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Abstract

Reverse transcription-quantitative real-time PCR (RT-qPCR) is a widely used

technique for gene expression analysis. The reliability of this method depends

largely on the suitable selection of stable reference genes for accurate data

normalization. Hypericum perforatum L. (St. John’s wort) is a field growing plant that

is frequently exposed to a variety of adverse environmental stresses that can

negatively affect its productivity. This widely known medicinal plant with broad

pharmacological properties (anti-depressant, anti-tumor, anti-inflammatory,

antiviral, antioxidant, anti-cancer, and antibacterial) has been overlooked with

respect to the identification of reference genes suitable for RT-qPCR data

normalization. In this study, 11 candidate reference genes were analyzed in H.

perforatum plants subjected to cold and heat stresses. The expression stability of

these genes was assessed using GeNorm, NormFinder and BestKeeper

algorithms. The results revealed that the ranking of stability among the three

algorithms showed only minor differences within each treatment. The best-ranked

reference genes differed between cold- and heat-treated samples; nevertheless,

TUB was the most stable gene in both experimental conditions. GSA and GAPDH

were found to be reliable reference genes in cold-treated samples, while GAPDH

showed low expression stability in heat-treated samples. 26SrRNA and H2A had

the highest stabilities in the heat assay, whereas H2A was less stable in the cold

assay. Finally, AOX1, AOX2, CAT1 and CHS genes, associated with plant stress

responses and oxidative stress, were used as target genes to validate the reliability

of identified reference genes. These target genes showed differential expression
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profiles over time in treated samples. This study not only is the first systematic

analysis for the selection of suitable reference genes for RT-qPCR studies in H.

perforatum subjected to temperature stress conditions, but may also provide

valuable information about the roles of genes associated with temperature stress

responses.

Introduction

Gene expression analysis has been widely used as a method to study the complex

signaling and metabolic pathways underlying cellular and developmental

processes in biological organisms, including plants. Growing number of studies of

expression levels of several genes in plants have been carried out in order to

understand the cellular and molecular mechanisms involved in plant development

and growth, as well as, in plant responses to biotic (pathogen infection) and

abiotic (environmental) stresses [1–4].

The analysis of gene expression has been performed by using different methods

such as, northern blotting, ribonuclease protection assay, reverse transcription-

polymerase chain reaction (RT-PCR), reverse transcription-quantitative real-time

PCR (RT-qPCR), DNA microarrays [5], and next generation sequencing (NGS)

technologies [6]. These last three technologies in particular have gained a wider

appeal for the quantification of gene expression. It is clear that microarrays and

NGS are extremely popular due to the ability to perform high throughput

analysis. It is also clear that because of their relative simplicity and portability,

qPCR-based assays will continue to be in demand for some considerable time [6].

Moreover, NGS data is currently expanding in many plant species [7–9] and RT-

qPCR provides a reliable method for validating such huge amount of RNA

Sequencing (RNA-seq) data [10]. However, several variables need to be controlled

to obtain reliable quantitative expression measures by RT-qPCR. These include

variations in initial sample quantity, RNA recovery, RNA integrity, efficiency of

cDNA synthesis, and differences in the overall transcriptional activity of the

tissues or cells analyzed [11]. To overcome the problem of variability, a

normalization step has to be used prior to gene expression analysis in order to

minimize its effects. The most common approach to normalize RT-qPCR data is

the introduction of reference genes (RG) [12–15]. A suitable reference gene is

assumed to be unaffected by the experimental conditions and therefore should be

expressed at a constant level among samples [16]. Consequently, any changes in

its expression level are due only to technical variations which should be

discounted from the variation of the target gene expression levels. Indeed, the

purpose of a reference gene is to remove the technical variations, ending up with

true biological changes [17]. The use of only one reference gene as well as the use

of the most frequently used reference genes for normalization without a prior

validation is no longer considered a good strategy [18]. It is widely recognized that
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the use of inappropriate RGs may result in misinterpretation of the expression

pattern of a given target gene thereby introducing flaws in the understanding of

the gene’s role. Recently, efforts have been directed towards systematization and

standardization of these type of analyses, and the MIQE (minimum information

for publication of quantitative real-time PCR experiments) guidelines suggest the

use of three reference genes to generate more reliable results [19]. The

identification of stable RGs in various experimental designs will therefore

contribute to have more accurate and reliable gene expression data.

Several algorithms such as GeNorm [20], NormFinder [11], BestKeeper [21],

DCt [22], qBasePlus [23], as well as single-factor analysis of variance (ANOVA)

and linear regression analysis [24] have been utilized. These algorithms have been

applied in order to analyze the expression stability of candidate RGs among

genotypes, organs, tissues, developmental stages and several biotic and abiotic

stress conditions. Nowadays, a high diversity of plant species have been studied,

including a number of important crops, vegetables and fruit plant species

(Table 1).

However, to the best of our knowledge, no studies were performed on the

evaluation of the expression stability of candidate RGs in Hypericum perforatum L.

(commonly named St. John’s wort). Moreover, the few studies on gene expression

by RT-qPCR performed in H. perforatum rely, even recently, on only one

reference gene for data normalization [48–50]. Apart from these studies, no

information is available on the most appropriate RGs to be used in data

normalization in studies related with temperature stress response in this plant

species.

H. perforatum is a widely known medicinal herb used mostly as a medication

for depression [51] having also other broad pharmacological activities, such as

anti-tumor, anti-inflammatory, antiviral, antioxidant, anti-cancer, and antibac-

terial properties [52, 53]. These properties are mainly due to the biosynthesis and

accumulation of important secondary metabolites in its tissues.

Naphtodianthrones, which include hypericin and pseudohypericins, and hyper-

forin, are the main biological active substances naturally present in H. perforatum

[54]. H. perforatum, as a field growing plant, is frequently exposed to a variety of

adverse environmental stresses which negatively affect both productivity and

secondary metabolites content [55]. Environmental stress, such as extreme cold

and heat stress (CS and HS, respectively), are two factors that greatly affect

cultivated plants. The Mediterranean climate is characterized by high thermal

amplitude, not only during a season, but also within a day, and therefore, plants

need to suppress and respond quickly to the adverse effects of extreme

temperature changes. It is important to understand how plants adapt to adverse

temperatures in face of the current temperature changes that are occurring

globally and that can critically affect plants behavior, such as physiological

processes, crop production, and metabolite production.

Examples of genes which are associated with plant responses to abiotic stresses

are, the alternative oxidase (AOX1 and AOX2), the chalcone synthase (CHS) and

catalase (CAT). AOX is a mitochondrial membrane protein that functions as
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terminal oxidase in the alternative (cyanide-resistant) respiratory pathway, where

it reduces oxygen to water [56]. AOX relieves oxygen species (OS) originating

from environmental stresses by limiting mitochondrial reactive oxygen species

(ROS) formation and preventing specific components of the respiration chain

from over-reduction [57] and canalizing ROS signals [58]. In dicot plant species

AOX is nuclear encoded by a small multigene family composed by two sub-family

genes, AOX1 and AOX2 [59]. CAT is a nuclear encoded enzyme which depending

on its isoform could be localized in both the cytosol and peroxisomes [60] and

probably also in the mitochondria [61]. CAT, the major H2O2-scavenging enzyme

in all aerobic organisms [62], performs the rapid removal of H2O2 from the cell by

Table 1. Previous studies on candidate reference genes selection for RT-qPCR data normalization in several crops, vegetables and fruit plants.

Plant species Experimental condition (validated reference genes) References

Glycine max L. Seed development (TUA5, UKN2) and seed germination (Glyma05g37470 and Glyma08g28550). [25]

Different stresses (EF1B and UKN2). [26]

Zea mays L. Different tissues, developmental stages, and stress treatments (CUL, FPGS, LUG, MEP and UBCP). [27]

Respect to abiotic stresses, hormones across different tissue types (EF1a, b-TUB, and their combination -
EF1a+b-TUB).

[28]

Oryza sativa L. Different stress conditions (EP (LOC_Os05g08980), HNR (LOC_Os01g71770), and TBC (LOC_Os09g34040)). [29]

Solanum tuberosum
L.

Compatibility of potato–nematode interactions (RPN7, UBP22, OXA1 and MST2). [30]

Tuber tissues exposed to cold treatments during different time periods (ef1a and APRT). [31]

S. lycopersicum L. Seed germination (SGN-U601022 (at2g20000), SGN-U580609 (at3g18780), SGN-U579915 (at4g02080),
SGN-U569038 (at1g13320), SGN-U563892 (at5g25760), SGN-U568398 (at3g25800), SGN-U566667
(at5g46630), SGN-U567355, SGN-U584254 (at4g34270)).

[32]

Brassica napus L. Different tissues and cultivars, and under different conditions. (GDI1, PPR, UBA, OTP80 and ENTH). [33]

Lactuta sativa L. Different abiotic stresses (MIR169, MIR171/170 and MIR172). [34]

Fragaria x ananassa Different tissues, cultivars, biotic stresses, ripening and senescent conditions, and SA/JA treatments
(FaRIB413, FaACTIN, FaEF1a and FaGAPDH2).

[35]

Citrullus lanatus Low temperature stress in leaves (ClYLS8 and ClPP2A). [36]

Cucumis melo L. Leaves and roots under various stresses and growth regulator treatments (CmRPL and CmADP). [37]

Lycium sp. Fruit developmental stages (combination of GAPDH and EF1a). [38]

Ripening fruits (EF1a and ACTIN1) or plants under salt stress (H2B1 and H2B2). [39]

Coffea sp. General assay (GAPHD, Cycl, and UBQ10), genotype (GAPDH, UBQ10, Ap47, and EF-1A), cold stress
(UBQ10, GAPDH, ACT, and EF-1A), drought stress (GAPDH, ACT, EF1A, and Apt), multiple stress
(UBQ10, GAPDH, ACT, and elf-4A).

[40]

First hours of interaction (12, 48 and 72 hpi) with C. kahawae (IDE). [41]

Vitis vinifera L. First hours of interaction (0 h, 6, 12, 18 and 24 hpi) with P. viticola to study genotype and biotic stress effects
(UBQ, EF1a and GAPDH (genotype effect), EF1a, SAND and SMD3 (data normalization) and EF1a, GAPDH
and UBQ Biotic stress effect).

[42]

Citrus sp. Different citrus tissues (18SrRNA, ACTB and rpII). [43]

Musa acuminata Evaluation of robustness under different conditions, and in different tissues and varieties (EF1, ACT, and
TUB (normalization in expression in leaves of greenhouse plants), ACT and L2 (leaf discs), and combinations
of TUB, ACT/ACT11, and EF1 (expression studies in meristems)).

[44]

Carica papaya L. Different experimental conditions (EIF, TBP1 and TBP2). [45]

Pyrus pyrifolia L. Different environmental conditions, tissue types and developmental stages (HIS, SAND, TIP). [10]

Prunus persica L. Biotic stress treatments (miR5059 and miR5072). [46]

Cocos nucifera L. Abiotic stress and endosperm developmental (eEF1-a and UBC10). [47]

doi:10.1371/journal.pone.0115206.t001
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oxidation of H2O2 to H2O and O2 [61]. CHS, a key enzyme of the flavonoid/

isoflavonoid biosynthesis pathway and a component of the plant developmental

program, is induced in plants under stress conditions such as UV light, bacterial

or fungal infection [63].

For further development of RT-qPCR studies in H. perforatum that analyze the

expression of stress responsive genes upon temperature stress conditions, the

present study aimed to determine the most suitable RGs for data normalization.

Here, we report a systematic analysis of eleven candidate RGs of H. perforatum,

out of which some are commonly used as such, like the 18S ribosomal RNA

(18SrRNA), the glyceraldehyde-3-phosphate dehydrogenase A subunit (GAPDH),

and the beta-tubulin (TUB) [28, 33], but others not, such as the ribulose-1,5-

bisphosphate carboxylase/oxygenase large subunit (RBCL), glutamate-1-semial-

dehyde 2,1-aminomutase (GSA), chamba phenolic oxidative coupling protein

(HYP1), short-chain dehydrogenase/reductase (SDR), polyketide synthase 1

(PKS1) and polyketide synthase 2 (PKS2). The expression stabilities of these

candidate RGs were evaluated using the three distinct statistical algorithms,

GeNorm, NormFinder and BestKeeper, in order to determine the most stable and

therefore most suitable genes for an accurate RT-qPCR normalization in H.

perforatum upon temperature stress conditions.

Materials and Methods

Plant material and experimental conditions

Hypericum perforatum L. seeds were removed from the achenes of a mother plant

growing under field conditions in the Alentejo region (Viana do Alentejo,

Portugal, 38 2̊19370N, 7 5̊99130W). H. perforatum is not considered an endangered

or protected species and no specific permissions were required for achene

harvesting. After disinfection, seeds were in vitro inoculated (see details in [64]).

Eight weeks after germination seedlings were transferred to 6.665.9 cm glass

culture vessels (100 ml, Sigma-Aldrich, Sintra, Portugal) with fresh MS medium

[65] (10 seedlings per flask). Cultures were maintained in a growth chamber at

16 h photoperiod, constant temperature of 25 C̊, and 80 mmol m22s21 of light

intensity provided by day-light Philips fluorescent lamps. Nine-week-old seedlings

were used for gene expression assays.

Two different experimental conditions were conducted in this study:

1) Cold stress (CS): cultures were transferred to 4 C̊. All the other parameters

were maintained. Samples were collected at different time points: 0, 4, 8, 12, 24, 48

and 72 hours post incubation (hpi). Each biological sample consisted in a bulked

sample of 10 seedlings. Three replicates were collected per time point.

2) Heat stress (HS): cultures were transferred to 35 C̊ (the remaining

parameters were maintained). Samples were collected at different time points: 0,

12, 24, 72 hpi and 7 days post incubation (dpi). Each biological sample consisted

in a bulked sample of 3 seedlings. Three replicates were collected per time point.
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RNA isolation and first-strand cDNA synthesis

Total RNA was isolated with the RNeasy Plant Mini Kit (Qiagen, Hilden,

Germany), according to the supplier’s instructions and eluted in 30 ml volume of

RNase-free water. To digest residual genomic DNA, RNA samples were treated

on-column with DNase I (RNase-Free DNase Set, Qiagen, Hilden, Germany)

following the manufacturer’s instructions. The concentration of total RNA was

determined with the NanoDrop-2000C spectrophotometer (Thermo Scientific,

Wilmington, DE, USA) and its integrity analyzed by agarose gel electrophoresis

(prepared with DEPC-treated water) after visualization of the two ribosomal

subunits in a Gene Flash Bio Imaging system (Syngene, Cambridge, UK). A

maximum of 1.5 mg of total RNA was used for reverse transcription with the

Maxima First Strand cDNA Synthesis Kit for RT-qPCR (Thermo Scientific,

Wilmington, DE, USA). All the subsequent procedures were performed according

to the manufacturer’s instructions.

Quantitative real-time PCR

Relative quantification of gene expression was performed in the Applied

Biosystems 7500 Real-Time PCR System (Applied Biosystems, Foster City, CA,

USA). Real-time PCR reactions were carried out using 16 Maxima SYBR Green

qPCR Master Mix, 300 nM of forward and reverse primers, and 1.25 ng of cDNA

in a total volume of 18 ml. Primers for 11 candidate RGs and 4 target genes

(Table 2) (designed from H. perforatum sequences deposited in National Center

for Biotechnology Information - NCBI) were designed with the Primer Express

v3.0 (Applied Biosystems, Foster City, CA, USA) using the default properties

given by the software: amplicon length between 50 and 150 bp; primer length

between 18 and 25 bp; melting temperature (Tm) of 60 C̊; guanine and cytosine

(GC) content of 60%. All primer pairs were checked for their probability to form

dimmers and secondary structures with the primer test tool of the software. cDNA

samples were previously diluted in order to get the same concentration for all

samples followed by a ten-fold dilution. The reactions were performed using the

following thermal profile: 10 min at 95 C̊, and 40 cycles of 15 s at 95 C̊ and 60 s at

60 C̊. No-template controls (NTCs) were used to assess contaminations and

primer dimmers. A standard curve was performed using undiluted pool of all

cDNA samples and three five-fold serial dilutions. All samples were run in

duplicate. Melting curve analysis was done to ensure amplification of the specific

amplicon. Quantification cycle (Cq) values were acquired for each sample with the

Applied Biosystems 7500 software (Applied Biosystems, Foster City, CA, USA).

Determination of gene expression stability

To determine the expression stability for each of the candidate RGs, 3 different

statistical algorithms were applied: GeNorm [20], NormFinder [11], and

BestKeeper [21].
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GeNorm determines the pairwise variation of every control gene with all other

control genes as the standard deviation of the logarithmically transformed

expression ratios, and defines the internal control gene-stability measure M as the

average pairwise variation of a particular gene with all other control genes.

GeNorm also determines the optimal number of genes required to calculate a

reliable normalization factor [20]. The advantage of GeNorm is that it can find

Table 2. Gene ontology of candidate reference genes and target genes.

Gene
Accession
Number Complete name Biological Process1

Cellular
Component1 Molecular Function1

Candidate
reference genes

Hp18SrRNA AF206934 18S ribosomal RNA Translation** Cytosolic small ribos-
somal subunit**

Structural constituent of
ribosome**

Hp26SrRNA DQ110887 26S ribosomal RNA N/A N/A N/A

HpGAPDH EU301783 glyceraldehyde-3-phosphate dehy-
drogenase A subunit

Calvin cycle* Chloroplast,
Membrane, Plastid*

oxidoreductase activity

HpGSA KJ624985 glutamate-1-semialdehyde 2,1-ami-
nomutase

Chlorophyll biosynthesis,
Porphyrin biosynthesis*

Chloroplast, Plastid* Isomerase*

HpHYP1 JF774163 Chamba phenolic oxidative coupling
protein

Plant defense N/A Pathogenesis-related
protein

HpH2A EU034009 histone 2A nucleosome assembly nucleosome, nucleus DNA binding

HpPKS1 EF186675 polyketide synthase 1 biosynthetic process N/A Transferase,
Acyltransferase

HpPKS2 186676 polyketide synthase 2 biosynthetic process N/A Transferase,
Acyltransferase

HpRBCL HM850066 ribulose-1,5-bisphosphate carboxy-
lase/oxygenase large subunit

reductive pentose-phos-
phate cycle,
Photosynthesis, Carbon
dioxide fixation, Calvin
cycle

Plastid, Chloroplast Oxidoreductase,
Monooxygenase,
Lyase

HpSDR EU034010 short-chain dehydrogenase/reduc-
tase

Abscisic acid biosynth-
esis*

Cytoplasm* Oxidoreductase*

HpTUB KJ669725 beta-tubulin microtubule-based pro-
cess, protein polymeriza-
tion*

Cytoplasm,
Cytoskeleton,
Microtubule*

GTPase activity, protein
binding*

Target genes

HpAOX1 EU330415 Alternative oxidase 1 Electron transport
Respiratory chain
Transport

Membrane Oxidoreductase

HpAOX2 EU330413 Alternative oxidase 2 Electron transport
Respiratory chain
Transport

Membrane Oxidoreductase

HpCAT1 AY173073 Catalase-1 hydrogen peroxide cata-
bolic process

Cytoplasm* Oxidoreductase
Peroxidase

HpCHS AF461105 chalcone synthase biosynthetic process endoplasmic reticu-
lum, plant-type
vacuole membrane,
nucleus*

Transferase,
Acyltransferase

1From http://www.uniprot.org, N/A: not available. *Information obtained from the Arabidopsis thaliana NCBI protein accessions. **Information obtained from
the Arabidopsis thaliana and provided by TAIR (www.arabidopsis.org).

doi:10.1371/journal.pone.0115206.t002
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suitable combinations of reference genes required for normalization, which is

more reliable than using only one reference gene. The main limitation of GeNorm

is its sensitivity to co-regulation [66–68]. Co-regulated genes will have similar

expression patterns having similar M values in the pairwise analysis of GeNorm,

however, they might not have a stable expression in a specific tissue.

NormFinder enables estimation not only of the overall variation in the

expression level of the candidate reference genes but also of the variation between

sample subgroups of the sample set. It provides a direct measure for the estimated

expression variation, enabling the user to evaluate the systematic error introduced

when using the gene. The advantage of NormFinder is that it takes into account

the inter- and intra-group variations and it shows less sensitivity to co-regulation

of the candidate reference genes [11].

BestKeeper is an Excel based tool able to compare expression levels for up to ten

reference genes together with ten target genes, each in up to hundred biological

samples. It determines the ‘optimal’ reference genes employing the pair-wise

correlation analysis of all pairs of candidate genes and calculates the geometric

mean of the ‘best’ suited ones. The weighted index is correlated with up to ten

target genes using the same pair-wise correlation analysis. While GeNorm

software is restricted to the reference genes analysis only, in BestKeeper software,

additionally up to ten target genes can be analyzed. Once a robust BestKeeper

index is constructed, it can be applied as an expression standard in the same way

like any single reference gene [21]. Both NormFinder and BestKeeper were used to

avoid co-regulation and to compare the results obtained by these two software

programs with those obtained by GeNorm, one of the most used software to

determine suitable reference genes.

RefFinder is a user-friendly web-based comprehensive tool developed for

evaluating and screening reference genes from extensive experimental datasets. It

integrates the currently available major computational programs (GeNorm,

NormFinder, BestKeeper, and the comparative DDCt method) to compare and

rank the tested candidate reference genes. Based on the rankings from each

program, it assigns an appropriate weight to an individual gene and calculates the

geometric mean of their weights for the overall final ranking (http://www.leonxie.

com/referencegene.php). RefFinder was used here in order to obtain the

expression stabilities values from GeNorm, NormFinder and BestKeeper in the

same tool, instead of using each program separately.

The input data were the raw Cq values for each sample and each of the

candidate RGs (these were organized in columns). For each candidate gene, the

stability values from the GeNorm (or average expression stability value, M) and

NormFinder algorithms were taken, as well as, the values of the standard deviation

of Cq value and the Pearson coefficient of correlation (r) were taken from the

BestKeeper algorithm. For each RG a weight was given which corresponds to the

number of the position given by GeNorm, NormFinder and BestKeeper. That is,

the most stable RG was assigned the number 1 and the least stable RG was

assigned the number 11. By calculating the geometric mean of these values, a
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ranking of the RGs using the three algorithms together was obtained and

designated in this work by geometric mean.

Reference genes validation

In order to validate the candidate RGs, four target genes, namely CHS, CAT1,

AOX1 and AOX2, were selected from the literature based on their response to

environmental stress conditions [63, 69–72]. For normalization of the target genes

expression levels, Cq values were converted into relative quantities (RQ) by the

delta-Ct method [20] using the formula RQ5EDCq, where E is the amplification

efficiency calculated for each primer pair and DCq5lowest Cq – sample Cq.

Amplification efficiency (E) was calculated using the formula E510(-1/slope), where

the slope was given by the Applied Biosystems (AB) software. A normalization

factor was obtained by calculating the geometric mean between the relative

quantities of the selected RGs (for each normalization strategy) for each sample.

For each target gene, calculating the ratio between the relative quantities for each

sample and the corresponding normalization factor, a normalized gene expression

value was obtained. The graphs show the mean ¡ standard deviation of three

biological replicates and correspond to the ratio between treated and untreated

samples for each time point, with bars representing the fold-change related to

control group (0 hpi), which was set to 1. Statistical significances (p#0.05 and

p#0.01) between the two means were determined by the t-test using IBM SPSS

Statistics version 22.0 (SPSS Inc., USA).

Results

Amplification specificity and efficiency

RNA samples were analyzed for their quantity and purity with a NanoDrop-

2000C spectrophotometer (Thermo Scientific, Wilmington, DE, USA). All

samples showed an absorbance ratio at 260/280 nm of above 1.8. Agarose gel

electrophoresis revealed only the two rRNA subunits (18S and 28S) with well-

defined bands and with no indication of RNA degradation (data not shown).

The amplification specificity of each gene was confirmed by performing a

melting curve analysis after each PCR run. All the primer pairs used amplified the

expected specific product and no formation of primer dimmers was observed (S1

Figure and S2 Figure). Amplification in NTCs was observed only for 18S and 26S

rRNAs which was due to high transcript abundance and therefore confirmed by

low Cq (Cq,15) values (data not shown). PCR efficiency of each primer pair was

calculated using a standard curve with four points: the undiluted pool, containing

all cDNA samples, and three five-fold serial dilutions of the undiluted cDNA pool.

The slope, y-intercepts, correlation coefficient (r2), and efficiency values were

given by the AB software. The slope values ranged between 23.234 and 23.674

for CS assays, and between 23.259 and 23.574 for HS assays (data not shown).

The correlation coefficient (r2) ranged from 0.991 to 0.999 for CS assays and from
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0.993 to 1.00 for HS assays (except for TUB which has a lower value of 0.985)

(Table 3). PCR efficiency, it ranged from 1.90 (90.50%) to 2.04 (103.81%) in CS

assays (except for PKS2 having only 87.15%), and from 1.90 (90.45%) to 2.03

(102.70%) in HS assays.

The expression levels of the candidate RGs were determined as Cq values. The

11 tested genes showed a wide range of transcript abundance in both CS and HS

assays (Fig. 1). The candidate genes showed a relatively narrow variation in their

expression levels across all samples, particularly in CS assays, as shown in box-

Table 3. Primers sequences for candidate reference genes and target genes and other parameters.

Gene
(Accession
Number)* Gene Primer Sequence (59 – 39)

Amplicon
Length (bp)

Amplicon
Tm ( C̊) R2/E (%)**

Cold/Heat Cold Stress Heat Stress

Candidate
reference
genes

AF206934 Hp18SrRNA Fw: CGTCCCTGCCCTTTGTACAC Rv:
CGAACACTTCACCGGACCAT

72 80.3/80.3 0.999/1.932
(93.18)

0.999/1.905
(90.46)

DQ110887 Hp26SrRNA Fw: GCGTTCGAATTGTAGTCTGAAGAA Rv:
CGGCACCCCCTTCCAA

65 80.8/81.0 0.998/1.966
(96.57)

0.999/1.924
(92.39)

EU301783 HpGAPDH Fw: GGTCGACTTCAGGTGCAGTGA Rv:
CACCATGTCGTCTCCCATCA

76 81.0/81.3 0.998/1.905
(90.49)

0.999/1.928
(92.78)

KJ624985 HpGSA Fw: GCAATAATCCTTGAACCTGTTGTG Rv:
CCTGCGGAGAGCGTTGA

78 78.4/78.7 0.998/2.011
(101.05)

0.997/1.982
(98.19)

JF774163 HpHYP1 Fw: GGAGGAAGCAAGGGTAAGATTACA Rv:
CCCGATCTTGACTTCTTCTTCATT

81 77.0/77.0 0.998/1.967
(96.69)

0.999/1.968
(96.76)

EU034009 HpH2A Fw: CCGGTTGGGAGGGTTCA Rv:
TGCACCGACCCTTCCATT

63 79.7/79.7 0.997/1.988
(98.76)

0.998/1.967
(96.72)

EF186675 HpPKS1 Fw: ACGGACGCTGCCATCAA Rv:
ACATAACCGTGTACCTTGTCTTCACA

76 79.2/78.9 0.991/2.018
(101.78)

0.996/1.958
(95.79)

186676 HpPKS2 Fw: GCCTGCGCGATTGTAGGA Rv:
GCCCTTCACTAGCTCGAATATTG

66 80.7/81.5 0.991/1.871
(87.14)

0.997/1.965
(96.49)

HM850066 HpRBCL Fw: CGCGGTGGGCTTGATTT Rv:
CGATCCCTCCATCGCATAAA

71 76.9/76.9 0.999/1.935
(93.47)

1.000/1.953
(95.30)

EU034010 HpSDR Fw: TCGACCAAGCCGACTTGTATC Rv:
CACCAAATGCAATTCTTGAAAATATC

79 76.7/76.7 0.991/1.943
(94.32)

0.993/1.982
(98.23)

KJ669725 HpTUB Fw: GGAGTACCCTGACAGAATGATGCT Rv:
TTGTACGGCTCAACAACAGTATCC

80 78.0/78.1 0.999/1.991
(99.09)

0.985/1.919
(91.92)

Target genes

EU330415 HpAOX1 Fw: TTGGACAATGGCAACATCGA Rv:
GGGAGGTAGGCGCCAGTAGT

69 80.5/80.5 0.995/1.934
(93.41)

0.998/1.933
(93.33)

EU330413 HpAOX2 Fw: TCAACGCCTACTTTGTGATCTATCTC Rv:
AATGGCCTCTTCTTCCAAATAGC

80 78.6/78.7 0.998/2.022
(102.17)

0.994/1.941
(94.13)

AY173073 HpCAT1 Fw: CGCTTCCTCAACAGATGGATTAG Rv:
ACCCAGATGGCTCTGATTTCA

71 79.1/79.1 0.998/2.018
(101.82)

0.999/1.983
(98.27)

AF461105 HpCHS Fw: GCGCTGCATCGATCATCA Rv:
CAGCTCGAACAAGGGCTTTT

65 80.3/80.3 0.997/2.038
(103.81)

0.999/2.027
(102.70)

*NCBI accession number, R2: correlation coefficient, E: PCR efficiency.

doi:10.1371/journal.pone.0115206.t003
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plots where the boxes and whiskers are smaller than in HS assays. 18SrRNA,

26SrRNA and RBCL were the most highly expressed genes for both CS and HS

with the lowest mean Cq (mCq) values (mCq between 7.97 and 13.91). SDR was

the lowest expressed gene on both, CS and HS, showing the highest mCq (27.30

for CS and 28.02 for HS). With the exception of the ribosomal genes and the

RBCL presenting mCq values around 8.0 and 14.0 for both assays, as mentioned

above, the mCq values ranged between approximately 20.0 and 28.0 for all other

candidate, being the HYP1 the most highly expressed gene with lower mCq values

for both CS and HS assays (19.98 and 21.29, respectively), and SDR the less

expressed gene.

Fig. 1. Range of Cq values of the candidate reference genes for each experimental condition. Each box corresponding to each candidate reference
gene indicates the 25% and 75% percentiles. Whiskers represent the maximum and minimum values. The median is represented by the line across the box.
26SrRNA: 26S ribosomal RNA; 18SrRNA: 18S ribosomal RNA; RBCL: ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit; HYP1: Chamba
phenolic oxidative coupling protein; GAPDH: glyceraldehyde-3-phosphate dehydrogenase A subunit; GSA: glutamate-1-semialdehyde 2,1-aminomutase;
H2A: histone 2A; TUB: beta-tubulin; PKS1: polyketide synthase 1; PKS2: polyketide synthase 2; SDR: short-chain dehydrogenase/reductase.

doi:10.1371/journal.pone.0115206.g001
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Analysis of gene expression stability data

From the overall analysis, differences can be observed in the expression stability

ranking of the candidate RGs between the two experimental conditions for each

tested algorithm (Table 4). Additionally, differences can be also seen, although

less significant, among the three algorithms applied within each assay. For CS

experiments, GeNorm ranked GAPDH and GSA (M50.147) simultaneously as the

most stable genes, and the 18SrRNA (M50.166) as the third best gene. For

NormFinder, the most stable gene was the TUB (SV50.104) followed by 18SrRNA

together with 26SrRNA (SV50.121 for both genes) and GAPDH (SV50.124). The

BestKeeper algorithm ranked RBCL (SD50.10, r50.213) first, followed by TUB

(SD50.12, r50.641) and 26SrRNA (SD50.12, r50.704) as the second and third

ranked genes, respectively. From the geometric mean of all three algorithms, TUB,

GSA, and GAPDH, were ranked in first, second and third positions, respectively.

For HS tolerance assays, 26SrRNA and H2A were ranked in the two first

positions with GeNorm (M50.174 for both genes) and BestKeeper (SD50.28,

r50.798, SD50.34, r50.826, respectively). NormFinder ranked TUB in the first

position (SV50.139) and H2A and 26SrRNA were selected as the second and the

third best genes, respectively (SV50.207 and SV50.262, respectively). The third

ranked RG by GeNorm was the GSA (M50.336) and by BestKeeper was the

18SrRNA (SD50.35, r50.494). For the overall final ranking, obtained by

calculating the geometric mean of the ranked genes by the three algorithms, the

three top RGs for the HS assay were the 26SrRNA, H2A, and TUB.

Determination of the optimal number of reference genes for

normalization by GeNorm

The Genorm pairwise variation (V) values were determined for the candidate RGs

in both experimental designs (CS and HS) using a cut-off value of 0.15, below

which the inclusion of an additional RG is not required for normalization (Fig. 2).

Interestingly, the optimal number of RGs used for normalization was only two for

both CS assay (V2/350.054) and HS assay (V2/350.136), being both V values

below the 0.15 cut-off value.

Expression analysis of target genes for reference genes

validation

In order to validate the suitability of the selected candidate RGs, the expression

profile of 4 target genes was analyzed in the present work. The target genes,

selected from the literature based on their reaction to temperature stress response

and oxidative stress [63, 69–72], were CHS, CAT1, AOX1 and AOX2. A single

normalization strategy was applied to both assays, based on the geometric mean of

the three algorithms by using the 3 top-ranked RGs. TUB, GSA and GAPDH were

used as RGs for data normalization in CS whilst TUB together with 26S and H2A

were used to normalize the expression results in HS assays. In CS assays, an

accumulation of the CHS transcript was observed until 48 hpi with a 3.6 fold-
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Table 4. Candidate reference genes for cold and heat stresses determined by GeNorm, NormFinder, BesteKeeper, and by the combination of the 3
algorithms.

COLD COLD COLD COLD HEAT HEAT HEAT HEAT

Rank GeNorm M NormFinder SV BestKeeper SD/r
Geometric
Mean GeNorm M NormFinder SV BestKeeper SD/r

Geometric
Mean

1 GAPDH |
GSA (0.147)

TUB (0.104) RBCL (0.10/
0.213)

TUB (2.154) 26S | H2A
(0.174)

TUB (0.139) 26S (0.28/0.798) 26S (1.442)

2 18S (0.121) TUB (0.12/0.641) GSA (2.714) H2A (0.207) H2A (0.34/0.826) H2A (1.587)

3 18S (0.166) 26S (0.121) 26S (0.12/0.704) GAPDH
(2.884)

GSA (0.336) 26S (0.262) 18S (0.35/0.494) TUB (2.884)

4 26S (0.179) GAPDH (0.124) GSA (0.16/0.697) 26S (3.302) SDR (0.425) RBCL (0.338) TUB (0.42/0.912) 18S (4.932)

5 TUB (0.189) GSA (0.152) HYP1 (0.17/0.001) 18S (3.476) HYP1 (0.478) 18S (0.473) RBCL (0.54/
0.760)

GSA (5.013)

6 SDR (0.199) SDR (0.156) GAPDH (0.17/
0.705)

RBCL (3.826) TUB (0.528) GSA (0.561) PKS1 (0.56/0.638) RBCL (5.192)

7 H2A (0.208) RBCL (0.169) 18S (0.21/0.925) SDR (6.604) RBCL (0.584) PKS1 (0.595) GSA (0.57/0.634) SDR (7.368)

8 RBCL (0.219) H2A (0.240) SDR (0.23/0.925) HYP1 (7.399) 18S (0.617) GAPDH (0.648) GAPDH (0.67/
0.805)

HYP1 (7.399)

9 HYP1 (0.250) HYP1 (0.339) H2A (0.26/0.897) H2A (7.958) GAPDH
(0.650)

HYP1 (0.716) HYP1 (0.75/0.814) PKS1 (7.489)

10 PKS2 (0.283) PKS2 (0.384) PKS2 (0.29/0.407) PKS2 (10.00) PKS1 (0.686) SDR (0.764) SDR (0.76/0.666) GAPDH
(8.320)

11 PKS1 (0.328) PKS1 (0.486) PKS1 (0.30/0.365) PKS1 (11.00) PKS2 (0.828) PKS2 (1.416) PKS2 (0.87/0.001) PKS2 (11.00)

M: expression stability average; SV: stability value; SD: standard deviation of Cq value; r: Pearson coefficient of correlation.

doi:10.1371/journal.pone.0115206.t004

Fig. 2. Determination of the optimal number of reference genes for normalization by pairwise variation using GeNorm.

doi:10.1371/journal.pone.0115206.g002
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change (p#0.01) (Fig. 3a). From 24 hpi to 72 hpi, a down-regulation in the CAT1

mRNA expression for roughly half (p#0.05) of the corresponding expression in

the control group was observed (Fig. 3b). AOX1 transcript expression showed a

gradual up-regulation in cold-treated samples until 24 hpi of about 2.8-fold

(p#0.05) with a following expression recovery until 72 hpi (Fig. 3c). AOX2

mRNA showed a reduction in its expression after 24 hpi in 1.9-fold (p#0.01),

with a further slight tendency to recover (Fig. 3d).

In HS assays, our results showed a down-regulation in the CHS at 12 hpi of 3.8

fold-change (p#0.01) with a subsequent gradual recovery until 72 hpi (Fig. 4a).

Similarly in CS, the mRNA expression of CAT1 had a tendency to decrease in

heat-treated samples and after 24 hpi the value was around half (p#0.05) of the

expression in the control group (Fig. 4b). For AOX1, a slight increase in the

Fig. 3. Relative mRNA expression of target genes in cold-treated samples. Expression of a) CHS, b) CAT, c) AOX1, and d) AOX2 in cold-treated
samples using TUB, GSA and GAPDH as reference genes in data normalization. The relative expression values are depicted as the mean ¡ standard
deviation of three biological replicates and correspond to the ratio between treated and untreated samples for each time point. The bars represent the fold-
change related to control group (0 hours) which was set to 1. Statistical significances (*p#0.05 and **p#0.01) between the two means were determined by
the t-test using IBM SPSS Statistics version 22.0 (SPSS Inc., USA).

doi:10.1371/journal.pone.0115206.g003
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mRNA expression of 1.8 fold-change (p#0.05) was observed after 24 hpi, and this

expression was maintained until 72 hpi (Fig. 4c). Although statistically significant

(p#0.05), the reduction in the AOX2 mRNA expression after 12 hpi was very

modest demonstrating, in general, a high stability of this gene over time (Fig. 4d).

Discussion

In H. perforatum, studies on the expression stability of candidate RGs in a variety

of experimental contexts has received no attention, and even recently only one RG

is being used in RT-qPCR data normalization in this plant species [48–50]

neglecting the knowledge that such a strategy is no longer admissible [19, 20].

Fig. 4. Relative mRNA expression of target genes in heat-treated samples. Expression of a) CHS, b) CAT, c) AOX1, and d) AOX2 in heat-treated
samples using TUB, 26S and H2A as reference genes in data normalization. The relative expression values are depicted as the mean ¡ standard deviation
of three biological replicates and correspond to the ratio between treated and untreated samples for each time point. The bars represent the fold-change
related to control group (0 hours) which was set to 1. Statistical significances (*p#0.05 and **p#0.01) between the two means were determined by the t-test
using IBM SPSS Statistics version 22.0 (SPSS Inc., USA).

doi:10.1371/journal.pone.0115206.g004
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Despite the pharmacological interest of the compounds produced by H.

perforatum, very limited genomic information is available in NCBI. This is

reflected by the absence of sequence data on a large number of frequently used

genes. Consequently, for this study, a significant number of the genes selected had

been recently isolated by members of our research group (GAPDH: EU301783,

GSA: KJ624985, H2A: EU034009, SDR: EU034010, TUB: KJ669725, AOX1:

EU330415, AOX2: EU330413). This study is the first detailed evaluation of the

expression stability of several candidate RGs to be used for normalization in RT-

qPCR studies in H. perforatum upon different stressful temperature conditions.

Our analysis was based on the three most frequently used mathematical softwares,

GeNorm, NormFinder and BestKeeper. Instead of using each software separately,

the RefFinder tool was used here, since it integrates all three algorithms. We tested

the expression stability of 11 candidate RGs, including commonly used RGs (TUB,

GAPDH, and 18SrRNA), as well as, less frequently used RGs (HYP1, GSA, H2A,

PKS1, PKS2, RBCL, SDR, and 26SrRNA). Within each algorithm, differences in

the expression stability of the candidate genes were found when comparing the

two experimental conditions of our study. These results reinforce previous

conclusions, achieved by several authors using different plant species and

experimental conditions, stating that the selection of the most stable RGs is highly

dependent on the plant species and the experimental context [37, 73–75] and,

therefore, assuming the existence of general RGs which can be used in different

experimental situations could be of great risk. For example GAPDH, a commonly

used RG, is ranked in first position by GeNorm in CS experiments, together with

GSA. However, in heat treatment, this gene appeared to be an unsuitable RG

ranking only in ninth position by the same algorithm. GAPDH has been also

reported by others as a suitable RG, for example in Chlamydomonas during

freezing acclimation [76] and in coffee upon CS [40]. However, it is not

recommended for normalization of gene expression data in several studies

involving temperature stress response and acclimatization performed in other

plant species [29, 45, 77]. Another example from our study is the H2A, which is in

final rankings in CS. However, in contrast, this gene is identified as one of the

most stable RGs in HS, using the three algorithms.

In addition to the differences encountered in the selection of the most stable

genes between the two experimental conditions, we also found some slight

differences amongst the distinct algorithms tested. For example, RBCL was ranked

in the first position by BestKeeper and therefore considered a good candidate in

CS. However, it showed high expression variability using both NormFinder and

GeNorm, staying only in seventh and eighth positions, respectively. One example,

in HS, is the case of SDR, which is ranked in fourth position by GeNorm, but

ranked only in tenth position by both NormFinder and BestKeeper. Similarly,

results from other authors also demonstrate the existence of minor differences

among distinct algorithms [13, 33, 38], and that are most probably due to the

differences in the statistical algorithms. Nevertheless, taking into account the

existence of some differences between algorithms, and additionally to overcome

different limitations of each algorithm studied here, the stability of candidate RGs
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was also determined based on the geometric mean of all three statistical

algorithms. Indeed, depending on the software used, the ranking of candidate

reference genes can be slightly different [40, 78, 79]. Although many statistical

approaches exist to determine both the stability of gene expression and to select

the most appropriate RGs, to date, there is no consensus on which approach gives

valid results. Thus, some authors consider the best approach is to combine the

distinct algorithms for the selection of the most reliable reference genes in order to

reduce the risk of artificial selection [80]. In fact, the simultaneous use of more

than one algorithm has been also noted by other authors [67, 81] as producing

highly correlated results and thus represents a good strategy for the selection of

RGs for RT-qPCR normalization. In this study, the normalization strategy

adopted to analyze the expression levels of the target genes to validate the RGs was

based on the geometric mean of all three algorithms. Indeed, the software

programs such as GeNorm, NormFinder and BestKeeper exist to determine the

stability of the candidate RGs. However, the suitability of these genes should be

evaluated with target genes associated with the experimental conditions in order

to obtain reliable results [34]. The target genes used here were the CHS, CAT1,

AOX1 and AOX2, which encode for proteins, documented in the literature, as

associated with plant stress responses and oxidative stress. From our study, AOX1

transcripts were revealed to be affected by both cold and heat stressful

temperatures, presenting an up-regulation in both conditions. In recent years,

transgenic plants overexpressing AOX1 genes have provided molecular evidence

that AOX improves cold tolerance [69, 71]. AOX was proposed, in a hypothesis-

driven approach, as target to develop functional markers for general stress

tolerance across species and stresses [82, 83]. Extensive reports have shown that

the expression of the AOX1 gene is highly responsive to environmental stress, such

as CS and HS, whilst AOX2 members are generally not responsive, or are much

less responsive (see reviews [84, 85]). Indeed, from our results, AOX2 showed high

expression stability in heat-treated samples. However, in contrast, this gene

showed differential expression, being down-regulated in cold-treated samples.

Both AOX and CAT are two antioxidative enzymes already described as being

highly involved in ROS detoxification [86]. Our results demonstrate that despite a

slight tendency for CAT1 transcript to be up-regulated (not statistically

significant) in CS for the first time points, CAT1 mRNA is down-regulated both in

CS and HS. Previous reports on the effects of stress on CAT activities vary

depending on experiment and plant species or cultivars. Decreases in CAT activity

have been reported upon HS in various plant species [87–90], in contrast with

other studies which reported increases in CAT activity [91–98]. An increase in the

CAT activity has also been reported upon CS [72, 99–103]. Nevertheless, the

majority of studies available have focused on protein content and activity, with

very few studies analyzing the link between transcript accumulation and protein.

Locato et al. [97] have reported that in Nicotiana tabacum there is a decrease in

transcript accumulation upon HS starting at 4 h after HS exposition. These

authors suggest that under those experimental conditions, the regulation of CAT

occurs with a mechanism acting downstream gene expression. In the same way,
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Watanabe and co-workers [104] revealed that in Arabidopsis thaliana a decrease in

CAT1 transcript level was detected 20 h after CS exposure. Mhamdi and co-

workers [105] suggested that a transcriptional down-regulation of CAT could be

important to induce or sustain increased H2O2 availability necessary for certain

environmental responses or developmental processes. Our data are in agreement

with these previous results, suggesting that the molecular mechanisms associated

with temperature stress response involving differential expression of CAT mRNA

encountered both in N. tabacum and in A. thaliana might be also found in H.

perforatum. In contrast, previous studies from Skyba et al. [49] demonstrated, in

H. perforatum, an increase in CAT transcript accumulation upon a low-

temperature associated stressor, being the results genotype-dependent. The similar

expression profile of CAT1 and AOX2 in CS, shown by our study, in which both

are down-regulated, supports current knowledge of these proteins regarding their

common involvement in ROS detoxification [86]. Worth a notice, our results

suggest an earlier involvement of AOX2 than CAT1 in this process, as shown by

the AOX2 having the lowest mRNA expression at a time point earlier than CAT1.

We observed an increase in the CHS transcript accumulation upon CS. It is

known that CHS can be induced in response to a diversity of biotic and abiotic

stress factors, thus resulting in enhanced production of secondary metabolites (see

review in [63]). Interestingly, we found a similar expression profile for CHS and

AOX1 in CS, and even for HS, with the exception of the first time point (12 hpi)

for which a marked reduction was observed for CHS, from this time point on,

both genes are similarly up-regulated. These findings corroborate the results

obtained by Fiorani and co-workers [106] who reported a relationship between

AOX1a and CHS, demonstrating that, at low temperature, transgenic A. thaliana

overexpressing AOX1a shows enhanced transcription of CHS, a key gene of the

polyketide phenylpropanoids biosynthesis [63].

In summary, to the best of our know ledge, this is the first study in which a set

of candidate reference genes are analyzed in terms of their expression stability, by

three distinct mathematical algorithms, in order to be used in RT-qPCR data

normalization with H. perforatum submitted to stressful temperature conditions.

Our results demonstrate considerable differences in the gene expression stability

between cold and heat stress treatments, highlighting the importance of

performing a selection of the most suitable reference genes prior to the RT-qPCR

studies for each experimental condition. Our data also show that the reference

gene ranking obtained by GeNorm, NormFinder and BestKeeper were overall very

similar and presenting only slight differences. The present study pointed to TUB

as a suitable RG in RT-qPCR data normalization in temperature-treated H.

perforatum plants. Additionally, GSA and GAPDH are recommended for data

normalization in studies of cold treatment, whilst 26SrRNA and H2A are

suggested for studies of heat treatment. The expression of the target genes CHS,

CAT1, AOX1 and AOX2 were analyzed in order to emphasize the importance of

validating the reference genes. They showed differential expression in both CS/HS

experimental conditions, showing consistent results with what is known about the
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involvement of these genes in plant response to stressful temperatures, allowing

the validation of the identified candidate reference genes.

Supporting Information

S1 Figure. Melting curves of the 11 candidate reference genes and 4 target

genes tested in cold assays.
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S2 Figure. Melting curves of the 11 candidate reference genes and 4 target

genes tested in heat assays.
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Reference Genes for Normalizing RNA Expression in Potato Roots Infected with Cyst Nematodes. Plant
Mol Biol Report 31: 936–945.

31. Lopez-Pardo R, Ruiz de Galarreta JI, Ritter E (2013) Selection of housekeeping genes for qRT-PCR
analysis in potato tubers under cold stress. Mol Breed 31: 39–45.

32. Dekkers BJW, Willems L, Bassel GW, van Bolderen-Veldkamp RPM, Ligterink W, et al. (2012)
Identification of reference genes for RT-qPCR expression analysis in Arabidopsis and tomato seeds.
Plant Cell Physiol 53: 28–37.

33. Yang H, Liu J, Huang S, Guo T, Deng L, et al. (2014) Selection and evaluation of novel reference
genes for quantitative reverse transcription PCR (qRT-PCR) based on genome and transcriptome data in
Brassica napus L. Gene 538: 113–122.

34. Borowski JM, Galli V, da Silva Messias R, Perin EC, Buss JH, et al. (2014) Selection of candidate
reference genes for real-time PCR studies in lettuce under abiotic stresses. Planta: 1–14.

35. Amil-Ruiz F, Garrido-Gala J, Blanco-Portales R, Folta KM, Muñoz-Blanco J, et al. (2013)
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Traits. In: Lübberstedt T, Varshney RK, editors. Diagnostics in Plant Breeding.Dordrecht: Springer
Netherlands. pp.467–515.

84. Feng H, Guan D, Sun K, Wang Y, Zhang T, et al. (2013) Expression and signal regulation of the
alternative oxidase genes under abiotic stresses. Acta Biochim Biophys Sin (Shanghai). doi: 10.1093/
abbs/gmt094.

85. Vanlerberghe GC (2013) Alternative Oxidase: A Mitochondrial Respiratory Pathway to Maintain
Metabolic and Signaling Homeostasis during Abiotic and Biotic Stress in Plants. Int J Mol Sci 14: 6805–
6847.

86. Møller IM (2001) P LANT M ITOCHONDRIA AND O XIDATIVE S TRESS: Electron Transport, NADPH
Turnover, and Metabolism of Reactive Oxygen Species.

87. Foyer CH, LopezDelgado H, Dat JF, Scott IM (1997) Hydrogen peroxide- and glutathione-associated
mechanisms of acclimatory stress tolerance and signalling. Physiol Plant 100: 241–254.

88. Dat J, Lopez-Delgado H, Foyer C, Scott I (1998) Parallel changes in H2O2 and catalase during
thermotolerance induced by salicylic acid or heat acclimation in mustard seedlings. Plant Physiol 116:
1351–1357.

Reference Genes for Gene Expression Analysis in H. perforatum L.

PLOS ONE | DOI:10.1371/journal.pone.0115206 December 11, 2014 23 / 24



89. Sato Y (2001) Heat shock-mediated APX gene expression and protection against chilling injury in rice
seedlings. J Exp Bot 52: 145–151.

90. Jiang Y (2001) Effects of calcium on antioxidant activities and water relations associated with heat
tolerance in two cool-season grasses. J Exp Bot 52: 341–349.

91. Sairam RK, Srivastava GC, Saxena DC (2000) Increased Antioxidant Activity under Elevated
Temperatures: A Mechanism of Heat Stress Tolerance in Wheat Genotypes. Biol Plant 43: 245–251.

92. Chaitanya K V, Sundar D, Masilamani S, Ramachandra Reddy A (2002) Variation in heat stress-
induced antioxidant enzyme activities among three mulberry cultivars. Plant Growth Regul 36: 175–180.

93. Orendi G, Zimmermann P, Baar C, Zentgraf U (2001) Loss of stress-induced expression of catalase3
during leaf senescence in Arabidopsis thaliana is restricted to oxidative stress. Plant Sci 161: 301–314.

94. He Y, Liu Y, Cao W, Huai M, Xu B, et al. (2005) Effects of Salicylic Acid on Heat Tolerance Associated
with Antioxidant Metabolism in Kentucky Bluegrass. Crop Sci 45: 988–995. doi: 10.2135/
cropsci2003.0678.

95. He Y, Huang B (2010) Differential Responses to Heat Stress in Activities and Isozymes of Four
Antioxidant Enzymes for Two Cultivars of Kentucky Bluegrass Contrasting in Heat Tolerance. J Amer
Soc Hort Sci 135: 116–124.

96. Almeselmani M, Deshmukh PS, Sairam RK, Kushwaha SR, Singh TP (2006) Protective role of
antioxidant enzymes under high temperature stress. Plant Sci 171: 382–388.

97. Locato V, Gadaleta C, De Gara L, De Pinto MC (2008) Production of reactive species and modulation
of antioxidant network in response to heat shock: a critical balance for cell fate. Plant Cell Environ 31:
1606–1619.

98. Kumar RR, Goswami S, Sharma SK, Singh K, Gadpayle KA, et al. (2012) Protection against heat
stress in wheat involves change in cell membrane stability, antioxidant enzymes, osmolyte, H2O2 and
transcript of heat shock protein. Int J Plant Physiol Biochem 4: 83–91.

99. Matsumura T, Tabayashi N, Kamagata Y, Souma C, Saruyama H (2002) Wheat catalase expressed in
transgenic rice can improve tolerance against low temperature stress. Physiol Plant 116: 317–327.

100. Kuk YI, Shin JS, Burgos NR, Hwang TE, Han O, et al. (2003) Antioxidative Enzymes Offer Protection
from Chilling Damage in Rice Plants. Crop Sci 43: 2109–2117.

101. Chen Y, Zhang M, Chen T, Zhang Y, An L (2006) The relationship between seasonal changes in anti-
oxidative system and freezing tolerance in the leaves of evergreen woody plants of Sabina. South
African J Bot 72: 272–279.

102. Cansev A, Gulen H, Eris A (2011) The activities of catalase and ascorbate peroxidase in olive (Olea
europaea L. cv. Gemlik) under low temperature stress. Hortic Environ Biotechnol 52: 113–120.

103. Gong X-Q, Hu J-B, Liu J-H (2014) Cloning and characterization of FcWRKY40, A WRKY transcription
factor from Fortunella crassifolia linked to oxidative stress tolerance. Plant Cell, Tissue Organ Cult: 1–14.

104. Watanabe CK, Hachiya T, Terashima I, Noguchi K (2008) The lack of alternative oxidase at low
temperature leads to a disruption of the balance in carbon and nitrogen metabolism, and to an up-
regulation of antioxidant defence systems in Arabidopsis thaliana leaves. Plant Cell Environ 31: 1190–
1202.

105. Mhamdi A, Noctor G, Baker A (2012) Plant catalases: peroxisomal redox guardians. Arch Biochem
Biophys 525: 181–194.

106. Fiorani F, Umbach AL, Siedow JN (2005) The Alternative Oxidase of Plant Mitochondria Is Involved in
the Acclimation of Shoot Growth at Low Temperature. A Study of Arabidopsis AOX1a Transgenic Plants.
Plant Physiol 139: 1795–1805.

Reference Genes for Gene Expression Analysis in H. perforatum L.

PLOS ONE | DOI:10.1371/journal.pone.0115206 December 11, 2014 24 / 24


	Section_1
	TABLE_1
	Section_2
	Section_3
	Section_4
	Section_5
	Section_6
	TABLE_2
	Section_7
	Section_8
	Section_9
	TABLE_3
	Section_10
	Figure 1
	Section_11
	Section_12
	TABLE_4
	Figure 2
	Figure 3
	Section_13
	Figure 4
	Section_14
	Section_15
	Section_16
	Section_17
	Section_18
	Section_19
	Reference 1
	Reference 2
	Reference 3
	Reference 4
	Reference 5
	Reference 6
	Reference 7
	Reference 8
	Reference 9
	Reference 10
	Reference 11
	Reference 12
	Reference 13
	Reference 14
	Reference 15
	Reference 16
	Reference 17
	Reference 18
	Reference 19
	Reference 20
	Reference 21
	Reference 22
	Reference 23
	Reference 24
	Reference 25
	Reference 26
	Reference 27
	Reference 28
	Reference 29
	Reference 30
	Reference 31
	Reference 32
	Reference 33
	Reference 34
	Reference 35
	Reference 36
	Reference 37
	Reference 38
	Reference 39
	Reference 40
	Reference 41
	Reference 42
	Reference 43
	Reference 44
	Reference 45
	Reference 46
	Reference 47
	Reference 48
	Reference 49
	Reference 50
	Reference 51
	Reference 52
	Reference 53
	Reference 54
	Reference 55
	Reference 56
	Reference 57
	Reference 58
	Reference 59
	Reference 60
	Reference 61
	Reference 62
	Reference 63
	Reference 64
	Reference 65
	Reference 66
	Reference 67
	Reference 68
	Reference 69
	Reference 70
	Reference 71
	Reference 72
	Reference 73
	Reference 74
	Reference 75
	Reference 76
	Reference 77
	Reference 78
	Reference 79
	Reference 80
	Reference 81
	Reference 82
	Reference 83
	Reference 84
	Reference 85
	Reference 86
	Reference 87
	Reference 88
	Reference 89
	Reference 90
	Reference 91
	Reference 92
	Reference 93
	Reference 94
	Reference 95
	Reference 96
	Reference 97
	Reference 98
	Reference 99
	Reference 100
	Reference 101
	Reference 102
	Reference 103
	Reference 104
	Reference 105
	Reference 106

