using a very small
sample of size N , and all the validation errors and generalization errors are
very close, which produces significant noise data for correlation analysis.

Sample Quality. From Table 5, we can see that the sample quality metric has
the same decreasing trend as the validation and generalization error, when the
sample size increases. The sample quality metric measures a sample’s distance
or goodness of fit to the whole population. Generally, a larger sample implies
a better fitness to the whole population. Also, a smaller sample quality metric
indicates a better sample that probably produces a higher prediction accuracy.
Thus, the sample quality metric decreases when the sample size increases.
Moreover, the margin indicates the fluctuation of sample quality metric in 30
independent experiments. A higher margin (e.g., in SQLite) indicates that the
sample is yet insufficient to fit the whole population and the sample quality
metric fluctuates with small changes in feature selections and performance
values. With the increase of sample size, the sample quality metric decreases
and converges to a relatively stable value, and thus the margin decreases as
well.
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Table 7 Overview of Pearson’s r and Spearman’s rho of the correlations Cor(EV , EG)
between validation and generalization errors as well of the correlations Cor(QS , EG) between
sample quality and generalization error

System Cor(EV , EG) Cor(QS , EG)

r rho r rho

AJstats -0.81 -0.47 0.91 1.00
Apache 0.96 0.90 0.86 1.00
BDB-C 0.96 0.98 0.73 1.00
BDB-J -0.42 -0.43 0.82 0.94
Clasp 0.92 0.93 0.74 0.98
HIPAcc 0.96 0.98 1.00 1.00
LLVM 0.65 0.87 0.94 1.00
lrzip 0.61 0.87 0.87 0.98
SQLite 0.41 0.40 0.34 0.70
x264 0.97 0.85 0.71 0.90

To better understand whether our proposed metric quantifies the quality
of the input sample, we analyzed the correlation between the sample quality
metric and the generalization error, since the generalization error is the key
to the evaluation of sample quality and prediction effects. As presented in
Table 7, in terms of Pearson’s r, we observed 9 strong or very strong correla-
tions between the sample quality metric and the generalization error. In terms
of Spearman’s rho, the correlation between the sample quality metric and the
generalization error is strong or very strong for all 10 subject systems.

5.6 Discussion

Next, we discuss our experimental results and answer the research questions,
followed by a discussion of threats to validity and perspectives on our approach.

5.6.1 Research Questions

Regarding RQ1 (resampling), as shown in Table 3, even though 10-fold cross-
validation does not work for a very small sample (e.g., the Apache sample of
size N), it outperforms hold-out and bootstrapping for 8 out of 10 systems in
terms of the validation error. In terms of the running time, cross-validation
is faster than bootstrapping but a little slower than hold-out. Usually, cross-
validation takes only seconds for our subject systems. Therefore, according
to our experimental results, we recommend 10-fold cross-validation for the
resampling of DECART.

Regarding RQ2 (parameter tuning), theoretically, grid search is an exhaust-
ive search that tests all possible combinations of parameter values. In general,
grid search is able to find the optimal parameter values if the running time
is acceptable. Since our learning method works on a small sample and the
parameter space is not very large, grid search is supposed to be feasible and
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efficient. Our experimental results demonstrated that grid search outperforms
random search and Bayesian optimization for 9 out of 10 subject systems on
the validation error. Even though grid search is slower than random search,
it usually takes only seconds to complete the search. Therefore, from both
theoretical and empirical points of view, we recommend grid search for the
parameter tuning of DECART.

Regarding RQ3 (prediction accuracy and speed), for all ten subject sys-
tems, DECART achieves a prediction accuracy of 90% or higher based on a
small sample whose size is linear in the number of features, from N to, at
most, 10N , as shown in Table 6. For 8 out of 10 subject systems, the size of
the sample is smaller than 3N . In particular, for 6 subject systems, even a
very small sample of size N is sufficient. Note that the order of magnitude
of the size ratio of the sample compared to the whole population is 10−5 for
2 systems, 10−2 for 6 systems, and 10−1 for 2 systems. In a word, DECART
reaches a sweet-spot between measurement effort and prediction accuracy.

Compared to our previous approach of using plain CART with empirically-
determined parameter settings [15], DECART produces a higher prediction
accuracy for 8 out of 10 subject systems and a comparable accuracy for the
other two systems, as shown in Table 5.

Clearly, DECART must be slower than plain CART, since it incorporates
systematic processes of resampling and parameter tuning. However, DECART
still works very fast, and the entire process of model selection takes less than 8
seconds for all subject systems and for the sample size of, at most, 10N . An im-
portant reason for this efficiency is that the input sample is small and thus the
domains of some parameters (e.g., minsplit and minbucket) are significantly
limited, which makes the parameter space not very large.

Regarding RQ4 (representativeness of validation error), first, as listed in
Table 7, the correlation between the validation error and the generalization
error is strong or very strong for 7 out of 10 subject systems. Second, as
shown in Table 5, the generalization error is usually higher than the validation
error, for each subject system and for each sample size, and their difference
steadily reduces when the sample size increases. Third, as shown in Table 6,
the validation error approximates to the generalization error, when it reduces
to 10% or below. Therefore, we conclude that the validation error calculated
on the input sample can represent the generalization error estimated on the
whole population very well, especially when the validation error is relatively
small (e.g., below 10%).

Regarding RQ5 (sample quality metric), our proposed metric provides an
appropriate way to quantify the quality of a sample. First, the metric com-
bines feature selections and performance values properly and mitigates the
unbalanced dominance issue caused by the heterogeneous variables with dif-
ferent scales. Second, as shown in Table 7, the metric exhibits a strong or very
strong correlation with the generalization error. Since the generalization error
is key to evaluate the quality of a sample, we conclude that the metric is able
to properly measure sample quality. Furthermore, our sample quality metric
provides a quantitative way to compare two samples in terms of their quality
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or goodness of fit to the whole population. However, a limitation of our sample
quality metric is that the whole population has to be acquired as a baseline for
the calculation, which is usually infeasible in practice. Hence, currently, our
sample quality metric can only be used in empirical studies to help explore
why a learning approach works with small random samples.

5.6.2 Multiple Performance Metrics

As described in Section 5.1, each subject system is practically relevant (e.g.,
Berkeley DB, SQLite, Apache Web server) and has a distinct performance
characteristic (e.g., response time or compilation time). In our experimental
setting, so far we did not collect multiple performance indicators for each
system. Rather, we consider only one performance metric at a time and, thus,
build a prediction model for this metric only. When multiple metrics need to
be considered, we run DECART multiple times.

Our approach is agnostic to an individual performance metric, because
we learn on the pure interval or ratio scaled performance values and do not
interpret them. Nevertheless, to demonstrate this ability, we use the recently-
proposed tool, Thor, to generate a realistic performance model for a given
variability model [38]. The key features of Thor are that (a) variability mod-
els are enriched by interactions among features, such that a non-linear and
complex performance behavior can be simulated and (b) performance values
are generated for features and interactions such that their concrete values
are drawn from a value distribution that has been obtained from a real-world
software system. This way, Thor generates a ground-truth performance model
that can be used for testing.

In this additional experiment, we used Thor to generate for all of our sub-
ject systems two performance models for two different metrics: main memory
(Metric_1 ) and response time / throughput (Metric_2 ). We also generate in-
teractions based on the number and degree (pair-wise, three-wise, four-wise)
of interactions that we found for the corresponding system using an alternat-
ive approach based on performance-influence models [35]. Note that, for each
subject system, we generated the values of a certain metric using the value dis-
tribution of the same metric that has been obtained from a different system.
So, the performance values generated here are different from those actually
measured for each subject and used in our previous experiments in Section 5.
The number and degree of interactions involved for each subject system are
listed in Table 8.

In total, we generated 20 ground-truth performance models from which we
sample configurations and predict the performance of the remaining configur-
ations based on our approach. We adopted 10-fold cross-validation and grid
search for DECART. Moreover, we used exactly the same configurations for
sampling when handling each performance metric, so that we can account for
the coupling effects among the two different metrics.

As described in Section 5.2, we performed experiments using nine different
sample sizes from N to 9N , by an increment of N for each subject system.
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Table 8 The number and degree of interactions involved when generating two different
performance metrics for each subject; p: pair-wise, t: three-wise, f : four-wise

System Interactions System Interactions

AJstats 0 Apache 15 (15p)
BDB-C 25 (3p,6t,16f) BDB-J 2 (2p)
Clasp 9 (9p) HIPAcc 8 (4p, 4t)
LLVM 5 (5p) lrzip 18 (18p)
SQLite 20 (10p, 10t) x264 6 (6p)

If a sample of 9N is still insufficient to achieve a validation error lower than
10%, we increased the upper bound of the sample size to 20N . We made the
performance models generated by Thor and the results of this experiment
publicly available at our project website.5 Table 9 shows the subset of our
experimental results for five sample sizes from N to 5N .

As shown in Table 9, we observed some fluctuations in the validation errors
(e.g., for the Metric_1 of HIPAcc from N to 2N), which is normal due to the
overtraining on the small validation set. In contrast, for each subject system
and each metric, the generalization error decreases progressively when the
sample size increases.

Our approach learns a particular performance model for each performance
metric. For the two performance models generated by Thor, the first model of
Metric_1 tends to be easier to be learned than that of Metric_2 . By using a
sample of size from N to 5N , the number of subjects that obtain all validation
errors higher than 10% is only three for Metric_1 , but six for Metric_2 .

We learned the prediction models for different performance metrics based
on the same sample. Our experimental results demonstrate that these models
may have different prediction capabilities, perhaps due to the potential inter-
dependencies between different performance metrics. Only for three subjects
(BDB-J, Clasp, and SQLite), both the validation errors and the generaliz-
ation errors of two performance metrics are around 10% or lower. In contrast,
for the remaining subjects, the prediction models for the two performance
metrics behave quite differently. Take subject AJstats for example, by using
exactly the same sample of size N , it achieves a validation error of 1.62 and a
generalization error of 4.94 for Metric_1 , but a validation error of 13.52 and
a generalization error of 34.83 for Metric_2 .

5.6.3 Threats to Validity

To increase internal validity, we implemented our approach to be fully auto-
matic using well-established techniques, including progressive sample gener-
ation, resampling, model training, parameter tuning, and model validation.
Resampling adopts three well-established techniques, hold-out, 10-fold cross-
validation and bootstrapping. By using three well-established methods, includ-

5 http://github.com/jmguo/DECART/
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Table 9 Experimental results of validation error EV (%) and generalization error EG (%)
when predicting two different performance metrics

System |S| Metric_1 Metric_2

EV (%) EG (%) EV (%) EG (%)

Mean ±Margin Mean ±Margin Mean ±Margin Mean ±Margin

AJstats N 1.62 0.58 4.94 0.34 13.52 6.21 34.83 1.45
2N 2.66 0.40 4.41 0.29 15.37 3.81 30.68 1.58
3N 2.89 0.30 4.02 0.05 13.51 1.45 27.78 1.91
4N 2.76 0.20 3.97 0.06 16.81 2.67 22.88 1.29
5N 2.76 0.22 3.82 0.07 13.78 1.46 21.51 1.36

Apache N 53.55 15.68 60.90 3.77 66.66 23.82 76.40 5.05
2N 6.77 1.95 37.92 6.10 28.75 16.36 58.77 6.34
3N 10.51 4.44 25.40 5.43 29.05 7.72 51.58 5.30
4N 8.11 1.68 14.89 3.62 21.12 4.44 48.35 6.19
5N 8.44 1.92 10.91 1.12 19.86 2.56 37.04 3.83

BDB-C N 153.18 120.38 107.34 19.07 14.69 4.90 62.13 3.09
2N 20.38 11.26 57.17 17.04 31.06 7.24 54.66 2.91
3N 13.72 4.63 24.27 8.92 32.84 6.81 51.86 3.77
4N 6.46 1.33 12.17 1.67 27.64 3.37 45.34 2.64
5N 6.39 1.22 7.85 0.98 27.39 3.59 43.20 1.69

BDB-J N 2.04 0.46 3.81 0.75 8.44 2.11 22.62 5.23
2N 1.44 0.16 2.07 0.14 9.20 1.97 16.17 1.10
3N 1.12 0.18 1.90 0.47 7.78 1.05 12.75 0.79
4N 1.20 0.08 1.40 0.06 7.63 1.17 10.42 0.84
5N 1.06 0.07 1.38 0.09 6.47 0.72 7.91 0.77

Clasp N 18.16 7.80 41.67 4.03 5.67 2.15 19.65 1.22
2N 11.28 2.75 27.29 4.00 8.44 1.52 16.26 0.54
3N 9.86 2.28 18.77 2.84 9.86 1.30 14.84 0.71
4N 9.73 3.24 14.31 1.31 9.29 1.06 12.61 0.59
5N 8.42 0.87 11.09 0.64 8.35 1.06 12.42 0.59

HIPAcc N 18.50 2.99 34.98 1.08 14.87 1.61 25.93 1.18
2N 21.97 3.19 30.84 1.21 15.53 1.75 22.92 0.39
3N 20.45 1.93 27.40 1.08 17.92 1.76 21.27 0.43
4N 21.77 1.22 24.59 1.08 15.91 0.94 20.43 0.42
5N 18.98 1.52 22.09 0.95 16.60 1.15 19.70 0.39

LLVM N 16.66 10.04 47.75 3.37 16.99 7.13 31.84 2.92
2N 13.23 3.51 36.21 2.89 8.19 2.96 21.63 2.57
3N 12.70 2.79 32.39 3.02 9.25 1.54 19.72 1.46
4N 11.59 2.34 20.80 1.62 11.74 2.21 17.96 1.86
5N 12.20 2.70 20.34 2.28 9.46 0.94 14.79 0.51

lrzip N 14.18 6.88 53.44 15.09 9.56 4.89 28.72 2.18
2N 11.11 3.17 21.25 1.47 12.34 2.09 22.76 1.55
3N 10.75 2.82 19.00 1.71 12.24 1.88 19.08 0.85
4N 9.95 1.68 16.31 0.95 12.05 1.88 18.67 0.95
5N 8.73 1.21 14.11 0.77 11.26 1.92 17.50 0.80

SQLite N 15.73 3.53 23.13 1.92 11.47 3.14 43.50 4.87
2N 11.32 1.33 17.73 0.94 12.44 2.42 24.25 3.55
3N 11.52 1.21 15.70 0.56 13.74 3.56 19.90 1.66
4N 10.74 0.98 12.96 0.60 10.83 3.09 16.46 1.51
5N 9.37 0.57 11.80 0.40 9.87 1.93 16.28 1.49

x264 N 17.01 10.79 60.68 6.06 14.36 7.44 68.30 9.90
2N 17.60 6.18 46.50 3.51 20.87 11.35 59.65 11.73
3N 18.01 7.09 39.44 3.69 21.87 11.23 36.52 4.74
4N 17.75 6.25 36.55 2.43 13.11 3.30 26.77 3.80
5N 14.31 2.22 30.33 2.90 10.62 2.60 21.33 2.95

ing random search, grid search and Bayesian optimization, parameter tuning
incorporates an automated exploration of the parameter space of the learning
method. That is, all candidate prediction models, each of which corresponds
to a combination of parameter values, have been trained and validated to se-
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lect the best model. We published the source code of our implementation of
DECART for replication.

To avoid misleading effects caused by random fluctuation in measurements,
we randomly selected samples of different sizes (N to 20N) respectively from
the whole population of each subject system, and we repeated each random
sampling 30 times, with freshly generated samples of the same size as the
input of our experiments. By such a large number of iterations of independent
experiments, we reported the means and the 95% confidence intervals of all
measured dependent variables (validation error, generalization error, time cost,
and sample quality) for analysis; thus, we are confident that we controlled the
measurement bias sufficiently.

To increase external validity, we evaluated 10 systems spanning different
domains, with different sizes, different configuration mechanisms, and different
implementation languages. All systems have been deployed and used in real-
world scenarios. We measured their performance using standard benchmarks
from the respective application domain. However, we are aware that the results
of our experiments are not automatically transferable to all other configurable
systems, but we are confident that we controlled this threat sufficiently.

5.6.4 Perspectives

Data-efficient learning is gaining momentum in academia and industry, since
collecting sufficient and meaningful data is non-trivial in many domains, such
as personalized healthcare, robot reinforcement learning, sentiment analysis,
and community detection [11]. For configurable systems, the major challenge
arises from the huge configuration space and the possibly high cost of per-
formance measurement. DECART provides a data-efficient approach to learn
performance from a small sample of measured configurations, which is very
useful for performance prediction of configurable systems when the available
data are limited.

A distinguished advantage of DECART is that it calculates the validation
error based only on a small sample, and the validation error can represent the
generalization error calculated on the whole population very well, especially
when the validation error is relatively small (e.g., below 10%). This is very
important and useful to smartly avoid additional sampling and to determine
an accurate prediction model. For example, for many configurable systems
(e.g., AJstats and BDB-J in Table 5), if we collected a small sample of
N measured configurations and already learned a prediction model with a
validation error below 10%, then we could infer that the generalization error
of the learned model is around 10%; unless we demand a higher accuracy, we
could stop additional sampling and determine the prediction model.

DECART still keeps the problem formalization of our previous conference
paper [15] that considers only binary features. But we are aware that many
practical scenarios contain numeric features [35]. Discretizing numeric features
to binary ones is a feasible way, but it might not always be good (e.g., it may
introduce more features and make prediction harder). In fact, the underlying
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learning method CART supports not only binary but also numeric variables.
In future, we plan to extend our approach to support numeric features.

DECART considers for each configuration a single value for a single per-
formance measure, which may be execution time, throughput, workload, and
response time. However, such a setting might not be enough to conduct a
complete performance analysis. Usually, performance analysis should take into
account that measures such as response times are non-linear functions of the
workload intensity (represented by the arrival rate of requests to the system
or the number of simultaneous users served by the system). However, work-
loads typically get harder on a continuous scale, and it is not clear that a
binarization or quantization of workloads into a few levels or categories would
allow the detailed enough modeling of performance to be practically useful. In
this paper, we keep the workload fixed and learn a non-linear model over the
features of the configurable system. To incorporate also the workload variation
into the predictions, one could treat this as an orthogonal problem, learning
multiple models for different workloads.

6 Related Work

6.1 Model-Based Prediction

Model-based approaches are common for performance prediction [3,1]. For
example, linear and multiple regression explore relationships between input
parameters and measurements. Furthermore, machine-learning approaches can
be used to find the correlation between a configuration and a measurement.
CART and its variants, such as Random Forests and Boosting, have been
widely used in statistics and data mining, because CART’s algorithm is fast
and reliable, and its tree structure can provide insights into the relevant input
variables for prediction [5,18].

Courtois andWoodside [9] proposed an approach based on regression splines
for software performance analysis. Lee et al. [27] compared piecewise polyno-
mial regression and artifical neural networks for the performance modeling
of parallel applications. Bu et al. [7] proposed a reinforcement learning ap-
proach to the auto-configuration of online Web systems. Thereska et al. [42]
proposed a practical performance model based on CART for interactive client
applications, such as Microsoft Office and Mozilla. They focused on a range of
deployment parameters from the users’ application environment, such as CPU
speed and memory size; instead, we consider the configuration options of a soft-
ware system. Moreover, our approach targets all kinds of configurable software
systems, as long as the valid configurations can be derived. Westermann et al.
[45] presented an approach for the automated improvement of performance-
prediction functions by three measurement-point-selection strategies based on
the prediction accuracy. They constructed the prediction functions by statist-
ical inference techniques, including CART. Their approach, however, assumes
that all input variables of the prediction function are already relevant to per-
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formance, while our approach does not have such a restriction, but considers
all features of a software system.

In prior work, we reduced the performance-prediction problem to a non-
linear regression problem and used CART to address the problem [15,43,
33]. Moreover, we extended our previous method for transfer learning of soft-
ware performance across different hardware platforms [44]. Unfortunately, this
method suffers from several limitations. First, the prediction model is build on
a given sample and then its accuracy is validated using an additional sample.
This increases measurement effort and possibly requires more measurements
than necessary, since the original sample may already be sufficient to build
an accurate prediction model. Second, CART and other related learning ap-
proaches heavily depend on their own tuning parameters. Previously, we used a
set of empirically-determined rules, which may not work when further subject
systems are considered. Third, the question of why CART works with small
random samples has been addressed only by a comparative analysis of per-
formance distributions, which is empirical and subjective. DECART aims at
improving our previous work based on plain CART [15] and overcoming its lim-
itations regarding additional measurement effort, systematic parameter tun-
ing, and quantitative analysis of the sample quality. To make DECART easy
to use and easy to understand, we combined CART with only well-established
techniques, such as bootstrapping, grid search, and progressive sampling.

Zhang et al. [48,49] proposed a novel performance-prediction approach
based on Fourier learning. Their method is the first able to provide theoret-
ical guarantees of accuracy and confidence level for performance prediction of
configurable systems. However, it works efficiently only when the performance
function of the system is Fourier sparse, which is usually non-trivial to test in
practice. In contrast, DECART aims at an easy-to-use performance-prediction
approach based on a given sample, without additional effort to understand any
particular properties of the system.

Happe et al. [17] proposed a compositional reasoning approach based on
component specifications with resource demands and predicted execution time.
Their approach is restricted to component-based systems, whereas our ap-
proach is applicable to all configurable systems, once their configurable options
are exposed as features. Tawhid and Petriu [41] presented a model-driven
approach to deriving a performance model from an extended feature model
with performance-analysis information. The approach requires detailed up-
front knowledge from a domain-specific performance analysis, which makes
tuning prediction for accuracy difficult. Our approach avoids these problems
by directly working with performance measurements. Ramirez and Cheng [31]
presented an approach that leverages goal-based models to facilitate the auto-
matic derivation of utility functions at the requirements level; our approach
works at the level of actual system variants.

In addition, there are a number of approaches that use profiling data to
create performance models [26]. For example, Jovic et al. analyzed samplings
of call stacks of deployed versions of a program to find performance bugs
[24]. Grechanik et al. proposed to learn rules for the generation of workloads
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that reveal program paths with suboptimal performance [14]. However, these
approaches concentrate on workload variability rather than software-system
configurability. Huang et al. [20] proposed a new lightweight and white-box
approach, performance risk analysis (PRA), to improve performance regres-
sion testing efficiency via testing target prioritization, while we focus on a
prediction method in a black-box fashion.

6.2 Parameter Tuning

Parameter tuning is important for a learning approach to achieve the optimal
performance. Experimental designs have been successfully used to tune input
parameters in many domains [47,29,22,23]. These approaches, such as SMAC
[21], often target a high-dimensional (e.g., hundreds or thousands of para-
meters) hyperparameter space and use different techniques, such as Bayesian
optimization [40], deep neural networks [12], and random search [4], to find
the best parameter settings efficiently. DECART targets a small input sample
and the number of features is, at most, 52 for our subject systems, so the
domains of key parameters (such as minsplit and minbucket) are relatively
small and the parameter space is significantly delimited. In such a case, us-
ing grid search to carry out an exhaustive search is acceptable for DECART,
to achieve reasonable efficiency. Still, modern techniques of hyperparameter
optimization and experimental designs are important to explore a parameter
space efficiently, and they can be combined with DECART when the target
parameter space is considerably huge.

6.3 Measurement-Based Predication

Siegmund et al. [36,37,35] proposed a performance-prediction approach by
detecting performance-relevant feature interactions. Following certain feature-
coverage criteria, Siegmund’s approach selects a specific sample of configura-
tions and then measures their performance, which is then the input for predict-
ing the performance of other configurations. Two fundamental feature-coverage
criteria are feature-wise and pair-wise. The feature-wise criterion quantifies an
individual feature’s performance influence by calculating the performance delta
of two minimal configurations, one with and one without the feature in ques-
tion. The pair-wise criterion selects and measures additionally a specific set
of configurations to detect all pair-wise feature interactions. Also, additional
heuristics are provided for detecting higher-order feature interactions [36].

A distinguished advantage of feature-interaction detection is the ability
to represent the performance influence of features and feature interactions
explicitly, which facilitates program comprehension. Its limitation is the re-
quirement of specific samples of measured configurations, meeting pre-defined
coverage criteria, possibly more than needed for plain learning approaches [15].
In practice, the configurations that we can measure, or that we already have
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measured, are often limited and arbitrarily selected; they may not meet any
feature-coverage criterion. Moreover, checking the feature-coverage criteria can
be time-consuming due to the constraints predefined among features [28,34].

Chen et al. [8] combined benchmarking and profiling to predict the per-
formance of component-based applications. In contrast, our approach correl-
ates performance measurements with configurations and can work with any
set of configurations measured by simulation or by monitoring in the field.
Sincero et al. [39] used existing configurations and measurements to predict a
configuration’s non-functional properties. They designed the approach called
Feedback to find the correlation between feature selections and measurements
and to provide qualitative information about how a feature influences a non-
functional property during the configuration process. In contrast to our ap-
proach, their approach does not actually predict a performance value quant-
itatively.

7 Conclusion

In this article, we propose a data-efficient performance learning approach,
called DECART, that combines CART with systematic resampling and para-
meter tuning. DECART automatically builds, validates, and determines a
prediction model based only on a given small sample of measured configura-
tions, without additional effort to measure more configurations for validation.
Moreover, DECART employs systematic resampling and parameter tuning to
ensure that the resulting prediction model holds optimal parameter settings
based on the currently available sample.

We conducted experiments on 10 real-world configurable systems, span-
ning different domains, with different sizes, different configuration mechan-
isms, and different implementation languages. We empirically compared three
well-established resampling techniques (hold-out, cross-validation and boot-
strapping) and three parameter-tuning techniques (random search, grid search
and Bayesian optimization). Our empirical results demonstrate the effective-
ness and practicality of DECART. Specifically, DECART achieves a prediction
accuracy of 90% or higher based on a small sample whose size is linear in the
number of features, from N to, at most, 10N . For 8 out of 10 subject systems,
the size of the input sample is smaller than 3N . In particular, for 6 subject
systems, even a very small sample of size N is sufficient. In addition, DECART
is very fast and its entire process of model selection takes seconds, even though
a systematic parameter tuning is performed.

DECART avoids additional sampling when the validation error calculated
on the input sample is acceptable. Our experiments demonstrate that the
validation error represents the generalization error calculated on the whole
population very well, especially when it is relatively small (e.g., below 10%).
This makes DECART effectively learn an accurate prediction model with as
little measurement effort as possible for a given system, such that a sweet spot
between measurement effort and prediction accuracy is reached.
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Finally, we propose a sample quality metric to measure a sample’s good-
ness of fit to the whole population and introduce a quantitative analysis of
the quality of a sample for performance prediction. This complements our
previous comparison of performance distributions [15] for understanding why
the learning approach works with small random samples. We confirm that the
prediction model built on top of a sample makes accurate predictions if the
sample fits the whole population well.

In the future, we expect that a combination of DECART and other related
techniques, such as feature-interaction detection [36,35] and experimental design
[21,23], is beneficial to further increase prediction accuracy and reduce predic-
tion effort in wider application domains (e.g., by combining various feature-
coverage heuristics to identify suitable samples for learning and by combining
various experimental design techniques to quickly find an optimal model when
encountering a huge parameter space). Moreover, we plan to extend our ap-
proach to support numeric features and multiple performance indicators.
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