
DIGITAL COMPUTER ANALYSIS 
OF PASSIVE NETWORKS 
USING 1 • • • 

TOPOLOGICAL FORMULAS •• 

•• 

•• 
•• 

GEORGE W. ZOBRIST 

GLADWYN V. LAGO 

•• 

• • 

•• 

•• •• 
• • 

•• 

UNIVERSITY 
OF MISSOURI 
BULLETIN 
COLUMBIA, MISSOURI 

•• 

DEPARTMENT OF ELECTRICAL ENGINEERING Engineering Experiment Station 

UNIVERSITY OF MISSOURI • • a a Series, Number 59 

COLUMBIA, MISSOURI 196S 
March 29, 



THE UNIVERSITY OF MISSOURI BULLETIN 

VOLUME 66, NUMBER 12 ENGINEERING EXPERIMENT STATION SERIES NUMBER 59 
Sam B. Shirky, Director, Technical Education Services 

Mary Kathryn Yeargain, Editor 
Published five times monthly during March, April, Septembe r and October; four times 
monthly during August and November; three times monthly during J anuary and May; twice 
monthly during February, June and July; once dur ing December, by the Universi ty of Mis-
souri Bulle tin Editor's Office-206S Technical Education Services Building, 41 7 South Fifth 
St., Columbi a, Mo . Second class postage paid at Columbi a , Missouri , 1000. March 29, 
1965. 



ACKNOWLEDGEMENTS 

This paper was partially supported by the National 
Science Foundation and the University of Missouri 
Engineering Experiment Station. This paper also re-
presents a portton of the work in progress on a Ph.D. 
dissertation, by the first author, at the University of 
Missouri, Columbia, Missouri. 



CONTENTS 

I . Introduction . .. ..... . 

II. Kirchhoff ' s Topological Rules 

III . Concept of the Complete Graph 

IV. Method of Obtaining Results on Computer 

V. Examples 

VI. Conclusions 

VII . Bibliography 

1 

2 

4 

6 

8 

12 

13 



DIGITAL COMPUTER ANALYSIS OF PASSIVE NETWORKS* 

USING TOPOLOGICAL FORMULAS 

George W. Zobrist 
and Gladwyn V. Lago 

Deaprtment of Electrical Engineering 
University of Missouri 
Columbia, Missouri 

I. Introduction 

In a classic paper by Kirchhof£ 1 the rul e s for computation of net-

work response, in terms of branch r e sistances, by meaus of topological 
2 

quantities were pres ented. About 40 years later Maxwell presented 

similar rules, dual to those of Kirchhoff, in terms of conductances. 

These rules will be referred to as Kirchhoff's rules. Interest has been 

generated in the last few year s with applications to synthesis 3 ' 4 , 5 

and investigations of the applicability of these topological rules for 

analysis of networks using the digital computer have been presented by 

Mayeda and Van Valkenburg, 6 Hobbs 7 and MacWilliams. 8 

The intent of this paper is to present a general approach whereby 

all trees for a v vertex complete graph are generated and any subset 

of trees for a subgraph of the complete graph of n vertices, where 

n L v, can be determined. The network response, through use of Kirchhoff's 

rules, can be determined for any linear passive network (with no mutual 

inductances) once the trees are found for the networks graph. 

In conjunction with this aim two problems had to be solve d: First 

a method of obtaining the trees for a m vertex complete graph f rom a 

nd Presented at the 2 Annual Allerton Conference on Circuit 
and System Theory, University of Illinois, Urbana, Illinois; 
to appear in Conference Proceedings, September 28-30, 1964. 
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v vertex complete graph. The trees for a subgraph of m vertices can 

be readily found from a complete graph of m vertices. Secondly, a least 

upper bound on the number of 2-trees (2-cotrees). This is required for 

computer storage reasons, since one has to compare 2-trees (2-cotrees) 

for determination of the sign of each 2-tree (2-cotree) product, in 

transfer quantities. 

Computer programs were written employing these ideas and checked for 

graphs with up to six vertices. In principle the number of vertices 

allowed is limited only by storage capacity of the computer and time. For-

tran II-D language was chosen since it seems to be in rather wide spread 

use. 

II. Kirchhoff's Topological Rules 

The main purpose of this section will be to state Kirchhoff's topologi-

cal rules in a notation which was found rather useful in the formulation of 

the computer programs. The reader is referenced to excellent discussions 
9 . 10 

in either Seshu or Weinberg for detailed developments. Definitions 

of terms used are the same as found in Seshu. 9 

While the original rules were formulated only for resistances (conduc-
10 tances) they are easily extended to the R-L-C case, in the remainder of 

the paper this will be assumed. 

If a current source is attached parallel to a branch which includes an 

element y, see Figure l(a), the voltage response, at this pair of termin-
m 

als is given by 

V(s) ) 

where the denominator is the sum of all tree products for the given networks 

graph of e edges and v vertices and the numerator is the sum of all 2-

tree products, with respect to 

to the tree product of the k th 

edges of the graph that form the 

equal to if g:;tk. If 

ym. The notation ykl .•• yk(v-l) refers 

tree, which consists of the v-1 distinct 

k th tree. Where ykl is not necessairly 

or occur in a tree product, the 
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or d 
ol.'fri of (ykl .•. yk(v-l)) #0, if not, it is zero. 
If a current source is attached to a pair of terminals, see Figure 

l(b), the voltage response at a pair of terminals is given by 

G-= I 

The denominator is interpreted as before but the numerator takes on 

different significance. The numerator represents the algebraic sum of all 

common 2-trees, where the 2-trees are originally separated into two sets, 

one consisting of all tree products containing ym, the other set those 

tree products containing y. The common terms in these two sets are the 
n 

desired 2-tree products. 

The + sign is used if upon shorting of the edges of the above men-

tioned 2-tree product one finds that the current source will cause the 

assigned positive voltage drop, negative if a negative voltage drop is pro-

duced. 

If a voltage source is placed in series with a branch which contains 

zm' see Figure 1 ( c) , the current response in this branch is given by 

T 
( C D I O " t> ""l p Lj L c:J z""' 

I(s~ = V~(SJ D -:.l 

T 
., 

L (z1-u" 0 "£°HL--) 
t-\ =- I 

where L = e - (v-1). The notation zkl 
the admittance equations, except now it is the 

zkL is similar to that of 
th 

k cotree and L distinct 
edges. 

The denominator is the sum of cotree products, for a given graph of 

e edges and v vertices and the numerator is the sum of all 2-cotree 
products, with respect to z . 

m 

z ' m 

If a voltage source is placed in series with a branch which contains 

see Figure l(d), the current response in a branch which contains 

3 

z n 



is given by, 

T 

L 
Tes) -= Vi Cs) 

D=I 

The denominator is interpreted the same as in the driving point 

impedance case an<l the numerator consists of the algebraic sum of the 

common 2-cotree terms. Where the + sign is used if upon removal of 

the 2-cotree under investigation from the network, the voltage source 

causes a current which is confluent with the assigned positive direction, 

negative if not. 

III. Concept of the Complete Graph 
11 

It is a well known fact, see Cayley, that the number of trees in 

a complete graph, i.e., a graph with a single edge from every vertex to 
v-2 every other vertex, is v There are also many established methods of 

12-15 
enumerating all the trees of a graph. The method of obtaining trees 

in this paper follows a theorem stated in Seshu, 9 i.e., if G is a 
s 

subgraph of' a connected graph G of V vertices, and G consists of 
s 

v-1 edges and no circuits, then G is a tree of G. This theorem was 
s 

found to be easily implemented on the digital computer and since the in-

tent was to generate the complete set of trees only once, time was not of 

first importance. 

It was of prime importance to be able to obtain the trees of a com-

plete graph of m vertices from the trees of a complete graph of v 

vertices, m < v. This can be done in the following manner. Assume a 

complete graph of v vertices. This complete graph has v(v-1)/2 edges. 

Now remove edge (1,v) and let vertices 1 and v coalesce, the trees 

of this resultant graph contains all trees (when edge (1,v) is included 

in each tree of the resultant graph) which contain edge (1,v). Remove 

edge (1,v) from the complete graph of v vertices. Now remove edge 

(2,v) and let vertices 2 and v coalesce, the resultant graphs trees 

contain all trees of the original complete graph, which contain edge (2,v) 

but not edge (1,v), again when edge (2,v) is included. Continue in this 

manner until edge (v-1,v) is reached. This development separates the 
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trees of a complete graph of v vertices into v-1 distinct sets. The 

first set contains all the trees which have edge (1,v), the second set 

consists of those trees which do not have edge (1,v), but do have edge 

(2,v). This process is continued until one reaches the last set, this set 

contains edge (v-1,v) but not edges (1,v), (2,v), •• · (v-2,v). 

Collecting all the trees for the v-1 sets~ one has obtained the trees of 

the v vertex complete graph. Of interest is the last set of trees, 

those which contain edge (v-1,v) but not edges (1,v), •••, (v-2,v). 

This set is found to contain the trees of a complete graph of v-1 verti-

ces, see Figure 2. 

This can be shown to be a valid development by considering the nodal 

determinant of a V vertex complete graph, since the above can be 

obtained by expanding the determinant in a particular manner. In fact, 

in this expansion, see Figure 2, each resultant subgraph is a quasi-

complete graph, i.e., some vertices may have parallel edges between them. 

In summary, one may find the trees of a m vertex complete graph from 

a V vertex· complete graph, quite easily, by considering only those 

trees which contain certain edges. Another interesting point is that 

this prodedure can also be used to find the trees of a complete graph of 

V + 1 vertices from a complete graph of V vertices. 

If one is to store 2-trees (2 - cotrees) in an efficient manner, 

a least upper bound has to be determined, for them. It is asserted 

that the number of 2-trees for a complete graph of v vertices 

is given by 2 vv-J This can be seen in the following manner. 

Consider the following expression, 

Total # edges Total ft 2-trees for 1 for complete X complete graph for a X 
graph given edge ( i 'j) v-1 

Now due to symmetry the total number of 2-trees for edge ( i' j) 

is the same as edge (k, 1), hence if one takes the product of the 
first two terms one obtains a term which would be a tree, since this is 

the reverse process of obtaining a 2-tree. But enumerating all these 

trees would give repetitions since there are v-1 terms in each 

product,hence each product will occur in v-1 sets of the above total . 

5 



Therefore, if one multiplies by the factor _1_, this expression can 
v-1 

be equated to the total number of trees in a complete graph of v 

vertices. Upon substitution for the total number of edges its equivalent 

in terms of v, one has 

v (v-l) x # 2-trees x 
2 

1 
v-1 

v-2 
= V or # 2-trees = 2 vv- 3 

This establishes a least upper bound for the number of 2-trees in a 

graph of v vertices, with no parallel edges. If parallel edges are 

to be allowed, a similar development shows that the number of 2-trees for 

a full graph, 

each vertex, is 

i. e . , a complete graph with 
v-3 2p(pv) . 

p parallel edges between 

The number of 

a full graph of 

ff 2-cotrees 

2-cotrees for a complete graph of v vertices and 

v vertices and p parallel edges, is found to be 

v-2 
V 

v-2 p(pv) 

v-3 2v 

2p (pv)v-3 

(complete) 

(full) . 

This is easily deduced since if a tree contains edge (i,j) the 
associated cotree does not and vice versa. 

IV. Method of Obtaining Results on Computer 

Edges are designated by the unordered pair (v . , v.), i. e., the 
1. J 

edge connecting vertex 4 to vertex 7 would be (4,7). This 

designation allows efficient processing on the digital computer. 

Trees are generated in the following manner; form all combinations 
of the v(v-1)/2 edges taken v-1 at a time and test each combina-
tion to see if it is a tree or not. This test can be done by removing all 

free edges, i.e., any edge connected to a vertex of degree 1. After 

this removal has been done for the original combination, remove the free 

edges of the resulting combination of edges . Continue this until no free 
edges remain. 

6 



In doing this the original graph can be reduced to all isolated 

vertices (if edges and vertices are considered to be separate) if it 

is a tree. 

Example of method of finding the trees for a 4 vertex complete 

graph. The edges are: (1,2) (1,3) (1,4) (2,3) (2,4) (3,4). Now form 

the combinations: (1,2) (1,3) (1,4); (1,2) (1,3) (2,3); (1,2) (1,3) 

(2,4); (1,2) (1,3) (3,4); (1,2) (1,4) (2,3); (1,2) (1,4) (2,4); (1,2) 

(1,4) (3,4); (1,2) (2,3) (2,4); (1,2) (2,3) (3,4); (1,2) (2,4) (3,4); 
( 1 , 3 ) (1, 4) ( 2 , 3 ) ; (1, 3,) ( 1 , 4) ( 2 , 4) ; ( 1, 3 ) (1, 4) (3 , 4) ; ( 1 , 3 ) ( 2 , 3 ) 

( 2, 4) ; ( 1, 3) ( 2, 3) (3, 4) ; ( 1, 3) ( 2, 4) ( 3, 4) ; (1, 4) ( 2, 3) ( 2, 4) ; (1, 4) 

(2,3) (3,4); (1,4) (2,4) (3,4). The second, sixth and thirteenth com-

binations do not form trees. These are all the combinations which need 

to be formed, the next one is (2,3) (2,4) (3,4) and since each vertex 

must be included in a tree every combination after the last one listed l 
need not be formed. In general there is a saving of ( v (v-l) - (v-l) 

combinations to be tested in forming this way. 2 v-1 

If all vertices are not isolated and no more free edges are encoun-

tered the graph contains at least one circuit, since no vertices have 

degree 1, see Figure 3, hence the subgraph for this combination does not 

form a tree. 

In Figure 4 is a somewhat simplified flow diagram of the computer 

program for calculating driving point and transfer admittances. 

Trees are stored on the IBM Disk Pack 1311 as floating point num-

bers to utilize to the maximum, available storage space, although in 

doing this one trades off time, in converting back to fixed point for 

calculation purposes. As each tree is drawn off the disk a check is 

performed to see if it is a valid tree for the complete graph specified, 

this is done by checking to see if the tree product contains only the 

edges (v-1,v), (v-2,v-l), C • • ) (i-1,i), and no other edges contain-

ing v,v-1, .•• i, where i-1 is the number of vertices in the 

specified complete graph. 
The tree product is checked to see if it is zero, for the given 

subgraph of the complete graph with i-1 vertices, if so, the next 

tree on the disk is investigated . If the tree product is non-zero the 

computer proceeds to find out whether it is a 2-tree . If it contains 

y, see Figure l(b), set v to 1, which is equivalent to performing 
m m 

the operation ~/4~m' since each tree product is linear in any given y . 

7 



Convert the 2-tree product to floating point and store on the disk. 

Similarly, if transfer quantities are desired, check for 2-trees 

containing yn' see Figure l(b), these are also stored on the disk. 

The necessity for determining a least upper bound on 2-trees now be-

comes evident, see Figure 5. 

Since quantities on the disk cannot be given variable names, and 

there is no pattern as to when the 2-trees for and will be 

encountered, a method such as this in Figure 5, alleviates devising 

complicated recalling routines. 

The 2-trees are compared and the common ones found and checked 

for sign by the following intuitive scheme, see Figure 6, due to 
P . l 14 erciva . 

I f at starting at 1 one ends up at 2 ' rather than 2, a 

negative sign is associated with the 2-tree product. To keep track 

of powers of s in the various tree and 2-tree products one makes 
-1 1 

the following association s ---=>- -1, s - 1, 0 
s - 0, where each 

term in a product is assigned either 1, -1, or O and t hen all 

t e rms summed. 

The procedure for driving point admittance is simpler since only 

the 2-trees for ym are found and hence no comparison or determin-

ation of sign is needed. 

In Figure 7 is a simplified flow diagram of the computer program 

for calculating driving point and transfer impedances. 

In determining impedance functions one needs to find the cotrees, 

this can be done by negation. If one removes from the edges of the 

graph, the edges o f the non- zero t ree product under inve stigat ion, the 

r e maining edges f orm a cotree f or the g iven graph. The n each ste p is 

performed as was done for the admittance case. One exception is that 

one has t o r e move the 2-cotree f rom the e dges of the graph to check 

f or a + or sign on common 2 - cotrees. This is e xpect ed since 

2- cotr ees can be considered to be the dual of 2-tree s. 

V. Examples 

Y (s) Trans fer Admittance 

Values of e l ements are for admittances. Correspondence of (i,j) 

= k is made for input L e ., (5 ,6) = 15 , (3 ,4) = 10, etc. 

Corresponde nce is made f or 6 node complete graph. 
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Input: 

Card :/fl 
1. Number of vertices= 6 

2. Edge which current source is in parallel with= 1 

Card iff2 

1. Edge across which voltage response is to be calculated= 10 

2. Vertex which is connected to arrowhead of current source = 1 

3. Vertex which is connected to + of V(s) = 4 

4. Vertex which is connected to of V(s) = 3 
Card :ff3 

Admittance values of edges of graph of given network 

(1, 2) (1, 3) (1,4) (1,5) (1, 6) (2,3) (2,4) (2,5) (2,6) (3,4) (3 ,5) 
1. 0. 0. 1. 0. 0. 0. 0. 1. 1. 1. 

(4,5) (4,6) (5,6) 
1. 1. 0. 

Card :/f4 

Value of admittance 

C.5 

element, according to whether it is a 

-I~ 
I • 

1 /LS -oao----
-1. 

1. 0. o. 1. o. o. o. o. -1. 

Output: 
y (s) 

Numerator 

10.0 SPO 
8.0 SPl 
9.0 SP2 
4.0 SP3 
1.0 SP4 
0.0 SP5 
0.0 SMl 
0.0 SM2 
0.0 SM3 
0.0 SM4 
0.0 SMS 

y (s) Driving Point Admittance 

Input: 

Card ff l 

1. Number of vertices = 6 

9 

o. 

1/ R 
---yVV'v--

0. 

-1. 1. o. 1. 0. 

Denominator 

-1.0 SPO 
LO SPl 
0.0 SP2 
0.0 SP3 
o.o SP4 
0.0 SMl 
0.0 SM2 
0.0 SM3 
0.0 SM4 

(3' 6) 
1. 



2. Edge which current source is in parallel with 1 

Card #2 

Admittance values of edges of graph of given network 

1. 0. 0. 1. 0. 0. 0. o. 1. 1. 1. 1. 1. 1. o. 
Card #3 

Value of admittance element, according to whether it is a 

Cs 
--it--

/. 

1 I Ls 
000--
-1 0 

1. 0. 0. 1. o. 0. o. o. -1. 0. -1. 1. 0. 1. o. 
Output: 

y (s) 

Numerator Denominator 

10.0 SPO 5.0 SPO 
8.0 SPl 8.0 SPl 
9.0 SP2 4.0 SP2 
4.0 SP3 1.0 SP3 
1.0 SP4 0.0 SP4 
o.o SP5 6.0 SMl 
0.0 SMl 0.0 SM2 
0.0 SM2 o.o SM3 
0.0 SM3 0.0 SM4 
0.0 SM4 
0.0 SM5 

Z (s) Transfer Impedance 

Values of e lements a re fo r impedances. Correspondence of ( i ,j) 

= k is made for input, i. e ., (3,4) = 10, (5,6) = 15, etc . 

Correspondence is made for 6 node comple t e graph. 

Input: 

Card f/1 

1. Number of vertices = 4 

2 . Edge which voltage source is inserte d in serie s with 1 

3 . Total numbe r of edge s in graph = 6 

Card ff2 
1. Edge through which current r e spons e is to be calculat e d 10 

2 . Vertex which is conne cte d to + side of V (s) = 1 g 

10 



3. Vertex which is situated at end opposite arrow head of I (s) = 3 

4. Vertex which is situated at arrowhead of I (s) = 4 

Card {fa3 

Impedance values of edges of graph of given network 

1. 2. 1. 0. 0. 1. 1. 0. 0 . 3. 0. o. o. o. 0. 

Card 4F 4 

Value of impedance element, according to whether it is a 

Ls I/cs R 
f-- -A../'V'v--

Jo -I. D. 

o. 1. -1. o. o. 1. -1. o. o. 1. 0. 0. 0. 0. 

Output: 

Z (s) 

o. 

Numerator Denominator 

9.0 SPO 
22.0 SPl 
11.0 SP2 
0.0 SP3 
3.0 SMl 
1.0 SM2 
0.0 SM3 

Z (s) Driving Point 

Input: 

Card {Fl 
1. Number of vertices = 4 

-1.0 
0.0 
0.0 
0.0 
0.0 

2. Edge which voltage source is inserted in series with =1 

3. Total number of edges in graph = 6 

Card #2 
Impedance values of edges of graph of given network 

1. 2. 1. 0. 0. 1. 1. o. 0, 3. o. o. o. o. o. 
Card i/3 

Value of impedance element, according to whether it is a 

1/cs 
-I~ 

-1. 

R 
-/"\IV'----

0. 

0. 1 . -1 . 0. 0. 1. -1. o. 0. 1. 0. 0. o. o. o. 

11 
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SPl 
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Output: 

Z (s) 

Numerator Denominator 

9.0 SPO 9 . 0 SPO 
22.0 SPl 0.0 SPl 
11.0 SP2 11.0 SP2 
0.0 SP3 0.0 SMl 
3.0 SMl 1.0 SM2 
1.0 SM2 
o.o SM3 

See Figure 8, for network configurations used in examples. 

VI. Conclusions 

The method is completely general in that the response for any net-

work of n vertices can be found from the knowledge of the trees for 

a complete graph of v vertices, where nf. v. 

In using this approach the size network (number of vertices) 

which can be handled is reached rather fast, on IBM 1620 with disk 

pack, only graphs with up to 7 vertices can be accommodated. On the 

IBM 1620 it takes approximately one second to perform a complete cycle, 

i. e., time lapse between drawing off the j th tree to drawing off the 

(j+l) th tree. 

Some rather interesting results have been obtained. They are the 

establishment of a least upper bound on 2-trees (2-cotrees) and a 

method of obtaining the trees of a complete graph of m vertices from 

one of v vertices, where m ( v. 
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