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Three-Phase Magnetic Field Tested in Wireless Power Transfer System 
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Abstract – This paper presents a magnetic field three dimensional mapping produced by a three-
phase prototype for wireless power transfer. The presented magnetic field mapping is a 
contribution to improve the design of electric vehicles battery chargers using the wireless power 
transfer. To collect the magnetic field data, a prototype was built, in order to support the tests. The 
prototype primary is an electrical three-phase system that allows to be connected electrically and 
geometrically in star or delta. The losses due to the magnetic field dispersion and the generated 
interferences in the surrounding equipment or in human body are discussed. The different 
standards organizations related to electric vehicles battery chargers are presented. Finally the 
magnetic field influence on the human body is addressed. Copyright © 2016 Praise Worthy Prize 
S.r.l. - All rights reserved. 
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Nomenclature 
B Magnetic field intensity 
d Distance from the conductor center 
D Distance between a generic point over the 

coil axis and the coil edge 
E Electromotive force 
EF Electric field 
dl Incremental length 
dS Incremental surface 
G Antenna gain 
H Magnetic field strength 
I Electric current 
J Current density 
kTR Coupling coefficient 
LR Receiver coil inductance 
LT Transmitter coil inductance 
M Mutual inductance 
MF Magnetic field 
n Number of turns per meter 
P Maximum output power 
PD Power density 
r Conductor radius 
R Coil radius 
  Electrical conductivity 
  Total magnetic flux 

B  Magnetic flux 
  Magnetic permeability 

0  Vacuum permeability 
CEN European Committee for Standardization 
CENELEC European Committee for Electrotechnical 

Standardization 
EMC Electromagnetic compatibility 
ETSI European Telecommunications Standards 

Institute 

EV Electric vehicle 
IEC International Electrotechnical 

Commission. 
IPT Inductive power transfer 
IPQ Portuguese Quality Institute 
ISA International Federation of National 

Standardizing Associations 
ISO International Organization for 

Standardization 
MCR Magnetically coupled resonator 
RF Radio frequency 
SC Subcommittees 
TC Technical committee 
UNSCC United Nations Standards Coordinating 

Committee 
WG Working group 
WPT Wireless power transfer 

I. Introduction 
The idea of transmitting electrical energy through the 

air was an old dream of Nikola Tesla [1]. The history of 
the WPT systems began in 1891 when Tesla invented his 
famous Tesla coil [2]. A generic WPT can be regarded as 
an efficient method of power transmission from one 
point to another through the air or the vacuum without 
the use of electrical cables or other conductive substance 
[3], [4]. The WPT can be applied in an instantaneous 
energy consumption, namely peak consumption or 
continuous energy delivery but where the connection 
cables are inconvenient, expensive, dangerous or 
impossible to use [4], [5]. The technologies used in the 
wireless power transfer systems can be categorized, 
according to functions of distance at which they can 
perform the power transmission efficiently, i.e. short 
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range, middle range and long range [6], [7]. 
The distance covered by the term “short range” starts 

from a few millimeters or centimeters. The middle range 
covers distances from a few centimeters to several meters 
and it may involve the use of repeaters. These two are 
also named “near field” technologies. Finally, the long 
range covers distances of meters up to many kilometers 
[6], [7]. The term used here is “far field”. 

The first two categories of the WPT technology are 
nonradiative, i.e., the carrier field is either magnetic or 
electric, but not electromagnetic (radio transmission). 

The far field is radiative, because is based on 
electromagnetic emission [7], [8]. The latest advances in 
semiconductor technology and magnetic materials helped 
the development of more efficient wireless power 
transfer in the near field technology [9]. The WPT is 
mostly a near field technology. It is still not available as 
an alternative to the power transmission by wire. 

The wire line system was established in the second 
half of the 19th century as the only electric grid, while 
Heinrich Hertz and Nikola Tesla had taken the first steps 
to the dream of wireless electric transmission [10] in the 
late 19th century. The recent history of the WPT 
restarted mainly in the "far field" technology, i.e. by 
microwaves (Microwaves Power Transmission). In the 
1960s, William C. Brawn studied and experimented 
WPT based on telecommunications and radar 
technologies achievements in the World War II [10]. He 
developed a special antenna block called "rectenna" for 
receiving and rectifying the microwaves [11]-[16]. 

A developed concept proposed later by Peter Glaser 
was to place power satellites constellation in 
geostationary equatorial orbit sending the energy 
obtained in space, to the ground station. The near field 
WPT is the most widely used now, e.g. in implantable 
biomedical devices. The main advantage of these 
implants lies in the reduced risk of postoperative 
infections and patient discomfort [17]-[21]. 

The technology that applies near field and inductive 
coupling is called IPT. Additionally this system is also 
being used to charge batteries for consumer electronic 
devices and more recently, it is also proposed to charge 
the batteries of EV, both hybrid and pure electric 
vehicles. In this transfer method the best efficiency and 
power is achieved by magnetic field. The principle is 
similar to the transformer, having resonant loops in the 
primary and secondary, tuned at the same frequency. The 
resonance can be tuned by connecting capacitors in series 
or in parallel on each side [22]. One of the many issues 
associated with the IPT is the adaptive matching method.  

During the operation, the load impedance varies with 
the distance and alignment between the primary and 
secondary circuits, and the impedance matching is 
necessary for achieving efficient power transfer. One of 
the methods consists in working at fixed frequency. It is 
easy to be implemented but it has serious limitations 
when the air gap and/or impedances change significantly.  

The second method, working by tracked the emitted 
frequency, could be implemented by controlling the 

resonance in the primary, or the secondary side, or in the 
both sides [23], [24]. 

The Magnetic Coupling Resonance used for the mid-
range distance is similar to the short-range technology.  

However, the tuning circuits are physically separated 
and, working close to the transmitter/receiver circuits.  

These wireless power systems MCR, can achieve high 
efficiency than the IPS over a larger distance by their 
high quality factor and maintained same resonant 
frequency [23], [24]. The wireless power transfer is 
essential for the spread of EV as it provides a safe and 
convenient charging of the cars batteries. To achieve 
wireless charging, the WPT system must satisfy three 
conditions: high efficiency, large air gaps and high 
power. The WPT, especially when the strong magnetic 
resonance is applied, satisfies these three conditions. The 
three phase wireless transmission permits a higher energy 
transfer, and is less critical to the misalignment [24]. 

I.1. The Standards Organizations 

The equipment manufactured by electrical and 
electronic components must comply with the rules and 
standards, mainly to protect the users. This protection 
covers areas such as the use of reduced voltages in 
control systems to the influence of the electromagnetic 
field on the human body. Some world entities that have 
responsibility for study, approval and publisher the 
international rules and standards are as following: 

The IEC [25] had its beginnings in the Resolution of 
the Chamber of Government Delegates in September 
1904, in the International Electrical Congress in St. 
Louis, USA. As in the other Electrotechnical 
organizations, the main objective is to prepare and 
publish the International Standards with regard to electric 
and electronic technologies. The structure of this 
Organization is based on TC, SC and WG. The TC and 
the SC prepare all the technical documentation for each 
specific sector and submits the documents to the 
members of the IEC for vote. Each National Committee 
represents the industry, the academia, the regulators and 
the consumers from the corresponding country. 

The IEC defines the EMC as: "… EMC describes the 
ability of electronic and electrical systems or components 
to work correctly when they are close together. In 
practice, this means that the electromagnetic disturbances 
from each part of equipment must be limited and also 
each item must have an adequate level of immunity to 
the disturbances in its environment…". 

The ISA, founded in 1926, was the beginning of the 
ISO [26]. Only after the World War II, it was made one 
approach to the UNSCC in order to create a new global 
organization to coordinate all activities relating to studies 
and publisher the new standards. The new organization 
ISO was born in 1946 in London, when at a meeting of 
delegates of the twenty-five countries such were 
deliberated. The European Commission recognized 
through EU Regulation 1025/2012/EC three European 
entities that make part of this organization. The three 
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entities are: the CEN, the CENELEC and the ETSI. 
These three entities are part of the European 

Standardization Organizations and all of then have the 
responsibility of to study, to elaborate and the 
publication of the standards for the EU. The CEN and the 
CENELEC have strong connections with the ISO and 
IEC respectively through the National Standards Bodies. 
As an example, the TC responsible for electric road 
vehicles in the CEN organization is the TC 301 [27]. 

I.2. The Electric Vehicle Standardization 
Responsibility 

As an example of some contradictions among 
organizations about the same standards, it can be 
indicated the following: 

For the EVs and the HEVs, being road vehicles, the 
responsibility in ISO is the TC 22/SC 21 and this 
subcommittee has three WGs. However, for the IEC, 
these vehicles are considered electric devices, ruled by 
competences attributed to the TC 69 with two WGs [28]. 

In order to reconcile the divergences that have been 
manifested in the past between the two TCs (ISO 
TC22/SC21 and IEC TC 69), some collaboration have 
been tried since a long time. A consensus agreement was 
established in 1996, defining the competencies of the 
respective committees. More recently, a Memorandum of  

Understanding between ISO and IEC was signed, 
valid for all types of road vehicles and its equipment, 
clarifying the collaboration rules and ways of working 
[28]. There are substantial differences between 
regulations and standards. The standards are developed 
by the technical community and are voluntary adopted, 
while regulations are governmentally endorsed 
documents, enforceable as laws [28]. 

II. Modeling 
The power density PD is a function of the electric 

field EF and the magnetic field MF. Hence, for any 
transmitter, the PD in (W/m2) [29], [30], [34]-[36] is 
given by: 

 24
PGPD

d
  (1) 

 
The EF is associated with the presence of electric 

charges, while the magnetic field associated with the 
physical movement of electric charges. The MF can be 
specified through the B or through the H. 

The magnetic field and the magnetic field strength are 
associated given by: 

 
 B H  (2) 
 
The human body's internal current and the energy 

absorbed by the tissues depend on the coupling 
mechanisms and frequency of electromagnetic field that 
pass through the body. The internal electric field and the 
current density are expressed by Ohm Law given by: 

 EJ   (3) 
 
Considering the standards J is in the range up to 

10 MHz. The models for the study of the magnetic field 
influence on the human body, assume that the body has 
homogeneous and isotropic conductivity. 

Simple models are applied, consisting of circular 
loops, to estimate the induced currents in various organs 
or regions of the body. Having in mind the Faraday Law 
of induction, for a pure sinusoidal waveform of the field, 
at a frequency f is given by: 

 
 J Rf B   (4) 
 
when a current flows through a conductor, a magnetic 
field is generated. The frequency of this magnetic field is 
the same as that of the current that provoked it. 

If a second conductor is nearby, an induced E will be 
created as stated by Faraday Law given by: 
 

 BE
t


 


 (5) 

 
The B in non-magnetic environment, considering a 

generic closed path around a conductor with an 
incremental length dl and with the same direction as the 
magnetic field, is a function of the current through the 
conductor given by: 

 

 0B dl i  (6) 
 

Considering (6), since the path of B around a straight 
conductor is always cylindrical, then at the distance from 
the conductor center d is given by: 

 
 2Bdl B d  (7) 

 
As the magnetic field strength is inversely 

proportional to the distance the distance from the 
conductor center, then B is given by: 

 

 0

2
B i

d



  (8) 

 
The total flux Φ is given by: 
 

 B dS  
 
  (9) 

 
Considering the Ampere Law the strength of the 

magnetic induction is given by: 
 

 0 enclosedB dS I  
 
  (10) 

 
Considering a coil B is given by: 

 
 0B I n  (11) 
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For locations along the coil axis, it should be 
considered that the dB


 is produced inside one turn. 

The integral of complete coil should be taken, to find 
B


. A coil of radius R carries a current I and creates a 
magnetic induction due to a tiny segment of the coil 
given by: 

 

 0
24

I dS rdB
R







 (12) 

 
Considering that the vertical components are canceled 
horizontaldB  is given by: 
 

 
 

0
2 2 1 22 24horizontal /

I dS RdB
D R D R





 

 (13) 

 
The total magnetic induction is given by: 
 

 
 

0
3 22 24 /

I RB dS
D R










 (14) 

 
The LT and LR, are mutually coupled. The M as a 

function of the kTR given by: 
 
 2/1)( RTTR LLkM   (15) 
 
The TRk  is a non-dimensional quantity having values 

between 0 and 1. 

III. Experimental Part 
The study presented in this paper was performed in 

the Laboratory of Power Electronics, Faculty of Science 
and Technology, New University of Lisbon, Portugal.  

The prototype was created by three coils connected in 
star and delta, separately, to form a three phase system 
supplied by 50 Hz frequency [31]-[33]. It appears that 
the behavior of the three phase magnetic induction 
measured on this prototype as base of WPT system. The 
vacuum permeability value is 7

0 4 10 H/m   . 
The primary coils are wound on magnetic cores 

shaped in parallelepiped form. Each coil has 110 turns, 
assembled in two layers. The core coils are equal and 
have the following dimensions: length 180 mm, height 
300 mm and thickness 60 mm. The primary coils are 
identified by colours: red, yellow and white as shown in 
Fig. 2 and Fig. 3. 

The probe coil, i.e. the secondary, is assembled on a 
cylindrical core shape of laminated ferromagnetic 
material and has 180 turns. This core has the following 
dimensions: length 130 mm and diameter 28 mm. 

The electrical characteristics of this coil are the 
following: inductance value of 3,56 mH and the 
resistance value of 0,7 Ω. 

The platform shown in Fig. 1 is built of non-
ferromagnetic material, namely K-line, with the 
following dimensions: length 1000 mm and width 
700 mm. The tests were performed on this platform. 

The two geometric configurations, delta and star, are 
shown in Fig. 2 and Fig. 3. Two sets of lines are drawn 
on the platform surface. The first set of lines are centred 
ones, the second set are radial lines. These radial lines 
are drawn at angles of 30° between each other. On each 
of radial lines, are marked distances of 100 mm, 200 mm 
and 300 mm. On this prototype, a significant set of tests 
was performed, that enables the mapping of the magnetic 
induction, in X, Y and Z coordinates. The total covered 
surface value is 28,27 dm2. Table I summarizes the 
measured parameters of the primary windings. 

Table II summarizes the inductive reactance and the 
impedance calculated for the primary windings. 

 

 
 

Fig. 1. The platform built in Kline material 
 

 
 

Fig. 2. Prototype built. The primary coils in delta geometric 
configuration 

 

 
 

Fig. 3. The primary coils in star geometric configuration 
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TABLE I 
DATA MEASURED FOR THE PRIMARY WINDINGS 
Coil Inductance (mH) Resistance (  ) 

Red 8,6  1,7  
Yellow 8,66 1,6  
White 9,43 1,6 

 
The tests were performed by applying, in sequence, a 

RMS voltage value of 20 V and 30 V at the coils that 
form the primary circuit. 

At each test point the values were obtained by the 
probe in three positions, vertical, horizontal longitudinal 
and horizontal transversal, as shown in Fig. 4, Fig. 5 and 
Fig. 6, at the three circumferences, with radio value of 
100 mm, 200 mm and 300 mm. 

Table III and Table IV summarize the currents in each 
primary coil for the input RMS voltage value of 20 V and 
of 30 V. They are applied by a three-phase variable 
transformer in star and delta electrical configurations. 
 

TABLE II 
PRIMARY, INDUCTIVE REACTANCE AND IMPEDANCE 

Coil Inductive reactance ( ) Impedance ( ) 
Red 2,7  3,19  
Yellow 2,72 3,16  
White 2,96 3,37 

 
TABLE III 

CURRENT IN EACH PRIMARY COIL IN STAR ELECTRICAL 
CONFIGURATION 

 20 V 30 V 
Coil Current (A) Current (A) 

Red 6,3 9,4 
Yellow 6,3 9,5 
White 5,9 8,9 

 
TABLE IV 

CURRENT IN EACH PRIMARY COIL IN DELTA ELECTRICAL 
CONFIGURATION 

 20 V 30 V 
Coil Current (A) Current (A) 

Red 10,8 16,3 
Yellow 10,9 16,5 
White 10,3 15,4 

 

 
 

Fig. 4. Probe in vertical position 

 
 

Fig. 5. Probe in horizontal longitudinal position 
 

 
 

Fig. 6. Probe in horizontal transversal position 

IV. Case Study 
The results shown in this case study are divided in two 

sections IV.1 and IV.2. The section IV.1 (Fig. 7 to Fig. 
17) shows the magnetic induction values measured when 
the primary coils are electrically connected in delta, but 
in star geometric configuration. The section IV.2 (Fig. 18 
to Fig. 29) shows the magnetic induction values 
measured when the electrical configuration is maintained 
but the coils are in delta geometric configuration. 

The average electric current value through each coil is 
16,07 A (Table III, column 30 V). 

IV.1. Star Geometric Configuration 

The magnetic induction dispersion and the magnetic 
induction amplitude at the distance value of Z = 0 cm 
from the primary coils are shown in Fig. 7 and Fig. 8. 

The lines, blue, brown and gray represent the values 
of the magnetic induction measured in (mT). 
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These lines show the measured values on the 
circumferences radio value of 100 mm, 200 mm and 300 
mm, respectively. The lines yellow and black represent 
the average of the maximum and minimum values. 

The three primary coils were placed in star 
geometrical configuration and were aligned with the 
radial lines of 90°, 210° and 330°. It is noted that the 
three maximums are reached close to these three 
positions Fig. 8. The Fig. 9 shows the magnetic induction 
amplitude in the same configuration of the primary coils 
as used previously, but with the probe in horizontal 
longitudinal position, shown in Fig. 5. The average of the 
highest measured values of the magnetic induction is 
significantly lower than the average calculated from the 
previous experiments. However, the average of the 
minimum values now, is slightly higher. 

The gap between the average of the maximums values 
and the minimums values are greatly reduced compared 
to the values obtained in the previous test conditions. 

This can be observed through the gap between the 
yellow and black lines, in Fig. 9. 

Fig. 10 shows the magnetic induction amplitude in the 
same conditions as the previously but with the probe in 
horizontal transversal position, as shown in Fig. 6. 

 

 
 

Fig. 7. Probe in vertical position: planar induction dispersion 
at Z = 0 cm 

 

 
 

Fig. 8. Probe in vertical position: magnetic induction amplitude 
at Z = 0 cm 

 
 

Fig. 9. Probe in horizontal longitudinal position: magnetic induction 
amplitude at Z = 0 cm 

 

 
 

Fig. 10. Probe in horizontal transversal position: magnetic induction 
amplitude at Z = 0 cm 

 
Under the conditions of this configuration, the 

minimum values are located in places where previously 
were seen the maximums. The maximum values of the 
magnetic induction are now located at the intermediate 
arcs between the positions of the primary coils. 

The magnetic induction values measured at a gap 
(distance) of Z = 5 cm between the primary coils and the 
probe are shown in Fig. 11 to Fig. 13. 

The measuring procedures were exactly equal to the 
previous tests, first with the probe in vertical position, 
later with the probe in horizontal longitudinal position. 

The magnetic induction dispersion and magnetic 
induction amplitude, obtained at a gap (distance) 
Z=10 cm between the probe and the primary coils are 
shown in Fig. 14 to Fig. 17. The tests sequence is the 
same as the previous. 

The magnetic induction amplitude in two different 
positions is shown in Fig. 16 and Fig. 17. In the first one, 
the data was obtained with the probe in horizontal 
longitudinal position and the second the probe was in 
horizontal transversal position. 
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Fig. 11. Probe in vertical position: planar magnetic induction 
dispersion at Z = 5 cm 

 

 
 

Fig. 12. Probe in vertical position: Magnetic induction amplitude 
at Z = 5 cm 

 

 
 

Fig. 13. Probe in horizontal longitudinal position: magnetic induction 
amplitude at Z = 5 cm 

 
 

Fig. 14. Probe in vertical position: planar magnetic induction 
dispersion at Z = 10 cm 

 

 
 

Fig. 15. Probe in vertical position: magnetic induction amplitude 
at Z = 10 cm 

 

 
 

Fig. 16. Probe in horizontal longitudinal position: magnetic induction 
amplitude at Z = 10 cm 
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Fig. 17. Probe in horizontal transversal position: magnetic induction 
amplitude at Z=10 cm 

IV.2. Delta Geometric Configuration 

The magnetic induction values measured on the delta 
geometric configuration are shown in Fig. 18 to Fig. 29.  

The triangle’s vertices formed by the three primary 
coils were placed on radial lines of 90°, 210° and 330°.  

The tests sequence was the same as the previous. 
First, the probe was placed in vertical position, then in 

horizontal longitudinal position and finally in horizontal 
transversal position shown in Fig. 4 to Fig. 6. 

The magnetic induction dispersion and magnetic 
induction amplitude with a gap value of Z = 0 cm 
between the primary coils and the probe are shown in 
Fig. 18 and Fig. 19. The maximum values of the 
magnetic induction were obtained around the vertices 
position, as expected. The grey line represents measured 
values of the magnetic induction on the outer 
circumference (larger diameter). These values have 
naturally, lesser amplitudes. 

 

 
 

Fig. 18. Probe in vertical position: planar magnetic induction 
dispersion at Z=0 cm 

 
 

Fig. 19. Probe in vertical position: magnetic induction amplitude 
at Z = 0 cm 

 
The magnetic induction values obtained at the same 

conditions as the previous ones, but with the probe in 
horizontal longitudinal position is shown in Fig. 20. 

The gap between the maximum and minimum average 
is significantly reduced. This is due to the increase of the 
minimum values of the magnetic induction. 

The magnetic induction amplitude with the probe in 
horizontal transversal position is shown in Fig. 21. 

The minimum measured values of the magnetic 
induction are now found where, in the previous 
configuration, the maximum values were measured. This 
is due to the probe position in relation to the magnetic 
force lines. The gap between the maximum and the 
minimum values is now higher, due to the reduction of 
the minimum values. 

 

 
 

Fig. 20. Probe in horizontal longitudinal position: magnetic induction 
amplitude at Z = 0 cm 
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Fig. 21. Probe in horizontal transversal position: magnetic induction 
amplitude at Z=0 cm 

 
The magnetic induction dispersion and the magnetic 

induction amplitude at a gap value of 5 cm between the 
primary coils and the probe in vertical position are shown 
in Fig. 22 and in Fig. 23. The magnetic induction 
dispersion shape is close to the obtained with the probe 
in same position but at Z = 0 cm. The magnetic induction 
amplitude with the probe in horizontal longitudinal 
position is shown in Fig. 24. 

The gap between the maximum average magnetic 
induction values and the minimum average magnetic 
induction values is reduced mainly because the 
maximum value had a significant decrease. The planar 
magnetic induction dispersion and the magnetic 
induction amplitude, at a gap of 10 cm between the probe 
and the primary coils are shown in Fig. 25 to Fig. 29. 

The tests were performed in the same sequence as the 
previous. First, the probe was placed in vertical position, 
then in horizontal longitudinal position and finally, the 
probe in horizontal transversal position. The values 
decrease, as expected, along with the increase of the gap 
between the primary coils and the probe. 

 

 
 

Fig. 22. Probe in vertical position: planar magnetic induction 
dispersion at Z = 5 cm 

 
 

Fig. 23. Probe in vertical position: magnetic induction amplitude 
at Z=5 cm 

 

 
 

Fig. 24. Probe in horizontal longitudinal position: magnetic induction 
amplitude at Z = 5 cm 

 
Fig. 25 and Fig. 26 show the shape of the intensity of 

the magnetic induction is more circular although there 
was a significant drop in the average of the maximum 
values (yellow line). 

Fig. 27 and Fig. 28 show the planar magnetic 
induction dispersion and the magnetic induction 
amplitude with the same configuration but with the probe 
in horizontal longitudinal position. 

The maximum average value suffered a slight 
reduction when compared with the induction value when 
the probe is in vertical position. This is due to different 
alignment of the probe related to the magnetic induction 
line forces. The magnetic induction amplitude measured 
with the probe in horizontal transversal position is shown 
in Fig. 29. The values obtained are significantly reduced.  

The major cause is, again, the probe alignment with 
the magnetic force lines. 
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Fig. 25. Probe in vertical position: planar magnetic induction 
dispersion at Z=10 cm 

 

 
 

Fig. 26. Probe in vertical position: magnetic induction amplitude 
at Z = 10 cm 

 

 
 

Fig. 27. Probe in horizontal longitudinal position: planar magnetic 
induction dispersion at Z=10 cm 

 
 

Fig. 28. Probe in horizontal longitudinal position: magnetic 
induction amplitude at Z = 10 cm 

 

 
 

Fig. 29. Probe in horizontal transversal position: magnetic 
induction amplitude at Z = 10 cm 

V. Conclusion 
The battery charging system using wireless power 

transfer has a key point: the magnetic circuit must enable 
the transfer of electrical energy being less sensitive to 
misalignment. This work was carried out in order to map 
the magnetic induction of a three-phase system and to 
clarify the best choice of operation. 

The star geometric configuration has the magnetic 
induction lines concentrated around the star vertex. This 
is the main reason for the high sensitivity to the 
misalignment problems making this point very critical. 

The delta geometric configuration has the magnetic 
induction lines more concentrated around the vertices of 
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the triangle formed by the three primary coils. This 
allows a better uniform magnetic induction spreading, 
making the system less sensitive to misalignment. 

The delta geometric configuration allows obtaining 
the magnetic induction distribution almost uniform and 
circular with a maximum average value of 1 mT, at a gap 
of 10 cm between the primary coils and the probe. 

The delta geometric configuration of the primary coils 
is proved to be the best. The receiver may contain only 
one coil finding a good magnetic coupling with any of 
the three phases at a larger area, where the magnetic 
induction was discovered to be sufficiently widely and 
uniformly distributed. 

This will be the best choice for transmitting electric 
power through magnetic induction, as it is necessary in 
the wireless power transfer system. 
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