THE UNIVERSITY OF MISSOURI ENGINEERING REPRINT SERIES Reprint Number 53 Engineering Experiment Station

Columbia, Missouri

Thermodynamic Properties of n-Propyl Alcohol

J. L. Cosner Graduate Student Department of Chemical Engineering

J. E. Gagliardo Student Assistant in Chemical Engineering University of Missouri

Truman S. Storvick, P.E. Assistant Professor of Chemical Engineering University of Missouri

Reprinted from Journal of Chemical and Engineering Data, Vol. 6, No. 1, January 1961 Page 28

COLLEGE OF ENGINEERING THE ENGINEERING EXPERIMENT STATION

The Engineering Experiment Station was organized in 1909 as a part of the College of Engineering. The staff of the Station includes all members of the Faculty of the College of Engineering, together with Research Assistants supported by the Station Funds.

The Station is primarily an engineering research institution engaged in the investigation of fundamental engineering problems of general interest, in the improvement of engineering design, and in the development of new industrial processes.

The Station desires particularly to co-operate with industries of Missouri in the solution of such problems. For this purpose, there is available not only the special equipment belonging to the Station but all of the equipment and facilities of the College of Engineering not in immediate use for class instruction.

Inquiries regarding these matters should be addressed to:

The Director Engineering Experiment Station University of Missouri Columbia, Missouri

THE UNIVERSITY OF MISSOURI BULLETIN

VOL. 62, NO. 31

ENGINEERING REPRINT SERIES

NO. 53

Published by the University of Missouri at the Office of Publications, Columbia, Missouri. Entered as second-class matter, January 2, 1914, at post office at Columbia, Missouri, under Act of Congress of August 24, 1912. Issued five times monthly.

600 July 3, 1961

Thermodynamic Properties of *n*-Propyl Alcohol

J. L. COSNER¹, J. E. GAGLIARDO², and T. S. STORVICK University of Missouri, Columbia, Mo.

VARIOUS USES of *n*-propyl alcohol as a solvent and chemical intermediate prompted a study of its derived thermodynamic properties. Sufficient volumetric, thermal, and vapor pressure data are available in the literature to evaluate these properties from 77° to 540° F. and pressures up to 700 p.s.i.a.

Extensive measurements of the volumetric behavior of *n*-propyl alcohol were made by Ramsey and Young (6) over the range from 30° to 263.6° C. and pressures from 800 to 53,480 mm. of mercury. Foz Gazulla, Morcillo, and Mendes (2) measured vapor densities in the low pressure range from 100 to 760 mm. of mercury and the temperature range from 75° to 130° C. Saturated vapor and liquid densities were reported by Young (11).

The vapor pressure-temperature data for n-propyl alcohol have been summarized by Stull (9).

The heat capacity data at zero pressure, calculated from spectroscopic measurements and reported by Kobe, Harrison, and Pennington (4), compare favorably with the calorimetric data of Sinke and De Vries (8).

Calorimetric measurements of the heat of vaporization of *n*-propyl alcohol were reported by Bennewitz and Rossner (1). The normal boiling point data and the heat of vaporization at the normal boiling point were summarized in International Critical Tables (3).

The critical constants $T_c = 537.3^{\circ}$ K., $P_c = 50.2$ atm., and $V_c = 220$ cc./gram mole are reported by Lyderson, Greenkorn, and Hougen (5) and these values were used in this work. The molecular weight of *n*-propyl alcohol used in all the calculation in this work was 60.09. The calculations were based on 1 pound of *n*-propyl alcohol, and the enthalpy and entropy were set equal to zero at 77° F. for the saturated liquid at its vapor pressure.

VAPOR PRESSURE AND HEATS OF VAPORIZATION

The vapor pressure data reported by Stull (9) were fitted to the following empirical equation:

$$\log P_v = (B/T - 43) + C + D(T - 43) + E(T - 43)^2$$
(1)

To improve the fit, Equation 1 was applied over a low and a high temperature range. The constants obtained were:

	Temperature Range, ° K.						
Constant	273-373	373-537					
\boldsymbol{B}	-1645.194	-2173.147					
С	6.66707	11.16614					
D	0.590031×10^{-2}	-0.620663×10^{-2}					
E	-6.46252×10^{-6}	3.58429×10^{-6}					

The latent heats of vaporization were calculated with the thermodynamically rigorous Clapeyron equation

$$\frac{dP_v}{dT} = \frac{\Delta H_v}{T(V_v - V_L)}$$
(2)

The necessary temperature derivatives of the vapor pressure were obtained from Equation 1. The saturated vapor (V_v) and liquid (V_L) volumes of Young allowed evaluation

²Present address, U.S.S. Glennon (DD840), F.P.O., New York, N. Y.

of ΔH_{ν} . The heats of vaporization used in preparing Table I are smoothed values calculated from Equation 2. At atmospheric pressure the value given in Table I is 295.0 B.t.u. per pound and compares favorably with 295.9 B.t.u. per pound reported in International Critical Tables (3), less favorably with 299.0 B.t.u. per pound reported by Bennewitz and Rossner (1).

VAPOR PHASE THERMODYNAMIC PROPERTIES

Residual volumes were calculated from the volumetric data of Ramsey and Young (6). Low pressure data on the high temperature isotherms were not reported. An extrapolating equation was developed for this low pressure vapor region based on dimerization of the *n*-propyl alcohol in the vapor phase. The data of Foz Gazulla, Morcillo, and Mendes (2) were used to confirm the extrapolated results. These two sources of volumetric data had so few common values that no direct comparison was possible.

The curves of residual volume vs. pressure were prepared and used to calculate the fugacity coefficients. The relationship used was

$$\ln\left(\frac{f}{P}\right) = \frac{-1}{RT} \int_0^P \alpha \, dP \tag{3}$$

Equation 3 was evaluated graphically.

The enthalpies of the superheated vapor were calculated as differences between the enthalpy of the gas at pressure Pand the value in the zero pressure or ideal state for each isotherm, The thermodynamic relationship used was

$$(H - H^{\circ})_{T} = \int_{0}^{P} \left[T\left(\frac{\partial \alpha}{\partial T}\right)_{P} - \alpha \right] dP$$
(4)

To integrate Equation 4, a curve of α vs. temperature was prepared by cross-plotting the α -pressure diagram. The derivatives, $T\left(\frac{\partial \alpha}{\partial T}\right)_{p}$, were evaluated numerically using the Gregory-Newton backward and forward interpolation formulas (10) at the ends of the curves and Stirling's formula (7) in the central position. A plot of $T\left(\frac{\partial \alpha}{\partial T}\right)_{p}$ was prepared and Equation 4 evaluated graphically.

The entropies of the superheated vapor were calculated as differences between the entropy of the gas at pressure Pand the ideal gas state at zero pressure by the expression

$$(S - S^{\circ})_{T} = \int_{0}^{P} - \left(\frac{\partial V}{\partial T}\right)_{P} dP$$
(5)

When the residual volume is substituted in Equation 5, the integral becomes indeterminate at the lower limit. Equation 5 can be evaluated from P = 0 to $P = P^*$, an ideal gas state at unit fugacity. When this is substracted from Equation 5, the lower limit P = 0 is eliminated and the result is

$$(S-S^*)_T = (S-S^\circ)_T = \int_{P^*}^{P} \left(\frac{\partial\alpha}{\partial T}\right)_P dP - \int_{P^*}^{P} \left(\frac{R}{P}\right) dP \qquad (6)$$

Equation 6 was evaluated using the results of Equations

¹Present address, Columbia Southern Chemical Co., Barberton, Ohio.

Table I. Thermodynamic Properties of Saturated n-Propyl Alcohol

				Enthalpy, B.t.u./Lb.			Entropy, B.t.u./Lb° R.			
Temp.,	Pressure,	Volume,	Volume, Cu. Ft./Lb.		Vapori-		Vapori-			Fugacity
° F.	P.S.I.A.	Liquid	Vapor	Liquid	zation	Vapor	Liquid	zation	Vapor	Ratio, f/P
77	0.39	0.0200	244.7	0.0	337.5	337.5	0.0	0.629	0.629	0.997
100	0.85	0.0203	116.4	12.60	333.0	345.6	0.103	0.595	0.698	0.994
140	2.83	0.0208	37.26	35.74	324.5	360.0	0.243	0.541	0.784	0.986
180	7.94	0.0214	13.98	60.24	315.6	375.9	0.358	0.493	0.851	0.973
280	14.696	0.0217	7.86	90.02	295.0	385.0	0.455	0.442	0.897	0.959
220	19.17	0.0219	6.21	99 .81	291.8	390.0	0.486	0.429	0.915	0.952
260	40.18	0.0231	2.94	139.4	268.4	402.7	0.580	0.373	0.953	0.924
300	76.17	0.0237	1.55	165.4	249.6	415.0	0.659	0.328	0.987	0.886
340	132.9	0.0249	0.880	208.9	218.8	427.7	0.752	0.274	1.026	0.842
380	216.5	0.0265	0.530	243.6	194.1	437.7	0.823	0.231	1.054	0.788
420	333.1	0.0289	0.321	284.0	160.6	445.0	0.905	0.182	1.087	0.747
460	488.2	0.0320	0.186	329.7	116.1	445.8	0.977	0.126	1.103	0.687
500	688.5	0.0410	0.0995	380.6	58.1	440.0	1.053	0.060	1.113	0.652
507	737.9	0.0587	0.0587	414.5	0.0	414.5	1.115	0.0	1.115	•••

3 and 4. Dividing Equation 4 by T and substracting from this, R times Equation 3 gives the first integral in Equation 6. Thus:

$$(S - S^{\circ})_{T} = \left(\frac{H - H^{\circ}}{T}\right) - R \ln\left(\frac{f}{P}\right) - R \ln\left(\frac{P}{P^{*}}\right)$$
(7)

Equation 7 was used to evaluate the superheated vapor entropy values.

The ideal gas, or zero pressure enthalpies were calculated from the heat capacity data of Kobe, Harrison, and Pennington (4) with the expression

$$dH = C_p^\circ \, dT \tag{8}$$

The ideal gas entropy values were obtained from the expression

$$dS = C_p^{\circ} / T \, dT \tag{9}$$

Saturated enthalpy values were obtained by plotting a temperature-enthalpy diagram and extrapolating the isobars to the saturated temperature. The saturated entropy values were obtained in a similar manner on a temperatureentropy diagram.

Enthalpy and entropy data for the saturated liquid were obtained by subtracting the enthalpy and entropy of vaporization from their saturated vapor values. The data were smoothed by plotting on enthalpy-entropy, tempera-

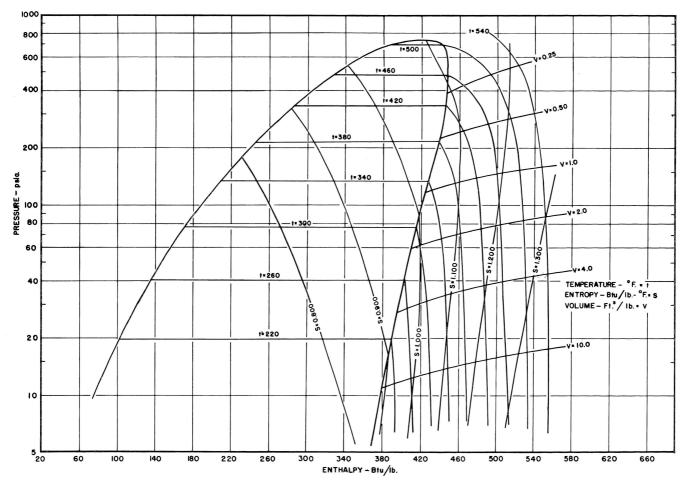


Figure 1. Pressure-enthalpy diagram for n-propyl alcohol Reference state: H = 0, S = 0 at 77° F., saturated liquid

Table II. Thermodynamic Properties of Superheated n-Propyl Alcohol

Temp., °F.	Volume, Cu. Ft./Lb.	Enthalpy, B.t.u./Lb.	Entropy, B.t.u. per Lb° R.	Fugacity, Ratio, f/P	Temp., ° F.	Volume, Cu. Ft./Lb.	Enthalpy, B.t.u./Lb.	Entropy, B.t.u. per Lb. ° R.	Fugacity Ratio, <i>f/p</i>		
		0 P.S.I.A.					100 P.S.I.A. (319° F. ^a)				
77 100	Undefined	337.7 346.0	0.509 0.604	$1.000 \\ 1.000$	340 380	1.243 1.349	436.3 458.8	1.042 1.101	0.8804 0.9008		
140 180 220		361.3 377.4 394.4	0.732 0.833 0.918	1.000 1.000 1.000	420 460 500	1.439 1.526 1.610	481.5 504.2 527.5	$1.155 \\ 1.210 \\ 1.252$	$\begin{array}{c} 0.9155 \\ 0.9274 \\ 0.9368 \end{array}$		
260 300 340		412.1 430.6 450.5	0.993 1.058 1.119	1.000 1.000 1.000	540	1.690	550.9) P.S.I.A. (345	1.296	0.9440		
380		469.9	1.174	1.000	260	0.803	438.4	1.051	0.9499		
420 460		490.6 512.0	$1.226 \\ 1.275$	$1.000 \\ 1.000$	360 380	0.803	452.2	1.082	0.8423 0.8561		
500		534.1	1.321	1.000	420	0.928	476.3	1.138	0.8772		
540		556.5	1.362	1.000	460	0.984	499.8	1.189	0.8957		
	10	P.S.I.A. (190°	F . ^{<i>a</i>})		500 540	$\begin{array}{c} 1.044 \\ 1.104 \end{array}$	524.0 548.0	$1.236 \\ 1.281$	$0.9098 \\ 0.9199$		
220	11.414	392.5	0.915	0.9708	010				0.0100		
260 300	$11.803 \\ 13.349$	410.6 429.4	0.990 1.056	0.9795 0.9838) P.I.S.A. (374				
340	14.094	449.2	1.117	0.9870	380 420	0.584 0.656	442.5 471.3	$1.062 \\ 1.123$	$0.8124 \\ 0.8431$		
380	14.837	468.6	1.172	0.9892	420	0.000	496.0	1.123	0.8451		
420	15.565	489.5	1.225	0.9908	500	0.761	520.6	1.224	0.8843		
460 500	16.294 17.011	511.2 533.4	$\begin{array}{c} 1.274 \\ 1.321 \end{array}$	0.9920 0.9927	540	0.807	544.9	1.269	0.8979		
540	17.743	556.0	1.361	0.9934		250) P.S.I.A. (393	° F. ^a)			
	14.69	6 P.S.I.A. (208	8 ° F.⁴)		400	0.452	446.7	1.076	0.7895		
220	7.932	392.5	0.913	0.9526	420 460	0.493 0.546	463.8 496.5	$1.109 \\ 1.164$	0.8239 0.8376		
260	8.201	409.7	0.988	0.9709	500	0.590	517.1	1.214	0.8602		
300 340	$9.016 \\ 9.532$	429.1 448.7	$\begin{array}{c} 1.054 \\ 1.116 \end{array}$	$0.9770 \\ 0.9812$	540	0.632	542.0	1.260	0.8773		
380	10.041	468.4	1.171	0.9843		300) P.S.I.A. (410	°F.⁴)			
420	10.546	489.2	1.224	0.9867	420	0.373	453.4	1.093	0.7725		
46 0 500	$11.047 \\ 11.545$	$510.8 \\ 533.0$	$1.273 \\ 1.319$	0.9883 0.9899	420	0.433	486.1	1.154	0.8094		
540	12.043	555.7	1.359	0.9913	500	0.475	513.5	1.205	0.8363		
	25	P.S.I.A. (233 °	F . ^{<i>a</i>})		540	0.510	539.2	1.252	0.8564		
240	4.712	395.6	0.934	0.9451) P.S.I.A. (439				
260	4.883	407.5	0.971	0.9512	460	0.284	471.3	1.131	0.7283		
300 340	5.373 5.530	$\begin{array}{r} 428.4\\ 447.5\end{array}$	$1.037 \\ 1.098$	0.9610 0.9681	480 500	$0.308 \\ 0.329$	489.4 504.8	$1.161 \\ 1.188$	0.7524 0.7898		
380	5.837	467.2	1.155	0.9734	540	0.363	533.0	1.238	0.8170		
420	6.141	488.3	1.217	0.9774							
460 500	6.442 6.739	$510.0 \\ 532.4$	$1.256 \\ 1.302$	0.9804 0.9828) P.S.I.A. (459				
500 540	7.032	554.9	1.346	0.9828	480	0.213	471.4	1.142	0.7211		
		P.S.I.A. (273 °			500 520	$0.236 \\ 0.254$	492.8 509.1	$1.171 \\ 1.198$	$0.7441 \\ 0.7633$		
990	2.377	410.0	0.973	0.9167	540	0.266	525.7	1.224	0.7785		
280 300	2.441	422.1	1.009	0.9167		600) P.S.I.A. (479	° F.")			
340	2.677	444.2	1.072	0.9375	500	0.167	472.9	1.152	0.6966		
380	2.842	464.5	1.129	0.9476	520	0.190	497.3	1.182	0.7211		
420 460	$3.005 \\ 3.160$	486.2 505.7	$1.181 \\ 1.231$	0.9555 0.9618	540	0.205	515.9	1.209	0.7402		
					700 P.S.I.A. (501° F.°)						
460 500	$3.160 \\ 3.315$	505.7 530.8	$1.231 \\ 1.277$	0.9618 0.9667	520	0.136	480.5	1.161	0.6774		
540	3.464	553.8	1.322	0.9706	540	0.150	505.3	1.196	0.7025		
^a Saturated	temperature.										

ture-enthalpy, and temperature-entropy diagrams. Tabulated data are given in Tables I and II, and the data are plotted on a pressure-enthalpy diagram (Figure 1).

The calculated data were checked for internal consistency with the combined first and second law of thermodynamics

$$dH = TdS + VdP \tag{10}$$

Equation 10 was integrated graphically at both constant pressure and constant entropy and compared with the enthalpy from the calculated data. These checks showed that the data presented are internally consistent.

The accuracy of the data cannot be checked by direct comparison, because the necessary data are lacking. The vapor phase enthalpy values are probably accurate to ± 1.00 B.t.u. per pound and the entropy values to ± 0.001 B.t.u. per pound ° R.

ACKNOWLEDGMENT

The authors acknowledge financial assistance from the Chemical Engineering Department, University of Missouri, during part of this work.

NOMENCLATURE

B, C, D,
$$E$$
 = constants in Equation 15
 C_p = constant pressure heat capacity
 f = pure component fugacity

- H = enthalpy
- Ρ = pressure
- R = universal gas constant, 1.9872 B.t.u./lb.-mole ° R.
- S = entropy
- T = temperature
- V =volume
- α = residual volume

Superscripts

= zero pressure, ideal gas state * = unit fugacity, ideal gas state

Subscripts

- c = critical constants
- L =liquid phase
- v = vapor phase

LITERATURE CITED

(1) Bennewitz, K., Rossner, W., Z. physik. Chem. B39, 126 (1938).

- (2) Foz Gazulla, O.R., Morcillo, J., Mendez, A., Anales real. soc. españ. fis. y quím. (Madrid) 50B, 17 (1954).
- International Critical Tables, Vol. III, p. 218, Vol. V, p. 137, (3) McGraw-Hill, New York, 1928.
- Kobe, K.A., Harrison, R.H., Pennington, R.E., Petrol. Refiner (4) 30, No. 8, 119 (1951).
- Lyderson, A.L., Greenkorn, A.R., Hougen, O.A., "Gereralized Properties of Pure Fluids," Eng. Expt. Station, Univ. Wisconsin, Rept. 4 (October 1955). (5)
- Ramsey, William, Young, Sidney, Phil. Trans. Roy. Soc. (6) (London) 180A, 137 (1889).
- Scarborough, J.B., "Numerical Mathematical Analysis," 4th ed., p. 128, Johns Hopkins Press, Baltimore, Md., 1958. (7)
- (8) Sinke, G.C., De Vries, Thomas, J. Am. Chem. Soc. 75, 1815 (1953).
- (9)
- Stull, D.R., Ind. Eng. Chem. 39, 517 (1947). Wylie, C.R., Jr., "Advanced Engineering Mathematics," (10)p. 512, McGraw-Hill, New York, 1951.
- (11)Young, Sidney, Z. physik. Chem. 70, 620 (1910).

RECEIVED for review June 29, 1960. Accepted September 12, 1960.

PUBLICATIONS OF THE ENGINEERING REPRINT SERIES

Copies of publications may be secured from the Director of the Engineering Experiment Station, University of Missouri. Single copies may be obtained free unless otherwise indicated until the supply is exhausted. Requests for additional copies will be considered upon further inquiry.

Reprint No.

- 40. A. Application of the Smith Chart to the Design of Microwave Absorbing Materials by D. L. Waidelich, Professor of Electrical Engineering, University of Missouri.
 - B. Synthesis of Control Systems Based on an Approximation to a Third-Order System by C. R. Hausenbauer, University of Arizona, Tucson, Ariz., and G. V. Lago, Professor of Electrical Engineering, University of Missouri, Columbia, Mo. A paper presented at the AIEE Summer General Meeting and Air Transportation Conference, Buffalo, N. Y., June 22-27, 1958.
- 41. A. Reduction of Probe-Spacing Effect in Pulsed Eddy Current Testing by Donald L. Waidelich, Professor of Electrical Engineering.
 - B. Minimizing the Effect of Probe-to-Metal Spacing in Eddy Current Testing by C. J. Renken, Jr., Research Assistant, and D. L. Waidelich, Professor of Electrical Engineering.

Reprints from Symposium on Nondestructive Tests in the Field of Nuclear Energy. American Society for Testing Materials, 1958.

- 42. A system of Gaging Plating Thickness by R. G. Myers, Assistant Electrical Engineer, Argonne National Laboratory and D. L. Waidelich, Professor of Electrical Engineering, University of Missouri. Reprinted from Transactions of the American Institute of Electrical Engineering, Vol. 77, Part I, p. 770, 1958.
- 43. Network Analyzer Measurement of the Mesh Equivalent of a Complex Circuit by J. C. Hogan, Professor of Electrical Engineering, University of Missouri and V. E. Verrall, Electrical Engineer, Central Illinois Public Service Company.
- 44. The Design of a Single-Layer Microwave Absorbing Material by D. L. Waidelich, Professor of Electrical Engineering, University of Missouri. Reprinted from Volume XIV, Proceedings of the National Electronics Conference, Hotel Sherman, Chicago, Illinois, October 13, 14, 15, 1958.
- 45. Pressure Changes at Open Junctions in Conduits by William M. Sangster, Associate Professor of Civil Engineering, University of Missouri; Horace W. Wood, Professor and Chairman of Civil Engineering, University of Missouri; Ernest T. Smerdon, Instructor in Civil Engineering, University of Missouri; and Herbert G. Bossy, Highway Research Engineer, U. S. Bureau of Public Roads, Washington, D.C. Reprinted from Journal of the Hydraulics Division, Proceedings of the American Society of Civil Engineers, 2057, June, 1959, HY6.
- 46. The Mutual Impedance of Perpendicular Half-Wave Antennas by D. R. Capps, Assistant Professor of Electrical Engineering, University of Missouri, and D. L. Waidelich, P.E., Prof. of Electrical Engineering, University of Missouri. Reprinted from Proceedings of the National Electronics Conference, Volume XV, Hotel Sherman, Chicago, Illinois, October 13, 14, 15, 1959.
- 47. The Bandwidth of a Single Layer Absorbing Material by B. W. Sherman, Assistant Instructor, Department of Electrical Engineering, University of Missouri, and D. L. Waidelich, P.E., Professor of Electrical Engineering, University of Missouri. Reprinted from Volume I of the Proceedings of the Second Annual RADC International RAM Symposium 9, 10, and 11 June 1959, Rome Air Development Center, Griffith Air Force Base, N.Y.
- 48. Measuring Equivalent Circuits by J. C. Hogan, Professor of Electrical Engineering, University of Missouri, Columbia, Missouri, and V. E. Verrall, System Planning and Protection Engineering, Central Illinois Public Service Company, Springfield, Illinois. Reprinted from Volume XXII, Proceedings of the American Power Conference.
- 49. Dewatering Rates For Digested Sludge in Lagoons by Edgar A. Jeffrey, Assistant Professor of Sanitary Engineering, University of Missouri. Reprinted from Journal Water Pollution Control Federation, November 1960, Washington, 16, D.C.
- Static Modulus of Elasticity of Concrete as Affected by Density by Adrian Pauw, P.E., Professor of Civil Engineering, University of Missouri. Reprinted from American Concrete Institute Journal, Title No. 57-32;
 V. 32; No. 6, December 1960 (Proceedings V. 57), P.O. Box 4754, Redford Station, Detroit 19, Michigan.
- 51. The Application of the Principle of Corresponding States for Polar Substances by Truman S. Storvick, P.E., Assistant Professor of Chemical Engineering, University of Missouri, and J. M. Smith, Northwestern University. Reprinted from Journal of Chemical and Engineering Data, Vol. 6, No. 1, January 1961.
- 52. Loosening of Bolted Joints by Small Plastic Deformations by O. A. Pringle, P. E., Associate Professor of Mechanical Engineering, Presented at the Winter Annual Meeting, New York, N. Y., Nov. 27 - Dec. 2, 1960, of The American Society of Mechanical Engineers. Paper No. 60-WA-116.
- 53. Thermodynamic Properties of n-Propyl Alconol by J. L. Cosner, Graduate Student, Department of Chemical Engineering, University of Missouri, J. E. Gagliardo, Student Assistant in Chemical Engineering, University of Missouri and T. S. Storvick, P. E., Assistant Professor of Chemical Engineering, University of Missouri, Reprinted from Journal of Chemical & Engineering Data, Vol. 6, No. 3 July, 1961.

*Out of Print

The University of Missouri SCHOOLS AND COLLEGES

College of Arts and Science School of Social Work College of Agriculture School of Forestry School of Home Economics School of Business and Public Administration College of Education College of Engineering Engineering Experiment Station Graduate School School of Journalism School of Law School of Medicine School of Nursing School of Veterinary Medicine

University of Missouri Libraries University of Missouri MU Engineering Experiment Station Series Local Identifier Cosner1961 Capture information Date captured 2018 January Scanner manufacturer Ricoh Scanner model MP C4503 Scanning software Optical resolution 600 dpi Color settings Grayscale, 8 bit; Color 24 bit File types Tiff Source information Format Book Content type Text Notes Digitized duplicate copy not retained in collection. Derivatives - Access copy LZW Compression Editing software Adobe Photoshop Resolution 600 dpi Grayscale, 8 bit; Color, 24 bit Color File types Tiffs converted to pdf

background and text darkened.

Color pages cropped.

Greyscale pages cropped and canvassed. Noise removed from

Notes