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Abstract—Preprocessor directives (#ifdefs) are often used to
implement compile-time variability, despite the critique that they
increase complexity, hamper maintainability, and impair code
comprehensibility. Previous studies have shown that the time of
bug finding increases linearly with variability. However, little
is known about the cognitive process of debugging programs
with variability. We carry out an experiment to understand how
developers debug programs with variability. We ask developers
to debug programs with and without variability, while recording
their eye movements using an eye tracker.

The results indicate that debugging time increases for code
fragments containing variability. Interestingly, debugging time
also seems to increase for code fragments without variability
in the proximity of fragments that do contain variability. The
presence of variability correlates with increase in the number
of gaze transitions between definitions and usages for fields and
methods. Variability also appears to prolong the “initial scan” of
the entire program that most developers initiate debugging with.

Keywords-Variability, Preprocessors, Debugging, Eye Tracking,
Highly-Configurable Systems

I. INTRODUCTION

Many modern software systems are highly configurable. They
embrace variability to increase adaptability, to extend porta-
bility across different hardware, and to lower cost. Highly-
configurable systems include both large industrial product
lines [1], [2], [3] and open-source systems. In some cases,
such as the LINUX kernel, thousands of configuration options
(features) controling the compilation process are used [4].

Although bringing important benefits, variability also comes
at a cost. It makes reasoning about programs more difficult [5].
As a consequence configuration-dependent (variability) bugs
appear [6], [7]. Previous studies [5], [8] have shown that
debugging is hard and time consuming in the presence of
variability. Specifically, our prior study [5] revealed that the
time it takes developers to find a bug increases linearly with
the number of features, while the ability to actually find the
bug is relatively independent of variability. Also, identifying
the exact set of configurations in which a bug manifests itself
appears to be difficult already for a low number of features.

These prior studies focus on quantitative questions only,
analyzing debugging time and correctness. There is little
evidence in the literature on how developers debug programs
with variability. In this paper, we describe an eye-tracking
experiment with follow-up interviews to study more precisely
how developers approach and debug programs with variability.
We use simplified versions of real buggy programs taken from

two highly-configurable systems: BUSYBOX and BESTLAP.
While the developers debug program versions with and without
variability, we record their eye movements using an eye-
tracking device.

Eye movement data constitute a continuous, non-interruptive
process measure that can proxy for ongoing mental processes
and human activities. Eye movements are intimately linked
to the allocation of attention and can be guided by low-
level and high-level factors (e.g., [9]). The most commonly
studied aspects of eye movement behavior are saccades and
fixations, but several additional specialized eye movements
that provide different information also exist. Which features
attract attention is subject to continued debate and research [9].
Eye tracking has a wide variety of applications outside code
comprehension studies. It has been used for medical diagnosis
(e.g., Alzheimer’s), communication tool for people with severe
disability and measures of workload, fatigue and stress levels
[10], [9].

Source code comprehension is a multi-level process that
involves visual processing, as well as mental encoding and
representing the program’s source code [11], [12], [13]. Pro-
gramming involves a series of tasks but with two processes
common to all: reading the code (chunking) and searching
through the code (tracing). In practice, programmers rarely
chunk every statement in a program but the programmer
searches for task specific relevant code [11], [13], [14], [15].
Analyzing what the programmer looks at while programming
can be monitored through an eye tracker. Eye tracking is used
to monitor the eye movements and estimate where the subject
is looking (e.g., on a screen) and is typically based on one or
more cameras observing the users’ eyes [10].

In our study we find that:
• Variability increases debugging time of code fragments

that contain variability.
• Debugging time also seems to increase for code fragments

without variability in the proximity of fragments that do
contain variability.

• Variability makes the number of gaze transitions (also
known as saccades) grow between definition-usages for
fields and call-returns for methods.

• Most developers initiate debugging with an “initial scan”
of the program from the first line down to the last, indepen-
dent of variability. However, variability seems to prolong
this “initial scan” of the program disproportionately.

• Developers appear to debug programs with variabil-
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(a) Without variability. (b) With variability.

Fig. 1: Program P without and with variability.

ity by considering either one configuration at a time
(consecutively) or all configurations at the same time
(simultaneously).

We hope that our findings will help designers of debugging and
developer support tools, and inspire more research to further
investigate the interplay between debugging and variability.

II. MOTIVATING EXAMPLE

Developers of highly-configurable systems often use the C
preprocessor (CPP) to implement compile-time variability using
conditional compilation directives (#ifdefs) [16], [17]. For this
reason, we examine the impact of variability on debugging in
the context of CPP.

Configurable software systems are challenging for developers
because code fragments may be conditionally included or
excluded depending on whether particular features are enabled
or disabled. This means that developers need to reason about
several different configurations (versions of the program), each
with different data- and control-flow in order to understand a
program with variability. This impacts debugging. In programs
with variability, some errors occur conditionally, only in certain
erroneous configurations (i.e., when certain combinations of
features are enabled/disabled).

Previous studies have demonstrated that debugging is overall
difficult and time consuming in the presence of variability [5],
[8]. In this paper, we use eye tracking to study more precisely
how developers debug programs with variability. We ran a
classic “find the bug” experiment using programs containing
exactly one error and then compare how the developers look

at a program with variability against a version of it without
variability (as a baseline).

Figure 1 presents a code scenario extracted from BUSYBOX
which is an open-source highly-configurable system with about
600 features that provides several essential Unix tools in a
single executable file. We have adapted the extracted example
from C to JAVA to widen the audience of potential participants
for our experiment.

Figure 1a shows the version of this program without vari-
ability derived from the original version with variability shown
in Fig. 1b. The program contains an error in line 18 where
evaluation of the expression subject.isEmpty() causes a
null-pointer exception because subject has the value null.
The entry point main calls handleIncoming in line 37 which,
in turn, calls sendHeaders in line 27. This method then
skips past the statements in lines 14–16 because the variable
LARGE FORMAT has the value false (line 8). Hence, when we
reach line 18, the variable subject has never been assigned a
proper value aside from its initialization to null in line 4.

Figure 1b depicts the original version of the program with
variability. Notice that the program now contains three so-
called features: LFS, AUTH, and CGI (names abbreviated). Each
of these three features can be designated as either enabled or
disabled. Features are used in conditional compilation directives
(#ifdefs), which control whether to include or exclude code
before compilation, depending on whether features are enabled
or disabled. For instance, the fragment in lines 14–16 (wrapped
in an #ifdef and #endif in lines 13 and 17) is to be included
in the code if LFS is enabled; and excluded if LFS is disabled.
Since n features yield 2n distinct configurations, our variability
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program with three features then comes in eight (23) distinct
configurations, each corresponding to a different version of the
program.

The null-pointer exception from before now only appears in
specific configurations: whenever we disable the feature LFS as
well as enable either AUTH or CGI. The exception thus occurs
in exactly three (out of eight) configurations. The error no
longer occurs if we, for instance, enable LFS; then subject is
indeed assigned a non-null value in line 16. Also, if we do not
enable either AUTH or CGI, sendHeaders is no longer invoked
in line 27 or 31. The developer must thus somehow consider all
configurations when debugging a variability program. Further,
for a program with variability it is not enough to simply
find an error in some configuration. In order to fix a bug,
a developer must thus not only identify the error, but also
correctly identify the exact set of erroneous configurations
(combinations of feature enablings/disablings). If the developer
gets the configurations wrong, the bug may only be partially
fixed. Clearly, this is a difficult task. Combinatorial problems
are notoriously difficult.

For these reasons, a developer has to be highly alert and
conscious of the features and #ifdefs in the code. Previous
work has demonstrated to what extent variability complicates
debugging. In this paper, we consider how variability impacts
debugging.

III. EXPERIMENT

We have designed a controlled experiment based on eye
tracking to investigate and compare how developers debug
programs with versus without variability. We will now explain
our experimental design and setup.

A. Objective

The experiment aims to investigate the effect of variability
on debugging. In other words, we want to understand how
developers debug programs with variability in comparison with
ordinary programs. Specifically, we aim to answer the following
research question:

RQ: How do developers debug programs with
variability?

To respond to this question, we perform several so-called “find
the bug” experiments [18] with an eye tracker and analyze
how developers go about finding the bug. We are particularly
interested in the impact of variability on bug finding from the
developer’s perspective.

B. Treatments

We expose each participant to programs with and without
variability, while controlling for noise factors such as learning
effect, developer competence, and program complexity. First,
we establish programs without variability (i.e., simple programs)
as a baseline. Then, we consider programs with variability
containing three features (eight configurations).

C. Participants

We performed the experiment with N=20 participants: seven
undergraduate students, one M.Sc. student, seven Ph.D. students,
and five post-docs. All participants had programming experi-
ence, especially in JAVA, and around half of the participants
had industrial experience ranging from a few months to several
years. All subjects were informed that they were free to stop
participating at any time, but no one elected to do so.

D. Programs

For the robustness of our experiment—in order to minimize
risks of specific effects from a particular program and bug
type—we took two programs with different kinds of errors. We
based our programs on real variability errors from two highly-
configurable systems: BUSYBOX and BESTLAP, taken from
previous research [6], [19]. These are qualitatively different
systems in terms of size, architecture, purpose, variability, and
complexity. BUSYBOX is an open-source highly-configurable
system with 204 KLOC and about 600 features, that pro-
vides several essential Unix tools in a single executable file.
BESTLAP is a commercial highly-configurable race game with
about 15 KLOC. The kinds of errors we consider are also
different: a null-pointer dereference and an assertion violation.
We simplified the error in each system down to an erroneous
program that would fit on a screen without scrolling (about 40
lines) yet involve exactly three features.

Bug description of P: The program has two methods
to handle incoming HTTP requests and to send headers (see
Fig. 1). As previously explained, the program provokes a null-
pointer exception in certain configurations. In debugging this
program, the developer needs to identify that the variable
subject is dereferenced with value null, in exactly three
(out of eight) configurations. The method sendHeaders is
invoked in line 27 (if AUTH is enabled) or in line 31 (if CGI
is enabled); the variable subject will be null whenever the
feature CONFIG LFS is disabled.

Bug description of Q: The program originates from a
commercial race game. It has one main method responsible for
computing a score, as can be seen in the online appendix.1 The
car racing game calculates lap times and assesses qualification
for so-called pole position. According to a user requirement,
the game should add a penalty when the car crashes. This
means that the score can also be negative. However, the
method setScore() contains a condition prohibiting negative
scores. We encode the requirement using assertions. To
identify the bug, the developer should somehow see that the
variable totalScore is always equal to zero after setScore()
computation, when passing negative values to the method. This
error is revealed through an assertion violation in the code
(line 31) whenever the features ARENA and NEGATIVE SCORE
are both enabled, which occurs in exactly two configurations.

Figure 2 lists several characteristics of our benchmark
programs. Figure 2a depicts the basic characteristics of the

1http://itu.dk/people/jeam/code-gaze-experiment/
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Prg Origin Filename Bug type LOC #mth

P BUSYBOX http.c Null-pointer 39 3dereference

Q BESTLAP GameScreen.java Assertion 41 4violation

(a) Basic characteristics.

Prg #features Scattering Tangling VCC

P 3 4 8 9

Q 3 9 15 14

(b) Variability characteristics.

Fig. 2: Characteristics of our benchmark programs: P and Q.

Program 1 Program 2

Developer 1 without with
variability variability

Developer 2 with without
variability variability

Fig. 3: Latin Square (2×2).

programs: project, filename, bug type, number of lines of code,
and number of methods (including the main). Figure 2b lists the
variability characteristics of the programs with #ifdefs, such
as: number of features, feature scattering, feature tangling, and
variational cyclometric complexity (VCC). Feature scattering is
the number of #ifdef blocks throughout the entire program.
We put accumulated numbers for all features involved. For
example, P contains four #ifdef blocks. Feature tangling, in
turn, counts the number of switches between regular code and
feature code or between different features. VCC consists of the
cyclomatic complexity metric [20] (and counting two flows for
#ifdef statements).

The programs are similar in terms of size and the number
of features. The programs differ in terms of bug type and
their variability characteristics, but we control for this in the
experiment design, as described below.

E. Design

The two subject programs give rise to four debugging tasks: one
for each program with and without variability. However, in this
setup, we need to deal with two main constraints: First, every
developer must get each program once, otherwise there would
be a learning effect on subsequent attempts. Second, every
developer must get each treatment (with or without variability)
once, for a similar reason.

Abiding by these constraints, we use a standard Latin
Square design, which is a common solution for this kind of
experiment [21], [22], [23]. A Latin square ensures that no
row or column contains the same treatment twice. Figure 3
depicts a 2×2 Latin square applied to our context. The columns
are labelled with two programs (Program 1 and Program 2).
The rows are labelled with two developers (Developer 1 and
Developer 2). The four squares in the center contain the
two treatments (with and without variability). Therefore, each
developer debugs two different programs, each at a different
variability degree, according to her row.

Finally, we randomly assign participants, treatments, and
programs into the Latin squares. The result is the same number

of data points for all debugging tasks, without compromising
control over the confounding factors such as developer com-
petence or program complexity. For N=20 participants, each
performing two out of four debugging tasks, we get exactly
10 data points for each of the four tasks. Technically, our
experiment is a within-group design in which all participants
are exposed to every treatment.

F. Procedure

Before the actual experiment, we executed a pilot study with
a few local students to test our experiment design and the
eye tracking setup. We do not consider the results of the pilot
study in our analysis. Based on the pilot study, we optimized
mostly the alignment of the programs on the screen for the
eye tracker.

The entire experiment consists of five phases: (1) tutorial, (2)
warm-up, (3) questionnaire, (4) debugging, and (5) interview.
First, when a subject enters the room, we present a tutorial on
variability explaining the concepts of features, configurations,
and variability. Second, we demonstrate the nature of the tasks
and questions through a small warm-up task. Third, we ask
the participant to fill in a self-assessment questionnaire about
her programming background and experience with JAVA and
#ifdefs. Fourth, we run the actual debugging experiment using
an eye tracker. We use the randomly generated Latin squares to
create a task description sheet detailing the order of the tasks
for a participant. We also run the personal calibration procedure
right before the tasks. Then, the participant performs the “find
the bug” debugging task for each treatment, in order. Fifth, once
a developer finishes the tasks, we conduct a semi-structured
interview to get qualitative feedback on how the participant
approached the debugging tasks, especially the program with
variability. We ask three questions: (i) How did you go about
finding the bug? (ii) What were the difficulties? and (iii) How
could you fix the bug?

All task description sheets contain instructions and questions
that every participant should answer (see the online appendix
for an example). We ensure that each program fits onto a
single screen to avoid participants scrolling up and down,
which would significantly complicate getting the eye tracking
data. In other words, we provided the participants with only
a static screen (i.e., no IDEs, no tools, no navigation) and
the task description sheets on paper. For each participant, we
recorded timestamps, the duration of each debugging task, as
well as x and y coordinates (fixations) via the eye tracker.

To avoid unintended effects from different software and
hardware environments, we executed all experiments on a 64-bit
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Fig. 4: Fixation sequence: sequence of all fixations from one
developer as a “connect-the-dots” visualization.

Windowsr8.1 machine, IntelrCoreTM i5 CPU running at 2.5
GHz with 8 GB memory. Also, all experiments were conducted
in the same room (quiet location). We recorded all of the eye
tracking data using the open-source tool OGAMA.2 In the
experiment, we used the Tobii EyeX Controller integrated into
the EyeInfo Framework.3 Together they had a radial accuracy
error of < 0.4 degrees which translates to a mere 1.5 lines
of inaccuracy on the screen. We discuss implications of this
inaccuracy in Sect. V.

We eliminated the data from two subjects because of the
eye tracker malfunction occurring during the experiment. The
N=20 subjects include only the valid data points. We discuss
this issue in Section V. No other deviations happened.

IV. RESULTS & DISCUSSION

We now present the results of the experiment and discuss the
implications. We make five observations on how developers
debug programs with variability. We begin with presenting
our framework of abstractions to simplify data analysis. Then,
we address the research question and discuss the findings. All
materials of the experiment are available at:

http://itu.dk/people/jeam/code-gaze-experiment/

A. Abstractions for data analysis

Figure 4 displays a scan path registered for a single developer
as a sequence of all gaze fixations during a debugging task. For
each participant, the eye tracker records a set of triples: x and
y coordinates over time t. The raw data enables us to draw the
fixation sequence of Fig. 4, a “connect-the-dots” visualization,
not particularly helpful for a big set of data of more than one
subject. Since the diagram is difficult to understand, we use a
range of abstractions (Fig. 5) to ease the data interpretation. We
use additional three abstractions besides the fixation sequence,
obtained by simplifying away selected dimensions: heat maps,
gaze transitions, and areas of interest (AOI).

2http://www.ogama.net/
3http://eyeinfo.itu.dk/
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abstract
time
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visualize

��
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x-coordinate
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�� ��fixation sequence { (y, t) }

abstract
time

uu

visualize

���� ��heat maps { (y) }

visualize

��

�� ��gaze transitions

�� ��areas of interest

Fig. 5: Overview of abstractions for data analysis.

Heat Map: First, we marginalize the data over time which
gives us a multi-set of timeless (x, y) pairs. We convert this
to a histogram, telling us for each screen location, how much
fixation time it attracted. The two-dimensional histogram can
be visualized as a so-called heat map–using colors to represent
the value of time for each location on the screen. An example
is shown in Fig. 6. The lowest value in the heat map (lowest
fixation time) is shown using the purple color and the highest
value is red (long fixation time), with a smooth transition
between these extremes.

Gaze Transition (a.k.a. Saccade): We can abstract the
x-coordinate away, obtaining a set of (y, t) pairs, from which,
we are able to generate a timeline of how the participants
read programs vertically—the gaze transitions graphs. In our
gaze transition graph (cf. Fig. 11) the y-coordinate is translated
to line numbers in code and plotted as a function of time in
seconds. The gaze transition graph shows where exactly in the
program the participant’s gaze is at in the corresponding time.

Areas of Interest: The last abstraction is a combination
of the previous two—we abstract away both the horizontal
coordinate and time. We end up with a histogram over y-
coordinates (see Fig. 8 for an example). This abstraction is
primarily useful for displaying the number of fixations related
to given areas of interest (AOI). An AOI is a region of interest
in a study. In our study, we define the areas of interest with
the AOI editor in OGAMA following the guidelines provided
by Holmqvist et al. [24]. Consequently, once we have the set
of y-coordinates and the AOIs defined, we are able to visualize
the percentage/amount of fixations from each participant via a
table or a bar chart.

An observant reader will notice that we ignored another
natural abstraction—marginalizing over the y-coordinate. Ab-
stracting the y-coordinate is not relevant for this study, as we
are not interested in how subjects approach lines horizontally
(how they read within a line).

We now return to discussion our research question.
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(a) Without variability. (b) With variability.

Fig. 6: Aggregated heat maps for the program P.

Program P Program Q

without variability 5 3
4 min 5 min

with variability 10 1
2 min 10 1

2 min

Fig. 7: Average total debugging times in our experiment.

B. How do developers debug programs with variability?

Previous work has demonstrated that debugging time increases
with variability; in fact, the increase appears to be linear in
the number of features [5]. Figure 7 shows the average total
debugging time for each of the two programs P and Q, without
variability (zero features) vs. with variability (three features).
For both programs, the average total debugging time goes up
from roughly five to ten minutes when the programs involve
variability; i.e., the debugging time is doubled.

Using the eye tracking data we can investigate deeper where
developers are spending all this extra debugging time. Based
on our eye-tracking experiment, we made five observations:

OBSERVATION 1: Variability appears to increase
debugging time of the areas of the program that
contain variability.

Figure 6 shows the aggregated heat maps for the program P
without variability (to the left) versus with variability (to the
right). Aggregated heat maps are produced by first normalizing
(with respect to time) and then superimposing all individual

heat maps such that contributions from each developer will
be accounted for equally. (Since we have N=20 participants,
each aggregated heat map is derived from ten individual heat
maps.) Aggregated heat maps give an overall picture of the
focus of the developers; i.e., how much they were looking at
each part of the program, on average. Importantly, in contrast
to Figure 7 that considers absolute time, Figure 6 considers
relative time: how attention is distributed among the program
parts.

The hot spots (red regions) indicate areas where most of
the attention was directed. Not surprisingly, most attention
was awarded to the method containing the bug, sendHeaders
(specifically, lines 12 to 18). Recall that the bug was in line 18
where the condition subject.isEmpty() produces a null-
pointer exception since the variable subject has the value
null. (In the case with variability, this happens in certain
configurations.4) Overall, the red regions appear quite similar.
Without variability, developers dedicate 12% of all fixations to
this area (752 out of 6,355). With variability, the dedication to
this area is comparable in relative terms with 15% fixations
(although using more fixations in absolute terms: 1,249 out
of 8,339). The Kullback-Leibler Divergence test confirms that
the similarity between the two hot spots is highly significant
(divergence value = 0.05, in a scale [0,1]). We observe the
same phenomenon for the hot spots in the other program Q
(divergence value = 0.07).

Figure 8 details the total time spent looking at each of the
four designated areas of interest of the program: the field

4The bug occurs when LFS is disabled and either AUTH or CGI is enabled;
i.e., ¬LFS ∧ (AUTH ∨ CGI).
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area of interest variability increase
lines area without with factor
4-9 fields 26 s 58 s 2.2 x
12-21 sendHeaders 63 s 120 s 1.9 x
23-33 handleIncoming 56 s 98 s 1.8 x
35-38 main 8.2 s 5.3 s 0.7 x
Σ all four areas 153 s 281 s 1.8 x

Fig. 8: Average debugging time for four areas of interest
of the program P without vs. with variability.

sub-area of interest variability increase
lines sub-area without with factor

P:12-17 - with variability 38 s 77 s 2.0 x
P:18-21 - without variability 25 s 43 s 1.7 x

Σ sendHeaders 63 s 120 s 1.9 x
Q:18-20 - without variability 24 s 45 s 1.9 x
Q:21-33 - with variability 48 s 130 s 2.7 x

Σ gc computeLevelScore 72 s 175 s 2.4 x

Fig. 9: Average debugging time for fragments without
variability in proximity of fragments with variability.

fields

8.6USE

}}
2.7USE ''

0.5

��

sendHeaders

8.6DEF

==

9.1RETURN
00

1.3
((

handleIncoming

3.3DEF
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8.6CALL
pp

2.9

}}

main

1.7

gg

3.1

==

0.5

VV

(a) Without variability.

fields

13USE

}}
6.2USE ''

0.6

��

sendHeaders

14DEF

==

13RETURN
00

1.0
((

handleIncoming

5.9DEF
hh

15CALL
pp

2.9

}}

main

1.3

gg

3.1

==

0.5

VV

(b) With variability.

Fig. 10: Average number of gaze transitions (eye switches) between the differents elements of program P.

declarations (lines 4–9); the method sendHeaders (lines 12–
21); handleIncoming (lines 23–33); and main (lines 35–38).
For instance, the attention devoted to the method sendHeaders
goes up from about a minute (63 seconds) to two minutes (120
seconds) in the presence of variability; i.e., an increase factor
of 1.9 (almost twice as much attention). Overall, it appears that
the extra (roughly double) debugging time is spent on all areas
of the program that involve variability: the field declarations
and the two methods sendHeaders and handleIncoming all
double debugging time. In contrast, no extra time is spent on
main that does not involve variability. In fact, attention to this
area appears to drop slightly in the presence of variability.

Please note that the attention awarded to the four areas
of interest (last line in Figure 8) does not add up to the
total debugging time of Figure 7. This is because the four
elements do not cover everything (e.g., imports, blank lines,
class definitions, and even areas beyond the screen), gaze
transitions (rapid eye movements) are not accounted for in
Figure 8, and the total debugging time also involves answering
questions about the bugs on a sheet of paper (i.e., not looking
at the screen).

OBSERVATION 2: Debugging time also increases for
code fragments without variability in proximity of
code fragments that do contain variability.

Consider the body of the sendHeaders method in program P
with variability (cf. Fig. 6b). We see that it consists of a code
fragment with variability (lines 13–17) followed by a fragment
without variability (lines 18–20). A similar phenomenon occurs
in program Q in the function gc computeLevelScore, where

the top part (lines 18–20) does not contain variability followed
by a fragment (lines 21–33) with variability.

Designating these as our sub-areas of interest, we can thus
zoom in and study the impact of code fragments with variability
on code fragments without variability within the same method.

Figure 9 splits these two methods into their sub-areas of
interest with vs. without variability. The sub-areas without
variability “in proximity” of variability are shown in bold
face. Variability appears to be “contagious” along the flow of
control, within a method. Even though lines (18–21) in P do
not have variability, they go from 25 seconds to 43 seconds to
debug in the presence of variability (i.e., debugging takes 1.7
times longer). Similarly, for lines 18–20 in Q; they go from 24
seconds to 45 seconds (i.e., debugging takes 1.9 times longer).

We hypothesize that this is because the developers are
considering different configurations while debugging (more
on this in OBSERVATION 5 later).

OBSERVATION 3: Variability appears to increase the
number of gaze transitions between definition-usages
for fields and call-returns for methods.

Figure 10 depicts the average number of gaze transitions
between the four previously introduced areas of interest.
Without variability there are, for instance, on average 8.6
navigations from handleIncoming to sendHeaders and 9.1
back again (see Fig. 10a). Navigations between two methods are
annotated with call and return according to invocations in the
program (e.g., sendHeaders is called from handleIncoming
in line 27 and 31). The gaze transition diagrams confirm that the
eye movements proceed along method invocations. Similarly,
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Fig. 11: Gaze transition diagram with initial scan.

method-to-field navigations are annotated with def and use as
developers navigate from a field variable usage to its definition
and back again to the use. For instance, we see on average 8.6
navigations from sendHeaders to the fields area of interest
(def) and exactly the same number going back again to the
usage within the method (use).

With variability, all gaze transitions out of methods contain-
ing variability increase significantly (cf. Figure 10b compared
to Figure 10a). The method-to-method navigation along call-
return from handleIncoming to sendHeaders goes up to 15
and 13 (from 8.6 and 9.1). For method-to-field, the (def-use)
navigations out of sendHeaders, for instance, goes up to 13
and 14 (from 8.6 and 8.6). For navigations out of the method
main that does not contain any variability (shown as dotted
gray edges), we see little change.

Thus, the participants made significantly more gaze transi-
tions in the presence of variability. Again, we hypothesize that
developers are exploring and re-exploring different configura-
tions while debugging (cf. OBSERVATION 5).

OBSERVATION 4: Variability appears to prolong the
“initial scan” of the program (first line to last line)
that most developers initiate debugging with.

Previous work has reported that when performing static code
review of program (without variability), reviewers initially
perform a preliminary reading of the code, known as a
scan, whereby a reviewer will “read the entire code before
investigating the details [..]” [25]. Similarly, when debugging
programs (without variability), developers perform a “first scan
followed by several rounds of navigation” [26].

Not surprisingly, for debugging programs with variability, we
also see this initial scan. Figure 11 illustrates a gaze transition
diagram of the first five minutes of a participant debugging
P with variability. The diagram shows the y-coordinate the
developer is looking at as a function of time. The top of the
diagram corresponds to the first line (line 1) and the bottom
to the last line of the program (line 39). We have highlighted
the initial scan which, in this case, lasted for one minute.

This is supported by the post-experiment interviews: “I took
a global look first from top to bottom and then I started from
the main” (one developer); “First, I started reading from the
top and double checking the fields and methods” (another one).

Without variability, 7 out of 10 developers performed an
initial scan within half a minute (32 seconds) on average. With
variability, 8 out of 10 developers scanned initially and it
took an average of 51 seconds. Obviously, scanning a larger

Fig. 12: Gaze transition diagram for a developer using a
consecutive strategy and repeatedly considering a method
(highlighted in black).

program will take longer time. Because of the conditional
compilation directives (i.e., the #ifdef and #endif directives),
the programs with variability are slightly larger. In fact, they
contain 14% more characters. However, this does not account
for the 65% increase in debugging time (from 32 to 51 seconds).

OBSERVATION 5: Developers appear to debug pro-
grams with variability by considering either one
configuration at a time (consecutively) or all config-
urations at the same time (simultaneously).

The interviews give some qualitative insights into how the
subjects debug programs with variability. Most participants
complained that they had trouble finding the bug in the
presence of variability. One subject explains that he is using
a consecutive strategy by considering one configuration at a
time: “I began with all features enabled, then I removed one-
by-one.” Along the same lines, another explains: “After I get
a good understanding of the code, I started to enable/disable
features one at a time to see if the bug appears.” This approach
manifests itself on his gaze transition diagram which contains
repetitions corresponding to the method sendHeaders with
variability (cf. Figure 12).

Another subject claims to adopt a simultaneous strategy by
considering all configurations at the same time: “I tried to
keep track of everything by compiling every combination in
mind.” The two strategies are also well-known in automated
program analysis of programs with variability [27].

Independent of strategies, all developers agreed that debug-
ging programs without variability required much less effort.
This finding aligns with the study of Medeiros et al. [28] in
which they observed that bugs involving variability are easier
to introduce and harder to debug and fix than ordinary bugs.

C. Discussion: Implications of our Results

Our results confirm previous hypotheses [5], regarding the
accuracy of debugging programs with variability:

CONFIRMATION: Most developers correctly identify
bugs in programs with variability; however, many
developers fail to identify exactly the set of erroneous
configurations (already for 3 features).

This is also consistent with previous research reporting that
developers admit that when fixing programs with variability,
they “check only a few configurations of the source code” [28].
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Observation 3 (above) stated that developers perform more
navigation in the presence of variability. Knowing that, we
encourage the programmers using variability to structure the
code in a way that minimize the distance between uses and
definitions of field variable declarations or between methods
calling each other, especially for those declarations and uses that
involve #ifdefs. At the same time, the builders of development
environments shall consider providing convenient ways to
navigate from uses to definitions and back again and along
call-returns for method invocations. An IDE equipped with
continual eye tracking could even automatically “pop up”
relevant definitions next to uses as they are being considered
by the developer. Clearly, as shown in our data, these pop-ups
might be more useful, in areas of code that involve variability
(so intensive variability could activate them).

Observations 1–3 indicate that it is worth to contain vari-
ability in as few methods as possible to keep other methods
variability free. Observation 2 hints that it is advantageous
to hoist code fragments without variability “in proximity” of
variability out of the method. For instance, in program P with
variability, lines 18–20 could be moved into a fresh method.

All observations 1–5 may indicate that there are potential
gains from projectional editing of program with variability.
Developers could work separately on particular configurations
(programs without variability) which would then be automati-
cally synchonized with the entire variability program (spanning
all configurations) [29]. This could be activated/suggested
automatically for programmers who work following the consec-
utive (brute-force) process, as this process can be presumably
detected automatically as multiple scans in the eye-tracking
data. Of course, we do not know to what extent, or whether
at all, these suggestions improve debugging programs with
variability. However, our findings do provide indications, that
these are the directions that might be worth exploring.

V. THREATS TO VALIDITY

A. Internal Validity

Selection bias: To minimize selection bias, we randomly
assigned our subjects into the Latin squares. Additionally, every
participant took all treatments (with and without variability) for
all subject programs. Therefore, we controlled the confounding
factors via Latin square design and randomization.

All participants voluntarily accepted to take part in the
experiment. We found no indications of participants performing
deliberately bad or exchanging information. However, we
eliminated the data points from two participants because the
eye tracker stopped tracking their eye movements during the
experiment. For this reason, we did not include them in our
data analysis. Thus, the N=20 participants represent only valid
data points.

Choice of lab setting: We executed the experiment N=20
times (i.e., one for each participant). All experiments were done
in the same room and with our supervision, avoiding extra
confounding factors. Since this is the first study of variability
debugging using eye-tracking, we opted for a controlled

experiment to understand how developers debug programs with
variability in lab conditions. We thus optimized for internal
validity rather than external validity and a real development
environment.

Choice of eye tracker: We used the Tobii EyeX Controller
integrated into the EyeInfo Framework for two reasons. First,
they are portable and easy to set up and install. Second and,
more importantly, they have a good accuracy. In fact, they
had a radial accuracy error of < 0.4 degrees only. This is
excellent since an accurate and reliable calibration is crucial
for eye-tracking studies and conclusions. This translates to an
inaccuracy of approximately 1.5 lines on the screen. For this
reason, we never considered areas of interest with less than
three lines of code.

Choice of language: In this experiment, we used the
JAVA programming language because we wanted to run
the experiment with several participants and JAVA is well-
known among students at our universities. All participants had
experience with JAVA, ranging from months to years, including
professionally. We chose bugs that are relatively independent
of programming language, i.e., they occur in programs written
in subset of C that is essentially shared with JAVA.

Choice of the number of features: We studied variability
up to three features in a program mainly because of timing.
Otherwise, the experiment would require much longer time,
discouraging and tiring participants. In fact, the participants
spent around 15 minutes to debug only the two programs (with
and without variability), on average. Additionally, there are
very few examples of bugs with higher number of features
than three in the literature [6], [30]. Thus, our study focused
on the range of variability that seems most relevant.

Program vs. variability complexity: Note that from this
experiment and its results, we do not know the origins of
the extra debugging effort entailed by variability, since we
did not focus on the difference between complex programs vs
variability programs. This would require another experiment
setup and, therefore, it is out of the scope of our study.

B. External Validity

Beyond preprocessors: Our experiment applies to a
particular technique for implementing variability: preprocessor
(#ifdefs). However, among a multitude of technologies that
can be used to implement configurable systems, the C preproces-
sor is one of the oldest, simplest, and most popular mechanisms
in use. Generalization to other variability techniques is not
intended, even though it might provide hints. Presumably, our
results do not translate to CIDE [16], which uses colors to
visualize #ifdef blocks, since the human visual system is
highly sensitive to colors [31].

Beyond university students: The experiment were done
predominantly with graduate students. All had JAVA pro-
gramming experience and several of them had industrial
experience. In addition, research has demonstrated that graduate
students make good proxies for industry developers [32]. This
contributes to representativity and generalization to “real-world”
industrial developers. We acknowledge though that more studies
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are needed to further understand and confirm the presented
observations.

Beyond simple programs: The programs used in our
experiment are based on real variability bugs from real
highly-configurable systems (BUSYBOX and BESTLAP) and
previous research [6], [19], which minimize the risks of
studying artificial problems. Additionally, the programs were
qualitatively different (cf. Figure 2), and comprising of different
kinds of bugs. We thus believe that the results may transfer to
other smaller programs.

Beyond simple debugging tasks: We purposely designed
our debugging tasks to not require a long time and, conse-
quently, discouraging participants. In fact, the participants spent
around 15 minutes to debug the two programs, on average. So,
there may be additional effects, unaccounted for, when scaling
to longer debugging tasks.

Beyond lab settings: We made sure that each program fits
onto a single screen to avoid participants scrolling up and down.
We prepared all debugging tasks in slideshow manner using
OGAMA, a framework to analyze eye movements. We also did
not bold or highlight any code constructs in the programs in
order not to attract special attention and, consequently, favor
any particular code elements. In other words, no IDEs, no tools,
no navigation were provided to the participants; they only had
a static screen with the programs and task sheets (on paper).
Anything beyond that it is out of the scope for this paper.

Beyond three features: There are very few examples of
bugs with higher number of variability than 3 in the literature.
Medeiros et al. [30] found that 95% of undeclared/unused bugs
involve 0-3 features. Other research also found that variability
bugs predominantly involve 0-3 features [6]. For this reason,
we focused on this range that seems most relevant. However,
it would be interesting to investigate programs with higher
number of features.

VI. RELATED WORK

In a previous study, we have investigated the impact of
variability on bug finding in terms of time and accuracy [5].
However, our previous study focused only on quantitative
aspects of debugging, and not on how developers debug
programs with variability. Thus, to better account for the
effect of variability on debugging, we carried out this eye-
tracking experiment to actually “see” how developers approach
programs with variability, as shown in Section IV. To the best
of our knowledge, this is the first study of variability debugging
using eye tracking. A few other studies have used eye tracking
to study debugging and program comprehension in ordinary
programs (i.e., without variability).

Hansen et al. [33] used eye-tracking to investigate factors
that impact code comprehension. They found that even subtle
notation changes can have impact on performance, and that
notation can also make a simple program more difficult to
read.

Busjahn et al. [34] conducted eye-tracking studies on small
programs to investigate how programmers read code. They
found that the fixation durations increased when reading source

code in comparison with natural language text. Busjahn et
al. [35] also studied linearity and whether or not the linearity
effect in reading natural languages transfers to reading of source
code. They observed that expert programmers read code less
linearly than novices which, in turn, read code less linearly
than natural language text.

Rodeghero et al. [36] conducted an eye-tracking study of
ten JAVA programmers. They noticed that the programmers
looked more at a method’s signature than its body in order to
summarize it in plain English.

Siegmund et al. [37] conducted a controlled experiment with
17 programmers by applying functional magnetic resonance
imaging (fMRI) to measure program comprehension. They
found a distinct pattern active in five brain regions that are
thus deemed necessary for source code comprehension.

None of the these studies investigated debugging in the
presence of variability using an eye tracker. In other words,
variability was not in their focus. We, in turn, focused
on the interplay between debugging and variability from
the programmers’ perspective. We could draw a number of
qualitative conclusions (cf. Section IV). However, we believe
that further research using eye tracking on variability debugging
is important and required to confront our findings, and to draw
new ones.

VII. CONCLUSION

We have presented an experiment aimed at understanding how
developers debug code with variability implemented using
preprocessor directives. We observed that variability increases
debugging time for code fragments that contain variability
and for neighboring locations. Also, it appears that developers
navigate much more between definitions and uses of program
objects when interleaved with variability. This is presumably
caused by increased complexity of def-use relationships, or by
difficulties of maintaining all variants in short-term memory.
Variability prolongs the “initial scan” of the program that most
subjects initiate debugging with. We notice that developers
appear to debug programs with variability by using either a
consecutive or simultaneous approach.

Our results are consistent with those of prior studies to
the extent that they overlap. The new findings provide some
indications how code should be organized to minimize the
number of gaze transitions, and on what kind of tools could
aid debugging. Automatic tools showing definitions at usage
locations, could consider intensive variability as an indicator
that the definition is a more sought for information at a given
context. Also, possibly, projectional editing techniques can be
used to reduce the cognitive overload of variability, especially
for subjects using the consecutive approach.
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[12] Y.-G. Guéhéneuc and P. Team, “A theory of program comprehension,”
2005.

[13] R. Bednarik and J. Randolph, “Studying cognitive processes in computer
program comprehension,” in Passive Eye Monitoring. Springer, 2008,
pp. 373–386.

[14] C. Parnin, “A cognitive neuroscience perspective on memory for
programming tasks,” Programming Interest Group, p. 27, 2010.

[15] M. E. Hansen, A. Lumsdaine, and R. L. Goldstone, “Cognitive architec-
tures: A way forward for the psychology of programming,” in Proceedings
of the ACM international symposium on New ideas, new paradigms, and
reflections on programming and software. ACM, 2012, pp. 27–38.
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emergent interfaces,” in Proceedings of the 36th International
Conference on Software Engineering, ser. ICSE 2014. New
York, NY, USA: ACM, 2014, pp. 989–1000. [Online]. Available:
http://doi.acm.org/10.1145/2568225.2568289

[20] T. J. McCabe, “A complexity measure,” IEEE Trans. Softw.
Eng., vol. 2, no. 4, pp. 308–320, Jul. 1976. [Online]. Available:
http://dx.doi.org/10.1109/TSE.1976.233837

[21] R. A. Bailey, Design of comparative experiment. Cambridge University
Press, 2008.

[22] G. E. P. Box, J. S. Hunter, and W. G. Hunter, Statistics for Experimenters:
design, innovation, and discovery. Wiley-Interscience, 2005.

[23] D. C. Montgomery, Design and Analysis of Experiments. John Wiley
& Sons, 2006.

[24] K. Holmqvist, M. Nystrom, R. Andersson, R. Dewhurst, H. Jarodzka,
and J. van de Weijer, Eye Tracking. A comprehensive guide
to methods and measures. Oxford University Press, 2011.
[Online]. Available: http://www.oup.com/us/catalog/general/subject/
Psychology/CognitivePsychology/CognitivePsychology/?view=usa&
#38;ci=9780199697083

[25] H. Uwano, M. Nakamura, A. Monden, and K. ichi Matsumoto, “Ana-
lyzing individual performance of source code review using reviewers’
eye movement,” in in Proceedings of 2006 symposium on Eye tracking
research & applications (ETRA), 2006, pp. 133–140.

[26] X. Xie, Z. Liu, S. Song, Z. Chen, J. Xuan, and B. Xu, “Revisit of
automatic debugging via human focus-tracking analysis,” in Proceedings
of the 38th International Conference on Software Engineering, ser.
ICSE ’16. New York, NY, USA: ACM, 2016, pp. 808–819. [Online].
Available: http://doi.acm.org/10.1145/2884781.2884834
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