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Abstract 

Simulation-Based Engineering Science (SBES) is playing a more important role in gaining 

new knowledge and providing guidance for engineering activities, in particular, in the fields in 

which time scale and/or spatial scale make physical experiments dramatically expensive or even 

impossible. The success of SBES heavily relies on the development of algorithms that provide the 

bridge between the models describing physical and engineered systems and the computational 

devices that generate the digital representations of simulations. My efforts on the development of 

algorithms that simulate multiphysics and multiphase flow are presented in this dissertation. 

The first part of the dissertation describe the algorithms for the multiphysical model that 

simulates the laser drilling process. During laser drilling, heat conduction, melt flow, and 

vaporization occur in a very short time period. Vaporization also produces the recoil pressure that 

drives melt flow and complicates the heat transfer and material removal rate. To get a more realistic 

picture of the melt flow, a series of differential equations were developed that govern the process 

from pre-heating to melting and evaporation. In particular, the Navier-Stokes equation governing 

the melt flow is solved with the use of the boundary layer theory and integral methods. Heat 

conduction in a solid is investigated by using classic solutions with the corrections that reflect the 
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change in boundary condition from constant heat flux to Stefan condition. The dependence of 

saturation temperature on the vapor pressure is taken into account by using the Clausius-Clapeyron 

equation. Both constantly rising radial velocity profiles and rising-fall velocity profiles are 

considered. In spite of the assumed varying velocity profiles, the new model predicts that the 

drilling hole profiles are very close to each other in a specific super alloy for given laser beam 

intensity and pulse duration.  The numerical results show that the effect of melt flow on material 

removal can be ignored in some cases. The solutions derived can be applied to new cases to 

determine the role of melt flow and vaporization on laser drilling profile evolution and to study 

the solid material removal efficiency.  

The second part of this dissertation describes a new method that simulates the interaction 

between fluid and solid elements. The discrete element method (DEM) has been used to deal with 

the interactions between solid elements of various shapes and sizes, while the material point 

method (MPM) has been developed to handle the multi-phase (solid-liquid-gas) interactions 

involving failure evolution. A combined MPM-DEM procedure is proposed to take advantage of 

both methods so that the interaction between solid elements and fluid particles in a container could 

be better simulated. In the proposed procedure, large solid elements are discretized by the DEM, 

while the fluid motion is computed using the MPM. The contact forces between solid elements 

and rigid walls are calculated using the DEM. The interaction between solid elements and fluid 

particles are calculated via an interfacial scheme within the MPM framework. The proposed 

procedure is illustrated by representative examples. The convergence of numerical solutions and 

the factors affecting the simulation fidelity is also discussed.   
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Chapter 1. Introduction 

Our knowledge about the complex world in which we live mainly comes from observations, 

theoretical thinking, and experiments. In the majority of our human history, the term of 

“experiment” means physical experiment only in which a certain set of physical device is involved. 

These kind of physical experiments meet ever increasing challenges as human beings’ activity of 

explore advances into new fields of much different scales in time and space. In the field of 

molecular dynamics, the physical movements of atoms and molecules are studied by utilizing the 

great power of numerical experiments, or in another words, computer simulations, simply because 

the observation and verification of new ideas at such level of scale become too expensive and 

sometimes impossible. In the earth sciences, the size and history of this planet makes the physical 

experiments completely impossible, whether the study subject is a volcano or earthquake. In the 

industry of mining processing, different machines are designed and operated to reduce the size of 

ore particles so that valuable minerals can be exposed. Traditionally, these machines are designed 

via semi-empirical models. Because of the huge amount of electricity consumed by the grinding 

machines, it is desirable to have more energy-efficient equipment. However, the designers do not 

have the necessary information to help them reach their goal. The simulation-based engineering 

science (SBES) is becoming a more and more powerful tool to help engineers and scientists to 

complete their mission.  

1.1 What is simulation-based engineering science? 

Simulation-Based Engineering Science (SBES) is defined as the discipline that provides the 

scientific and mathematical basis for the simulation of engineered systems (NSF 2006). Such 

systems can be microelectronic devices, automobiles, aircrafts, infrastructures of oilfields, or 
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ecosystems. SBES provides the traditional engineering fields with the knowledge and techniques 

of fields such as computer science, mathematics, and the physical and social sciences. As a result, 

engineers are better able to predict and optimize systems that affect almost all aspects of our lives 

and work, including the products we use and export, our environment, our security and safety.  

1.2 How does Simulation-Based Engineering Science (SBES) work? 

It is understood that the world we live does not run randomly. Natural laws work whenever 

the conditions apply, for example, Fick’s laws that describe heat and  mass diffusion and Newton’s 

laws of motion that govern the behavior of macro body at moderate speed. These laws can be 

described in certain mathematical forms. Obtaining solutions to these mathematical equations has 

never been an easy task, even for well-trained mathematicians. The invention of the electronic 

computer, however, opened a new field to solve mathematical problems with ease. As an example, 

the motion and deformation of a continuum can be described in terms of partial differential 

equations. Prior to the invention of the computer, it was not possible to make a prediction of the 

future motion of a rocket after it leaves the launch device, even if the accurate mathematical model 

was well known. By inputting a certain set of numerical approaches, the real time change of an 

object can be predicted and presented to readers after millions and billions of calculations are run 

in a computer. Computer simulation allows engineers the ability to tell the performance of a 

product design before the product is actually manufactured. Computer simulation offers may 

opportunities in sciences. It represents an extension of theoretical science since it is based on 

mathematical models. These models can be used to test hypothesis since the models characterize 

the physical predictions. Simulation also provides a powerful alternative to the techniques of 

experimental science and observation in cases in which phenomena are not observable or when 

measurements are impractical or too expensive. 
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1.3 The challenges for Simulation-Based Engineering Science 

SBES is powerful, but it is far from perfect. While a computer is necessary equipment, 

algorithms are the key to solve the problems in SBES. It is the algorithms that convert 

mathematical models into computational processes. Algorithms provide a bridge between the 

models describing physical and engineered systems and the computational devices that generating 

the digital representations of simulations. For many classic problems with simple requirements, 

reliable algorithms have been developed as a result of many years of trial, verification, and 

validation. New algorithms are continually needed because we live in an ever-changing, dynamical 

world in which new problems continuously develop; we don’t have any effective algorithms for 

the new problems just identified or old problems of deeper concerns. As an example, let us consider 

the mining industry. The ore particles are treated as discrete elements in current simulation 

technology. Each individual element follows Newton’s second law of motion. Current algorithms 

are able to handle up to several million particles. As the particle size decreases, the number of 

particles increases exponentially. A cubic meter of ore can be 1000 particles of size 0.1 m, or 109 

particles of size 1 millimeter, or 1018 particles of size 1 micron. The number eliminates all attempts 

to realistically predict the effect of fine particles.  

Algorithms vary according to the processes they handle. The algorithms applied in 

computational fluid dynamics are not the same as those applied in solid structural analysis. In the 

last decades there has been many changes in simulation tools for simulating crustal deformation 

in earth science. A linear elastic model may help scientists to find the cause of present-day tectonic 

stress like photoelastic experiments, but a viscoelastic model or elastic-plastic-viscous model 

works better for time-dependent processes such as post-glacial rebound, post-seismic stress 

relaxation (Liu, Yang et al. 2000). For the simulation of the crustal deformation in geological time, 
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which includes over ten million years of history, the distortion of finite element mesh posed a 

threat that it could ruin the reputation of simulation for poor accuracy quality. This problem was 

finally solved by exploiting remesh technique (Yang and Liu 2009, Yang and Liu 2013). Later, it 

was shown that there are many meshless methods that provide alternative solutions for nonlinear 

problems (Nguyen, Rabczuk et al. 2008). Some algorithms provide solutions for more difficult 

problems like penetration and explosions. 

In addition to the development of mathematically correct algorithms, there is the challenge 

that comes from simulation code verification and validation (Oberkampf and Blottner 1998). 

Simulation code verification and validation answer the question of how reliable and accurate the 

simulation is when they are both run correctly.  Code verification is a prerequisite to code 

validation. The former requires that the code is mathematically correct. If there exists an analytic 

solution, the code should be able to produce a numerical result that approximates to the analytic 

solution at a certain convergence rate. The latter requires that the code can reproduce the numerical 

result that is close to the result of physical experiments. Once the code passes the validation, the 

confidence to predict real world events is then established. As the simulated subject becomes much 

complicated and difficult, such validation may be completed step by step. The motion of ore 

particles in an industrial mill is invisible and hard to monitor, but the power drawn by the mill is a 

good indicator that can be compared with the theoretical value predicted in numerical experiments. 

The solid material flow rate is a macro variable that can be measured, but the current discrete 

element method and the corresponding algorithms seem unable to predict due to the existence of 

fine particles and complicated mill structures. For the purpose of validation, a transparent pilot 

mill can be manufactured to laboratory scale. Thus, it is predictable that the development of 
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algorithms and the feedback from code verification are necessary steps to mature the simulation 

tools and they should not be expected to be finished over one night. 

Keep in mind that all models are an approximations to our real world. As our study 

proceeds to a new level, appropriate algorithms must be developed to help us to reach our goals. 

Therefore, continuous effort to develop new algorithms is required so as to advance the SBES.  

1.4 My efforts in SBES 

In this dissertation, my efforts will be directed in the following way. Two topics will be 

presented: the simulation on multiphysics and the simulation on multiphase flow. The primary 

results from the first topic has been published (Yang, Chen et al. 2016) and the results from the 

second topic have been accepted for publication (Yang, Sun et al. 2017). The two topics are in 

different engineering fields, but fundamentally they are in the same catalogue. They are real 

engineering problems and are governed by the conservational laws described in partial differential 

equations. They are able to be solved by numerical methods borrowed from mathematics and 

implemented with the aid of computer technology.   As a scholar in computational mechanics, I 

present these topics as a whole to the committee.  

In the multiphysics study, my major contribution is the derivation of the solution for the 

Navier-Stokes equation in a cylindrical coordinate system that governs the melt flow in laser 

drilling process. In previous numerical studies, the influence of melt flow was assumed to be free 

stream or simply neglected without justification. Thus, explicitly including viscous melt flow will 

significantly improve the quality of simulation. I also derived the exact solution for heat 

conduction in the solid before and after melt occurs. A more realistic relationship between 

saturation temperature and vapor pressure is included in my model, as well as latent and explicit 
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heat transfer in the solid-liquid interface, liquid-vapor interface. The model provides a general tool 

for laser drilling simulation and provides evidence that melt flow is ignorable in a specific case. 

In the multiphase flow simulation, an accurate differential equation was derived that 

reflects the current simulation practice using few assumptions. More importantly, a set of 

numerical approaches was developed for the first time to solve the new equation based on the 

Material Point Method (MPM) and Discrete Element Method (DEM), referred to as the combined 

MPM-DEM method in this study. The new numerical approach is implemented in C++ codes. 

Verification and validation was conducted in three cases, including solid-fluid interactions. 

Convergence study shows very good performance of the new approach. The comparison with 

physical experimental data shows this new method is applicable for more general simulation of 

solid-fluid interaction. 

The rest of this dissertation is organized as follows. The study on melt flow and heat 

transfer is given in the first section, in which the derivation of the governing equations, numerical 

solutions, and simulation results will be presented one by one. The second part contains the 

multiphase phase flow simulation. Similarly, the governing equations, institutive equations, 

numerical solutions, model verification, and validation are given. Conclusions for each part are 

drawn at the end respectively. 
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Part I. Multiphysics  

Simulation of Melt Flow and Heat Transfer in Laser Drilling 
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Chapter 2. Introduction of Numerical simulations in laser drilling 

2.1. Laser drilling 

Laser drilling is a process of creating a hole in a material by pulsing a laser beam on a 

particular surface area of the material. The laser beam is of high density of energy that causes the 

material to melt and vaporize. To make better control on this new technology, it is critical to 

quantitatively know the energy density level and the laser pulse duration in the first step. Melt 

recast layers, melt drop spatters occur during the rapid phase change process. It is necessary to 

have such knowledge in order to have a good quality of the product. From a scientific point of 

view, the new field of applying laser technology to industrial purposes introduces new 

opportunities to probe deeper into a wider variety of the phenomena encountered in laser–matter 

interaction. The phenomena are related to physical models describing energy propagation and 

absorption, ionization, evaporation, and nonlinear transport of mass, momentum, and energy 

(Parandoush and Hossain 2014). 

2.2. Current numerical simulations in laser drilling 

 There are two major mechanisms that control the material removal in the process of laser 

drilling: (1) melt evaporation, and (2) melt expulsion by the vaporization-induced recoil force. It 

is generally believed that melt removal will dominate if an assisting gas is applied on the melt 

surface when the melt surface temperature does not significantly exceed the melting point and the 

evaporation rate is low enough not to produce a noticeable recoil pressure.   In the cases where 

there is no assisting gas involved, melt expulsion varies with the recoil pressure, which is highly 

dependent on the surface temperature. At a high surface temperature, melt removal due to 

evaporation may exceed that by the hydrodynamic mechanism due to the recoil force. In an early 
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simulation, a significant portion of the absorbed laser intensity was found to be taken away by the 

melt flow from the heat interaction zone (Semak and Matsunawa 1997). Due to the difficulty in 

directly measuring the geometry of the interfaces and the temperature and recoil pressure at the 

melt-vapor interface, the portion of melt removed by the recoil force driven flow is hard to verify 

with existing experimental capabilities. The majority of numerical studies on laser drilling have 

simply neglected the effect of the melt flow on material removal without justification.  

Considerable research has been carried out to develop a theoretical model for predicting laser 

drilling response. Assuming a constant laser beam intensity profile, von Allmen analyzed the 

drilling velocity and drilling efficiency by using a one-dimensional (1-D) transient gas dynamic 

model (Allmen 1976). Chan and Mazumder (Chan and Mazumder 1987) developed a 1-D steady 

state model to incorporate liquid expulsion, but the 1-D assumption is not suited for hole drilling 

with high aspect ratio and the drilling process is transient. Kar and Mazumder (Kar and Mazumder 

1990) extended the model to 2-D, in which melt expulsion was not considered. Armon et al. 

formulated a 1-D metal drilling problem based on the enthalpy balance method and solved the 

problem by using the Crank-Nicholson method (Armon, Zvirin et al. 1989). They also conducted 

experimental investigations on metal drilling with a CO2 laser beam and analyzed the experimental 

results by using their theoretical model (Armon, Hill et al. 1989). A more rigorous treatment of 

melt expulsion was presented by Ganesh et al.(Ganesh, Faghri et al. 1997); this was a 2-D transient 

generalized model, which incorporated conduction, convection, and phase change heat transfer 

during laser drilling; this model, however, is computationally demanding. Zhang and Faghri 

developed an analytical model to study the effect of solid conduction on the material removal rate 

and phase change at interfaces (Zhang and Faghri 1999). In this model, the effect of melt flow on 

heat transfer is neglected.  Zhang et al. developed a 2-D transient model in which a Knudsen layer 
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is considered at the melt-vapor front, but the effect of melt flow is not considered (Zhang, Yao et 

al. 2001). Pastras et al. analyzed material removal efficiency by assuming linear temperature 

profiles in solid, liquid, and vapor (Pastras, Fysikopoulos et al. 2014), implicitly assuming that 

melt flow does not cause any disturbance on temperature gradient. 

The melt flow has been investigated by some existing models. For example, the model 

developed by Semak and Matsunawa (Semak and Matsunawa 1997) and a later version adapted 

by Low et al. (Low, Li et al. 2002) to include the effect of melt flow with an assisting gas on laser 

drilling are both integral, steady-state, and analytical models based on mass and energy 

conservation. Semak and Matsunawa attempted to evaluate the effect of recoil pressure during the 

melt ejection process. Their model is based on the assumption of a free flow layer of melt under 

the laser beam of hat-top shaped intensity profile (Semak and Matsunawa 1997). Ng et al. 

developed a model of laser drilling that incorporated the effect of using oxygen as an assisting gas. 

They assumed that the melt front propagates with an averaged velocity and the averaged melt 

thickness is determined by dividing the thermal diffusivity of the melt with the averaged 

propagating velocity (Ng, Crouse et al. 2006). Zeng et al. developed a 2-D analytical model for 

optical trepanning assuming that vaporization rate is negligible (Zeng, Latham et al. 2005). Collins 

and Gremaud developed a simple 1-D model by cross section averaging while neglecting the 

contribution of the radial flow velocity component (Collins and Gremaud 2011). It is worthy to 

note that the melt flow models developed by Allmen, Semak and Matsunawa, Ng et al. (Allmen 

1976, Semak and Matsunawa 1997, Ng, Crouse et al. 2006) and the latest simulation by Semak 

and Miller (Semak and Miller 2013) all assume a hat-top-shaped intensity profile. The assumption 

about the laser beam intensity profile directly affects the conclusion about the melt flow (Han and 

Liou 2004, Shuja and Yilbas 2011, Momin, Shuja et al. 2012). Using the hat-top profile, the melt 
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surface temperature could be assumed to be constant, although rapid change occurs at the margin 

of the melt. If the melt flow is further assumed to be free of shear traction, the recoil pressure can 

also be assumed to be constant; this assumption definitely leads one to overestimate the role of 

melt expulsion. Hence, the role of the melt flow in laser drilling needs to be reevaluated based on 

a more realistic model. 

A more realistic model should consider vaporization based on real physics.  It is well known 

that vaporization occurs at any temperature above the melting point, and the recoil pressure is 

highly dependent on melt surface temperature. However, some previous models assumed a Stefan 

condition at the melt-vapor interface (Ganesh, Faghri et al. 1997), while others took the boiling 

point for the liquid-vapor transition (Zhang, Shen et al. 2014). Solana et al. assumed the recoil 

pressure of the Gaussian form (Solana, Kapadia et al. 2001). Li et al. assumed that liquid-vapor 

transition takes place over a certain temperature range (Li, Li et al. 2004).   

How to simulate heat conduction more accurately is also important in better predicting the real 

physics. Heat conduction in solid is a classic problem, but the heat conduction in laser drilling 

involves a change in boundary condition, which has led to different approaches by different 

investigators. Earlier researchers assumed a constant melt layer thickness and a constant melting 

rate, and consequently developed a steady state heat conduction model (Chan and Mazumder 

1987). Modest derived a transient heat conduction model by assuming that the phase change from 

solid to vapor occurs in a single step (Modest 1996). By assuming a parabolic temperature profile 

and applying integration, the partial differential equation was transformed into an ordinary 

differential equation, which was later applied to an integral solution by Zhang and Faghri (Zhang 

and Faghri 1999).  Shen et al. also derived a transient heat conduction model by assuming a 

temperature profile of exponential function (Shen, Zhang et al. 2001). Ho and Lu developed a 
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transient heat conduction model by adding a heat source term in the solid to represent the energy 

flux from the laser beam (Ho and Lu 2003). Shidfar et al. developed a transient heat conduction 

model by assuming that the solid being heated is initially at the melting point (Shidfar, 

Alinejadmofrad et al. 2009). These models have been frequently cited in the laser simulation 

research community and have helped in understanding the physics with different degrees of 

success, but they have all had certain limitations due to assumptions made. Laser drilling in a solid 

is a transient heat conduction process with thermal energy emanating from laser beams; hence, 

classical solutions (Rohsenow, Hartnett et al. 1998) are available for us to develop a theoretical 

model that might better predict the process with few assumptions.  

In this work, the aim is to develop a theoretical model with the melt flow effect to be explicitly 

included. Once the solution regarding melt flow velocity becomes available, the effect of melt flow 

on the heat transfer can be evaluated with confidence. The assumption of ignoring melt flow can 

be verified or justified using the proposed method. It is intended to keep the model as simple as 

possible to reduce computational expense. Unlike previous studies, the melt is assumed to behave 

like a Newtonian fluid, and the non-slip boundary condition is applied along the solid-liquid 

interface. With a Gaussian intensity profile being assumed for the laser beam, the vapor 

temperature, recoil pressure, and initial melting time will vary in the radial direction. Heat 

absorbed in the solid and transferred by phase change and melt flow will be taken into account. 

Both boundary layer formulation and integral forms of momentum equation and energy equation 

will be developed. Finally, a set of numerical experiments will be performed for a special super 

alloy by using the formula developed in this study.  
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Chapter 3. Interface energy balance and governing equations 

Figure 1 shows the coordinate system used for formulating the equations, in which r denotes 

the radial direction, and Z the upward direction pointing to the melt from the solid, with origin at 

the solid-melt interface. Note that we use the lower-case letter z to mark the change of interface 

between phases, and z originates at the initial solid surface and always points toward the solid. The 

solid-melt interface is curved in nature, but for the first order of approximation, the difference 

between tangent direction and radial direction in current study on melt flow is simply ignored, 

similar to approach by Ganesh et al.(Ganesh, Faghri et al. 1997). The local coordinate n is defined 

to originate at the solid-melt interface and point to the solid in the normal direction. 

3.1 Melt convection 

In the melt layer, the vertical velocity is much smaller than the lateral component, which 

enables the simplification of the governing equations considerably. We also ignore the friction 

produced heat, surface tension, and gravitational force. Similar to the assumptions in the jet 

impingement study by Kendoush (Kendoush 1998),  the continuity equation, momentum equation, 

and energy equation can be written as: 

𝜕𝑢

𝜕𝑟
+

𝜕𝑣

𝜕𝑍
+
𝑢

𝑟
= 0         (3-1) 

𝑢
𝜕𝑢

𝜕𝑟
+ 𝑣

𝜕𝑢

𝜕𝑍
=

𝜇

𝜌
[
𝜕2𝑢

𝜕𝑍2
+
1

𝑟

𝜕𝑢

𝜕𝑟
−

𝑢

𝑟2
] −

1

𝜌

𝜕𝑝

𝜕𝑟
      (3-2) 

𝜕𝑇𝑙

𝜕𝑡
+ 𝑢

𝜕𝑇𝑙

𝜕𝑟
+ 𝑣

𝜕𝑇𝑙

𝜕𝑍
= 𝛼𝑙

𝜕2𝑇𝑙

𝜕𝑍2
       (3-3) 

where 𝑢  and 𝑣  are the radial, and vertical velocity component, respectively. 𝜌  represents the 

density of the melt and 𝜇 the viscosity. 𝑇𝑙 is the temperature in the liquid and 𝛼𝑙 is the thermal 

diffusivity. The lower case t denotes time and 𝑝 represents pressure. For the convenience of the 



14 
 

description of boundary layer theory, 𝑈 and 𝑉stand for free stream flow velocity outside of the 

boundary layer, and the radial component 𝑈 does not change in the Z-direction. From Bernoulli's 

principle, we have the following equation for the free stream,  

−
1

𝜌

𝜕𝑝

𝜕𝑟
= 𝑈

𝑑𝑈

𝑑𝑟
         (3-4)  

Considering that the melt layer is much thinner compared with its lateral dimension, we assume 

that the pressure variation in the thickness direction is ignorable; thus, the second momentum 

conservation equation becomes  
𝜕𝑝

𝜕𝑍
= 0, so pressure can be treated as a function of radius only. 

Defining 𝜉 =
𝑟

𝑅
, 𝜁 =

𝑍

𝑅
, 𝜏 =

𝑡𝛼𝑙

𝑅2
, 𝛼𝑙 =

𝑘𝑙

𝜌𝑐𝑝𝑙
, 𝑢∗ =

𝑢𝑅

𝛼𝑙
, 𝑣∗ =

𝑣𝑅

𝛼𝑙
, 𝑈∗ =

𝑈𝑅

𝛼𝑙
, 𝑝∗ =

𝑝𝑅2

𝜌𝛼𝑙
2 , 𝜃𝑙 =

𝑇𝑙−𝑇𝑚

𝑇𝑠𝑎𝑡0−𝑇𝑚
, 

we rewrite the above equations in a non-dimensional form 

𝜕𝑢∗

𝜕𝜉
+
𝜕𝑣∗

𝜕𝜁
+
𝑢∗

𝜉
= 0         (3-1a) 

𝑢∗
𝜕𝑢∗

𝜕𝜉
+ 𝑣∗

𝜕𝑢∗

𝜕𝜁
= 𝑃𝑟 [

𝜕2𝑢∗

𝜕𝜁2
+
1

𝜉

𝜕𝑢∗

𝜕𝜉
−

𝑢∗

𝜉2
] −

𝑑𝑝∗

𝑑𝜉
     (3-2a) 

𝜕𝜃𝑙

𝜕𝜏
+ 𝑢∗

𝜕𝜃𝑙

𝜕𝜉
+ 𝑣∗

𝜕𝜃𝑙

𝜕𝜁
=

𝜕2𝜃𝑙

𝜕𝜁2
        (3-3a) 

−
𝜕𝑝∗

𝜕𝜉
= 𝑈∗

𝑑𝑈∗

𝑑𝜉
         (3-4a) 

For convenience, we simply remove the asterisks from each variable now and hereafter. The 

−
𝑑𝑝

𝑑𝜉
 is also replaced with 𝑈

𝑑𝑈

𝑑𝜉
. Now we have 

𝜕𝑢

𝜕𝜉
+
𝜕𝑣

𝜕𝜁
+
𝑢

𝜉
= 0         (3-1b) 

𝑢
𝜕𝑢

𝜕𝜉
+ 𝑣

𝜕𝑢

𝜕𝜁
= 𝑃𝑟 [

𝜕2𝑢

𝜕𝜁2
+
1

𝜉

𝜕𝑢

𝜕𝜉
−

𝑢

𝜉2
] + 𝑈

𝑑𝑈

𝑑𝜉
      (3-2b) 
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𝜕𝜃𝑙

𝜕𝜏
+ 𝑢

𝜕𝜃𝑙

𝜕𝜉
+ 𝑣

𝜕𝜃𝑙

𝜕𝜁
=

𝜕2𝜃𝑙

𝜕𝜁2
        (3-3b) 

Assuming there exists a boundary layer of melt of thickness 𝛿, we have the boundary conditions 

as follows 

𝑣 = 0 𝑎𝑡 𝜁 = 0         (3-5) 

𝑢 = 𝑈  𝑎𝑡 𝜁 = 𝛿         (3-6) 

𝜕𝑢

𝜕𝜁
= 0  𝑎𝑡 𝜁 = 𝛿         (3-7) 

𝑢 = 0  𝑎𝑡 𝜁 = 0         (3-8) 

𝑢 = 0  𝑎𝑡 𝜉 = 0         (3-9) 

𝜃𝑙 = 0 𝑎𝑡 𝜁 = 0         (3-10) 

𝜃𝑙 = 𝜃𝑠𝑎𝑡  𝑎𝑡 𝜁 = 𝑔(𝜉, 𝜏)        (3-11) 

3.2 Pressure-dependent saturation temperature 

In the following sessions, 𝑧 = 𝑠1(𝑟, 𝑡) and  𝑧 = 𝑠2(𝑟, 𝑡) are the vapor-melt interface and melt-

solid interface respectively. At 𝑧 = 𝑠1(𝑟, 𝑡), energy conservation requires that the sum of vapor 

kinetic energy, latent heat due to vaporization, and sensible heat into the melt be equal to the input 

energy from laser beam, i.e., 

1

2
𝑗𝑣𝑀𝑉𝑣

2 + ℎ𝑙𝑣𝜌
𝜕𝑠1

𝜕𝑡
+ 𝑘𝑙

𝜕𝑇𝑙

𝜕𝑧
|𝑧=𝑠1 = 𝐼      (3-12) 

where M is the molar mass of the gas and 𝑗𝑣 is the molar flux of evaporation, ℎ𝑙𝑣 denotes the latent 

heat of vaporization, and 𝑘𝑙  represents the heat conductivity of the liquid. 𝐼 is the laser beam 



16 
 

intensity. Eq. (3-12) actually is the equilibrium of energy per unit time and per unit area. Assuming 

the temperature is continuous at the melt-vapor interface, the vapor velocity at the interface is 

𝑉𝑣 = √𝛾𝑅𝑔𝑇𝑠𝑎𝑡/𝑀         (3-13) 

where 𝛾 =
𝑐𝑝

𝑐𝑣
=

5

3
 for a monoatomic ideal gas (Bellantone and Ganesh 1991). From Eq. (3-12), 

one gets 

𝜌
𝜕𝑠1

𝜕𝑡
=

𝐼−
1

2
𝑗𝑣𝑀𝑉𝑣

2−𝑘𝑙
𝜕𝑇𝑙
𝜕𝑧
|𝑧=𝑠1

ℎ𝑙𝑣
        (3-14) 

The vapor pressure is related to the temperature by the Clausius-Clapeyron equation: 

𝑝(𝑇𝑠𝑎𝑡) = 𝑝0𝑒𝑥𝑝 [
ℎ𝑙𝑣

𝑅𝑔
(

1

𝑇𝑠𝑎𝑡0
−

1

𝑇𝑠𝑎𝑡
)]       (3-15) 

where 𝑇𝑠𝑎𝑡 denotes the vapor temperature and 𝑇𝑠𝑎𝑡0 is the saturation temperature at pressure 𝑝0. 

𝑅𝑔 is the gas constant. The vapor leaving the melt surface can also be counted by using the product 

of molar flux and molar mass. 

𝜌
𝜕𝑠1

𝜕𝑡
= 𝑗𝑣𝑀          (3-16) 

Bellantone and Ganesh (Bellantone and Ganesh 1991) obtained the following relation: 

𝑗𝑣 =
𝑝

√2𝜋𝑀𝑅𝑔𝑇𝑠𝑎𝑡
         (3-17) 

Substituting Eq. (3-16) into Eq. (3-14), one gets  

𝑗𝑣 =
𝐼−𝑘𝑙

𝜕𝑇𝑙
𝜕𝑧
|𝑧=𝑠1

ℎ𝑙𝑣𝑀+
1

2
𝛾𝑅𝑔𝑇𝑠𝑎𝑡

         (3-18) 

From the right sides of Eq. (3-18) and Eq. (3-17), one has 
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𝑝 = √
2𝜋𝑅𝑔𝑇𝑠𝑎𝑡

𝑀

𝐼−𝑘𝑙
𝜕𝑇𝑙
𝜕𝑧
|𝑧=𝑠1

ℎ𝑙𝑣+
𝛾𝑅𝑔

2𝑀
𝑇𝑠𝑎𝑡

        (3-19) 

Substituting Eq. (3-15) into Eq. (3-19), one gets 

𝑝0𝑒𝑥𝑝 [
ℎ𝑙𝑣

𝑅𝑔
(

1

𝑇𝑠𝑎𝑡0
−

1

𝑇𝑠𝑎𝑡
)] = √

2𝜋𝑅𝑔𝑇𝑠𝑎𝑡

𝑀

𝐼−𝑘𝑙
𝜕𝑇𝑙
𝜕𝑧
|𝑧=𝑠1

ℎ𝑙𝑣+
𝛾𝑅𝑔

2𝑀
𝑇𝑠𝑎𝑡

     (3-20) 

The laser beam intensity takes the Gaussian form as follows 

𝐼(𝑟, 𝑡) = 𝐼0 exp (−
𝑟2

𝑅2
) = 𝐼0 exp(−𝜉

2) , 0 < 𝑡 < 𝑡𝑝     (3-21) 

Using dimensionless parameters 𝑘′ =
𝑘𝑙(𝑇𝑠𝑎𝑡0−𝑇𝑚)

𝑅𝐼0
and 𝐼′ =

𝐼0

𝑝0ℎ𝑙𝑣
√
2𝜋𝑅𝑔𝑇𝑠𝑎𝑡0

𝑀
,  Λ =

𝛾𝑅𝑔𝑇𝑠𝑎𝑡0

2𝑀ℎ𝑙𝑣
,, 

𝜃𝑠𝑎𝑡 =
𝑇𝑠𝑎𝑡−𝑇𝑚

𝑇𝑠𝑎𝑡0−𝑇𝑚
, 𝜃𝑚 =

𝑇𝑚

𝑇𝑠𝑎𝑡0
, we simplify Eq. (3-20) as 

{1 + Λ[𝜃𝑠𝑎𝑡(1 − 𝜃𝑚) + 𝜃𝑚]}𝑒𝑥𝑝 [𝐻𝑙𝑣 (1 −
1

𝜃𝑠𝑎𝑡(1−𝜃𝑚)+𝜃𝑚
)] =

𝐼′√𝜃𝑠𝑎𝑡(1 − 𝜃𝑚) + 𝜃𝑚 [exp(−𝜉
2) − 𝑘′

𝜕𝜃𝑙

𝜕𝜁
|𝜁=𝑆1]       

            (3-22) 

3.3 Energy balance at solid-melt interface 

Both the energy for heating up the solid and melting are from the liquid; thus, the energy 

balance at the solid-liquid interface can be written as follows: 

𝜌ℎ𝑙𝑠
𝜕𝑠2

𝜕𝑡
= 𝑘𝑠

𝜕𝑇𝑠

𝜕𝑧
|𝑧=𝑠2 − 𝑘𝑙

𝜕𝑇𝑙

𝜕𝑧
|𝑧=𝑠2        (3-23) 

where ℎ𝑙𝑠 denotes the latent heat of melting and 𝑘𝑠 and 𝑘𝑙 represent the thermal conductivity of 

the solid and the fluid, respectively. In this equation, it is assumed that the density of the solid is 

the same as that of the fluid. The dimensionless form is  

𝜕𝑆2

𝜕𝜏
= 𝑆𝑡𝑒𝑁𝛼𝑁𝑐 (−

𝜕𝜃𝑠

𝜕𝜁
|𝜁=0 + 𝑘

𝜕𝜃𝑙

𝜕𝜁
|𝜁=0)      (3-24) 
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where 𝑆𝑡𝑒 =
𝑐𝑝𝑙(𝑇𝑠𝑎𝑡0−𝑇𝑚)

ℎ𝑙𝑠
  is the Stefan number; 𝑁𝛼 =

𝛼𝑠

𝛼𝑙
 is the thermal diffusivity ratio; and  𝑁𝑐 =

𝑐𝑝𝑠

𝑐𝑝𝑙
 is the specific heat ration; 𝑘 =

𝑘𝑙

𝑘𝑠
 represents the ratio of liquid thermal conductivity over solid. 

Eq. (3-14) is the energy balance at the melt-vapor interface. From Eq . (3-13) and (3-17), the 

vapor kinetic energy 
1

2
𝑗𝑣𝑀𝑉𝑣

2 =
𝑝𝛾

2

√𝑅𝑔𝑇𝑠𝑎𝑡

√2𝜋𝑀
=

𝑝√𝛾Λℎ𝑙𝑣

2√𝜋
√
𝑇𝑠𝑎𝑡

𝑇𝑠𝑎𝑡0
, and let  𝛹 =

√𝛾Λ

2√𝜋

𝛼𝑙

𝑅√ℎ𝑙𝑣
; hence, the 

dimensionless form of (3-14) is  

𝜕𝑆1

𝜕𝜏
= 𝑁𝑖 exp(−𝜉

2) − 𝛹𝑝√𝜃𝑠𝑎𝑡(1 − 𝜃𝑚) + 𝜃𝑚 −
ℎ𝑙𝑠

ℎ𝑙𝑣
𝑆𝑡𝑒

𝜕𝜃𝑙

𝜕𝜁
|𝜁=𝑔    (3-25) 

Note that the pressure p in the Eq. (3-25) is dimensionless whereas the one in the (3-15), (3-

17), (3-19) is dimensional.  

3.4 Heat conduction in solid 

To analyze the heat conduction in the solid, we set up a local one-dimensional coordinate 

system n that originates at the melt-solid interface and points to the solid in the normal direction 

(see Fig. 1). Before the surface temperature reaches the melting point, the solid surface receives 

constant heat flux, and the solution is (Rohsenow, Hartnett et al. 1998): 

𝜃𝑠(𝜉, 𝑛, 𝜏) = 𝜃𝑖 +
𝑘

𝑘′
𝑒𝑥𝑝(−𝜉2)√𝑁𝛼𝜏 [

1

√𝜋
𝑒𝑥𝑝(−𝜂2) − 𝜂𝑒𝑟𝑓𝑐(𝜂)]   (3-26) 

where 𝜃𝑠 =
𝑇𝑠−𝑇𝑚

𝑇𝑠𝑎𝑡0−𝑇𝑚
 is the dimensionless temperature in the solid whereas 𝑇𝑠 corresponds to the 

dimensional value; 𝜃𝑖 =
𝑇𝑖−𝑇𝑚

𝑇𝑠𝑎𝑡0−𝑇𝑚
 is the dimensionless initial temperature of the solid, and 𝑇𝑖 is the 

dimensional value, 𝑇𝑚 is the melting point, and 𝑘′ =
𝑘𝑙(𝑇𝑠𝑎𝑡0−𝑇𝑚)

𝑅𝐼0
, and 𝜂 =

𝑛

2√𝑁𝛼𝜏
, which is referred 

to as the similarity variable. 

It is obvious that the highest temperature is at the surface. When 𝑇𝑠 = 𝑇𝑚 , 𝜃𝑠 = 0, phase 

change begins at the surface. The melting starting time can thus be obtained from Eq. (3-26) 

𝜏𝑚 =
𝜋

𝑁𝛼
[
𝑘′𝜃𝑖

𝑘
𝑒𝑥𝑝(𝜉2)]

2

        (3-27) 

At the moment 𝜏 = 𝜏𝑚, the following temperature profile is established.  
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𝜃𝑠(𝜉, 𝑛, 𝜏𝑚) = 𝜃𝑖 − 𝜃𝑖[𝑒𝑥𝑝(−𝜂𝑚
2) − √𝜋𝜂𝑚𝑒𝑟𝑓𝑐(𝜂𝑚)]    (3-28) 

where 𝜂𝑚 =
𝑛

2√𝑁𝛼𝜏𝑚
.  

The exact solution for the time period after melting starts was derived in this study as well as 

the geometrical correction for the temperature gradient.  The exact solution for the time period 

after melting starts consists of three parts: 

𝜃𝑠(𝜉, 𝑛, 𝜏) = 𝜃𝑠1 + 𝜃𝑠2 + 𝜃𝑠3, 𝜏 > 𝜏𝑚      (3-29) 

where 

𝜃𝑠1(𝑛, 𝜏) = 𝜃𝑖𝑒𝑟𝑓 [
𝑛

2√𝑁𝛼(𝜏+𝜏0−𝜏𝑚)
] , 𝜏 > 𝜏𝑚      (3-30) 

in which 

𝜏0 =
[
𝜃𝑖𝑘′

𝑘
𝑒𝑥𝑝(𝜉2)]

2

4𝑁𝛼
=

𝜏𝑚

4𝜋
        (3-31) 

Equation (3-30) is the solution of the Stefan problem. The idea of adding 𝜏0 is to avoid singularity 

at 𝜏 = 𝜏𝑚 and to make the temperature gradient (heat flux) continuous at 𝜏 = 𝜏𝑚, which also has 

a generated temperature profile  

𝜃𝑠1(𝑛, 𝜏𝑚) = 𝜃𝑖𝑒𝑟𝑓 (
𝑛

2√𝑁𝛼𝜏0
)        (3-32) 

This profile is called "generated" because the initial condition 𝜃𝑖 is assumed at the moment 

𝜏 = 𝜏𝑚 − 𝜏0 for the Stefan solution. Because the temperature field at melting starting time is not 

the profile expressed in Eq. (3-32), but the established profile shown in Eq. (3-28). Eq. (3-30) is 

not the exact solution of the problem concerned. The difference between Eq. (3-28) and (3-32) 

must be corrected. For a semi-infinity object with no heat source and zero initial and boundary 
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conditions, the temperature evolution due to an existing non-zero temperature profile 𝐺(𝑛) at a 

given moment can be calculated using the following formula (Evans 1997) 

𝜃𝑠2(𝑛, 𝜏) =
1

2√𝜋𝑁𝛼(𝜏−𝜏𝑚)
∫ 𝐺(𝑦)𝑒

−
(𝑛−𝑦)2

4𝑁𝛼(𝜏−𝜏𝑚)𝑑𝑦
∞

0
, 𝜏 > 𝜏𝑚    (3-33) 

For the problem 𝐺(𝑛) = 𝜃𝑠(𝜉, 𝑛, 𝜏𝑚) − 𝜃𝑠1(𝑛, 𝜏𝑚). Obviously this solution will lead to a non-zero 

boundary temperature at 𝑛 = 0. 

𝜃𝑠2𝑏(0, 𝜏) =
1

2√𝜋𝑁𝛼(𝜏−𝜏𝑚)
∫ 𝐺(𝑦)𝑒

−
𝑦2

4𝑁𝛼(𝜏−𝜏𝑚)𝑑𝑦
∞

0
, 𝜏 > 𝜏𝑚    (3-34) 

In order to keep the constant zero temperature at the boundary (Stefan condition), it is 

necessary to add a new correction by considering the effect of boundary temperature 𝜃𝑠3𝑏(0, 𝜏) =

−𝜃𝑠2𝑏(0, 𝜏). The solution of this Dirichlet condition is classic, and the uniqueness of the solution 

is proven in (Evans 1997). It can be solved by using numerical methods like finite element methods 

or finite difference methods. An easy way is to use PDEPE function in MATLAB. The solution is 

now marked as 𝜃𝑠3. 

Both 𝜃𝑠2 and 𝜃𝑠3 decline very fast with time, and they become negligible as 𝜏 > 5𝜏𝑚. The 

Stefan solution is the major contributor. To reduce computational expense, an approximated 

solution is obtained by simply shifting the Stefan solution backwards about 3𝜏0, which leads to 

negligible change for 𝜏 > 5𝜏𝑚 , but attains significant improvement on the temperature gradient 

for 𝜏 < 𝜏𝑚. 

𝜃𝑠(𝑛, 𝜏) ≈ 𝜃𝑖𝑒𝑟𝑓 [
𝑛

2√𝑁𝛼(𝜏+3𝜏0−𝜏𝑚)
]       (3-35) 

𝜕𝜃𝑠

𝜕𝑛
(0, 𝜏) ≈

𝜃𝑖

√𝜋𝑁𝛼𝜏𝑚√
𝜏

𝜏𝑚
−1+

3

4𝜋

        (3-36) 
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Since the coordinate origin moves at the rate of 𝑉𝑛 =
𝜕𝑆2

𝜕𝜏
/√1 + (

𝜕𝑆2

𝜕𝜉
)
2

, the effective 

temperature gradient at a static coordinate system will be 
𝜕𝜃𝑠

𝜕𝑛
(0, 𝜏) + 𝜃𝑖

𝑉𝑛

𝑁𝛼
 in terms of same energy 

fluency. 

The curvature-corrected temperature gradient is 𝐶𝑐 [
𝜕𝜃𝑠

𝜕𝑛
(0, 𝜏) + 𝜃𝑖

𝑉𝑛

𝑁𝛼
] where  

𝐶𝑐 =

{
 
 

 
 

𝑎𝑑

2𝑠𝑖𝑛−1
𝑎𝑑

2

   𝑎 > 0

1              𝑎 = 0
2𝑠𝑖𝑛−1

𝑎𝑑

2

𝑎𝑑
  𝑎 < 0

        (3-37) 

and 

𝑎 = −
𝜕2𝑆2

𝜕𝜉2
[1 + (

𝜕𝑆2

𝜕𝜉
)2]

−3/2

        (3-38) 

is the curvature of the melting interface. The minus sign is due to the 𝑆2 point to z direction. In 

numerical tests, 𝑑 = ∆𝜉√1 + (
𝜕𝑆2

𝜕𝜉
)
2

, where ∆𝜉 is the interval of 𝜉. The interval can be taken as 

small enough to make 𝑎𝑑 < 2. 

The basic idea for the curvature-correction is that the energy influence should be equal in the 

normal direction of the surface (see Figure 3.2). A concave surface tends to reduce the energy 

influence density while a convex one works exactly in the opposite direction. 

Note that 
𝜕𝜃𝑠

𝜕𝜁
 in Eq. (3-24) is related to 

𝜕𝜃𝑠

𝜕𝑛
|𝑛=0 by considering the heat energy fluency crossing 

the melt surface, which gives 

𝜕𝜃𝑠

𝜕𝜁
|𝑛=0 = −𝐶𝑐 [

𝜕𝜃𝑠

𝜕𝑛
(0, 𝜏)√1 + (

𝜕𝑆2

𝜕𝜉
)
2

+
𝜃𝑖

𝑁𝛼

𝜕𝑆2

𝜕𝜏
]     (3-39) 

Substituting (3-39) and the definition of 𝑉𝑛 into (3-24) leads to 

1

𝑁𝛼
(

1

𝑆𝑡𝑒𝑁𝑐
− 𝐶𝑐𝜃𝑖)

𝜕𝑆2

𝜕𝜏
= 𝐶𝑐

𝜕𝜃𝑠

𝜕𝑛
(0, 𝜏)√1 + (

𝜕𝑆2

𝜕𝜉
)
2

+ 𝑘
𝜕𝜃𝑙

𝜕𝜁
|𝜁=0   (3-40) 
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3.5 Some examples of energy flux rate in solid via heat conduction 

Although the exact solution of temperature and its gradient is explicitly given in the last 

session, it is possible that it is not found intuitively; thus, examples are provided to show the 

solutions. The physical parameters are listed in Table 3.1.  

Firstly, the temperature profiles at four locations at corresponding melting start time are 

shown in the Figure 3-3a. They are the established temperature profiles at the very beginning of 

melting. At the center of the laser beam, the melting preheat time is the shortest and the profile is 

the narrowest. The farther away from the center, the less the laser beam energy intensity, and more 

time required for temperature to reach melting point, and the wider the profile. Figure 3-3b shows 

the temperature profiles generated from the Stefan problem at a specific time, which leads to the 

same heat flux as in the pure conduct case. Figure 3-3c shows the differences between the 

established profiles and the generated profiles.  Obviously, the difference is non-zero except at the 

boundaries (n=0  and n=∞). Ignoring the difference means the energy stored from pre-melting is 

missing.  

Treating the temperature difference as an existed temperature profile, we can calculate the 

diffusion and the result is shown in Figure 3-4. It can be seen that the temperature peak value drops 

very quickly. At the first one 𝜏𝑚 , the peak value is only 1/3 of the original value. The temperature 

at the boundary rises from zero and then declines. The details of temperature change at the 

boundary is shown in Figure 3-5. The maximum temperature value occurs at 0.23𝜏𝑚  and the 

maximum gradient comes even earlier. Because boundary temperature is always lower than the 

value in the interior (heat always diffuses from high temperature to low), the gradient is always 

positive. 
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To maintain the zero temperature at the boundary, we have to add a negative temperature to 

cancel out the non-zero value caused by the existing profile. The evolution of changing 

temperature at the boundary is shown in Figure 3.6. It can be observed that the profile becomes 

flatter and wider with time. 

The exact solution consists of three components. The major component is the solution of the 

Stefan problem. The other two are the correction of underestimated profile and further correction 

for maintaining zero temperature at the boundary. The exact solution and its three components are 

shown in Figure 3.7 for the laser beam center. The solutions are same for other locations because 

the horizontal axis is normalized with melting time. From Figure 3.7, it is observed that the 

corrections mainly work in the early stage. After 5𝜏𝑚 , the solution of the Stefan problem is very 

close to the exact solution. In most applications, the laser pulse duration is much longer than 5𝜏𝑚, 

thus, we may use Stefan problem solution as an approximate. This way we may avoid wasting of 

computation resource on the corrections and assure the computing accuracy. 

For time less than 5𝜏𝑚, the correction is necessary. By simply moving the Stefan solution 

leftward by a couple of 𝜏0 , the misfit can be significantly reduced. Figure 3-8 shows two 

approximates: one is to shift the Stefan solution by 𝜏0 and is marked by “approximate 1”; and the 

other is to migrate the Stefan solution with time leftward moving by 3𝜏0 (including the original 

𝜏0). It shows that the migrated Stefan solution by 3𝜏0 is a better approximate. 
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Table 3.1: Physical parameters in the exampled application 

initial temperature 𝜃𝑖 -0.733 

thermal diffusivity ratio 𝑁𝛼 4.0 

ratio of thermal conductivity of liquid over solid 𝑘 0.412 

dimensionless coefficient 𝑘′ 0.0161 
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Figure 3.1. Physical model of laser drilling and the coordinate systems used.

 

Figure 3.2. Flux change due to the curvature of the solid-melt interface. 
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A 

B 

C 

Figure 3.3 a) The established temperature at the very beginning of melting; b) the assumed (generated) 

temperature profile; and c) the underestimated temperature at the moment of melting starts.  
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Figure 3.4 Diffusion of the existed temperature profile. 
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A B 

C D 

Figure 3.5 Temperature history at the melting surface due to the diffusion of the existed temperature 

profile. A) Drawn on a linear time axis, showing the declining effect with time; B) in logarithm axis of 

time, showing a rising stage at the very beginning. The temperature gradient history at the solid-liquid 

boundary C) in linear axis of time; D) in logarithm axis of time 
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Figure 3.6 Temperature diffusion due to varying boundary condition. 
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Figure 3.7 Temperature gradient history at the solid-liquid boundary. 

 

Figure 3.8 Exact solution and approximated solutions at the solid-liquid boundary. 
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Chapter 4.  Numerical Solutions of the melt flow 

Equations (3-24) and (3-40) cannot be solved without knowing the temperature variation in 

the melt. The temperature gradient is influenced by the melt flow as shown in the equation of 

energy conservation (3-3b). Solving the flow field becomes the key point in seeking a more 

accurate temperature solution, which makes this research unique by comparing it with previous 

research. In this section, we focus on solving the equation of momentum conservation. Successful 

applications for this purpose can be found in natural and forced convection near fluid-solid 

interface by using boundary-layer theory (Faghri, Zhang et al. 2010). Our first idea was to seek 

the solution by applying boundary layer theory. 

4.1 Boundary layer formulation 

Integrating Eq. (3-1b) with respect to 𝜁 from 0 to 𝛿, one gets the velocity at the top of the 

boundary layer: 

𝑣𝛿 = −∫ (
𝜕𝑢

𝜕𝜉
+
𝑢

𝜉
) 𝑑𝜁

𝛿

0
        (4-1) 

Note that   

∫ 𝑣
𝜕𝑢

𝜕𝜁
𝑑𝜁

𝛿

0
= −𝑢(𝜉, 𝛿) ∫ (

𝜕𝑢

𝜕𝜉
+
𝑢

𝜉
)𝑑𝜁

𝛿

0
+ ∫ 𝑢 (

𝜕𝑢

𝜕𝜉
+
𝑢

𝜉
) 𝑑𝜁

𝛿

0
   (4-2)  

Integrating the momentum equation (3-2b) with respect to 𝜁 from 0 to 𝛿, results in 

∫ 𝑢
𝜕𝑢

𝜕𝜉
𝑑𝜁

𝛿

0
− 𝑢(𝜉, 𝛿) ∫ (

𝜕𝑢

𝜕𝜉
+
𝑢

𝜉
) 𝑑𝜁

𝛿

0
+ ∫ 𝑢 (

𝜕𝑢

𝜕𝜉
+
𝑢

𝜉
)𝑑𝜁

𝛿

0
= ∫ 𝑃𝑟 [

𝜕2𝑢

𝜕𝜁2
+
1

𝜉

𝜕𝑢

𝜕𝜉
−

𝑢

𝜉2
] 𝑑𝜁

𝛿

0
+

∫ 𝑈
𝑑𝑈

𝑑𝜉
𝑑𝜁

𝛿

0
          (4-3) 
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From −
𝑑𝑝

𝑑𝜉
= 𝑈

𝑑𝑈

𝑑𝜉
, we have 

1

2
𝑈2 + 𝑝 = 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡. At the center of laser beam, 𝜉 = 0, 𝑈 =

0, 𝑝 = 𝑝𝑐, where 𝑝𝑐 is the pressure at the beam center, thus, one gets 

𝑈 = √2(𝑝𝑐 − 𝑝(𝜉))        (4-4) 

Beneath the free flow, the radial velocity is assumed to be in the form of  

𝑢 = 𝑈 (2
𝜁

𝛿
−

𝜁2

𝛿2
)          (4-5) 

which automatically meets boundary conditions of (3-6) to (3-9).  

Substituting Eq. (4-5) and the derivatives into (4-3), one gets 

(𝑃𝑟 −
16

5
𝜉𝑈)

𝑑𝛿

𝑑𝜉
= −𝑃𝑟 (

3𝜉

𝛿
−

𝛿

𝑈

𝑑𝑈

𝑑𝜉
+
𝛿

𝜉
) +

3

4
𝜉𝛿

𝑑𝑈

𝑑𝜉
+
1

8
𝛿𝑈   (4-6) 

This differential equation can be solved using the Runge-Kutta method (Burden and Faires 

2012) with a certain boundary condition. With zero free flow velocity at the center, it seems that 

any value of the boundary layer thickness will work. This uncertainty forces our attention to the 

second node. By assuming 
𝑑𝛿

𝑑𝜉
= 0 at the beam center, which reflects the axisymmetric condition 

and approximating 
𝑑𝑈

𝑑𝜉
 with 

𝑈

𝜉
, we get 𝛿 = √

24𝜉𝑃𝑟

7𝑈
 from Eq. (4-6). Note, this formula holds 

approximately only at the second node. Using this boundary value, the succeeding values will be 

solved with the Runge-Kutta method being applied to Eq. (4-6).   

The boundary layer flow velocity profile may also be assumed to be a cubic function as 

follows 

𝑢 = 𝑈 (
3

2

𝜁

𝛿
−
1

2

𝜁3

𝛿3
) ,         (4-7) 
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which automatically meets the boundary conditions in (3-6) to (3-9).  

Integrating the continuity equation, one gets  

𝑣 = −∫ (
𝜕𝑢

𝜕𝜉
+
𝑢

𝜉
) 𝑑𝜁

𝜁

0

= −
𝛿

8
(
𝑑𝑈

𝑑𝜉
+
𝑈

𝜉
) [6 (

𝜁

𝛿
)
2

− (
𝜁

𝛿
)
4

] +
3

8
𝑈
𝑑𝛿

𝑑𝜉
[2 (

𝜁

𝛿
)
2

− (
𝜁

𝛿
)
4

] 

           (4-8) 

Substituting the above and Eq. (4-7) into Eq. (4-3) one gets 

(105𝑃𝑟 − 39𝜉𝑈)
𝑑𝛿

𝑑𝜉
= −35𝑃𝑟 (

12𝜉

𝛿
− 5

𝛿

𝑈

𝑑𝑈

𝑑𝜉
+ 5

𝛿

𝜉
) + 39𝛿𝑈 + 183𝜉𝛿

𝑑𝑈

𝑑𝜉
 , (4-9) 

which can be solved by using the boundary condition 𝛿 = √
70𝑃𝑟𝜉

37𝑈
  at the second node similar to 

the reasoning discussed in the previous paragraph for Eq. (4-6). 

The free flow 𝑈 could lead to the melt layer thickness change. The mass conservation requires  

𝜕𝑈

𝜕𝜉
+
𝜕𝑉

𝜕𝜁
+
𝑈

𝜉
= 0         (4-10) 

Integrated Eq. (4-10) over 𝜁 from 𝜁 = 𝛿 to 𝜁 = 𝑔, one has  

𝑉 = −(
𝜕𝑈

𝜕𝜉
+
𝑈

𝜉
) (𝑔 − 𝛿)        (4-11) 

The vertical velocity at the surface of the boundary layer is 

𝑣𝛿 = −∫ (
𝜕𝑢

𝜕𝜉
+
𝑢

𝜉
) 𝑑𝜁

𝛿

0
        (4-12) 

For the profile represented in Eq. (4-5), 𝑣𝛿 = −
2

3
𝛿 (

𝜕𝑈

𝜕𝜉
+
𝑈

𝜉
) 

For the profile represented in Eq. (4-7), 𝑣𝛿 = −
5

8
𝛿 (

𝜕𝑈

𝜕𝜉
+
𝑈

𝜉
) 
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The melt layer thickness varies due to melting rate, evaporating rate, and the flow-related 

changes as shown below: 

𝜕𝑔

𝜕𝜏
=

𝜕𝑆2

𝜕𝜏
−
𝜕𝑆1

𝜕𝜏
+ 𝑉 + 𝑣𝛿        (4-13) 

which can be used to update the melt layer thickness, i.e.  

𝑔 = 𝑔0 + (
𝜕𝑆2

𝜕𝜏
−
𝜕𝑆1

𝜕𝜏
+ 𝑉 + 𝑣𝛿)∆𝜏      (4-14) 

where 𝑔0 denotes the melt thickness at the previous time step and 𝑔 at current step. ∆𝜏 is the time 

interval.  

Note that 
𝜕𝑆1

𝜕𝜏
 represents the melt surface change due to vaporization only. Considering vertical 

displacement due to flow, we get the net melt-vapor interface  

𝑆1𝑛𝑒𝑡 = 𝑆2 − 𝑔         (4-15) 

The space between the initial solid surface and the net melt surface will be counted as the 

material removed by the laser beam because the melt will be recast once the heating process ends.  

4.2 Integration method formulation 

Near the laser beam center, the boundary layer is thin. Far from the beam center, the boundary 

layer increases and the free flow layer may disappear. In this case, because boundary conditions 

(3-6) and (3-7) no longer remain valid, we return to Eq. (3-2a). We now seek an integral solution. 

Eq. (4-3) is rewritten as  

∫ 𝑢
𝜕𝑢

𝜕𝜉
𝑑𝜁

𝑔

0
− 𝑢(𝜉, 𝑔) ∫ (

𝜕𝑢

𝜕𝜉
+
𝑢

𝜉
) 𝑑𝜁

𝑔

0
+ ∫ 𝑢 (

𝜕𝑢

𝜕𝜉
+
𝑢

𝜉
) 𝑑𝜁

𝑔

0
= ∫ 𝑃𝑟 (

𝜕2𝑢

𝜕𝜁2
+
1

𝜉

𝜕𝑢

𝜕𝜉
−

𝑢

𝜉2
) 𝑑𝜁

𝑔

0
− 𝑔

𝑑𝑝

𝑑𝜉
 

           (4-16) 
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The radial velocity must have experienced a rising course since it is zero at the laser beam 

center. However, the radial velocity profile cannot be 𝑢 = 𝐴𝜉𝜁, because this function will lead to 

𝑑𝑝

𝑑𝜉
= 0, which means the recoil pressure is constant in the melt zone. We cannot assume a profile 

like 𝑢 = 𝐴𝜁𝜉2or any power index larger than 1 because a free flow cannot be that way with respect 

to the distance. If the radial velocity is 𝑢 = 𝐴𝜁𝜉1/𝑚  where 𝑚 > 1  and A is a coefficient 

independent to either coordinate, then 𝑣 = −∫ (
𝜕𝑢

𝜕𝜉
+
𝑢

𝜉
)𝑑𝜁

𝜁

0
= −

1+𝑚

2𝑚
𝐴𝜉

1

𝑚
−1𝜁2 . This shape 

function predicts that the melt surface falls in the entire melt zone. Substituting 𝑢 = 𝐴𝜁𝜉1/𝑚 into 

Eq. (4-16), and after algebraic operations, one obtains 

𝐴2𝑔2𝜉
2

𝑚
+1 − 3𝑃𝑟𝐴𝑔𝜉

1

𝑚 −
6𝑚

𝑚−1
𝜉2

𝑑𝑝

𝑑𝜉
= 0      (4-17) 

Although the coefficient A can be solved locally, a potential problem is that A may vary with 

location, which contradicts our definition of A. Instead, we seek a constant A that makes the least 

square of the residuals, i.e.   

𝑓(𝐴) = ∫ (𝐴2𝑔2𝜉
2

𝑚
+1 − 3𝑃𝑟𝐴𝑔𝜉

1

𝑚 −
6𝑚

𝑚−1
𝜉2

𝑑𝑝

𝑑𝜉
)
2

𝑑𝜉
∞

0
    (4-18) 

To find A that makes 𝑓(𝐴) minimum, let  
𝑑𝑓(𝐴)

𝑑𝐴
= 0, and one gets 

𝑊(𝐴) = 𝑄1𝐴
3 −𝑄2𝐴

2 + 𝑄3𝐴 − 𝑄4 = 0      (4-19) 

where 
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{
  
 

  
 𝑄1 = ∫ 2𝑔4𝜉

4

𝑚
+2𝑑𝜉

∞

0

𝑄2 = 9𝑃𝑟 ∫ 𝑔3𝜉
3

𝑚
+1𝑑𝜉

∞

0

𝑄3 = ∫ (−
12𝑚

𝑚−1
𝜉3

𝑑𝑝

𝑑𝜉
+ 9𝑃𝑟2)𝑔2𝜉

2

𝑚𝑑𝜉
∞

0

𝑄4 = −
18𝑚

𝑚−1
𝑃𝑟 ∫ 𝑔𝜉

1

𝑚
+2 𝑑𝑝

𝑑𝜉
𝑑𝜉

∞

0

      (4-20) 

It is clear that 𝑊(0) = −𝑄4 < 0and 𝑊(+∞) > 0, and two stationary points make 

𝑑𝑊

𝑑𝐴
= 3𝑄1𝐴

2 − 2𝑄2𝐴 + 𝑄3 = 0       (4-21) 

The two stationary points are 𝐴1 =
(𝑄2−√𝑄2

2−3𝑄1𝑄3)

3𝑄1
> 0, and 𝐴2 =

(𝑄2+√𝑄2
2−3𝑄1𝑄3)

3𝑄1
≥ 𝐴1.  

If 𝑊(𝐴1) < 0, there is only one real root that exists in domain (𝐴2, +∞). If 𝑊(𝐴1) ≥ 0, there 

are three real roots, but only the root in domain (0, 𝐴1] is meaningful in physics and mathematics. 

The Newton-Raphson method is used for solving the coefficient A. 

Since there is no knowledge about the value of the index 𝑚, we take 𝑚 = 1.5, 2, 3, 4, 5 for 

numerical tests. Through comparing numerical prediction with experimental data, we may find the 

best value of 𝑚. 

Another possibility is that the radial velocity drops after a peak value somewhere in the melt 

zone. In this case, a smooth shape function 𝑢 = 𝐴𝜉𝜁𝑒𝑥𝑝(−𝜉/𝜉𝑝) is assumed, where 𝜉𝑝  is the 

radius at which the radial velocity is maximum.  

𝑣 = −∫ (
𝜕𝑢

𝜕𝜉
+
𝑢

𝜉
) 𝑑𝜁

𝜁

0
= −

𝐴𝜁2

2
(2 −

𝜉

𝜉𝑝
) 𝑒𝑥𝑝 (−

𝜉

𝜉𝑝
) = −𝜁 (

1

𝜉
−

1

2𝜉𝑝
) 𝑢  (4-22) 

This shape function predicts the melt surface subsides in the domain (0, 2𝜉𝑝) whereas it rises 

beyond 2𝜉𝑝. Since there is no knowledge about 𝜉𝑝, we may try 𝜉𝑝 = 0.2, 0.4, 0.6, 0.8, 1.0, 1.5 and 
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see which value leads to the best fit to the experimental data. Substituting 𝑢 = 𝐴𝜉𝜁𝑒𝑥𝑝(−𝜉/𝜉𝑝) 

into the momentum conservation Eq.(4-16) gives 

𝐴2𝑔2𝜉2 − 3𝑃𝑟𝐴𝑔𝑒𝑥𝑝 (
𝜉

𝜉𝑝
) − 6𝜉𝑝

𝑑𝑝

𝑑𝜉
𝑒𝑥𝑝 (

2𝜉

𝜉𝑝
) = 0     (4-23) 

Similar to the previous analysis, we seek a constant coefficient A in terms of least square of 

the residuals, and we get same form of Eq. (50) with  

{
 
 
 

 
 
 𝑄1 = ∫ 2𝑔4𝜉4𝑑𝜉

∞

0

𝑄2 = 9𝑃𝑟 ∫ 𝑔3𝜉2𝑒𝑥𝑝 (
𝜉

𝜉𝑝
) 𝑑𝜉

∞

0

𝑄3 = ∫ (9𝑃𝑟2 − 12𝜉𝑝𝜉
2 𝑑𝑝

𝑑𝜉
) 𝑔2𝑒𝑥𝑝 (

2𝜉

𝜉𝑝
) 𝑑𝜉

∞

0

𝑄4 = −18𝑃𝑟𝜉𝑝 ∫ 𝑔
𝑑𝑝

𝑑𝜉
𝑒𝑥𝑝 (

3𝜉

𝜉𝑝
) 𝑑𝜉

∞

0

     (4-24) 

4.3 Solution of the temperature field 

Now we work on the energy equation Eq. (3-3b). The following temperature profile is assumed 

in the liquid (melt) 

𝜃𝑙 = (
𝜃𝑠𝑎𝑡

𝑔
− 𝑏2𝑔) 𝜁 + 𝑏2𝜁

2        (4-25) 

which satisfies the boundary conditions in (3-10) and (3-11). The vertical gradient is 

𝜕𝜃𝑙

𝜕𝜁
=

𝜃𝑠𝑎𝑡

𝑔
− 𝑏2𝑔 + 2𝑏2𝜁        (4-26) 

At the solid-melt interface, 
𝜕𝜃𝑙

𝜕𝜁
|𝜁=0 =

𝜃𝑠𝑎𝑡

𝑔
− 𝑏2𝑔; at the melt-vapor interface 

𝜕𝜃𝑙

𝜕𝜁
|𝜁=𝑔 =

𝜃𝑠𝑎𝑡

𝑔
+ 𝑏2𝑔.  
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Now we solve Eq. (3-3b) using the assumed temperature profile and solved flow velocity. 

Integrating Eq. (3-3b) with respect to 𝜁 from 0 to 𝑔, one gets 

𝜕

𝜕𝜉
∫ 𝑢𝜃𝑙𝑑𝜁
𝑔

0
+ ∫ 𝜃𝑙

𝑢

𝜉
𝑑𝜁

𝑔

0
+ 𝑣(𝜉, 𝑔)𝜃𝑠𝑎𝑡 = 2𝑏2𝑔     (4-27) 

Substituting Eq. (4-25) into Eq. (3-23), one gets 

{1 + Λ[𝜃𝑠𝑎𝑡(1 − 𝜃𝑚) + 𝜃𝑚]}𝑒𝑥𝑝 [𝐻𝑙𝑣 (1 −
1

𝜃𝑠𝑎𝑡(1−𝜃𝑚)+𝜃𝑚
)] =

𝐼′√𝜃𝑠𝑎𝑡(1 − 𝜃𝑚) + 𝜃𝑚 [exp(−𝜉
2) − 𝑘′ (

𝜃𝑠𝑎𝑡

𝑔
+ 𝑏2𝑔)]      (4-28) 

Let 𝜃𝑠𝑎𝑡(1 − 𝜃𝑚) + 𝜃𝑚 = 𝜑, one converts (4-28) into 

(1 + Λ𝜑)𝑒𝑥𝑝 [𝐻𝑙𝑣 (1 −
1

𝜑
)] = 𝐼′√𝜑 [exp(−𝜉2) − 𝑘′ (

𝜑−𝜃𝑚

𝑔(1−𝜃𝑚)
+ 𝑏2𝑔)]   (4-29) 

After algebraic operations, equation (4-29) can be rewritten as 

𝐴(1 + Λ𝜑)𝑒𝑥𝑝 (−
𝐵

𝜑
) + (𝐶𝜑 − 𝐷)√𝜑 = 0      (4-30) 

where 𝐴 =
1

𝐼′
𝑒𝑥𝑝(𝐻𝑙𝑣), 𝐵 = 𝐻𝑙𝑣, 𝐶 =

𝑘′

𝑔

1

1−𝜃𝑚
, 𝐷 = 𝑒𝑥𝑝(−𝜉2) − 𝑘′ [𝑏2𝑔 −

𝜃𝑚

𝑔(1−𝜃𝑚)
]. 

In the pure conduction model, 𝑏2 = 0, and the temperature can be solved directly through the 

Newton-Raphson method. In the convection model, 𝑏2 is a variable and is constrained by the 

energy balance equation like the one expressed in (4-27).   A convenient way is to take the value 

of 𝑏2 obtained at the last step as an approximate to calculate 𝜃𝑠𝑎𝑡 if the time interval is sufficiently 

small. Once 𝜃𝑠𝑎𝑡 is solved in (4-30), the value of 𝑏2is updated in (4-27) by using current flow 

velocity and temperature. 
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Chapter 5. Results and discussion 

5.1 Comparison of the model predicts with experimental data 

The case of pure conduction, and then conduction-flow cases, were simulated and compared 

with experimental data.  The thermophysical properties used are listed in Table 5.1. The laser 

intensity at the center varies from 5.3×1010W m-2 to 14.3×1010W m-2 in experiments (Zhang and 

Faghri 1999), and the range was explored from 2.5×1010W m-2 to 16.0×1010W m-2 in the numerical 

modeling. Similar to Zhang and Faghri (Zhang and Faghri 1999), the effect of absorptivity of the 

target material is ignored. The experimental material removal rate was obtained by scaling 

micrographs of single shot drilled holes for pulse duration of 700 µs and laser radius of 0.254 mm 

at the Pratt and Whitney drilling facility at North Haven, CT. The same laser pulse duration, and 

the same beam intensity profile were taken in the current model as that described in Zhang and 

Faghri (Zhang and Faghri 1999). The results are shown in Figure 5.1. The time step used in the 

simulation is mainly 1.0×10-7. Other time intervals like 5.0×10-8, 1.0×10-8 were also tested, and 

they led to a convergent solution. The spatial resolution was 0.0125. Running a case typically takes 

about 5 minutes. It can be noticed that the predicted material removal rates increase with the laser 

beam intensity, generally consistent with the experimental data. It is also noticeable that the 

predicted results from the model without convection were very close to those predicted from 

models where melt flow was fully considered. The rising radial velocity models generally 

predicted a slightly higher removal rate than the rising-fall models. All models with melt flow 

being considered produced results very close to each other within 2% difference for all cases with 

rising profiles and rising-fall profiles. 



40 
 

5.2 Drill hole evolution 

Figure 5.2 shows the drilled hole profile history predicted from a rising-fall flow model where 

𝜉𝑏 = 1 and laser beam center intensity 7.5×1010 [W m-2].  It was observed that the hole developed 

much faster in the drill direction than in the lateral direction. These profiles are similar to each 

other and are similar to the profiles predicted by Zhang and Faghri (Zhang and Faghri 1999). It is 

observed that the thickness of the melt layer increases in radial direction and the thickest melt layer 

occurs near the edge of the melt zone where the vaporization starts to become negligible. It is also 

observed that the vertical drilling rate is almost constant.  

5.3 Vapor pressure and temperature 

This model is capable of predicting the temperature of the vapor or the temperature at the top 

of the melt. Here, we show the pressure and temperature profiles at the final stage of the drilling 

predicted from rising-fall models in Figure 5.3 and Figure 5.4. It is observed from Figure 5.3 that 

the higher the laser beam intensity, the larger the vapor recoil pressure. The pressure inside the 

melt zone is not homogeneous, but like Gaussian curves; it drops steeply between 𝜉 = 0.5~1.0. 

Pressure at 𝜉 = 0.5 is about 80% of the value at the laser beam center while it drops to one third 

at 𝜉 = 1.0. Figure 5.4 shows the temperature profiles in the corresponding models. It is observed 

that the temperature rises as the laser intensity increases. For all tested cases, the temperature 

dropped in the radial direction, but quite gradually in the majority of the melt zone, which was 

much different from the pressure profile. The temperature at 𝜉 = 1.5 was about 70% of the value 

at the center; it had a steep slope at the edge of the vapor zone.   

Our modeling results also showed that the temperature and pressure are quite stable during 

laser beam impulse except for rapid rising at the very beginning. This pattern is confirmed in both 
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rising profile models and rising-fall profile models (as shown in Figure 5.5. and Figure 5.6). The 

peak flow velocity is predicted to experience a rapid drop at the beginning and attain a quite stable 

stage later from the rising models (Figure 5.5A). It is slightly different from that which was 

predicted from models of rising-fall models with parameter 𝜉𝑝 < 0.7, in which the flow gradually 

slows down with time (Figure 5.6A). Models with parameter 𝜉𝑝 > 0.8 generated similar results as 

that shown in Figure 5.5. We also noticed that the solution was sometimes not available for models 

with a small value of 𝜉𝑝 (0.2 or 0.4).  

5.4 The contribution of melt flow  

The effect of the melt flow on material removal depends on many factors. One factor is the 

Prattle number. Figure 5.7 shows the melting rate, vaporization rate, and melt flow velocity in a 

vertical direction predicted from a model of parameters list in Table 5.1. These rates are shown at 

two locations: one location is near the laser beam center 𝜉 = 0.0125 and another is at 𝜉 = 1. It 

was observed that the melting rate experienced a rapid drop as the vaporization rate rose and 

reached an equilibrium rather quickly. The melt flow velocity was very small, about 3-4 orders of 

magnitude less than the vaporization rate. Models of other profiles led to similar results. This may 

justify the previous model by Zhang and Faghri (Zhang and Faghri 1999) where the flow was 

negligible in the super alloy they studied. A recent study showed that natural convection does not 

play a significant role in melt transport and melt pool geometry (Kar and Rath 2014) using a 

completely different approach. However, if the material is of different parameters, the melt flow 

might contribute to the material removal differently. To illustrate this point, we conducted a test 

in which all other parameters were the same as that in the numerical test shown in Figure 5.7 except 

for the Prattle number. The results of the test with Prattle number 142 are shown in Figure 5.8. It 
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is observed that melt flow was able to cause about 10% of the material removal in this assumed 

case.  

5.5 Discussions 

The boundary layer model was developed in this paper, but we are not presenting the results 

at this time. The reason is that the boundary layer assumption was found to be applicable very 

close to the laser beam center where the melt flows slowly. In the majority of the melt zone, the 

free flow zone did not exist. Another problem was that the beam center was calculated based on a 

pure conduction model (the radial velocity is zero, but the vertical velocity is hard to estimate), 

while the adjacent node was based on conduction-flow which led to a differential change in the 

solid-melt interface. The most debatable issue is most likely the boundary condition. It is 

unavailable at the beam center and is very roughly estimated at the node next to the center. Even 

so, we still tried to evaluate the melt flow using boundary layer theory near the center and 

exploiting the integral method beyond the last node at which the boundary layer theory is 

applicable, with assumed velocity profiles following falling trend. The results were similar to that 

shown in previous figures. Again, the reason is because the melt flows very slowly compared with 

the evaporation rate. 

We attempted to find the flow pattern by comparing experimental data with models of various 

radial velocity profiles. This mission is not completed in the cases of very slow flow as in the case 

of the super alloy studied here.  Later experiments may provide better data to assist with flow 

pattern identification. 
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5.6 Summary for the New Laser Drilling Model 

The novelty of this research is that the melt flow in laser drilling is explicitly included in the 

equation of momentum conservation. By applying the non-slip boundary condition at the solid-

liquid interface, the solution of melt flow was developed by using the boundary layer theory and 

integral method. An integral solution for the temperature field was also obtained. In addition, exact 

solutions for heat conduction were developed. The solution of the Stefan problem is the principal 

component in the exact solution and can be used as an approximate solution for better 

computational efficiency. The dependence of saturation temperature on the vapor pressure was 

taken into account by using the Clausius-Clapeyron equation. As compared with previous models, 

the model developed in this study is more realistic. Applying the new model to a super alloy, we 

showed that melt flow can be ignored in some cases. The solutions derived here will be further 

applied to more general cases to evaluate the role of melt flow and vaporization on laser drilling 

profile evolution and to study the solid material removal efficiency.  
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Table 5.1. Thermophysical properties of test material. 

Latent heat of melting ℎ𝑙𝑠 2.31×104  [J kg-1] 

Latent heat of vaporization ℎ𝑙𝑣 6.444×106 [J kg-1] 

Density of melt 𝜌 8.4×103   [kgm-3] 

Vapor molar mass M 0.076 [kg mol-1] 

Initial temperature 𝑇𝑖 293.15 K 

Melting temperature 𝑇𝑚 1510˚C 

Standard Saturation temperature 𝑇𝑠𝑎𝑡0 3170˚C 

Standard Saturation pressure 𝑝0 1.01325×105   [Nm-2] 

Thermal conductivity of the liquid 𝑘𝑙 21.70 [Wm-1 K-1] 

Thermal conductivity of the solid 𝑘𝑠 52.72 [Wm-1 K-1] 

Specific heat of the liquid 𝑐𝑝𝑙 625 [J kg-1 K-1] 

Specific heat of the solid 𝑐𝑝𝑠 380 [J kg-1 K-1] 

Radius of laser beam R 0.254×10-3  [m] 

Prattle Number Pr 0.142 
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Figure 5.1 Comparison of predicted and experimental material removal rates 

using models of rising-fall profiles. 
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Figure 5.2. Drill hole profiles evolution predicted from a model assuming rising-fall radial 

velocity profile with peak velocity at 𝜉𝑝 = 1. 
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Figure 5.3 Pressure profiles at 𝜏 = 𝜏𝑝 with varying laser beam intensity, predicted from a model 

assuming rising-fall radial velocity profile with peak velocity at 𝜉𝑝 = 1. The laser beam intensity 

is given at the center with unit 1010 w/m2. 
 

 
 

Figure 5.4 Temperature profiles at 𝜏 = 𝜏𝑝 with varying laser beam intensity, predicted from a 

model assuming a rising-fall radial velocity profile with a peak velocity at 𝜉𝑝 = 1. The laser 

beam intensity is given at the center with unit 1010 w/m2. 
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A 

B 

C 

Figure 5.5 Peak radial velocity, temperature and pressure history predicted from a model 

assuming rising radial velocity profile with index m=2. 
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A 

B 

C 

Figure 5.6 Peak radial velocity, temperature and pressure history predicted from a model 

assuming rising-fall radial velocity profile with peak velocity at 𝜉𝑝 = 0.6. 
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A 

B 

Figure 5.7 (A) Melting rate, vaporization rate and the effect of the melt flow on interfacechange 

near the laser beam center at 𝜉 = 0.0125 and at 𝜉 = 1.  (B) The change of flow velocity vertical 

component at both locations. 
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A 

B 

Figure 5.8 (A) Melting rate, vaporization rate and the effect of the melt flow on interface change 

near the laser beam center 𝜉 = 0.0125 and at 𝜉 = 1. (B) The change of flow velocity vertical 

component at both locations, similar to Figure 5.7 but with a Prattle number 1000 times larger.  
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Part II. Combined MPM-DEM for simulating the interaction 

between solid elements and fluid particles 
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Chapter 6. Numerical Simulations on Solid-Fluid Interaction 

Interaction between a large number of solid elements (bodies or particles) and surrounding 

fluid occurs in many natural and engineering settings such as sediment transport in rivers and 

coastal oceans, debris flows during flooding, cuttings transport in petroleum-well drilling, mineral 

particle size reduction in grinding mills, as well as powder handling and pneumatic conveying in 

pharmaceutical industries (Sun and Xiao 2015). In the category of dense granular flow, the 

collisions between solid elements and shear drag from surrounding fluid play a dominant role. As 

for the study of the interaction between solid elements, discrete element method (DEM) is one of 

the most efficient approaches and has found a firm place in powder mechanics and rock mechanics 

(Campbell 1986, Zhu, Zhou et al. 2007, Weerasekara, Powell et al. 2013).  

The interaction between solid particles and surrounding fluid may be completely ignored or 

explicitly included in numerical study. On one hand, fluid plays a very important role in fine 

granular material transfer in some industrial applications. Significant amount of water is added in 

the grinding chamber to improve the transport of fine material by forming slurry and to suppress 

dust and to modify the grinding conditions. Such slurry is much more efficient than air for 

transporting small solid particles out of a mill. Slurry flow, including flow through the charge, 

through the discharge grates, along the pulp lifters and its discharge from the mill all contribute to 

the efficiency of the grinding process within a device like a Semi-Autogenous grinding (SAG) mill 

or an Autogenous grinding mill. Poor transport of finer ground material can adversely affect 

grinding leading to excess energy consumption and over-grinding of fine material. On the other 

hand, the size of fine solid particles and the interaction between different phases pose a great 

challenge to current modeling and simulation (Cleary 2015). 
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Because the flow of these materials is difficult to measure and directly observe, computational 

modelling provides a powerful way of virtually exploring the process, obtaining quantitative 

process data, and understanding the fundamental physics that will become the source of future 

design guidance. There are two basic approaches that can be used for simulating slurries. In the 

first approach, the fine particles are averaged to give a continuum representation with a complex 

rheological behavior. The governing equations are typically solved using a Finite Volume (FV) or 

Finite Element Method (FEM). This type of method can be highly effective when the particle sizes 

are small compared to other length scales in the process, such as a valve caliber or grate size, and 

when inter-particle contact or collisions are not a dominant manner of momentum transport. 

Examples of such modelling include erosion by slurry flow in pipes (Brown 2002, Zhang, 

Reuterfors et al. 2007), pneumatic and slurry flows (Solnordal, Wong et al. 2013), and impinging 

jet on a plate (Gnanavelu, Kapur et al. 2011). 

The alternative approach is to resolve the individual particles in the simulation. The method 

that enables collision/contact based equations of motion for the particles to be solved is the 

Discrete Element Method (DEM). In most coarse particle applications, the fine slurry phase is 

simply omitted by assuming that the fluid coupling forces are small compared to the contact forces 

and so can be neglected. Careful validation of this assumption is required, but in most current 

simulations it is missing.  

Discrete element method (DEM) is any of a family of numerical methods for computing the 

motion and effect of a large number of small particles. It is originally proposed by Cundall in 1971 

(Cundall and Strack 1979). The earliest use of DEM in comminution was the prediction in two 

dimensions of charge motion in ball mills by Mishra and Rajamani  (Mishra and Rajamani 1992, 

Mishra and Rajamani 1994, Rajamani and Mishra 1996). DEM simulations take some account of 
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multi-particle interactions and can provide useful qualitative information like the trajectory of the 

solid particles that helps to design a mill of less wasteful collisions like grinding steel ball-liner 

collision. Three dimensional models of thin slices of the cylinder shell of tumbling mills were used 

by Herbst and Nordell (Herbst and Nordell 2001) and Cleary (Cleary 2001) to predict the dynamics 

of charge motion. Such predictions for dry mills were shown to have good accuracy for a range of 

mill speeds and fill levels (Herbst and Potapov 2004). Full three dimensional modelling of pilot 

scale SAG mills has also been performed (Cleary, Sinnott et al. 2008, Cleary, Sinnott et al. 2009). 

It has also been used for modelling of axial flow in ball mills (Cleary, Sinnott et al. 2006) and 

generally for understanding performance in tumbling mills (Djordjevic 2003, Djordjevic 2005, 

Kalala, Breetzke et al. 2008, Powell, Weerasekara et al. 2011). It has also been used for modelling 

of stirred mills (Sinnott, Cleary et al. 2006, Yang, Jayasundara et al. 2006, Jayasundara, Yang et 

al. 2008).  

If the gas or liquid component of a multiphase flow sufficiently influences the coarse particle 

motion, then the interaction force from the fluid phase has to be explicitly included in the 

computational model. Tsuji et al. (Tsuji, Kawaguchi et al. 1993) were the first group to propose 

coupling DEM with an Eulerian fluid model, which was applied to a two-dimensional gas–solid 

fluidized bed of spherical particles. This type of approach was also used by Xu and Yu (Xu and 

Yu 1997) and Kawaguchi et al. (Kawaguchi, Sakamoto et al. 2000). Kafui et al. (Kafui, Thornton 

et al. 2002) used a similar model incorporating particle contact mechanics to investigate 

multiphase interaction. The coupling is achieved by averaging the DEM particle data to give 

continuum representations of the particle phase and then to use these in continuum multiphase 

CFD models. Since the particles are averaged and do not explicitly appear in the fluid solution, 

this type of method is sometimes referred to as unresolved. This type of approach has become very 
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popular in modelling gas particle systems such as fluidized beds (Mikami, Kamiya et al. 1998, 

Hoomans, Kuipers et al. 2000, Yu and Xu 2003, Kafui and Thornton 2008, Tsuji, Yabumoto et al. 

2008).  

Spherical shape particles are widely used in solid-liquid simulations for its simplicity. Non-

round particles are demonstrated in a fluid beds simulation and then in pneumatic conveying 

simulation (Hilton, Mason et al. 2010, Hilton and Cleary 2011). For the gas coupled flows the 

Finite Volume (FV) method dominates because of its speed and suitability for solving the 

multiphase continuum equations. 

The prediction of slurry flow in mills and through screens is more computationally challenging 

because a great number of triangles is needed for describing the motion of complex shaped 

structure surfaces. In addition, complex free surfaces of the fluid, including splashing and 

fragmentation, and the resolution of very fine flow features have to be treated properly. Obviously 

Eulerian grid based flow solvers are not well suited for such requirements. In particular, the 

fragmenting flow of the many thin streams of fluid passing through the potentially hundreds to 

thousands of holes in either screens or mill grates can be prohibitively expensive. The fluid method 

most suited to these applications is Smoothed Particle Hydrodynamics (SPH) since it is a particle-

based method; therefore, it naturally allows the prediction of complex splashing and fragmenting 

free surface flow. This method was originally formulated for free surface fluid dynamics by 

Monaghan (Potapov, Hunt et al. 2001, Robinson, Ramaioli et al. 2014). The smoothed-particle 

hydrodynamics (SPH) method has been developed to simulate the motion of fluid (Potapov, Hunt 

et al. 2001, Robinson, Ramaioli et al. 2014). The SPH method was originally introduced to 

simulate the problems in astrophysics, which involve fluid particles moving arbitrarily in the 

absence of boundaries (Monaghan 1988, Monaghan 1992). It has been broadly adopted for 
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modelling free surface fluid applications, including die casting (Cleary 2000, Ha and Cleary 2005), 

flow over a spillway (Ferrari 2010), sloshing (Guzel, Prakash et al. 2005, Shao, Li et al. 2012) and 

immiscible and miscible fluid mixing (Tartakovsky and Meakin 2006).  

In coupling DEM and SPH to simulate slurries, there is a further choice to be made. The fluid 

method can be used to simulate the detailed flow around each of the particles. This method is 

sometimes referred to as a resolved method since it resolves the particles and the fluid flow in 

between. It was first used by Potapov et al. (Potapov, Hunt et al. 2001) for pipe flow. It has also 

been used by Prakash et al. (Prakash, Cleary et al. 2007) for validating predictions of mixing pellets 

with water. Although this method produces accurate results and does not rely on any empirical 

data input, the cost of resolving the fluid flow is very high for a few particulates. It is impossible 

to extend this method for cases that involve thousands and millions particles. The alternative is to 

use an unresolved approach, but with the SPH method being used for the fluid flow solution rather 

than the FV method. This enables large numbers of small solid particles with broad size 

distributions to be used in the DEM component whilst having a computationally feasible fluid 

solution that can handle complex moving geometries and fluid free surfaces. Such an approach 

was proposed using a 1-way coupling between phases Cleary et al. (Cleary 2006). This was 

subsequently extended to three dimensions and applied to the prediction of slurry flow in a tower 

mill (Sinnott, Cleary et al. 2011). It has also been used to predict slurry flow on a double deck 

vibrating banana screen (Fernandez, Cleary et al. 2011). The method was also recently applied to 

a pilot mill enabling prediction of the free fluid flow within a SAG mill grinding chamber, flow 

through the grate and discharge flow along the pulp lifters (Cleary and Morrison 2011, Lichter, 

Suazo et al. 2011, Rajamani, Alkac et al. 2011, Cleary and Morrison 2012).  
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In the one-way coupling DEM-SPH simulation, one phase contributing to the motion of others 

while the reaction from others is ignored (Gao and Herbst 2009, Sinnott, Cleary et al. 2011). 

Compared with contact force, the interaction from water or air is quite small, but the reaction from 

solid phase plays a significant role in the motion of the fluid; this is one-way coupling, which is 

not a full solution, but a simple approach. In many other cases two way coupling is required. Recent 

research focus has been on the two-way coupling (Chu, Kuang et al. 2012, Cleary 2015). The 

verification and validation of the combined DEM-SPH has been recently conducted (Sun, Sakai et 

al. 2013). However, the SPH solution is unstable or not convergent in some cases (Belytschko, 

Guo et al. 2000, Dehnen and Aly 2012). Hence, further improvement is required on the SPH, or 

an alternative approach must be found. 

It is proposed in this paper that the material point method (MPM) be combined with the DEM 

to simulate the interaction between solid elements of different sizes and surrounding fluid particles. 

The MPM is an extension of the particle-in-cell (PIC) method in CFD to the field of computational 

solid dynamics (CSD), and is a particle method formulated with the same weak formulation as that 

used for the finite element method (FEM) (Sulsky, Chen et al. 1994). Because the deformation 

history is recorded with material points for history-dependent constitutive equations, the MPM is 

able to handle the problems with large deformation, failure evolution, and multi-phase interactions, 

such as impact, penetration, perforation, and fluid-structure interaction with strong shocks, as 

demonstrated in previous studies (York Ii, Sulsky et al. 2000, Chen, Shen et al. 2005, Zhang, Zou 

et al. 2008, Zhang, Wang et al. 2009, Mackenzie-Helnwein, Arduino et al. 2010, Tran, Kim et al. 

2010, Gan, Chen et al. 2011, Lian, Zhang et al. 2013, Bandara and Soga 2015, Liu, Liu et al. 2015). 

In addition, the MPM has been combined with the FEM to improve the computational efficiency 

(Zhang, Sze et al. 2006). Another approach to improve the computational efficiency is to combine 
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the MPM with the adaptive mesh refinement (AMR) techniques. This approach has been adopted 

to simulate fluid-structure interaction problems (Mao 2013).  The MPM has also been employed 

in multi-scale simulation (Jiang, Chen et al. 2015). A recent work shows that MPM is capable of 

simulating slosh (Li, Hamamoto et al. 2014). By using the advantages of both the MPM and DEM, 

an effective spatial discretization procedure might be designed to better simulate the interactions 

among various kinds of solid elements with surrounding fluid particles. 

Although the concept of particles are used in the MPM and the SPH, it is worthy to be aware 

of their difference. The MPM is developed to seek a numerical solution based on a week form of 

the differential equations, similar to Finite Element Method. Shape functions are used to complete 

interpolation and gradient operation. The SPH is a particle based method and kernel functions are 

utilized to calculate the interpolation and gradient.  

In the following chapters, the derivation of the governing equations are presented. The 

discretization with a corresponding algorithm is then laid out next. The convergence of numerical 

solutions is demonstrated with typical numerical tests with varying number of particles in a cell 

and the change of cell resolution. The proposed procedure is verified with three representative 

examples. The concluding remarks and future work are given at the end. 
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Chapter 7. Governing Equations 

Let 𝜃 be the volume fraction of the fluid, 𝜌𝑓 the density of the fluid, and 𝒖𝑓 the velocity of the 

fluid. The fluid phase is continuous and the solid phase is discrete. Take a free body diagram shown 

in Figure 9.1. Let the fluid section of boundary be 𝐴𝑓, the boundary crossing the solid particles be 

𝐴𝑝,  the surface of solid particles inside the control volume V be Σ, and the surface of solid particles 

crossing boundary be Σ′. 

7.1 Continuity equations 

Applying mass conservation law for the fluid inside a control volume V with boundary A, in 

the case where no fluid is generated or consumed, one gets 

𝜕

𝜕𝑡
∫ 𝜃𝜌𝑓𝑉

𝑑𝑉 + ∫ (𝜃𝜌𝑓𝒖𝑓) ∙ 𝒏𝑑𝐴𝐴
= 0      (7-1) 

where 𝒏 denotes the outward normal vector on the boundary of control volume V, 𝐴 = 𝐴𝑝 + 𝐴𝑓. 

According to the divergence theorem, the above equation can be rewritten as

 ∫
𝜕(𝜃𝜌𝑓)

𝜕𝑡𝑉
𝑑𝑉 + ∫ ∇ ∙ (𝜃𝜌𝑓𝒖𝑓)𝑑𝑉𝑉

= 0.      (7-2) 

Since the control volume V is arbitrary, we have 

𝜕(𝜃𝜌𝑓)

𝜕𝑡
+ ∇ ∙ (𝜃𝜌𝑓𝒖𝑓) = 0,        (7-3) 

which is similar with the formula of the continuous single phase in (Brennen 2005). 

7.2 Momentum equations 

Applying Newton’s second law of motion to the fluid part within the control volume V, we get 

∫ (𝜃𝜌𝑓
𝐷𝒖𝑓

𝐷𝑡
)𝑑𝑉

𝑉
= ∫ 𝜃𝜌𝑓𝒈𝑉

𝑑𝑉 + ∫ 𝝈𝒏𝑑𝐴
𝐴𝑓∪Σ

′∪Σ
,    (7-4) 
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where 𝝈 is the stress tensor, 𝒏 is the outward normal vector at 𝐴𝑓, or pointing to the solid particles 

at Σ′ ∪ Σ. The fluid pressure p, stress 𝝈 and deviatoric stress 𝝉 have the following relationship. 

𝝈 = −𝑝𝑰 + 𝝉         (7-5) 

We break the second term on the right hand side of eq. (9-4) by applying (9-5), 

∫ 𝝈𝒏𝑑𝐴
𝐴𝑓∪Σ

′∪Σ

= ∫ 𝝈𝒏𝑑𝐴
𝐴𝑓∪𝐴𝑝

−∫ 𝑝𝒏𝑑𝐴
Σ′∪Σ

+∫ 𝑝𝒏𝑑𝐴
𝐴𝑝

+∫ 𝝉𝒏𝑑𝐴
Σ′∪Σ

−∫ 𝝉𝒏𝑑𝐴
𝐴𝑝

 

           (7-6) 

An empirical formula (Ergun 1952, Kawaguchi, Tanaka et al. 1995, Kawaguchi, Tanaka et 

al. 1998, Sun, Sakai et al. 2013) is used to calculate the contribution of the deviatoric stress at the 

solid-fluid interface: 

∫ 𝝉𝒏𝑑𝐴
Σ′∪Σ

− ∫ 𝝉𝒏𝑑𝐴
𝐴𝑝

= ∑ 𝛽𝑗 (𝒗𝑠(𝒙𝑗) − 𝒖𝑓(𝒙𝑗)) 𝑉𝑗
𝑚
𝑗=1 ,   (7-7) 

where m is the number of solid particles in the control volume, 𝒙𝑗 is the coordinate of the mass 

center of the j-th solid particle, 𝒗𝑠 is the velocity of solid particle, and 𝒖𝑓 is the fluid velocity, 

which can be regarded as an averaged value of fluid velocity around the solid particle, equivalent 

to the velocity at the mass center as if the space occupied by the solid particle were filled with the 

fluid. 𝛽𝑗 is the drag coefficient and 𝑉𝑗  the volume of the j-th solid particle. 

Similar to Eq. (7-7), the concentrated force is to represent the resultant force due to the pressure 

on the solid particle surface, that is, a solid particle is processed either in one cell or another, but 

not in between. The pressure terms on the right hand side of eq. (7-6) can be rewritten by using 

the divergence theorem as: 
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−∫ 𝑝𝒏𝑑𝐴
Σ′∪Σ

+ ∫ 𝑝𝒏𝑑𝐴
𝐴𝑝

= −∫ 𝑝𝒏𝑑𝐴
𝛴1

−⋯− ∫ 𝑝𝒏𝑑𝐴
𝛴𝑚

= ∫ 𝛻𝑝𝑑𝑉
𝑉1

+⋯+ ∫ 𝛻𝑝𝑑𝑉
𝑉𝑚

≈

𝛻𝑝(𝒙1)𝑉1 +⋯+ 𝛻𝑝(𝒙𝑚)𝑉𝑚 = ∑ 𝛻𝑝(𝒙𝑗)𝑉𝑗
𝑚
𝑗=1 ,       

           (7-8) 

where m is the number of solid particles in a control volume 𝑉, 𝛴1, … , 𝛴𝑚 are the surfaces of the 

solid particles. 

Although the left side of Eq. (7-6) takes into account the solid particles crossing the border of 

the control volume, the right side contains only the whole particles, for all solid particles are treated 

either in one control volume or another, but not in between. This approach is only for the purpose 

of calculating the resultant force. The effect of the position of the solid particle mass center will 

be counted in the MPM. In this way, the pressure term and the deviatoric stress term are treated 

consistently. The first term on the right hand side of Eq. (7-6) can be rewritten by applying the 

divergence theorem as 

∫ 𝝈𝒏𝑑𝐴
𝐴𝑓∪𝐴𝑝

= ∫ ∇ ∙ 𝝈𝑑𝑉
𝑉

        (7-9) 

Combining (7-4), (7-6) and (7-9), one gets 

∫ 𝜃𝜌𝑓
𝐷𝒖𝑓

𝐷𝑡
𝑑𝑉

𝑉

= ∫ 𝜃𝜌𝑓𝒈
𝑉

𝑑𝑉 + ∫ ∇ ∙ 𝝈𝑑𝑉
𝑉

+∑𝛻𝑝(𝒙𝑗)𝑉𝑗

𝑚

𝑗=1

+∑𝛽𝑗 (𝒗𝑠(𝒙𝑗) − 𝒖𝑓(𝒙𝑗))𝑉𝑗

𝑚

𝑗=1

 

           (7-10) 

To get the differential form of the governing equation, we use Dirac delta function to represent 

the distribution of the concentrated forces. 

∑ 𝛻𝑝(𝒙𝑗)𝑉𝑗
𝑚
𝑗=1 = ∫ ∑ 𝛻𝑝(𝒙)𝑉𝑗𝛿(𝒙 − 𝒙𝑗)𝑑𝑉

𝑚
𝑗=1𝑉

     (7-11) 
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∑ 𝛽𝑗 (𝒗𝑠(𝒙𝑗) − 𝒖𝑓(𝒙𝑗))𝑉𝑗
𝑚
𝑗=1 = ∑ ∫ 𝛽𝑗 (𝒗𝑠(𝒙) − 𝒖𝑓(𝒙))𝑉𝑗𝛿(𝒙 − 𝒙𝑗)𝑑𝑉𝑉

𝑚
𝑗=1  (7-12) 

Substituting (7-11) and (7-12) into (7-10), we have 

∫ 𝜃𝜌𝑓
𝐷𝒖𝑓

𝐷𝑡
𝑑𝑉

𝑉

= ∫ {𝜃𝜌𝑓𝒈 + ∇ ∙ 𝝈
𝑉

+∑[𝛻𝑝(𝒙)𝑉𝑗𝛿(𝒙 − 𝒙𝑗) + 𝛽𝑗 (𝒗𝑠(𝒙) − 𝒖𝑓(𝒙))𝑉𝑗𝛿(𝒙 − 𝒙𝑗)]

𝑚

𝑗=1

}𝑑𝑉 

           (7-13) 

Since the domain V in the above equation is arbitrary, to make two integrals equal we shall 

require the integrands on both side equal. Thus, we get the general form of governing equation in 

the differential form as follows 

𝜃𝜌𝑓
𝐷𝒖𝑓

𝐷𝑡
= 𝜃𝜌𝑓𝒈+ ∇ ∙ 𝝈 + ∑ [𝛻𝑝(𝒙) + 𝛽𝑗(𝒗𝑠 − 𝒖𝑓)]𝑉𝑗𝛿(𝒙 − 𝒙𝑗)

𝑀
𝑗=1 , 

           (7-14) 

where M is the number of solid particles in the whole computational domain. If the interaction 

force from the solid phase is represented by R, i.e. 𝑹 = ∑ [𝛻𝑝(𝒙) + 𝛽𝑗(𝒗𝑠 − 𝒖𝑓)]𝑉𝑗𝛿(𝒙 − 𝒙𝑗)
𝑀
𝑗=1 , 

Eq. (7-14) becomes the same form of momentum conservation equation of a continuous single 

phase derived in (Brennen 2005). 

In the combined DEM-MPM, the motion of a solid particle is based on the resultant force the 

particle receives, including the contribution from the fluid field. The shear from the fluid is the 
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reaction force of 𝛽𝑗 (𝒗𝑠(𝒙𝑗) − 𝒖𝑓(𝒙𝑗))𝑉𝑗, and the pressure on a solid particle is the buoyance 

force, which can be calculated as 

∫ 𝑝𝒏𝑑𝐴
𝛴𝑗

= −∫ 𝛻𝑝𝑑𝑉
𝑉𝑗

≈ −𝑉𝑗𝛻𝑝(𝒙𝑗),       (7-15) 

where 𝛴𝑗 and 𝑉𝑗are the surface and volume of the j-th solid particle, respectively. 

The resultant force on fluid phase from the solid particle j is marked as 𝒇𝑓, defined as 

𝒇𝑓 = 𝑉𝑗{𝛻𝑝(𝒙𝑗) + 𝛽𝑗[𝒗𝑠(𝒙𝑗) − 𝒖𝑓(𝒙𝑗)]}       (7-16) 

The average reaction force of the buoyance force (exerted on the fluid phase) per unit volume 

in the control volume can be estimated as follows, for the case in which the gradient of pressure is 

constant over each solid particle. 

1

𝑉
∫ ∑ 𝛻𝑝(𝒙)𝑉𝑗𝛿(𝒙 − 𝒙𝑗)

𝑚
𝑗=1 𝑑𝑉

𝑉
=

1

𝑉
∑ 𝛻𝑝(𝒙𝑗)𝑉𝑗
𝑚
𝑗=1 =

𝛻𝑝

𝑉
∑ 𝑉𝑗
𝑚
𝑗=1 = 𝛻𝑝(1 − 𝜃)   (7-17) 

Here the locally averaged solid volume fraction over the control volume, 
1

𝑉
∑ 𝑉𝑗
𝑚
𝑗=1 = 1 − 𝜃, is 

applied. Since ∑ 𝛻𝑝(𝒙)𝑉𝑗𝛿(𝒙 − 𝒙𝑗)
𝑚
𝑗=1  represents the force per unit volume, and has the same 

resultant force over the fluid inside the control volume, (i.e. 𝛻𝑝(1 − 𝜃)𝑉), in the case where the 

solid particles are very tiny and control volume is very small, so that the constant gradient of 

pressure would approximately hold. Mathematically, the gradient of pressure is independent of the 

location in the control volume as the control volume approaches infinitesimal. The Eq. (7-14) is 

thus rewritten as 

𝜃𝜌𝑓
𝐷𝒖𝑓

𝐷𝑡
= 𝜃𝜌𝑓𝒈+ ∇ ∙ 𝝈 + 𝛻𝑝(1 − 𝜃) + ∑ 𝛽𝑗(𝒗𝑠 − 𝒖𝑓)𝑉𝑗𝛿(𝒙 − 𝒙𝑗)

𝑀
𝑗=1 = 𝜃𝜌𝑓𝒈 − 𝜃𝛻𝑝 +

∇ ∙ 𝝉 + ∑ 𝛽𝑗(𝒗𝑠 − 𝒖𝑓)𝑉𝑗𝛿(𝒙 − 𝒙𝑗)
𝑀
𝑗=1        (7-18) 
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If 𝑭𝑓 is used to represent the shear drag force per unit volume on fluid phase, which is the last 

term in the above equation, we get the exact same form of momentum equation as derived by 

Anderson and Jackson (Anderson and Jackson 1967), though our derivation is much shorter and 

with fewer assumptions. In many applications, the shear drag force is actually calculated using 

formula (5), but an abstract symbol 𝑭𝑓  or a term like 𝛽(𝒗𝑠 − 𝒖𝑓) appears in the momentum 

conservation equation. The connection between 𝑭𝑓  and the shear drag is missing. And, 

𝛽(𝒗𝑠 − 𝒖𝑓) does not reflect the essence of the empirical formula, which basically is an estimate 

of a resultant force concentrated at the mass center. By using the Dirac delta function here, the 

nature of shear drag as an empirically determined resultant force concentrated at the mass point of 

dispersed solid phase is thus correctly represented in the momentum conservation equation. 

 

7.3 Constitutive equations 

The continuity equation (7-3) can be rewritten as 

𝐷(𝜃𝜌𝑓)

𝐷𝑡
= −𝜃𝜌𝑓∇ ∙ 𝒖𝑓,         (7-19) 

where 
𝐷

𝐷𝑡
 denotes the substantial (material) derivative. Eq. (7-19) can be rewritten as 

𝐷𝜌𝑓

𝜌𝑓𝐷𝑡
= −∇ ∙ 𝒖𝑓 −

𝐷𝜃

𝜃𝐷𝑡
         (7-20) 

In the Lagrangian description, 
𝐷𝜃

𝐷𝑡
 turns out to be 

𝑑𝜃

𝑑𝑡
 which is the rate of change of fluid volume 

fraction of a given fluid particle, and 
𝐷𝜌𝑓

𝐷𝑡
 becomes 

𝑑𝜌𝑓

𝑑𝑡
 which is the rate of change of fluid density. 

The fluid particle will be simulated using the MPM described in next section. The density 𝜌𝑓 is 
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the fluid particle density, not the density described at a fixed spatial point in the flow field in 

Eulerian description. In another words, we will use Lagrangian description through this study. 

The equation (7-20) can be approximated by a difference form as 

 

∆𝜌𝑓

𝜌𝑓
= −(∇ ∙ 𝒖𝑓 +

1

𝜃

∆𝜃

∆𝑡
) ∆𝑡 = −(∆𝑡∇ ∙ 𝒖𝑓 +

𝜃−𝜃0

𝜃
),     (7-21) 

where ∆𝑡 is the time increment, and 𝜃0 is the fluid volume fraction at the previous time step. 

The pressure change is related to the density change through bulk modulus 𝐾  in a linear 

relationship, i.e., ∆𝑝 = 𝐾
∆𝜌𝑓

𝜌𝑓
, thus we have 

∆𝑝 = −𝐾 (∆𝑡∇ ∙ 𝒖𝑓 +
𝜃−𝜃0

𝜃
).        (7-22) 

The density of the fluid evolves from 𝜌𝑓
𝑛 at the previous time step to 𝜌𝑓

𝑛+1 at the current time 

step as 

𝜌𝑓
𝑛+1 =

𝜌𝑓
𝑛

1−
∆𝑝

𝐾

.          (7-23) 

Hence, the current fluid density may be roughly calculated from the current pressure 𝑝𝑘+1 

through 𝜌𝑓
𝑛+1 =

𝜌𝑓
0

1−
𝑝𝑛+1

𝐾

, where 𝜌𝑓
0 is the density in the initial condition and the initial pressure is 

assumed to be zero. 

The deviatoric stress 𝝉 is assumed to follow Navier-Poisson Law of a Newtonian fluid: 

𝝉 = 2𝜂𝜺̇𝑓
𝑑
 ,         (7-24) 

where 𝜺̇𝑓
𝑑

 is the deviatoric strain rate and 𝜂  is the dynamic viscosity of the fluid. 
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7.4 The equation of solid particle motion 

The motion of solid particles is considered at the level of each individual particle. The motion 

of mass center of each individual particle follows Newton's second law of motion for a single mass 

point, and the rotation of the particle follows Euler's Theorem, which is an extension of Newton's 

law to the motion of a rigid body.  

𝑚𝑠
𝑑𝒗𝑠

𝑑𝑡
= 𝒇𝑐 − 𝒇𝑓 +𝑚𝑠𝒈        (7-25) 

𝑰𝑐
𝑑𝝎𝑠

𝑑𝑡
+𝝎𝑠 × (𝑰𝑐𝝎𝑠) = 𝑻𝑐 + 𝑻𝑓,       (7-26) 

where, 𝑚𝑠, 𝒈, 𝒇𝑐 are the mass of the solid particle, gravitational acceleration, and the reaction 

force due to contact (collision) with other solid particles or solid structures, respectively. The 

method for calculating 𝒇𝑐 is the so called linear spring-dashpot model proposed by Cundall and 

Strack (Cundall and Strack 1979), where the spring is used for the elastic deformation while the 

dashpot accounts for the viscous dissipation and the damping factor is determined from a 

restitution coefficient provided. 𝑰𝑐 is momentum of inertia relative to the particle mass center, 

and 𝝎𝑠 is the angular velocity of the solid particle. 𝑻𝑐 is the torque due to the contact force from 

other solid particles or solid structures. 𝑻𝑓 is the torque due to the interaction with fluid phase. 

Because only force at the mass center of each solid particle is calculated, the torque relative to 

the mass center of the solid particle due to the interaction with fluid is neglected at the current 

model.  

The motion of the solid particles is solved using the Discrete Element Method (DEM). The 

solid particle velocity and fluid velocity at the previous time step are used for calculating the shear 

drag at the current time step. The solid particle velocity is updated by solving the above equation. 

The angular velocity is used for calculating the shear force at the contact. The shear force is limited 
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by applying Coulomb's friction law. The contact force is calculated based on the overlap between 

solid particles or solid structures using a viscous damped free vibration model. Further details can 

be found in the literature (Cundall and Strack 1979, Tsuji, Kawaguchi et al. 1993). 
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Figure 7.1. (A) Control volume V with fluid and particles,   (B) Fluid volume Vf , excluding solid 

volume; modified after (Jin, Yuan et al. 1992) 
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Chapter 8. Discretization of Governing Equations 

The material point method (MPM) is exploited to solve the above governing equations, in 

particular, the momentum balance equation (7-14). 

Now we assume a trial function h in the form 

ℎ(𝒙, 𝑡) = ∑ ℎ𝑗(𝑡)𝑆𝑗(𝒙)
𝑁
𝑗=1 ,        (8-1) 

where, ℎ𝑗(𝑡) is a function of time and 𝑆𝑗(𝒙) a function of spatial coordinate. The trial function 

ℎ(𝒙, 𝑡) consists of N products of these two basic functions. When this trial function is applied to 

an element of N nodes, ℎ𝑗(𝑡) is the solution at j-th node varying with time, and 𝑆𝑗(𝒙) is the spatial 

interpolation function. 

Multiplying (8-1) to (7-14), and then integrating the resulting equation over a computational 

domain Ω, one gets 

∑ ℎ𝑗(𝑡)
𝑁
𝑗=1 ∫ 𝜃𝜌𝑓

𝐷𝒖𝑓

𝐷𝑡
𝑆𝑗(𝒙)𝑑𝑣Ω

= ∑ ℎ𝑗(𝑡)
𝑁
𝑗=1 ∫ 𝑆𝑗(𝒙)𝜃𝜌𝑓𝒈𝑑𝑣Ω

+ ∑ ℎ𝑗(𝑡)
𝑁
𝑗=1 ∫ 𝑆𝑗(𝒙)∇ ∙ 𝝈𝑑𝑣Ω

+

∑ ℎ𝑗(𝑡)
𝑁
𝑗=1 ∫ 𝑆𝑗(𝒙) [∑ [𝛻𝑝(𝒙) + 𝛽𝑘(𝒗𝑠 − 𝒖𝑓)]𝑉𝑘𝛿(𝒙 − 𝒙𝑘)

𝑁𝑠𝑝
𝑘=1 ] 𝑑𝑣

Ω
, 

           (8-2) 

where 𝑁𝑠𝑝 is the number of solid particles in domain Ω. 

8.1 Material Point Method 

The material point method (MPM) is applied to represent the mass of a fluid particle in a space 

ω by a concentrated mass at one point-the mass center as follows. 

𝑀𝑝 = ∫ 𝜃𝜌𝑓𝑑ωω
,          (8-3) 
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The particle mass 𝑀𝑝  never changes with time. It can also be regarded as 𝜃𝑉ω𝜌𝑓 . The macro 

density is defined as the mass divided by the total volume, i.e. 
𝑀𝑝

𝑉ω
 , which is equivalent to the 

product of micro density (material density) and volume fraction, shown as follows  

𝜃𝜌𝑓 =
𝑀𝑝

𝑉ω
 .            (8-4) 

Eq. (8-4) holds only if 𝜃𝜌𝑓 is constant in space ω. This requirement can be avoided in the MPM, 

where, the mass of a material particle is treated as being concentrated at a point (that is why it is 

termed as the material point method). On the other hand, clearly, 

∫ 𝑀𝑝𝛿(𝒙 − 𝒙𝑝
𝑡 )𝑑ω

ω
= 𝑀𝑝(𝒙𝑝

𝑡 ),       (8-5) 

where 𝒙𝑝
𝑡  is the coordinate of the material point at time t. Comparing (8-3) and (8-5), and 

considering that ω is arbitrary, we have 

𝜃𝜌𝑓 = 𝑀𝑝𝛿(𝒙 − 𝒙𝑝
𝑡 ).         (8-6) 

In the case where there are 𝑁𝑝 material particles inside the space Ω, by a similar argument, we 

have 

𝜃𝜌𝑓 = ∑ 𝑀𝑝𝛿(𝒙 − 𝒙𝑝
𝑡 )

𝑁𝑝
𝑝=1 .           (8-7) 

The solution process of the momentum conservation equations will be significantly simplified by 

using the concept of the material point, as shown below. 

Similar to the finite element method, the solution 𝒖𝑓(𝒙, 𝑡)  can be obtained through the 

interpolation of values at the nodes of a regular grid using shape functions: 

𝒖𝑓(𝒙, 𝑡) = ∑ 𝒖𝑓𝑗(𝑡)𝑆𝑗(𝒙)
𝑁𝑛
𝑗=1         (8-8) 
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where 𝑁𝑛 is the number of nodes in a grid cell (MPM mesh). 

Substituting (8-7) into (8-2), one gets the left side      

∑ ℎ𝑗(𝑡)
𝑁
𝑗=1 ∫ 𝜃𝜌𝑓

𝐷𝒖𝑓

𝐷𝑡
𝑆𝑗(𝒙)𝑑ΩΩ

= ∑ ℎ𝑗(𝑡)
𝑁
𝑗=1 ∫ ∑ 𝑀𝑝𝛿(𝒙 − 𝒙𝑝

𝑡 )
𝑁𝑝
𝑝=1

𝐷𝒖𝑓

𝐷𝑡
𝑆𝑗(𝒙)𝑑ΩΩ

=

∑ ℎ𝑗(𝑡)
𝑁
𝑗=1

𝑑

𝑑𝑡
[∑ 𝑀𝑝𝒖𝑓(𝒙𝑝

𝑡 , 𝑡)𝑆𝑗(𝒙𝑝
𝑡 )

𝑁𝑝
𝑝=1 ] = ∑ ℎ𝑗(𝑡)

𝑁
𝑗=1

𝑑𝑚𝒖̅̅ ̅̅ ̅𝑓𝑗

𝑑𝑡
, 

           (8-9) 

where,  

𝑚𝒖̅̅̅̅̅𝑓𝑗 = ∑ 𝑀𝑝𝒖𝑓(𝒙𝑝
𝑡 , 𝑡)𝑆𝑗(𝒙𝑝

𝑡 )
𝑁𝑝
𝑝=1                                (8-10) 

is the momentum of the fluid particle at grid node, obtained by mapping momentum from material 

particles. The conversion from 
𝐷𝒖𝑓

𝐷𝑡
 to 

𝑑𝒖𝑓

𝑑𝑡
 is because the fluid velocity is calculated at the point 

occupied by the moving fluid particle in Lagrangian description, not a fixed spatial point in 

Eulerian description. 

 Equation (10-10) defines a mapping from particles in a cell to the grid nodes of the cell. This 

technique is also applied to locally calculate the averaged volume fraction of each phase at the grid 

nodes. The solid phase volume fraction and fluid phase volume fraction are calculated as follows. 

𝜃𝑠𝑗 =
1

𝑉𝑗
∑ 𝑉𝑠𝑝𝑆𝑗(𝒙𝑠𝑝

𝑡 )
𝑁𝑠𝑝
𝑠𝑝=1                                 (8-11) 

𝜃𝑗 =
1

𝑉𝑗
∑

𝑀𝑝

𝜌𝑓
𝑆𝑗(𝒙𝑝

𝑡 )
𝑁𝑝
𝑝=1                                  (8-12) 

where the subscript sp represents the solid particle, 𝑉𝑠𝑝 is the volume of solid particle sp and 𝑉𝑗 is 

the volume of all cells associated with the node j, given as 

𝑉𝑗 = ∫ 𝑆𝑗(𝒙)𝑑ΩΩ
.                                (8-13) 



73 
 

Because 𝜃𝑠𝑗 + 𝜃𝑗 = 1, the fluid volume fraction can be calculated from the solid particle volume 

fraction as follows, 

𝜃𝑗 = 1 − 𝜃𝑠𝑗 .                     (8-14) 

As an inverse operation, the following mapping converts nodal variables to variables at the 

position of particles. 

𝑝(𝒙, 𝑡) = ∑ 𝑝𝑗(𝑡)𝑆𝑗(𝒙)
𝑁𝑛
𝑗=1 ,        (8-15) 

𝜃(𝒙, 𝑡) = ∑ 𝜃𝑗(𝑡)𝑆𝑗(𝒙)
𝑁𝑛
𝑗=1 ,        (8-16) 

𝝈(𝒙, 𝑡) = ∑ 𝝈𝑗(𝑡)𝑆𝑗(𝒙)
𝑁𝑛
𝑗=1 .        (8-17) 

The first item on the right side of Eq. (8-2) is the gravitational force. 

∫ 𝜃𝜌𝑓𝒈𝑆𝑗(𝒙)𝑑ΩΩ
= 𝒈∫ ∑ 𝑀𝑝𝛿(𝒙− 𝒙𝑝

𝑡 )
𝑁𝑝
𝑝=1 𝑆𝑗(𝒙)𝑑ΩΩ

= 𝑀𝑝𝑗𝒈,   (8-18) 

where  

𝑀𝑝𝑗 = ∑ 𝑀𝑝(𝒙𝑝
𝑡 , 𝑡)

𝑁𝑝
𝑝=1 𝑆𝑗(𝒙𝑝

𝑡 )        (8-19) 

is a mapping of mass from particles in a cell to the grid node of the cell. 

The second item on the right side of Eq. (10-2) can be rewritten as 

∫ 𝑆𝑗(𝒙)∇ ∙ 𝝈𝑑ΩΩ
= ∫ 𝑆𝑗(𝒙)𝝈𝒏𝑑𝑠S

− ∫ 𝝈∇𝑆𝑗(𝒙)𝑑ΩΩ
.     (8-22) 

The first term on the right side in the above is related to the boundary condition and is marked 

as 

𝑓
𝑗
𝑏𝑐 = ∫ 𝑆𝑗(𝒙)𝝈𝒏𝑑𝑠S

,         (8-23) 

and the second term is the internal force 
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𝑓
𝑗
𝑖𝑛𝑡 = −∫ 𝝈∇𝑆𝑗(𝒙)𝑑ΩΩ

= −∫ 𝜌𝑓𝝈
𝒔∇𝑆𝑗(𝒙)𝑑ΩΩ

= −
1

𝜃
∫ ∑ 𝑀𝑝𝛿(𝒙 − 𝒙𝑝

𝑡 )
𝑁𝑝
𝑝=1 𝝈𝒔∇𝑆𝑗(𝒙)𝑑ΩΩ

=

−
1

𝜃
∑ 𝑀𝑝
𝑁𝑝
𝑝=1 𝝈𝒔(𝒙𝑝

𝑡 )∇𝑆𝑗(𝒙𝑝
𝑡 ) = −

1

𝜃
∑

𝑀𝑝

𝜌𝑓

𝑁𝑝
𝑝=1 𝝈𝑝∇𝑆𝑗(𝒙𝑝

𝑡 ),      

           (8-24) 

where,  the specific stress 𝝈𝒔 =
𝝈

𝜌𝑓
 is used in the derivation of Eq. (8-22). Eq. (8-7) is also applied 

to derive Eq. (8-22). Note that the fluid volume fraction is obtained by local averaging at the space 

Ω. 

The last term in (10-22) is rewritten as: 

∑ ℎ𝑗(𝑡)
𝑁
𝑗=1 ∫ 𝑆𝑗(𝒙) [∑ [𝛻𝑝(𝒙) + 𝛽𝑘(𝒗𝑠 − 𝒖𝑓)]𝑉𝑘𝛿(𝒙 − 𝒙𝑘)

𝑁𝑠𝑝
𝑘=1 ] 𝑑Ω

Ω
=

∑ ℎ𝑗(𝑡)
𝑁
𝑗=1 ∑ [𝛻𝑝(𝒙𝑘) + 𝛽𝑗 (𝒗𝑠(𝒙𝑘) − 𝒖𝑓(𝒙𝑘))] 𝑆𝑗(𝒙𝑘)𝑉𝑘

𝑁𝑠𝑝
𝑘=1 ,  

           (8-25) 

where, 𝑉𝑘 is the volume of solid particle k. Since the solid particles are regarded as rigid, the 

volume can be calculated either as 𝑉𝑘 =
𝑚𝑠𝑘

𝜌𝑠𝑘
 or 𝑉𝑘 =

4

3
𝜋𝑟𝑠𝑘

3  if the particle is treated as a sphere, 

where 𝑚𝑠𝑘, 𝜌𝑠𝑘 and 𝑟𝑠𝑘 are the mass, density and radius of the solid particle, respectively. 

8.2 The interaction force between solid and fluid phase 

Let 𝒇𝑗
𝑠 be the interaction from the solid particles projected at node j.  

𝒇𝑗
𝑠 = ∑ [𝛻𝑝(𝒙𝑘) + 𝛽𝑗 (𝒗𝑠(𝒙𝑘) − 𝒖𝑓(𝒙𝑘))] 𝑉𝑘𝑆𝑗(𝒙𝑘)

𝑁𝑠𝑝
𝑘=1 .    (8-26) 

The damping coefficient 𝛽 is given by Ergun's equation (Ergun 1952) in the dense region and 

by Wen and Yu's equation (Wen and Yu 1966) in the dilute region, as follows 
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𝛽𝑘 = {

𝜂(1−𝜃)

𝑑𝑠𝑘
2𝜃
[150(1 − 𝜃) + 1.75𝑅𝑒](𝜃 ≤ 0.8)

3

4
𝐶𝐷

𝜂(1−𝜃)

𝑑𝑠𝑘
2 𝜃−2.7𝑅𝑒         (𝜃 > 0.8)

.     (8-27) 

where 𝑑𝑠𝑘 is the diameter of a solid particle k, and 𝐶𝐷 is the drag coefficient and obtained using 

following expression 

𝐶𝐷 = {
24(1 + 0.15𝑅𝑒0.687)/𝑅𝑒        (𝑅𝑒 ≤ 1000)

0.43         (𝑅𝑒 > 1000)
.     (8-28) 

where 

𝑅𝑒 =
|𝒗𝑠(𝒙𝑘)−𝒖𝑓(𝒙𝑘)|𝜃𝜌𝑓𝑑𝑠𝑘

𝜂
.        (8-29) 

A dimensionless parameter is advisable so that the viscosity and the particles size are removed 

from (8-27). In this way, a new parameter is defined 

𝛽𝑘
′ = {

(1−𝜃)

𝜃
[150(1 − 𝜃) + 1.75𝑅𝑒](𝜃 ≤ 0.8)

3

4
𝐶𝐷(1 − 𝜃)𝜃

−2.7𝑅𝑒         (𝜃 > 0.8)
     (8-30) 

Accordingly, equation (8-26) is rewritten as 

𝒇𝑗
𝑠 = ∑ [𝛻𝑝(𝒙𝑘) +

𝜂

𝑑𝑠𝑘
2 𝛽𝑘

′ (𝒗𝑠(𝒙𝑘) − 𝒖𝑓(𝒙𝑘))]𝑉𝑘𝑆𝑗(𝒙𝑘)
𝑁𝑠𝑝
𝑘=1 .   (8-31) 

For sphere solid particles, 𝑉𝑘 =
𝜋

6
𝑑𝑠𝑘

3
 

𝒇𝑗
𝑠 = ∑ [𝛻𝑝(𝒙𝑘)𝑉𝑘 +

𝜋𝑑𝑠𝑘

6
𝜂𝛽𝑘

′ (𝒗𝑠(𝒙𝑘) − 𝒖𝑓(𝒙𝑘))] 𝑆𝑗(𝒙𝑘)
𝑁𝑠𝑝
𝑘=1 .   (8-32) 

8.3 Numerical solution for the momentum equation 

Summing up all individual forces, equation (8-2) can be rewritten as  

∑ ℎ𝑗(𝑡)
𝑁
𝑗=1

𝑑𝑚𝒖̅̅ ̅̅ ̅𝑓𝑗

𝑑𝑡
= ∑ ℎ𝑗(𝑡)

𝑁
𝑗=1 (𝑀𝑝𝑗𝒈 + 𝒇𝑗

𝑏𝑐 + 𝒇𝑗
𝑖𝑛𝑡 + 𝒇𝑗

𝑠).    (8-33) 
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Since ∑ ℎ𝑗(𝑡)
𝑁
𝑗=1  is arbitrary, we have   

𝑑𝑚𝒖̅̅ ̅̅ ̅𝑓𝑗

𝑑𝑡
= 𝑀𝑝𝑗𝒈 + 𝒇𝑗

𝑏𝑐
+ 𝒇𝑗

𝑖𝑛𝑡
+ 𝒇𝑗

𝑠 = 𝒇𝑗.       (8-34) 

Given  𝑚𝒖̅̅̅̅̅𝑓𝑗
𝑛+1 and 𝑚𝒖̅̅̅̅̅𝑓𝑗

𝑛 the moment at two consecutive time steps, we have 

𝑚𝒖̅̅ ̅̅ ̅𝑓𝑗
𝑛+1

≈ 𝑚𝒖̅̅ ̅̅ ̅𝑓𝑗
𝑛
+ ∆𝑡𝒇𝑗

𝑛.        (8-35) 

Eq. (8-35) is the MPM formula used for solving the momentum equation (7-14). It is a general 

form and has been applied to solve momentum equation in many applications (e.g. (Sulsky, Chen 

et al. 1994), (Jiang, Chen et al. 2015)). To obtain convergent solutions, the time step must follow 

the stability condition. It is recommended to use time step that is one tenth of the period in which 

sound wave passes through the cell. Artificial lower sound wave speed (artificial lower density of 

the fluid) may be explored to achieve high computational efficiency in practice. 

Once the new momentum at the nodes becomes known, the velocity at the nodes can be 

updated as 

𝒖𝑓𝑗
𝑛+1 =

𝑚𝒖̅̅ ̅̅ ̅𝑓𝑗
𝑛+1

𝑀𝑗
         (8-36) 

Then the fluid material point velocity is updated as 

𝒖𝑓
𝑛+1 = ∑ 𝒖𝑓𝑗

𝑛+1𝑁𝑛
𝑗=1 𝑆𝑗(𝒙𝑝

𝑡 ).        (8-37) 

The nodal acceleration is updated as  

𝒂𝑗
𝑛+1 =

𝒇𝑗
𝑛+1

𝑀𝑗
,          (8-38) 

and the acceleration of the fluid particle is updated as 

𝒂𝑝
𝑛+1 = ∑ 𝒂𝑗

𝑛+1𝑁𝑛
𝑗=1 𝑆𝑗(𝒙𝑝

𝑡 ).        (8-39) 
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The strain rate tensor, stress tensor will be updated based on the fluid velocity 𝒖̅𝑓
𝑛+1

, which is 

calculated from the fluid particle acceleration, 

𝒖̅𝑓
𝑛+1

= 𝒖𝑓
𝑛 + 𝒂𝑝

𝑛+1𝛥𝑡         (8-40) 

The updated position of the fluid particle is calculated as 

𝒙𝑓
𝑛+1 = 𝒙𝑓

𝑛 + 𝒖𝑓
𝑛+1𝛥𝑡         (8-41) 

Note, the operation for updating the fluid particle coordinate will not be done until the 

calculation of interaction force (contact force) for the solid particle is finished, because the position 

should be at the previous time step in order to calculate the forces for both fluid particles and solid 

particles based upon the known positions. This algorithm is called modified update stress last 

(MUSL) (Buzzi, Pedroso et al. 2008). 

  



78 
 

Chapter 9. Convergence Study 

There exists fundamental difference between discrete solid particles and the computational 

particles used in the MPM. The discrete solid particles, as are observed in granular materials, are 

physical particles and are represented in DEM with their actual size or representative size. The 

size of computational particles are not physical particles. They are used to represent parts of a 

continuum.  Within the MPM, as with several other particle-based methods, a computational 

particle is best viewed as a representative volume element (RVE) rather than an actual particle (or 

grain) in a granular medium. Because of this, the size of a computational particle can vary. 

The size of computational particle directly affects the accuracy and efficiency of a particle-

based numerical method. For a correct numerical method, fine elements or smaller sized 

computational particles generally lead to high accuracy, in other word, the solution converges as 

the size of computational particles decreases. This convergence does not prove a numerical 

method, but it is a necessary condition to verify a new method. 

Convergence study generally compares numerical results of varying size of elements 

(particles) with analytical solutions. Analytical solutions in fluid dynamics are rare if they exist. 

Here we compare numerical solutions with a group of data from a physical experiment presented 

in the research paper by Sun et al. (Sun, Sakai et al. 2013). For the readers' convenience, a brief 

description is given below.  

In this experiment, the mixture of water and glass beads are set in a rectangular tank with an 

altitude of 0.1 m (shown in Figure 9.1). The mass of glass beads is 200 gram and the density is 

2500 kg/m3. The diameter of the beads is 2.7 mm. The dimensions of the tank are 0.2 m in length, 

0.1 m in width and 0.15 m in altitude. The mixture is contained in the left side with a gate being 
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set at 0.05 m from the left side wall of the tank. Time starts at the moment when the gate is raised 

at a constant rate of 0.68 m/s.  

In our numerical model, the stiffness, restitution coefficient and friction coefficient of the solid 

particles are chosen as 1000 N/m, 0.9 and 0.2, respectively. Non-slip boundary condition is applied 

where water contacts the walls and the bottom of the tank. A fixed time increment of 1.0 × 10-5 s 

is used throughout the simulation with an assumed water bulk modulus 2.2× 107 Pa. The density, 

viscosity of water are taken as 1000 kg/m3, 0.001 Pas respectively. In the MPM there are two 

parameters that determine the size of a computational particle: one is the size of the MPM cell and 

another is the number of particles per cell. For the size of the MPM cell, a group of numerical tests 

with cell size 10 mm, 8 mm, 6.25 mm, 5.0 mm, and 4.1 mm are conducted. Because the length of 

the tank is 200 mm, the corresponding number of cell in this direction is 20, 24, 32, 40 and 48 

respectively. The multiples of 4 are chosen simply because there is a gate at ¼ of the tank length. 

The second group of tests are the same, but the number of particles per cell varies. In the 

convergence study, the model is named with these two parameters. Take model Grid40_8p as an 

example. 40 represents 40 cells in length direction and 8p shows there are 8 particles per cell.  

In the physical experiment, both water and glass beads moves in the same direction but at 

different velocity. The motion of the front lines for both water and glass beads are recorded by 

high-speed camera and measured thereafter. Four snapshots are taken to show the motion of the 

solid phase and the flow of the fluid in Figure 9.2.  

The results from model Grid40_8p are shown in Figure 9.3. Visual comparison provides first 

step to check if the numerical solution makes correct prediction. Since there is no other way to 

find a better solution, the observed motion from the physical experiment serves as a reference. We 
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find that the numerical solution from Grid40_8p is very close to the observational data. Now it is 

a goal to know whether models with different parameters provide similar prediction. 

9.1 The effect of the MPM cell size 

The MPM cell size determines how accurately the interpolation reflects the real situation. If 

all particles are processed in one cell, we can only get one averaged value, which will be far from 

the accuracy requirement. Though fine computation particles are desirable for improving accuracy, 

there is a limit from the size of solid particles. Since this combined DEM-MPM method requires 

more solid particles in a cell, the MPM cell cannot be smaller than the size of solid particles. The 

diameter of glass beads is 2.7 mm and the tank is 200 mm long, which produces the maximum 

possible cell number in this direction (74 cells). If 2 solid particles are aligned in this direction, the 

cell number will be 37 at most.  

In order to demonstrate the effect of the MPM cell size on the accuracy of numerical modeling, 

we designed a group of models with cell size varying from 4~10 mm. The prediction from these 

models are shown in Figure 9.4. It is observed that models with coarse cell predict slow fluid 

motion. The model with smallest cell size (4.1 mm), i.e., the model Grid48_8p predicts the highest 

fluid motion. The fluid takes less than 0.2 second to reach the opposite wall. The model with grid 

cell size of 10 mm predicts the fluid takes 0.3 second to reach the opposite wall. The difference 

between model Grid48_8p and Grid40_8p is significantly smaller than the difference between 

model Grid24_8p and Grid20_8p, which indicates the numerical solutions converge. If the solution 

from model Grid48_8p is regarded as a reference, we can see the convergence tendency as the grid 

mesh becomes fine. 
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The motion of the solid particles predicted from this group of models shows the same 

tendency. In Figure 9.5, it is observed that slow motion predicted in the model of coarse meshes. 

Models of fine meshes predict fast motion. Are models of fine meshes more correct? This question 

will be answered in detail in next section. Here, we simply confirm that the model with the finest 

meshes predicted motion of both phases comparable with that from the physical experiment of the 

same setting. Therefore, Figure 9.5 shows that the error decreases as the cell size gets smaller. 

9.2 The effect of the number of particles per cell 

A material point, carrying all material information like mass, momentum, strain and stress, is 

a point mathematically with no shape factor. The collection of motion of material particles reflects 

the motion and deformation of the studied continuum or a collection of discrete particles. With 

only one particle in a cell, this material point carries information of an averaged motion of material 

around its mass center. If there is one spherical solid particle in a cubic cell and located at the 

center, the rest space will be filled with fluid. If only one material particle (point) is designed to 

represent all fluid in this cell, this material particle must overlap with the solid particle. If 8 material 

particles are used, they could be located near corners without overlapping. After interaction with 

solid particles due to viscous drag, fluid particles at different location will have different velocity. 

More particles per cell should improve the representation of continuum, thus making a prediction 

of high accuracy. The proposed new approach is expected to act this way. After a series of 

numerical tests, we confirm that the new approach does perform this way. 

The motion of the fluid predicted in this series of test is shown in Figure 9.6. It is observed 

that models of fewer particles predict either motion that is too slow (as that from model Grid40_1p) 

or too fast (as that from model Grid40_2p).  Very close curves are predicted from models of more 

particles per cell (Models Grid40_4p and Grid40_8p). 
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The motion of the solid particles predicted in this series is shown in Figure 9.7. The numerical 

predicts show the same tendency. This confirms that our new algorithm does predict more 

accurately as the number of particles per cell increases. It should be noted, however, that an 

accurate prediction due to increasing the number of particles per cell comes with cost in 

computational time because of more particles. As 8 particles per cell give a quite good prediction, 

models with more than 8 particles per cell is no longer needed. 

We also noticed that the convergence tendency in the prediction of solid phase is somewhat 

different from that for fluid phase. The prediction for the fluid phase seems to be converging 

gradually, whereas the prediction for the solid phase in the models with more than 1 particle per 

cell are very close to each other, and far from the model with only one particle per cell. Though 

the cause is unclear, this tendency shows that good results can be achieved using half of the ideal 

number of particles per cell, which is thought to be 2×2×2=8 in a three-dimensional cell, thus 

significantly reducing computing time without losing much accuracy. 

In summary, the convergence study shows the new method has the expected performance on 

solution convergence. 
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Table 9.1 Physical properties and computational parameters. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

  

Item   value 

Solid phase 

DEM particle number 7762 

Particle diameter (m) 0.0027 

Density (kg/m3) 2.5e3 

Stiffness (N/m) 1.0e3 

Restitution coefficient 0.9 

Friction coefficient 0.2 

Liquid phase 

MPM particle number 26,879 

MPM mesh cell size (m) 0.005 

Initial Number of particle per cell 2x2x2 

Density (kg/m3) 1000 

Dynamic viscosity (Pas) 0.001 

Virtual bulk modulus (Pa) 2.2e7 

Solid structural boundary 

Dimensions (m) 0.2x0.1x0.15 

Number of triangle meshes 22 

Gate rising rate (m/s) 0.68 
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Figure 9.1 Setting up of the dam-break test for solid-liquid mixture. 

 

Figure 9.2 Snapshots showing the motion of solid-liquid mixture in the physical test. 
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Figure 9.3 Simulation of two-phase flow in a tank, 4 snapshots from numerical modeling.  The dark blue 

dots stand for the glass beads, while light blue dots for water. This figure is prepared by using VMD 

(Humphrey, Dalke et al. 1996). 
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Figure 9.4 Effect of the MPM cell size on the numerical solution for the fluid phase. 
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Figure 9.5 Effect of the MPM cell size on the numerical solution for the solid phase. 
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Figure 9.6 Effect of the number of MPM particles per cell on the numerical solution for 

the fluid motion. 
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Figure 9.7 Effect of the number of MPM particles per cell on the numerical solution for 

the solid motion. 
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Chapter 10. Verification and Validation 

In order to accurately predict a process using numerical methods, a new code must pass 

verification and validation. Code verification is a prerequisite to code validation. The former one 

requires that the code is correct, mathematically. If there exists an analytic solution, the code 

should be able to produce a numerical result that approximates to the analytic solution in a certain 

convergence rate. The latter one requires that the code can reproduce the numerical result that is 

close to the result of physical experiments. Once the code passes the validation, the confidence to 

predict the real world events is then established. 

Though there are many issues around the DEM, the confidence in using DEM to simulate 

multi-body motion is widely established in industries (Zhu, Zhou et al. 2007). Thus, we will not 

address the verification and validation of the DEM in this paper, instead, we focus our attention 

on the verification and validation of the MPM in the simulation of multiphase fluid motion. So far, 

the analytical solution of a multiphase flow problem has not been found. Our stratagem of code 

verification is to try many different cases and check that the model predictions are correct in 

mathematics and in physics. For example, when the volume fraction is assumed to be 100%, the 

multiphase model actually becomes a single phase model, therefore, the new code should be able 

to reproduce the results of a single phase experiment. Models of varying size of background mesh 

put the MPM-DEM on the convergence test. These tests are not a sufficient condition to approve 

the code, but a very useful step in the code development. Further validation is completed in another 

test in which both solid phase and fluid phase are presented. 
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10.1 Water flow after reservoir dam breakage 

First, we compare our result with that obtained by Mast, Mackenzie-Helnwein et al. (Mast, 

Mackenzie-Helnwein et al. 2012) simply because we adopt similar stratagem and there are 

experimental data available in (Martin and Moyce 1952). 

A simplified dam break is sketched in Figure 10.1. A water column of initial height, ℎ0, and 

length, 𝑙0, is initially constrained horizontally and rests on a smooth, flat surface. The dynamic 

code is run about 0.3 second to allow the static pressure field being stabilized. It is now necessary 

to mark the time 𝑡 = 0 when the gate on the right-hand side is removed and the water is allowed 

to flow freely under the force of gravity. The following parameters describe the free surface run 

out: 

𝑇 = 𝑡√
ℎ0𝑔

𝑙0
2 , 𝐿(𝑇) =

𝑙(𝑇)

𝑙0
, and 𝐻(𝑇) =

ℎ(𝑇)

ℎ0
,      (12.1) 

where 𝑇, 𝐿(𝑇) and 𝐻(𝑇) are the dimensionless time, length, and height ratios, respectively. The 

parameters ℎ0 and 𝑙0 are 4.0 meters each. The term 𝑔 = |𝒈| = 9.8 𝑚/𝑠2. The viscosity of water 

is taken as 0.001 Pas. There are 2×2×1 particles in each cell initially. The physical experiment is 

basically a 2D case. Our numerical model takes a thin slice in 3D space of 4 meter high and 24 

meter long. The thickness of this slice is the size of a fluid particle. The initial configuration of the 

water column is of square shape with length of 4 meters, which can be divided into regular meshes. 

The rest domain is divided into regular meshes of the same size. The cell resolution is 0.125 meter 

in length, 0.125 meter in height and 0.0625 meter in thickness for model MPM32. Table 1 

summarizes the parameters used in the numerical tests. 

The predictions from the MPM is shown in figure 12.2 by a series of snaps taken at time 𝑇 =

0, 0.5, 1.0, 1.5, 2.0,2.5, 3.0. It is observed that water surface tilting and the right corner flowing 
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out. The water flow predicted from the MPM model is comparable with that by Mast, Mackenzie-

Helnwein et al. (Mast, Mackenzie-Helnwein et al. 2012).  

The quantitative comparison between the model predictions and experimental data are shown 

in Figure 10.3 and 10.4. In Figure 10.3, the predictions from a MPM model with free-slip and non-

slip boundary conditions are given, respectively. The former one is marked as MPM1 and the latter 

one as MPM2. The MPM1 predicts the result which is identical to that by Mast, Mackenzie-

Helnwein et al. (Mast, Mackenzie-Helnwein et al. 2012). This is understandable because we use 

the cell-based anti-locking technique as they did. Note that the predicted length is larger than the 

length from the experimental data. The MPM2 gives a much better fit to the experimental data. It 

is reasonable that free-slip boundary condition promotes the flow, while non-slip boundary 

condition represents the physical condition better. 

The resolution of the MPM grid is another factor that may affect the model predictions. Figure 

10.3B shows the predictions from three MPM models. There are 16 cells in the length of initial   

length 4.0 m in the model MPM16, and 24 in MPM24, and 32 in MPM32. It is very clear from 

Figure 12.3B that the prediction becomes better and better as the spatial resolution improves. 

The height history predicted from these models is also shown in Figure 10.4 (A and B). 

Generally, they are comparable with the experimental data. Larger error occurs at the T>2.5 when 

the water layer becomes very thin (see Figure 10.2). 

Both visual and quantitative comparisons show that the cell-based implementations in our 

code are successful, but this only demonstrates that our code can be used for the simulation of pure 

fluid case. We need to demonstrate more examples to show the success of our method in the 

multiphase flow. 
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10.2 Motion of glass beads and water in a tank 

Here we demonstrate a case very similar to the water dame breakage, however, this time there 

is a solid phase--glass beads mingled with water inside the rectangular tank. This case is presented 

in the research paper by Sun et al. (Sun, Sakai et al. 2013). For the readers' convenience, a brief 

description is given below.  

The mixture of water and glass beads has an altitude of 0.1 m. The mass of glass beads is 200 

gram and the density is 2500 kg/m3. The diameter of the beads is 2.7 mm. The dimensions of the 

tank are 0.2 m in length, 0.1 m in width and 0.15 m in altitude. The mixture is contained in the left 

side with the gate being set at 0.05 m from the left side wall of the tank. Time starts at the moment 

when the gate is raised at a rate of 0.68 m/s. The stiffness, restitution coefficient, and friction 

coefficient of the solid particles are chosen as 1000 N/m, 0.9 and 0.2, respectively, same as those 

used in SPH-DEM simulation by Sun et al. (Sun, Sakai et al. 2013). Non-slip boundary condition 

is applied where water contacts the walls and the bottom of the tank. A fixed time increment of 

1.0 × 10-5 s is used throughout the simulation. We simulate water with 26879 material particles 

and the background mesh of 0.005 m resolution. The physical and model parameters are listed in 

Table 9.1.  

We first prepare settled configuration of the mixture before the gate being raised, and then 

simulate the process of two-phase flow. Figure 10.5 shows four snapshots of the result from the 

simulation, for selected time instants of t = 0.05, 0.1, 0.15 and 0.2 s. Quantitative comparison with 

experimental data is presented in Figure 10.6.  It is observed that the solid particles fall a little bit 

behind the water front, consistent with the experimental data. Quantitative comparison in figure 

10.6 gives us sufficient evidence that the proposed DEM-MPM method is capable of making 

prediction with high fidelity.  
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10.3 Solid-fluid flow in a rotating jar 

Our original idea is to validate the new method with more experimental data. The case of solid-

fluid flow in a rotating jar presented by Sun et al. (Sun, Sakai et al. 2013) is chosen for this purpose. 

Because no boundary condition is described, we simply apply non-slip condition on the wall of 

the jar whenever the fluid contacts. It turns out this model is unable to reproduce what it is observed 

in the experiment.  

This model simulates the solid-fluid flow in a cylindrical jar with both inner diameter and depth 

at 100 mm. The jar contains 7755 solid spherical particles (glass beads) with diameter 2.7 mm and 

density 2700 kg/m3. It also contains 0.297 kg of water with density 1000 kg/m3 and viscosity 0.001 

Pas. The jar rotates at the rate of 104 revolutions per minute. The DEM is exploited to simulate 

the glass beads, and the stiffness, restitution coefficient and friction coefficient are set to be 1000 

N/m, 0.8 and 0.3, respectively. The MPM is for fluid phase with 15406 particles of identical fluid 

mass. There are 36×36×10 cells evenly distributed in 100 mm ×100 mm ×100 mm cubic space 

with 1×1×4 MPM particles in each cell when the cell is full of fluid particles at the initial condition. 

The interior surfaces of the jar are simulated with 1440 triangles. These parameters for the 

simulation are listed in Table 10.2. 

Because of the constant rotating rate, the configuration of the glass beads inside the jar will 

take a stable shape after a certain period of transition. The configuration of the beads is measured 

and simulated. In the experiment, the maximum altitude of the beads in the stable state is 62.18 

mm in average with standard deviation 1.71 mm. In the simulation with non-slip boundary 

condition applied, the model predicted maximum altitude in bead bed is 67 mm. We also noticed 

that the water particles diffuse over space inside the jar. There is no clear free surface observed. 

The comparison is shown in Figure 10.7 (A) and (B).  
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What causes this difference? The difference is also noticed in the first case of pure water flow 

-- it is due to the difference in boundary condition. Strictly speaking, non-slip boundary condition 

and free-slip condition are two end-members in describing the interaction between the boundary 

and the interior mass. Non-slip boundary works better in the case of low Reynolds number while 

free-slip for the large Reynolds number. In reality, the interaction may exist between the two end-

member conditions. In the case using non-slip boundary condition, the boundary has the strongest 

coupling with the interior mass. This is the case for rotating jar: when non-slip boundary condition 

is applied, more energy is transferred from boundary wall to the interior mass including glass beads 

and water. The lifting force is high and the final balanced altitude is higher than the real value 

observed in the laboratory. 

A reasonable guess is that the boundary may be partially sticky (non-slip) and partially slippery 

(free slip). To check this hypothesis, we tested a case in which 50% of the boundary velocity is 

sticky and the rest is slippery. The result is shown in Figure 10.7 (C). It is obvious that the 

simulation fits the experiment result much better. The water particles form a clear free surface and 

the maximum altitude in bead bed is 61 mm. In the case water is full in the rotating jar, the 

Reynolds number could be estimated up to 2×107, much higher than the value for the laminate 

flow in which non-slip boundary is justified. The method of finding a proper boundary condition 

for high Reynolds number flow should continue to be explored. The comparison shown in this 

case highlights the importance of boundary condition in fidelity of numerical modeling. 

One frustrating problem in the application of the material point method is that the numerical 

solution becomes unstable after long simulation time, like in the gear noise control problem 

(personal communication with Z. Chen). In the original test, the jar rotates 4-5 turns. To check if 

a similar problem exists in the current DEM-MPM simulation, a test of the fast spinning jar model 
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runs 25 turns and the numerical result is still very stable. Just because of the large size of the output 

data, the VDM stops working at the 17th turn for the animation of two phase. All 7500 frames of 

solid particle motion in the 25 turns are normally displayed as the first a couple of turns. 

The combined MPM-DEM method developed in this study applies for the interaction among 

solid discrete elements and the fluid in between. Theoretically, it works for both liquid saturated 

or unsaturated and gas. So far we have verified it works for liquid, further verification is required 

for gas. The proposed MPM-DEM method is far from perfect. In this method the MPM cell is 

required to be larger than the size of solid particles. In an industrial application like a sieve, in 

which small particles are allowed to pass, but big particles (compared with sieve size) are not, the 

accuracy of this method and the applicability of this method is a problem. Future study in this 

direction is in need.  
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Table 10.1 Physical properties and computational parameters. 
 

 

 

 

 

 

 

 

 

 
 

Table 10.2 Physical properties and computational parameters. 
 

 

 

 

 

 

 

 

 

 

 

  

Item value 

Water column initial height (m) 4.0 

Water column initial length (m) 4.0 

MPM mesh cell size (m) Varying from 0.125 to 0.25 

Initial Number of particle per cell 2x2x1 

Density (kg/m3) 1000 

Bulk modulus (Pa) 2.2e9 

Dynamic viscosity (Pas) 0.001 

Time step (s) 1.0e-5 

Item    value 

 Solid phase 

 DEM particle number 7755 

 Particle diameter (m) 2.7e_3 

 Density (kg/m3) 2.5e3 

 Stiffness (N/m) 1.0e3 

 Restitution coefficient 0.9 

 Friction coefficient 0.3 

 Liquid phase 

 MPM particle number 15,406 

 MPM mesh cell size (m) 0.00278 

 Initial Number of particle per cell 2x2x2 

 Density (kg/m3) 1000 

 Dynamic viscosity (Pas) 0.001 

 Virtual bulk modulus (Pa) 2.2e7 

 Solid structural boundary 

 Number of triangle meshes 1440 

 Rotation speed (rpm) 104 
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Figure 10.1 Dam breakage simulation. 

 

 

Figure 10.2 Dam breakage sequence predicted from a MPM simulation. This figure is prepared by 

using VMD (Humphrey, Dalke et al. 1996). 
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A 

B 

Figure 10.3 MPM simulated water wave front and experimental data for dam breakage model. 
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A 

B 

Figure 10.4 MPM simulated water column height and experimental data for dam breakage model. 
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Figure 10.5 Simulation of two-phase flow in a tank, 4 snapshots from numerical modeling. The dark blue 

dots stand for the glass beads, while light blue dots for water. This figure is prepared by using VMD. 

(Humphrey, Dalke et al. 1996) 
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A 

B 

Figure 10.6 Comparison between numerical results and experimental data for two-phase flow. A) 

Displacement of the liquid phase; B) Displacement of the solid phase. 
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A 

B 

C 

Figure 10.7 Comparison between numerical results and physical experiment for rotating jar. The dark 

blue dots stand for the glass beads, while light blue dots for water. A) Model with non-slip boundary 

condition; B) Stable state of beads and water in a rotating jar in physical experiment; C) Models with 

50% of sticky boundary condition. This figure is prepared by using VMD. (Humphrey, Dalke et al. 1996)  
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Chapter 11. Concluding Remarks and Future Work 

 In this study, the combined DEM-MPM method is proposed and developed for the 

simulation of multiphase flow. By applying Newton's law of motion on the fluid phase, we derive 

the equation of momentum conservation, which is consistent with the existing equation, but our 

derivation is much shorter and has fewer assumptions. The motion of the fluid and the interaction 

between the solid phase and fluid are simulated using the MPM method, while the contact forces 

between solid particles and solid structure are calculated using the DEM. Due to the nature of the 

MPM, the free surface of the fluid is naturally formed without appealing to any other techniques. 

 The proposed method is verified and validated using physical experimental data and similar 

numerical tests. The reduced form of model is verified in a water flow experiment, and the full 

scale solid-liquid flow is validated in a water-glass beads mixture flow test. The dynamic behaviors 

of fluid head is well reproduced in the numerical modeling. The quantitative comparison shows 

consistency with previous numerical modeling and with physical experiments. It also correctly 

demonstrates the influence of spatial resolution and boundary condition on the fidelity of 

numerical simulation. Thus, we have shown that the combined DEM-MPM method is an effective 

approach for the simulation of solid-liquid flow. Fine particles can be treated as a kind of viscous 

fluid, thus, this method has the potential to solve fine particle comminution. 
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