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Abstract

We describe the growth dynamics of a fish or some other harvested population in a random environment

using a stochastic differential equation general model, where the harvest term depends on a constant or on

a variable fishing effort. We compare the profit obtained by the fishing activity with two types of harvesting

policies, one based on variable effort, which is inapplicable, and the other based on a constant effort, which

is applicable, sustainable and is socially advantageous. We use real data and consider a logistic and a

Gompertz growth models to perform such comparisons. For both optimal policies, profitwise comparisons

are also made when considering a logistic-type growth model with weak Allee effects. The mean and

variance of the first passage times by a lower and by an upper thresholds are studied and, for a particular

threshold value, we estimate the probability density function of the first passage time using the inversion

of the Laplace transform.

Keywords: Harvesting Models, Stochastic Differential Equations, Profit Optimization, Sustainable Poli-

cies, Constant Effort, Stationary Density
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Resumo

MODELOS DE PESCA USANDO EQUAÇÕES

DIFERENCIAIS ESTOCÁSTICAS: POLÍTICAS

SUSTENTÁVEIS E OTIMIZAÇÃO DO LUCRO

A dinâmica de crescimento de uma população sujeita a pesca em ambiente aleatório é descrita através de

modelos de equações diferenciais estocásticas, onde o termo de captura depende de um esforço de pesca

constante ou variável. Comparamos o lucro obtido pela atividade de pesca usando dois tipos de políticas de

pesca, uma inaplicável e baseada em esforço variável e a outra aplicável, sustentável e socialmente vantajosa,

baseada em esforço constante. As comparações são realizadas recorrendo a dados reais e considerando dois

modelos de crescimento, o modelo logístico e o modelo de Gompertz. Para ambas as políticas ótimas, as

comparações do lucro também são feitas quando se considera um modelo de crescimento do tipo logístico

com efeitos de Allee fracos. A média e a variância dos tempos de primeira passagem por um limite inferior e

por um limite superior são estudados e, para um determinado valor limite, estimamos a função de densidade

do tempo de primeira passagem usando a inversa da transformada de Laplace.

Palavras-chave: Modelos de Pesca, Equações Diferenciais Estocásticas, Optimização do Lucro, Políticas

Sustentáveis, Esforço Constante, Densidade Estacionária
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1
Introduction

In this text we will consider the existence of a fish or some other population subject to harvesting.

Hence, we will use the terms ’harvesting’ and ’fishing’ without any difference between them. Also, the

terms ’species’, ’population’ and ’stock’ will be used with the same meaning among them. Individuals

from one population may be fish, crustaceans or others, and, in terms of aquatic environment, they may

be pelagic, demersal or benthonic. We assume a closed population, that is, there is no immigration.

Stochastic differential equations have been studied as a way to explain many physical, biological, eco-

nomic and social phenomena. A particular case is the application (starting with the pioneering work of

Beddington and May (1977)) to the growth dynamics of a harvested population subject to a randomly

varying environment, with the purpose of obtaining optimal harvesting policies. Such policies usually are

intended to maximize the expected yield or profit over a finite or infinite time horizon T . Since population

size depends on fishing effort, it seems natural to consider the effort at the time instant t, E(t), as a

1
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control and apply optimal control techniques to achieve either yield or profit optimization, discounted by a

social rate.

The profit per unit time can be defined as the difference between sales revenue and fishing costs, i.e.,

Π(t) := P (t)− C(t),

where P (t) and C(t) are respectively the revenue and cost per unit time. We consider the revenue per unit

time to be dependent on the harvesting yield and to have a quadratic form given by

P (t) = p(H(t))H(t), with p(H(t)) = p1 − p2H(t),

where p1 ≥ 0 is the linear price parameter and p2 ≥ 0 is the quadratic price parameter. The cost of harvest

per unit time is assumed to be dependent on effort and also to have a quadratic form given by

C(t) = c(E(t))E(t), with c(E(t)) = c1 + c2E(t),

where c(E(t)) is the cost per unit effort and c1 ≥ 0 is the linear cost parameter and c2 > 0 is the quadratic

cost parameter. The quadratic cost structure incorporates the case where the fishermen need to use less

efficient vessels and fishing technologies or pay higher overtime wages to implement an extraordinary high

effort (see Clark, 1990). However, other more complicated profit structures can be used.

In the deterministic case, there is a quite comprehensive account of optimal harvesting policies regarding

yield or profit optimization (Clark, 1990). Under general assumptions, unless we are close to the end of

a finite time horizon T , the optimal policy consists in harvesting with maximum intensity (which can be

limited to a maximum harvesting effort or be unlimited) when the population is above a critical threshold

and stop harvesting (zero effort) when the population is below that threshold. Once the threshold is

reached, one just needs to keep the harvesting rate constant at an appropriate value so that the population

remains at the threshold size. However, when the population is below the threshold, the fishery should be

closed until the threshold is reached, which may take a while.

Stochastic optimal control methods were also applied to derive optimal harvesting strategies in a ran-

domly varying environment (e.g. Alvarez, 2000b,a, Alvarez and Shepp, 1998, Arnason et al., 2004, Hanson

and Ryan, 1998, Lande et al., 1994, 1995, Lungu and Øksendal, 1996, Suri, 2008). The optimal policy

is similar to the deterministic case, i.e., harvest with maximum intensity when the population is above a

critical threshold (not necessarily the same as in the deterministic case) and stop harvesting when below the
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threshold. However, after the threshold size is attained, due to random fluctuations of the environment,

population size will keep varying. In this case, fishing effort must be adjusted at every instant, so that

the size of the population does not go above the equilibrium value. Such policies imply that the effort

changes frequently and abruptly, according to the random fluctuations of the population. Sudden frequent

transitions between quite variable effort levels are not compatible with the logistics of fisheries. Besides,

the period of low or no harvesting poses social and economical undesirable implications. In addition to

such shortcomings, these optimal policies require the knowledge of the population size at every instant,

to define the appropriate level of effort. The estimation of the population size is a difficult, costly, time

consuming and inaccurate task and, for these reasons, and the others pointed above, these policies should

be considered unacceptable and inapplicable.

In Braumann (1981, 1985, 2008), a constant fishing effort, E(t) ≡ E, was assumed, providing an

alternative approach to optimal harvesting. For a large class of models (including the logistic and the

Gompertz), it was found that, taking a constant fishing effort, there is, under mild conditions, a stochastic

sustainable behaviour. Namely, the probability distribution of the population size at time t will converge,

as t → +∞, to an equilibrium probability distribution (the so-called stationary or steady-state distribution)

having a probability density function (the so-called stationary density). For the logistic and the Gompertz

models, the stationary density function was found, and the effort E that optimizes the steady-state yield

was determined. The issue of profit optimization, however, was not addressed.

This study considers the issue of profit optimization for the sustainable constant effort harvesting policy.

This policy, rather than switching between large and small or null fishing effort, keeps a constant effort and

is therefore compatible with the logistics of fisheries. Furthermore, this alternative policy does not require

knowledge of the population size. However, it will result in a reduction of the profit when we compare it

with the inapplicable optimal policy. We will examine if such reduction is appreciable or negligible.

Chapter 2 presents a brief review of concepts and results on stochastic processes and on stochastic dif-

ferential equations. We present the main definitions, properties and theorems necessary for the formulation

and resolution of the problems induced by the optimal policies that we intend to develop.

In Chapter 3 we consider a general population growth model with dynamics described by a stochastic

differential equation and present an optimal policy problem based on variable effort. The solution of

this problem is obtained by applying the stochastic dynamical programming technique, producing a non-

linear stochastic partial differential equation which needs to be solved by numerical methods. We apply a

discretization scheme to this equation and show how to reach the optimal policy, namely what is the effort
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that produces maximum profit.

The alternative optimal policy based on constant effort is developed at Chapter 4. This approach is,

to the best of our knowledge, the first attempt to obtain an optimal sustainable harvesting policy based

on profit per unit time optimization. As in Chapter 3, we consider a general population growth model

with harvesting, described by a stochastic differential equation, but with a constant effort harvesting term.

Using the theory of stochastic differential equations presented in Chapter 2, we will determine, at the

steady-state, the optimal sustainable effort and the optimal sustainable profit per unit time.

Chapter 5 treats the numerical comparisons between the optimal policy with variable effort and the

optimal sustainable policy with constant effort. We compare the performance of the two policies in terms

of the expected profit earned by the harvester and in terms of the evolution of the population size and the

amount of effort across time. In order to simulate the optimal policies, we consider two classical growth

models: the logistic model and the Gompertz model. For each model, we set up a basic scenario with

parameter values based on realistic data from a fish or a shrimp population and also consider alternative

scenarios corresponding to changes of the different parameter values used in the basic scenario to check

the influence of such changes in terms of the profit. In addition to the mentioned optimal policies, we

present and compare a sub-optimal and applicable policy based on variable effort but with fixed periods of

constant effort.

We will also present, for a logistic-like model, the comparison between the optimal variable effort policy

and the optimal sustainable constant effort policy when the population is under weak Allee effects. Strong

Allee effects should not be considered since they drive the population to extinction, even in the absence of

harvesting. This study is on Chapter 6.

Chapter 7 refers to the study of first passage times by a lower and by an upper threshold, which may be

of interest in evaluating recovery times or the risk of the population size reaching a dangerous level. We

study directly the mean and standard deviation of the first passage times. We also show how to estimate

the first passage time probability density function by using the numerical inversion of its Laplace transform.

We end up, in Chapter 8, with the main conclusions.

Computations were carried out with R (http://r-project.org) and with Matlab. The R code is

presented in Appendix B and the Matlab codes are presented in Appendix C and in Appendix D.

http://r-project.org
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2
Review on stochastic processes

The evolution of population size is subject to random perturbations of the surrounding environment.

Therefore, it makes sense to study this evolution using models that incorporate these perturbations, when-

ever this is treatable from the mathematical point of view. This chapter precedes the presentation of these

models and has a brief review of concepts and results on stochastic processes and on stochastic differential

equations. We present the main definitions, properties and theorems necessary for the formulation and

resolution of the problems induced by the optimal policies that we intend to develop. Properties and proofs

of theorems can be found in reference books of stochastic processes and stochastic differential equations

(e.g. Arnold, 1974, Gihman and Skorohod, 1979, Karlin and Taylor, 1981, Øksendal, 1998, Braumann,

2005).

7
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2.1 Stochastic processes

Let (Ω,F , P ) be a complete probability space, B the Borel σ-algebra (the smallest σ-algebra generated

by the intervals of the real line) and Lp (p > 0) the space of random variables X such that E[|X|p] =∫
Ω |X|pdP exists and is finite. If we identify, as is usually done, a random variable (r.v.) X with all others

in the same equivalence class, i.e., all r.v. Y such that P [X = Y ] = 1, and consider Lp to be the space

of equivalence classes rather the the r.v. themselves, then

||X||p =
(
E
[
|X|p

]) 1
p

is a norm, called the Lp-norm. This is a Banach space and, in the case of p = 2, is even a Hilbert space

with inner product < X,Y >= E[XY ]. If X ∈ L2, we say that it is square integrable. The convergence

in the L2−norm is also called mean square convergence, and, given a sequence Xn ∈ L2, we write

Xn
m.s.−−→ X or l.i.m.

n→+∞
Xn = X

if ||Xn −X||2 → 0 as n → +∞, or equivalently, if E[(Xn −X)2] → 0, as n → +∞.

As usual, when Xn converges to X almost surely (i.e., when the set of ω−values for which there is no

convergence has probability zero), we use Xn → X a.s. or Xn
a.s.−−→ X or Xn → X w.p.1 (with probability

one). We denote the convergence in probability (i.e., when, for every δ > 0, P [|Xn −X| ≥ δ] → 0 when

n → +∞) by Xn
P−→ X or lim−P

n→+∞
Xn = X.

Let (Ω,F , P ) be a complete probability space and I = [0, T ], with T > 0, or I = [0,+∞), with t ∈ I

representing time. Let, for t ∈ I, X(t) be a random variable defined on Ω with values in (0,+∞). The

collection X := (X(t), t ∈ I) is called a stochastic process. We write X, X(t) or Xt whenever we refer to

the stochastic process X = (X(t), t ∈ T ). We will consider only the case where the state space is (0,+∞)

and the indexing set is I, being both continuous sets and, thus, X(t) is a continuous-valued process in

continuous time.

A stochastic process is also a function X(t, ω) defined on T × Ω. Setting ω as a fixed value results

in a non-random function of t, which we call trajectory or sample path of the process. Different ω values

produces different trajectories. As usual in the literature, we will omit the random dependence and write
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X(t) instead of X(t, ω).

A filtration (Ft, t ∈ I) is a family of sub-σ-algebras of F such that s ≤ t ⇒ Fs ⊆ Ft. A stochastic

process X = (X(t), t ∈ I) is adapted to this filtration if X(t) is Ft−mensurable for all t ∈ I. The process

X is obviously adapted to its natural filtration Ft = σ(Xs : 0 ≤ s ≤ t), where Ft is the σ-algebra generated

by the present and the past of X.

We say that Xt is a stochastic process

i) with independent increments if and only if for all n ∈ N0 and for all t0, . . . , tn ∈ T such that

t0 < . . . < tn, the random variables Xt1 −Xt0 , . . . , Xtn −Xtn−1 are independent.

ii) with stationary increments if and only if for all s, t ∈ T such that s < t, the distribution of Xt −Xs

depends only on the duration t− s.

A stochastic process Xt is a second order process if and only if for all t ∈ T : E[X2
t ] < +∞.

Let (Ω,F , P ) be a complete probability space, Xt a stochastic process and Ft a filtration. Xt is a

Ft-martingale if:

i) Xt is adapted to the filtration Ft;

ii) E[|Xt|] < +∞;

iii) for all s ≤ t : E[Xt|Fs] = Xs a.s., where E[Xt|Fs] is a random variable called conditional expectation

of X given Fs.

When the considered filtration coincides with the natural one, Xt is simply called martingale.

A stochastic process Xt with state space (0,+∞) is a Markov process if the following condition is

satisfied:

∀n ∈ N, ∀t1 < . . . < tn < tn+1 ∈ T, ∀x1, . . . , xn > 0, ∀B ∈ B :

P (Xtn+1 ∈ B|Xt1 = x1, . . . , Xtn = xn) = P (Xtn+1 ∈ B|Xtn = xn),



10 CHAPTER 2. REVIEW ON STOCHASTIC PROCESSES

where B is the Borel σ-algebra and B is a Borel set. In terms of conditional distributions functions, this is

equivalent to

FXtn+1 |Xt1
=x1,...,Xtn=xn

(x) = FXtn+1 |Xtn=xn
(x), ∀x ∈ R.

In current language we can say that in a Markov process, given the present value, future behaviour is

independent of its past.

Let Xt be a Markov process, B a Borel set, and s ≤ t, s, t ∈ I. For the transition probabilities of Xt

we can use the alternative notations

Ps,x[Xt ∈ B] = P [t, B|s, x] = P [Xt ∈ B|Xs = x]

and, when it exists, the transition density of Xt is

p(t, y|s, x) = fXt|Xs=x(y) =
∂

∂y
FXt|Xs=x(y)

where FXt|Xs=x(y) = Ps,x[Xt ≤ y] is the conditional distribution function (d.f.) of Xt given that Xs = x.

If the conditional expectation exists, we denote it by Es,x[Xt] = E[Xt|Xs = x].

In addition, we say that the Markov process Xt is homogeneous when the transition probabilities

P [t, B|s, x] only depend on the duration τ = t− s and we denote them by

P [τ,B|x] = P [s+ τ,B|s, x], for all s, s+ τ ∈ I.

If the conditional density exists, we write p(τ, y|x) = p(s+ τ, y|s, x).

A special stochastic process is the Wiener process. In 1828, the English botanist Robert Brown ob-

served small particles of pollen immersed in a liquid moving completely randomly. Later, in 1905, Albert

Einstein justified this movement with the constant collision between the particles and the surrounding liq-

uid molecules and characterized it by a stochastic process that would come to be called Wiener process.

Finally, in 1918, the first mathematical definition of the term appeared through the mathematician Norbert

Wiener. A very interesting description on the history of the Wiener process can be found in Nelson (1967).

In the stochastic processes theory, the Wiener process is a model for the cumulative effect of the random

perturbations in the evolution of a given phenomenon under study. Given the importance of this process,

we will highlight its definition and present some of its properties.
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Definition 2.1.1 A standard Wiener process, also called Browninan motion, is a stochastic process denoted

by W := (Wt, t ≥ 0) or B := (Bt, t ≥ 0), defined on a complete probability space (Ω,F , P ) fulfilling the

conditions:

i) W0 = 0 a.s.;

ii) Wt −Ws ∼ N (0, t− s), 0 ≤ s ≤ t;

iii) Wt has independent increments.

Here N (a, b) denotes the Gaussian distribution with mean a and variance b. Unless otherwise stated, the

process Wt will be simply denoted by Wiener process.

We present now a definition required for the understanding of some properties of the Wiener process.

Definition 2.1.2 Consider a function f : [0, t] → R and let Pn = {tn0 , tn1 , . . . , tnn} be partitions of the

interval [0, t] with 0 = tn0 < tn1 < . . . < tnn = t ≥ 0, n ∈ N, such that δn = max
0≤i≤n−1

|tni+1 − tni | → 0 when

n → +∞.

i) The variation of f on [0, t] is defined by

Vf ([0, t]) = Vf (t) := lim
n→+∞

n−1∑
i=0

|f(tni+1)− f(tni )|

if the limit exists and is independent of the choice of the partitions Pn.

ii) We say that f has bounded variation on [0, t] if Vf (t) < ∞;

iii) We say that f has quadratic variation on [0, t] if the below limit exists and is independent of the choice

of the partitions Pn.

V 2
f (t) = lim

n→+∞

n−1∑
i=0

|f(tni+1)− f(tni )|2.

Proposition 2.1.1 The Wiener process defined above has the following properties:

i) has a version with a.s. continuous paths (versions that we will adopt);

ii) Wt ∼ N (0, t), 0 ≤ t;

iii) COV [Ws,Wt] = E[WsWt] = s ∧ t;
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iv) is a homogeneous Markov process;

v) the conditional distribution of Ws+τ given Ws = x is Gaussian with mean x and variance τ ;

vi) Wt is a martingale;

vii) is not of bounded variation a.s. on [0, t] (t ≥ 0).

viii) has non-differentiable paths a.s.;

ix) has a.s. quadratic variation b− a on [a, b].

Although the Wiener process fulfils properties (vii) and (viii), there exists dWt/dt in the sense of

generalized functions. So, we can define

εt :=
dWt

dt
, (2.1)

as a generalized stochastic process. This process is called standard white noise.

We will now define a particular class of stochastic processes named diffusion processes, which are, under

certain conditions, solutions of stochastic differential equations.

Definition 2.1.3 Let (Ω,F , P ) be a complete probability space and X(t) a Markov process defined on

that space. We say that X(t) is a diffusion process if it admits continuous paths a.s., has finite second

order moments and, for all x ∈ (0,+∞) and s ∈ [0, T ) (T > 0), if the below limits exist uniformly in s:

lim
∆→0+

Ps,x[|X(s+∆)− x| > ε]

∆
= 0, for all ε > 0,

lim
∆→0+

Es,x

[
X(s+∆)− x

∆

]
= a(s, x),

lim
∆→0+

Es,x

[
(X(s+∆)− x)2

∆

]
= b(s, x).

If a(s, x) and b(s, x) are time-independent, we will write a(x) and b(x), and the process is called a

homogeneous diffusion process.

Note that there are other non-equivalent definitions of diffusions processes where the existence of second-

order moments is not required, and the expectations on that definitions are replaced by truncated expec-

tations, which always exist. Our more restrictive definition will, however, be sufficient for our purposes.
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The functions a(s, x) and b(s, x) are named respectively by drift coefficient and diffusion coefficient.

The drift coefficient measures the process mean velocity at s, whereas the diffusion coefficient measures

the fluctuations intensity of the process at s.

The Dirac function δ(x) is a generalized function satisfying the following properties:

i) δ(x) = 0, x ̸= 0;

ii) δ(0) = +∞;

iii)
∫ +∞
−∞ δ(x)dx = 1.

Proposition 2.1.2 Let Xt be a diffusion process as defined above with a(s, x) and b(s, x) continuous

functions. Assume it has probability density function (p.d.f.) p(t, y) and transition density p(t, y|s, x), and

that the partial derivatives in the expressions below exist and are continuous. Then,

i) p(t, y) and p(t, y|s, x) both satisfy the Kolmogorov forward equation (KFE):

∂p

∂t
+

∂(a(t, x)p)

∂y
− 1

2

∂2(b(t, x)p)

∂y2
= 0, (2.2)

with initial condition lim
t↓s

p(t, y|s, x) = δ(x− y) for p(t, y|s, x) or lim
t↓s

p(t, y) = p(s, y) for p(t, y);

ii) p(t, y|s, x) satisfies the Kolmogorov backward equation (KBE):

∂p

∂s
+ a(s, x)

∂p

∂x
+

1

2
b(s, x)

∂2p

∂x2
= 0,

for s < t and fixed t, with terminal condition lim
s↑t

p(t, y|s, x) = δ(x− y).

2.2 Stochastic differential equations

Ordinary differential equations have been largely used to model the behaviour of dynamical time-

dependent phenomena in many scientific areas. Such dynamics, can often be characterized by the rate of

change of a variable X(t) and expressed as

dX(t) = f(t,X(t))dt, X(0) = X0. (2.3)
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There are, however, small oscillations or perturbations on X(t) due to random environmental fluctuations

that are not explained by f . In this work we will admit that the accumulated value, until the time instant

t, of such random environmental fluctuations is described by a standard Wiener process W (t), and the

magnitude of the fluctuations is measured by a function g. Thus, equation (2.3) should be modified to

dX(t) = f(t,X(t))dt+ g(t,X(t))dW (t)dt, X(0) = X0, (2.4)

where we assume that X0 is independent of W (t) for t ≥ 0. This is a Stochastic Differential Equation

(SDE).

A solution of (2.4), if it exists, is given by the integral equation

X(t) = X0 +

∫ t

0
f(s,X(s))ds+

∫ t

0
g(s,X(s))dW (s), (2.5)

where the first integral can be interpreted as a Riemann integral (defined for each sample path) but the

second integral can not be interpreted as a Riemmann-Stieltjes integral for the sample paths, since the

Wiener process has unbounded variation paths a.s.. Hence, the limit of the classical Riemann-Stieltjes sums

depends on the choice of the intermediate point where g is calculated. However, the Wiener process has

finite quadratic variation and thus one can calculate the second integral through the definition of stochastic

integral.

We will define the stochastic integrals of the form

∫ t

0
g(s,X(s))dW (s)

appearing in (2.5). A classical example showing that the classical Riemann-Stieltjes definition does not

work for the stochastic integral is ∫ t

0
W (s)dW (s).

The application of ordinary calculus rules would lead us to expect the integral to be 1
2W

2(t). However, as

we will now see, this solution is incorrect.

Let Pn = {tn0 , tn1 , . . . , tnn}, n ∈ N, be a sequence of partitions of [0, t] with 0 = tn0 < tn1 < . . . < tnn =

t ≥ 0, such that the diameters δn = max
0≤i≤n−1

|tni+1 − tni | → 0 when n → +∞ and let ξni ∈ [tni , t
n
i+1] be the

intermediate points chosen for the computation of the integral function. The Riemann-Stieltjes sums that
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would be supposed to approximate the integral
∫ t
0 W (u)dW (u) are

n−1∑
i=0

W (ξni )(W (tni+1)−W (tni )).

Consider the particular cases of ξni = (1 − λ)tni + λtni+1, with 0 ≤ λ ≤ 1, and the Riemann-Stieltjes

sums

Sλ(W (t)) =
n−1∑
i=0

W (ξni )(W (tni+1)−W (tni )).

Assuming a fixed λ, the mean square limit when n → +∞ of these sums is W 2(t)
2 +(λ− 1

2)t, so it depends

on the choice of the intermediate point ξi ∈ [ti, ti+1]. Thus, there is no integral in the Riemann-Stieltjes

sense because there is no common limit for all the intermediate point choices. Setting λ = 0, one obtains

as intermediate point the initial interval point, that is, ξi = ti, and we verify that

∫ t

0
W (t)dW (t) =

1

2
W 2(t)− 1

2
t,

which is different from the one, 1
2W

2(t), obtained under ordinary calculus rules, which correspond to the

case λ = 1
2 .

So, there are several different possible definitions of the stochastic integral depending on the choice of

intermediate points. We will adopt, as most authors do, the choice of ξi = ti, that is, choosing the initial

point. This corresponds to the Itô integral, which has nice properties and allows us to define the integral∫ t
0 G(s)dW (s) of very general functions G.

The choice that follows ordinary calculus rules corresponds to λ = 1
2 and leads to the Stratonovich

integral. The difference between the choice of these two integrals is explained in Braumann (2007). In this

text we will only work with the Itô integral.

We will now present the definition of the Itô integral
∫ t
0 G(s)dW (s) for quite general non-anticipative

functions G.

Let W (t), t ≥ 0 be a standard Wiener process defined on a complete probability space (Ω,F , P ) and

let Ms = σ(W (u), 0 ≤ u ≤ s) be its natural filtration. Let M+
s = σ(W (u) − W (s), u ≥ s) be the

σ-algebra generated by the future increments of the Wiener process. A filtration {As : 0 ≤ s ≤ t} is called

non-anticipative if

i) As ⊃ Ms, 0 ≤ s ≤ t;
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ii) As is independent of M+
s , s ≥ 0.

The choice of the non-anticipative filtration As usually coincides with the natural filtration of the Wiener

process Ms, provided that it is unnecessary to include additional information about the process. Otherwise,

a larger filtration can be considered in order to include, for instance, an initial condition, provided that the

this new filtration is non-anticipative.

A stochastic process G(t) is called non-anticipative, with respect to the filtration At, if G(t) is adapted

to the filtration, i.e., At-mensurable, for all t ≥ 0. In other words, G(t) depends only on the information

available up to and including time t.

We are now in a position to define the Itô integral for a special class of non-anticipative functions.

For t ∈ I denoted by H2[0, t] the space of functions G : [0, t] × Ω → R which satisfy the following

conditions:

i) G is jointly measurable with respect to the Lebesgue measure l in [0, t] and to the probability measure

P ;

ii) G is non-anticipative;

iii)
∫ t
0 E[G

2(s, ω)]ds < +∞.

This is a Hilbert space w.r.t. the norm ||G||H2[0,t] =
(∫ t

0 E[G
2(s)]ds

) 1
2
=
(
E
[∫ t

0 G
2(s)ds

]) 1
2 , its inner

product being < G1, G2 >=
(∫ t

0 E[G1(s)G2(s)]ds
) 1

2 .

Observation 2.2.1 For this to be a norm and H2[0, t] to be a Hilbert space, we should work with the

equivalence class of G w.r.t. the l × P− almost equality instead of the functions G themselves, but we

make the usual convention of identifying two functions G1 and G2 that are almost equal, i.e., G1 and G2

are equal with the possible exception of a set N of (s, ω) values with product l × P−measure zero.

We will start by defining the integral for step functions G ∈ H2[0, t].

A function G defined on H2[0, t] is called a step function if there exists a partition 0 = t0 < t1 < . . . < tn = t

on [0, t] such that G(t) = G(ti), ti ≤ t < ti+1, i = 0, . . . , n− 1. We denote by H2
E [0, t] the sub-space of

step functions of H2[0, t]. The Itô integral of G ∈ H2
E [0, t] on [0, t] is defined by

∫ t

0
G(s)dW (s) :=

n−1∑
i=0

G(ti)(W (ti+1)−W (ti)).
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This definition is consistent, i.e., choosing a different partition or a l × P−almost equal function G will

lead to an almost surely equal integral.

Proposition 2.2.1 Let F and G be two functions on H2
E [0, t] and α, β ∈ R two real constants. The

following properties hold:

i)
∫ t
0 (αF (s) + βG(s)) dW (s) = α

∫ t
0 F (s)dW (s) + β

∫ t
0 G(s)dW (s);

ii) E
[∫ t

0 F (s)dW (s)
]
= 0;

iii) Norm preservation:

E
[(∫ t

0 F (s)dW (s)
)2]

= E
[∫ t

0 F
2(s)ds

]
=
∫ t
0 E
[
F 2(s)

]
ds, i.e., ||F ||H2[0,t] =

∣∣∣∣∣∣∣∣ ∫ t
0 E
[
F 2(s)

]
ds

∣∣∣∣∣∣∣∣
2

;

iv) E
[∫ t

0 F (s)dW (s)
∫ t
0 G(s)dW (s)

]
= E

[∫ t
0 F (s)G(s)ds

]
.

So far we have defined Itô integral for a special class of functions - the step functions defined on H2
E [0, t].

Next we will generalize this integral to a class of general functions on H2[0, t] through the existence of

approximate successions of step functions.

Theorem 2.2.1 Let G ∈ H2[0, t]. There exists a sequence of step function Gn ∈ H2
E [0, t] such that Gn

converges to G in the H2[0, t] norm.

Let G and Gn defined as in the previous theorem. The Itô integral of G on [0, t] is defined by

∫ t

0
G(s)dW (s) := l.i.m.

n→+∞

∫ t

0
Gn(s)dW (s).

This definition is consistent, i.e., choosing a different approximating sequence Gn will lead to an almost

surely equal integral.

Proposition 2.2.2 Let F and G be two functions defined on H2[0, t]. Then, properties i) to iv) of

Proposition 2.2.1 still hold.

Proposition 2.2.3 If G ∈ H2[0, t] is deterministic, then

t∫
0

G(s)dW (s) ∼ N

0,

t∫
0

G2(s)ds

 .
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For G ∈ H2[0, T ], we can study the indefinite integral Z(t) =
t∫
0

G(s)dW (s) =
t∫
0

G(s)I[0,t](s)dW (s)

for t ∈ [0, T ] as a function of the upper limit t. A detailed study on this subject can be found in Øksendal

(1998) and in Braumann (2005).

Proposition 2.2.4 Z(t) satisfies the following properties:

i) Z(t) is a At−martingale;

ii) Z(t) has continuous paths a.s.;

iii) Z(t) has non-correlated increments.

The Itô integral can be extended to functions G belonging to the wider space M2[0, T ]. We say that

G(s, ω) is in the space M2[0, t] if:

i) G is jointly measurable;

ii) G is non-anticipative w.r.t. the filtration As;

iii) the integral
∫ t
0 G

2(s)ds exists and is finite a.s..

Observation 2.2.2 The property
∫ t
0 G

2(s)ds < +∞ is less restrictive than the one presented in the

definition of the H2 space. Thus, H2[0, t] ⊂ M2[0, t].

Theorem 2.2.2 Let G ∈ M2[0, t]. Then, there exists a sequence of step functions Gn ∈ H2
E [0, t], such

that ∫ t

0
(G(s)−Gn(s))

2ds → 0 a.s, n → +∞.

Let G and Gn as is the last theorem. The Itô integral of G on [0, t] is defined by

∫ t

0
G(s)dW (s) = lim− P

n→+∞

∫ t

0
Gn(s)dW (s).

After the presentation of the Itô integral, it is now necessary to introduce the rules for the calculation

of these integrals: the Itô calculus.

The Itô calculus differs from the usual calculus by simply introducing a new differentiation rule - the

Itô chain rule. Let us present the definition of an Itô process and the Itô Theorem, which describes the Itô

chain rule.
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Definition 2.2.1 Let W (t), t ≥ 0 be a Wiener process, X0 a r.v. A0-mensurable (which means that it is

independent of the Wiener process), F a non-anticipative function such that
∫ T
0 |F (s)|ds < +∞ a.s. and

G ∈ M2[0, T ]. The process X(t, ω) is called an Itô process definied for t ∈ [0, T ] if it can be written as

X(t, ω) = X0(ω) +

∫ t

0
F (s, w)ds+

∫ t

0
G(s, w)dW (s),

or, equivalently in differential form (dropping out the explicit reference to the random dependency),

dX(t) = F (t)dt+G(t)dW (t).

Theorem 2.2.3 (Itô Theorem) Let X(t) be an Itô process as stated before and h(t, x) a function con-

tinuously differentiable with respect to t and x and twice continuously differentiable with respect to x. Let

Y (t) = h(t,X(t)). Then:

i) Y (t) is an Itô process with initial condition Y0 = h(0, X0);

ii) the differential form of Y (t) is given by the Itô chain rule (Itô formula)

dY (t) =

(
∂h(t,X(t))

∂t
+

∂h(t,X(t))

∂x
F (t) +

1

2

∂2h(t,X(t))

∂x2
G2(t)

)
dt+

∂h(t,X(t))

∂x
G(t)dW (t),

which, written in the integral form reads

Y (t) = Y0+

∫ t

0

(
∂h(s,X(s))

∂s
+

∂h(s,X(s))

∂x
F (s) +

1

2

∂2h(s,X(s))

∂x2
G2(s)

)
ds+

∫ t

0

∂h(s,X(s))

∂x
G(s)dW (s).

With the stochastic integrals properly defined, a solution of (2.4), or equivalently of the stochastic

integral equation (2.5), is well defined, and the Itô Theorem allows us to use change of variable techniques

that, in some cases, will lead us to an explicit expression for the solution.

Definition 2.2.2 The stochastic process X(t), t ∈ [0, T ], is a solution of

dX(t) = f(t,X(t))dt+ g(t,X(t))dW (t), X(0) = X0, t ∈ [0, T ]

if:

i) X(t) is Ft-mensurable;

ii) X(t) is a.s. continuous;
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iii) F (t, ω) = f(t,X(t, ω)) is non-anticipative and
∫ T
0 |F |dt < +∞ a.s.;

iv) G(t, ω) = g(t,X(t, ω)) ∈ M2[0, T ];

v) X(t) = X0 +
∫ t
0 F (s,X(s))ds+

∫ t
0 G(s,X(s))dW (t) a.s., t ∈ [0, T ].

Theorem 2.2.4 Let L be a positive constant and f : [0, T ] × R → R and g : [0, T ] × R → R be two

functions satisfying the:

i) Lipschitz condition

|f(t, x)− f(t, y)| ≤ L|x− y| and |g(t, x)− g(t, y)| ≤ L|x− y|, 0 ≤ t ≤ T, x, y ∈ R

and the

ii) restriction on growth

|f(t, x)| ≤ L(1 + |x|) and |g(t, x)| ≤ L(1 + |x|), 0 ≤ t ≤ T, x ∈ R.

Let X0 be a square integrable random variable independent of the future increments of the Wiener process.

There exists a unique a.s. continuous solution X(t) of

dX(t) = f(t,X(t))dt+ g(t,X(t))dW (t), X(0) = X0, t ∈ [0, T ]. (2.6)

The solution X(t) is a Markov process and, if f and g are continuous with respect to t, X(t) is also

a diffusion process with drift coefficient a(t, x) = f(t, x) and diffusion coefficient b(t, x) = g2(t, x) . The

uniqueness can be understood as: if X(t) and Y (t) are both solutions of equation (2.6), then

P

[
sup

0≤t≤T

∣∣∣∣X(t)− Y (t)

∣∣∣∣] = 1.

Corolary 2.2.1 If equation (2.6) is autonomous, that is, f(t, y) ≡ f(y) and g(t, y) ≡ g(y), where f

and g are continuously differentiable, then there exists a unique solution of equation (2.6) up to a possible

explosion time, which is a homogeneous diffussion process with drift coefficient f(y) and diffusion coefficient

g2(y). If, with probability one, this time is infinite, then the solution exists and is unique for all t ≥ 0.
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2.3 Boundary classification and stationary density

Since we are dealing with population sizes, our state space will be set as (0,+∞). Let X(t) be an

homogeneous diffusion process solution of the

dX(t) = f(X(t))dt+ g(X(t))dW (t), X(0) = x,

with state space (0,+∞) and boundaries X = 0 and X = +∞. The drift and diffusion coefficients of X(t)

are, respectively, a(x) = f(x) and b(x) = g2(x) > 0. We suppose that a and b are continuous functions

with respect to x and also that X(t) is a regular process, that is, all the sates in the interior of (0,+∞)

communicate between them. In other words,

Px[Ty < +∞] > 0, x < y, x, y ∈ (0,+∞),

where Ty := inf{t ≥ 0 : X(t) = y} denotes the first passage time of X(t) by y, allowing Ty = +∞ when

the process does not reach y.

The following functions and definitions are useful for the boundary characterization in terms of attrac-

tiveness. In Karlin and Taylor (1981) there is an exhaustive treatment of boundaries classification.

Let us consider two measures defined in (0,+∞): the scale measure S and the speed measure M , which

density functions are given respectively by the scale density s(z) and the speed density m(z):

s(z) = exp

−
z∫

z0

2a(θ)

b(θ)
dθ

 , (2.7)

m(z) =
1

b(z)s(z)
, (2.8)

where z, z0 ∈ (0,+∞) and z0 is an arbitrary constant. From the density functions, one can define the

scale and speed functions

S(x) =

x∫
x0

s(z)dz (2.9)

and

M(x) =

x∫
x0

m(z)dz, (2.10)

where x, x0 ∈ (0,+∞) and x0 is an arbitrary constant. These functions are similar to distribution functions
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in the sense that the speed and scale measures of intervals of the form (c, d] (c, d ∈ (0,+∞)) are determined

by

S(c, d] = S(d)− S(c) and M(c, d] = M(d)−M(c).

Definition 2.3.1 The boundary X = 0 is non-attractive if Px[T0+ < Tb] = 0 for all 0 < x < b < +∞,

and is attractive if Px[T0+ ≤ Tb] > 0 for all 0 < x < b < +∞. The boundary X = +∞ is non-

attractive if Px[T+∞ < Ta] = 0 for all 0 < a < x < +∞, and is attractive if Px[T+∞ ≤ Ta] > 0 for all

0 < a < x < +∞. Here, T0+ = lim
y→0+

Ty and T+∞ = lim
y→+∞

Ty.

When a boundary is classified as non-attractive one can say that, when the process falls into its neigh-

bourhood, it tends to be pushed to the opposite side. The non-attractiveness of X = 0 implies that the

process is pushed to the right. This implies that it is not possible to have X(t) = 0 for some finite t,

nor X(t) → 0 as t → +∞. On the other hand, the non-attractiveness of X = +∞ implies that the

process tends to be pushed to the left when it reaches high values. This implies that it is not possible to

have X(t) = +∞ for some finite t nor X(t) → +∞ as t → +∞. In the first case, we say that there

is non-extinction from the mathematical point of view and, in the second case we say that there are no

explosions.

Proposition 2.3.1 Let x be any point in (0,+∞). The boundary X = 0 is attractive if S(0, x] < +∞

and non-attractive if S(0, x] = +∞. The boundary X = +∞ is attractive if S(x,+∞) < +∞ and

non-attractive if S(x,+∞) = +∞. It suffices to verify the property for some x > 0 (see, for instance,

Karlin and Taylor, 1981).

The non-attractiveness of both boundaries implies that trajectories tend to be pushed towards the interior

of the state space whenever they approach the boundaries. Given that the process is regular, that is, all

the states communicate with each other, the transient distribution may have a probability density given by

p(t, y) = fX(t)(y). Let us admit the existence of this transient distribution and also that it converges to

a limit distribution having p.d.f. p(y) when t tends to infinity. Then, p(y) is called the stationary density.

Let X+∞ be the steady-state random variable with probability density given by p(y) = fX+∞(y).

The stationary density p, when it exists, is time-invariant and so satisfies the Kolmogorov forward

equation (2.2) with ∂p(y)/∂t = 0, i.e.,

d

dy
(p(y)a(y))− 1

2

d2

dy2
(p(y)b(y)) = 0.
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Therefore, after integration with respect to y,

p(y)a(y)− 1

2

d

dy
(p(y)b(y)) = e1,

where e1 is a real constant. Multiplying this equation by the integrating factor s(y) yields

2s(y)p(y)a(y)− s(y)
d

dy
(p(y)b(y)) = 2e1s(y),

or, taking into account (2.7),
d

dy
(s(y)p(y)b(y)) = e2s(y),

where e2 is a real constant. Integrating again in order to y results in

s(y)p(y)b(y) = e3S(y) + d,

with e3 and d real constants. Since the boundaries are non-attractive, s(y) is not integrable around its

neighborhood and we have S(y) → +∞ when y ↑ +∞ and S(y) → −∞ when y ↓ 0. Therefore, it is only

possible to have p(y) ≥ 0 for all y ∈ (0,+∞) when e3 = 0 and consequently we have

s(y)p(y)b(y) = d,

or, in a equivalent manner and taking into account (2.8),

p(y) = Dm(y).

When both boundaries are non-attractive and m is integrable over the state space (0,+∞), then p(y)

becomes a probability density with 1
D =

∫ +∞
0 m(y)dy, i.e.,

p(y) =
m(y)

+∞∫
0

m(z)dz

, y ∈ (0,+∞).

It can be proved (see Gihman and Skorohod, 1979) that, under these conditions, X(t) converges in

distribution to X+∞ having p(y) as p.d.f..

One consequence of the stationary density existence and the boundaries non-attractiveness is the ergod-
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icity of X(t) (see Gihman and Skorohod, 1979, Braumann, 2005). The great advantage of this property is

the estimation of ensemble moments at the steady-state through the time-average moments of the observed

trajectory instead of having to average over a set of trajectories. This is particular useful, since in reality

there is only one observed trajectory of a real population.



3
Optimal policy with variable effort

In this chapter we present an optimal policy problem with variable effort and solve it by applying the

stochastic dynamical programming technique. We consider a general population growth model with dynam-

ics described by a stochastic differential equation and a profit structure based on quadratic polynomials.

The applied technique produces a non-linear stochastic partial differential equation which needs to be

solved by numerical methods. We apply a discretization scheme to this equation and show how to reach

the optimal policy, namely what is the effort that produces maximum profit. This chapter is organized as

follows: in section 3.1 we formulate and solve the optimal policy problem by considering a general growth

model. We end up with chapter conclusions at section 3.2.

25
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3.1 General growth model

In a random environment the growth dynamics of a population subject to harvesting can be described

by the Stochastic Differential Equation

dX(t) = f(X(t))X(t)dt−H(t)dt+ σX(t)dW (t), X(0) = x > 0, (3.1)

where X(t) is the population size at time t, measured as biomass or as number of individuals, f(X(t))

is the average per capita natural growth rate, H(t) is the harvesting rate, σ measures the strength of

environmental fluctuations, W (t) is a standard Wiener process and x > 0 is the population size at time 0,

which we assume known.

The harvesting rate H(t) depends on the vessels fishing capacity and, in particular, depends on the

fishing gears used, nets mesh size, number and type of vessels, number of hours at sea, among others. We

will use the most traditional form for H, which has been (e.g. Clark, 1990, Hanson and Ryan, 1998, Suri,

2008, Li and Wang, 2010, Ewald and Wang, 2010, Li et al., 2011, Kar and Chakraborty, 2011)

H(t) = qE(t)X(t), (3.2)

where q > 0 is a constant representing the fraction of biomass harvested per unit of effort and per unit

time and E(t) corresponds to the effort exerted on the population at time instant t. We assume E(t) to

be non-anticipating, i.e., it only depends on information available up to time t (included). According to

the Food and Agriculture Organization of the United Nations (FAO-CWP, 1990), the effort is defined as

’The amount of fishing gear of a specific type used on the fishing grounds over a given unit of time e.g.

hours trawled per day, number of hooks set per day or number of hauls of a beach seine per day’. Thus,

fishing effort is always non-negative, that is, E(t) ≥ 0, and can even have a minimum value Emin, related

to a fixed effort. On the other hand, the number of gears, hours, vessels and manpower (just to name a

few) are finite and limited, so we consider the effort to be constrained as

0 ≤ Emin ≤ E(t) ≤ Emax < ∞. (3.3)

The profit per unit time can be defined as the difference between sales revenues and fishing costs, i.e.,

Π(t) := P (t)− C(t) = p(H(t))H(t)− c(E(t))E(t), (3.4)
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where P (t) is the sale price per unit time from the harvested fish, C(t) is the cost per unit time derived

from fishing with effort E(t), p(H(t)) denotes the price per unit yield and c(E(t)) is the cost per unit

effort. Fish prices per unit yield tend to follow the law of downward-sloping demand (see Samuelson and

Nordhaus, 2010), that is, the price per unit yield tends to be higher for low values of yield and tends to be

lower when yield increases. The cost per unit effort has an opposite behaviour to the price per unit yield.

In fact, as the effort increases so does its unit cost, since, at high harvesting efforts, less efficient vessels

and fishing technologies may have to be used or overtime higher wages payments may be required (see

Clark, 1990, Suri, 2008).

We will assume that the unit prices and costs have the form

p(H(t)) = p1 − p2H(t) and

c(E(t)) = c1 + c2E(t),

where p1 ≥ 0, p2 ≥ 0, c1 ≥ 0 and c2 > 0 are constants. Thus, taking into account (3.2), the profit per

unit time becomes

Π(t) = (p1 − p2H(t))H(t)− (c1 + c2E(t))E(t)

= (p1qX(t)− c1)E(t)− (p2q
2X2(t) + c2)E

2(t)

=
(
p1qX(t)− c1 − (p2q

2X2(t) + c2)E(t)
)
E(t).

Given the stochastic nature of X(t), the expected profit per unit time is defined as

E [Π(t)] := E
[(
p1qX(t)− c1 − (p2q

2X2(t) + c2)E(t)
)
E(t)

]
.

For our purposes, we assume that harvesting begins at time t = 0 and the corresponding population size

is X(0) = x > 0. Furthermore, harvesting continues up to the time horizon T < +∞ and we work with

the profit present value, i.e., future profits are discounted by a rate δ > 0 accounting for interest rate and

cost of opportunity losses and for other social rates. For a time t in the time interval [0, T ], we define

J(y, t) := E

 T∫
t

e−δ(τ−t)Π(τ)dτ

∣∣∣∣∣X(t) = y

 := Et,y

 T∫
t

e−δ(τ−t)Π(τ)dτ

 , (3.5)

which is, at time t, the expected discounted future profits when the population size at that time is y. The

optimal policy is to optimize the expected accumulated discounted profit earned by the harvester in the
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interval [0, T ], that is, to optimize

V := J(x, 0) = Ex

 T∫
0

e−δτΠ(τ)dτ


= Ex

 T∫
0

e−δτ

(
p1qX(τ)− c1 − (p2q

2X2(τ) + c2)E(τ)

)
E(τ)dτ

 , (3.6)

where Ex[. . .] abbreviates E0,x[. . .] = E[. . . |X(0) = x].

The state variable is X(t) and E(t) is the control variable. Thus, the optimization is carried out with

respect to E(t). The optimization problem can be solved by stochastic dynamic programming, which is a

technique for solving sequential optimization problems, that is, it turns a complex problem into a sequence

of simpler problems. The solution of the complex problem will be a combination of solutions of the simplest

problems.

The expression ’dynamic programming’ was created by the pioneering work of Richard Bellman in 1957

(see Bellman, 1957), and was based on the Principle of Optimality whose statement can be written as

From any point of the optimal trajectory, the remaining trajectory is optimal for the corresponding

problem initiated at that point.

Our problem is to find the effort that maximizes V , subject to the population growth dynamics given

by equation (3.1) with harvesting rate H(t) = qE(t)X(t) and to the constraints on effort given by the

set of inequalities (3.3). In addition, from (3.5) we get J(X(T ), T ) = 0, which is a boundary condition.

Summing up, the stochastic optimal control problem consists in determining

V ∗ := J∗(x, 0) = max
E(τ)

0≤τ≤T

Ex

 T∫
0

e−δτ

(
p1qX(τ)− c1 − (p2q

2X2(τ) + c2)E(τ)

)
E(τ)dτ

 , (3.7)

subject to

dX(t) = f(X(t))X(t)dt− qE(t)X(t)dt+ σX(t)dW (t), X(0) = x, (3.8)

0 ≤ Emin ≤ E(t) ≤ Emax < ∞,

J∗(X(T ), T ) = 0.

The maximizer, i.e., the effort function E(t) that leads to the maximum V ∗, will be called the optimal
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variable effort and will be denoted by E∗(t).

In order to obtain the Hamilton-Jacobi-Bellman equation (see Hanson, 2007), one needs to make

appropriate assumptions and use the following approximations for small ∆t > 0, which lead to error terms

of o(∆t) as ∆t → 0, being careful to use Itô calculus, i.e., to use a Taylor expansion of second order in x:

(A) ∆t is a small positive quantity;

(B) e−δ∆t ≈ 1− δ∆t;

(C) X(t+∆t) ≈ X(t) + ∆X(t);

(D) ∆X(t) ≈ f(X(t))X(t)∆t− qE(t)X(t)∆t+ σX(t)∆W (t);

(E) J∗(X(t+∆t), t+∆t) is known;

(F) during the time interval [t, t+∆t] the control E(t) is constant.

Now, let us consider the current value form of equation (3.7)

J∗(X(t), t) = max
E(τ)

t≤τ≤T

Et,X(t)

 T∫
t

e−δ(τ−t)

(
p1qX(τ)− c1 − (p2q

2X2(τ) + c2)E(τ)

)
E(τ)dτ

 , (3.9)

and divide the integrand function in two parts as follows, with t+∆t < T ,

J∗(X(t), t) = max
E(τ)

t≤τ≤T

Et,X(t)

[ t+∆t∫
t

e−δ(τ−t)

(
p1qX(τ)− c1 − (p2q

2X2(τ) + c2)E(τ)

)
E(τ)dτ

+

T∫
t+∆t

e−δ((τ−t)+∆t−∆t)

(
p1qX(τ)− c1 − (p2q

2X2(τ) + c2)E(τ)

)
E(τ)dτ

]
.

Using assumption (B), one can write

J∗(X(t), t) = max
E(τ)

t≤τ≤T

Et,X(t)

[ t+∆t∫
t

e−δ(τ−t)

(
p1qX(τ)− c1 − (p2q

2X2(τ) + c2)E(τ)

)
E(τ)dτ

+ (1− δ∆t)

T∫
t+∆t

e−δ((τ−(t+∆t))

(
p1qX(τ)− c1 − (p2q

2X2(τ) + c2)E(τ)

)
E(τ)dτ

]
+ o(∆t).

(3.10)
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By applying Bellman’s principle of optimality (see Bellman, 1957, Chiang, 1992) we get

J∗(X(t), t) = max
E(τ)

t≤τ≤t+∆t

Et,X(t)

[ t+∆t∫
t

e−δ(τ−t)

(
p1qX(τ)− c1 − (p2q

2X2(τ) + c2)E(τ)

)
E(τ)dτ

+ (1− δ∆t) max
E(τ)

t+∆t≤τ≤T

∫ T

t+∆t
e−δ((τ−(t+∆t))

(
p1qX(τ)− c1 − (p2q

2X2(τ) + c2)E(τ)

)
E(τ)dτ

]

+ o(∆t),

or, equivalently, using assumptions (C) and (F),

J∗(X(t), t) = max
E(τ)

t≤τ≤T

Et,X(t)

[(
p1qX(t)− c1 − (p2q

2X2(t) + c2)E(t)
)
E(t)∆t

+ (1− δ∆t)J∗(X(t) + ∆X(t), t+∆t)

]
+ o(∆t). (3.11)

A Taylor expansion of J∗(X(t) + ∆X(t), t+∆t) around (X(t), t) gives

J∗(X(t) + ∆X(t), t+∆t) = J∗(X(t), t) +
∂J∗(X(t), t)

∂t
∆t+

∂J∗(X(t), t)

∂X(t)
∆X(t)

+
1

2

∂2J∗(X(t), t)

∂X2(t)
(∆X(t))2 + o(∆t). (3.12)

Replacing in (3.12) ∆X(t) by the approximation in (D), we get

J∗(X(t) + ∆X(t), t+∆t) = J∗(X(t), t) +
∂J∗(X(t), t)

∂t
∆t

+
∂J∗(X(t), t)

∂X(t)

(
f(X(t))X(t)∆t− qE(t)X(t)∆t+ σX(t)∆W (t)

)
+

1

2

∂2J∗(X(t), t)

∂X2(t)

(
f(X(t))X(t)∆t− qE(t)X(t)∆t+ σX(t)∆W (t)

)2

+ o(∆t).
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After some simplifications we can write

J∗(X(t) + ∆X(t), t+∆t) = J∗(X(t), t) +
∂J∗(X(t), t)

∂t
∆t

+
∂J∗(X(t), t)

∂X(t)

(
f(X(t))− qE(t)

)
X(t)∆t

+
∂J∗(X(t), t)

∂X(t)
σX(t)∆W (t) +

1

2

∂2J∗(X(t), t)

∂X2(t)
σ2X2(t)(∆W (t))2

+
∂2J∗(X(t), t)

∂X2(t)

(
f(X(t))− qE(t)

)
σX2(t)∆W (t)∆t+ o(∆t). (3.13)

Replacing J∗(X(t) + ∆X(t), t+∆t) from (3.13) into (3.11) gives

J∗(X(t), t) = max
E(t)

Et,X(t)

[(
p1qX(t)− c1 − (p2q

2X2(t) + c2)E(t)
)
E(t)∆t

+ (1−∆dt)

(
J∗(X(t), t) +

∂J∗(X(t), t)

∂t
∆t

+
∂J∗(X(t), t)

∂X(t)

(
f(X(t))− qE(t)

)
X(t)∆t

+
∂J∗(X(t), t)

∂X(t)
σX(t)∆W (t) +

1

2

∂2J∗(X(t), t)

∂X2(t)
σ2X2(t)(∆W (t))2

+
∂2J∗(X(t), t)

∂X2(t)

(
f(X(t))− qE(t)

)
σX2(t)∆W (t)∆t+ o(∆t)

)]
. (3.14)

From the Wiener process properties we know that Et,X(t)[∆W (t)] = 0 and Et,X(t)[(∆W (t))2] = ∆t. Thus,

rearranging the latter equation gives

0 = max
E(t)

{(
p1qX(t)− c1 − (p2q

2X2(t) + c2)E(t)
)
E(t)∆t− δJ∗(X(t), t)∆t+

∂J∗(X(t), t)

∂t
∆t

+
∂J∗(X(t), t)

∂X(t)

(
f(X(t))− qE(t)

)
X(t)∆t+

1

2

∂2J∗(X(t), t)

∂X2(t)
σ2X2(t)∆t+ o(∆t)

}
. (3.15)

Dividing (3.15) by ∆t and letting ∆t → 0 results in

−∂J∗(X(t), t)

∂t
= max

E(t)

{(
p1qX(t)− c1 − (p2q

2X2(t) + c2)E(t)
)
E(t)− δJ∗(X(t), t)

+
∂J∗(X(t), t)

∂X(t)

(
f(X(t))− qE(t)

)
X(t) +

1

2

∂2J∗(X(t), t)

∂X2(t)
σ2X2(t)

}
, (3.16)

where J∗(X(t), t) represents the expected value of the maximized accumulated discounted profit earned

when harvesting is initiated at time t up to the terminal time T .

Equation (3.16) is the so-called Hamilton-Jacobi-Bellman equation (HJB) and it is the solution of the
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stochastic control problem (3.7). One particularity of this equation is its deterministic nature although

resulting from a stochastic optimal control problem. Usually it is a non-linear equation and its resolution

resorts to numerical methods, as we will see in the next section.

The optimal variable effort is obtained from the HJB equation (3.16). Let D be a function that

represents the control switching term present in (3.16), that is,

D(E) = max
E(t)

{(
p1qX(t)− c1 − (p2q

2X2(t) + c2)E(t)
)
E(t)− ∂J∗(X(t), t)

∂X(t)
qE(t)X(t)

}
, (3.17)

and denote by E∗
free(t) the unconstrained effort resulting from the maximization carried out in equation

(3.17). Thus, E∗
free(t) is obtained by solving the equation dD(E)/dE = 0 with respect to E, which gives

E∗
free(t) =

(
p1 − ∂J∗(X(t),t)

∂X(t)

)
qX(t)− c1

2 (p2q2X2(t) + c2)
.

Representing the constrained optimal effort by E∗(t) and replacing E(t) by E∗(t) in equation (3.16)

yields the maximized HJB

−∂J∗(X(t), t)

∂t
= (p1qX(t)− c1)E

∗(t)− (p2q
2X2(t) + c2)E

∗2(t)− δJ∗(X(t), t)

+
∂J∗(X(t), t)

∂X(t)

(
f(X(t))− qE∗(t)

)
X(t) +

1

2

∂2J∗(X(t), t)

∂X2(t)
σ2X2(t), (3.18)

where the effort is given by

E∗(t) =


Emin, if E∗

free(t) < Emin

E∗
free(t), if Emin ≤ E∗

free(t) ≤ Emax

Emax, if E∗
free(t) > Emax,

(3.19)

with

E∗
free(t) =

(
p1 − ∂J∗(X(t),t)

∂X(t)

)
qX(t)− c1

2 (p2q2X(t)2 + c2)

being the unconstrained effort (see Hanson and Ryan, 1998).

The boundary condition associated with the problem formed by equations (3.18) and (3.19) follows

from equation (3.5) and is given by J∗(X(T ), T ) = 0. The initial condition is x(0) = x > 0.
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To determine the optimal policy with variable effort, that is, to determine the values J∗(x, 0) and E∗(t),

we need to solve equations (3.18) and (3.19) subject to the growth dynamic given by equation (3.8), and

the boundary and initial conditions given above. As pointed before, the solutions of (3.18) and (3.19) are

obtained via numerical methods using a discretization scheme. Section 3.1.1 deals with this topic.

3.1.1 Numerical solution of the HJB equation

To discretize equation (3.18), we consider that:

• the optimization starts at time t = 0 and ends at the terminal time t = T < +∞;

• the time interval is uniformly partitioned as 0 = t0 < t1 < . . . < tn = T , with tj = t0 + j∆t and

∆t = T/n, j = 1, . . . , n;

• the state variable takes values within the interval [0, xmax], which is also uniformly partitioned as

0 = x0 < x1 < . . . < xm = xmax, with xi = x0 + i∆x and ∆x = xmax/m, i = 1, . . . ,m; xmax

should be chosen such that the probability of X(t) exceeding xmax is negligible;

• since we have a boundary condition J∗(X(T ), T ) = 0, which is terminal instead of initial, the

computation uses time moving backwards from T to 0;

• the above partitions form a grid of points where J∗
i,j := J∗(xi, tj) and E∗

i,j := E∗(xi, tj), with

0 ≤ i ≤ m and 0 ≤ j ≤ n.

The following derivatives are discretized using a Crank-Nicolson scheme (as in Thomas (1995)):

• For 0 ≤ i ≤ m− 1 and 0 ≤ j ≤ n− 1,

∂J∗
i,j

∂t
≈

J∗
i,j+1 − J∗

i,j

∆t
.

• For 1 ≤ i ≤ m− 1 and 0 ≤ j ≤ n− 1,

∂J∗
i,j

∂x
≈ 1

2

(
J∗
i+1,j+1 − J∗

i−1,j+1

2∆x
+

J∗
i+1,j − J∗

i−1,j

2∆x

)
.

∂2J∗
i,j

∂x2
≈ 1

2

( J∗
i+1,j+1−J∗

i,j+1

∆x − J∗
i,j+1−J∗

i−1,j+1

∆x

∆x
+

J∗
i+1,j−J∗

i,j

∆x − J∗
i,j−J∗

i−1,j

∆x

∆x

)

=
1

2

(
J∗
i+1,j+1 − 2J∗

i,j+1 + J∗
i−1,j+1

∆x2
+

J∗
i+1,j − 2J∗

i,j + J∗
i−1,j

∆x2

)
.
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• For i = m and 0 ≤ j ≤ n− 1,

∂J∗
m,j

∂x
≈

∂J∗
m−1,j

∂x
+∆x

∂2J∗
m−1,j

∂x2

=
1

2

(
J∗
m,j+1 − J∗

m−2,j+1

2∆x
+

J∗
m,j − J∗

m−2,j

2∆x

)

+ ∆x
1

2

(
J∗
m,j+1 − 2J∗

m−1,j+1 + J∗
m−2,j+1

∆x2
+

J∗
m,j − 2J∗

m−1,j + J∗
m−2,j

∆x2

)

=
1

2

(
3J∗

m,j+1 − 4J∗
m−1,j+1 + J∗

m−2,j+1

2∆x
+

3J∗
m,j − 4J∗

m−1,j + J∗
m−2,j

2∆x

)
.

∂2J∗
m,j

∂x2
≈ 2

∆x

(
J∗
m,j − J∗

m−1,j

∆x
−

∂J∗
m−1,j

∂x

)

=
1

2

(
2J∗

m,j+1 − 5J∗
m−1,j+1 + 4J∗

m−2,j+1 − J∗
m−3,j+1

∆x2

)

+
1

2

(
2J∗

m,j − 5J∗
m−1,j + 4J∗

m−2,j − J∗
m−3,j

∆x2

)
,

where,to obtain an approximation of the second derivative we have performed the second order Taylor

approximation of J∗
m,j

J∗
m,j ≈ J∗

m−1,j +∆x
∂J∗

m−1,j

∂x
+

∆x2

2

∂2J∗
m,j

∂x2
.

Therefore, the discretized version of equation (3.18) is:

• For 1 ≤ i ≤ m− 1 and 0 ≤ j ≤ n− 1,

−
J∗
i,j+1 − J∗

i,j

∆t
= (p1qxi − c1)E

∗
i,j+1 − (p2q

2x2i + c2)E
∗2
i,j+1 − δ

(
J∗
i,j+1

2
+

J∗
i,j

2

)
+

1

2

(
J∗
i+1,j+1 − J∗

i−1,j+1

2∆x
+

J∗
i+1,j − J∗

i−1,j

2∆x

)(
f(xi)− qE∗

i,j+1

)
xi

+
1

4

(
J∗
i+1,j+1 − 2J∗

i,j+1 + J∗
i−1,j+1

∆x2
+

J∗
i+1,j − 2J∗

i,j + J∗
i−1,j

∆x2

)
σ2x2i .
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• For i = m and 0 ≤ j ≤ n− 1,

−
J∗
m,j+1 − J∗

m,j

∆t
= (p1qxm − c1)E

∗
m,j+1 − (p2q

2x2m + c2)E
∗2
m,j+1 − δ

(
J∗
m,j+1

2
+

J∗
m,j

2

)
+

1

2

(
3J∗

m,j+1 − 4J∗
m−1,j+1 + J∗

m−2,j+1

2∆x
+

3J∗
m,j − 4J∗

m−1,j + J∗
m−2,j

2∆x

)

×

(
f(xm)− qE∗

m,j+1

)
xm

+
1

4

(
2J∗

m,j+1 − 5J∗
m−1,j+1 + 4J∗

m−2,j+1 − J∗
m−3,j+1

∆x2

+
2J∗

m,j − 5J∗
m−1,j + 4J∗

m−2,j − J∗
m−3,j

∆x2

)
σ2x2m.

The free optimal effort has the following discretization:

• For 1 ≤ i ≤ m− 1 and 0 ≤ j ≤ n− 1,

E∗
freei,j

=

(
p1 −

J∗
i+1,j−J∗

i−1,j

2∆x

)
qxi − c1

2
(
p2q2x2i + c2

) .

• For i = m and 0 ≤ j ≤ n− 1,

E∗
freem,j

=

(
p1 −

3J∗
m,j−4J∗

m−1,j+J∗
m−2,j

2∆x

)
qxm − c1

2 (p2q2x2m + c2)
.

In each iteration, we then correct the free optimal effort to obtain the constrained optimal effort. Namely,

for 1 ≤ i ≤ m and 0 ≤ j ≤ n− 1:

• If E∗
freei,j+1

< 0, then E∗
i,j+1 = Emin;

• If Emin ≤ E∗
freei,j+1

≤ Emax, then E∗
i,j+1 = E∗

freei,j+1
;

• If E∗
freei,j+1

> Emax, then E∗
i,j+1 = Emax.

The discretized version of the HJB equation can be written as a system of m equations:
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• For 1 ≤ i ≤ m− 1 and 0 ≤ j ≤ n− 1,(
(f(xi)− qE∗

i,j+1)xi∆t

4∆x
− σ2x2i∆t

4∆x2

)
· J∗

i−1,j

+

(
1 +

δ∆t

2
+

σ2x2i∆t

2∆x2

)
· J∗

i,j

−

(
(f(xi)− qE∗

i,j+1)xi∆t

4∆x
+

σ2x2i∆t

4∆x2

)
· J∗

i+1,j

=

(
−

(f(xi)− qE∗
i,j+1)xi∆t

4∆x
+

σ2x2i∆t

4∆x2

)
· J∗

i−1,j+1

+

(
1− δ∆t

2
− σ2x2i∆t

2∆x2

)
· J∗

i,j+1

+

(
(f(xi)− qE∗

i,j+1)xi∆t

4∆x
+

σ2x2i∆t

4∆x2

)
· J∗

i+1,j+1

+(p1qxi − c1)E
∗
i,j+1∆t− (p2q

2x2i + c2)E
∗2
i,j+1∆t.

• For i = m and 0 ≤ j ≤ n− 1,

σ2x2m∆t

4∆x2
· J∗

m−3,j

−

(
(f(xm)− qE∗

m,j+1)xm∆t

4∆x
+

σ2x2m∆t

4∆x2

)
· J∗

m−2,j

+

(
(f(xm)− qE∗

m,j+1)xm∆t

∆x
+

5σ2x2m∆t

4∆x2

)
· J∗

m−1,j

+

(
1 +

δ∆t

2
−

3(f(xm)− qE∗
m,j+1)xm∆t

4∆x
− σ2x2m∆t

2∆x2

)
· J∗

m,j

= −σ2x2m∆t

4∆x2
· J∗

m−3,j+1

+

(
(f(xm)− qE∗

m,j+1)xm∆t

4∆x
+

σ2x2m∆t

4∆x2

)
· J∗

m−2,j+1

−

(
(f(xm)− qE∗

m,j+1)xm∆t

∆x
+

5σ2x2m∆t

4∆x2

)
· J∗

m−1,j+1

+

(
1− δ∆t

2
+

3(f(xm)− qE∗
m,j+1)xm∆t

4∆x
− σ2x2m∆t

2∆x2

)
· J∗

m,j+1

+(p1qxm − c1)E
∗
m,j+1∆t− (p2q

2x2m + c2)E
∗2
m,j+1∆t.
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The system can be written using appropriate matrices A, B and C, in the form

AJ∗
− = BJ∗

+ + C, (3.20)

with

J∗
− =

[
J∗
0

∣∣ J∗
1

∣∣ · · ·
∣∣ J∗

n−1

]
, J∗

+ =
[
J∗
1

∣∣ J∗
2

∣∣ · · ·
∣∣ J∗

n

]
, and

J∗
j =

[
J∗
0,j J∗

1,j · · · J∗
m,j

]T
, 0 ≤ j ≤ n,

where T is the transpose operator. Solving the system one obtains the optimal solution for the grid points.

The optimal solution when the population is at a given value X at time tk is obtained by polynomial

interpolation, between the values at the neighbouring points of X in the partition x0, x1, . . . , xm.

3.2 Conclusions

In this chapter we have presented the problem of obtaining the expected accumulated discounted profit

over some finite time horizon T .

We have considered a population size dynamics given by a SDE and a standard harvesting rate based

on the idea that harvesting is proportional to the effort and to the population size.

We have used a profit structure where revenues per unit time are quadratic functions of the yield and

costs are quadratic functions on effort. This profit structure is a generalization of the usual structure with

linear prices and quadratic costs. The formulated problem lead us to obtain the HJB equation and to solve

it numerically by applying a finite-difference method.

Since the HJB equation is a parabolic partial differential equation, we choose to apply a Crank-Nicolson

scheme and, at each step, the effort was checked and forced to stay within the prescribed bounds.





4
Optimal sustainable policy with

constant effort

In this chapter we present the alternative sustainable approach based on constant effort. This approach

is, to the best of our knowledge, the first attempt to obtain an optimal sustainable harvesting policy based

on profit per unit time optimization. As in the optimal policy problem formulation, we consider a general

population growth model with harvesting, described by a stochastic differential equation. The harvesting

term is similar as before but now the harvesting effort is constant. Using the theory of stochastic differential

equations presented in Chapter 2, we will determine, at the steady-state, the optimal sustainable effort and

the optimal sustainable profit per unit time. In order to simulate trajectories under the optimal sustainable

policy, for comparison purposes, we consider two classical growth models: the logistic model and the

Gompertz model. For these models, the optimal effort is given by the solution of a polynomial equation or

a non-linear equation. In both cases, the computations are very simple to obtain, using numerical methods
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if necessary. The layout of this chapter is: section 4.1 describes the formulation and properties of the

general model and how to obtain the optimal sustainable effort and the optimal sustainable profit per unit

time. Sections 4.2 and 4.3 study, respectively, the particular cases of the logistic and the Gompertz growth

models. Section 4.4 provides the main conclusions.

4.1 General growth model

To apply a constant effort policy, one considers a particular case of equation (3.1) with E(t) ≡ E, that

is,

dX(t) = f(X(t))X(t)dt− qEX(t)dt+ σX(t)dW (t), X(0) = x, (4.1)

and the following assumptions hold for X > 0:

(A) f is continuously differentiable;

(B) f is strictly decreasing;

(C) f(+∞) < 0;

(D) F (0+) = 0, where F (X) := f(X)X;

(E) f(0+) exists and f(0+)− qE > σ2/2.

Assumption (B) translates the idea that, the larger the population size is, the fewer are the available

resources for an individual to survive and reproduce. Assumption (C) prevents large populations to grow and

assumption (D) implies the existence of a closed population, that is, there is no immigration. Assumption

(E) avoids mathematical extinction, i.e., X(t) = 0 for some t > 0 or X(t) → 0 as t → +∞ have zero

probability of occurring (see Braumann, 1985, with appropriate adaptations since it uses Stratonovich

calculus). Mathematical extinction occurs with probability one if f(0+) − qE < σ2/2 (see Braumann,

1985, with appropriate adaptations to Itô calculus). We recall that f(0+) represents the net arithmetic

average per capita growth rate at low population density values. Note that assumption (A) is of a technical

nature.

Under these assumptions, from Corollary 2.2.1 (see page 20), the solution of equation (4.1) exists and is

unique up to an explosion time and is a homogeneous diffusion process with drift and diffusion coefficients

given, respectively, by

a(X) = f(X)X − qEX and b(X) = σ2X2. (4.2)
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The state space of X(t) is (0,+∞) and the boundaries are X = 0 and X = +∞. From Braumann

(1985), one can see that, if both boundaries are non-attractive, then the solution X(t) will stay inside the

interval (0,+∞) for all t ≥ 0. To classify the boundaries and to determine the stationary behaviour of

X(t), one needs the scale and speed densities (see (2.7) and (2.8)), given respectively by

s(X) = C1X
2qE/σ2 exp

(
− 2

σ2

∫ X

z0

f(z)

z
dz

)
(4.3)

and

m(X) = C2X
−2(1+qE/σ2) exp

(
2

σ2

∫ X

z0

f(z)

z
dz

)
, (4.4)

where C1, C2 are positive constants and z0 > 0 is an arbitrary (but fixed) point in the interior of the state

space. From the above densities, one can write the scale and speed functions (see (2.9) and (2.10)) as

S(X) =

∫ X

x0

C1Z
2qE/σ2 exp

(
− 2

σ2

∫ Z

z0

f(θ)

θ
dθ

)
dZ (4.5)

and

M(X) =

∫ X

x0

C2Z
−2(1+qE/σ2) exp

(
2

σ2

∫ Z

z0

f(θ)

θ
dθ

)
dZ, (4.6)

where x0 > 0 is an arbitrary (but fixed) point in the interior of the state space.

From Proposition 2.3.1 (on page 22), necessary and sufficient conditions for the non-attractiveness of

X = 0 and X = +∞ are, respectively, S(0, x] = +∞ for some x > 0 and S[x,+∞) = +∞ for some

x > 0. This is equivalent, respectively, to S(0) = −∞ and S(+∞) = +∞. From (4.5) we have, choosing

x0 = z0 > 0:

S(0) =

∫ 0

x0

C1Z
2qE/σ2 exp

(
− 2

σ2

∫ Z

x0

f(θ)

θ
dθ

)
dZ

= −
∫ x0

0
C1Z

2qE/σ2 exp
(

2

σ2

∫ x0

Z

f(θ)

θ
dθ

)
dZ

and

S(+∞) =

∫ +∞

x0

C1Z
2qE/σ2 exp

(
2

σ2

∫ Z

x0

f(θ)

θ
dθ

)
dZ.
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From the assumptions (A) – (E), it can be seen (see Braumann, 2008, adapting to Itô calculus) that

S(0) = −∞ and S(+∞) = +∞.

Therefore, the boundaries X = 0 and X = +∞ are non-attractive. The non-attractiveness of the X = 0

boundary insures that there is a zero probability of mathematical extinction. The non-attractiveness of

the X = +∞ boundary insures non-explosion and therefore existence and uniqueness of the solution for

all t > 0. According to section 2.3, it may happen that the transient distribution of X(t) stabilizes and

converges, as t → +∞, to a distribution with probability density function denoted by p(y) and named

stationary density. Given that the boundaries are non-attractive, from Gihman and Skorohod (1979) and

Karlin and Taylor (1981) one can see that a necessary and sufficient condition for the existence of a

stationary density is

M(0,∞) =

∫ +∞

0
m(z)dz < +∞. (4.7)

In fact, given the assumptions (A) – (E) on f , we can see in Braumann (1999) that condition (4.7) holds

and, from section 2.3, we can get an expression for the stationary density p(y),

p(y) =
m(y)

+∞∫
0

m(z)dz

, y ∈ (0,∞), (4.8)

with m(y) given by (4.4).

Summing up, we can conclude that there is a stationary distribution for the population size, i.e., an

equilibrium probability distribution, with probability density function p proportional to the speed density,

towards which the distribution of the population size converges as t → ∞. Note that this is a stochastic

equilibrium, not a deterministic one. In fact, the population size X(t) does not stabilize into an equilibrium

size as in the deterministic case. It is the probability distribution of X(t) that stabilizes into an equilibrium

distribution with probability density function given by p(y), the stationary density.

The existence of the stationary density plays a central role when defining the optimal sustainable policy

that we are going to study below, allowing us to take a steady-state approach. We denote by X∞ the

random variable with density p, i.e., the random variable exhibiting the steady-state probabilistic behaviour.

A good approximation of the expected size of the population E[Xt], for large t, is the expected value of
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X∞,

E[X∞] =

+∞∫
0

xp(x)dx =

+∞∫
0

xm(x)dx

+∞∫
0

m(x)dx

:=
M01(E)

M00(E)
, (4.9)

with

Mjk(E) :=

∫ +∞

0
(ln z)jzk

m(z)

C2
dz =

∫ +∞

0
(ln z)jzk−2(1+qE/σ2) exp

(
2

σ2

∫ z

x

f(y)

y
dy

)
dz,

choosing z0 = x.

The steady-state structure of the profit per unit time is similar as in the case of the optimal policy and

is given by

Π∞ := P∞ − C = p(H∞)H∞ − c(E)E

= (p1 − p2H∞)H∞ − (c1 + c2E)E

= (p1qX∞ − c1)E − (p2q
2X2

∞ + c2)E
2,

where P∞ is the sale price, C is the fishing cost and H∞ := qEX∞ is the sustainable harvesting rate. The

expected sustainable profit per unit time is

E [Π∞] = E
[
(p1qX∞ − c1)E − (p2q

2X2
∞ + c2)E

2
]

= (p1qE [X∞]− c1)E − (p2q
2E
[
X2

∞
]
+ c2)E

2

=

(
p1q

M01(E)

M00(E)
− c1

)
E −

(
p2q

2M02(E)

M00(E)
+ c2

)
E2. (4.10)

The steady-state optimization problem consists in maximizing the expected sustainable profit per unit

time, should it have a maximum for the admissible range of effort values 0 ≤ E < 1
q

(
f(0+)− σ2

2

)
. Note

that this is the range of values for which we have a stationary density. For E > 1
q

(
f(0+)− σ2

2

)
, extinction

occurs with probability one, so X∞ = 0 and the steady-state profit per unit time will be −c1E − c2E
2.

If there is an optimal sustainable effort E∗∗, taking into account that

∂Mjk(E)

∂E
= −2q

σ2
Mj+1,k(E),

E∗∗ is a solution of equation dE[Π∞]/dE = 0 such that d2E[Π∞]/dE2 < 0, that is, E∗∗ is solution of
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E2

(
p2q

p1

M12(E)

M00(E)

(
1− M10(E)

M00(E)

M02(E)

M12(E)

))
−E

(
M11(E)

M01(E)

(
1− M01(E)

M00(E)

M10(E)

M11(E)

)
+ σ2 p2

p1

(
M02(E)

M00(E)
+

c2
p2q

))
+
σ2

2q

(
M01(E)

M00(E)
− c1

p1q

)
= 0. (4.11)

Finally, the expected sustainable profit per unit time is given by

E[Π∗∗
∞] =

(
p1q

M01(E
∗∗)

M00(E∗∗)
− c1

)
E∗∗ −

(
p2q

2M02(E
∗∗)

M00(E∗∗)
+ c2

)
E∗∗2 (4.12)

4.2 Optimal sustainable policy with a logistic growth model

When the population growth function follows a logistic model, equation (4.1) takes the form

dX(t) = rX(t)

(
1− X(t)

K

)
dt− qEX(t)dt+ σX(t)dW (t), X(0) = x, (4.13)

where the parameter r > 0 denotes the intrinsic population growth rate and K > 0 is the carrying capacity

of the environment.

The solution of equation (4.13) is (see Appendix A.1)

X(t) =

K exp
{(

r − qE − σ2

2

)
t+ σW (t)

}
K

x
+ r

t∫
0

exp
{(

r − qE − σ2

2

)
s+ σW (s)

}
ds

. (4.14)

The per capita growth function f(x) = r(1− x/K) is a polynomial function and it is very easy to see

that f fulfils assumptions (A) – (D) on section 4.1. For the logistic model, the assumption (E) is equivalent

to E < 1
q

(
r − σ2

2

)
. The drift and diffusion coefficients (4.2) are

a(x) = rx

(
1− x

K

)
− qEx and b(x) = σ2x2.
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This leads to the scale and speed densities

s(X) = CX−ρ−1 exp{θx} (4.15)

and

m(X) = DXρ−1 exp{−θx}, (4.16)

with ρ = 2(r−qE)
σ2 − 1, θ = 2r

Kσ2 and C, D are positive constants.

Beddington and May (1977) obtained the stationary density for the stochastic process X(t). Using

(4.4) and (4.6), it is given by

p(x) =
1

Γ(ρ)
θρxρ−1 exp {−θx} , 0 < x < +∞, (4.17)

where Γ is the Gamma function.

Notice that p is the probability density function of a random variable, say X∞, with Gamma distribution

and so we can write

X∞ ∼ Gamma(ρ, θ).

The mean value of X∞ could be obtained from (4.9) but, in this case, it comes straightforward from (4.17)

as

E[X∞] =
ρ

θ
= K

(
1− qE

r
− σ2

2r

)
. (4.18)

The expected sustainable profit per unit time, E[Π∞], is

E[Π∞] =

(
p1qK

(
1− qE

r
− σ2

2r

)
− c1

)
E −

(
p2q

2K2

(
1− qE

r
− σ2

2r

)(
1− qE

r

)
+ c2

)
E2,

and the steady-state optimization problem becomes

max
E

E[Π∞] =

(
p1qK

(
1− qE

r
− σ2

2r

)
− c1

)
E −

(
p2q

2K2

(
1− qE

r
− σ2

2r

)(
1− qE

r

)
+ c2

)
E2.

If there is a maximum in the admissible range 0 ≤ E < r−σ2/2
q , the optimization problem consists in solving

the cubic equation dE[Π∞]/dE = 0, so that the solution satisfies d2E[Π∞]/dE2 < 0. The resulting optimal

sustainable effort, E∗∗, is then solution of the equation
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p1qK

(
1− qE

r
− σ2

2r

)
− c1 −

p1Kq2

r
E

−2E

(
p2q

2K2

(
1− qE

r

)(
1− qE

r
− σ2

2r

)
+ c2

)
−E2

(
p2q

2K2
(
−q

r

)(
1− qE

r
− σ2

2r

)
+ p2q

2K2

(
1− qE

r

)(
−q

r

))
= 0.

The correspondent optimal expected sustainable profit per unit time, E[Π∗∗
∞], is

E[Π∗∗
∞] =

(
p1qK

(
1− qE∗∗

r
− σ2

2r

)
− c1

)
E∗∗ −

(
p2q

2K2

(
1− qE∗∗

r
− σ2

2r

)(
1− qE∗∗

r

)
+ c2

)
E∗∗2.

Finally, at the steady-state, the mean value of the population under the optimal effort E∗∗ is

E[X∗∗
∞ ] = K

(
1− qE∗∗

r
− σ2

2r

)
. (4.19)

The particular case p2 = 0

This price structure has been widely used (see, for instance, Arnason et al. (2004), Engen et al. (1997),

Sandal and Steinshamn (1997), Song et al. (2010) and Suri (2008)). In this case, the above expressions

for the optimal sustainable effort, optimal expected sustainable profit per unit time and mean value of the

population under the optimal sustainable effort are given, respectively, by

E∗∗ =
r

2q

1− σ2

2r
− c1

p1qK

1 +
c2r

p1q2K

, (4.20)

E[Π∗∗
∞] =

rKp1
4

(
1− σ2

2r
− c1

p1qK

)2

1 +
c2r

p1q2K

and (4.21)

E[X∗∗
∞ ] =

K

2

(
1− σ2

2r

)(
1 +

2c2r

p1q2K

)
+

c1
p1qK

1 +
c2r

p1q2K

. (4.22)

From these expressions, we can see that the optimal effort, the steady-state optimal expected profit per

unit time and the steady-state average population size decrease when the strength σ of the environmental

fluctuations increases. The optimal effort and the expected profit per unit time also decrease when c1 or
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c2 increases and increase when p1 increases.

4.3 Optimal sustainable policy with a Gompertz growth model

When the population growth function follows a Gompertz model, equation (4.1) takes the form

dX(t) = rX(t) ln K

X(t)
dt− qEX(t)dt+ σX(t)dW (t), X(0) = x, (4.23)

where the parameter r > 0 is an intrinsic growth parameter and K > 0 is the carrying capacity of the

environment.

The solution of equation (4.23) is (see Appendix A.2)

X(t) = exp
{
e−rt lnx

}
exp

{(
lnK − qE

r
− σ2

2r

)(
1− e−rt

)}
exp

{
σe−rt

t∫
0

ersdW (s)

}
. (4.24)

The per capita growth function f(x) = r ln(K/x) is a logarithmic function and is very easy to see that

f fulfils assumptions (A) – (D) on section 4.1. For the Gompertz growth model, the assumption (E) is

automatically satisfied since f(0+) = +∞. The drift and diffusion coefficients (4.2) are

a(x) = rx ln K

x
− qEx and b(x) = σ2x2.

From (4.24) one obtains

Y (t) := lnX(t) = e−rt lnx+

(
lnK − qE

r
− σ2

2r

)(
1− e−rt

)
+ σe−rt

t∫
0

ersdW (s).

Since the integrand is deterministic, the stochastic integral
∫ t
0 e

rsdW (s) in this expression is Gaussian with

mean 0 and variance
∫ t
0 (e

rs)2 ds = 1
2r

(
e2rt − 1

)
. Therefore, Y (t) is Gaussian with mean

µ(t) = e−rt lnx+

(
lnK − qE

r
− σ2

2r

)(
1− e−rt

)

and variance

θ2(t) =
σ2

2r

(
1− e−2rt

)
.
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Therefore, Y∞ := lnX∞ ∼ N (µ, θ2) with

µ = lnK − qE

r
− σ2

2r
and θ =

σ√
2r

.

So, the stationary density of X∞ is

p(x) =
1

θ
√
2πx

exp
{
−(lnx− µ)2

2θ2

}
, 0 < x < +∞. (4.25)

The first and second moments of X∞ come from the expectation properties:

E[X∞] = E
[
eY∞

]
= exp

{
E[Y∞] +

1

2
Var[Y∞]

}
= K exp

{
−qE

r
− σ2

4r

}

and

E[X2
∞] = E

[
e2Y∞

]
= exp

{
E[2Y∞] +

1

2
Var[2Y∞]

}
= K2 exp

{
−2qE

r

}
.

The expected sustainable profit per unit time, E[Π∞], is

E[Π∞] =

(
p1qK exp

{
−qE

r
− σ2

4r

}
− c1

)
E −

(
p2q

2K2 exp
{
−2qE

r

}
+ c2

)
E2,

and the steady-state optimization problem becomes

max
E≥0

E[Π∞] =

(
p1qK exp

{
−qE

r
− σ2

4r

}
− c1

)
E −

(
p2q

2K2 exp
{
−2qE

r

}
+ c2

)
E2.

If there is a maximum in the admissible range E ≥ 0, the optimization problem consists in solving the

non-linear equation dE[Π∞]/dE = 0, so that d2E[Π∞]/dE2 < 0. The resulting optimal sustainable effort,

E∗∗, is solution of the equation

exp
{
−q

r
E +

σ2

4r

}
− c1

p1qK
+

2p2rK

p1

(q
r
E
)2

exp
{
−2q

r
E

}
−q

r
E

(
exp

{
−q

r
E +

σ2

4r

}
+

2p2rK

p1
exp

{
−2q

r
E

}
+

2c2r

p1q2K

)
= 0,

and can be obtained by numerical methods with the required care to the check for multiple solutions and

for maximality.
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The correspondent optimal expected sustainable profit per unit time, E[Π∗∗
∞], is

E[Π∗∗
∞] =

(
p1qK exp

{
−qE∗∗

r
− σ2

4r

}
− c1

)
E∗∗ −

(
p2q

2K2 exp
{
−2qE∗∗

r

}
+ c2

)
E∗∗2.

Finally, at the steady-state, the mean value of the population under the optimal effort E∗∗ is

E[X∗∗
∞ ] = K exp

{
−qE∗∗

r
− σ2

4r

}
. (4.26)

The particular case p2 = 0

As in the case of the logistic growth model, we present now, for the particular case p2 = 0, the equation

to obtain the optimal sustainable effort and the expressions for the optimal expected sustainable profit per

unit time and for the mean value of the population under the optimal sustainable effort:

E∗∗ is given by the solution of equation

E =
r

q

1− c1 + 2c2E

p1qK exp
{
− qE

r − σ2

4r

}
 ,

E[Π∗∗
∞] =

(
p1qK exp

{
−qE∗∗

r
− σ2

4r

}
− c1

)
E∗∗ − c2E

∗∗2 and

E[X∗∗
∞ ] = K exp

{
−qE∗∗

r
− σ2

4r

}
.

4.4 Conclusions

In this chapter we have presented an optimal sustainable harvesting policy based on constant effort.

For a general growth model we have presented the necessary conditions to avoid non-attractiveness of

boundaries and the existence of a stationary density. Following this, we deduced the expressions for the

optimal sustainable effort and the expected sustainable profit per unit time.

Next we studied the above problem with the logistic and Gompertz growth models. In both cases, the

equation that leads to the optimal sustainable effort needs to be solved numerically.

For the logistic growth model we have considered the particular case p2 = 0, since this is a very often

considered case. Here, the steady-state optimization problem consists in maximizing a second degree

polynomial, and the expressions for the optimal sustainable effort, expected sustainable profit per unit time
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and mean value of the population come in a straightforward manner.

The results presented in this chapter are, to the best of our knowledge, the first attempt to obtain an

optimal sustainable harvesting policy based on profit per unit time optimization.



5
Comparison of policies

This chapter concentrates on the numerical comparisons between the optimal policy with variable effort

and the optimal sustainable policy with constant effort. We will compare the performance of the two policies

in terms of the expected profit earned by the harvester and in terms of the evolution of the population size

and the amount of effort across time. In the literature, the two most used models to describe population

dynamics are the logistic and the Gompertz models. These are the ones used to conduct the comparisons.

For each model, we will set up a basic scenario with parameter values based on realistic data from a fished

population. We will also consider alternative scenarios corresponding to changes of the different parameter

values used in the basic scenario and we will check the influence of such changes in terms of the profit.

In addition to the mentioned optimal policies, we will present a sub-optimal and applicable policy based

on a step variable effort function in which the effort remains constant for fixed periods of time. We denote

this policy by stepwise policy and we will compare it with the optimal sustainable policy and with the

51
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optimal policy, using both the logistic and Gompertz models. The design of this chapter is as follows.

Section 5.1 defines the quantities of interest for the comparisons and how they were computed. Sections

5.2 and 5.3 describe, respectively, the policy comparisons with the logistic and Gompertz models. The

comparisons with the stepwise policy are shown in section 5.4 for the logistic model and in section 5.5 for

the Gompertz model. The main conclusions appear on section 5.6.

5.1 Comparison description

The comparison between the (variable effort) optimal policy and the (constant effort) optimal sustainable

policy can not be done directly, since the optimal policy yields the optimal expected accumulated discounted

profit over a finite time horizon, V ∗, and the optimal sustainable policy yields the optimal expected profit

per unit time, E[Π∗∗
∞], for a large time horizon T → +∞. Even so, both policies can be compared if one

uses Monte Carlo simulations. Let

Π∗(t) := (p1qX(t)− c1)E
∗(t)− (p2q

2X2(t) + c2)E
∗2(t),

Π∗∗(t) := (p1qX(t)− c1)E
∗∗ − (p2q

2X2(t) + c2)E
∗∗2

be the profit per unit time for the two policies. We can compute, for both policies, four comparable

quantities of interest (∗ refers to the optimal policy and ∗∗ refers to the optimal sustainable policy):

1. Expected accumulated discounted profit in the interval [0, T ]:

V ∗ := Ex

 T∫
0

e−δτΠ∗(τ)dτ

 , V ∗∗ := Ex

 T∫
0

e−δτΠ∗∗(τ)dτ

 . (5.1)

Since we cannot obtain the expectations E[ · ] analytically nor the integrals
∫ T
0 e−δτΠ∗(τ)dτ and∫ T

0 e−δτΠ∗∗(τ)dτ , we use numerical methods. We approximate the integrals by discretizing time.

The expectations are approximated by the average of 1000 Monte Carlo simulated trajectories using

an Euler scheme with the same discretization time step. In the case of V ∗, the integral for a trajectory

can also be estimated by the value corresponding to T = 0 of the numerical solution J∗ of the HJB

equation. We did not use that method (which gives numerical values almost indistinguishable from

the method we use) since we want a full comparability with V ∗∗, for which such method is not

possible.
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2. Expected accumulated undiscounted profit in the interval [0, T ]:

V ∗
u = Ex

 T∫
0

Π∗(τ)dτ

 , V ∗∗
u = Ex

 T∫
0

Π∗∗(τ)dτ

 . (5.2)

As before, we use numerical methods.

3. Average expected profit per unit time (average weighted by the discount factors):

Π∗ =
V ∗∫ T

0
e−δτdτ

, Π∗∗ =
V ∗∗∫ T

0
e−δτdτ

. (5.3)

4. Average expected profit per unit time (unweighted average):

Π∗
u =

V ∗
u

T
, Π∗∗

u =
V ∗∗
u

T
. (5.4)

Note, for the constant effort optimal policy, that we determine the constant effort E∗∗ that maximizes

E[Π∞], thus obtaining the optimal expected profit per unit time at the steady-state E[Π∗∗
∞] given by

(4.12). This quantity is, due to the ergodicity of X(t), also the limit as T → +∞ of both the time-average

expected profit Π∗∗
u = Ex[

∫ T
0 Π∗∗(τ)dτ ]/T and (with probability 1) of the observed time-average profit∫ T

0 Π∗∗(τ)dτ/T actually experienced by harvesters.

5.2 Comparison of polices with the logistic growth model

5.2.1 Basic scenario

Instead of arbitrary parameters values, we have decided to set up a basic scenario S0 using realistic

values. We found a quite complete set of parameter values (namely r,K, q, p1, c1 and c2) for the Pacific

halibut (Hippoglossus hippoglossus) in Clark (1990) and Hanson and Ryan (1998) and these are the ones

chosen for S0. The other parameters, for which we had no information (Emin, Emax, σ, x, p2 and δ),

where chosen at reasonable values and the time horizon was set at T = 50 years. The complete set of

parameter values is listed in Table 5.1. The determination of the expected profit values (5.1)–(5.4) requires

numerical computations. We designed a grid with a time and state space discretization using n = 150

intervals for time (corresponding to a time step ∆t = 4 months) and using m = 75 intervals for the

state space (corresponding to a space step ∆x = 21.47 · 105 kg, with xmax = 2K). Other values for the
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Table 5.1: Parameter values used in the simulations of the basic scenario S0 (logistic model). The Stan-
dardized Fishing Unit (SFU) measure is defined in Hanson and Ryan (1998).

Item Description Values Units

r Intrinsic growth rate 0.71 year−1

K Carrying capacity 80.5 · 106 kg

q Catchability coefficient 3.30 · 10−6 SFU−1year−1

Emin Minimum fishing effort 0 SFU

Emax Maximum fishing effort 0.7r/q SFU

σ Strength of environmental fluctuations 0.2 year−1/2

x Initial population size 0.5K kg

δ Discount factor 0.05 year−1

p1 Linear price parameter 1.59 $kg−1

p2 Quadratic price parameter 0 $year · kg−2

c1 Linear cost parameter 96 · 10−6 $SFU−1year−1

c2 Quadratic cost parameter 0.10 · 10−6 $SFU−2year−1

T Time horizon 50 year

combination n×m were considered but, due to the computer execution time, to the algorithm convergence

and algorithm stability, we choose the above values for n and m (the computer execution average time was

of about 25 minutes for each scenario). The resulting profit values (5.1)–(5.4) for this basic scenario are

shown in Table 5.2, where the first column refers to the optimal variable effort policy, the second column

refers to the optimal constant effort policy, and the third column indicates the percent loss in the profit

value when using the second policy instead of the first.

The first line of Table 5.2 compares the expected accumulated discounted profit (5.1) over the time

horizon T = 50 years, V ∗ or V ∗∗ according to the policy used. One can see that the second policy implies

a reduction in the expected profit of only 4.1% compared to the first policy. If one forgets depreciation and

looks at the expected accumulated undiscounted profit (5.2), it shows a 4.9% expected profit reduction

when comparing the second policy with the first. Obviously, the percent reductions are the same for the

corresponding profits per year (5.3) and (5.4), obtained by taking time averages of these quantities over

the 50 year horizon. Therefore, the profit reductions that occur when considering a constant effort instead

of a variable effort are quite small and, with a constant effort, the fishery manager does not need to worry

about the changes on the number of vessels, number of hooks or number of hours worked (just to name
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Table 5.2: Numerical comparison between policies of the expected profits 1. to 4. (see expressions (5.1)–
(5.4)) for the basic scenario S0 (logistic model). The percent relative difference between the two policies
is denoted by ∆. Besides the expected values, we also present the standard deviations (in parenthesis).
Units are in million dollars for 1. and 2. and in million dollars per year for 3. and 4.

Optimal policy Optimal sustainable policy ∆ (%)

1. V ∗ ≃ 413.586 (sd = 38.322) V ∗∗ ≃ 396.423 (sd = 34.948) −4.1

2. V ∗
u ≃ 1129.130 (sd = 88.631) V ∗∗

u ≃ 1073.867 (sd = 88.543) −4.9

3. Π∗ ≃ 22.529 (sd = 2.087) Π∗∗ ≃ 21.594 (sd = 1.904) −4.1

4. Π∗
u ≃ 22.583 (sd = 1.773) Π∗∗

u ≃ 21.477 (sd = 1.771) −4.9

a few possibilities) required to keep adjusting the effort to its optimal value at each moment. This is

extremely advantageous in terms of implementation and avoids out-of-model costs such as the purchase

of new equipment to sustain increased effort periods or payment of unemployment benefits during effort

reduction periods.

Besides the average profits, it is also interesting to look at their standard deviations, which measure the

variability across the simulated trajectories. The variability of both policies is very similar (Table 5.2), with

the optimal sustainable policy having a slightly lower variability.

Figure 5.1 shows, for the basic scenario S0, what will happen when applying the optimal variable effort

harvesting policy (left side) and the optimal constant effort sustainable policy (right side), in terms of the

evolution, from time t = 0 to time t = T = 50 years, of the following quantities:

• Population size X(t), on top;

• Optimal effort, in the middle: E∗(t) (left) and E∗∗ (right);

• Profit per unit time, at the bottom: Π∗(t) (left) and Π∗∗(t) (right).

The thin lines of Figure 5.1 show one randomly chosen trajectory, corresponding to a possible particular

environmental behaviour. It shows what the harvester would typically observe. The figure also presents

the expected values of the variables, which are averages taken over all possible environmental behaviours

(the one effectively seen and all the others that might have occurred); dashed lines show the exact values

at the steady-state (only available for the constant effort policy) and solid lines show good estimates at

time t (based on averaging over a 1000 simulated trajectories). Looking at what the harvester typically

experiences (thin lines in Figure 5.1), one can see that the two policies behave quite differently. While for
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Figure 5.1: Basic scenario S0 (logistic model): mean and randomly chosen sample path for the population,
the effort and the profit per unit time. The optimal variable effort policy is on the left side and the optimal
constant effort sustainable policy is on the right side.
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the constant effort policy, we apply the same effort E∗∗ irrespective of the population size path and of

the environmental conditions (middle right, where, of course, we cannot distinguish between the solid, the

thin and the dashed lines), in the optimal policy the effort E∗(t) changes quite frequently and abruptly

(thin line on the middle left). This sudden and frequent changes in effort, including frequent closings of

the fishery, are not compatible with the fishing activity, since fishermen cannot accommodate frequent

changes on the number of vessels, number of gears, number of hours at the sea, among others. Also, the

optimal effort values depend on time and on the fish population size (which is influenced by the random

fluctuations of environmental conditions), requiring constant evaluation of the fish stock size. Furthermore,

it exhibits periods of no and low harvesting, posing social burdens and possible extra costs of unemployment

compensation (not considered in our cost structure), and periods of harvesting at the maximum effort Emax,

which may also involve extra costs (e.g., investment in backup equipment or hiring of extra employees not

trained in fishing).

Besides looking at the variation of the effort over time, it is also interesting to look at the time variability

experienced by the harvester on the the profit per unit time. For the basic scenario S0, if we look at the

thin lines at the bottom of Figure 5.1 (corresponding to the environmental conditions randomly selected),

we see that the optimal policy has frequent periods of zero profit (the periods of zero effort) and a much

larger profit variability over time. A good measure of this variability for the chosen trajectory is the sample

standard deviation of the profit per unit time values observed at the time instants of the simulations. Such

standard deviation is 13.77 million dollars per year for the optimal policy and only 4.38 million dollars per

year for the optimal sustainable policy, which provides the harvester with a much steadier profit. Similar

results hold when we select other trajectories.

One can also see in Figure 5.1 (left side) that the optimal variable effort policy exhibits a possibly

dangerous effect near the time horizon, implying a considerable drop of the average population size (see

solid line on top left), corresponding to an increase on the average effort (see solid line on middle left).

This final effort increase is quite natural. Since “there is no tomorrow”, it is better profitwise to harvest as

much as is profitable “now”, without worrying about stock preservation for near future fishing.

With the optimal sustainable policy, population size is driven to an equilibrium probability distribution

with an average population size higher than the one of the variable effort policy. This expected size at

equilibrium is the mean value of the stationary distribution given by (4.22). With the constant effort policy,

there is no decay of the expected population size near the end of the time horizon.
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Table 5.3: List of alternative scenarios (Si, i = 1, . . . , 20) and respective changed parameters (with respect
to scenario S0 of the logistic model). Units and unchanged parameters are as in Table 5.1.

Scenario Changed parameter Value Scenario Changed parameter Value

S1 x 0.25K S11 T 10

S2 x 0.75K S12 T 25

S3 Emax 0.5r/q S13 p1 1.19

S4 Emax 0.9r/q S14 p1 1.99

S5 δ 0.00 S15 c1 72 · 10−6

S6 δ 0.10 S16 c1 120 · 10−6

S7 r 0.10 S17 c2 0.75 · 10−7

S8 r 0.40 S18 c2 1.25 · 10−7

S9 σ 0.10 S19 p2 5 · 10−9

S10 σ 0.40 S20 p2 7.5 · 10−9

5.2.2 Alternative scenarios

We will now evaluate the influence of the parameters, by considering alternative values, usually one

lower and one higher than those in Table 5.1 for basic scenario S0. For r and T , since S0 values are high,

we consider as alternatives two lower values. The parameters x and K can be scaled together, therefore

we choose only to change x. The same applies to r and q, so we did not study changes in q.

This leads to alternative scenarios S1 to S20 (Table 5.3). For each scenario, we have computed the

profit values as in Table 5.2 and a similar set of images as in Figure 5.1. The profit values are shown in

Tables 5.4 and 5.5 and the Figures are presented at the end of this section.

A general comment concerning Tables 5.4 and 5.5 is that, for almost all the scenarios, the percent

reduction of profit ∆ incurred by using the optimal constant effort policy instead of the optimal variable

effort policy is quite small, of the order of 1.0% to 7.1% for discounted profits and of 1.6% to 7.3% for

undiscounted profits. The exceptions are the scenarios S7, S10, and, in a quite more attenuated way,

S11, which exhibit quite higher ∆ values. S7 corresponds to a substantially lower value of r than in the

basic scenario. S10 corresponds to a quite higher value of the intensity of environmental fluctuations.

S11 has a very short time horizon (T = 10 years), far away from the steady-state for which the constant

effort policies were designed. Actually, designing non-sustainable policies, like the optimal variable effort

policies considered here, for such short time horizons is ill-advised since these policies care not about future
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Table 5.4: Expected discounted profit values for the scenarios presented in Table 5.3 (logistic model).
Besides the expected values, we also present the standard deviations (in parenthesis with smaller font size).
The percent relative difference between both policies is denoted by ∆. Currency values are in million dollars
for V ∗ and V ∗∗ and million dollars per year for Π∗ and Π∗∗.

Scenario V ∗ V ∗∗ Π∗ Π∗∗ ∆ (%)

S0 413.586 (38.322) 396.423 (34.948) 22.529 (2.087) 21.594 (1.904) −4.1

S1 378.677 (37.012) 359.236 (34.198) 20.627 (2.016) 19.568 (1.863) −5.1

S2 440.168 (39.440) 418.376 (35.357) 23.977 (2.148) 22.789 (1.926) −5.0

S3 400.383 (34.692) 396.423 (34.948) 21.809 (1.890) 21.594 (1.904) −1.0

S4 415.555 (39.050) 396.423 (34.948) 22.636 (2.127) 21.594 (1.904) −4.6

S5 1130.837 (90.876) 1073.867 (88.543) 22.617 (1.818) 21.477 (1.771) −5.0

S6 226.805 (24.645) 215.756 (21.547) 22.834 (2.481) 21.722 (2.169) −4.9

S7 62.853 (21.648) 46.477 (15.072) 3.424 (1.179) 2.532 (0.821) −26.1

S8 233.516 (35.020) 216.837 (30.820) 12.720 (1.908) 11.811 (1.679) −7.1

S9 418.497 (19.555) 412.081 (17.921) 22.796 (1.065) 22.447 (0.976) −1.5

S10 379.404 (71.883) 334.088 (62.820) 20.667 (3.916) 18.198 (3.422) −11.9

S11 187.693 (28.181) 172.121 (24.039) 23.851 (3.581) 21.872 (3.055) −8.3

S12 326.509 (36.801) 309.366 (33.403) 22.881 (2.579) 21.680 (2.341) −5.3

S13 310.182 (28.741) 297.312 (26.210) 16.896 (1.566) 16.195 (1.428) −4.1

S14 516.990 (47.904) 495.535 (43.685) 28.161 (2.609) 26.992 (2.380) −4.1

S15 413.586 (38.322) 396.423 (34.948) 22.529 (2.087) 21.594 (1.904) −4.1

S16 413.586 (38.322) 396.423 (34.948) 22.529 (2.087) 21.594 (1.904) −4.1

S17 413.593 (38.323) 396.429 (34.948) 22.529 (2.087) 21.594 (1.904) −4.1

S18 413.579 (38.322) 396.417 (34.947) 22.528 (2.087) 21.593 (1.904) −4.1

S19 391.082 (34.396) 378.514 (31.865) 21.303 (1.874) 20.618 (1.736) −3.2

S20 380.307 (32.566) 369.560 (30.326) 20.716 (1.774) 20.130 (1.652) −2.8
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Table 5.5: Expected undiscounted profit values for the scenarios presented in Table 5.3 (logistic model).
Besides the expected values, we also present the standard deviations (in parenthesis with smaller font size).
The percent relative difference between both policies is denoted by ∆. Currency values are in million dollars
for V ∗

u and V ∗∗
u and million dollars per year for Π∗

u and Π∗∗
u .

Scenario V ∗
u V ∗∗

u Π∗
u Π∗∗

u ∆ (%)

S0 1129.130 (88.631) 1073.867 (88.543) 22.583 (1.773) 21.477 (1.771) −4.9

S1 1092.856 (87.937) 1030.569 (88.306) 21.857 (1.759) 20.611 (1.766) −5.7

S2 1157.066 (89.347) 1098.360 (88.699) 23.141 (1.787) 21.967 (1.774) −5.1

S3 1092.263 (83.692) 1073.867 (88.543) 21.845 (1.674) 21.477 (1.771) −1.7

S4 1139.690 (89.458) 1073.867 (88.543) 22.794 (1.789) 21.477 (1.771) −5.8

S5 1130.837 (90.876) 1073.867 (88.543) 22.617 (1.818) 21.477 (1.771) −5.0

S6 1113.768 (84.942) 1073.867 (88.543) 22.275 (1.699) 21.477 (1.771) −3.6

S7 148.820 (63.768) 122.197 (47.648) 2.976 (1.275) 2.444 (0.953) −17.9

S8 628.749 (83.487) 582.937 (83.202) 12.575 (1.670) 11.659 (1.664) −7.3

S9 1138.575 (43.631) 1120.752 (45.206) 22.772 (0.873) 22.415 (0.904) −1.6

S10 1026.306 (169.107) 887.617 (161.596) 20.526 (3.382) 17.752 (3.232) −13.5

S11 238.555 (35.192) 218.376 (31.525) 23.855 (3.519) 21.838 (3.153) −8.5

S12 574.000 (61.020) 539.991 (59.646) 22.960 (2.441) 21.600 (2.386) −5.9

S13 846.828 (66.472) 805.385 (66.406) 16.937 (1.329) 16.108 (1.328) −4.9

S14 1411.431 (110.790) 1342.348 (110.679) 28.229 (2.216) 26.847 (2.214) −4.9

S15 1129.130 (88.631) 1073.867 (88.543) 22.583 (1.773) 21.477 (1.771) −4.9

S16 1129.130 (88.631) 1073.866 (88.543) 22.583 (1.773) 21.477 (1.771) −4.9

S17 1129.149 (88.632) 1073.881 (88.544) 22.583 (1.773) 21.478 (1.771) −4.9

S18 1129.111 (88.630) 1073.852 (88.541) 22.582 (1.773) 21.477 (1.771) −4.9

S19 1064.048 (80.030) 1025.457 (80.777) 21.281 (1.601) 20.509 (1.616) −3.6

S20 1034.011 (76.034) 1001.253 (76.899) 20.680 (1.521) 20.025 (1.538) −3.2
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preservation of the stock.

To check the effect of changes in a given parameter, we can compare the results for the basic scenario

S0 with the results of the scenarios corresponding to alternative values of such parameter, using Tables 5.4

and 5.5 and the Figures associated to those scenarios.

Changing the initial population x (scenarios S1 and S2) affects, for the optimal variable effort policy,

the expected values of population size, harvesting effort and profit per unit time. This happens only at the

start of the projection period and is due to the longer time it takes for these expected values to approach

their main trends (compare the left side of Figure 5.1 with the left sides of Figures 5.2 and 5.3). As for

the constant effort policy, since the effort is designed assuming a steady-state, x has no effect on effort.

However, like in the variable effort policy, it has an effect on the expected population size and on the

expected profit per unit time at the beginning (before the approach to the mean trend), but, since the

process is ergodic, has no effect in the long-term (as T → ∞).

Constraining the maximum effort to 0.5r/q (scenario S3), which is very close to E∗∗, almost mimics the

behaviour of the constant effort policy. In fact, in this scenario, the difference between V ∗ and V ∗∗ is very

small. On Figure 5.4 we can confirm the similarities between the two policies. Raising the maximum effort

to 0.9r/q (scenario S4) gives, for the optimal variable effort policy, similar results to the ones in scenario

S0, although with slightly higher profit due to the fact that the restriction on effort is milder. Obviously,

for the optimal constant effort policy, if Emax ≥ E∗∗, the value of Emax is irrelevant.

Changing δ (scenarios S5 and S6) will, of course, not change the undiscounted profits for the optimal

constant effort policy since this policy is designed to optimize the steady-state undiscounted profit per

unit time. It has, however, a large effect on the accumulated discounted profit of both constant effort

and variable effort policies, but has little effect on average profits per unit time (both discounted and

undiscounted). It is also slight the effect, under the variable effort optimal policy, on the time evolution

of the expected values of population size, optimal variable effort and profit per unit time (see left sides of

Figures 5.1, 5.7 and 5.8).

Intrinsic growth rates lower than 0.71 (scenarios S7 and S8) imply lower biomass growth and, conse-

quently, also lower profit values, since the optimal harvesting rates will be smaller for both policy types.

Comparing scenarios S9 and S10 with S0 shows that a higher intensity of environmental fluctuations

reduces the expected profit for both types of policies, although the effect is quite mild. Contrary to

the average, the influence on sample trajectories (which is what is experienced) of population size is quite

profound. Although averages do not change much, fluctuations of the population size about its average will
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be more intense when σ is high and will almost fade away as σ approaches zero (deterministic environment).

Obviously, sample paths of the profit per unit time will respond to changes in population size and, in the

case of the variable effort policy, the same happens to the effort. For the sustainable policy, we had already

seen on Section 4.2, from the steady-state expressions (4.20) and (4.21) of the optimal effort E∗ and the

optimal profit per unit time E[Π∗∗
∞], that these quantities decrease with a higher σ.

As already mentioned, when the terminal time T decreases (scenarios S11 and S12), the differences

between the two policies are more pronounced. In fact, the optimal sustainable policy ’needs more time’

to get close to the stochastic steady-state. The accumulated profits are, in relation to the base scenario,

much smaller since we are talking about shorter periods of time. However, the average profits per unit

time are very close to the ones in the S0 scenario.

A decrease of 25% (scenario S13) or increase of 25% (scenario S14) in the linear price parameter p1 will

have an effect of similar magnitude in profit. This is due to the fact that profit is dominated by the effect

of the price parameter p1, since the cost parameters c1 and c2 have, in this case, a low magnitude. For the

same reason, variations in the cost parameters, c1 and c2, have very little influence on profit values.

Considering a positive value for the quadratic price parameter p2 (scenarios S19 and S20) produces even

lower profit differences between the two policies. Comparing these two scenarios with the base scenario

S0 shows also a slight profit reduction. This behaviour is explained by the profit structure, namely by the

negative signal of p2 on expressions (3.6) and (4.10).
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Figure 5.2: Scenario S1 (logistic model): mean and randomly chosen sample path for the population, the
effort and the profit. The optimal variable effort policy is on the left side and the optimal constant effort
sustainable policy is on the right side.
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Figure 5.3: Scenario S2 (logistic model): mean and randomly chosen sample path for the population, the
effort and the profit per unit time. The optimal variable effort policy is on the left side and the optimal
constant effort sustainable policy is on the right side.
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Figure 5.4: Scenario S3 (logistic model): mean and randomly chosen sample path for the population, the
effort and the profit per unit time. The optimal variable effort policy is on the left side and the optimal
constant effort sustainable policy is on the right side.
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Figure 5.5: Scenario S4 (logistic model): mean and randomly chosen sample path for the population, the
effort and the profit per unit time. The optimal variable effort policy is on the left side and the optimal
constant effort sustainable policy is on the right side.
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Figure 5.6: Scenario S5 (logistic model): mean and randomly chosen sample path for the population, the
effort and the profit per unit time. The optimal variable effort policy is on the left side and the optimal
constant effort sustainable policy is on the right side.
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Figure 5.7: Scenario S6 (logistic model): mean and randomly chosen sample path for the population, the
effort and the profit per unit time. The optimal variable effort policy is on the left side and the optimal
constant effort sustainable policy is on the right side.
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Figure 5.8: Scenario S7 (logistic model): mean and randomly chosen sample path for the population, the
effort and the profit per unit time. The optimal variable effort policy is on the left side and the optimal
constant effort sustainable policy is on the right side.
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Figure 5.9: Scenario S8 (logistic model): mean and randomly chosen sample path for the population, the
effort and the profit per unit time. The optimal variable effort policy is on the left side and the optimal
constant effort sustainable policy is on the right side.
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Figure 5.10: Scenario S9 (logistic model): mean and randomly chosen sample path for the population, the
effort and the profit per unit time. The optimal variable effort policy is on the left side and the optimal
constant effort sustainable policy is on the right side.
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Figure 5.11: Scenario S10 (logistic model): mean and randomly chosen sample path for the population,
the effort and the profit per unit time. The optimal variable effort policy is on the left side and the optimal
constant effort sustainable policy is on the right side.
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Figure 5.12: Scenario S11 (logistic model): mean and randomly chosen sample path for the population,
the effort and the profit per unit time. The optimal variable effort policy is on the left side and the optimal
constant effort sustainable policy is on the right side.
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Figure 5.13: Scenario S12 (logistic model): mean and randomly chosen sample path for the population,
the effort and the profit per unit time. The optimal variable effort policy is on the left side and the optimal
constant effort sustainable policy is on the right side.
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Figure 5.14: Scenario S13 (logistic model): mean and randomly chosen sample path for the population,
the effort and the profit per unit time. The optimal variable effort policy is on the left side and the optimal
constant effort sustainable policy is on the right side.
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Figure 5.15: Scenario S14 (logistic model): mean and randomly chosen sample path for the population,
the effort and the profit per unit time. The optimal variable effort policy is on the left side and the optimal
constant effort sustainable policy is on the right side.



5.2. COMPARISON OF POLICES WITH THE LOGISTIC GROWTH MODEL 77

0e+00

2e+07

4e+07

6e+07

P
op

ul
at

io
n 

(k
g)

Population (mean of 1 000 paths)
Population (sample path)

Optimal policy (variable effort)

E[X**]= 39118 tonnes
Population (mean of 1 000 paths)
Population (sample path)

Optimal sustainable policy (constant effort)

0e+00

1e+05

2e+05

E
ffo

rt
 (

S
F

U
)

Effort (mean of 1 000 paths)
Effort (sample path)

E**= 104540 SFU

0e+00

2e+07

4e+07

6e+07

0 10 20 30 40 50

Time (years)

P
ro

fit
 (

$)

Profit (mean of 1 000 paths)
Profit (sample path)

0 10 20 30 40 50

Time (years)

E[Pi**]= 21.456 Million dollars
Profit (mean of 1 000 paths)
Profit (sample path)

0e+00

2e+07

4e+07

6e+07

P
op

ul
at

io
n 

(k
g)

Population (mean of 1 000 paths)
Population (sample path)

Optimal policy (variable effort)

E[X**]= 39118 tonnes
Population (mean of 1 000 paths)
Population (sample path)

Optimal sustainable policy (constant effort)

0e+00

1e+05

2e+05

E
ffo

rt
 (

S
F

U
)

Effort (mean of 1 000 paths)
Effort (sample path)

E**= 104540 SFU

0e+00

2e+07

4e+07

6e+07

0 10 20 30 40 50

Time (years)

P
ro

fit
 (

$)

Profit (mean of 1 000 paths)
Profit (sample path)

0 10 20 30 40 50

Time (years)

E[Pi**]= 21.456 Million dollars
Profit (mean of 1 000 paths)
Profit (sample path)

Figure 5.16: Scenario S15 (logistic model): mean and randomly chosen sample path for the population,
the effort and the profit per unit time. The optimal variable effort policy is on the left side and the optimal
constant effort sustainable policy is on the right side.
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Figure 5.17: Scenario S16 (logistic model): mean and randomly chosen sample path for the population,
the effort and the profit per unit time. The optimal variable effort policy is on the left side and the optimal
constant effort sustainable policy is on the right side.
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Figure 5.18: Scenario S17 (logistic model): mean and randomly chosen sample path for the population,
the effort and the profit per unit time. The optimal variable effort policy is on the left side and the optimal
constant effort sustainable policy is on the right side.
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Figure 5.19: Scenario S18 (logistic model): mean and randomly chosen sample path for the population,
the effort and the profit per unit time. The optimal variable effort policy is on the left side and the optimal
constant effort sustainable policy is on the right side.
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Figure 5.20: Scenario S19 (logistic model): mean and randomly chosen sample path for the population,
the effort and the profit per unit time. The optimal variable effort policy is on the left side and the optimal
constant effort sustainable policy is on the right side.
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Figure 5.21: Scenario S20 (logistic model): mean and randomly chosen sample path for the population,
the effort and the profit per unit time. The optimal variable effort policy is on the left side and the optimal
constant effort sustainable policy is on the right side.
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5.3 Comparison of polices with the Gompertz growth model

5.3.1 Basic scenario

To apply the Gompertz model and to set up the basic scenario S0 we used the parameters values found

in Kar and Chakraborty (2011) which refer to the Bangladesh shrimp (Penaeus monodon), a kind of species

for which the Gompertz model is traditionally considered more suitable (see, for instance, ASMFC, 2009).

Other parameters not present in the literature (Emin, Emax, σ, x, p2 and δ) where chosen at reasonable

values and the time horizon was set at T = 50 years. The complete set of parameter values is listed in

Table 5.6. As in the logistic case, the determination of the expected profit values (5.1) – (5.4) with the

Gompertz model also requires numerical computations. We designed a grid with a time and state space

discretization using n = 300 intervals for time (corresponding to a time step ∆t = 2 months) and using

m = 150 intervals for the state space (corresponding to a space step ∆x = 152 tonnes, with xmax = 2K).

Other values for the combination n×m were considered but, due to the computer execution time, to the

algorithm convergence and algorithm stability, we choose the above values for n and m (the computer

execution average time was of about 1 hour for each scenario).

The resulting profit values (5.1)–(5.4) for the basic scenario are shown in Table 5.7, where the first

column refers to the optimal variable effort policy, the second column refers to the optimal constant effort

policy, and the third column indicates the percent loss in the profit value when using the second policy

instead of the first.

From the first line of Table 5.6 one can see that the optimal sustainable policy implies a reduction in

the expected profit of only 1.5% compared to the optimal policy. Looking at the expected accumulated

undiscounted profit (5.2), one can see a 1.7% expected profit reduction when comparing the second policy

with the first. The percent reductions are the same for the corresponding profits per year (5.3) and (5.4).

Conclusions for the Gompertz case are similar to the ones for the logistic case. In fact, profit reductions

between the variable and constant policies are quite small and the advantages and disadvantages of both

policies hold as in the logistic case. Notice, however, that in this example of the Gompertz case, the profit

differences between the optimal policy and the optimal sustainable policy are indeed very small, much

smaller than in the case of the logistic model.

The variability across the simulated trajectories, measured by their standard deviations, is very small

(Table 5.7), with the optimal sustainable policy having a slightly lower variability.
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Table 5.6: Parameter values used in the simulations of the basic scenario S0 (Gompertz model). The
Standardized Fishing Unit (SFU) measure is defined in Kar and Chakraborty (2011).

Item Description Values Units

r Intrinsic growth rate 1.331 year−1

K Carrying capacity 11400 tonnes

q Catchability coefficient 9.77 · 10−5 SFU−1year−1

Emin Minimum fishing effort 0 SFU

Emax Maximum fishing effort r/q SFU

σ Strength of environmental fluctuations 0.2 year−1/2

x Initial population size 0.5K tonnes

δ Discount factor 0.05 year−1

p1 Linear price parameter 8362.3 Taka · tonnes−1

p2 Quadratic price parameter 0 Taka · year · tonnes−2

c1 Linear cost parameter 1156.8 Taka · SFU−1year−1

c2 Quadratic cost parameter 10−2 Taka · SFU−2year−1

T Time horizon 50 year

Table 5.7: Numerical comparison between policies of the expected profits 1. to 4. (see expressions (5.1)–
(5.4)) for the basic scenario S0 (Gompertz model). The percent relative difference between the two policies
is denoted by ∆. Besides the expected values, we also present the standard deviations (in parenthesis).
Units are in million Taka for 1. and 2. and in million Taka per year for 3. and 4.

Optimal policy Optimal sustainable policy ∆ (%)

1. V ∗ ≃ 594.139 (sd = 21.401) V ∗∗ ≃ 584.996 (sd = 21.107) −1.5

2. V ∗
u ≃ 1619.672 (sd = 47.825) V ∗∗

u ≃ 1591.393 (sd = 48.281) −1.7

3. Π∗ ≃ 32.364 (sd = 1.116) Π∗∗ ≃ 31.865 (sd = 1.150) −1.5

4. Π∗
u ≃ 32.393 (sd = 0.957) Π∗∗

u ≃ 31.828 (sd = 0.966) −1.7
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Figure 5.22 shows, for the basic scenario S0 and for both policies, the evolution from time t = 0 to time

t = T = 50 of the population size X(t) (on top), the optimal effort (in the middle) and the profit per unit

time (at the bottom).

The definition of all depicted lines in Figure 5.22 are the same as in the logistic case and the conclusions

regarding the comparisons between the optimal policy and the optimal sustainable policy are very similar.

The optimal effort changes frequently, exhibiting periods of no and low harvesting and periods of harvesting

at maximum effort. This behaviour has consequences on the profit per unit time of the optimal policy,

which also changes very frequently and abruptly.

The sample standard deviation of the profit per unit time of the depicted trajectory across the time

instants of the simulation is 14.33 million Taka per year for the optimal policy and only 5.35 million Taka

per year for the optimal sustainable policy, which provides the harvester with a much steadier profit. For

other trajectories similar results hold.

One can also see in Figure 5.22 (left side) that the optimal variable effort policy exhibits a possibly

dangerous effect near the time horizon, consisting in a considerable drop of the average population size

(see solid line on top left), corresponding to a high increase on the average effort (see solid line on middle

left). As in the logistic case, this is due to the idea that “there is no tomorrow” and so, it is better

profitwise to harvest as much as is profitable “now”, without worrying about stock preservation for near

future fishing.

With the optimal sustainable policy, population size is driven to an equilibrium probability distribution

with an average population size higher than the one of the variable effort policy. This expected size at

equilibrium is the mean value of the stationary distribution given by (4.26). With the constant effort policy,

there is no decay of the expected population size near the end of the time horizon.

5.3.2 Alternative scenarios

To evaluate the influence of the parameters, we will consider alternative values, usually 25% lower and

25% higher than those in Table 5.6 for S0. The exceptions are stated as follows. Since the initial population

parameter x was set as 0.5K, we consider as alternatives the lower value 0.25K (scenario S1) and the

higher value 0.75K (scenario S2). The δ parameter varies 100% for up and down (scenarios S5 and S6,

respectively) and, since T is high, we consider two alternative lower values T = 10 (scenario S11) and

T = 25 (scenario S12). Scenario S19 corresponds to a positive p2 value and scenario S20 considers an
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Figure 5.22: Basic scenario S0 (Gompertz model): mean and randomly chosen sample path for the popu-
lation, the effort and the profit per unit time. The optimal variable effort policy is on the left side and the
optimal constant effort sustainable policy is on the right side.
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Table 5.8: List of alternative scenarios (Si, i = 1, . . . , 20) and respective changed parameters (with respect
to scenario S0 of the Gompertz model). Units and unchanged parameters are as in Table 5.6.

Scenario Changed parameter Value Scenario Changed parameter Value

S1 x 0.25K S11 T 10

S2 x 0.75K S12 T 25

S3 Emax 0.75r/q S13 p1 6271.7

S4 Emax 1.25r/q S14 p1 10452.9

S5 δ 0.00 S15 c1 867.6

S6 δ 0.10 S16 c1 1446.0

S7 r 0.99 S17 c2 0.75 · 10−2

S8 r 1.66 S18 c2 1.25 · 10−2

S9 σ 0.15 S19 p2 8 · 10−2

S10 σ 0.25 S20 p2 12 · 10−2

increase of 50% on this p2 value.

All the alternative scenarios S1 to S20 are described in Table 5.8. For each one, we have computed the

profit values as in Table 5.7 and a similar set of images as in Figure 5.22. The profit values are shown in

Tables 5.9 and 5.10 and the Figures are presented at the end of this section.

A general comment concerning Tables 5.4 and 5.5 is that, for almost all the scenarios, the percent

reduction of profit ∆ incurred by using the optimal constant effort policy instead of the optimal variable

effort policy is quite small, and varies from 0.9% to 2.4% for discounted profits and from 0.9% to 2.7%

for undiscounted profits. The variability (standard deviation) associated to each profit value is very similar,

and in some cases less than 1%, when we compare the optimal policy with the optimal sustainable policy.

To check the effect of changes in a given parameter, we can compare the results for the basic scenario

S0 with the results of the scenarios corresponding to alternative values of such parameter, using Tables

5.9 and 5.10 and the Figures associated to those scenarios. We note that the scenarios with the smaller

differences are S3, S19 and S20. For scenario S3 this happens because the maximum allowed effort,

Emax = 0.75r/q = 10212 is close to the value of E∗∗ = 9598. On the contrary, the largest difference is

exhibited in scenario S11 and this is due, as in the logistic case, to the fact that the optimal sustainable

policy ’needs more time’ to get close to the stochastic steady-state. The qualitative results are very similar

to the logistic model, but the differences between the two policies are much smaller for the Gompertz

model.
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Table 5.9: Expected discounted profit values for the scenarios presented in Table 5.8 (Gompertz model).
Besides the expected values, we also present the standard deviations (in parenthesis with smaller font size).
The percent relative difference between both policies is denoted by ∆. Currency values are in million Taka
for V ∗ and V ∗∗ and million Taka per year for Π∗ and Π∗∗.

Scenario V ∗ V ∗∗ Π∗ Π∗∗ ∆ (%)

S0 594.139 (21.401) 584.996 (21.107) 32.364 (1.116) 31.865 (1.150) −1.5

S1 577.418 (21.122) 565.705 (20.611) 31.453 (1.151) 30.815 (1.123) −2.0

S2 610.272 (21.797) 599.356 (21.499) 33.242 (1.187) 32.648 (1.171) −1.8

S3 589.537 (21.163) 584.996 (21.107) 32.113 (1.153) 31.865 (1.150) −0.8

S4 594.917 (21.363) 584.996 (21.107) 32.406 (1.164) 31.865 (1.150) −1.7

S5 1620.276 (48.744) 1591.393 (48.281) 32.406 (0.975) 31.828 (0.966) −1.8

S6 321.994 (14.489) 316.917 (14.168) 32.418 (1.459) 31.907 (1.426) −1.6

S7 449.992 (21.275) 441.120 (20.899) 24.512 (1.159) 24.028 (1.138) −2.0

S8 736.241 (21.434) 726.872 (21.208) 40.104 (1.168) 39.594 (1.155) −1.3

S9 593.380 (16.030) 587.705 (15.857) 32.322 (0.873) 32.013 (0.864) −1.0

S10 594.770 (26.768) 581.474 (26.322) 32.398 (1.458) 31.674 (1.434) −2.2

S11 257.868 (16.698) 251.617 (16.259) 32.769 (2.122) 31.974 (2.066) −2.4

S12 462.825 (20.578) 455.265 (20.261) 32.434 (1.442) 31.904 (1.420) −1.6

S13 392.794 (15.521) 384.897 (15.271) 21.396 (0.845) 20.966 (0.832) −2.0

S14 800.512 (27.246) 790.232 (26.890) 43.605 (1.484) 43.045 (1.465) −1.3

S15 646.975 (21.814) 639.310 (21.535) 35.242 (1.188) 34.824 (1.173) −1.2

S16 545.046 (20.942) 534.271 (20.632) 29.689 (1.141) 29.102 (1.124) −2.0

S17 599.208 (21.472) 589.528 (21.182) 32.640 (1.170) 32.112 (1.154) −1.6

S18 589.315 (21.330) 580.568 (21.032) 32.101 (1.162) 31.624 (1.146) −1.5

S19 548.058 (18.903) 543.591 (18.749) 29.853 (1.030) 29.610 (1.021) −0.8

S20 526.553 (17.701) 523.266 (17.591) 28.682 (0.964) 28.503 (0.958) −0.6
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Table 5.10: Expected undiscounted profit values for the scenarios presented in Table 5.8 (Gompertz model).
Besides the expected values, we also present the standard deviations (in parenthesis with smaller font size).
The percent relative difference between both policies is denoted by ∆. Currency values are in million Taka
for V ∗

u and V ∗∗
u and million Taka per year for Π∗

u and Π∗∗
u .

Scenario V ∗
u V ∗∗

u Π∗
u Π∗∗

u ∆ (%)

S0 1619.672 (47.825) 1591.393 (48.281) 32.393 (0.957) 31.828 (0.966) −1.7

S1 1602.745 (47.657) 1571.387 (47.973) 32.055 (0.953) 31.428 (0.959) −2.0

S2 1636.020 (48.045) 1606.191 (48.517) 32.720 (0.961) 32.124 (0.970) −1.8

S3 1606.002 (47.703) 1591.393 (48.281) 32.120 (0.954) 31.828 (0.966) −0.9

S4 1623.333 (47.734) 1591.393 (48.281) 32.467 (0.955) 31.828 (0.966) −2.0

S5 1620.276 (48.744) 1591.393 (48.281) 32.406 (0.975) 31.828 (0.966) −1.8

S6 1617.717 (46.967) 1591.393 (48.281) 32.354 (0.939) 31.828 (0.966) −1.6

S7 1226.065 (47.593) 1198.995 (48.162) 24.521 (0.952) 23.980 (0.963) −2.2

S8 2007.483 (47.897) 1978.302 (48.293) 40.150 (0.958) 39.566 (0.966) −1.5

S9 1617.663 (35.792) 1599.182 (36.279) 32.353 (0.716) 31.984 (0.726) −1.1

S10 1621.307 (59.895) 1581.302 (60.195) 32.426 (1.198) 31.626 (1.204) −2.5

S11 328.241 (20.768) 319.540 (20.602) 32.824 (2.077) 31.954 (2.060) −2.7

S12 812.046 (33.564) 796.861 (33.724) 32.482 (1.343) 31.874 (1.349) −1.9

S13 1073.824 (34.723) 1049.558 (35.002) 21.476 (0.694) 20.991 (0.700) −2.3

S14 2178.384 (60.836) 2146.658 (61.424) 43.568 (1.217) 42.933 (1.228) −1.5

S15 1760.270 (48.723) 1736.558 (49.189) 35.205 (0.974) 34.731 (0.984) −1.3

S16 1488.700 (46.817) 1455.653 (47.257) 29.774 (0.936) 29.113 (0.945) −2.2

S17 1633.104 (47.975) 1603.299 (48.442) 32.662 (0.960) 32.066 (0.969) −1.8

S18 1606.916 (47.681) 1579.752 (48.121) 32.138 (0.954) 31.595 (0.962) −1.7

S19 1494.892 (42.472) 1479.957 (42.921) 29.898 (0.849) 29.599 (0.858) −1.0

S20 1436.799 (39.897) 1425.219 (40.285) 28.736 (0.798) 28.504 (0.806) −0.8
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Figure 5.23: Scenario S1 (Gompertz model): mean and randomly chosen sample path for the population,
the effort and the profit. The optimal variable effort policy is on the left side and the optimal constant
effort sustainable policy is on the right side.
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Figure 5.24: Scenario S2 (Gompertz model): mean and randomly chosen sample path for the population,
the effort and the profit per unit time. The optimal variable effort policy is on the left side and the optimal
constant effort sustainable policy is on the right side.
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Figure 5.25: Scenario S3 (Gompertz model): mean and randomly chosen sample path for the population,
the effort and the profit per unit time. The optimal variable effort policy is on the left side and the optimal
constant effort sustainable policy is on the right side.
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Figure 5.26: Scenario S4 (Gompertz model): mean and randomly chosen sample path for the population,
the effort and the profit per unit time. The optimal variable effort policy is on the left side and the optimal
constant effort sustainable policy is on the right side.
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Figure 5.27: Scenario S5 (Gompertz model): mean and randomly chosen sample path for the population,
the effort and the profit per unit time. The optimal variable effort policy is on the left side and the optimal
constant effort sustainable policy is on the right side.
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Figure 5.28: Scenario S6 (Gompertz model): mean and randomly chosen sample path for the population,
the effort and the profit per unit time. The optimal variable effort policy is on the left side and the optimal
constant effort sustainable policy is on the right side.



96 CHAPTER 5. COMPARISON OF POLICIES

0

2500

5000

7500

10000

P
op

ul
at

io
n 

(t
on

ne
s)

Population (mean of 1 000 paths)
Population (sample path)

Optimal policy (variable effort)

E[X**]= 5537 tonnes
Population (mean of 1 000 paths)
Population (sample path)

Optimal sustainable policy (constant effort)

0

5000

10000

15000

20000

E
ffo

rt
 (

S
F

U
)

Effort (mean of 1 000 paths)
Effort (sample path)

E**= 7274 SFU

0.0e+00

2.5e+07

5.0e+07

7.5e+07

0 10 20 30 40 50

Time (years)

P
ro

fit
 (

Ta
ka

)

Profit (mean of 1 000 paths)
Profit (sample path)

0 10 20 30 40 50

Time (years)

E[Pi**]= 23.97 Million Taka
Profit (mean of 1 000 paths)
Profit (sample path)

0

2500

5000

7500

10000

P
op

ul
at

io
n 

(t
on

ne
s)

Population (mean of 1 000 paths)
Population (sample path)

Optimal policy (variable effort)

E[X**]= 5537 tonnes
Population (mean of 1 000 paths)
Population (sample path)

Optimal sustainable policy (constant effort)

0

5000

10000

15000

20000

E
ffo

rt
 (

S
F

U
)

Effort (mean of 1 000 paths)
Effort (sample path)

E**= 7274 SFU

0.0e+00

2.5e+07

5.0e+07

7.5e+07

0 10 20 30 40 50

Time (years)

P
ro

fit
 (

Ta
ka

)

Profit (mean of 1 000 paths)
Profit (sample path)

0 10 20 30 40 50

Time (years)

E[Pi**]= 23.97 Million Taka
Profit (mean of 1 000 paths)
Profit (sample path)

Figure 5.29: Scenario S7 (Gompertz model): mean and randomly chosen sample path for the population,
the effort and the profit per unit time. The optimal variable effort policy is on the left side and the optimal
constant effort sustainable policy is on the right side.
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Figure 5.30: Scenario S8 (Gompertz model): mean and randomly chosen sample path for the population,
the effort and the profit per unit time. The optimal variable effort policy is on the left side and the optimal
constant effort sustainable policy is on the right side.
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Figure 5.31: Scenario S9 (Gompertz model): mean and randomly chosen sample path for the population,
the effort and the profit per unit time. The optimal variable effort policy is on the left side and the optimal
constant effort sustainable policy is on the right side.
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Figure 5.32: Scenario S10 (Gompertz model): mean and randomly chosen sample path for the population,
the effort and the profit per unit time. The optimal variable effort policy is on the left side and the optimal
constant effort sustainable policy is on the right side.
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Figure 5.33: Scenario S11 (Gompertz model): mean and randomly chosen sample path for the population,
the effort and the profit per unit time. The optimal variable effort policy is on the left side and the optimal
constant effort sustainable policy is on the right side.
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Figure 5.34: Scenario S12 (Gompertz model): mean and randomly chosen sample path for the population,
the effort and the profit per unit time. The optimal variable effort policy is on the left side and the optimal
constant effort sustainable policy is on the right side.
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Figure 5.35: Scenario S13 (Gompertz model): mean and randomly chosen sample path for the population,
the effort and the profit per unit time. The optimal variable effort policy is on the left side and the optimal
constant effort sustainable policy is on the right side.
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Figure 5.36: Scenario S14 (Gompertz model): mean and randomly chosen sample path for the population,
the effort and the profit per unit time. The optimal variable effort policy is on the left side and the optimal
constant effort sustainable policy is on the right side.
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Figure 5.37: Scenario S15 (Gompertz model): mean and randomly chosen sample path for the population,
the effort and the profit per unit time. The optimal variable effort policy is on the left side and the optimal
constant effort sustainable policy is on the right side.
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Figure 5.38: Scenario S16 (Gompertz model): mean and randomly chosen sample path for the population,
the effort and the profit per unit time. The optimal variable effort policy is on the left side and the optimal
constant effort sustainable policy is on the right side.
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Figure 5.39: Scenario S17 (Gompertz model): mean and randomly chosen sample path for the population,
the effort and the profit per unit time. The optimal variable effort policy is on the left side and the optimal
constant effort sustainable policy is on the right side.
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Figure 5.40: Scenario S18 (Gompertz model): mean and randomly chosen sample path for the population,
the effort and the profit per unit time. The optimal variable effort policy is on the left side and the optimal
constant effort sustainable policy is on the right side.
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Figure 5.41: Scenario S19 (Gompertz model): mean and randomly chosen sample path for the population,
the effort and the profit per unit time. The optimal variable effort policy is on the left side and the optimal
constant effort sustainable policy is on the right side.
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Figure 5.42: Scenario S20 (Gompertz model): mean and randomly chosen sample path for the population,
the effort and the profit per unit time. The optimal variable effort policy is on the left side and the optimal
constant effort sustainable policy is on the right side.
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5.4 Comparison of policies with stepwise effort and logistic model

The optimal policy leads to a highly variable effort, with likely occurrence of periods of zero effort or

periods of harvesting at maximum effort rates. From the point of view of the fishing activity, these frequent

and abrupt effort changes would imply also a frequent and abrupt change on the number of vessels and

gears, number of working hours and number of fishermen in activity, among others. Thus, the optimal effort

policy in not applicable. In this section we study a sub-optimal policy, named stepwise policy, based on the

variable effort from the optimal policy, but where the effort is kept constant during periods of duration p,

say one or two years. We use p = v∆t (v is a positive integer) to be a multiple of the time step ∆t used

in the numerical computations and in the Monte Carlo simulations. So, in this stepwise policy, for time

t in the period [lp, (l + 1)p[ = [tlv, t(l+1)v[, we keep the effort E∗
step(t) = E∗(lp) constant and equal to

the effort of the optimal policy of the basic scenario S0 at the beginning of the period. We know that this

policy is not optimal nor stepwise optimal, but has however the advantage of being applicable, in contrast

with the optimal policy.

We have focused the study on two scenarios: one with constant effort during periods of one year

(annual), denoted by Sa scenario, and the other with constant effort during periods of two years (biennial),

denoted by Sb scenario. The optimal sustainable effort remains unchanged and it is constant for all time

instants, as before.

We keep all the parameters as in the scenario S0, so the comparisons should be made with respect to

S0.

For scenario Sa, since ∆t = 4 months = 4/12 years, we set the effort constant during periods of 1 year,

i.e., during 3 consecutive time instants (v = 3). Similarly, for scenario Sb, we kept the effort constant

during periods of 2 years, i.e., we set the effort constant during 6 time instants (v = 6). In reality, the

basic scenario S0 corresponds to using v = 1.

The resulting profit values (5.1) – (5.4) for both scenarios are shown in Table 5.11. For comparison

purposes we also present the profit values for the basic scenario S0. From Table 5.11 one can see that,

for the scenario Sa, the optimal sustainable policy gives lower profits than the stepwise policy (−2.5%).

However, the profit differences are less pronounced when compared to the difference in the basic scenario.

On the contrary, when the optimal effort is applied during a longer biennial step-time periods (scenario

Sb), the optimal sustainable policy yields slightly higher profits (+1.5%) and, for the undiscouted profits,

the difference is almost indistinguishable (+0.0%).
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The right side of Figures 5.43 and 5.44 refer to the constant effort sustainable policy, so they are identical

to the right side of Figure 5.1 (basic scenario S0). From the left side of both figures, corresponding to the

stepwise policy, we can see an increase of the variability of the population sample path and of the sample

profit and, in a more pronounced form, of the mean population and mean profit of the 1000 sample paths.

At the middle of both figures one can check the stepwise effort, for both the sample path and mean. Their

depicted lines in a form of staircase lend the name to the policy: stepwise policy.

Table 5.11: Expected discounted and undiscounted profit values for the stepwise scenarios Sa (annual
periods) and Sb (biennial) for the logistic model. Besides the expected values, we also present the standard
deviations (in parenthesis with smaller font size). The percent relative difference between both policies is
denoted by ∆. Currency values are in million dollars for V ∗

step, V ∗
step,u, V ∗∗ and V ∗∗

u , and million dollars
per year for Π∗

step, Π∗
step,u, Π∗∗ and Π∗∗

u . For comparison purposes, we show the information for the basic
scenario S0 of the optimal policy.

Scenario V ∗
step V ∗∗ Π∗

step Π∗∗ ∆ (%)

S0 413.586 (38.322) 396.423 (34.948) 22.529 (2.087) 21.594 (1.904) −4.1

Sa 406.716 (38.792) 396.423 (34.948) 22.154 (2.113) 21.594 (1.904) −2.5

Sb 390.499 (38.139) 396.423 (34.948) 21.271 (2.077) 21.594 (1.904) +1.5

V ∗
step,u V ∗∗

u Π∗
step,u Π∗∗

u ∆ (%)

S0 1129.130 (88.631) 1073.867 (88.543) 22.583 (1.773) 21.477 (1.771) −4.9

Sa 1113.902 (90.775) 1073.867 (88.543) 22.278 (1.816) 21.477 (1.771) −3.6

Sb 1073.550 (91.169) 1073.867 (88.543) 21.471 (1.823) 21.477 (1.771) +0.0
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Figure 5.43: Scenario Sa (Logistic model): mean and randomly chosen sample path for the population,
the effort and the profit per unit time. The stepwise policy (with one year steps) is on the left side and the
optimal constant effort sustainable policy is on the right side.
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Figure 5.44: Scenario Sb (Logistic model): mean and randomly chosen sample path for the population, the
effort and the profit per unit time. The stepwise policy (with two year steps) is on the left side and the
optimal constant effort sustainable policy is on the right side.
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5.5 Comparison of policies with stepwise effort and Gompertz model

For the Gompertz model with stepwise effort, we have also focused on the study of two scenarios:

one with constant effort during periods of one year (annual), denoted by Sa scenario, and the other with

constant effort during periods of two years (biennial), denoted by Sb scenario. The optimal sustainable effort

remains unchanged and it is constant for all time instants, as before. In this case, the discretization scheme

is different from the logistic case. We recall that for scenario S0 we had ∆t = 2 months = 2/12 years.

So, for scenario Sa, we set the effort constant during periods of one year, i.e., during 6 consecutive time

instants (v = 6) and for scenario Sb, we set the effort constant during periods of two years, i.e., during 12

consecutive time instants (v = 12).

The resulting profit values (5.1) – (5.4) for both scenarios are shown in Table 5.12. For comparison

purposes we also present the profit values for the basic scenario S0. Table 5.12 calls our attention directly

to the difference between the optimal sustainable policy and the stepwise policy: for both scenarios Sa

and Sb, the optimal sustainable policy yields greater profits, being similar for discounted and undiscouted

profits.

Figures 5.45 and 5.46 show the behaviour of both policies in terms of population, effort and profit,

where we can see the enormous variability of the population and profit sample paths and mean.
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Table 5.12: Expected discounted and undiscounted profit values for the stepwise scenarios Sa (annual
periods) and Sb (biennial) for the Gompertz model. Besides the expected values, we also present the
standard deviations (in parenthesis with smaller font size). The percent relative difference between both
policies is denoted by ∆. Currency values are in Taka for V ∗

step, V ∗
step,u, V ∗∗ and V ∗∗

u , and Taka per year
for Π∗

step, Π∗
step,u, Π∗∗ and Π∗∗

u . For comparison purposes, we show the information for the basic scenario
S0 of the optimal policy.

Scenario V ∗
step V ∗∗ Π∗

step Π∗∗ ∆ (%)

S0 594.139 (21.401) 584.996 (21.107) 32.364 (1.116) 31.865 (1.150) −1.5

Sa 556.611 (24.291) 584.996 (21.107) 30.319 (1.323) 31.865 (1.150) +5.1

Sb 488.996 (30.006) 584.996 (21.107) 26.636 (1.634) 31.865 (1.150) +19.6

V ∗
step,u V ∗∗

u Π∗
step,u Π∗∗

u ∆ (%)

S0 1619.672 (47.825) 1591.393 (48.281) 32.393 (0.957) 31.828 (0.966) −1.7

Sa 1517.928 (56.260) 1591.393 (48.281) 30.359 (1.125) 31.828 (0.966) +4.8

Sb 1317.646 (65.532) 1591.393 (48.281) 26.353 (1.311) 31.828 (0.966) +20.8
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Figure 5.45: Scenario Sa (Gompertz model): mean and randomly chosen sample path for the population,
the effort and the profit per unit time. The stepwise policy (with one year steps) is on the left side and the
optimal constant effort sustainable policy is on the right side.
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Figure 5.46: Scenario Sb (Gompertz model): mean and randomly chosen sample path for the population,
the effort and the profit per unit time. The stepwise policy (with two year steps) is on the left side and the
optimal constant effort sustainable policy is on the right side.
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5.6 Conclusions

In this chapter we have presented the numerical comparisons between the optimal policy with variable

effort (using stochastic control theory) and the optimal sustainable policy with constant effort. The com-

parisons were realized in terms of four profit quantities: the expected accumulated discounted profit in

a finite time interval, the expected accumulated undiscounted profit in a finite time interval, the average

expected profit per unit time weighted by the discount factors and the average expected profit per unit

time unweighted.

To obtain the profit values we have performed 1000 Monte Carlo simulations using a Crank-Nicolson

discretization scheme in time and space of the HJB equation and an Euler scheme for the population

paths. To compute the simulations we have applied the logistic and the Gompertz models to realistic data

of fished populations and, for each model, we set up a basic scenario with the original data. To study

the influence of the parameters on the policies performance, we have considered alternative scenarios by

considering changes on the parameter values, usually one lower and one higher than the original value.

For the logistic model, the optimal sustainable policy produces a slight smaller profit in comparison

with the optimal policy. It provides, however, a much steadier profit. For the Gompertz model, the profit

differences between the two optimal policies are even smaller than in the logistic case. For both models

we have seen that the optimal policy have frequent strong changes in effort, including frequent closings

of the fishery, posing serious logistic applicability problems, producing social burdens and out-of-model

costs (such as unemployment compensations) and leading to a great instability in the profit earned by the

harvester. Furthermore, unlike the optimal variable effort policy, in the optimal constant effort policy there

is no need to keep adjusting the effort to the randomly varying population size, and so there is no need to

determine the size of the population at all times. This is a great advantage, since the estimation of the

population size is a difficult, costly, time consuming and inaccurate task. The optimal policy also creates

a possibly dangerous effect near the time horizon, implying a considerable drop on the population size. On

the contrary, the optimal sustainable policy does not have these shortcomings, is very easy to implement

and drives the population to a stochastic equilibrium. With a few exceptions, the alternative scenarios

share the same behaviour as the basic scenario.

Since the optimal policy in not applicable, we have presented, for the logistic and the Gompertz models,

a sub-optimal policy, named stepwise policy, based on variable effort but with periods of constant effort.

This policy is not optimal, but has the advantage of being applicable, since the changes on effort are not

so frequent and can be compatible with the fishing activity. Furthermore, although we still need to keep
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estimating the fish stock size, we do not need to do it so often. Replacing the optimal variable effort

policy by these stepwise policy has the advantage of applicability but, at best, considerably reduces the

already small advantages they have over the optimal sustainable policy. In some cases, the much easier to

implement optimal sustainable policy even outperforms these stepwise policy in terms of profit.





6
Comparison of policies in the presence

of weak Allee effects

In this chapter we will study, for a logistic-like model, the comparison between the optimal variable effort

policy and the optimal sustainable constant effort policy when the population is under weak Allee effects.

In addition, these policies will be compared with the previous optimal policies without Allee effects. This

chapter is organized as follows: in section 6.1 we formulate the model for the optimal policy and for the

optimal sustainable policy and, for the latter policy, we will prove the existence of a stationary density for

the population size under weak Allee effects. Section 6.2 presents the comparisons in terms of profit and

in terms of the evolution of the population and effort along a finite time interval. We end up with chapter

conclusions at section 6.3.

121
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6.1 Optimal policies with a logistic-like model under weak Allee effects

In this chapter we assume that the population is under the influence of weak Allee effects, that is, at

very low values of population size, we observe lower per capita growth rates instead of the higher rates

one would expected considering the higher availability of resources per individual. The presence of weak

Allee effects when population size is low may be due to the difficulty in finding mating partners or in

constructing a strong enough group defence against predators. The study of population growth models

without harvesting and under Allee effects (weak and strong) can be seen in Carlos and Braumann (2017)

and references therein. Considering strong Allee effects would lead the population to extinction, even in

the absence of harvesting, since the average natural growth rate would be negative for low population sizes

(see Carlos and Braumann, 2017). Therefore, we will consider only weak Allee effects.

Here, we will consider a similar study but when the population is subject to harvesting according to an

optimal policy approach. The resultant model is represented by the SDE

dX(t) = rX(t)

(
1− X(t)

K

)(
X(t)−A

K −A

)
dt− qE(t)X(t)dt+ σX(t)dW (t), X(0) = x, (6.1)

where A ∈ (−K, 0) represents the Allee parameter which measures the strength of the weak Alee effects.

The closer to 0 is A, the more intense is the Allee effect. On the contrary, the closer to −K is A, the less

intense is the Allee effect. Making A → −∞ leads to the logistic model. Strong Allee effects occur when

A ∈ (0,K) and they will not be here considered.

Equation (6.1) assumes that the natural growth rate follows a logistic-like model inspired by a similar

deterministic model (see, for instance, Dennis, 2002). However, the parametrization here considered is

different from the usual in the literature, since it allows comparisons with the logistic model without Allee

effects (see, for instance, Carlos and Braumann, 2017). In particular, the logistic model and the logistic-like

model here considered have in common the same carrying capacity K and the same slope of the natural

growth rate at K.

Figure 6.1 shows, for the deterministic case in the absence of fishing, two examples of the logistic-like

model with weak and strong Allee effects. On the top is depicted the total population growth curve and,

at the bottom, the per capita growth curve. We also show, for comparison purposes, similar curves for the

logistic case without Allee effects. For the model with weak Allee effects it is easily seen that, at very low

population sizes, the per capita growth rates are not at their maximum value as they would ordinarily be

based on the per capita resource abundance.
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For values of A ≤ −K, the per capita growth rates at low population sizes are at their maximum value

and so, technically, we do not speak of having Allee effects. However, those rates are still depressed when

compared to the logistic model, which is only reached when A → −∞.

X

dX
dt

K

weak Allee effects

strong Allee effects

no Allee effects (A = −∞)

A A

X

1
X

dX
dt

KA A

weak Allee effects

strong Allee effects

no Allee effects (A = −∞)

Figure 6.1: Total population growth and per capita growth in the absence of fishing for the deterministic
logistic model without Allee effects (thin lines) and for the deterministic logistic-like growth model under
weak and strong Allee effects (thick lines).
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6.1.1 Optimal policy formulation

In the case of the optimal variable effort policy, the optimization problem presented in section 3.1, takes

now the form

V ∗ := J∗(x, 0) = max
E(τ)

0≤τ≤T

Ex

 T∫
0

e−δτ

(
p1qX(τ)− c1 − (p2q

2X2(τ) + c2)E(τ)

)
E(τ)dτ

 ,

subject to equation (6.1), to the effort constraints 0 ≤ Emin ≤ E(t) ≤ Emax < ∞, and to the terminal

condition J∗(X(T ), T ) = 0.

The solution of the previous optimal control problem is obtained as indicated in Chapter 3 and also

resorts to solve a HJB equation numerically. The computations are similar as in Chapter 5 with the required

and very easy adaptations, namely considering f(X(t)) = r
(
1− X(t)

K

)(
X(t)−A
K−A

)
in equation (3.18).

6.1.2 Optimal sustainable policy formulation

For the logistic-like model with weak Allee effects and a constant effort fishing policy E(t) ≡ E, the

dynamics of the population are described by the SDE model

dX(t) = rX(t)

(
1− X(t)

K

)(
X(t)−A

K −A

)
dt− qEX(t)dt+ σX(t)dW (t), X(0) = x. (6.2)

Again, we assume weak Allee effects, i.e., we assume −K < A < 0.

Since the drift and diffusion coefficients

a(X) = rX

(
1− X

K

)(
X −A

K −A

)
− qEX

and

b2(X) = σ2X2,

are of class C1, equation (6.2) has a unique solution up to a possible explosion time, which is a homogeneous

diffusion process.

The scale and speed densities come from expressions (2.7) and (2.8) as

s(X) = CX−α+βE−1 exp
{
γ(X − (K +A))2

}
(6.3)
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and

m(X) = DXα−βE−1 exp
{
−γ(X − (K +A))2

}
, (6.4)

where α = 2rA
σ2(A−K)

− 1, β = 2q
σ2 , γ = r

σ2K(K−A)
and C, D are positive constants.

We are going to assume that α− βE > 0. This means that

E <
r

q

(
A

A−K
− σ2

2r

)
. (6.5)

In fact, if α − βE < 0, the scale measure S(0, z] of a small neighbourhood of the zero boundary is,

assuming that 0 < z < K +A (note that K +A > 0),

S(0, z] =

∫ z

0
CX−α+βE−1 exp

{
γ(X − (K +A))2

}
dX

≤ C exp
{
γ(K +A)2

}∫ z

0
X−α+βE−1dX < +∞,

and the zero boundary would be attractive, with mathematical extinction occurring with probability one.

If α − βE = 0, then it is easy to see that the speed measure is not finite (M(0,+∞) = +∞) since

M(0, z] = +∞, and there is no stationary density.

Assuming, from now on, α− βE > 0, we can see that the zero boundary is non-attractive since

S(0, z] ≥ C exp
{
γ(z − (K +A))2

}∫ z

0
X−α+βE−1dX = +∞.

Notice that the infinite boundary is non-attractive, and so there are no explosions. In fact, considering

z > 0, the scale measure of a neighbourhood (z,+∞) of +∞ is

S(z,+∞) =

∫ +∞

z
CX−α+βE−1 exp

{
γ(X − (K +A))2

}
dX

= C

∫ +∞

z
exp

{
−(α− βE − 1) lnX + γ(X − (K +A))2

}
dX = +∞,

since γ > 0 and so the last integrand tends to +∞ as X → +∞.

So, assuming α−βE > 0, mathematical extinction has zero probability of occurring and the solution of

equation (6.2) exists and is unique. Furthermore, we will now show that M(0,+∞) < +∞, which proves
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that there exists a stationary density for the population size. In fact,

M(0,∞) =

∫ +∞

0
m(z)dz (6.6)

can be written as

M1 +M2 +M3 =

∫ L1

0
m(z)dz +

∫ L2

L1

m(z)dz +

∫ +∞

L2

m(z)dz, (6.7)

with 0 < L1 < L2 < L3 < +∞ and L3 > max{1,K + A}. We just need to show that each of the three

integrals is finite. Since α− βE > 0, we have

M1 =

∫ L1

0
DXα−βE−1 exp

{
−γ(X − (K +A))2

}
dX

≤ D

∫ L1

0
Xα−βE−1dX = +∞.

Let η be positive and larger than α−βE−1. Then, for X > L3, we have (α−βE−1) lnX < η lnX < ηX.

Putting µ = K +A+ η
2γ and ν = 1√

2γ
, we have

M3 =

∫ +∞

L3

DXα−βE−1 exp
{
−γ(X − (K +A))2

}
dX

= D

∫ +∞

L3

exp
{
(α− βE − 1) lnX − γ(X − (K +A))2

}
dX

≤ D

∫ +∞

L3

exp
{
ηX − γ(X − (K +A))2

}
dX

= D exp
{
η

(
K +A+

η

4γ

)}√
π

γ

∫ +∞

L3

1

ν
√
2π

exp
{
−(X − µ)2

2ν2

}
dX

≤ D exp
{
η

(
K +A+

η

4γ

)}√
π

γ
< +∞,

because the integrand of the last integral is the p.d.f. of a Gaussian random variable with mean µ and

variance ν2.

As for

M2 =

∫ L2

L1

m(X)dX,

it is finite since m is a continuous function on the close interval [L1, L2].

From the above and, as in the case of the logistic model without Allee effects (see chapter 4), one can
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conclude that there exists a stationary density p(X) for the size of the population. In other words, p(X)

is the probability density function of a random variable X∞ and X(t) converges in distribution to X∞.

Furthermore, the stationary density is proportional to the speed density, i.e.,

p(X) =
m(X)

+∞∫
0

m(z)dz

, 0 < X < +∞

=
Xα−βE−1 exp{−γ(X − (K +A))2}∫ +∞

0 zα−βE−1 exp{−γ(z − (K +A))2}dz
, 0 < X < +∞.

The expected value of X∞ is obtained as

E[X∞] =

∫ +∞

0
xp(x)dx =

I1(E)

I0(E)
,

where

Ij(E) =

+∞∫
0

zα−βE+j−1 exp
{
−γ(z − (K +A))2

}
dz.

The steady-state optimization problem is similar to the logistic case without Allee effects and consists

in maximizing the expected sustainable profit per unit time, that is, to determine

max
E≥0

E[Π∞] = max
E≥0

{(
p1q

I1(E)

I0(E)
− c1

)
E −

(
p2q

2 I2(E)

I0(E)
+ c2

)
E2

}
,

in case there is a maximum in the admissible range 0 ≤ E < r
q

(
A

A−K − σ2

2r

)
.

The optimal sustainable effort E∗∗ can be obtained by solving the equation dE[Π∞]/dE = 0 such

that the solution satisfies d2E[Π∞]/dE2 < 0, which requires numerical methods. Finally, the expected

sustainable profit per unit time is given by

E[Π∗∗
∞] =

(
p1q

I1(E
∗∗)

I0(E∗∗)
− c1

)
E∗∗ −

(
p2q

2 I2(E
∗∗)

I0(E∗∗)
+ c2

)
E∗∗2,

and the sustainable expected population is given by

E[X∗∗
∞ ] =

+∞∫
0

zα−βE∗∗ exp
{
−γ(z − (K +A))2

}
dz

+∞∫
0

zα−βE∗∗−1 exp {−γ(z − (K +A))2} dz
.
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6.2 Comparison of policies

The comparisons between the optimal variable effort policy and the optimal sustainable policy, both

with a growth model with weak Allee effects, are very similar to the comparisons made in the case of

the logistic model without Allee effects. The data and algorithms are the ones used previously with the

necessary adjustments for the inclusion of the Allee effects expressions. We kept the basic scenario S0 and

considered 5 alternative scenarios with varying Allee effects. The list of scenarios is in Table 6.1.

The resulting profit values (5.1) – (5.4) for the considered scenarios are shown in Table 6.2 and the

corresponding graphics are in Figures 6.2 – 6.6.

From Table 6.2 one can see that scenario SA1, corresponding to a quite extreme A = −0.10K, has

a catastrophic behaviour in terms of profit when we apply the optimal sustainable policy. In fact, the

discounted profit is reduced by 61.9% in comparison with the optimal policy, and the undiscounted profit

is reduced by 63.6%. Figure 6.2 shows that the variability in effort and profit still remains (when compared

to the models without Allee effects), having long periods of no harvesting, i.e., long periods of zero effort

and also long periods of zero profit. The very low value of the optimal sustainable effort causes high values

for the population size (right top).

The others scenarios SA2 to SA5 correspond to considering weaker Allee effects and we might see, from

Table 6.2 and from Figures 6.3 – 6.6, that the profit values under weak Allee effects are lower than in the

model without Allee effects, corresponding to the base scenario S0, but are approaching the S0 values as

A decreases. Of course, in the limit, one would actually reach S0, corresponding to A = −∞. The same

happens with the profit differences between the optimal variable policy and the optimal sustainable policy

Table 6.1: List of alternative scenarios (SAi, i = 1, . . . , 5) and respective changed Allee parameter. The
values used in simulations are in Table 5.1.
Scenario Allee parameter value A

S0 (logistic model) −∞

SA1 −0.10K

SA2 −0.25K

SA3 −0.50K

SA4 −0.75K

SA5 −0.95K
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(∆ values). We notice that, with a few exceptions, the standard deviations have very small variations

across the various scenarios.

Table 6.2: Expected discounted and undiscounted profit values for the scenarios SAi, i = 1, . . . , 5. Besides
the expected values, we also present the standard deviations (in parenthesis with smaller font size). The
percent relative difference between both policies is denoted by ∆. Currency values are in million dollars for
V ∗, V ∗

u , V ∗∗ and V ∗∗
u , and million dollars per year for Π∗, Π∗

u, Π∗∗ and Π∗∗
u . For comparison purposes, we

show the information for the basic scenario S0 of the logistic model without Allee effects.

Scenario V ∗ V ∗∗ Π∗ Π∗∗ ∆ (%)

S0 413.586 (38.322) 396.424 (34.948) 22.529 (2.087) 21.594 (1.904) −4.1

SA1 218.79 (44.700) 83.405 (7.397) 11.918 (2.435) 4.543 (0.403) −61.9

SA2 248.307 (45.209) 186.924 (25.281) 13.526 (2.463) 10.182 (1.377) −24.7

SA3 277.986 (46.088) 237.896 (35.734) 15.142 (2.510) 12.959 (1.946) −14.4

SA4 296.141 (44.655) 261.851 (36.193) 16.131 (2.432) 14.263 (1.971) −11.6

SA5 307.457 (43.234) 276.037 (36.206) 16.748 (2.355) 15.036 (1.972) −10.2

V ∗
u V ∗∗

u Π∗
u Π∗∗

u ∆ (%)

S0 1129.130 (88.631) 1073.867 (88.543) 22.583 (1.773) 21.477 (1.771) −4.9

SA1 649.127 (113.860) 236.590 (17.470) 12.983 (2.277) 4.732 (0.349) −63.6

SA2 716.193 (110.432) 522.531 (68.249) 14.324 (2.209) 10.451 (1.365) −27.0

SA3 788.676 (107.116) 652.393 (100.028) 15.774 (2.142) 13.048 (2.001) −17.3

SA4 832.398 (103.334) 716.042 (98.888) 16.648 (2.067) 14.321 (1.978) −14.0

SA5 857.006 (100.022) 753.825 (97.703) 17.140 (2.000) 15.076 (1.954) −12.0
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Figure 6.2: Scenario SA1 (logistic-like model with weak Allee effects): mean and randomly chosen sample
path for the population, the effort and the profit. The optimal variable effort policy is on the left side and
the optimal constant effort sustainable policy is on the right side.
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Figure 6.3: Scenario SA2 (logistic-like model with weak Allee effects): mean and randomly chosen sample
path for the population, the effort and the profit per unit time. The stepwise policy (with two year steps)
is on the left side and the optimal constant effort sustainable policy is on the right side.
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Figure 6.4: Scenario SA3 (logistic-like model with weak Allee effects): mean and randomly chosen sample
path for the population, the effort and the profit per unit time. The stepwise policy (with one year steps)
is on the left side and the optimal constant effort sustainable policy is on the right side.
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Figure 6.5: Scenario SA4 (logistic-like model with weak Allee effects): mean and randomly chosen sample
path for the population, the effort and the profit per unit time. The stepwise policy (with two year steps)
is on the left side and the optimal constant effort sustainable policy is on the right side.
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Figure 6.6: Scenario SA5 (logistic-like model with weak Allee effects): mean and randomly chosen sample
path for the population, the effort and the profit per unit time. The stepwise policy (with one year steps)
is on the left side and the optimal constant effort sustainable policy is on the right side.
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6.3 Conclusions

In this chapter we have worked with a logistic-type population growth model under the influence of

weak Allee effects. For this logistic-type population growth model, we have formulated the problems of

the optimal variable effort policy and of the optimal constant effort sustainable policy. For the constant

effort model we showed that, if the effort is not too high (in fact, the effort has to fulfil the condition

E < r
q

(
A

A−K − σ2

2r

)
, the state space boundaries are non-attractive, that there is a stationary density for

the population size for which we have found an expression.

Both optimal policies were applied for the parameters values used in the basic scenario S0 (the basic

scenario of the logistic model without Allee effects). To see the influence of the weak Alee effects when

comparing both policies, we have simulated 5 scenarios with variations on the Allee parameter. We have

seen that, as the Allee parameter becomes smaller, the Allee effects have less influence on both policies and,

therefore, the policies tend to behave as in the scenario without Allee effects. When the Allee parameter

approaches zero, the Allee effects become more pronounced and imply huge differences in terms of profit

values when comparing both harvesting policies; the profit becomes, for both type of policies, substantially

lower than in the model without Allee effects.





7
First passage times

In previous chapters we have seen that, for the class of models with constant fishing effort, mathematical

extinction occurs with zero probability. However, since we work with ergodic processes, all the states in

the interior of (0,+∞) are attainable with probability one in finite time. In particular, we can define a

threshold in the interior of the state space, y ∈ (0,+∞), and study how long it takes for the process X(t)

to reach y for the first time. This threshold can be seen, for instance, as a biological reference point,

i.e., a minimum biomass value which should not be reached, otherwise it is considered that the population

self-renewable capacity is endangered. In addition, we can consider the case where the threshold is an

upper limit and study the first passage time by this limit. In fisheries, this case is also important because

it allows to establish high levels of biomass that could affect, for example, the survival of another species,

or warn us that the optimal fishing effort is not being correctly applied.

Based on general expressions for the mean and standard deviation of first passage times by lower and

137
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upper thresholds, we will compute such values for the particular cases of the logistic and the logistic-like

models with weak Allee effects and for several lower and upper threshold values.

We will also present a way to estimate, for a fixed threshold value, the probability density function of

the time to reach that threshold. Using numerical methods we obtain the inverse of the Laplace transform

of the probability density function. For this particular case, we will compare the mean values obtained by

this technique and by the direct expression of the mean value.

This chapter is organized as follows: Section 7.1 presents the expressions to compute the mean and

standard deviation of first passage times, and respective application to the logistic model and to the

logistic-like model with weak Allee effects. In section 7.2 we estimate the probability density function of

the first passage time using the inversion of the Laplace transform. Section 7.3 presents the main chapter

conclusions.

7.1 Moments of the first passage times

We recall that, in this chapter, the models under study are the logistic harvesting stochastic model with

constant fishing effort and the logistic-like harvesting stochastic model with weak Allee effects and constant

fishing effort, represented by the SDEs:

dX(t) = rX(t)

(
1− X(t)

K

)
dt− qEX(t)dt+ σX(t)dW (t), X(0) = x

and

dX(t) = rX(t)

(
1− X(t)

K

)(
X(t)−A

K −A

)
dt− qEX(t)dt+ σX(t)dW (t), X(0) = x,

respectively.

For the first model, the scale and speed densities (see (4.15) and (4.16)) are given, respectively, by

s(X) = C1X
−ρ−1 exp{θX},

m(X) = C2X
ρ−1 exp{−θX},

with ρ =
2(r − qE)

σ2
− 1 , θ =

2r

Kσ2
and C1, C2 are positive constants.
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For the second model, the scale and speed densities (see (6.3) and (6.4)) are given, respectively, by

s(X) = C3X
−(α+1)+βE exp

{
γ(X − (K +A))2

}
,

m(X) = C4X
α−βE−1 exp

{
−γ(X − (K +A))2

}
,

with α =
2rA

(A−K)σ2
− 1, β =

2q

σ2
, γ =

r

K(K −A)σ2
and C3, C4 are positive constants.

The definitions of the first passage time by a threshold are as follows:

• the first passage time of X(t) by a lower threshold L (0 < L < x < +∞) is

TL := inf{t ≥ 0 : X(t) = L};

• the first passage time of X(t) by an upper threshold U (0 < x < U < +∞) is

TU := inf{t ≥ 0 : X(t) = U}.

Our main interest is to study the mean of the first passage by the lower and the upper thresholds. This

values represent, on average, the amount of time that the process needs to attain L or U . In Carlos (2013)

and Carlos et al. (2013) one can see, for a general class of stochastic processes (where our models can be

included with minor adaptations), the expressions for the mean and variance of TL and TU . They are given

by

• Mean of TL:

E
[
TL

∣∣X(0) = x] = 2

∫ x

L
s(y)

∫ +∞

y
m(z)dzdy; (7.1)

• Variance of TL:

V ar
[
TL|X(0) = x

]
= 8

∫ x

L
s(y)

∫ +∞

y
s(z)

(∫ +∞

z
m(θ)dθ

)2

dzdy; (7.2)

• Mean of TU :

E
[
TU

∣∣X(0) = x] = 2

∫ U

x
s(y)

∫ y

0
m(z)dzdy; (7.3)

• Variance of TU :

V ar
[
TU |X(0) = x

]
= 8

∫ U

x
s(y)

∫ y

0
s(z)

(∫ z

0
m(θ)dθ

)2

dzdy (7.4)
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In these expressions, we have used upper limits of integration +∞ in (7.1) and (7.2), and lower limits

of integration 0 in (7.3) and (7.4) because +∞ and 0 are, respectively, the upper and lower boundaries of

the state space. If they have different values, one should use such values instead. From these expressions,

since the integrands are positive, we see that, when L and U are closer to the initial population size x, the

mean and variance of the first passage time decrease, as expected.

These expressions can be simplified for each particular model but, at least for our models, we cannot

obtain them in a completely explicit form. For the logistic model, we have used the same data as for

the basic scenario S0 and, for the logistic-like model with weak Allee effects, we have used the data

corresponding to scenario SA4, which considers A = −0.75K. In both cases, the effort E was set as the

optimal effort E∗∗ obtained for each scenario in Chapter 5 and Chapter 6, respectively. For both models,

the mean and variance of the first passage time by TL and TU were computed for the following values for

L and U :

L = (0.05, 0.10, 0.15, . . . , 0.90, 0.95, 1.00)× x, (7.5)

and

U = (1.00, 1.05, 1.10, . . . , 3.90, 3.95, 4.00)× x, (7.6)

where x is, in both cases, the initial population size.

Figures 7.1 and 7.2, for the logistic model, and Figures 7.3 and 7.4, for the logistic-like model with weak

Allee effects, show, for the L and U values presented in (7.5) and (7.6), the mean value and the standard

deviation of TL and TU using expressions (7.1) to (7.4). In each Figure, we present on top the values in

natural scale and, on bottom and in order to give a better visual discrimination, the values in logarithmic

scale.

From Figures 7.1 and 7.3 one can see that, as L increases towards the initial population level x (the

end of the X-axis), the mean and standard deviation of TL are decreasing, taking obviously the value zero

at L = x (which is depicted in natural scale, but not in log scale since log(0) = −∞). From these Figures

it is also clear that the mean and the standard deviation of TL have the same order of magnitude, except

for a very few values of L near x, where the standard deviation is slightly greater, being this difference

more pronounced in the case of the logistic-type model with weak Allee effects. We also conclude that

the results for the mean and standard deviation have a qualitatively similar behaviour for both models but,

when there are weak Allee effects, it takes much less time to reach the lower thresholds, thus increasing
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Table 7.1: Logistic-like model: Alternative scenarios with approximate values for the mean and standard
deviation of TL and TU when varying the parameters L, U , x and E.

Scenario L (tonnes) x (tonnes) E (SFU) E[TL] (years) sd[TL] (years)

SL1 0.10x = 0.40× 104 4.03× 104 E∗∗ 1.57× 1015 1.57× 1015

SL2 0.50x = 2.01× 104 4.03× 104 E∗∗ 7.02× 104 7.02× 104

SL3 0.75x = 3.02× 104 4.03× 104 E∗∗ 734.86 800.66

SL4 E[X∗∗
∞ ] = 3.91× 104 4.03× 104 E∗∗ 16.78 38.11

SL5 0.40× 104 2.01× 104 E∗∗ 2.67× 1010 2.67× 1015

SL6 0.10x = 0.40× 104 4.03× 104 1.10× E∗∗ 5.42× 1013 5.42× 1013

SL7 0.10x = 0.40× 104 4.03× 104 1.50× E∗∗ 1.01× 108 1.00× 108

SL8 0.10x = 0.40× 104 4.03× 104 2.00× E∗∗ 1.95× 102 1.72× 102

Scenario U (tonnes) x (tonnes) E (SFU) E[TU ] (years) sd[TU ] (years)

SU1 E[X∗∗
∞ ] = 3.91× 104 2.01× 104 E∗∗ 8.78 4.07

the risk of the population reaching low dangerous levels (notice that, for both models, the values of K and

x are the same).

Figures 7.2 and 7.4 present an opposite behaviour to the lower threshold case. One can see that the

mean time and standard deviation are increasing as the threshold U increases. Of course, when U = x,

the mean and standard deviation are zero (not depicted in the log scale graphics). Again, the standard

deviation has the same order of magnitude as the mean. In the presence of weak Allee effects, the mean

time (and the respective standard deviation) needed to reach any value of U is quite larger then less for

the logistic model, thus increasing the time to recovery.

Table 7.1 presents, for the logistic model, a list of scenarios with variations in the thresholds L and U ,

in the initial population size x and in the effort. For the first 3 scenarios (SL1 , SL2 and SL3) the mean and

standard variation values of the first passage time by L are computed when the initial population size is x,

and the lower threshold to reach is 10% of x, 50% of x and 75% of x. These 3 cases are directly observed

from Figure 7.1 and we can conclude, as before, that there exists a decrease of the mean and the standard

deviation of TL when L increases towards x. Scenario SL4 shows the case where the lower threshold is

the value of the expected sustainable population size E[X∗∗
∞ ] (see (4.19)). Since this value is very close to

K/2 = x, it is not a surprise to see that the mean time to reach the sustainable average threshold is only
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about 17 years.

Scenario SL5 considers a low initial population size (x = 0.25K). Comparing this Scenario with SL1 ,

which has a higher initial population size (x = 0.5K), we expect to have lower values for the mean and

standard deviation of the first passage time. Indeed that is what one can observe from Table 7.1.

Scenarios SL6 , SL7 and SL8 consider the cases where the effort is greater than E∗∗. In the first one, the

applied effort is 10% greater than E∗∗. This will produce a higher population catch and, consequently, the

population size will decay being closer of L. Hence the mean time to reach L will be lower than in scenario

SL1 . Scenario SL7 is very similar to scenario SL6 but with a higher effort, although still sustainable in the

sense that the population will have a stationary density. Scenario SL8 is a clear case of heavy overfishing

and the effort used almost reaches the value r−σ2/2
q beyond which mathematical extinction occurs with

probability one and there is no stationary density; in this case reaching L will happen much faster.

Until now all the thresholds were smaller than the initial value. Scenario SU1 considers the opposite case,

i.e., we estimate the time that the population takes, on average, to reach the steady-state expected size

but starting with an initial population of 0.25K (see scenario S1 of Section 5.2.2). Since the population

tends to become close to E[X∗∗
∞ ], it seems natural that it took only about 9 years, on average, to reach the

steady-state average value. So, even if we, by overfishing or other reasons, have depleted the population

to a low size of 0.25K, applying the optimal effort E∗∗ from then on, the recovery will take on average

only a few years.
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Figure 7.1: Logistic model without Allee effects: mean and standard deviation in natural scale (on top) and
logarithmic scale (on bottom) of the first passage time by several values of L, when the initial population
size is x = 4.03× 104 tonnes.
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Figure 7.2: Logistic model without Allee effects: mean and standard deviation in natural scale (on top) and
logarithmic scale (on bottom) of the first passage time by several values of U , when the initial population
size is x = 4.03× 104 tonnes.
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Figure 7.3: Logistic-like model with weak Allee effects: mean and standard deviation in natural scale (on
top) and logarithmic scale (on bottom) of the first passage time by several values of L, when the initial
population size is x = 4.03× 104 tonnes.
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Figure 7.4: Logistic-like model with weak Allee effects: mean and standard deviation in natural scale (on
top) and logarithmic scale (on bottom) of the first passage time by several values of U , when the initial
population size is x = 4.03× 104 tonnes.
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7.2 Estimation of the density probability functions of TL and TU

The Laplace transforms of the first passage times TL and TU , when the initial population size is x, are

given respectively by

Ex[exp(−λTL)] and Ex[exp(−λTU )]. (7.7)

In Giet et al. (2015), for the stochastic logistic model without harvesting,

dX(t) = r1X(t)

(
1− X(t)

K1

)
dt+ σX(t)dW (t), X(0) = x, (7.8)

one can find the following expressions for (7.7):

Ex[exp(−λTL)] =

(
x

L

)√
2λ

σ2
+u2+u

·
Ψ

(√
2λ

σ2
+ u2 + u, 1 + 2

√
2λ

σ2
+ u2, vx

)

Ψ

(√
2λ

σ2
+ u2 + u, 1 + 2

√
2λ

σ2
+ u2, vL

) (7.9)

Ex[exp(−λTU )] =

(
x

U

)√
2λ

σ2
+u2+u

·
Φ

(√
2λ

σ2
+ u2 + u, 1 + 2

√
2λ

σ2
+ u2, vx

)

Φ

(√
2λ

σ2
+ u2 + u, 1 + 2

√
2λ

σ2
+ u2, vU

) , (7.10)

where u =
1

2

(
1− 2r1

σ2

)
, v =

2r1
K1σ2

, and Ψ and Φ are the hypergeometric confluent functions. Note that

Ψ and Φ are also denoted by U and M , respectively (see Abramowitz and Stegun, 1964, Chapter 13).

The stochastic logistic model with harvesting based on constant effort, can be written as (see Section

4.2)

dX(t) = rX(t)

(
1− X(t)

K

)
dt− qEX(t)dt+ σX(t)dW (t), X(0) = x,

or as,

dX(t) = r1X(t)

(
1− X(t)

K1

)
dt+ σX(t)dW (t), X(0) = x,

if one considers r1 = (r − qE) and K1 = K

(
1− qE

r

)
, which gives (7.8). So, the Laplace transforms
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(7.9) and (7.10) are valid for the model with harvesting based on constant effort if one uses r1 = (r− qE)

and K1 = K
(
1− qE

r

)
.

The inversion of the Laplace transforms (7.9) and (7.10) returns the probability density functions of TL

and TU . Due to the non-linearity of (7.9) and (7.10), it is not possible to obtain explicitly those densities.

However, in Valsa and Brancik (1998), one can find an algorithm to implement numerically the Laplace

transform inversion. After several runs, we have concluded that the algorithm is quite unstable and the

necessary tuning is not straightforward. However, it allows us to obtain very satisfactory results.

We have run the algorithm using the data from the basic scenario S0 (see Section 5.2.1), with E = E∗∗

and considering L = 0.90x and U = 1.10x. The algorithm returns the p.d.f. of TL for L = 0.90x and

TU for U = 1.10x, which graphics are depicted on Figures 7.5 and 7.6, respectively. In both graphics the

area under the lines is approximately 1 (more specifically 0.99), which indicates that they are a very good

approximation of the p.d.f.. We also have computed the mean value of TL for L = 0.90x and TU for

U = 1.10x from the graphics and from expressions (7.1) and (7.3). The differences are less than 0.1%,

which reinforces the idea that the algorithm is credible and, therefore, the approximations of the p.d.f. are

very accurate.

The graphics of the estimated densities are, for visibility reasons, in log-log scale. In fact, in the graphics

in natural scale the depicted lines are too close to the axes.

The fact that the mean and the standard deviation of the first passage times are very close to each

other suggests that the distribution of first passage times might be approximately exponential. The p.d.f.

obtained on Figures 7.5 and 7.6 are also not too different from the exponential distribution case.
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Figure 7.5: Estimation of the density probability function of TL with L = 0.90x, when the initial population
size is x = 4.03× 104 tonnes.
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Figure 7.6: Estimation of the density probability function of TU for U = 1.10x, when the initial population
size is x = 4.03× 104 tonnes.
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7.3 Conclusions

In this chapter we have presented, for the logistic model and for the logistic-like model with weak Allee

effects, the expressions for the mean and standard deviation of the first passage times by lower and by

upper thresholds. For several lower and upper threshold values and for the data and parameters from

scenarios S0 and SA4 previously studied, we have computed the mean and standard deviation time of the

first passage by lower and by upper thresholds. For both models, as illustrated by Figures 7.1 to 7.4, the

results are qualitatively similar but, in the case of the logistic model, the population needs more time to

reach lower thresholds and less time to reach upper thresholds. We have also seen that the mean and the

standard deviation have the same order of magnitude, which suggests distributions of first passage times

not far from being exponential.

For the logistic model, we have set up 9 scenarios with parameters variations, namely the lower and upper

thresholds, the initial population and the effort. For these scenarios, the mean and standard deviation of

the first passage time by lower and by upper thresholds were computed. The conclusions were very similar

to the ones based on the Figures. The general idea is that there exists a decrease of the mean and the

standard deviation values of the first passage time by the threshold when the threshold values approaches

the initial population value.

For the logistic model without harvesting, we have found in the bibliography the expressions of the

Laplace transform of the first passage time by the lower and by the upper thresholds. With some mild

adaptations, we deduced the expressions for the logistic model with harvesting. The inversion of the Laplace

transform gives the probability density functions of the first passage time by the lower and by the upper

thresholds. The expressions cannot be obtained explicitly, so we resort to numerical methods to compute

them. Using Matlab we were able to plot an approximation of the probability densities functions for first

passage time by the lower and by the upper thresholds. The resulting graphics support our idea that the

first passage times have distributions not far from being exponential.





8
Conclusions

Fish populations live in randomly varying environments and the effect of that variability on fish dynamics

has to be taken into account when choosing optimal harvesting policies. For that reason, the use of a

stochastic differential equation model with harvesting is appropriate.

The typical approach in the literature is, as for deterministic models, to use control theory (the harvesting

effort being the control) to maximize the expected accumulated discounted profit over some time horizon

T . We have used a profit structure where revenues per unit time are quadratic functions of the yield and

costs per unit time are quadratic functions of the effort.

In the stochastic case, the population fluctuations induced by the randomly varying environment lead to

optimal policies with a highly variable effort (with frequent periods of no or low harvesting, or of harvesting

at the maximum possible rate). This is not compatible with the logistics of fishing and causes social

153
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and economical problems (intermittent unemployment is just one of them). Besides, due to the random

fluctuations that affect the population size, knowledge of its size at all times is required to determine the

optimal effort. This is not feasible because the estimation of the population size is a difficult, costly, time

consuming and inaccurate task.

So, we consider as an alternative, sustainable constant effort fishing policies, which are extremely easy

to implement and lead to a stochastic steady-state. We determine the constant effort that maximizes the

expected profit per unit time at the steady-state in the general case and for the specific cases of the logistic

and the Gompertz models. One might think that a constant effort policy would result in a substantial

profit reduction compared with the optimal variable effort policy, but we have shown this is not the case.

To compare the two harvesting policies, we have considered four ways of evaluating the expected profit:

the expected accumulated discounted profit in a finite time interval, the expected accumulated undiscounted

profit in a finite time interval, the average expected profit per unit time weighted by the discount factors

and the average expected profit per unit time unweighted.

To obtain the profit values we have performed 1000 Monte Carlo simulations using a Crank-Nicolson

discretization scheme in time and space of the HJB equation and an Euler scheme for the population

paths. To compute the simulations we have applied the logistic and the Gompertz models to realistic data

of fished populations and, for each model, we set up a basic scenario with the original data using a 50 year

time horizon. To study the influence of the parameters on the policies performance, we have considered

20 alternative scenarios by considering changes on the parameter values, usually one lower and one higher

than the original value.

For the logistic model, the optimal sustainable policy produces a slightly smaller profit in comparison

with the optimal policy. For the Gompertz model, the profit differences between the two optimal policies

are even smaller than in the logistic case. For both models we have indeed seen that the optimal policy

have frequent strong changes in effort, including frequent closings of the fishery, posing logistic applicability

problems, producing social burdens and out-of-model costs (such as unemployment compensations) and

leading to a much greater instability in the profit earned by the harvester as compared with the constant

effort policy. Furthermore, unlike the optimal variable effort policy, in the optimal constant effort policy

there is no need to keep adjusting the effort to the randomly varying population size, and so there is no need

to determine the size of the population at all times. The optimal policy also creates a possibly dangerous

effect near the time horizon, implying a considerable drop on the population size. On the contrary, the

optimal sustainable policy does not have these shortcomings, is very easy to implement and drives the
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population to a stochastic equilibrium. With a few exceptions, the alternative scenarios share the same

behaviour as the basic scenario.

Since the optimal policy is not applicable, we have presented, for the logistic and the Gompertz models,

a sub-optimal policy, named stepwise policy, based on variable effort but with periods of constant effort.

This policy is not optimal, but has the advantage of being applicable, since the changes on effort are less

frequent and compatible with the fishing activity. Furthermore, although we still need to keep estimating

the fish stock size, we do not need to do it so often. Replacing the optimal variable effort policy by these

stepwise policy has the advantage of applicability but, at best, considerably reduces the already small profit

advantage the optimal effort policy have over the optimal sustainable policy based on constant effort. In

some cases, the optimal sustainable policy even outperforms these stepwise policies in terms of profit.

In summary, optimal constant effort policies will typically involve a slight reduction in profit compared

to the inapplicable optimal variable effort policies, and may even outperform the stepwise effort policies.

They are quite easy to implement and do not have the serious shortcomings of the variable effort policies.

Fishery managers/regulators do not have to worry about logistic problems of frequent changes in effort and

equipment requirements, employment is kept at a constant level and, there is no need to frequently estimate

the size of the population. Constant effort policies also lead the probability distribution of population size

to a sustainable equilibrium with an average population size higher than the final average size of the optimal

harvesting policy. Even the slight reduction in average profits (when compared to the optimal policies) are

probably apparent, since the above mentioned out-of-model costs of the optimal policies (not considered

in the model) are likely to outweight that reduction.

We have also compared the performance of both policies when the population is under the influence of

weak Allee effects and the population natural growth follows a logistic-type model. For the constant effort

model we proved that, if the effort is not too high, the state space boundaries are non-attractive, that

there is a stationary density for the population size and we have found the stationary density expression.

Both optimal policies were applied to the data used in the basic scenario of the logistic case without Allee

effects. To see the influence of the weak Alee effects when comparing both policies, we have simulated

5 scenarios with variations on the Allee parameter. We have seen that, as the Allee parameter becomes

smaller, the Allee effects have less influence on both policies and, therefore, the policies tend to behave

as in the scenario without Allee effects. When the Allee parameter increases approaching zero, the Allee

effects become more pronounced and imply huge differences in terms of profit values when comparing both

harvesting policies; the profit becomes, for both types of policies, substantially lower than in the model

without Allee effects.
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For the logistic model and the logistic-like model with weak Allee effects, we present the expressions for

the first and second moments of the first passage times by a lower and by an upper thresholds. For several

lower and upper threshold values and for the data and parameters from scenarios S0 and SA4 previously

studied, we have computed the mean and standard deviation time of the first passage by the lower and by

the upper thresholds. For both models, the closer U or L are to the initial population size x, the smaller

are the first passage times. We have also seen that the mean and the standard deviation have the same

order of magnitude.

When comparing the logistic model with the logistic-like model with Allee effects, one sees that Allee

effects result in a much faster approach to lower thresholds (which can endanger the population) and much

slower approach to higher thresholds (which affects population recovery). For the logistic model, we have

also considered 8 alternative scenarios with parameters variations, namely the lower and upper thresholds,

the initial population and the effort, in order to look at the effect of such variations. Still for the logistic

model without harvesting, we have found in the bibliography the expressions of the Laplace transform of

the first passage time by the lower and by the upper thresholds. With some mild adaptations, we deduced

the expressions for the logistic model with harvesting. Using Matlab we were able to numerically invert the

Laplace transform and plot an approximation of the probability densities functions for first passage time

by lower and by upper thresholds, which suggest that the first passage time distributions are not far from

being exponential.

We sincerely hope that the results in this thesis can contribute to better decisions in designing more

efficient and safer harvesting policies, in face of the uncertainty in environmental conditions. If so, mathe-

matical methods would again prove their usefulness.

As for future work, we think that it would be interesting to consider other population natural growth

dynamics (like generalized logistic models, Gompertz-like models with Allee effects, for example), and more

sophisticated sustainable harvesting policies. Some of these may be amenable to analytical methods, others

should have to rely heavily on simulations. We would also like to reinforce the validation of our conclusions

with other real population data. Furthermore, we have used parameter estimates obtained by researchers

in the field based on deterministic models, and it would be nice to extend the estimation methods to

the stochastic case, including the estimation of σ. We would expect that, if the fishing effort could be

kept constant, the catches would be proportional to population size and this would allow reasonably good

estimation methods of the population parameters.



A
SDE solutions

A.1 Solution of the logistic stochastic differential equation

To solve the SDE

dX(t) = rX(t)

(
1− X(t)

K

)
dt− qEX(t)dt+ σX(t)dW (t), X(0) = x, (A.1)

we begin by converting it into an equivalent Stratonovich equation (see, for instance, Øksendal, 1998)

(S) dX(t) = rX(t)

(
1− X(t)

K

)
dt− qEX(t)dt− σ2

2
X(t)dt+ σX(t)dW (t), X(0) = x.
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Applying the change of variable Z(t) = K/X(t) to the latter equation, using Stratonovich rules of calculus

(identical to ordinary rules) and rearranging terms yields

dZ(t) = −
(
r − qE − σ2

2

)
Z(t)dt+ rdt− σZ(t)dW (t), Z(0) = K/x.

Multiplying by the integrating factor exp
{(

r − qE − σ2

2

)
t+ σW (t)

}
and taking into account the rules

of differentiation gives

d

dt

(
Z(t) exp

{(
r − qE − σ2

2

)
t+ σW (t)

})
= r exp

{(
r − qE − σ2

2

)
t+ σW (t)

}
.

Integrating on the interval [0, t] and after some trivial operations, results in

Z(t) = Z(0) exp
{
−
(
r − qE − σ2

2

)
t− σW (t)

}

+ r exp
{
−
(
r − qE − σ2

2

)
t− σW (t)

} t∫
0

exp
{(

r − qE − σ2

2

)
s+ σW (s)

}
ds.

Finally by transforming to X(t) gives

X(t) =

K exp
{(

r − qE − σ2

2

)
t+ σW (t)

}
K

x
+ r

t∫
0

exp
{(

r − qE − σ2

2

)
s+ σW (s)

}
ds

,

which is the solution of equation (A.1).

A.2 Solution of the Gompertz stochastic differential equation

To solve the SDE

dX(t) = rX(t) ln K

X(t)
dt− qEX(t)dt+ σX(t)dW (t), X(0) = x, (A.2)

we apply the change of variable Z(t) = ert lnX(t) and Ito´s Theorem 2.2.3. The resultant SDE is

dZ(t) =

(
r lnK − qE − σ2

2

)
ertdt+ σertdW (t).
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Integrating on the interval [0, t] and after some trivial operations, results in

Z(t) = lnx+
1

r

(
r lnK − qE − σ2

2

)(
ert − 1

)
+ σ

t∫
0

ersdW (s).

Finally by transforming to X(t) gives

X(t) = exp
{
e−rt lnx

}
exp

{
1

r

(
r lnK − qE − σ2

2

)(
1− e−rt

)}
exp

{
σe−rt

t∫
0

ersdW (s)

}
.

which is the solution of equation (A.2).





B
R code for Chapters 5 and 6

We present the code used to run the basic scenario S0 of the logistic model. For other scenarios and

models, the user just needs to make appropriate changes.

set.seed(123456789)

setwd("~/Desktop/Rcode")

g<-basename(getwd())

library(matrixcalc)

library(signal)

library(gridExtra)

% parmeters for scenario S0

% (for others , make appropriate changes)

T <- 50

r <- 0.71
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K <- 80.5*10^6

q <- 3.30*10^(-6)

Emin <- 0

Emax <- 0.7*(r/q)

xmin <- 0

xmax <- 2*K

n <- 150

m <- 75

(deltat <- T/n)

(deltax <- (xmax - xmin)/m)

x <- seq(xmin, xmax, by = deltax)

t <- seq(0, T, by = deltat)

p <- 1.59

cone <- 96*10^(-6)

ctwo <- 0.10*10^(-6)

d <- 0.05

sigma <- 0.2

xone <- K/2

path <- 1000

J <- matrix(0, nrow = m + 1, ncol = n + 1)

E <- matrix(0, nrow = m + 1, ncol = n + 1)

A <- matrix(0, nrow = m, ncol = m)

B <- matrix(0, nrow = m, ncol = m)

% j for instants , i for states

for (j in 2:(n + 1)) {

for (i in 2:m) {

E[i, j - 1] <- (p - (J[i + 1, j - 1] - J[i - 1, j - 1])/(2 * deltax)) *

(q * x[i]/(2 * ctwo)) - cone/(2 * ctwo)

ifelse(E[i, j - 1] < Emin, E[i, j - 1] <- Emin, E[i, j - 1])

ifelse(E[i, j - 1] > Emax, E[i, j - 1] <- Emax, E[i, j - 1])

}

E[m + 1, j - 1] <- (p - (3 * J[m + 1, j - 1] - 4 * J[m, j - 1] + J[m -

1, j - 1])/(2 * deltax)) * (q * x[m + 1]/(2 * ctwo)) - cone/(2 *

ctwo)

ifelse(E[m + 1, j - 1] < Emin, E[m + 1, j - 1] <- Emin, E[m + 1, j -

1])

ifelse(E[m + 1, j - 1] > Emax, E[m + 1, j - 1] <- Emax, E[m + 1, j -
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1])

% Solving HJB equation

source("func.aux1.R")

source("func.aux2.R")

source("func.aux3.R")

c1 <- rep(0, m + 1)

c2 <- rep(0, m + 1)

c3 <- rep(0, m + 1)

for (i in 2:(m + 1)) {

c1[i] <- constant1(r, K, q, x[i], E[i, j - 1])

c2[i] <- constant2(deltat, deltax , sigma , x[i])

c3[i] <- constant3(deltat, p, q, cone, ctwo, x[i], E[i, j - 1])

}

A[1, 1] <- 1 + d * deltat/2 + 0.5 * c2[2]

A[1, 2] <- -deltat * c1[2]/(4 * deltax) - 0.25 * c2[2]

A[m, m - 3] <- 0.25 * c2[m + 1]

A[m, m - 2] <- -deltat * c1[m + 1]/(4 * deltax) - 0.25 * c2[m + 1]

A[m, m - 1] <- deltat * c1[m + 1]/deltax + 1.25 * c2[m + 1]

A[m, m] <- 1 + d * deltat/2 - 3 * deltat * c1[m + 1]/(4 * deltax) -

0.5 * c2[m + 1]

firstcolumn <- 1

for (row in 2:(m - 1)) {

A[row, firstcolumn] <- deltat * c1[row + 1]/(4 * deltax) - 0.25 *

c2[row + 1]

A[row, firstcolumn + 1] <- 1 + d * deltat/2 + 0.5 * c2[row + 1]

A[row, firstcolumn + 2] <- -deltat * c1[row + 1]/(4 * deltax) -

0.25 * c2[row + 1]

firstcolumn <- firstcolumn + 1

}

B[1, 1] <- 1 - d * deltat/2 - 0.5 * c2[2]

B[1, 2] <- deltat * c1[2]/(4 * deltax) + 0.25 * c2[2]

B[m, m - 3] <- -0.25 * c2[m + 1]

B[m, m - 2] <- deltat * c1[m + 1]/(4 * deltax) + 0.25 * c2[m + 1]

B[m, m - 1] <- -deltat * c1[m + 1]/deltax - 0.5 * c2[m + 1]

B[m, m] <- 1 - d * deltat/2 + 3 * deltat * c1[m + 1]/(4 * deltax) +

0.25 * c2[m + 1]

firstcolumn <- 1

for (row in 2:(m - 1)) {

B[row, firstcolumn] <- -deltat * c1[row + 1]/(4 * deltax) + 0.25 *

c2[row + 1]

B[row, firstcolumn + 1] <- 1 - d * deltat/2 - 0.5 * c2[row + 1]
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B[row, firstcolumn + 2] <- deltat * c1[row + 1]/(4 * deltax) +

0.25 * c2[row + 1]

firstcolumn <- firstcolumn + 1

}

C <- B %*% J[2:(m + 1), (j - 1)]

D <- c3[2:(m + 1)]

F <- C + D

lu.dec <- lu.decomposition(A)

L <- lu.dec$L

U <- lu.dec$U

temp.mat <- solve(U) %*% solve(L) %*% F

for (count in 2:(m + 1)) {

J[count, j] <- temp.mat[count - 1]

}

}

for (i in 2:m) {

E[i, n + 1] <- (p - (J[i + 1, n + 1] - J[i - 1, n + 1])/(2 * deltax)) *

(q * x[i]/(2 * ctwo)) - cone/(2 * ctwo)

ifelse(E[i, n + 1] < Emin, E[i, n + 1] <- 0, E[i, n + 1])

ifelse(E[i, n + 1] > Emax, E[i, n + 1] <- Emax, E[i, n + 1])

}

E[m + 1, n + 1] <- (p - (3 * J[m + 1, n + 1] - 4 * J[m, n + 1] + J[m -

1, n + 1])/(2 * deltax)) * (q * x[m + 1]/(2 * ctwo)) - cone/(2 * ctwo)

ifelse(E[m + 1, n + 1] < Emin, E[m + 1, n + 1] <- 0, E[m + 1, n + 1])

ifelse(E[m + 1, n + 1] > Emax, E[m + 1, n + 1] <- Emax, E[m + 1, n + 1])

write.table(round(J, digits = 0), "J.csv", sep = ";", dec = ",", row.names = FALSE)

write.table(round(E, digits = 0), "E.csv", sep = ";", dec = ",", row.names = FALSE)

% Interpolation

population <- matrix(xone, nrow = path, ncol = n + 1)

Estar <- matrix(0, nrow = path, ncol = n + 1)

Jstar <- matrix(0, nrow = path, ncol = n + 1)

% Wiener process

mat.estoc <- matrix(rnorm(path * (n + 1)), nrow = path, ncol = n + 1)

dW <- (sqrt(deltat)) * mat.estoc

W <- t(apply(dW, 2, sum))

for (i in 1:path) {

for (b in 1:(n)) {

if (population[i, b] < xmax & population[i, b] > xmin) {
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Estar[i, b] <- interp1(x, E[, (n + 1) - (b - 1)], population[i,

b], method = "linear", extrap = FALSE)

Jstar[i, b] <- interp1(x, J[, (n + 1) - (b - 1)], population[i,

b], method = "linear", extrap = FALSE)

} else {

Estar[i, b] <- interp1(x, E[, (n + 1) - (b - 1)], population[i,

b], method = "linear", extrap = TRUE)

Jstar[i, b] <- interp1(x, J[, (n + 1) - (b - 1)], population[i,

b], method = "linear", extrap = TRUE)

}

if (Estar[i, b] < 0) {

Estar[i, b] <- 0

}

if (Estar[i, b] > Emax) {

Estar[i, b] <- Emax

}

% Euler scheme

population[i, b + 1] <- population[i, b] + (r * population[i, b] *

(1 - (population[i, b])/K) - q * Estar[i, b] * population[i,

b]) * deltat + sigma * population[i, b] * dW[i, b]

}

}

Estarmean <- apply(Estar , 2, mean)

Jstarmean <- apply(Jstar , 2, mean)

populationmean <- apply(population , 2, mean)

dWmean <- apply(dW, 2, mean)

%Sustainable policy

Estarstar <- (p * q * K * (r - 0.5 * sigma^2) - cone * r)/(2 * p * (q^2) *

K + 2 * r * ctwo)

Estarstar

EXstarstar <- K * (1 - (p * (q^2) * K * (r - 0.5 * sigma^2) - cone * r *

q)/(2 * r * p * (q^2) * K + 2 * (r^2) * ctwo) - (sigma^2)/(2 * r))

EXstarstar

Pistarstar <- ((r - 0.5 * sigma^2) * p * q * K - cone * r)^2/(4 * r * (p *

(q^2) * K + r * ctwo))

Pistarstar

write.table(round(populationmean , digits = 0), "Estar.csv", sep = ";",

dec = ",", row.names = FALSE)
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write.table(round(Estar , digits = 0), "Estar.csv", sep = ";", dec = ",",

row.names = FALSE)

write.table(round(Jstar , digits = 0), "Jstar.csv", sep = ";", dec = ",",

row.names = FALSE)

write.table(round(Estarmean , digits = 0), "Estarmean.csv", sep = ";", dec = ",",

row.names = FALSE)

write.table(round(Jstarmean , digits = 0), "Jstarmean.csv", sep = ";", dec = ",",

row.names = FALSE)

##### Comparisons #####

#Auxiliar variable

expdt <- deltat * matrix(rep((exp(-d * t) + exp(-d * (t + deltat)))/2, path), nrow =

path, ncol = n + 1, byrow = T)

###########

### 1 ###

###########

(PistarT <- mean(Jstar[, 1]))

############

### 1A ###

############

expdtLEstar <- expdt * (p * q * population - cone - ctwo * Estar) * Estar

intexpdtLEstar <- apply(expdtLEstar[,1:n], 1, sum)

(PistarT2 <- mean(intexpdtLEstar))

###########

### 2 ###

###########

LEstar <- (p * q * population - cone - ctwo * Estar) * Estar

LEstardt <- LEstar * deltat

intLEstardt <- apply(LEstardt[,1:n], 1, sum)

(VstarT <- mean(intLEstardt))

###########

### 3 ###

###########

ifelse(d==0,int0T <- T,int0T <- (1 - exp(-d * T))/d)

(PistarT2/int0T)
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###########

### 4 ###

###########

(VstarT/T)

###########

### 5 ###

###########

simX <- matrix(0, nrow = path, ncol = n + 1)

simX[, 1] <- rep(xone, path)

for (i in 1:path) {

for (j in 1:(n)) {

simX[i, j + 1] <- simX[i, j] + (r * simX[i, j] * (1 - (simX[i,

j])/K) - q * Estarstar * simX[i, j]) * deltat + sigma * simX[i,

j] * dW[i, j]

}

}

expdtLEstarstar <- expdt * (p * q * simX - cone - ctwo * Estarstar) * Estarstar

intexpdtLEstarstar <- apply(expdtLEstarstar[,1:n], 1, sum)

(PistarstarT <- mean(intexpdtLEstarstar))

###########

### 6 ###

###########

LEstarstar <- (p * q * simX - cone - ctwo * Estarstar) * Estarstar

LEstarstardt <- LEstarstar * deltat

intLEstarstardt <- apply(LEstarstardt[,1:n], 1, sum)

(VstarstarT <- mean(intLEstarstardt))

###########

### 7 ###

###########

ifelse(d==0,int0T <- T,int0T <- (1 - exp(-d * T))/d)

(PistarstarT/int0T)

###########

### 8 ###

###########

(VstarstarT/T)

####################################
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### Print values to a pdf file ###

####################################

pdf(paste("Comparisons",g,'.pdf',sep=''), height=5, width=5)

V.old <- c(PistarT ,0,0,0,0)

V.star <- c(PistarT2 ,sd(intexpdtLEstar),PistarstarT ,sd(intexpdtLEstarstar),(

PistarstarT -PistarT2)/PistarT2)

V.star.u <- c(VstarT ,sd(intLEstardt),VstarstarT ,sd(intLEstarstardt),(VstarstarT -VstarT

)/VstarT)

P.star <- c(PistarT2/int0T ,sd(intexpdtLEstar)/int0T ,PistarstarT/int0T ,sd(

intexpdtLEstarstar)/int0T ,((PistarstarT/int0T)-(PistarT2/int0T))/(PistarT2/int0T))

P.star.u <- c(VstarT/T,sd(intLEstardt)/T,VstarstarT/T,sd(intLEstarstardt)/T,((

VstarstarT/T)-(VstarT/T))/(VstarT/T))

data.mat <- matrix(c(V.old,V.star,V.star.u,P.star,P.star.u),5,5,byrow=TRUE)

data.mat[,1:4] <- round(10^(-6)*data.mat[,1:4],3)

data.mat[,5] <- round(100*data.mat[,5],1)

colnames(data.mat) <- c('Opt.','sd','Opt. Sust.','sd','%')

rownames(data.mat) <- c('V.old','V.star','V.star.u','P.star','P.star.u')

data.mat

grid.table(data.mat)

dev.off()

##### End comparisons ######

##### Graphics #####

matLopt <- matrix(0, nrow = path, ncol = n + 1)

matLopt[, 1] <- rep(0, path)

for (i in 1:path) {

for (j in 1:n) {

matLopt[i, j + 1] <- (p * q * population[i, j] - cone - ctwo *

Estar[i, j]) * Estar[i, j]

}

}

Lopt <- apply(matLopt , 2, mean)

Lsust <- (p * q * simX - cone - ctwo * Estarstar) * Estarstar

Lsust <- apply(Lsust , 2, mean)

matLEstarstar <- (p * q * simX - cone - ctwo * Estarstar) * Estarstar

(num1<-floor(runif(1)*path)+1)

library(ggplot2)

source("func.aux4.R")

df11<-data.frame(Time=t,Population=populationmean)

df12<-data.frame(Time=t,Population=population[num1 ,])

plot1<-ggplot(df11, aes(Time,Population))+geom_line(size=1,aes(color='Population (mean
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of 1 000 paths)'))+

scale_y_continuous(limits = c(0,7e+07), expand = c(0, 0)) +

scale_x_continuous(limits = c(0,T), expand = c(0, 0)) +

geom_line(data=df12,size=0.25,aes(color='Population (sample path)'))+labs(y='

Population (kg)',color='Legend')+

theme(legend.justification=c(0,1.10), legend.position=c(0,1.10),legend.background =

element_rect(fill=alpha('white', 0)))+

theme(legend.key.size = unit(0.15, "in"))+

theme(legend.text = element_text(size=7))+

theme(legend.title=element_blank())+

ggtitle("Optimal policy (variable effort)")+

theme(plot.title = element_text(size = 7,hjust=0.5))+

theme(axis.text=element_text(size=7),

axis.title=element_text(size=7))+

theme(axis.title.x=element_blank(),

axis.text.x=element_blank(),

axis.ticks.x=element_blank())+

theme(plot.margin= unit(c(.5, .5, 0, .5), "lines"))+

theme(legend.key = element_blank())+

theme(panel.background = element_rect(fill = "grey96",

colour = "grey96",

size = 0.5, linetype = "solid"))+

guides(colour = guide_legend(keywidth = 3.5, keyheight = .5,override.aes = list(

linetype=c('solid','solid'),size=c(1,0.25))))+

scale_color_manual(values=c("grey50", "black"))

df21<-data.frame(Time=t[1:n],Effort=Estarmean[1:n])

df22<-data.frame(Time=t[1:n],Effort=Estar[num1, 1:n])

plot2<-ggplot(df21, aes(Time,Effort))+geom_line(size=1,aes(color='Effort (mean of 1

000 paths)'))+

scale_y_continuous(limits = c(0,2.75e+05), expand = c(0, 0)) +

scale_x_continuous(limits = c(0,T), expand = c(0, 0)) +

geom_line(data=df22,size=0.25,aes(color='Effort (sample path)'))+labs(y='Effort (SFU)'

,x='Time (years)',color='Legend')+

theme(legend.justification=c(0,1.10), legend.position=c(0,1.10),legend.background =

element_rect(fill=alpha('white', 0)))+

theme(legend.key.size = unit(0.15, "in"))+

theme(legend.text = element_text(size=7))+

theme(legend.title=element_blank())+

theme(axis.text=element_text(size=7),

axis.title=element_text(size=7))+

theme(axis.title.x=element_blank(),
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axis.text.x=element_blank(),

axis.ticks.x=element_blank())+

theme(plot.margin= unit(c(.5, .5, 0, .5), "lines"))+

theme(legend.key = element_blank())+

theme(panel.background = element_rect(fill = "grey96",

colour = "grey96",

size = 0.5, linetype = "solid"))+

guides(colour = guide_legend(keywidth = 3.5, keyheight = .5,override.aes = list(

linetype=c('solid','solid'),size=c(1,0.25))))+

scale_color_manual(values=c("grey50", "black"))

df31<-data.frame(Time=t,Population=apply(simX, 2, mean))

df32<-data.frame(Time=t,Population=simX[num1 ,])

df33<-data.frame(Time=t,Population=rep(EXstarstar , n + 1))

plot3<-ggplot(df31, aes(Time,Population))+geom_line(size=1,aes(color='Population (mean

of 1 000 paths)'))+

scale_y_continuous(limits = c(0,7e+07), expand = c(0, 0)) +

scale_x_continuous(limits = c(0,T), expand = c(0, 0)) +

geom_line(data=df32,size=0.25,aes(color='Population (sample path)'))+labs(y='

Population (kg)',color='Legend')+

geom_line(linetype = "dashed",data=df33,size=.75,aes(color=paste("E[X**]=", round(

EXstarstar/1000, 0),'tonnes')))+

scale_color_manual(values=c("black", "grey50", "black"))+

theme(legend.justification=c(0,1.10), legend.position=c(0,1.10),legend.background =

element_rect(fill=alpha('white', 0)))+

theme(legend.text = element_text(size=7))+

theme(legend.title=element_blank())+

ggtitle("Optimal sustainable policy (constant effort)")+

theme(plot.title = element_text(size = 7,hjust=0.5))+

theme(axis.text=element_text(size=7),

axis.title=element_text(size=7))+

theme(axis.title.y=element_blank(),

axis.text.y=element_blank(),

axis.ticks.y=element_blank())+

theme(axis.title.x=element_blank(),

axis.text.x=element_blank(),

axis.ticks.x=element_blank())+

theme(plot.margin= unit(c(.5, 2.8, 0, .5), "lines"))+

theme(legend.key = element_blank())+

theme(

panel.background = element_rect(fill = "grey96",

colour = "grey96",
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size = 0.5, linetype = "solid"))+

guides(colour = guide_legend(keywidth = 3.5, keyheight = .5,override.aes = list(

linetype=c('dashed','solid','solid'),size=c(.75,1,0.25))))

df41<-data.frame(Time=t,Effort=rep(Estarstar , n + 1))

plot4<-ggplot(df41, aes(Time,Effort))+geom_line(size=1,aes(color=c(paste("E**=", round

(Estarstar , 0),'SFU'))))+

scale_y_continuous(limits = c(0,2.75e+05), expand = c(0, 0)) +

scale_x_continuous(limits = c(0,T), expand = c(0, 0)) +

labs(y='Effort (SFU)', x='Time (years)',color='Legend')+

theme(legend.justification=c(0,1.10), legend.position=c(0,1.10), legend.background =

element_rect(fill=alpha('white', 0)))+

theme(legend.key.size = unit(0.15, "in"))+

theme(legend.text = element_text(size=7))+

theme(legend.title=element_blank())+

theme(axis.text=element_text(size=7),

axis.title=element_text(size=7))+

theme(axis.title.x=element_blank(),

axis.text.x=element_blank(),

axis.ticks.x=element_blank())+

theme(axis.title.y=element_blank(),

axis.text.y=element_blank(),

axis.ticks.y=element_blank())+

guides(colour = guide_legend(keywidth = 3.5, keyheight = .5,override.aes = list(

linetype=c('solid'),size=1)))+

theme(plot.margin= unit(c(.5, 2.8, 0, .5), "lines"))+

theme(legend.key = element_blank())+

theme(panel.background = element_rect(fill = "grey96",

colour = "grey96",

size = 0.5, linetype = "solid"))+

scale_color_manual(values=c("black"))

df51<-data.frame(Time=t[2:n+1],Profit=Lopt[2:n+1])

df52<-data.frame(Time=t[2:n+1],Profit=matLopt[num1 ,2:n+1])

plot5<-ggplot(df51, aes(Time,Profit))+geom_line(size=1,aes(color='Profit (mean of 1

000 paths)'))+

scale_y_continuous(limits = c(0,7e+07), expand = c(0, 0)) +

scale_x_continuous(limits = c(0,T), expand = c(0, 0)) +

geom_line(data=df52,size=0.25,aes(color='Profit (sample path)'))+labs(y='Profit ($)',x

='Time (years)',color='Legend')+

theme(legend.justification=c(0,1.10), legend.position=c(0,1.10),legend.background =

element_rect(fill=alpha('white', 0)))+

theme(legend.key.size = unit(0.15, "in"))+
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theme(legend.text = element_text(size=7))+

theme(legend.title=element_blank())+

theme(axis.text=element_text(size=7),

axis.title=element_text(size=7))+

theme(plot.margin= unit(c(.5, .5, 0, .5), "lines"))+

theme(legend.key = element_blank())+

theme(panel.background = element_rect(fill = "grey96",

colour = "grey96",

size = 0.5, linetype = "solid"))+

guides(colour = guide_legend(keywidth = 3.5, keyheight = .5,override.aes = list(

linetype=c('solid','solid'),size=c(1,0.25))))+

scale_color_manual(values=c("grey50", "black"))

df61<-data.frame(Time=t,Profit=Lsust)

df62<-data.frame(Time=t,Profit=matLEstarstar[num1 ,])

df63<-data.frame(Time=t,Profit=rep(Pistarstar , n + 1))

plot6<-ggplot(df61, aes(Time,Profit))+geom_line(size=1,aes(color='Profit (mean of 1

000 paths)'))+

scale_y_continuous(limits = c(0,7e+07), expand = c(0, 0)) +

scale_x_continuous(limits = c(0,T), expand = c(0, 0)) +

geom_line(data=df62,size=0.25,aes(color='Profit (sample path)'))+labs(y='Profit ($)',

color='Legend', x='Time (years)')+

geom_line(linetype = "dashed",data=df63,size=.75,aes(color=paste("E[Pi**]=",round(

Pistarstar/10^6, 3), 'Million dollars')))+

scale_color_manual(values=c("black", "grey50", "black"))+

theme(legend.justification=c(0,1.10), legend.position=c(0,1.10),legend.background =

element_rect(fill=alpha('white', 0)))+

theme(legend.text = element_text(size=7))+

theme(legend.title=element_blank())+

theme(plot.title = element_text(size = 7))+

theme(axis.text=element_text(size=7),

axis.title=element_text(size=7))+

theme(axis.title.y=element_blank(),

axis.text.y=element_blank(),

axis.ticks.y=element_blank())+

theme(plot.margin= unit(c(.5, 2.8, 0, .5), "lines"))+

theme(legend.key = element_blank())+

theme(panel.background = element_rect(fill = "grey96",

colour = "grey96",

size = 0.5, linetype = "solid"))+

guides(colour = guide_legend(keywidth = 3.5, keyheight = .5,override.aes = list(

linetype=c('dashed','solid','solid'),size=c(.75,1,.25))))
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g1 <- ggplotGrob(plot1)

g2 <- ggplotGrob(plot2)

g3 <- ggplotGrob(plot3)

g4 <- ggplotGrob(plot4)

g5 <- ggplotGrob(plot5)

g6 <- ggplotGrob(plot6)

ggsave(paste('britesbraumann',g,'.pdf',sep=''),grid.arrange(g1, g3, g2, g4, g5, g6,

ncol=2),width=7,height=7)

save.image(paste(g,'.RData',sep=''))

###End

% Aux. function 1

constant1<-function(r,K,q,X,E){

return(r*X*(1-X/K)-q*E*X)

}

% Aux. function 2

constant2<-function(deltat,deltax ,sigma ,X){

return(deltat*(sigma^2)*(X^2)/(deltax^2))

}

% Aux. function 3

constant3<-function(deltat,p,q,c1,c2,X,E){

return(deltat*E*(p*q*X-cone-ctwo*E))

}

% Aux. function 4

multiplot <- function(..., plotlist=NULL, file, cols=1, layout=NULL) {

library(grid)

% Make a list from the ... arguments and plotlist

plots <- c(list(...), plotlist)

numPlots = length(plots)

% If layout is NULL, then use 'cols' to determine layout

if (is.null(layout)) {

% Make the panel

% ncol: Number of columns of plots

% nrow: Number of rows needed , calculated from % of cols

layout <- matrix(seq(1, cols * ceiling(numPlots/cols)),

ncol = cols, nrow = ceiling(numPlots/cols))

}

if (numPlots==1) {

print(plots[[1]])

} else {
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% Set up the page

grid.newpage()

pushViewport(viewport(layout = grid.layout(nrow(layout), ncol(layout))))

% Make each plot, in the correct location

for (i in 1:numPlots) {

% Get the i,j matrix positions of the regions that contain this subplot

matchidx <- as.data.frame(which(layout == i, arr.ind = TRUE))

print(plots[[i]], vp = viewport(layout.pos.row = matchidx$row,

layout.pos.col = matchidx$col))}}}



C
Matlab code for Chapter 6

We present the code used to compute the mean and standard deviation of the first passage time by a

lower threshold for the logistic-like model. For other thresholds and models, the user just needs to make

appropriate changes.

r = 0.71; K = 1; A = -0.75.*K; sigma = 0.2; x = K./2; q = 3.30.*10.^(-6); E = 60546;

a = 2.*(r.*A+q.*E.*(K-A))./((K-A).*sigma.^2); b = r./(K.*(K-A).*sigma.^2); d = K+A;

u = 0.05:0.05:1;

syms y z w

s = AT(y) (y.^a).*exp(b.*(y-d).^2);

m = AT(y) (1./sigma.^2).*(y.^(-a-2)).*exp(-b.*(y-d).^2);

%Mean
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M = AT(u)2.*integral(AT(y)s(y).*integral(AT(z)m(z),y,Inf),u,x,'ArrayValued',true)

%Standard Deviation

f1 = AT(z,y) integral(AT(t)((tan(t)).^(-a-2)).*((sec(t)).^2).*exp(b.*((y-d).^2)-b.*((

tan(t)-d).^2)),atan(z),pi/2,'ArrayValued',true,'RelTol',1e-1)

f2 = AT(z) integral(AT(t)(tan(t).^(-a-2)).*((sec(t)).^2).*exp(b.*((z-d).^2)-b.*((tan(t

)-d).^2)),atan(z),pi/2,'ArrayValued',true,'RelTol',1e-1)

f3 = AT(y) (y.^a).*integral(AT(z)(z.^a).*f2(z).*f1(z,y),y,Inf,'ArrayValued',true,'

RelTol',1e-1)

sd1 = AT(u) sqrt(8./(sigma.^4).*integral(AT(y)f3(y),u,x,'ArrayValued',true,'RelTol',1e

-1))

meanTu = arrayfun(M,u)

sdTu = arrayfun(sd1,u)

X = (u.*0.5.*80.5.*10.^6)./1000

figure

box on

set(semilogy(X,(meanTu)),'DisplayName','Mean time','LineWidth',4,'Color',[0.5 0.5

0.5]), hold on

set(semilogy(X,(sdTu)),'DisplayName','Standard deviation','LineWidth',2,'Color',[0 0

0]);

xlabel('L (tonnes)')

ylabel('years')

legend('show')

figure

box on

hold on

set(plot(X,(meanTu)),'DisplayName','Mean time','LineWidth',4,'Color',[0.5 0.5 0.5])

set(plot(X,(sdTu)),'DisplayName','Standard deviation','LineWidth',2,'Color',[0 0 0]);

xlabel('L (tonnes)')

ylabel('years')

legend('show')



D
Matlab code for Chapter 7

We present the code used to estimate the p.d.f. of TL and TU .

tmin = 0.001; tmax = 2000.1; npts = 20001;

[t,ft]=INVLAP('((x/u)^(q+sqrt((2*s/sigma^2)+q^2)))*kummerU(q+sqrt((2*s/sigma^2)+q^2)

,1+2*sqrt((2*s/sigma^2)+q^2),ro*x)/kummerU(q+sqrt((2*s/sigma^2)+q^2) ,1+2*sqrt((2*s/

sigma^2)+q^2),ro*u)',tmin,tmax,npts);

ft(isnan(ft)) = 0;

figure(1)

set(1,'color','white')

plot(t,ft,'-'), grid on, hold on

xlabel('t'), ylabel('f(t)')

axis([0 tmax 0 1.1*max(ft)])

saveas(gcf,'Fig1.jpg')
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figure(2)

set(2,'color','white')

loglog(t,ft,'-'), grid on, hold on

xlabel('time'), ylabel('f_{T_L}(t)')

%axis([tmin tmax 0 1.1.*max(ft)])

saveas(gcf,'Fig2.jpg')

%integral

s = sum(((tmax-tmin)/(npts -1)).*ft)

% 0.992

%mean

med = sum(((tmax-tmin)/npts).*ft.*t)

% 89.44

%%%%% Upper threshold

format long

tmin = 10^(-6);

tmax = 400;

npts = 370;

[t,ft]=INVLAP(funcN(s),tmin,tmax,npts ,22,20,19);

figure(1)

set(1,'color','white')

plot(t,ft,'-'), grid on, hold on

xlabel('t'), ylabel('log(f(t))')

axis([0 tmax min(ft) max(ft)])

saveas(gcf,'Fig1.jpg')

figure(2)

set(2,'color','white')

loglog(t,ft,'-'), grid on, hold on

xlabel('time'), ylabel('f_{T_U}(t)')

%axis([0 log10(tmax) 1.1*min(log10(ft)) 1.1*max(log10(ft))])

saveas(gcf,'Fig2.jpg')

%integral

s = s1*(tmax-tmin)/(npts -1)

% 0.994
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%mean

s2 = sum(ft.*t);

med = s2*(tmax-tmin)/(npts -1)

% 0.552

%%%% Invlap

% INVLAP - Numerical Inversion of Laplace Transforms

function [radt,ft]=INVLAP(Fs,tini,tend,nnt,a,ns,nd);

FF=strrep(strrep(strrep(Fs,'*','.*'),'/','./'),'^','.^');

r1 = 0.71; K1 = 80.5.*10.^6; E = 104540; q = 3.30.*10.^(-6);

r = r1-q.*E; sigma = 0.2; K = K1.*(1-q.*E./r1); x = K./2; u = 0.9.*x;

q = 0.5-r./sigma.^2; ro = (2.*r)./(K.*sigma.^2);

if nargin==4

a=6; ns=20; nd=19; end; % implicit parameters

radt=linspace(tini,tend,nnt); % time vector

if tini==0 radt=radt(2:1:nnt); end; % t=0 is not allowed

tic % measure the CPU time

for n=1:ns+1+nd % prepare necessary coefficients

alfa(n)=a+(n-1)*pi*j;

beta(n)=-exp(a)*(-1)^n;

end;

n=1:nd;

bdif=fliplr(cumsum(gamma(nd+1)./gamma(nd+2-n)./gamma(n)))./2^nd;

beta(ns+2:ns+1+nd)=beta(ns+2:ns+1+nd).*bdif;

beta(1)=beta(1)/2;

for kt=1:nnt % cycle for time t

tt=radt(kt);

s=alfa/tt; % complex frequency s

bt=beta/tt;

btF=bt.*eval(FF); % functional value F(s)

ft(kt)=sum(real(btF)); % original f(tt)

end;

toc
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