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Abstract 

Anthropogenic halogenated substances cause the ozone hole above Antarctica through 

catalytic ozone destruction and depletion of the stratospheric ozone layer, which shields 

the Earth from harmful ultraviolet radiation. Their emissions were regulated through the 

Montreal Protocol in 1989. Since the beginning of the 21
st
 century, the amount of chlorine 

and bromine in the stratosphere from long-lived ozone depleting substances (ODS) has 

been decreasing and stratospheric ozone has started to increase slowly. Under these 

circumstances the importance of natural halogenated substances for atmospheric 

composition and chemistry will increase in the future. Trace-gases with atmospheric 

lifetimes of less than half a year belong to the so-called very short-lived substances 

(VSLS). The most important bromine containing VSLS bromoform (CHBr3, 17 days 

lifetime) and dibromomethane (CH2Br2, 150 days) from marine sources currently 

contribute about 25% to the observed stratospheric bromine loading. In addition, the 

short-lived VSLS methyl iodide (CH3I, 3.5 days) contributes to stratospheric iodine levels. 

Sulfur containing compounds, such as dimethylsulfide (DMS, 1 day), also influence 

stratospheric ozone. Sulfur supplies the stratospheric aerosol layer, which amplifies 

heterogeneous chemical ozone depleting reactions under high chlorine levels. DMS is a 

potential source of sulfur to the stratosphere. VSLS are naturally produced in the oceans 

by phytoplankton, macro algae, and photochemistry. They are primarily transported to the 

stratosphere with deep convection in the tropics and mainly enter the stratosphere over 

the Pacific warm pool in boreal winter and the Asian monsoon region in boreal summer. 

Major uncertainties still exist with respect to the oceanic emissions of halogenated VSLS 

from the Indian Ocean and their stratospheric entrainment through the Asian monsoon 

circulation. This thesis investigates the emissions of VSLS from the Indian Ocean and 

their transport to the stratosphere with novel combinations of data and modeling. 

 

During the OASIS research cruise on RV Sonne in the subtropical and tropical West 

Indian Ocean in July and August 2014, the emissions of DMS, CH3I, CHBr3, and CH2Br2 

were determined for the Indian Ocean. These are the first open Indian Ocean observations 

of CHBr3 and CH2Br2. In this thesis, the Lagrangian particle dispersion model Flexpart 

with ERA-Interim meteorological fields is used to simulate high resolution transport of 

oceanic emissions from the Indian Ocean to the stratosphere with different modeling 

approaches and for different regions, seasons, and years.  
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In the first manuscript, the transport pathways of measurement-based halogenated 

VSLS emissions from the tropical and subtropical West Indian Ocean to the stratosphere 

during Asian summer monsoon is investigated from 2000-2015. During OASIS in 2014, 

we observed average emissions of CH3I, high emissions of CHBr3, and very high 

emissions of CHBr2 in the subtropical and tropical West Indian Ocean, especially south of 

Madagascar and in the open ocean upwelling between 10˚S -    S. The transport to the 

stratosphere is more efficient than above the tropical Atlantic, but less efficient than in the 

West Pacific during previous cruises. There are two main transport pathways from the 

West Indian Ocean to the stratosphere during the summer monsoon. The tropical deep 

convection around the equator is more relevant for the shorter-lived VSLS such as CH3I, 

while the monsoon convection over India and the Bay of Bengal and the Asian monsoon 

anticyclone transport mainly longer-lived VSLS like CHBr3 and CH2Br2 to the 

stratosphere. Over the 16 years, interannual variability and a small increase in transport 

through the Asian summer monsoon is found. 

The second manuscript reports about DMS emission measurements with the eddy-

covariance technique from the same Indian Ocean research cruise in July-August 2014. 

The transport of DMS emissions in the troposphere and their influence on aerosol and 

cloud formation is investigated. A positive correlation between DMS emissions and 

satellite aerosol products indicate a local influence of marine DMS emissions on 

atmospheric aerosol formation, which impact the radiative budget.  

After these two studies for the Asian summer season, the third manuscript considers 

the influence of the large seasonal differences of the Asian monsoon circulation. 

Therefore, the intra- and interannual variability of transport from the tropical West Indian 

Ocean to the stratosphere and its causes is investigated from 2000-2015. The pronounced 

annual cycle of VSLS entrainment is driven by the shifting monsoon winds. The transport 

efficiency to the stratosphere is enhanced by high local sea surface temperatures in the 

tropical West Indian Ocean all year round. It can also be enhanced during boreal spring 

by El Niño events and during boreal fall by La Niña events in the central and eastern 

equatorial Pacific through changes in the Walker circulation. Intra- and interannual 

variability of transport efficiency to the stratosphere is larger for VSLS with shorter 

lifetimes. 

Due to the pronounced annual cycle in transport efficiency found in the third paper, 

seasonal and regional variations in the VSLS emissions from the Indian Ocean are 

assumed to influence their stratospheric entrainment as well. Thus, the focus of the fourth 
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manuscript is to investigate the influence of annually vs. monthly resolved oceanic VSLS 

emissions on stratospheric delivery seasons and regions. This manuscript contains a 

process study for CHBr3 emissions and their transport from the tropical Indian Ocean and 

West Pacific to the stratosphere in 2014. The main oceanic source regions for 

stratospheric CHBr3 are the Bay of Bengal and the Arabian Sea during boreal summer. 

The main stratospheric entrainment occurs during the same season over the southern tip 

of the Indian subcontinent. Using annual emissions, the highest CHBr3 volume mixing 

ratio at the tropopause is simulated above the tropical central Indian Ocean in boreal 

spring, while monthly emissions have a maximum in boreal summer in the Asian 

monsoon anticyclone. This seasonal and regional difference shows the importance of 

resolving seasonal and regional variations of emissions for the Indian Ocean in modeling 

efforts.  

 

At the end of this thesis, I calculate the contribution of VSLS from the Indian Ocean to 

total tropical VSLS emissions from different emission inventories. The Indian Ocean 

contribution of the three VSLS CHBr3, CH2Br2, and DMS is higher than tropical averages, 

while CH3I emissions are slightly lower. Furthermore, the contribution of these emissions 

to total stratospheric bromine, iodine, and sulfur from VSLS is estimated. The relative 

contributions from the Indian Ocean to the stratospheric abundances are always higher 

than the tropical average contribution. The Indian Ocean is an important source region for 

VSLS to the troposphere and stratosphere because of high emissions and efficient upward 

transport through the Asian monsoon especially during boreal summer. 
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Zusammenfassung 

Anthropogene halogenierte Substanzen verursachen das Ozonloch über der Antarktis 

durch katalytische Ozonzerstörung und einen Schwund der stratosphärischen Ozonschicht, 

welche die Erde vor schadhafter ultravioletter Strahlung schützt. Seit 1989 reguliert das 

Montrealer Protokoll die Emissionen von langlebigen halogenierten 

Fluorchlorkohlenwasserstoffen. Seit dem Beginn des 21. Jahrhundert sinkt die 

atmosphärische Konzentration von Chlor und Brom aus den langlebigen anthropogenen 

Substanzen und das stratosphärische Ozon nimmt langsam wieder zu. Unter diesen 

Voraussetzungen wird die Bedeutung natürlicher halogenhaltiger Substanzen, vor allem 

sehr kurzlebiger Substanzen (engl. very short-lives substances, VSLS) mit 

atmosphärischen Lebenszeiten kürzer als ein halbes Jahr, für die Zusammensetzung und 

Chemie der Atmosphäre in der Zukunft zunehmen. Momentan beträgt der Beitrag von 

VSLS zum stratosphärischen Brom etwa 25%. Die beiden wichtigsten bromierten VSLS 

sind Bromoform (CHBr3, 17 Tage Lebenszeit) und Dibrommethan (CH2Br2, 150 Tage). 

Weiterhin wird ein stratosphärischer Eintrag von Methyliodid (CH3I, 3,5 Tage) und 

schwefelhaltigem Dimethylsulfid (DMS, 1 Tag) vermutet. Schwefel verstärkt die 

heterogene chemische Ozonzerstörung bei hohem Chlorgehalt in der Stratosphäre. VSLS 

werden im Ozean auf natürlichem Wege von Phytoplankton, Makroalgen und durch 

chemische Reaktionen produziert. Sie werden in tropischen Gebieten mit hochreichender 

Konvektion in die Stratosphäre eingetragen, hauptsächlich über dem tropischen 

Westpazifik im borealen Winter und der asiatischen Monsunzirkulation im borealen 

Sommer. Die Unsicherheiten bezüglich der VSLS-Emissionen aus dem Indischen Ozean 

und des Transportes durch den asiatischen Monsun in die Stratosphäre sind groß. Diese 

Arbeit untersucht erstmalig VSLS Emissionen aus dem Indischen Ozean und ihren 

Transport in die Stratosphäre mit einer neuartigen Kombination aus Daten und 

Modellierung. 

 

Während der OASIS Forschungsfahrt auf dem Forschungsschiff Sonne im subtropischen 

und tropischen westlichen Indischen Ozean im Juli und August 2014 wurden die 

Emissionen von CH3I und DMS und zum ersten Mal von CHBr3 und CH2Br2 im offenen 

Indischen Ozean ermittelt. In dieser Arbeit wird das Lagrangsche 

Partikeldispersionsmodell Flexpart mit ERA-Interim verwendet, um den hochaufgelösten 
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Transport der ozeanischen Emissionen in die Stratosphäre mit verschiedenen 

Modellansätzen und für verschiedene Regionen, Saisons und Jahre zu modellieren.  

Im ersten Manuskript werden die Transportwege der halogenierten VSLS aus dem 

subtropischen und tropischen Westindik im asiatischen Sommermonsun zwischen 2000-

2015 bestimmt. Die aus den Messungen während OASIS in 2014 abgeleiteten Emissionen 

waren durchschnittlich für CH3I, hoch für CHBr3 und sehr hoch für CH2Br2, insbesondere 

südlich von Madagaskar und im ozeanischen Auftriebsgebiet zwischen 10˚S - 5˚S. Der 

Transport in die Stratosphäre ist effizienter als im tropischen Atlantik, aber weniger 

effizient als im Westpazifik währen vorhergehender Forschungsfahrten. Zwei 

Haupttransportwege in die Stratosphäre wurden durch die Simulationen diagnostiziert. 

Die hochreichende tropische Konvektion um den Äquator ist wichtiger für den Transport 

des kurzlebigen VSLS CH3I, während die Monsunkonvektion über Indien und der Bucht 

von Bengalen und die asiatische Monsunantizyklone hauptsächlich die längerlebigen 

VSLS CHBr3 und CH2Br2 in die Stratosphäre transportieren. Die Eintragszeitserie zeigt 

interannuale Variabilität und einen leichten Anstieg der Transporteffizienz vom 

tropischen Westindik in die Stratosphäre über die 16 Jahre. 

Im zweiten Manuskript werden DMS-Emissionsmessungen mit der Eddy-Kovarianz 

Methode von der gleichen Fahrt im Indik präsentiert. Der Transport der DMS-Emissionen 

in der Troposphäre während des Sommermonsuns und ihr Einfluss auf Aerosolbildung 

wird untersucht. Die positive Korrelation zwischen DMS-Emissionen und 

Aerosolprodukten von Satellitenmessungen bestätigt den lokalen Einfluss von marinen 

Spurengasen auf atmosphärische Aerosole.  

Nachdem die ersten beiden Studien lediglich den Transport während der borealen 

Sommermonate betrachten, beschäftigt sich das dritte Manuskript mit den Einflüssen der 

starken saisonalen Unterschiede in der asiatischen Monsunregion. Hier werden die intra- 

und interannuale Variabilität des Transportes vom tropischen Westindik in die 

Stratosphäre und ihre Ursachen im Zeitraum von 2000-2015 untersucht. Es gibt, einen 

ausgeprägten Jahresgang im stratosphärischen Eintrag getrieben von den wechselnden 

Monsunwinden. Die Transporteffizienz in die Stratosphäre wird das ganze Jahr über 

durch hohe lokale Meeresoberflächentemperaturen im  tropischen Westindik verstärkt. Im 

borealen Frühling wird der Eintrag außerdem durch El Niño- und im borealen Herbst 

durch La Niña-Verhältnisse im zentralen und östlichen äquatorialen Pazifik intensiviert. 

Die intra- und interannuale Variabilität der Transporteffizienz in die Stratosphäre ist 

höher je kürzer die Lebenszeit der VSLS ist.  
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Aufgrund des starken Jahresganges in der Transporteffizienz sollte eine Saisonalität 

der Emissionen aus dem Indischen Ozean auch den stratosphärischen Eintrag 

beeinflussen. Deshalb liegt der Fokus des vierten Manuskriptes auf den Auswirkungen 

von jährlich und monatlich aufgelösten VSLS Emissionen auf die Saison und Region des 

Eintrages in die Stratosphäre. Das Manuskript enthält eine Prozessstudie für CHBr3-

Emissionen aus dem tropischen Indik und Westpazifik und ihren Transport in die 

Stratosphäre in 2014. Das in die Stratosphäre eingetragene CHBr3 kommt im borealen 

Sommer hauptsächlich aus der Bucht von Bengalen und dem Arabischen Meer. Der 

Eintrag in die Stratosphäre aus dem tropischen Indischen Ozean und Westpazifik ist über 

der südlichen Spitze von Indien konzentriert, ebenfalls im borealen Sommer. Werden 

jährliche Emissionen verwendet, so sind die simulierten CHBr3 Mischungsverhältnisse an 

der Tropopause im borealen Frühling am höchsten. Monatliche Emissionen führen zu 

einem Maximum der Mischungsverhältnisse in der asiatischen Monsunantizyklone im 

borealen Sommer. Dieser saisonale und regionale Unterschied zeigt die Bedeutung der 

saisonalen und regionalen Auflösung der Emissionen aus dem tropischen Indischen 

Ozean für Modellstudien. 

 

Am Ende der Doktorarbeit berechne ich den Beitrag der VSLS Emissionen aus dem 

tropischen Indischen Ozean zu den gesamten tropischen Emissionen aus verschiedenen 

Emissionsinventaren. Der Beitrag des Indik zu Emissionen der drei VSLS CHBr3, 

CH2Br2 und DMS ist höher als im tropischen Mittel, während CH3I Emissionen etwas 

weniger als im Durchschnitt beitragen. Ich schätze außerdem den Beitrag dieser 

Emissionen zum gesamten stratosphärischen Brom, Iod und Schwefel aus VSLS ab. Der 

relative Beitrag des Indischen Ozeans zu stratosphärischen Konzentrationen ist für alle 

VSLS höher als der mittlere tropische Beitrag. Der Indische Ozean ist eine wichtige 

Quellregion für VSLS für die Troposphäre und Stratosphäre aufgrund der starken 

Emissionen und dem effizienten Transport in die Stratosphäre durch den Asiatischen 

Monsun besonders im borealen Sommer. 
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1 Introduction 

The ozone hole above Antarctica was first discovered in 1984 (Chubachi, 1984; Farman 

et al., 1985). It occurs in southern hemispheric spring and is connected with catalytic 

depletion of the stratospheric ozone layer involving anthropogenic chloro- and 

bromofluorocarbons (Molina et al., 1974; Wofsy et al., 1975). The stratospheric ozone 

layer protects the Earth’s surface from harmful ultraviolet (UV) radiation originating 

from the sun. This radiation impacts physiological and developmental processes in plants 

and increases the incidence of skin cancer, eye diseases, and infectious diseases in 

humans and animals (Van der Leun et al., 1995). Anthropogenic ozone depleting 

substances (ODS) cause a reduction of the stratospheric ozone abundances which is small 

around the equator, larger in the midlatitudes and most pronounced at the poles in spring. 

ODS have been widely used as refrigerants, propellants, solvents, extinguishers, 

fumigants, and cleaning agents before they were banned when the Montreal Protocol 

entered into force in 1989. Because of the long lifetimes of the major chlorofluorocarbons 

(CFC-11 around 50 years, CFC-12 around 100 years), their abundances in the atmosphere 

are decreasing slowly and a recovery of the global ozone level to 1960 values is projected 

for approximately the middle of the 21
st
 century (WMO, 2014).  

Beside the depletion of the ozone layer by ODS, there is also a contribution of natural 

chlorinated, brominated, and iodinated substances to ozone destruction. Bromine is 

important for ozone chemistry despite much lower stratospheric abundances than chlorine, 

since it is about 60 times more efficient at destroying ozone than chlorine (Sinnhuber et 

al., 2009). Iodine is more than 100 times as efficient as chlorine in depleting ozone (Ko et 

al., 2003). The impact of natural long-lived halogenated substances, mainly methyl 

chloride (CH3Cl) and methyl bromide (CH3Br), on the ozone layer is relatively well 

known (WMO, 2014). The role of shorter-lived bromine containing compounds in ozone 

depletion is, however, less certain. Recent balloon-borne stratospheric bromine 

measurements revealed a discrepancy between measured bromine abundances and those, 

that could be accounted for by long-lived gases (Dorf et al., 2006). The missing 

stratospheric bromine source is attributed to natural marine derived substances with 

lifetimes in the order of days to half a year, which are called very short-lived substances 

(VSLS) (Law et al., 2006). The two natural oceanic compounds bromoform (CHBr3) and 

dibromomethane (CH2Br2) are estimated to contribute ~76% to VSLS bromine (   
    ) 
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in the stratosphere using a top down approach (Hossaini et al., 2012). The natural oceanic 

VSLS methyl iodide (CH3I) delivers small amounts of iodine to stratosphere, when it is 

emitted in regions with active convection (Solomon et al., 1994; Tegtmeier et al., 2013).  

Polar ozone depletion occurs by heterogeneous reactions involving chlorine on the 

surface of polar stratospheric clouds, which mainly consist of sulfuric acid aerosols 

(Solomon et al., 2015). These aerosols are also the major constituents of the stratospheric 

background aerosol layer (Junge et al., 1961), which impacts Earth’s radiative budget by 

cooling the surface climate (Solomon et al., 2011). The stratospheric background aerosol 

layer is supplied by long-lived natural substances from the ocean e.g. carbonyl sulfide 

(Crutzen, 1976; Kremser et al., 2016) and anthropogenic sulfur compounds such as sulfur 

dioxide (Myhre et al., 2004; Solomon et al., 2011; Sheng et al., 2015). Volcanic eruptions 

can significantly contribute to stratospheric sulfur (Mossop, 1964) over timescales of a 

few months to years. Oceanic DMS, the major biogenic sulfur carrier to the atmosphere 

(Liss et al., 2014), may despite its very short lifetime of around one day directly 

contribute to stratospheric sulfur in regions of pronounced tropical deep convection like 

the tropical West Pacific (Marandino et al., 2013). Furthermore, it contributes through the 

atmospheric conversion to carbonyl sulfide (Barnes et al., 1994) and subsequent 

entrainment to the stratosphere. 

These very short-lived halogen and sulfur containing substances are naturally 

produced by phytoplankton and macroalgae (Moore et al., 1994; Carpenter et al., 1999; 

Stefels, 2000; Quack et al., 2003) and are emitted to the atmosphere when they are 

oversaturated in the surface ocean. The emissions of VSLS vary spatially and temporally 

and depend on the concentrations in ocean and atmosphere, as well as on physical 

parameters like sea surface temperature, salinity, and wind speed (Quack et al., 2003). 

VSLS are mainly transported to the stratosphere through fast uplift with deep convection 

in the tropics. The main entrainment regions of tropospheric air to the stratosphere, the 

so-called “stratospheric fountain”, are the Pacific warm pool in boreal winter and the 

Asian monsoon in boreal summer (Newell et al., 1981). After entering the stratosphere, 

air is transported from the tropics toward the winter pole with the Brewer-Dobson 

circulation (Brewer, 1949; Dobson, 1956). Tropical oceanic surface sources of VSLS 

matter for the ozone cycle in the atmosphere and ozone depletion in midlatitudes and 

polar regions of the stratosphere (Oman et al., 2016; Fernandez et al., 2017). 

Major uncertainties still exist with regard to the sources and strength of the highly 

variable VSLS emissions from the oceans and their transport to the stratosphere. 
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Especially emissions from the Indian Ocean, which is the most rapidly warming ocean 

basin in current climate change (Roxy et al., 2014), are poorly constrained due to very 

sparse data coverage in this ocean basin (Lana et al., 2011; Ziska et al., 2013). 

Furthermore, the Asian monsoon as important gateway for tropospheric air to the 

stratosphere (Fueglistaler et al., 2005) has not been studied in detail as a VSLS pathway 

with observations or models. Thus, it is important to investigate the emissions and 

transport processes of VSLS in the Asian monsoon region in order to calculate the 

contribution of natural halocarbons and sulfur under present-day conditions. Only by 

understanding the current situation can we begin to predict the influence of these natural 

compounds on the stratosphere in a future climate, which will likely include a slowing of 

the Asian monsoon circulation (Christensen et al., 2013). 

The relative importance of natural halogenated compounds for ozone depletion will 

change in the future since the stratospheric chlorine abundances are declining due to the 

regulation of ODS emissions through the Montreal protocol. The ozone depletion 

efficiency of bromine will decrease with the future stratospheric abundance of chlorine 

and thus the chlorine-bromine ozone destruction cycle will become less efficient (Yang et 

al., 2014). Taking this depletion efficiency decrease into account, Tegtmeier et al. (2015) 

projected the ozone depletion potential of CHBr3 to increase until 2100 due to enhanced 

emissions and larger convective mass flux. Furthermore, the emissions of CHBr3 are 

projected to increase, if oceanic concentrations remain the same (Ziska et al., 2017). 

However, it is unclear what will happen to ocean concentrations in a future climate, as 

they depend on oceanic biological activity (Stemmler et al., 2015). The impact of future 

climate scenarios on oceanic biology is highly debated (Richardson et al., 2016; Roxy et 

al., 2016). Thus, projections of future VSLS influence on ozone are still inconclusive and 

detailed emission and transport studies are needed to reduce the existing uncertainties. 

1.1 Asian monsoon and the Indian Ocean 

1.1.1 General circulation of the atmosphere 

The general circulation of the atmosphere depicts the mean global flow in the atmosphere 

averaged with time. The circulation is driven by the differential heating from the sun 

between the equator and the poles and further influenced by the rotation of the earth and 

the distribution of continents and oceans. The difference in incoming solar energy 
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between the equator and the poles causes a surface pressure gradient with low pressure at 

the equator and high pressure at the poles. This gradient accelerates surface air parcels 

towards the equator. They are deflected to the right on the northern hemisphere and to the 

left on the southern hemisphere due to the Coriolis effect, a result of the rotation of the 

earth and their movement away from the rotation axis. The movement toward the equator 

of surface air is interrupted by the deflected air masses in the midlatitudes, where 

westerly winds prevail. A circulation cell, called the Hadley cell, exists between the 

equator and the subtropics on each hemisphere (Figure 1). In these cells air parcels rise 

around the equator, flow towards the poles in the upper troposphere, descend in the 

subtropics and converge toward the center at the surface. The resulting tropical easterly 

winds at the surface are the trade winds and the temperature inversion occurring due to 

the descending air masses is called trade inversion. The low pressure center, called the 

intertropical convergence zone (ITCZ), is marked by rising air masses and intense rainfall. 

The position of the ITCZ and the accompanying rainfall shift over the year as the latitude 

of maximum incoming solar radiation moves towards the summer hemisphere of the 

Earth. On average, it is located around 5˚N, but over the Indian Ocean its mean position is 

south of the equator (Schneider et al., 2014).  

 

Figure 1: Schematic of the Hadley circulation. Abbreviations: TTL – Tropical tropopause layer, ITCZ – 
Intertropical convergence zone.  



Asian monsoon circulation 7 

 

1.1.2 Asian monsoon circulation 

The Asian monsoon dominates the atmospheric circulation above the Indian Ocean. The 

term monsoon refers to a seasonal shift in the prevailing surface winds. This shift is often 

accompanied by a change in the precipitation regime from a rainy season with onshore 

flow to a dry season with offshore flow (Krishnamurti et al., 2013). Ramage (1971) 

defined monsoon regions by a shift in the surface winds of at least 120° between January 

and July. More recent definitions include a local difference between summer and winter 

precipitation (called annual range; Wang et al., 2006; Figure 2) and the normalized 

seasonality in the wind field (Li et al., 2003). The monsoon has been described as a 

global-scale persistent overturning of the atmosphere that varies with the time of year 

(Trenberth et al., 2000). It can be divided into three regional monsoons, which are 

summarized under the term global monsoon: The American, the African, and the Asian-

Australian monsoon.  

 

Figure 2: Annual range (difference between summer and winter precipitation) and global monsoon 
domain (delineated by the bold line) after the definition of Wang et al. (2006). 

Webster (1987) suggested the monsoon to be a planetary scale moist sea-breeze 

modified by the Coriolis force. Satellite observations showed that the monsoon is also 

part of the planetary rain band connected with the ITCZ, only the amplitude of 

displacement from the equator is larger in monsoon regions (Sikka et al., 1980). 

Seasonally reversing winds are associated with large-scale heat sources and sinks. The 

Asian summer monsoon heat source first comes from the warm Indian subcontinent and 

is then intensified by the heavy rainfalls over India, Indochina, and China and the 

associated convective heating. Additionally, the elevated grounds of the Tibetan Plateau 
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absorb solar radiation and release it back into the atmosphere through sensible and latent 

heat fluxes above the sea level, meaning that the large-scale meridional temperature 

gradient also exists over significant depth in the troposphere. The boreal summer heat 

sink lies in the southern Indian Ocean between 30˚S and 60˚S and the southern part of the 

South China Sea (Krishnamurti et al., 2013). The temperature difference creates the 

Monsoon Low pressure system on the Asian continent and the Mascarene High above the 

ocean (Figure 3). The seasonal displacement of the ITCZ is amplified by these pressure 

systems. The global monsoons mainly respond to the net heating on planetary scales, but 

the regional monsoons depend on the distribution of land and ocean, as well as sea 

surface temperature (SST) gradients and topography (Webster, 1987). The uneven 

distribution of land and ocean between northern and southern hemisphere and the high 

altitude of the Himalaya create a pressure gradient that makes the Asian monsoon the 

most pronounced monsoon. The Asian monsoon is often divided into the Indian monsoon, 

also called South Asian monsoon, and the East Asian monsoon. These monsoons are two 

separate but interactive monsoon sub-systems (Wang et al., 2001). 

The Indian summer monsoon surface winds develop above the southern Indian Ocean 

as southeast (SE) trades, flow across the equator and onto the Indian subcontinent as the 

Somali Jet and southwest (SW) monsoon, bringing moisture toward the convective 

centers over northern India and the Bay of Bengal (Figure 3).  

 
Figure 3: Schematic of the major circulation of the surface winds, the Hadley cell, and the jets of the 
Indian summer monsoon (after Meehl, 1987). 
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The release of latent heat from the convection establishes an upper tropospheric high 

pressure system with anticyclonic circulation above the Asian continent (Figure 4a). This 

pressure system, called Asian monsoon anticyclone, is flanked by the subtropical jet in 

the north and the Tropical Easterly Jet (TEJ) in the south (Dunkerton, 1995) (Figure 4b). 

 
Figure 4: ERA-Interim monthly fields for July 2014 at 100 hPa for (a) geopotential height anomaly with 
wind arrows and (b) zonal wind speed with geopotential height anomaly contours. Abbreviations: Asian 
monsoon anticyclone (AMA), subtropical jet (SJ), Tropical Easterly Jet (TEJ). 

The winter monsoon over Asia is characterized by northeasterly offshore winds both in 

India and East Asia and little rainfall over the continents. The ITCZ and accompanying 

rainfall over the Indian Ocean is located to the south of the equator. Figure 5 depicts the 

annual movement of main precipitation over the Indian Ocean. Note that some deep 

convection and rain remains around the equator, when the main convection center moves 

to the northern hemisphere in boreal summer.  

 

Figure 5: Annual shift of main rainfall and surface winds over the Indian Ocean. The red line marks the 
ITCZ (precipitation maxima) (Schneider et al., 2014).  
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1.1.3 Asian monsoon variability and trends 

The Asian monsoon experiences variability on different time scales, from intraseasonal 

over interannual to inter-decadal and additionally long-term trends driven by changes and 

variability in the oceans and the atmospheric circulation. This thesis determines the 

seasonal and interannual variability in transport of VSLS from the ocean to the 

stratosphere via the Asian monsoon circulation. The seasonal variability is mainly driven 

by the strong annual cycle of the Asian monsoon. Interannual variability in the Asian 

monsoon exists and is connected to other oceanic or atmospheric phenomena acting on 

interannual scales in the tropics. Furthermore, this thesis briefly investigates short-term 

(15-year time period) changes in transport to the stratosphere, which may be caused by 

changes in the monsoon circulation and its drivers. These changes may impact the 

stratospheric delivery of VSLS and, thus, influence stratospheric composition and 

chemistry.  

The variability of the Asian monsoon is expressed by certain physical parameters like 

rainfall and wind speed at different locations or heights. Some of the most important 

indices for the Asian and Indian monsoon are:  

 All-India Rainfall Index (AIRI): sum of rainfall over the Indian continent 

during June to September (Parthasarathy et al., 1994), 

 Extended Indian monsoon rainfall (EIMR): sum of rainfall including adjacent 

oceans  covering 70˚–110˚E, 10˚–30˚N during June to August, 

 Webster Yang Index (WYI): broad-scale South Asian summer monsoon index, 

vertical shear of zonal wind anomalies between 850 hPa and 200 hPa during 

JJA, (40˚–110˚E, 0˚–20˚N) defined in Webster et al. (1992), 

 Indian Monsoon Index (IMI): dynamical index for the Indian monsoon, 

horizontal shear of zonal wind between a southern region (40˚–80˚E, 5˚–15˚N) 

and a northern region (70˚–90˚E, 20˚–30˚N) at 850 hPa (Wang et al., 1999; 

Wang et al., 2001). 

 In my thesis, I use the AIRI and IMI to investigate seasonal variability of atmospheric 

transport through the Indian monsoon. The characteristics of a pronounced Indian 

summer monsoon include a strong Mascarene high over the southern subtropical Indian 

Ocean, a distinct land-sea thermal gradient and a resulting enhanced cross-equatorial flow 

with increased moisture transport towards India (Webster et al., 2003).  
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Interannual variability in the tropics, especially the Indian and Pacific Ocean, is 

modulated by coupled ocean-atmosphere phenomena. These often also influence each 

other. The phenomena discussed here are the El Niño-Southern Oscillation (ENSO), the 

Indian Ocean Dipole (IOD), the Tropospheric Biennial Oscillation (TBO), and the Pacific 

Decadal Oscillation (PDO). A map of the areas, where indices for these phenomena and 

the IMI are defined, can be found in Manuscript 3 (Sect. 3.3). 

El Niño-Southern Oscillation (ENSO) 

The main interannual influence on the Asian monsoon is through ENSO (Webster et 

al., 1992; Ju et al., 1995) (Figure 6). It is a coupled ocean-atmosphere phenomena in the 

equatorial Pacific, with remote influences around the globe. The easterly trade winds over 

the Pacific push warm surface waters towards the west inducing an SST gradient of about 

5˚C between the West Pacific warm pool and the East Pacific. The movement of water 

mass also causes sea level differences around 0.5 m between the east and the west, an 

inclination of the thermocline, the border between warm surface and cold bottom water, 

and upwelling of cold bottom water along the South American coast. This upwelling is 

increased by the offshore Ekman transport induced by the southerly winds along the 

South American coast. The equatorial easterly winds above the Pacific are part of the 

atmospheric Walker circulation (Walker, 1924). It is an earth encompassing zonal 

circulation in the tropics with atmospheric upwelling over the warm continents, 

downwelling over the oceans, and compensating horizontal easterly or westerly winds at 

the surface and in the upper troposphere.  

 

Figure 6: (a) West Pacific SST, Walker cell and upwelling during ENSO neutral conditions. (b) West Pacific 
SST anomalies, Walker cells and reduced upwelling during El Niño conditions (Christensen et al., 2013). 
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The state of the Pacific Ocean is sustained by the positive Bjerknes feedback (Bjerknes, 

1969): The SST difference across the equatorial Pacific limits convection to the West 

Pacific, which creates a pressure gradient strengthening the easterly winds. The variation 

of the pressure gradient between the East and the West Pacific is called the Southern 

Oscillation and is the atmospheric part of the coupled phenomena. Perturbations to this 

ocean-atmosphere feedback weaken the whole system and cause large variability known 

as ENSO. If, for example, the trade winds are weakened due to westerly wind bursts 

originating in the Indian Ocean, less water is displaced to the West Pacific, the East 

Pacific warms and the oceanic upwelling along the South American coast is reduced. This 

is called an El Niño (Spanish: Christ Child) event, because it is observed around 

Christmas time in boreal winter. The opposite event (La Niña, the girl) supports stronger 

than normal trade winds, lower temperatures in the East Pacific and enhanced oceanic 

upwelling. El Niño events occur every 3-7 years and can be described by SST anomalies 

in the equatorial Pacific in different regions (Nino3: 150˚–90˚W, 5˚S–5˚N; Nino4: 160˚E–

150˚W, 5˚S–5˚N). The influence of ENSO on the Asian monsoon is mainly through its 

modulation of the Walker circulation (Ju et al., 1995; Wang et al., 2001, Figure 6, 

Manuscript 3), but also due to a basin wide warming during El Niño in the adjacent 

Indian Ocean (Schott et al., 2009). For the Indian monsoon, a developing El Niño 

generally means less summer monsoon rainfall and vice versa for La Niña (Wang et al., 

2001) (Figure 7). This connection and its influence on VSLS transport to the stratosphere 

are described in more detail in Manuscript 3 (Sect. 3.3). 

 

Figure 7: Time series of All-Indian Summer (JJA) monsoon rainfall and ENSO events  (Kothawale et al., 
2016). 
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Indian Ocean Dipole (IOD) 

The IOD describes the SST anomaly between the West and East Indian Ocean, which 

has been shown to influence convection and rainfall in that basin (Figure 8). The Dipole 

Mode Index (DMI), used to describe the IOD, is defined as the SST difference between a 

western (50˚E-70˚E, 10˚S-10˚N) and an eastern (90˚E-110˚E, 10˚S-0˚) area in the Indian 

Ocean (Saji et al., 1999). A positive IOD event (a colder eastern Indian Ocean) during 

boreal summer suppresses deep convection in that region, enhances northward moisture 

transport toward the monsoon convection and causes more monsoon rainfall (Behera et 

al., 1999; Ashok et al., 2001).  

The tropical circulation has the tendency that a relatively strong Indian monsoon is 

followed by a relatively weak one, and vice versa. This phenomena is called the Tropical 

Biennial Oscillation (TBO, Meehl et al., 2002). ENSO, the IOD, and the TBO are all tied 

together by the Walker circulation over the Indian and Pacific Ocean in the atmosphere 

(Meehl et al., 2002). The Pacific Decadal Oscillation describes the recurring SST pattern 

in the Pacific, with anomalies poleward of 20˚N (Mantua et al., 2002). On a longer than 

interannual time scale, the PDO has a similar impact on the Indian summer monsoon 

rainfall as ENSO, with a negative PDO phase related to an increase in summer monsoon 

rainfall and vice versa (Krishnan et al., 2003).  

 

Figure 8: Sea surface temperature anomalies and rainfall patterns during positive and negative Indian 
Ocean Dipole events (Illustration by Paul E. Oberlander, 2017, Woods Hole Oceanographic Institution). 
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The Asian monsoon circulation has experienced long-term changes due to greenhouse 

gas induced global warming in the last decades (Christensen et al., 2013). The Indian 

Ocean has been warming for over a century, at a rate faster than any other ocean basin 

(Roxy et al., 2014). This warming decreases the land-sea thermal gradient, which drives 

the Indian monsoon, and thus slows down the monsoon circulation as observed from 

1905-2012, resulting in less rainfall over the central-east and northern regions of India 

(Roxy et al., 2015). This decrease in rainfall is part of a dipole structure with an increase 

over the core monsoon region of Pakistan caused by more northward moisture transport 

over the Arabian Sea and less over the Bay of Bengal from 1951-2012 (Latif et al., 2016). 

These changes could be due to a 2˚-3˚ westward shift of the whole Asian monsoon 

circulation system between 1970 and 2015 (Preethi et al., 2016). These recent studies also 

report a slowing down of the circulation over the Bay of Bengal, which could result in 

less convection and upward transport.  

1.1.4 Transport of surface air to the stratosphere through the Asian 

monsoon 

The delivery of surface air to the stratosphere depends on fast vertical transport, which is 

mainly realized in enhanced deep convection in the tropics. Generally air masses are 

lifted into the lower tropical tropopause layer (TTL) through convective processes and 

then ascend more slowly through the upper part of the TTL into the stratosphere (Figure 9, 

Path #3). The TTL is a layer of transition between the convective troposphere and the 

slow ascent of the Brewer-Dobson circulation in the stratosphere. Different definitions for 

the TTL exist (Folkins et al., 1999; Gettelman et al., 2002; Fueglistaler et al., 2009; 

Carpenter et al., 2014). Here, the definition as the layer between the level of maximum 

convective outflow (~12 km altitude, 345 K potential temperature) and the cold-point 

tropopause (CPT, ~17 km, 380K) is used (Carpenter et al., 2014). The level of zero 

radiative heating (LZRH) marks the transition from clear-sky radiative cooling to clear-

sky radiative heating and the boundary between the lower and upper TTL. Deep 

convection rapidly transports boundary level air masses up to the level of maximum 

convective outflow, typically between 12 and 14 km (Folkins et al., 2005). Air masses 

that are detrained below the LZRH mostly descend back into the mid-troposphere with 

the large-scale subsidence (Figure 9, Path #2). Air detrained above the LZRH can ascend 

through the upper TTL and reach the stratosphere. The residence time in the upper TTL 
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for northern hemispheric winter lies within 15-75 days (Krüger et al., 2009). The 

residence times in the TTL vary in space and time and are influenced by the location of 

entry and the horizontal transport through upwelling and downwelling regions (Tzella et 

al., 2011; Bergman et al., 2012). Overshooting deep convection that transports air masses 

directly above the tropopause essentially reduces residence times in the TTL (Pommereau, 

2010). However, the contribution of this transport pathway to troposphere-to-stratosphere 

transport is still uncertain (Liu et al., 2005; Vernier et al., 2011; Takahashi et al., 2014). 

Additionally, horizontal two-way exchange between the TTL and the extratropical lower 

stratosphere is also possible (Holton et al., 1995; Levine et al., 2007; Ploeger et al., 2012). 

 

Figure 9: Schematic of vertical transport pathways in the tropics (Bergman et al., 2012). 

Preferred regions of air mass transport to the stratosphere appear in conjunction with 

strong and fast convection above the Maritime Continent in boreal winter (Bergman et al., 

2012), the Indian monsoon region (Devasthale et al., 2010) and Southeast Asia (Wright et 

al., 2011) in boreal summer. Above the tropical Indian Ocean, transport to the 

stratosphere is strongly influenced by the Asian monsoon circulation and its seasonality 

and interannual variability.  

Stratospheric entrainment of boundary layer trace gases and volcanic aerosols has been 

detected in connection with the Asian monsoon (Randel et al., 2010; Bourassa et al., 

2012). Chemistry climate models support the importance of this pathway for stratospheric 

delivery (Pan et al., 2016). The Asian monsoon anticyclone in the upper 

troposphere/lower stratosphere (UTLS) confines boundary layer air masses that have been 

lifted with the monsoon convection (Park et al., 2009). Furthermore, boundary layer 

source regions of anticyclonic air have been a topic of recent research. Bergman et al. 

(2013) identified a slender mid tropospheric vertical conduit connecting India and the 
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Tibetan Plateau with the anticyclone. The importance of deep convective updrafts for the 

delivery to the tropopause was identified (Figure 10). This conduit is very persistent and 

efficient during the Asian summer monsoon. Chen et al. (2012) found the west Pacific 

Ocean and the Bay of Bengal to be important boundary layer sources for stratospheric 

entrainment in the Asian summer monsoon area. Vogel et al. (2015) showed that different 

boundary source regions contribute to the anticyclone related to intraseasonal variation of 

the summer monsoon associated with the north-south movement of the anticyclone.  

 

Figure 10: The vertical conduit of boundary layer air masses to the Asian monsoon anticyclone (after 
Bergman et al., 2013). 

From the anticyclone, air masses can be entrained into the stratosphere via slow 

vertical lifting in the tropics or through quasi-isentropic two way entrainment into the 

extratropical lowermost stratosphere (Vogel et al., 2015; Garny et al., 2016; Müller et al., 

2016). A Lagrangian transport model driven by ERA-Interim inferred that Asian 

monsoon anticyclonic air contributes up to 5% of the air mass fraction in the confined 

tropical upwelling in the stratosphere, called the tropical pipe, and 15% to the 

extratropical lowermost stratosphere (Ploeger et al., 2017). 

The boreal winter season is less important for stratospheric entrainment through the 

Asian monsoon than the summer monsoon season (Pan et al., 2016). The ITCZ resides 

slightly south of the equator over the Indian Ocean during this time (Schneider et al., 

2014). The convection during this season is weaker, but directly over the Indian Ocean, a 

potential source region for VSLS.  
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1.1.5 Indian Ocean circulation 

The interaction of the tropical Indian Ocean with the atmosphere plays an important role 

in shaping climate on regional and global scales. The Indian Ocean differs from the 

Atlantic and Pacific Oceans in several aspects, including the northward boundary of the 

Asian continent and the low latitude exchange of ocean waters with the Pacific through 

the Indonesian Through Flow (ITF, Figure 11). The Indian Ocean and the Asian continent 

drive the strongest monsoon in the world, which exerts an important impact on the Indian 

Ocean seasonal cycle through a reversal of the monsoon winds. 

The Indian Ocean lacks the steady equatorial easterly winds that occur over the 

Atlantic and Pacific. As a result, there is, in contrast to the other oceans, no climatological 

mean equatorial upwelling along its eastern boundary. Instead, upwelling occurs along 

the coast of Africa and Arabian Peninsula, maybe east and west of the tip of India, and 

south of the equator in the West Indian Ocean (green in Figure 11). These upwelling 

regimes are connected to the shallow “equatorial roll”, which does not exist in other 

oceans. During the summer monsoon, this roll emerges from the mean southward Ekman 

transport across the tropical Indian Ocean (red arrows in Figure 11).  

 
Figure 11: Indian Ocean currents during boreal summer partaking in the equatorial roll circulation and 
areas of upwelling (green shading) and downwelling (blue shading). Light dashed stream paths stand for 
upper layer inflow into downwelling area, dotted for thermocline Somali Current supply, solid for 
Southern Hemisphere thermocline flow, and heavy dashed for the supply route of the subtropical cell. 
Abbreviations: Indian Through Flow (ITF), Southern Equatorial Current (SEC), Northeast Madagascar 
Current (NEMC), East African Coastal Current (EACC), South Equatorial Counter Current (SECC), Somali 
Current (SC), Great Whirl (GW), Mean Ekman Transport (Me) (Schott et al., 2009).  
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The wind stress is directed to the north along the equator causing the Ekman driven 

current to subduct and form the equatorial roll. The water wells up again south of the 

equator forming the Seychelles-Chagos-thermocline ridge (Schott et al., 2009). 

Furthermore, the atmospheric Somali Jet of the Asian summer monsoon causes strong 

coastal upwelling of bottom water along the Somali coast (Bruce, 1973). 

1.2 Very short-lived substances and their transport to the 

stratosphere 

VSLS are gases that have atmospheric lifetimes of less than half a year after they have 

been emitted to the atmosphere (Law et al., 2006). This thesis focuses on the four VSLS 

bromoform (CHBr3), dibromomethane (CH2Br2), methyl iodide (CH3I) and dimethyl 

sulfide (DMS). 

1.2.1 Marine production 

The four VSLS discussed in this thesis have their main sources in the oceans. The 

production of bromocarbons in the ocean is not yet fully understood, but production 

pathways have been identified. The two bromocarbons CHBr3 and CH2Br2 have 

biological and chemical production pathways. Macroalgal formation of bromocarbons has 

been investigated in the field and laboratory (Gschwend et al., 1985; Carpenter et al., 

2000). There is also a source of bromocarbons from phytoplankton in the open ocean 

(Quack et al., 2004). Several phytoplankton pigments and groups have been related to 

CHBr3 and CH2Br2 production (Moore et al., 1995b; Quack et al., 2007; Hughes et al., 

2013), while they are poor proxies for bromocarbon production (Abrahamsson et al., 

2004; Ordóñez et al., 2012; Stemmler et al., 2015). Incubation studies of phytoplankton 

confirmed the production of bromocarbons from bromoperoxidase enzymes (Tokarczyk 

et al., 1994; Moore et al., 1996). Furthermore, anthropogenic sources of CHBr3 and 

CH2Br2 need to be considered. The compounds are formed during the chlorination and 

ozonization of drinking, sea, and waste water for disinfection and cooling water in power 

plants to prevent biofouling (Fogelqvist et al., 1982; Fogelqvist et al., 1991; Jenner et al., 

1997). Generally, the sources can be divided in coastal and open ocean sources, with 

macroalgae and anthropogenic production dominating the coastal sources, which yield 

higher concentrations than phytoplankton in the open ocean (Quack et al., 2003).  
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For CH3I production, small biological sources were detected from kelp macroalgae 

(Lovelock, 1975; Gschwend et al., 1985), phytoplankton (Moore et al., 1996; Scarratt et 

al., 1999), and bacterial production (Amachi et al., 2001; Hughes et al., 2011). Through 

incubation experiments also a photochemical source of CH3I was detected (Moore et al., 

1994; Shi et al., 2014). The inclusion of photochemical production in the ocean closed the 

gap in the global atmospheric CH3I budget (Bell et al., 2002). 

DMS is formed in the ocean from its precursor dimethylsulfoniopropiate (DMSP), 

which is produced by phytoplankton (Stefels, 2000). DMSP is released to the water and 

about 1-10% degrades enzymatically into DMS (e.g. Bates et al., 1994; Liss et al., 2014). 

The production of DMS has been studied in the field (e.g. Simó et al., 2002) and modeled 

with biogeochemical coupled ocean atmosphere models (e.g. Kloster et al., 2006). 

1.2.2 Air-sea gas exchange 

Air-sea gas exchange is the main source of organic bromine, iodine and sulfur to the 

atmosphere. Most of the organic bromine is delivered to the atmosphere in the form of 

CHBr3 and CH2Br2 (Penkett et al., 1985; Hossaini et al., 2012), while CH3I contributes 

significantly to atmospheric iodine (Saiz-Lopez et al., 2012). DMS is an important carrier 

of sulfur from the ocean to the atmosphere (Liss et al., 2014).  

Gases which are produced in the ocean are dissolved in sea water. When they are 

supersaturated in the oceanic surface layer with respect to the marine atmospheric 

boundary layer, they are emitted to the atmosphere to achieve equilibrium. They can also 

be taken up from the atmosphere in the case of undersaturation in the surface ocean. The 

strength of emissions is influenced by wind, waves, rain, turbulence, bubbles and surface 

films on very small scales. So far, direct flux measurements using the eddy-covariance 

technique were only applied to some gases e.g. carbon dioxide (CO2) (McGillis et al., 

2001), oxygenated volatile organic compounds (OVOCs) (Yang et al., 2013), and DMS 

fluxes (Blomquist et al., 2006; Marandino et al., 2007; Miller et al., 2009). For 

halocarbons, this method is not available yet. 

Currently, air-sea exchange is mainly calculated using parameterizations of exchange 

rates across the air-sea interface based on wind speed and concentration measurements in 

the ocean and atmosphere. These estimations are subject to many uncertainties 

(Wanninkhof et al., 2009) as described in the following. A flux is defined as the product 

of the transfer velocity k and the concentration gradient    (Eq. 1).  
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  (1) 

Here,    describes the grade of under- or oversaturation of the gas in the ocean and, thus, 

the direction of the flux and k determines the rate of exchange. The most commonly used 

simple conceptual model for air-sea exchange is the two layer model (Liss et al., 1974) 

(Figure 12). In the model, the turbulent atmospheric and oceanic boundary layers, where 

compounds are well-mixed and concentrations are homogeneous, are separated from the 

interface by two diffusive layers, one on each side of the interface. In the diffusive layers 

turbulence is suppressed and transport is realized only through molecular diffusion. This 

creates concentration gradients and imposes a resistance to the exchange from the air and 

from the water side, which can be parameterized.  

  

The resistances depend on the solubility of the gas in water, which is described by 

Henry’s Law. The Henry’s Law constants (H) and their dependence on temperature were 

investigated by Moore and coworkers for halocarbons (Moore et al., 1995a; Moore et al., 

1995b) and by De Bruyn et al. (1995) for DMS. For gases with low solubility, the air-side 

resistance is much higher than the water-side resistance, which results in the use of the 

transfer velocity in water    and the concentrations of water    and air    in Eq. 1. There 

are several parameterizations available for the transfer velocity. Since the bulk air and 

water concentrations are measured in the turbulent layers, the transfer velocity correlates 

with wind speed, which determines the turbulence that drives the exchange. Additionally, 

the Schmidt Number (Sc) is used to describe the resistance of molecular diffusion in the 

water. Nightingale et al. (2000) developed a parameterization for the transfer velocity 

(    ) based on the wind speed at 10 m above the surface (u10) and a Schmidt number of 

600 for CO2 at 20˚C in fresh water. 

Figure 12: Two layer model of air-sea gas exchange 
from Liss et al. (1974), displayed in Wanninkhof et 
al. (2009). Abbreviations: concentration in water 
(cw), concentration in air (ca), Ostwald solubility 
coefficient (a). 
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             (2) 

The wind speed at 10 m height (u10) is used for this parameterization. The Schmidt 

number has to be adapted for the different compounds. A compound-specific transfer 

coefficients    is determined through an exponential relation like in Quack et al. (2003): 

           
   

  
 

 
 
  

(3) 

The spread between the different parameterizations of the transfer velocity    is large, 

especially at high wind speeds. Nightingale et al. (2000) provide an estimate around the 

mean of known parameterizations (Lennartz et al., 2015). This bulk flux calculation 

method is a simplified approach to describe the more complicated real world and, thus, 

includes uncertainties through for example the negligence of effects of rain, bubbles, and 

surfactants.  

1.2.3 VSLS emission estimates 

Global estimates of VSLS emissions from the oceans vary strongly due to sparse 

observation data and the high spatial and temporal variability of emissions. Additionally 

the short lifetimes in the atmosphere make it difficult to accurately model emissions from 

atmospheric measurements. The first global emission estimates were made for CHBr3 and 

assumed homogeneous emissions (Penkett, WMO 1998, Dvortsov 1999, Carpenter and 

Liss 2000, Nielsen and Douglas 2001). Afterwards the geographical distribution of 

emissions was added and estimates were extrapolated from oceanic and atmospheric 

measurements, the so-called bottom-up approach (Quack et al., 2003; Smythe-Wright et 

al., 2005; Yokouchi et al., 2005; Butler et al., 2007). When atmospheric modeling became 

available and chemistry was included into the models, emissions were also inferred from 

observed atmospheric mixing ratios through a top-down approach (Warwick et al., 2006; 

Kerkweg et al., 2008; Liang et al., 2010; Pyle et al., 2011). Ordóñez et al. (2012) coupled 

tropical emissions to chlorophyll a (Chl a) concentrations in the surface ocean and 

created an emission inventory that included seasonality. This is a rough approach, 

because the correlation with Chl a is mostly weak, since bromocarbon production appears 

more related to phytoplankton production, influenced by the phytoplankton species and 

the state of the bloom (Carpenter et al., 2009; Liu et al., 2011; Hepach et al., 2014; 

Hepach et al., 2015). All other previously described emission inventories only report 

annual mean emissions. Ziska et al. (2013) created a CHBr3, CH2Br2, and CH3I emission 
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climatology from the HalOcAt database (https://halocat.geomar.de/) of limited oceanic 

and atmospheric halocarbon observations between 1989 and 2011 including seasonal and 

interannual variability through the physical parameters. Recently, halocarbon production 

in the ocean was modeled with ocean biogeochemical models to infer if models can 

reproduce observed emission patterns (Stemmler et al., 2013; Stemmler et al., 2015). The 

spread between the emission inventories is large and emissions in undersampled regions 

remain uncertain. It is hard to accurately model the stratospheric entrainment of 

halogenated VSLS from uncertain global estimates.  

For DMS the data basis is better. Over the open ocean, DMS is hypothesized to be the 

most important precursor for non-sea salt sulfate aerosols, which influence climate 

through direct negative radiative forcing (Myhre et al., 2013) and serve as cloud 

condensation nuclei (Glasow et al., 2004). The formulation of a possible climate feedback 

mechanism, the CLAW-hypothesis, involving the DMS influence on clouds (Charlson et 

al., 1987) started a large number of field observations and modeling studies (e.g. Kloster 

et al., 2006; Marandino et al., 2013; Zindler et al., 2013), which led to an improved 

understanding of DMS sources to the atmosphere, although the feedback mechanism has 

not been verified yet. The result is a monthly resolved emission estimate for the global 

ocean  (Lana et al., 2011). Nonetheless, there are many oceanic regions that are still 

undersampled and the IO is one notable example where the total emissions remain 

uncertain.  

The observations of halogenated VSLS from the Indian Ocean are too sparse to be 

conclusive (Ziska et al., 2013), but single observations and modeling studies show a high 

potential for large emissions. High oceanic concentrations in the Arabian Sea and Bay of 

Bengal (Yamamoto et al., 2001; Roy et al., 2011), as well as modeling studies using 

atmospheric measurements (Liang et al., 2014), suggest high emissions for the Indian 

Ocean. For DMS, several observations exist from the Indian Ocean, but still far less than 

from other ocean basins (Lana et al., 2011). The predicted DMS emissions from the 

Indian Ocean are high. The Indian Ocean is a region with need for observations of VSLS 

in the atmosphere and water. The emissions from the Indian Ocean could be important for 

stratospheric ozone chemistry, if an efficient pathway from the boundary layer to the 

stratosphere through the Asian summer monsoon existed. 
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1.2.4 Atmospheric degradation and lifetimes 

The atmospheric abundances of VSLS depend on oceanic emissions, transport processes 

and the degradation of these substances in the atmosphere. Their atmospheric mixing 

ratios are highly variable because of the short lifetimes and the spatial and temporal 

variation of emissions. Mixing ratios are high close to the emission sources and rapidly 

decrease with distance. A VSLS is defined as a substance with an atmospheric lifetime of 

less than half a year. The lifetime is defined as the time in which the amount of substance 

has degraded to 1/e. 

The brominated VSLS CHBr3 and CH2Br2 degrade into soluble substances through 

reaction with the hydroxyl radical (OH) or photolysis (McGivern et al., 2002). For CHBr3 

the main degradation reaction is photolysis and the main products are CBr2O and CHBrO. 

These further react to HBr, HOBr, or BrO, which are summarized under Bry. CH2Br2 is 

mainly oxidized with OH or Cl radicals and also contribute to Bry. The Bry in the 

atmosphere can be washed out with rain (Hossaini et al., 2010). It can also react with 

ozone both in the troposphere or stratosphere or lead to particle formation (Yang et al., 

2005; Saiz-Lopez et al., 2012). Atmospheric CH3I is photolyzed rapidly in the 

atmosphere into CH2I radicals and iodine atoms (Saiz-Lopez et al., 2012). Iodine reacts 

with ozone to iodine oxide (IO). I and IO together are called active iodine (IOx). They 

take part in the tropospheric ozone cycle (Vogt et al., 1999; Saiz-Lopez et al., 2012) and 

contribute to ozone depletion in the stratosphere (Solomon et al., 1994). Atmospheric 

active iodine can also form aerosols (O'Dowd et al., 2002) and ultrafine particles (Saiz-

Lopez et al., 2012). Atmospheric DMS is degraded even faster than the halocarbons. It is 

mainly oxidized with OH into methyl sulfonic acid (MSA) or sulfur dioxide (SO2) (see 

e.g. Hoffmann et al., 2016, for more details). SO2 can create H2SO4, which condenses on 

existing particles or creates new ones, while MSA mainly condenses on existing particles 

adding to their mass but suppressing new particle formation.   

Lifetime estimates of VSLS result from observations, laboratory experiments, and 

modeling the degradation processes in chemistry models. The lifetimes vary with height, 

latitude, and season and are therefore often modeled as lifetime profiles (Hossaini et al., 

2010) (Figure 13). The most recent summary of lifetime estimates for halocarbons is 

given by Carpenter et al. (2014) and summarized in Table 1. The lifetime of DMS has 

been estimated from laboratory studies and observations (Barnes et al., 2006; Osthoff et 

al., 2009). 
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Figure 13: Annual tropical (±20˚) atmospheric lifetime profiles of (a) CHBr3 and (b) CH2Br2 calculated 
from a chemistry transport model (Hossaini et al., 2010). 

 

Table 1: Tropical atmospheric lifetimes of VSLS at different altitudes for halogenated VSLS (Carpenter et 
al., 2014) and for DMS (Barnes et al., 2006; Osthoff et al., 2009). 

 

 

1.2.5 VSLS entrainment to the stratosphere 

After emission from the oceans, VSLS can be transported to stratosphere. Transport 

processes are important for the injection of oceanic VSLS to the stratosphere, because 

their lifetimes are comparable to transport timescales in the troposphere. Thus, the 

transport of VSLS to the stratosphere occurs primarily in the tropics and is connected 

with fast convection and ascent of air masses through the TTL (Figure 9).  

Atmospheric lifetimes 

Compound Boundary layer 10 km 

CHBr3 15 d 17 d 

CH2Br2 94 d 150 d 

CH3I 4.0 d 3.5 d 

DMS 11 min – 46 h 11 min – 46 h 
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The total injection of halogen from VSLS to the stratosphere comprises source gas 

injection (SGI) and product gas injection (PGI) (Ko et al., 2003). The injection, summed 

up in Table 2, is estimated from observations, model studies, and a combination of both. 

 
Table 2: Delivery of bromine, iodine, and sulfur from VSLS to the stratosphere. 

Element Source gas injection Product gas injection Total injection 

Bromine
1
 0.7-3.4 ppt 1.1-4.3 ppt 5 (2-8) ppt 

Iodine
1
 <0.05 ppt <0.1 ppt <0.15 ppt 

Sulfur from DMS
2
 4.4 Gg S yr

-1
 - - 

1
 (Carpenter et al., 2014);

 2
 (Sheng et al., 2015) 

 

For bromine, the main contributors to stratospheric    
     are CHBr3 and CH2Br2 

(Hossaini et al., 2012). They have been observed in the TTL and around the tropopause 

with balloon-borne instruments (Brinckmann et al., 2012) and several aircraft campaigns 

(summary in Carpenter et al., 2014). Oceanic emission estimates and chemistry climate 

and transport models are used to infer SGI and PGI. These models require a sound 

treatment of oceanic emissions: A use of different VSLS emission scenarios (Liang et al., 

2010; Ordóñez et al., 2012; Ziska et al., 2013) can lead to a difference in the SGI with a 

factor of ~2 (Hossaini et al., 2013). Furthermore, the geographical distribution of OH 

fields strongly influences the lifetime of source gases that are less affected by photolysis 

e.g. CH2Br2 (Rex et al., 2014). The parameterization of convection and the boundary 

layer parameters affects the total amount of source gases delivered to the tropopause also 

with a factor of two between different models (Hossaini et al., 2016). Previous model 

studies used prescribed lifetimes for VSLS degradation without temporal or regional 

variations (Sinnhuber et al., 2006; Warwick et al., 2006; Aschmann et al., 2009; Hossaini 

et al., 2010). Current atmospheric chemistry climate and transport models include an 

online calculation of degradation and account for product gases and dehydration 

processes (Aschmann et al., 2011; Hossaini et al., 2012; Aschmann et al., 2013; Liang et 

al., 2014; Hossaini et al., 2016). The SGI of bromine is derived from direct observations 

(see list in Montzka et al., 2010), while brominated product gas observations are rare and 

therefore have to mainly be obtained from model simulations with high uncertainties in 

wash-out processes (Carpenter et al., 2014). Brominated VSLS are estimated to contribute 

1.1-4.3 pptv from product gases to stratospheric bromine abundances, mainly from CHBr3 
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and CH2Br2 degradation, while 0-0.3 ppt Br come from minor brominated VSLS not 

considered in the studies mentioned above, such as CHBr2Cl, CHBrCl2, and CH2BrCl. 

For the total    
     entrainment, the most recent estimate has a large range from 2-8 ppt 

and is thus still uncertain with a factor of four (Carpenter et al., 2014). 

For oceanic iodine entrainment to the stratosphere, CH3I is the most important source 

gas (Solomon et al., 1994). Aircraft measurements revealed abundances of 0.1 ppt in the 

TTL and 0.05 ppt at the tropopause (campaigns mentioned in: Bell et al., 2002; 

Aschmann et al., 2009; Tegtmeier et al., 2013). These estimates were confirmed by 

modeling studies (Donner et al., 2007; Aschmann et al., 2009; Tegtmeier et al., 2013). 

Iodine product gases are summed up as total organic iodine Iy and include IO, OIO, and 

iodine, which are products of CH3I degradation. They have been observed from solar 

occultation spectra recorded with balloon-borne Differential Optical Absorption 

Spectroscopy (DOAS) instruments in the UTLS (Bösch et al., 2003; Butz et al., 2009). 

Oceanic sulfur delivery to the stratosphere from DMS is highest in regions of intense 

vertical transport because of the very short lifetime of around one day (Marandino et al., 

2013). Sheng et al. (2015) simulated the DMS entrainment to the stratosphere with 

4.4 Gg S yr
-1

. Although this contribution of DMS source gas to the stratospheric aerosol 

layer is only 2% of the total contribution of sulfur to stratospheric aerosols, there is also a 

conversion of DMS to SO2 in the tropical middle and upper troposphere (Chatfield et al., 

1984), which contributes about one third to the stratospheric aerosol SO2 contribution of 

28% (Sheng et al., 2015).  

1.2.6 Impacts of VSLS on the stratosphere  

This thesis considers natural VSLS from the ocean containing bromine, iodine, and 

sulfur. Halogens in the stratosphere, including bromine, iodine, and chlorine, mainly 

influence the ozone layer and therefore the UV-B radiation on the surface, while sulfur 

supplies the stratospheric aerosol layer, which has an influence on climate, and 

contributes to ozone depletion (Solomon et al., 2015). 

Bromine and iodine in the stratosphere serve as catalyst in ozone depletion (Sect. 1), 

and especially combined chlorine-bromine and chlorine-iodine reactions are efficient at 

destroying ozone (Solomon et al., 1994; Salawitch et al., 2005). The stratospheric 

chlorine abundances mainly result from anthropogenic ODS and the long-lived natural 

compound methyl chloride (Figure 14). 
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Figure 14: The contribution of different chlorinated and brominated source gases to 
stratospheric halogen for 1996 and 2012 (WMO, 2014).  

Stratospheric bromine originates mainly from the long-lived anthropogenic or natural 

methyl bromide and anthropogenic halons, but there is also a contribution of about 25% 

from natural VSLS (Dorf et al., 2006; Carpenter et al., 2014) (Figure 14 and 15). The 

contribution of    
     to stratospheric ozone depletion has been modeled with different 

chemistry climate and transport models. Modeling studies of past stratospheric ozone 

abundances including VSLS generally achieve a better agreement with observations than 

models without VSLS (Salawitch et al., 2005; Sinnhuber et al., 2009). These models 

report a global decrease in stratospheric ozone due to VSLS, which is strongest around 

the South Pole (Braesicke et al., 2013; Yang et al., 2014; Hossaini et al., 2015; Sinnhuber 

et al., 2015; Fernandez et al., 2017).    
     mainly destroys ozone in the lower 

stratosphere, because all bromine atoms become immediately available for ozone 

depletion upon entering the stratosphere (Salawitch et al., 2005). Some studies predict a 

later recovery of the ozone hole to 1980 values if VSLS are included in model 

simulations (Yang et al., 2014; Oman et al., 2016), while others simulate a deeper and 

larger current ozone hole, but no delay of the recovery (Fernandez et al., 2017). The 

natural     
     ozone chemistry is predicted to dominate Antarctic ozone destruction by 

the end of the 21
st
 century (Fernandez et al., 2017). 
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Figure 15: Total stratospheric bromine measurements and estimated contribution of CH3Br, Halons, and 
VSLS bromine (update from Dorf et al., 2006; in Carpenter et al., 2014). 

Iodine in the atmosphere mainly originates from the oceans (Saiz-Lopez et al., 2012). 

Balloon-borne measurements suggest very low stratospheric abundances of iodine (Bösch 

et al., 2003) so that iodine is considered a very minor sink for ozone (Carpenter et al., 

2014). Amounts between 0.01 - 0.03 pptv have been observed and modeled in the TTL 

and over 17 km height above the East Pacific (Tegtmeier et al., 2013). Hossaini et al. 

(2015) modeled the contribution of different VSLS to annual global ozone depletion with 

a chemistry transport model and inferred a contribution of 85% from bromine, 4% from 

chlorine, and less than 1% from iodine considering natural and anthropogenic VSLS.  

Stratospheric sulfur mainly influences the temperature of the surface climate as the 

main component of the Junge aerosol layer. It forms sulfuric acid aerosols (Crutzen, 1976; 

Kremser et al., 2016), which reflect sunlight (Junge et al., 1961) and cool the surface 

temperature globally (Solomon et al., 2011). The increase of sulfur supply to the 

stratosphere since the 2000s is estimated to have reduced the greenhouse gas induced 

climate warming by 0.05˚C (Solomon et al., 2011). At the spring pole sulfur forms polar 

stratospheric clouds, who’s surface acts as a catalyst for heterogeneous ozone destruction 

(Solomon et al., 2015). The contribution of DMS to stratospheric sulfur and its role in 

ozone destruction is uncertain. 

 



2 Research Questions 

Halogens and sulfur from natural oceanic very short-lived substances (VSLS) contribute 

to ozone depletion in the stratosphere and influence the radiative budget, which impacts 

climate. It is crucial to determine and understand their current contribution to ozone 

depletion, to project their influence under a warming climate and a changing 

anthropogenic influence. To date, substantial uncertainty exists in the magnitude, 

distribution, and variability of their emissions, their exact transport mechanisms into the 

stratosphere and, hence, their absolute contribution to the stratospheric halogen and sulfur 

loading. VSLS emissions from the Indian Ocean have especially high uncertainties. 

While the entrainment of tropospheric air to the stratosphere has been widely studied, the 

mechanisms of stratospheric entrainment through the Asian monsoon are under current 

investigation. In particular, there are no studies focusing on the combination of 

VSLS transport from the Indian Ocean to the stratosphere and the Asian monsoon. 

Lagrangian transport models are a good tool in diagnosing transport pathways and 

timescales in the atmosphere, but in order to determine the strength of stratospheric 

injection of certain compounds, they need a good representation of spatial and temporal 

varying emissions, meteorological input fields, and small scale parameterizations (i.e., 

boundary layer, convection). 

The aim of this thesis is to investigate marine VSLS emissions from the Indian Ocean 

and their transport to the stratosphere through the Asian monsoon. The results are based 

on unique VSLS observations from the OASIS cruise in the western subtropical and 

tropical Indian Ocean from South Africa to the Maldives in July and August 2014 on RV 

Sonne. The transport is modeled with the Lagrangian particle dispersion model 

FLEXPART based on ERA-Interim reanalysis and different VSLS emission inventories. 

The overarching research question of this thesis is:  

How important are oceanic VSLS emissions from the Indian Ocean for their 

stratospheric loading? 

Indian Ocean emissions of VSLS are uncertain due to sparse or total lack of 

measurements in this region. During the OASIS cruise, we measured the halogenated 

VSLS CHBr3 and CH2Br2 for the first time and added to previous CH3I and DMS 

measurements in the West Indian Ocean and the atmosphere above. The VSLS emissions 

and their transport in the atmosphere during the Asian summer monsoon are addressed in 
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the first two manuscripts: “Delivery of halogenated very short-lived substances from the 

west Indian Ocean to the stratosphere during the Asian summer monsoon” (Fiehn et al., 

2017, ACP) and “The influence of air-sea fluxes on atmospheric aerosols during the 

summer monsoon over the Indian Ocean” (Zavarsky et al., under review at GRL). 

Additional research questions for these two manuscripts are: 

 How strong are VSLS emissions from the West Indian Ocean? 

 What are the transport pathways in the atmosphere above the West Indian Ocean 

during Asian summer monsoon?  

The Asian monsoon and the Indian Ocean have a distinct seasonal cycle in wind, 

atmospheric convection, precipitation, ocean currents, and biological activity. 

Furthermore, there are interannual variations of ocean temperatures, strength of the 

monsoon, and associated rainfall. Thus, we expect a strong annual cycle and interannual 

variations in the stratospheric delivery of VSLS which is addressed in the third 

manuscript “Variability of VSLS transport from the West Indian Ocean to the 

stratosphere” by Fiehn et al. (under review, JGR Atmospheres) through the following 

research questions: 

 How large is the intra- and interannual variability of VSLS transport from the 

West Indian Ocean to the stratosphere?  

 Which is the main stratospheric entrainment season from the West Indian Ocean? 

 What causes the variability of VSLS transport to the stratosphere above the Indian 

Ocean?  

The first three manuscripts focus on the West Indian Ocean, the region of the OASIS 

cruise, where we obtained new observations. The last manuscript, “Influence of 

seasonally resolved emissions on the transport of bromoform from the Indian Ocean to 

the stratosphere” (Fiehn et al., to be submitted) investigates the importance of seasonally 

resolved VSLS emissions and transport over the whole tropical Indian Ocean and Asian 

monsoon region including the tropical West Pacific. In this process study, we compiled 

two bottom-up CHBr3 emission inventories for the year 2104, one based on an annual 

mean extrapolation of surface water and air observations and the other on biogeochemical 

ocean modeling resolving the annual cycle in emissions. The FLEXPART/ERA-Interim 

calculations focus on the strong seasonality in both emissions and transport and their 
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impact on stratospheric delivery. Taking into account a large area, tropical Indian Ocean 

and West Pacific, allows us to determine key source regions that supply CHBr3 to the 

stratosphere and the locations and seasons where the CHBr3 reaches the stratosphere. The 

application of both annual and monthly emissions illuminates the necessary temporal 

resolution for a better representation of stratospheric VSLS entrainment. The research 

questions for this fourth manuscript are:  

 Which are the main source regions in the Indian Ocean/West Pacific for 

stratospheric CHBr3 and where does it enter the stratosphere?  

 What is the influence of the annual vs. monthly representation of CHBr3 emissions 

on stratospheric entrainment through the Asian monsoon?  

The answers to these seven questions are given explicitly in the four manuscripts 

(Section 3) and are summarized in Section 4. This latter section also contains a 

conclusion over VSLS entrainment from the Indian Ocean to the stratosphere and an 

outlook on possible future studies to address the uncertainties in the stratospheric halogen 

and sulfur loading from VSLS. 

 





3 Results 

3.1 Manuscript 1 

Fiehn, A.; Quack, B.; Hepach, H.; Fuhlbrügge, S.; Tegtmeier, S.; Toohey, M.; Atlas, E.; 

and Krüger, K.: Delivery of halogenated very short-lived substances from the west Indian 

Ocean to the stratosphere during the Asian summer monsoon, Atmos. Chem. Phys., 17, 

6723-6741, https://doi.org/10.5194/acp-17-6723-2017, 2017. 
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Abstract. Halogenated very short-lived substances (VSLSs)
are naturally produced in the ocean and emitted to the
atmosphere. When transported to the stratosphere, these
compounds can have a significant influence on the ozone
layer and climate. During a research cruise on RV Sonne
in the subtropical and tropical west Indian Ocean in July
and August 2014, we measured the VSLSs, methyl iodide
(CH3I) and for the first time bromoform (CHBr3) and dibro-
momethane (CH2Br2), in surface seawater and the marine
atmosphere to derive their emission strengths. Using the La-
grangian particle dispersion model FLEXPART with ERA-
Interim meteorological fields, we calculated the direct con-
tribution of observed VSLS emissions to the stratospheric
halogen burden during the Asian summer monsoon. Fur-
thermore, we compare the in situ calculations with the in-
terannual variability of transport from a larger area of the
west Indian Ocean surface to the stratosphere for July 2000–
2015. We found that the west Indian Ocean is a strong
source for CHBr3 (910 pmol m−2 h−1), very strong source
for CH2Br2 (930 pmol m−2 h−1), and an average source for
CH3I (460 pmol m−2 h−1). The atmospheric transport from
the tropical west Indian Ocean surface to the stratosphere
experiences two main pathways. On very short timescales,
especially relevant for the shortest-lived compound CH3I
(3.5 days lifetime), convection above the Indian Ocean lifts
oceanic air masses and VSLSs towards the tropopause. On
a longer timescale, the Asian summer monsoon circulation
transports oceanic VSLSs towards India and the Bay of Ben-
gal, where they are lifted with the monsoon convection and

reach stratospheric levels in the southeastern part of the
Asian monsoon anticyclone. This transport pathway is more
important for the longer-lived brominated compounds (17
and 150 days lifetime for CHBr3 and CH2Br2). The entrain-
ment of CHBr3 and CH3I from the west Indian Ocean to
the stratosphere during the Asian summer monsoon is lower
than from previous cruises in the tropical west Pacific Ocean
during boreal autumn and early winter but higher than from
the tropical Atlantic during boreal summer. In contrast, the
projected CH2Br2 entrainment was very high because of the
high emissions during the west Indian Ocean cruise. The 16-
year July time series shows highest interannual variability
for the shortest-lived CH3I and lowest for the longest-lived
CH2Br2. During this time period, a small increase in VSLS
entrainment from the west Indian Ocean through the Asian
monsoon to the stratosphere is found. Overall, this study con-
firms that the subtropical and tropical west Indian Ocean is
an important source region of halogenated VSLSs, especially
CH2Br2, to the troposphere and stratosphere during the Asian
summer monsoon.

1 Introduction

Natural halogenated volatile organic compounds in the ocean
originate from chemical and biological sources like phyto-
plankton and macroalgae (Carpenter et al., 1999; Quack and
Wallace, 2003; Moore and Zafiriou, 1994; Hughes et al.,
2011). When emitted to the atmosphere, the halogenated very

Published by Copernicus Publications on behalf of the European Geosciences Union.
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short-lived substances (VSLSs) have atmospheric lifetimes
of less than half a year (Law et al., 2006). Current estimates
of tropical tropospheric lifetimes are 3.5, 17, and 150 days
for methyl iodide (CH3I), bromoform (CHBr3), and dibro-
momethane (CH2Br2), respectively (Carpenter et al., 2014).
VSLSs can be transported to the stratosphere by tropical
deep convection, where they contribute to the halogen bur-
den, take part in ozone depletion, and thus impact the climate
(Solomon et al., 1994; Dvortsov et al., 1999; Hossaini et al.,
2015).

CHBr3 is an important biogenic VSLS due to its large
oceanic emissions and because it carries three bromine atoms
per molecule into the atmosphere (Quack and Wallace, 2003;
Hossaini et al., 2012). CH2Br2 has a longer lifetime than
CHBr3 and thus a higher potential for stratospheric entrain-
ment. CH3I is an important carrier of organic iodine from
the ocean to the atmosphere and the most abundant organic
iodine compound in the atmosphere (Manley et al., 1992;
Moore and Groszko, 1999; Yokouchi et al., 2008). Despite
its very short atmospheric lifetime, it can deliver iodine to
the stratosphere in tropical regions (Solomon et al., 1994;
Tegtmeier et al., 2013). Ship-based observations showed that
bromocarbon emissions near coasts and in oceanic upwelling
regions are generally higher than in the open ocean, because
of macroalgal growth near coasts (Carpenter et al., 1999) and
enhanced primary production in upwelling regions (Quack et
al., 2007), while coastal anthropogenic sources also need to
be considered (Quack and Wallace, 2003; Fuhlbrügge et al.,
2016b). Measurements of VSLSs in the global oceans are
sparse and the data show large variability. Thus, attempts at
creating observation-based global emission estimates and cli-
matologies (bottom-up approach; Quack and Wallace, 2003;
Butler et al., 2007; Palmer and Reason, 2009; Ziska et al.,
2013), modeling the global distribution of halogenated VSLS
emissions from atmospheric abundances (the top-down ap-
proach; Warwick et al., 2006; Liang et al., 2010; Ordóñez
et al., 2012), and biogeochemical modeling of oceanic con-
centrations (Hense and Quack, 2009; Stemmler et al., 2013,
2015) are subject to large uncertainties (Carpenter et al.,
2014). Global modeled top-down estimates (Warwick et al.,
2006; Liang et al., 2010; Ordóñez et al., 2012) yield higher
emissions than bottom-up estimates (Ziska et al., 2013;
Stemmler et al., 2013, 2015), which may indicate the im-
portance of localized emission hot spots underrepresented in
current bottom-up estimates.

The amount of oceanic bromine from VSLSs entrained
into the stratosphere is estimated to be 2–8 ppt, which is 10–
40 % of the currently observed stratospheric bromine loading
(Dorf et al., 2006; Carpenter et al., 2014). This wide range
results mainly from uncertainties in tropospheric degrada-
tion and removal, transport processes, and especially from
the spatial and temporal emission variability of halogenated
VSLS (Carpenter et al., 2014; Hossaini et al., 2016). Analyz-
ing the time period 1993–2012, Hossaini et al. (2016) found
no clear long-term transport-driven trend in the stratospheric

injection of oceanic bromine sources during a multi-model
intercomparison.

Transport processes strongly impact stratospheric injec-
tions of VSLSs, because their lifetimes are comparable to tro-
pospheric transport timescales from the ocean to the strato-
sphere. The main entrance region of tropospheric air into
the stratosphere is above the tropical west Pacific. Another
active region lies above the Asian monsoon region during
the boreal summer (Newell and Gould-Stewart, 1981), when
the Asian monsoon circulation provides an efficient trans-
port pathway from the atmospheric boundary layer to the
lower stratosphere (Park et al., 2009; Randel et al., 2010).
Above India and the Bay of Bengal, convection lifts bound-
ary layer air rapidly into the upper troposphere (Park et al.,
2009; Lawrence and Lelieveld, 2010). As a response to the
persistent deep convection, an anticyclone forms in the up-
per troposphere and lower stratosphere above Central, South,
and East Asia (Hoskins and Rodwell, 1995). This so-called
Asian monsoon anticyclone confines the air masses that have
been lifted to this level within the anticyclonic circulation
(Park et al., 2007; Randel et al., 2010). For the period 1951–
2015, a decreasing trend in rainfall and thus convection has
been reported over northeastern India, which was caused by
a weakening northward moisture transport over the Bay of
Bengal (Latif et al., 2016).

Chemical transport studies in the Asian monsoon region
have mostly focused on water vapor entrainment to the
stratosphere (Gettelman et al., 2004; James et al., 2008) or on
the transport of anthropogenic pollution (Park et al., 2009).
The chemical composition and source regions for air masses
in the Asian monsoon anticyclone have been the topic of
more recent studies (Bergman et al., 2013; Vogel et al., 2015;
Yan and Bian, 2015). Chen et al. (2012) investigated air mass
boundary layer sources and stratospheric entrainment regions
based on a climatological domain-filling Lagrangian study
in the Asian summer monsoon area. The west Pacific Ocean
and the Bay of Bengal are found to be important source re-
gions, while maximum stratospheric entrainment occurred
above the tropical west Indian Ocean.

The Asian monsoon circulation could be an important
pathway for the stratospheric entrainment of oceanic VSLSs
(Hossaini et al., 2016), because the steady southwest mon-
soon winds in the lower troposphere during boreal summer
deliver oceanic air masses from the tropical Indian Ocean to-
wards India and the Bay of Bengal (Lawrence and Lelieveld,
2010), where they are lifted by the monsoon convection and
the Asian monsoon anticyclone. However, little is known
about the emission strength of VSLSs from the Indian Ocean
and their transport pathways. A few measurements in the Bay
of Bengal (Yamamoto et al., 2001) and Arabian Sea (Roy et
al., 2011) as well as global source estimates suggest that the
Indian Ocean might be a considerable source (Liang et al.,
2010; Ziska et al., 2013). No bromocarbon data are available
for the equatorial and southern Indian Ocean, yet, but CH3I,
which has been measured around the Mascarene Plateau,
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showed high oceanic concentrations (Smythe-Wright et al.,
2005). Liang et al. (2014) use a chemistry climate model
for the years 1960 to 2010 and modeled that the tropical In-
dian Ocean delivers more bromine to the stratosphere than
the tropical Pacific because of its higher atmospheric surface
concentrations based on the global top-down emission esti-
mate by Liang et al. (2010).

In this study, we show surface ocean concentrations and
atmospheric mixing ratios of the halogenated VSLS CH3I,
and for the first time for CHBr3 and CH2Br2, in the subtropi-
cal and tropical west Indian Ocean during the Asian summer
monsoon. We use the Lagrangian particle dispersion model
FLEXPART to investigate the atmospheric transport path-
ways of observation-based oceanic VSLS emissions to the
stratosphere.

Our questions for this study are as follow: is the tropi-
cal Indian Ocean a source for atmospheric VSLS? What is
the transport pathway from the west Indian Ocean to the
stratosphere during the Asian summer monsoon? How many
VSLSs are delivered from the west Indian Ocean to the
stratosphere during the Asian summer monsoon? How large
is the interannual variability of this VSLS entrainment?

In Sect. 2, we describe the cruise data and the transport
model simulations. In Sect. 3, the results from the cruise
measurements and trajectory calculations are shown and dis-
cussed. Then, the spatial and interannual variability of trans-
port is presented in Sect. 4. In Sect. 5, we address uncertain-
ties before summarizing the results and concluding in Sect. 6.

2 Data and methods

2.1 Observations during the cruise

During two consecutive research cruises in the west Indian
Ocean, we observed meteorological, oceanographic, and bio-
geochemical conditions, including atmospheric mixing ra-
tios and oceanic concentrations of halogenated VSLSs. The
two cruises on RV Sonne, SO234-2 from 8 to 19 July 2014
(Durban, South Africa to Port Louis, Mauritius) and SO235
from 23 July to 7 August 2014 (Port Louis, Mauritius to
Malé, Maldives), were conducted within the SPACES (Sci-
ence Partnerships for the Assessment of Complex Earth Sys-
tem Processes) and OASIS (Organic very short-lived Sub-
stances and their air sea exchange from the Indian Ocean
to the Stratosphere) research projects. Cruise SO234-2 was
an international training and capacity building program for
students from Germany and southern African countries,
whereas SO235 was purely scientifically oriented. The cruise
tracks covered subtropical waters, coastal and shelf areas,
and the tropical open west Indian Ocean and were designed
to cover biologically productive and nonproductive regions
(Fig. 1). In the following, we will refer to the combined
cruises as the “OASIS cruise”.

We collected meteorological data from ship-based sensors
including surface air temperature (SAT), relative humidity,
air pressure, wind speed and direction taken every second
at about 25 m height on RV Sonne. Sea surface temperature
(SST) and salinity were measured in the ship’s hydrographic
shaft at 5 m depth. We averaged all parameters to 10 min in-
tervals for our investigations.

During the cruise, we launched 95 radiosondes and thus
obtained high-resolution atmospheric profiles of tempera-
ture, wind, and humidity. During the first half of the cruise,
regular radiosondes were launched at 00:00 and 12:00 UTC
and additionally at 06:00 and 18:00 UTC during the 48 h sta-
tion (16–18 June 2014; Fig. 1). During the second half of
the cruise, the launches were always performed at standard
UTC times (00:00, 06:00, 12:00, 18:00 UTC) and every 3 h
during the diurnal stations (26 and 28 June, 3 August 2014).
For the regular launches, we used GRAW DFM-09 radioson-
des, and for the six ozonesonde launches we used DFM-
97. The collected radiosonde data was delivered in near real
time to the Global Telecommunication System (GTS) to im-
prove meteorological reanalyses (e.g., European Centre for
Medium-Range Weather Forecasts, ECMWF, Re-Analysis
Interim, ERA-Interim) and operational forecast models (e.g.,
opECMWF, operational ECMWF) in the subtropical and
tropical west Indian Ocean.

Trace gas emissions are generally well mixed within the
marine atmospheric boundary layer (MABL) on timescales
of an hour or less by convection and turbulence (Stull, 1988).
We determined the stable layer that defines the top of the
MABL with the practical approach described in Seibert et
al. (2000). From the radiosonde ascent we computed the ver-
tical gradient of virtual potential temperature, which indi-
cates the stable layer at the top of the MABL with positive
values. A detailed description of our method can be found in
Fuhlbrügge et al. (2013).

We collected a total of 213 air samples with a 3-hourly res-
olution at about 20 m height above sea level. These samples
were pressurized to 2 atm in pre-cleaned stainless steel can-
isters with a metal bellows pump, and they were analyzed
within 6 months after the cruise. Details about the analy-
sis, the instrumental precision, the preparation of the sam-
ples, and the use of standard gases are described in Schauf-
fler et al. (1999), Montzka et al. (2003), and Fuhlbrügge et
al (2013).

We collected overall 154 water samples, spaced about ev-
ery 3 h, from the hydrographic shaft of RV Sonne at a depth
of 5 m. The samples were then analyzed for halogenated
compounds using a purge and trap system onboard, which
was attached to a gas chromatograph with an electron cap-
ture detector. An analytical reproducibility of 10 % was de-
termined from measuring duplicate water samples. Calibra-
tion was performed with a liquid mixed-compound standard
prepared in methanol. Details of the procedure can be found
in Hepach et al. (2016).
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Figure 1. (a) July 2014 average wind speed (gray shading) and direction (black) from ERA-Interim and 10 min mean wind speed (blue
arrows) from ship sensors; (b) CHBr3, (c) CH2Br2, and (d) CH3I emissions derived from OASIS cruise on July–August 2014 and bathymetry.

The sea–air flux (F) of the VSLSs was calculated from
the transfer coefficient (kw) and the concentration gradient
(1c) according to Eq. (1). The gradient is between the water
concentration (cw) and the theoretical equilibrium water con-
centration (catm/H), which is derived from the atmospheric
concentration (catm). We use Henry’s law constants (H) of
Moore and coworkers (Moore et al., 1995a, b).

F = kw · 1c = kw ·
(
cw−

catm

H

)
(1)

Compound-specific transfer coefficients were determined us-
ing the air–sea gas exchange parameterization of Nightingale
et al. (2000) and by applying a Schmidt number (Sc) for the
different compounds as in Quack and Wallace (2003) (Eq. 2).

kw = k ·
Sc−

1
2

600
(2)

Nightingale et al. (2000) determined the transfer coefficient
(k) as a function of the wind speed at 10 m height (u10):
k = 2u2

10+3u10 . This wind speed is derived from a logarith-
mic wind profile using the von Kármán constant (κ = 0.41),
the neutral drag coefficient (Cd) from Garratt (1977), and
the 10 min average of the wind speed (u(z)) measured at
z = 25 m during the cruise (Eq. 3):

u10 = u(z)
κ
√
Cd

κ
√
Cd+ log z

10
. (3)

2.2 Trajectory calculations

For our trajectory calculations, we use the Lagrangian par-
ticle dispersion model FLEXPART of the Norwegian Insti-
tute for Air Research in the Atmosphere and Climate De-
partment (Stohl et al., 2005), which has been evaluated in
previous studies (Stohl et al., 1998; Stohl and Trickl, 1999).
The model includes moist convection and turbulence param-
eterizations in the atmospheric boundary layer and free tro-
posphere (Stohl and Thomson, 1999; Forster et al., 2007).
In this study, we employ the most recently released version
9.2 of FLEXPART, modified to incorporate lifetime profiles.
We use the ECMWF reanalysis product ERA-Interim (Dee
et al., 2011) with a horizontal resolution of 1◦× 1◦ and 60
vertical model levels as meteorological input fields, provid-
ing air temperature, winds, boundary layer height, specific
humidity, and convective and large scale precipitation with
a 6-hourly temporal resolution. The vertical winds in hybrid
coordinates were calculated mass-consistently from spectral
data by the pre-processor (Stohl et al., 2005). We record the
transport model output every 6 h.

We ran the FLEXPART model with three different setups,
which are described in Table 1. These configurations are des-
ignated as (1) OASIS back (backward trajectories), (2) OA-
SIS (forward trajectories), and (3) Indian Ocean (regional
forward trajectories).

We calculated OASIS backward trajectories from the
12:00 UTC locations of RV Sonne during the cruise. These
trajectories are later used to determine the source regions of
air masses investigated along the cruise track.
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Table 1. FLEXPART experimental setups including experiment name, mode, start location and time, runtime, and number of trajectories.

Experiment name Mode Start location Start time Runtime Number of
trajectories

OASIS back Backward;
air mass

along ship track 12:00 UTC, every
day during cruise

10 days 50 per
cruise day

OASIS Forward;
VSLSs

0.0002◦× 0.0002◦

on emission
measurements

±30 min from
measurement time

10 days (CH3I),
3 months (CHBr3),
1.5 years (CH2Br2)

10 000 per
measurements

Indian Ocean Forward;
VSLS tracers

1◦× 1◦ grid at sea
surface; 50–80◦ E,
20◦ S–10◦ N

Every day from
1–31 July
2000–2015

3 months 29 791× 16 years

With the OASIS setup, we study the transport of oceanic
CHBr3, CH2Br2, and CH3I emissions from the measurement
locations into the stratosphere similar to what was carried
out in the corresponding study by Tegtmeier et al. (2012).
At every position along the cruise track at which emissions
were calculated (Sect. 2.1), we release a mass of the com-
pound equal to a release from 0.0002◦× 0.0002◦ in 1 h. The
mass is evenly distributed among 10 000 trajectories. During
transport, CHBr3 and CH2Br2 mass is depleted according
to atmospheric lifetime profiles from Hossaini et al. (2010)
based on chemistry transport model simulations including
VSLS chemistry. CH3I decays by applying a uniform ver-
tical lifetime of 3.5 days (Sect. 1). The mass on all trajecto-
ries that reaches a height of 17 km is summed and assumed
to be entrained into the stratosphere. This threshold height
represents the average cold point tropopause (CPT) height
during the cruise (see Fig. S1 in the Supplement) and also
for the whole tropics (Munchak and Pan, 2014). The influ-
ence of the entrainment height criteria is further discussed
in Sect. 4. For intercomparison with other ocean basins, we
employed exactly the same model setup of transport simu-
lations (including lifetimes) and the same emission calcula-
tion method for three previous corresponding cruises in the
tropics: the TransBrom campaign in the west Pacific in 2009
(introduction to special issue: Krüger and Quack, 2013), the
SHIVA campaign in the South China and Sulu seas in 2011
(Fuhlbrügge et al., 2016a), and the MSM18/3 cruise in the
equatorial Atlantic cold tongue (Hepach et al., 2015).

The transport calculations based on the measured emis-
sions from OASIS give insight into the contribution of
oceanic emissions to the stratosphere during the Asian sum-
mer monsoon. However, transport and emissions in the OA-
SIS study are localized in space and time and could thus be
very different for different areas and years. In order to in-
vestigate the transport from the west Indian Ocean basin to
the stratosphere and its interannual variability under the in-
fluence of the Asian summer monsoon circulation (Indian
Ocean setup), we calculate trajectories from a large region
of the tropical west Indian Ocean surface for the years 2000–
2015. Trajectories are uniformly started within the release

area (50–80◦ E, 20◦ S–10◦ N), covering the tropical west In-
dian Ocean, once every day during the month of July in
2000–2015. The run time is set to 3 months, which covers
the period from July to October. We then calculate the frac-
tion (q) of each VSLS tracer that reaches the stratosphere
during the transit time (t t), assuming an exponential decay
of the tracer (Eq. 4) according to the tropical tropospheric
lifetimes (lt) of 17, 150, and 3.5 days for CHBr3, CH2Br2,
and CH3I, respectively (Carpenter et al., 2014).

q = e−
t t
lt (4)

We use the term “VSLS tracer” to distinguish from the
calculations used in the OASIS setup, where actual VSLS
emissions experience decay according to a vertical lifetime
profile (uniform for CH3I). The use of VSLS tracers allows
us to evaluate one model run for different compounds with
varying lifetimes. This Indian Ocean setup provides informa-
tion on the preferred pathways from the west Indian Ocean
to the stratosphere for different transport timescales and on
their interannual variability. This variability is quantified by
the coefficient of variation (CV), which is defined as the ratio
of the standard deviation to the mean entrainment. The corre-
lations of the interannual variations between different regions
of stratospheric entrainment are given by the correlation co-
efficient (r) by Pearson (1895). We calculated the p value to
determine the 95 % significance level of the correlations.

3 The Indian Ocean cruise: OASIS

3.1 Atmospheric circulation

SST and SAT during the OASIS cruise generally increase
from the south towards the equator (Fig. 2a). The SST is on
average 1.5 ◦C higher than the SAT, which benefits convec-
tion. Minimum SSTs of 18 ◦C were measured from 14 to
17 July 2014 in the open subtropical Indian Ocean (30◦ S,
59◦ E), and maximum SSTs of 29 ◦C were measured around
the equator.
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Figure 2. (a) Surface air temperature (SAT), sea surface temperature (SST), and (b) wind speed and direction measured by ship sensors
during the OASIS cruise in the Indian Ocean. (c) Water concentration; (d) atmospheric mixing ratio; and (e) emission of CHBr3, CH2Br2,
and CH3I. The gray line denotes the harbor stop at Port Louis, Mauritius, 20–23 July 2014. Also note the nonlinear left y axes in (c) and (e).

The overall mean wind speed was 8.1 m s−1, with lower
wind speeds in the subtropics and close to the equator
(5 m s−1) and higher wind speeds (up to 15 m s−1) in the
trade wind region (23 July to 5 August, 20–5◦ S; Fig. 2b).
The mean wind direction during the cruise was southeast.
While the wind direction showed large variability in the sub-
tropics, southeasterly trade winds dominated between Mau-
ritius and the equator. North of the equator the wind direc-
tion changed to westerly winds. Our in situ ship wind mea-
surements deviate from the mean July wind field from ERA-
Interim during the first part of the cruise south of Mauritius
(Fig. 1a) due to the influence of a developing low-pressure
system (not shown). The steady trade winds during the sec-
ond part of the cruise are well reflected in the July mean wind
field from ERA-Interim. Surface winds from in situ ship
measurements, radiosondes, and time-varying ERA-Interim
data show good agreement (Fig. S2).

Air masses sampled during the cruise originate mainly
from the open ocean (Fig. 3a). Trajectories started between
South Africa and Mauritius generally come from the south.
An influence of terrestrial sources is possible close to South
Africa and Madagascar. From Mauritius to the Maldives, the
trajectories originate from the southeast open Indian Ocean.
The analysis of air samples reveal no recent fresh anthro-
pogenic input, indicated by the very low levels of short-
lived trace gas contaminants, e.g., butane (lifetime 2.5 days;
Finlayson-Pitts and Pitts, 2000), in this region (not shown).

3.2 VSLS observations and oceanic emissions

CHBr3, CH2Br2, and CH3I surface ocean concentrations, at-
mospheric mixing ratios, and emissions for the OASIS cruise
are plotted as time series in Fig. 2c–e and are summarized in
Table 2.
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Figure 3. (a) FLEXPART 5-day backward trajectories for OASIS backward setup, averaged for n= 50 trajectories, starting from ship
positions daily at 12:00 UTC between 8 July and 7 August 2014. The Southern Ocean (gray) and the open Indian Ocean (turquoise) are
source regions for air measured during the cruise. (b) FLEXPART 10-day forward trajectories for OASIS setup, averaged for n= 1000
trajectories, starting at the ship positions of simultaneous VSLS measurements. Trajectories are colored according to their transport regimes:
Westerlies (yellow), Transition (blue), Monsoon Circulation (red), and Local Convection (green).

Table 2. CHBr3, CH2Br2, and CH3I water concentrations, atmo-
spheric mixing ratios, and calculated emissions for the OASIS In-
dian Ocean cruise. The table lists the average value of all measure-
ments and 1 SD. The brackets give the range of measurements.

VSLS Water
concentration
(pmol L−1)

Air mixing
ratio (ppt)

Emission
(pmol m−2 h−1)

CHBr3 8.4± 14.2
[1.3–33.4]

1.20± 0.35
[0.68–2.97]

910± 1160
[−100–9630]

CH2Br2 6.7± 12.6
[0.6–114.3]

0.91± 0.08
[0.77–1.20]

930± 2000
[−70–19 960]

CH3I 3.4± 3.1
[0.2–16.4]

0.84± 0.12
[0.57–1.22]

460± 430
[5–2090]

CHBr3 concentrations in the surface ocean range from
1.3 to 33.4 pmol L−1, with an average of all measurements
of 8.4± 14.2 (1σ) pmol L−1. The standard deviation (σ) is
used as a measure of the variability in the measurements
during the cruise. We measured large water concentrations
of > 10 pmol L−1 close to coasts and shelf regions and in
the open Indian Ocean between 5 and 10◦ S (27 July–2 Au-
gust). Oceanic concentrations of CH2Br2 are smaller, with a
mean of 6.7± 12.6 pmol L−1, but show a similar distribution
to CHBr3 concentrations. High concentrations were mea-
sured southeast of Madagascar, when we passed the south-
ern stretch of the East Madagascar Current. Oceanic up-
welling occurs along the eddy-rich, shallow region south of
Madagascar, which leads to locally enhanced phytoplank-
ton growth (Quartly et al., 2006). It is possible that an up-
welling of elevated CH2Br2 concentrations from the deeper
ocean could have occurred in a similar way as was ob-
served for the equatorial upwelling in the Atlantic (Hepach
et al., 2015). CH3I oceanic concentrations range from 0.2
to 16.4 pmol L−1, with a mean of 3.4± 3.1 pmol L−1. They
were elevated (5–12 pmol L−1) during the last part of the

cruise (August 3–6, 2014) around the equator. In the region
of the Mascarene Plateau, to the west of our cruise, Smythe-
Wright et al. (2005) detected much larger CH3I concentra-
tions between 20 and 40 pmol L−1 during June–July 2002.

Atmospheric mixing ratios of CHBr3 during the OA-
SIS cruise (Fig. 2d, Table 2) show an overall mean of
1.20± 0.35 ppt. Elevated mixing ratios of > 2 ppt are found in
three locations: south of Madagascar, in Port Louis, and close
to the British Indian Ocean Territory. The first two probably
have terrestrial or coastal sources, because they do not coin-
cide with high oceanic CHBr3 concentrations, but backward
trajectories pass land. Close to the British Indian Ocean Ter-
ritory, oceanic concentrations and atmospheric mixing ratios
are elevated, which suggests a local oceanic source. Atmo-
spheric mixing ratios of CH2Br2 vary little around the av-
erage of 0.91 ppt and show a similar pattern to the CHBr3
mixing ratios. CH3I (0.84± 0.12 ppt) mixing ratios reveal
pronounced variations and surpass 1 ppt in some locations.
These atmospheric mixing ratios above the open ocean are
much lower than the average of 12 pptv Smythe-Wright et
al. (2005) reported around the Mascarene Plateau.

We calculated oceanic emissions from the synchronized
measurements of surface water concentration and atmo-
spheric mixing ratio as described in Sect. 2.1 (Figs. 2e
and 1). Strong emissions are caused by high oceanic con-
centrations, high wind speeds, or a combination of both.
The OASIS emission strength of CHBr3 ranges from
−100 to 9630 pmol m−2 h−1, with high mean emissions of
910± 1160 pmol m−2 h−1; this is caused by moderate wa-
ter concentrations and relatively high wind speeds. We de-
rive the strongest emissions south of Madagascar and in the
trade wind regime from 5 to 10◦ S above the open ocean up-
welling region of the Seychelles-Chagos-thermocline ridge
(Schott et al., 2009), where we also observed enhanced
phytoplankton growth (not shown here). CH2Br2 emissions
(with an overall mean of 930± 2000 pmol m−2 h−1) were by
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far strongest south of Madagascar, with a single maximum of
up to 20 000 pmol m−2 h−1. Here, we experienced very high
oceanic concentrations and high wind speeds due to the pas-
sage of a low-pressure system south of the ship track during
11–17 July 2014. CH3I emissions (460± 430 pmol m−2 h−1)

had a pronounced maximum of 2090 pmol m−2 h−1 around
10◦ S and 70◦ E (31 July–1 August), in accordance with high
wind speeds and oceanic concentrations being elevated close
to the above-mentioned open ocean upwelling observed be-
tween 5 and 10◦ S.

During the first part of the cruise, we recorded low mean
atmospheric mixing ratios of CHBr3 and CH2Br2, despite
high local oceanic concentrations and emissions especially
south of Madagascar. In connection with a high and well-
ventilated MABL (Fig. S1), this indicates that the strong
sources south of Madagascar are highly localized. The oc-
casional enhancement of the brominated VSLSs in some air
samples underlines the patchiness of the sources in this re-
gion. During the second part of the cruise, the atmospheric
mixing ratios of CHBr3 and CH2Br2 increased from south
to north and in the direction of the wind maximizing close
to the equator (Fig. 2d). The emissions were strong between
Mauritius and the equator (Fig. 2e). This suggests that the
air around the equator was enriched by the advection of the
oceanic emissions with the trade winds from south to north.
We assume that the bromocarbons accumulate because of the
steady wind directions and the suppression of mixing into the
free troposphere due to the top of the MABL and the trade
inversion layer (Fig. S1, 27 July–2 August) acting as trans-
port barriers for VSLSs as was observed for the Peruvian up-
welling (Fuhlbrügge et al., 2016a).

3.3 Comparison of OASIS VSLS emissions with other
oceanic regions

Average emissions of the three VSLSs from OASIS and other
tropical cruises and modeling studies are summarized in Ta-
ble 3. We compare with cruises and open ocean estimates,
since OASIS mainly covered open ocean regions and only
small coastal areas close to Madagascar, the British Indian
Ocean Territory, and the Maldives.

The average CHBr3 emission during the OASIS campaign
(910 pmol m−2 h−1) was larger than during most campaigns
in tropical regions: 1.5 times larger than during TransBrom
in the subtropical and tropical west Pacific (Tegtmeier et al.,
2012), 1.2 times larger than during DRIVE in the tropical
northeast Atlantic (Hepach et al., 2014), and 1.5 times larger
than during MSM18/3 in the Atlantic equatorial upwelling
(Hepach et al., 2015). Only the SHIVA campaign in the
South China and Sulu seas yielded larger CHBr3 emissions
of 1486 pmol m−2 h−1 because of very high oceanic concen-
trations close to the coast (Fuhlbrügge et al., 2016b). The
global open ocean estimate by Quack and Wallace (2003) is
one-third smaller than our measured values in the west In-
dian Ocean. The bottom-up emission climatology by Ziska

et al. (2013) estimates smaller values for the Indian Ocean,
based on measurements from other oceanic basins due to a
lack of available Indian Ocean in situ measurements. With
their top-down approach, Warwick et al. (2006), Liang et
al. (2010), and Ordóñez et al. (2012) derived CHBr3 emis-
sions in the range of 580–956 pmol m−2 h−1 for the tropi-
cal ocean. Stemmler et al. (2014) modeled very low CHBr3
emissions around 200 pmol m−2 h−1 for the equatorial Indian
Ocean with their biogeochemical ocean model.

Average CH2Br2 emissions from the OASIS cruise
(930 pmol m−2 h−1) are 2–6 times larger than the average
cruise emissions listed in Table 3: TransBrom, DRIVE,
MSM18/3, SHIVA, and M91. This is caused by the gen-
erally high oceanic concentrations during OASIS, with the
largest values south of Madagascar. The mean emissions
from the west Indian Ocean are also much stronger than the
tropical ocean estimates from Butler et al. (2007) and the
global open ocean estimate from Yokouchi et al. (2008) and
Carpenter et al. (2009). The top-down model approach by
Liang et al. (2010) yielded the weakest emissions at only
81 pmol m−2 h−1. The Ziska et al. (2013) climatology shows
maximum equatorial Indian Ocean CH2Br2 emission values
of around 500 pmol m−2 h−1.

The average CH3I emissions during OASIS
(460 pmol m−2 h−1) were in the range of previously ob-
served and estimated values from 254 to 625 pmol m−2 h−1

(Table 3). For the highly productive Peruvian upwelling,
Hepach et al. (2016) calculated much larger emissions of
954 pmol m−2 h−1. The coupled ocean–atmosphere model
of Bell et al. (2002) produced average global emissions of
670 pmol m−2 h−1, while Stemmler et al. (2013) modeled
CH3I emissions of around 500 pmol m−2 h−1 for the tropical
Atlantic with their biogeochemical ocean model. The
Ziska et al. (2013) climatology shows Indian Ocean CH3I
emissions of around 500 pmol m−2 h−1.

In general, the emissions during the OASIS cruise in the
subtropical and tropical west Indian Ocean were as strong
as or stronger than in other tropical open ocean cruises or
studies. CH2Br2 emissions during the OASIS cruise were
especially stronger than any previous emissions estimates.
The west Indian Ocean seems to be a region with signifi-
cant contribution to the global open ocean VSLS emissions,
especially in the boreal summer when wind speeds are high
because of the southwest monsoon circulation.

3.4 VSLS entrainment to the stratosphere
during OASIS

The OASIS forward trajectories released at the locations of
the VSLS measurements show the transport pathway of the
air masses from their sample points along the cruise track
(Fig. 3b). The mean of all 10 000 trajectories from each re-
lease can be grouped into four regimes according to transport
direction: Westerlies, Transition, Monsoon Circulation, and
Local Convection. The air masses in the Westerlies regime
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Table 3. CHBr3, CH2Br2, and CH3I mean emissions (pmol m−2 h−1) for several cruises and observational and model-based climatological
studies. Abbreviations: IO, Indian Ocean; OLS, ordinary least squares method.

Study Cruise, region CHBr3 CH2Br2 CH3I

OASIS, west IO 910 930 460

Chuck et al. (2005) ANT XVIII/1, tropical Atlantic 125 625
Tegtmeier et al. (2012, 2013) TransBrom, west Pacific Ocean 608 164 320
Hepach et al. (2014) DRIVE, tropical Atlantic 787 341 254
Hepach et al. (2015) MSM 18/3, equatorial Atlantic 644 187 425
Hepach et al. (2016) M91, peruvian upwelling 130 273 954
Fuhlbrügge et al. (2016b) SHIVA, South China Sea 1486 405 433
Quack and Wallace (2003) Global open ocean 625
Yokouchi et al. (2005) Global open ocean 119
Butler et al. (2007) Tropical ocean 379 108 541
Carpenter et al. (2009) Atlantic open ocean 367 158
Bell et al. (2002) Global ocean 670
Warwick et al. (2006) Tropics, Scenario 5 580
Liang et al. (2010) Tropics, open ocean, Scenario A 854 81
Ordoñez et al. (2012) Tropics 956
Ziska et al. (2013) IO equator (OLS) ≈ 500 ≈ 500 ≈ 250
Ziska et al. (2013) IO subtropics (OLS) ≈ 250 ≈ 250 ≈ 500
Stemmler et al. (2013) Tropical Atlantic Ocean ≈ 500
Stemmler et al. (2015) IO equator ≈ 200

are transported to the southeast Indian Ocean, and the air
masses from the Transition regime propagate towards Mada-
gascar and Africa. FLEXPART calculations reveal that both
transport regimes lift air masses up to a mean height of about
5.3 km after 1 month (not shown here). The trajectories of the
Monsoon Circulation regime first travel with the southeast-
erly trade winds and then with the southwesterly monsoon
winds. The trajectories stay relatively close to the ocean sur-
face (below 3 km) until they reach the Bay of Bengal, where
they are rapidly lifted to the upper troposphere. On average
they reach a height of 7.9 km after 1 month, which reveals
that this is the regime with the most convection. The tra-
jectories of the Local Convection regime mainly experience
rapid uplift around the equator. After 1 month this group has
reached a mean height of 7.2 km. The different uplifts are
reflected in the vertical distribution of bromoform in each
transport regime (Fig. S3).

The absolute entrainment of oceanic VSLSs to the strato-
sphere depends on the emission strength as well as the trans-
port efficiency (Fig. 4). This efficiency is defined as the ra-
tio between entrained and emitted VSLSs. It depends on the
transit time, defined as the time an air parcel needs to be
transported from the ocean surface to 17 km height, and the
lifetime of the compound. For stratospheric entrainment the
transit time must be on the order of the lifetime of a com-
pound or shorter. If the transit time is considerably larger than
the lifetime, most of the compound decays before reaching
the stratosphere. In the following, we will use the expressions
VSLSs’ transit time, which is the transit time including loss
processes of the VSLS in the atmosphere during the trans-

port, and transit half-life, which is the time after which half
of the total amount of entrained tracer has been entrained
above 17 km. We also calculated the relative emission and
entrainment by regime. Table 4 displays the absolute and rel-
ative emissions and entrainment, the transport efficiency, and
the transit half-life for the whole cruise and the four regimes.

The mean sea surface release of CHBr3 in FLEXPART
is 0.43 µmol (on 0.0002◦× 0.0002◦ h−1) during the cruise,
and the mean entrainment to the stratosphere is 5.5 nmol,
resulting in a mean transport efficiency of 1.3 %. CH2Br2
has a higher transport efficiency of 5.5 %, with mean emis-
sions of 0.43 µmol (on 0.0002◦× 0.0002◦ h−1) and very high
stratospheric entrainment of 23.6 nmol. CH3I has a low trans-
port efficiency of 0.3 %, with mean emissions of 0.22 µmol
(on 0.0002◦× 0.0002◦ h−1) and stratospheric entrainment
of 0.7 nmol.

The four transport regimes show different transport effi-
ciencies for CHBr3, CH2Br2, and CH3I to the stratosphere.
The two most efficient regimes, transporting CHBr3 and
CH3I to the stratosphere during the OASIS cruise, were the
Monsoon Circulation and the Local Convection regime.

The transport efficiency for all three compounds is high-
est in the Local Convection regime (CHBr3 ∼ 3 %, CH2Br2
∼ 9 %, and CH3I∼ 1 %), because this regime has the shortest
transit half-life for all three VSLSs. For CH3I, the compound
with the shortest lifetime, the fast transport plays the largest
role, and thus this regime is by far the most efficient.

For CHBr3, the regime with most absolute and relative
stratospheric entrainment (11 nmol, 57 %) is the Monsoon
Circulation regime because of the high emissions in the
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Figure 4. CHBr3, CH2Br2, and CH3I emission entrainment at
17 km and transport efficiency for measurements from the OASIS
cruise. The background shading highlights the transport regimes:
Westerlies (yellow), Transition (blue), Monsoon Circulation (red),
and Local Convection (green).

source region and the high transport efficiency. Although the
CHBr3 emissions are as high in the Westerlies regime, the
entrainment is small (2 nmol, 9 %) because of a low trans-
port efficiency due to slow transport visible in the long tran-
sit half-life. The Local Convection regime has the highest
transport efficiency, but emissions were low, resulting in less
entrainment (4 nmol, 23 %) than in the Monsoon Circula-
tion regime. The absolute entrainment of CH2Br2 strongly
depends on the strength of emission, because the trans-
port efficiency is relatively similar for all transport regimes
due to the long lifetime of the compound. Most entrained
CH2Br2 comes from the Westerlies regime (29 nmol, 35 %),

where sources especially south of Madagascar were ex-
tremely strong. Although these emissions occur in the sub-
tropics, they reach 17 km mainly in the tropics (Fig. S4).
The transport efficiency of 4 % still allows a large amount
of 345 nmol CH2Br2 to enter the stratosphere from the max-
imum emissions at 23:00 UTC on 12 July 2014 (Fig. 4). The
CH3I absolute entrainment (2.8 nmol, 79 %) is highest in the
Local Convection regime because of both the highest emis-
sions and highest transport efficiency (Table 4).

3.5 Comparison of VSLS entrainment to the
stratosphere with other oceanic regions

A comparison of the subtropical and tropical Indian Ocean
contribution to the stratosphere with other tropical ocean re-
gions, applying the same emission calculation and model
setup (Sect. 2.2) for CHBr3, is shown in Table 5. Though
the western Pacific TransBrom cruise had lower bromoform
emission rates compared to OASIS, stratospheric entrain-
ment was greater for the western Pacific region compared
to the Indian Ocean. This difference was caused by a higher
transport efficiency of 4.4 % in the west Pacific influenced by
tropical cyclone activity in October 2009 (Krüger and Quack,
2013). Tegtmeier et al. (2012) obtained a higher transport
efficiency of 5 % for TransBrom using a previous FLEX-
PART model (version 8.0). During the SHIVA campaign in
the South China Sea, high oceanic concentrations of bromo-
form produced mean emission rates that were higher than
during OASIS. The SHIVA calculations show even higher
transport efficiencies of 7.9 %, which lead to an entrainment
of 48.4 nmol CHBr3 (Table 5), because of the strong con-
vective activity in that region during the time (Fuhlbrügge et
al., 2016b). The MSM18/3 cruise in the equatorial Atlantic
(Hepach et al., 2015) has the smallest emissions, entrain-
ment, and a transport efficiency of 0.9 % (Table 5). Overall,
the comparison indicates that more CHBr3 was entrained to
the stratosphere from the tropical west Pacific than from the
tropical west Indian Ocean during the Asian summer mon-
soon using available in situ emissions and 6-hourly meteo-
rological fields. This is in contrast to the study by Liang et
al. (2014), who determined with a chemistry climate model
climatology that emissions from the tropical Indian Ocean
deliver more brominated VSLSs into the stratosphere than
tropical west Pacific emissions.

CH2Br2 entrainment to the stratosphere for the TransBrom
ship campaign was ∼ 8 nmol with transport efficiencies of
15 % (Tegtmeier et al., 2012). This is much higher than the
Indian Ocean transport efficiency of 6.4 %, but the absolute
entrainment of 23.6 nmol CH2Br2 we calculated for the OA-
SIS cruise (Table 4) is much higher than during TransBrom,
because of the very strong CH2Br2 emissions during OASIS.

Tegtmeier et al. (2013) investigated CH3I entrainment to
the stratosphere for three tropical ship campaigns: SHIVA
and TransBrom in the tropical west Pacific and DRIVE in
the tropical northeast Atlantic. They used a CH3I lifetime
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Table 4. Mean FLEXPART emission, entrainment at 17 km, transport efficiency, and transit half-life for CHBr3, CH2Br2 and CH3I for the
mean and different transport regimes of the OASIS cruise.

VSLS Transport FLEXPART Emissions Transport FLEXPART Entrainment Transit
regime emission by regime efficiency entrainment by regime half-life

(µmol) (%) (%) (nmol) (%) (days)

CHBr3 Cruise mean 0.43 – 1.3 5.5 – 21
Westerlies 0.49 32 0.4 1.83 9 32
Transition 0.36 24 0.6 2.05 11 24
Monsoon Circulation 0.51 34 2.1 10.70 57 15
Local Convection 0.15 10 2.9 4.31 23 10

CH2Br2 Cruise mean 0.43 – 5.5 23.6 – 86
Westerlies 0.71 48 4.0 28.8 35 112
Transition 0.32 22 4.9 15.0 19 114
Monsoon Circulation 0.31 21 8.2 26.2 31 63
Local Convection 0.14 9 8.8 12.7 15 57

CH3I Cruise mean 0.22 – 0.3 0.7 – 6
Westerlies 0.15 18 0.0 0.00 0 9
Transition 0.11 13 0.0 0.00 0 9
Monsoon Circulation 0.28 33 0.3 0.74 21 7
Local Convection 0.31 36 1.0 2.77 79 1

Table 5. CHBr3 entrainment at 17 km for different ocean regions using the same transfer coefficient for the emission calculations and
FLEXPART model setup (Sect. 2.2). The table lists the average value and 1 SD. The brackets give the range of single calculations.

Ocean
region

Campaign
information

FLEXPART
emission
(nmol)

FLEXPART
entrainment
(nmol)

Transport
efficiency
(%)

West Indian
Ocean

OASIS, Jul 2014,
this study

430± 520
[4–4130]

5.5± 7.5
[0.0–50.1]

1.4± 1.0
[0.1–3.9]

Open west
Pacific

TransBrom, Oct 2009,
Krüger and Quack (2013)

190± 300
[0–5680]

7.1± 10.4
[0.0–61.8]

4.4± 1.6
[1.9–8.8]

Coastal west
Pacific

SHIVA, Nov 2011,
Fuhlbrügge et al. (2016b)

610± 720
[1–5680]

48.4± 52.1
[0.7–250.1]

7.9± 3.7
[3.2–20.2]

Equatorial
Atlantic

MSM18/3, Jun 2011,
Hepach et al. (2015)

320± 400
[2–1910]

2.7± 3.2
[0.0–14.2]

0.9± 0.2
[0.5–1.4]

profile between 2 and 3 days. The transport efficiencies were
4, 1, and 0.1 %, respectively. The OASIS Indian Ocean mean
transport efficiency for CH3I (0.3 %, Table 4), applying a uni-
form lifetime profile of 3.5 days, is lower than in the west
Pacific but higher than in the Atlantic.

Uncertainties of VSLS emissions and the modeling of
their transport to the stratosphere will be further discussed
in Sect. 5.

4 General transport from west Indian Ocean
to the stratosphere

4.1 Spatial variability of stratospheric entrainment

We calculate the entrainment at 17 km for CHBr3, CH2Br2,
and CH3I tracers by weighting the trajectories from the west
Indian Ocean release region for July 2000–2015 with the
transit-time-dependent atmospheric decay plotted in Fig. 5.
A summary of transport efficiency, transit half-life, and en-
trainment correlations for all three VSLSs can be found in
Table 6.

The distribution of VSLS transit times shows that the
shorter the lifetime of a compound is, the more important the
transport on short timescales is (Fig. 5). For CHBr3, CH2Br2,
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Table 6. Entrainment of CHBr3, CH2Br2, and CH3I tracer at 17 km altitude through different transport regimes from the west Indian Ocean
release box. Correlations with significance of more than 95 % are marked in bold. (Note, transit half-lives differ from Table 4 because of the
different model setups.)

Tracer Transport regime Mean Transit Interannual Interannual
transport half-life correlation correlation with

efficiency (days) with Total Local Convection
(%) entrainment entrainment

CHBr3 Total 1.86 8.5 1.00 0.45
Local Convection 0.24 1.8 0.45 1.00
Monsoon Circulation 0.50 6.0 0.54 −0.20

CH2Br2 Total 5.88 27.2 1.00 0.24
Local Convection 0.32 2.4 0.24 1.00
Monsoon Circulation 1.11 13.3 0.56 −0.06

CH3I Total 0.42 1.9 1.00 0.91
Local Convection 0.17 1.2 0.91 1.00
Monsoon Circulation 0.09 1.0 −0.06 −0.31

and CH3I tracers, the transit half-lives are 8.5, 27.2, and
1.9 days, respectively (Table 6). For the two bromocarbons,
the transit time distribution shows two maxima, one for the
0–2 days bin and the second between 4–10 days for CHBr3
and 6–12 days for CH2Br2. CH3I tracer entrainment occurs
mainly on timescales up to 2 days (Fig. 5).

The stratospheric entrainment regions during the Asian
summer monsoon between 2000 and 2015 are displayed at
the locations where the trajectories first reach 17 km (Fig. 6).
The VSLS tracers show two main entrainment regions. En-
hanced entrainment occurs above the Bay of Bengal and
northern India in the southeastern part of the Asian mon-
soon anticyclone and is connected to the Monsoon Circu-
lation transport regime (Sect. 3.4). The second entrainment
region is above the tropical west Indian Ocean and belongs
to the Local Convection regime. We define these two regions
to enclose the core entrainment and to be evenly sized in grid
space (colored boxes in Fig. 6).

The larger west Indian Ocean release area and longer time
series analysis (Table 6) confirms the results of our OASIS
analysis (Table 4). The longer-lived VSLS tracers (CHBr3
and CH2Br2) are mainly entrained through the Monsoon Cir-
culation regime, while the Local Convection regime is more
important for the shortest-lived tracer (CH3I).

Chen et al. (2012) also identified these two stratospheric
entrainment regions, analyzing the air transport from the
atmospheric boundary layer to the tropopause layer in the
Asian Summer monsoon region for a 9-year climatology. Ad-
ditionally, they registered entrainment over the west Pacific
Ocean, but the Local Convection entrainment above the cen-
tral Indian Ocean was by far the strongest. Similar to our
VSLS transit times, the study of Chen et al. (2012) found
very short transport timescales of 0–1 days in the equatorial
west Indian Ocean, while transit times above the Bay of Ben-
gal and northern India were between 3 and 9 days.

4.2 Interannual variability of stratospheric
entrainment

The time series of stratospheric entrainment from the west
Indian Ocean to the stratosphere shows interannual variabil-
ity for all three VSLS tracers (Fig. 7). Overall, July 2014 re-
vealed high entrainment for CHBr3 and CH2Br2 tracers and
low entrainment for CH3I tracer. The coefficient of varia-
tion (CV) for total entrainment is 0.13, 0.09, and 0.21 for
CHBr3, CH2Br2 and CH3I, respectively. Thus, the shortest-
lived compound CH3I has the strongest interannual variation,
and the longest-lived CH2Br2 has the weakest variation.

In order to analyze which transport regime has a stronger
influence on the total entrainment variability, we correlated
the interannual entrainment time series of total entrainment
with the entrainment in the Monsoon Circulation and Lo-
cal Convection regimes (Table 6). Interannual variability of
CHBr3 and CH2Br2 tracer entrainment results mainly from
variability in the Monsoon Circulation regime (r = 0.54 and
r = 0.56, respectively). In contrast, the interannual variabil-
ity of CH3I tracer entrainment is highly correlated with the
Local Convection regime variability (r = 0.91). The high
variability of total CH3I entrainment (CV= 0.21) implies
that interannual variation in convection is larger than in the
monsoon circulation. The interannual time series of the Mon-
soon Circulation and Local Convection regime reveal a weak
inverse correlation for all three compounds, suggesting that
more entrainment in one regime is related to less entrainment
in the other (Fig. 7).

The interannual time series of total VSLS tracer entrain-
ment displays a small increase over time. This increase is
independent of the chosen entrainment height (between 13
and 18 km, Fig. S5) and is visible in the analysis for all three
tracers. The increase is strongest for CHBr3 and weaker for
the other two compounds. It arises mainly from an increase
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Figure 5. VSLS transit time distribution for entrainment at 17 km of
(a) CHBr3, (b) CH2Br2, and (c) CH3I tracers released in July 2000–
2015. Entrained tracer per time interval of 2 days is given as number
(gray bars). The blue line gives the cumulative distribution and de-
notes the transit half-life. The red line shows the decay of the trac-
ers during the transport simulation. The black diamond denotes the
transit half-life.

in entrainment in the Monsoon Circulation regime (Fig. 7).
Analyzing changes of rainfall revealed an increase in precip-
itation over northeastern India for the time interval of our
transport study (Latif et al., 2016; Preethi et al., 2016). This
indicates an increase in convection in our Monsoon Circula-
tion regime over the years from 2000 to 2015, which can ex-
plain the increase in stratospheric entrainment. However, for
the long time period from the 1950s to the 2010s the same
authors found a decrease of precipitation over the above-
mentioned area, potentially impacting the VSLS entrainment
to the stratosphere.

Figure 6. Density at 17 km of (a) CHBr3, (b) CH2Br2, and (c) CH3I
tracer on a 5◦× 5◦ grid that is released from the west Indian Ocean
surface (black box) in July 2000–2015. Colored boxes show the en-
trainment regions of the Local Convection (green) and Monsoon
Circulation (red) regimes.

In a follow-up study we will investigate the influence of
the seasonal cycle of the Asian monsoon circulation and in-
terannual influences through atmospheric circulation patterns
on the west Indian Ocean VSLS entrainment to the strato-
sphere in more detail.

5 Uncertainties in the analysis

This study confirms that the subtropical and tropical west
Indian Ocean is a source region of oceanic halogenated
VSLSs to the stratosphere during the Asian summer mon-
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Figure 7. (a) CHBr3, (b) CH2Br2, and (c) CH3I tracer entrainment
at 17 km from trajectories released from the west Indian Ocean sur-
face box in July 2000–2015. The entrainment is evaluated for three
regions: Total, Local Convection, and Monsoon Circulation (see
Fig. 6).

soon. The amount of VSLSs entrained depends on the emis-
sion strength, the lifetime of the compound, and the transport
of trajectories in the regime, which have been quantified in
this study.

However, uncertainties of this study are present in various
aspects of the analysis. The uncertainties result from the cal-
culation of VSLS emissions, the FLEXPART transport using
ERA-Interim reanalysis fields, and the definition of entrain-
ment to the stratosphere.

The calculation of VSLS emissions from the concentra-
tion gradient between the ocean at 5 m depth and the atmo-
sphere at 20 m height is subject to measurement uncertainties
and a possible different concentration gradient directly at the
air–sea interface. Additionally, the applied wind-speed-based
parameterization for air–sea flux, which represents a reason-
able mean of the published parameterizations, is uncertain by
more than a factor of two (Lennartz et al., 2015). Both factors
may lead to a systematic flux under- or overestimation in our
study.

A vital part of this study is the meteorological reanaly-
sis data from ERA-Interim and the FLEXPART model for
determining the VSLS transport. With delivery of our ra-
diosonde launches to the GTS we have improved the data
coverage over the Indian Ocean for the time in our study and
thus the quality of meteorological reanalysis. Indeed, hori-
zontal wind speed and direction from ship sensors and son-
des agree well with the ERA-Interim data (Fig. S2). As the
scale of tropical convection is below the state-of-the-art grid
scale of global atmospheric models, it is not sufficiently re-
solved and must be parameterized. The Lagrangian model
FLEXPART uses a convection scheme, described and eval-
uated by Forster et al. (2007), to account for vertical trans-
port. Using FLEXPART trajectories with ERA-Interim re-
analysis, Fuhlbrügge et al. (2016b) were able to simulate
VSLS mixing ratios from the surface to the free troposphere
up to 11 km above the tropical west Pacific in very good
agreement with corresponding aircraft measurements apply-
ing a simple source-loss approach. Tegtmeier et al. (2013)
showed that the FLEXPART distribution of oceanic CH3I
in the tropics agrees well with adjacent upper tropospheric
and lower stratospheric aircraft measurements, thus increas-
ing our confidence in the FLEXPART convection scheme and
ERA-Interim velocities. Testing different FLEXPART model
versions (8.0 and 9.2) for stratospheric entrainment of CHBr3
(not shown) has revealed only a slightly lower stratospheric
entrainment of 0.2 % with the more recent model version 9.2
used in this study here.

Another uncertainty in the location and variability of en-
trained trajectories may result from the definition of strato-
spheric entrainment (Sect. 2.2). For the tropics, the cold
point tropopause is commonly used as the boundary be-
tween the troposphere and the stratosphere (Carpenter et al.,
2014). The average measured CPT height during OASIS was
17 km (Fig. S1), but it can be up to 17.6 km high within the
Asian monsoon anticyclone during the boreal summer sea-
son (Munchak and Pan, 2014). To test the sensitivity of our
results with regard to the entrainment height, we analyzed
entrained trajectories at several different tropical levels in the
upper troposphere/lower stratosphere (UTLS; 13, 15, 17, and
18 km altitude, Fig. S6). As described in Sect. 3.4, we can
follow the preferred transport pathways by the migration of
maximum density at the intersecting UTLS levels. Analyzing
the influence of the application of different UTLS entrain-
ment levels reveals an overall good agreement of interannual
variability and long-term changes (Figs. S5 and S6).

6 Summary and conclusion

During the OASIS research cruise in the subtropical and
tropical west Indian Ocean in July and August 2014, we
conducted simultaneous measurements of the halogenated
very short-lived substances, methyl iodide (CH3I) and for
the first time of bromoform (CHBr3) and dibromomethane
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Figure 8. Schematic illustration of emission, transport pathways
and timescales, and entrainment of CH3I, CHBr3, and CH2Br2
tracer from the tropical west Indian Ocean to the stratosphere during
the Asian summer monsoon.

(CH2Br2), in surface seawater and the marine atmosphere.
Based on these measurements, we calculated high emis-
sions of CHBr3 of 910± 1160 pmol m−2 h−1 caused by high
oceanic concentrations south of Madagascar and moder-
ate concentrations combined with high wind speeds (up to
15 ms−1) in the trade wind regime above the open west In-
dian Ocean. The average CHBr3 emissions were at the higher
end of previously reported values of the tropical oceans.
CH2Br2 emissions of 930± 2000 pmol m−2 h−1 were also
especially high south of Madagascar and on average higher
than reported from cruises in other tropical regions, from
global observational and model-based climatologies. CH3I
emissions (460± 430 pmol m−2 h−1) were highest around
the equator but in the range of previously reported emission
rates from subtropical and tropical ocean regions.

The stratospheric entrainment of these three VSLSs from
the west Indian Ocean during the Asian summer monsoon
depends on the strength of emissions and the timescale of
the transport to the stratosphere in comparison to the life-
time of the compound. The entrainment of the shortest-lived
compound CH3I (3.5 days) depends mainly on fast transport.
The entrainment of CH2Br2 strongly depends on the emis-
sion strength, because the transport efficiency is relatively
similar for all transport regimes due to the long lifetime of the
compound (150 days). CHBr3 (17 days lifetime) entrainment
is influenced by both oceanic emissions and fast transport.

During the OASIS cruise we found four transport regimes
with different VSLS emission strengths and transport effi-
ciencies. The Monsoon Circulation and the Local Convection
regime were the most efficient for VSLS entrainment into the
stratosphere. These two have different source regions, VSLS
transit times, stratospheric entrainment regions, and interan-
nual variations summarized in Fig. 8.

In the Monsoon Circulation regime, the oceanic VSLS
transport pathway begins south of the equator and follows
the near-surface winds to India and the Bay of Bengal, where
monsoon convection rapidly lifts them into the upper tropo-
sphere. The VSLSs ascend further within the Asian mon-
soon anticyclone, being entrained to stratospheric levels in
its southeastern part. The transport to the stratosphere in
this regime is effective for CHBr3 and CH2Br2 (2 and 8 %
transport efficiency, respectively) but less effective for CH3I
(0.3 %), as its lifetime is shorter than the transport timescale.
Absolute CHBr3 entrainment from the OASIS cruise was
strongest in the Monsoon Circulation regime because of
strong emissions in the source region. The Indian Ocean
setup showed that it is generally the preferred regime for the
entrainment of VSLSs with longer lifetimes during the bo-
real summer, because many trajectories follow this transport
pathway. Mean transit half-lives from the west Indian Ocean
surface to 17 km height are 6 days for CHBr3 and 13 days for
CH2Br2.

In the Local Convection regime, VSLS are transported up-
wards by convection above the tropical west Indian Ocean
and entrained to the stratosphere in the vicinity of the equa-
tor. VSLS transit times are short (0–2 days), and thus we
found the highest transport efficiencies for CHBr3, CH2Br2,
and CH3I in this region (3, 9, and 1 %). The Local Convec-
tion regime is responsible for most of the stratospheric en-
trainment of CH3I from the OASIS cruise. The Indian Ocean
transport study supports this finding.

CH2Br2 transport efficiency is similar for all regimes of
the OASIS cruise, because its lifetime is longer than the
transport timescale from ocean to stratosphere in the trop-
ics. Absolute entrainment of CH2Br2 thus strongly depends
on the strength of emissions, and these were very high during
OASIS, especially south of Madagascar.

In comparison to other corresponding cruises, the Mon-
soon Circulation and Local Convection regime in the trop-
ical west Indian Ocean show more entrainment of CHBr3
and CH3I than the tropical Atlantic but less than the tropi-
cal west Pacific Ocean. CH2Br2 entrainment from the west
Indian Ocean was higher than from previous corresponding
cruises in other tropical oceans due to the very high emis-
sions.

A 16-year time series (2000–2015) of VSLS tracer entrain-
ment from the west Indian Ocean to the stratosphere through
the monsoon circulation during July reveals the strongest in-
terannual variability for CH3I, the shortest-lived compound,
which seems to be connected to the interannual variation in
convection above the west Indian Ocean. The weakest vari-
ations were found for CH2Br2, the longest-lived compound,
whose entrainment hardly depends on the local atmospheric
circulation. The time series of entrainment to the stratosphere
shows an overall increase for all three compounds, which is
likely connected to a reported increase in precipitation and
convection over northeastern India during this time period.
For CHBr3, whose transport is mostly associated with the
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changing Asian summer monsoon circulation, the increase is
stronger than for the other two compounds.

Overall, the OASIS measurements confirm that during bo-
real summer the subtropical and tropical west Indian Ocean
is an important source for VSLSs, especially of CH2Br2,
with pronounced hot spots. This study demonstrates that the
VSLS delivery from the west Indian Ocean surface to the
stratosphere depends on the regional strength of emissions
and the transit time in preferred transport regimes. Changes
in the Asian summer monsoon circulation likely impact the
VSLS entrainment to the stratosphere.
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The analysis of the radiosonde profiles of temperature, relative humidity, zonal wind, and 

the calculated gradient of the virtual potential temperature (Fig. S1) reveals a clear separation 

between subtropical and tropical circulation. The first part of the cruise shows high relative 

humidity in the Marine Atmospheric Boundary Layer (MABL), but very low in the rest of the 

troposphere (Fig. S1b), which revealed that there was low convective activity transporting water 

vapor upward in the subtropics. During the second, tropical part of the cruise, a temperature 

inversion layer, called trade inversion, exists at about 2.5 km height between July 24 and August 

4, 2014, which we associate with the dry descending air masses of the lateral monsoon (Webster 

et al., 1998) and the Hadley Cell in the subtropics. The temperature inversion coincides with the 

upper boundary of a humid layer, indicating that it suppresses convection and exchange through 

this layer. The MABL upper boundary was below the inversion, and acted as a weaker transport 

barrier than the inversion, indicated by the lower values in the gradient of the virtual potential 

temperature, a measure for atmospheric stability, at 1 km height than at 3 km height (Fig. S1d).  

Close to the equator, we find enhanced relative humidity in the middle and upper 

troposphere, which is a sign of enhanced convective activity. The winds north of the equator 

belong to the southwesterly monsoon winds, which transport West Indian Ocean air masses 

towards India. Close to the equator, a strong easterly jet, just below the tropopause, is visible. 

This relates to the upper part of the transverse monsoon circulation (Webster et al., 1998).  
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Figure S1: Radiosonde profiles of temperature, relative humidity, zonal winds and gradient of 

virtual potential temperature as time series for the OASIS cruise. The white gap denotes the harbor 

stop at Port Louis, Mauritius. LRT: lapse rate tropopause, CPT: cold point tropopause, MABL: 

marine atmospheric boundary layer.  



 

Figure S2: Wind speed and wind direction during the OASIS cruise from ship sensors and 

ERA-Interim reanalysis data (both as 6 hour mean) and radiosondes launched from the ship (as 

instantaneous measurement). 

 

  



 

Figure S3: Time-averaged vertical distribution of bromoform in the four transport regimes (Figure 

3b).  



 

Figure S4: Trajectory positions and transit time at different altitudes for the 10.000 trajectories of 

the simulation of the CH2Br2 measurement on 23 UTC July 12, 2014. 

 

 



 

Figure S5: Normalized entrainment strength of air mass and VSLS tracers from the Indian Ocean 

FLEXPART setup at different heights released every day during July 2000-2015.  



 

Figure S6: Entrainment regions for CHBr3 tracer at different heights for daily releases in July 2000-

2015 from the west Indian Ocean release box (black rectangle). The height is noted in the upper left 

corner, while the total entrainment number is noted as n. 
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Abstract13

During the summer monsoon, the western tropical Indian Ocean is predicted to be a hotspot14

for dimethylsulfide (DMS) emissions, the major marine sulfur source to the atmosphere15

and an important aerosol precursor. Other aerosol relevant fluxes, such as isoprene and sea16

salt fluxes, should also be enhanced, due to the steady strong winds during the monsoon.17

In addition, marine air masses dominate the area during the summer monsoon, excluding18

the influence of continentally derived pollutants. During the SO234-2/235 cruise in the19

western tropical Indian Ocean from July-August, 2014, directly measured eddy covariance20

DMS fluxes confirm that the area is a large source of sulfur to the atmosphere (cruise av-21

erage 9.1 µmolm−2d−1). The directly measured fluxes, as well as computed isoprene and22

sea salt fluxes, were combined with Flexpart back- and forward trajectories to track the23

emissions in space and time. The fluxes show a significant positive correlation with satel-24

lite aerosol products from MODIS-Terra and Suomi-NPP, indicating a local influence of25

marine emissions on atmospheric aerosol properties.26

1 Introduction27

The CLAW hypothesis [Charlson et al., 1987], still heavily debated in the scientific28

community [Quinn and Bates, 2011], describes a feedback process connecting oceanic pro-29

duction to cloud formation, which influences Earth’s albedo and as a consequence oceanic30

production. One of the main steps of the CLAW hypothesis is the formation of aerosols31

and cloud condensation nuclei (CCN) in the marine boundary layer (MBL). The original32

publication, proposed dimethylsulfide (DMS) to be the key source of CCN and driver of33

the feedback. DMS is produced by phytoplankton in the ocean and then released into the34

atmosphere, where it is one of the major sulfur sources [Quinn and Bates, 2011]. In the35

atmosphere it undergoes oxidation to either sulfur dioxide (SO2), sulfuric acid (H2SO4) or36

methane sulfonic acid (MSA) and subsequently forms CCN through homogeneous or het-37

erogeneous nucleation. In more recent years other CCN sources, for instance sea salt, pri-38

mary organic aerosols (POA) and other biogenic trace gases such as isoprene, have come39

into focus. Quinn and Bates [2011] argue that only 40-50 % of the MBL-CCN can be at-40

tributed to sulfur emissions and, depending on the region, up to 60 % can be attributed41

to sea salt aerosols. The quantitative impact of sea salt, POA and isoprene is still unclear.42

Furthermore, Quinn and Bates [2011] claim that most of the DMS derived CCN are actu-43

ally formed in the free troposphere and then entrained into the boundary layer again. This44
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would mean a regional decoupling of the DMS emissions and the formation of CCN and45

clouds, which is in opposition to the CLAW feedback. As pointed out by Green and Hat-46

ton [2014] and Vallina et al. [2006] most studies still lack the temporal and spatial cover-47

age to give a significant answer to the importance of DMS in the CCN forming process in48

the MBL. In contrast to the arguments of Quinn and Bates [2011], Lana et al. [2012] per-49

formed a satellite based correlation-study, connecting DMS- and sea salt-emissions with50

the MODIS (Moderate Resolution Imaging Spectroradiometer)-derived CCN number con-51

centrations. They found a rather uniform positive correlation for DMS-CCN (with some52

areas of weak correlation at the boundaries of the tropics). For sea salt-CCN the correla-53

tion depended on latitude: The tropics exhibited a positive correlation, all other latitudes54

exhibited a negative correlation. These findings provide a basis for further investigation55

but no studies have correlated air-sea fluxes with aerosol products on regional level or56

multi-day timescales.57

According to the Lana climatology [Lana et al., 2011], the western tropical Indian58

Ocean (WTIO) is a hotspot for DMS flux during the months July and August. The ef-59

flux is one of the highest worldwide (63.32 µmolm−2d−1, [Lana et al., 2011]). The WTIO60

is associated with marine influenced air masses during the boreal summer [Rhoads et al.,61

1997]. Biological productivity, especially in the upwelling areas of the WTIO (off north62

east Africa and the north Arabian Sea), is strongly correlated with the monsoon seasonal63

cycle [Yoder et al., 1993]. This production influences the DMS concentration in the sur-64

face water and, together with steady strong winds, enhances gas transfer.65

Thus, the WTIO could be an important source of sulfur to the atmosphere and the66

SO234-2/235 cruise provides the opportunity to study DMS-CCN correlations. We focus67

on linking source gases and aerosol products in order to confirm the Lana et al. [2012]68

correlations. We use an improved approach, as our DMS fluxes were directly measured,69

coupled to the atmospheric transport model Flexpart and their transformation was studied70

on regional scale above the WTIO.71

2 Methods72

We performed direct eddy covariance DMS flux measurements aboard the RV Sonne73

sailing from Durban, SA to Port Louis, MU (SO234-2, 8 July - 20 July 2014) and from74

Port Louis, MU to Malé, MV (SO235, 23 July - 8 August 2014) (Figure 1). Addition-75

ally, we recorded DMS and isoprene surface water and air concentrations. Basic meteoro-76

–3–



Confidential manuscript submitted to Geophysical Research Letters

logical observations were done by the ship’s automated weather station. For the span of77

the cruise, back- and forward trajectories were calculated using the Flexpart model [Stohl78

et al., 2005], Figure 2). Aerosol satellite data from MODIS-Terra and Suomi-NPP were79

acquired for the area and time covered by the cruise track and the trajectories.80

2.1 Eddy covariance measurements81

The eddy covariance flux F (equation 1) is a product of the dry air density (ρ), the82

fluctuation of vertical wind speed (w′) and the fluctuation of the mixing ratio (c′).83

F = ρ · c′w′ (1)84

We recorded DMS air mixing rations at 5 Hz using an atmospheric pressure chemical ion-85

ization mass spectrometer (AP-CIMS) similar to that described by Saltzman et al. [2009].86

The air was sampled from a mast at the bow of the ship (11 m asl) and pumped at 50-87

70 lpm (Flowtotal) through a 1/2" diameter and 25 m long polytetrafluorethylen tube to88

a laboratory container where the AP-CIMS was placed. The air stream was dried using a89

Nafion membrane (Perma Pure) prior to analysis. For calibration, we continuously added a90

deuterated DMS standard (DMS-d3, 2.28 ppm Ctank) to the inlet at the rate of 2 mLmin−1
91

(Flowstd). Using the ratio of the deuterated DMS counts (Counts66) to the natural DMS92

counts (Counts63), the concentration of atmospheric DMS (DMSair ) was calculated:93

DMSair =
Flowstd

Flowtotal
∗

Counts63
Counts66

∗ Ctank (2)94

Two ultrasonic anemometers (CSAT3), mounted next to the air-sample inlet, measured the95

3D turbulent wind field. We determined the delay, between the passage of the air parcel at96

the inlet (CSAT3) and the measurement at the AP-CIMS, with a valve switch before each97

1 h eddy covariance measurement run. A GPS and an inertial measurement unit (Land-98

mark 10 by Gladiator Instruments), positioned next to the sonic anemometers provided the99

data for the motion correction of the 3D wind, which we performed based on Miller et al.100

[2008] and Edson et al. [1998], with an update by Landwehr et al. [2015]. We recorded101

a total of 130.15 h DMS air measurements. The data set was split into 477 running in-102

tervals (step size 10 min), each 29.6 min long. These intervals fulfilled the flow distor-103

tion relative wind direction criterion of ±90◦ degrees from the bow and the Landwehr re-104

quirement of steady wind direction. We screened the record for spikes, malfunctions, high105

and low frequency anomalies and proper time delay. 435 intervals were corrected for the106

high frequency loss in the tube. The high frequency correction was performed by fitting a107
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rectangular signal using a low-pass filter to the signal of an actual isotope standard valve108

switch. The loss in high frequency power of the isotope standard valve switch is equal to109

the loss in the 1/2" teflon tube. The loss displayed a linear relationship with 10 m neutral110

wind speed (u10) . The gain factor (Gh f ), which is corrects for the tube’s high frequency111

loss, is seen in equation 3.112

Gh f = 1.032 + 0.0021 · u10 (3)113

2.2 Bulk air and seawater measurements114

Seawater DMS and isoprene concentrations were measured using a purge and trap115

system attached to a gas chromatograph/mass spectrometer operating in single ion mode116

(GC/MS; Agilent 7890A/Agilent 5975C). We sampled the water from a constant stream117

out of the ship’s moon pool at approximately 5 m depth and measured within 15 min of118

collection. The gases were purged from the water sample for 15 min and then dried us-119

ing potassium carbonate. The dried gas was preconcentrated in a trap cooled with liquid120

nitrogen and injected into the GC. We obtained a total of 162 DMS and isoprene sea sur-121

face concentration values (3 h sampling interval). At the same time and interval, we filled122

stainless steel canisters with air samples (25 m sampling height), which were analyzed for123

more than fifty gases, including DMS and isoprene, at the University of Miami.124

We calculated isoprene fluxes using the bulk method (equation 4), where ca and cw125

are the respective air and water concentrations, H is the dimensionless form of Henry’s126

law constant and k the gas transfer velocity by Nightingale et al. [2000].127

Flux = k ·
(
cw −

ca
H

)
(4)128

Sea salt flux (FSSA, billion particles ejected per m2 per day [Gpartm−2d−1]) was parametrized129

using equation 5, which was proposed by O’Dowd et al. [2008]. The wind speed at 22 m130

u22 was calculated using the parametrization by Hsu et al. [1994].131

FSSA = 1.854 · 10−3 · u2.706
22 (5)132

2.3 Back- and forward trajectories133

For the trajectory calculations, we used the Lagrangian Particle Dispersion Model134

Flexpart Version 9.2 [Stohl et al., 2005]. The model includes moist convection and tur-135

bulence parameterizations in the atmospheric boundary layer and free troposphere [Stohl136

and Thomson, 1999; Forster et al., 2007]. We used Flexpart with the ECMWF (European137
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Centre for Medium-Range Weather Forecasts) reanalysis product ERA-Interim [Dee et al.,138

2011] with a horizontal resolution of 1◦ x 1◦ and 60 vertical model levels as meteoro-139

logical input fields with a 6 hourly temporal resolution. During the cruise we launched140

radiosondes to improve meteorological reanalysis (e.g. ERA-Interim) for the later use in141

the transport model [Fiehn et al., 2017]. Flexpart was run with a synchronization interval142

of 900 s and with a quarter of this time step in the atmospheric boundary layer to resolve143

turbulent fluxes on short time scales. The model output was recorded hourly. An ensemble144

of 10,000 forward and 1,000 backward trajectories are started at the positions and times145

of the 435 direct DMS flux measurements and run for more than 2 days. From the hourly146

trajectory positions we calculated the mean trajectory as an average of all ensemble mem-147

bers. Trajectories reaching 24 h backwards and 24 h forwards were used in the correlation148

calculation. Longer time spans up to 72 h were used to assess the possible influence of149

land pollution.150

2.4 Remote sensing151

We obtained total column CCN and aerosol optical depth (AOD) data from the152

MODIS instrument on board the Terra satellite. MODIS-Terra has a sun synchronous153

orbit and an overpass time of 10:30 local time. The level-3 product can be found in the154

MODIS-Terra 6 collection [Hubanks et al., 2016] and is provided on a global 1◦ x 1◦155

grid. Additionally, total column (AOT) was obtained from the Visible Infrared Imaging156

Radiometer Suite (VIIRS) instrument on board the Suomi-NPP satellite, which has a sun157

synchronous orbit and an overpass time of 13:30 local time. The level-2 aerosol prod-158

uct has a resolution of 0.25◦ x 0.25◦. AOD and AOT both describe the degree to which159

aerosols prevent the transmission of light by absorption or scattering of light. The name160

difference has organizational non-scientific reasons. In total we obtained daily files from161

27 June 2014 to 19 Aug 2014 for all products. All products have a daily resolution and162

the output describes the aerosol properties at the time of the overpass. Using two different163

satellites gives the opportunity to test the data with two independent systems. A cross-164

check was done between the data from MODIS Aqua, MODIS-Terra and NPP-Suomi,165

which shows consistent results (data shown in the supplement).166

The satellite data was linearly interpolated to the specific location of each forward-167

and backward trajectory output. If, due to missing values, the first interpolation was not168

successful, following steps were carried out successively and stopped if one interpolation169
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returned a valid result: [1] a nearest interpolation (space and time) [2] linear interpolation170

(space, at closest time step) [3] mean of nearest-neighbors (space, at closest time step).171

The majority of missing values were caused by clouds.172

2.5 Correlation173

To link the oceanic sources to the aerosol products, we analyze the trend of the174

aerosol properties in the downwind (forward trajectories) area. This approach has already175

been established for volcanoes [Mace and Abernathy, 2016; Eguchi et al., 2011; Yuan176

et al., 2011] and focuses on the absolute aerosol number or cloud density. We have im-177

proved their method and, instead of a point source (volcano), we correlate all measured178

fluxes from the cruise track with the satellite aerosol properties in the downwind area.179

We hypothesize that a higher efflux of aerosol predecessor, such as DMS, isoprene, sea180

salt, should lead to a higher value of satellite sensed aerosol values. Therefore a positive181

correlation between aerosol source and aerosol product should be observed. We used the182

Flexpart forward trajectories to pinpoint the downwind location of the directly measured183

fluxes. For these positions we obtained the satellite based aerosol values for correlation.184

We used Spearman’s rank as correlation method, which describes a monotonically185

increasing relationship between two variables. The bootstrap method was used to prove186

the level of significance. A correlation coefficient of 0.2 is statistically significant with a187

probability of 0.95.188

3 Results and Discussion189

The cruise took place during the Asian summer monsoon season, with prevailing190

southeasterly winds south of the Equator and southwesterly winds north of the Equator.191

The SO234-2/235 cruise track spanned a range of oceanic areas, traversing the Agulhas192

current, the Antarctic circumpolar current (an area of high carbon dioxide drawdown), the193

Indian Ocean Gyre, the South Equatorial Current, the Equatorial Countercurrent, and the194

North Equatorial Current. Shallow areas (e.g. the Mascarene Plateau) and reef areas (e.g.195

Maledives) were also traversed. We encountered an average oceanic mixed layer depth of196

60 m, sea surface temperatures from 19oC to 25oC, salinity from 34 to 36 and generally197

low nutrient levels (below 0.1 µmolL−1 for nitrate and below 0.2 µmolL−1 for phosphate).198

Some areas of enhanced nutrients were encountered between 10o and 5o S. Chlorophyll199

levels were also generally low. During the first leg (SO234-2), 30 min averaged wind200
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speed below 10 ms−1 was measured. North of Mauritius the wind speed increased to a201

maximum of 16 ms−1 and then gradually declined towards the Maldives. Lower wind202

speed prevailed closer to the Equator, which is in agreement with the monsoon circulation.203

The average marine boundary layer heights were approximately 0.8 km, relative humid-204

ity varied between 50 % and 90 %, and air temperatures ranged between 14oC and 30oC205

[Fiehn et al., 2017]. Precipitation was variable over the cruise tracks. Generally, the air206

masses encountered were unpolluted and originated from over the ocean (Figure 2).207

3.1 Seawater concentrations208

Measured DMS surface seawater concentrations ranged from 0.4-5.19 nmolL−1
209

(Figure 3). During the first leg (SO234-2), the concentrations stayed below 1.4 nmolL−1,210

with one exception at 2.4 nmolL−1 at the southern tip of Madagascar, where a shallow211

coastal area (Banc d’Etoile) was crossed. DMS values started increasing up to the max-212

imum value of 5.19 nmolL−1 north of Mauritius in the area between 18◦S and 5◦S. Fur-213

ther north, the values declined to sub 1 nmolL−1 levels. Two main features influenced the214

DMS values north of Mauritius: [1] The Mascarene Plateau [Smythe-Wright et al., 2005],215

which is an extensive submarine plateau reaching a shallowness of up to 50 m. [2] As de-216

scribed by Schott et al. [2009], during both monsoon seasons a southward Ekman transport217

subducts underneath the equatorial roll. This leads to upwelling south of this roll in the218

area between 10◦S and 6◦S, which elevates biological productivity and, as a result, also219

the production of biogenically produced trace gases.220

Isoprene water concentrations ranged from 0.36 pmolL−1 to a maximum of 64 pmolL−1
221

(Figure 3). During SO234-2, from Durban to Mauritius, average values around 10 pmolL−1
222

were observed. North of Mauritius the isoprene concentration steadily increased from sub223

1 pmolL−1 just off Mauritius to around 30 pmolL−1 at the Maldives. The maximum val-224

ues of isoprene were reached at 6.1◦S and 64.45◦ E on day of year 2014 (DOY) 209.45225

[Booge et al., 2016].226

3.2 Fluxes227

Directly measured DMS fluxes ranged from 0.3-32.77 µmolm−2d−1 (Figure 3). Dur-228

ing SO234-2 from Durban to Mauritius and after DOY 214 the fluxes were low, which229

can be attributed to low wind speed (below 10 ms−1) and low water concentrations. Af-230

ter Mauritius at DOY 205 a storm (wind speed maximum of 16 ms−1) was encountered.231
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High wind speed in conjunction with high seawater concentrations were measured, lead-232

ing to an increase of the flux. Wind speed steadily decreased as the cruise continued, but233

seawater concentrations varied, causing the fluxes to vary accordingly in magnitude from234

DOY 210 onwards. The lowest fluxes occurred on DOY 198 and the highest on DOY 207.235

Isoprene fluxes ranged from 0-0.187 µmolm−2d−1. Generally the isoprene fluxes of SO235236

were higher, which is associated for the most part with the higher wind speed and sec-237

ondly with the slightly higher water concentrations. The computed sea salt flux closely238

resembles the measured wind speed (Figure 3).239

3.3 Comparison to the Lana climatology and PMEL database240

Generally the sea surface DMS concentrations throughout the cruise legs are lower241

than those published in the Lana climatology and the PMEL database (Figure 1). A de-242

scription of the PMEL database can be found in the supplement. The WTIO is heavily243

under-sampled, especially in the months July and August. The only data available, and244

therefore used, in the Lana climatology are 34 samples from two cruises [Mihalopoulos245

et al., 1992; Smythe-Wright et al., 2005], diamonds in Figure 1. The influence of the Mas-246

carene Plateau on biological productivity might be the reason for the general elevated val-247

ues from both the PMEL database and the Lana climatology (background Figure 1), with248

a maximum flux of 63.2 µmolm−2d−1. As the database’s seawater concentrations were249

measured further west than our cruise track, they were located more directly in the region250

impacted by the Mascarene Plateau and values up to 9 nmolL−1 were incorporated in the251

climatology.252

On a global scale the WTIO represents the DMS flux hotspot for July. Our maxi-253

mum value of 32.77 µmolm−2d−1 is of the same magnitude as the worldwide maximum254

value (31.8 µmolm−2d−1), excluding the Indian Ocean. The maximum value of the In-255

dian Ocean from the Lana climatology is 63.2 µmolm−2d−1 and is twice as much as mea-256

sured during our cruise. Although larger than our measurements, this value is still plau-257

sible because they it is located at 10◦ S 59◦ E and therefore more directly influenced by258

the Mascarene Plateau. This supports the importance of the Indian Ocean as a source259

of DMS during this season. Fluxes computed from the Lana climatology corresponding260

to our cruise location and dates range between 2.22 and 34.78 µmolm−2d−1. Lana’s pre-261

dicted fluxes are on average higher (Lana mean:14.9 µmolm−2d−1, this study mean: 9.1262

µmolm−2d−1, Figure 3). The reason for these differences is twofold. [1] The Lana clima-263
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tology uses higher DMS seawater concentrations than those we measured in situ. [2] The264

air-sea flux parametrization (Equation 4) used in the climatology [Nightingale et al., 2000]265

has a quadratic dependence of the gas transfer velocity k on wind speed. However, our266

directly measured fluxes and the associated gas transfer velocity appear to have a linear re-267

lationship to wind speed. As the wind speed experienced during the cruise and the NCEP268

derived wind speed used by the climatology were similar, the difference in a quadratic and269

a linear dependence resulted in an increase of the Lana DMS flux.270

3.4 Correlations with aerosol properties271

Figure 4 shows a time series of the fluxes at the cruise track. Overlaid are the satel-272

lite aerosol products from the location of the highest positive correlation within the 24273

hour downwind period. The largest fluxes of DMS, in the top panel, are around DOY 207-274

208. Additionally, at DOY 212-214, a secondary maximum, followed by a short decrease275

and sudden increase, can be seen. Similar features are visible in all three satellite prod-276

ucts. For isoprene, the highest fluxes occurred at DOY 209-211. Similar to DMS fluxes,277

the isoprene fluxes at the end of the measurement period increase, decrease, then sharply278

increase again. There is a general agreement in the distributions of the isoprene flux and279

the aerosol products. The sea salt flux has its main feature at DOY 205, when the wind280

speed was highest, and steadily decreases over the cruise track. The MODIS AOD product281

distribution follows the sea salt flux source distribution, whereas the other aerosol satellite282

product distributions do not appear similar to the trend of the sea salt flux distribution.283

All three fluxes in Figure 4 have distinct features at different times, corresponding to284

different features in the downwind aerosol product distributions. This allows us to quali-285

tatively estimate the influence of each source on the satellite product. The aerosol product286

distribution more closely resembles the trace gas fluxes than the sea salt flux distributions.287

Nonetheless, there are also differences between the two trace gases, which are reflected288

in the aerosol product distributions. For example, the spatial distribution of the isoprene289

fluxes is anti-correlated with the DMS fluxes at DOY 212 and 214 and the maxima and290

minima are offset for the two trace gas fluxes. A second example is the isoprene flux fea-291

ture from DOY 209-211, which is not well represented in the downwind satellite product292

distribution. The sea salt flux distribution, which starts high and then gradually decreases,293

does not seem to have great influence on the satellite aerosol product distribution, which294

does not mean that overall sea salt flux is not an aerosol precursor in this study region.295
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Generally, the correlations between all measured fluxes and their satellite aerosol values296

are positive and significant. The maximum correlations are shown in the supplemental297

material [supplement Figure S4-S7, table S3]. In addition, we correlated directly measured298

CO2 fluxes with the satellite aerosol products as a quality check on our analysis (supple-299

ment S4-S7).300

4 Conclusion301

In this study, we observed that the WTIO during the summer monsoon period is302

one of the world’s largest DMS source regions to the atmosphere. We correlated our di-303

rectly measured DMS, as well as calculated isoprene and sea salt fluxes, with satellite de-304

rived aerosol products over the Indian Ocean during the summer monsoon. The maximum305

correlations including regional transport, computed using trajectories from the Flexpart306

model, were statistically significant. These results illustrate the regional coupling between307

marine-derived precursors and aerosol products in the remote MBL, which is in opposition308

to the arguments in the review paper by Quinn and Bates [2011]. Although we acknowl-309

edge that correlation results do not always imply causation, the ensemble findings support310

the idea that marine-derived biogenic trace gases, as well as sea salt, influence the CCN311

number and aerosol properties on a regional scale.312
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Figure 1: Cruise track (black solid line) of SO234-2/235. Circles are discrete sampled surface 

water DMS concentrations. Diamonds are all recorded DMS values within the PMEL database 

for July and August. July DMS surface concentrations from the Lana climatology are color coded 

in the background. The numbers indicate the Day of Year (DOY). 
 

 



 

 

Figure 2: (Left) backward trajectories and (right) forward trajectories (24 hours) calculated using 

the Flexpart model. In total 435 back- and forward trajectories are shown. 
 

 



 

Figure 3: Time series along the cruise track (x-axis DOY 2014), a) DMS surface seawater 

concentration (diamonds) and the air mixing ratio (crosses), b) isoprene surface water 

concentrations (diamonds) and air mixing ratios (crosses), c) the measured DMS flux (crosses) 

and Lana’s climatological DMS flux (line), d) isoprene and the sea salt air-sea flux, e) sea surface 

temperature (SST, diamonds) and the 10 m wind speed along the cruise track, measured (crosses) 

and used by the Lana climatology (line). 



 

 

 

Figure 4: Time series of DMS flux (top panel), isoprene flux (middle panel) and sea salt flux 

(bottom panel) from DOY 204.66 to 215.25 shown together with the data from the Terra satellite 

(MODIS-CCN, MODIS-AOD) and the NPP satellite (NPP-AOT). The aerosol products shown 

are from the time of highest individual correlation. 
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the stratosphere during 2000-2016 using FLEXPART/ERA-Interim. 
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Indian Ocean sea surface temperatures, as well as by ENSO. 
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Abstract 

Halogen- and sulfur-containing compounds are supersaturated in the surface ocean, which 

results in their emission to the atmosphere. These compounds can be transported to the 

stratosphere, where they impact ozone, the aerosol layer, and climate. In this study we 

calculate the seasonal and interannual variability of transport from the West Indian Ocean 

(WIO) surface to the stratosphere for 2000-2016 with the Lagrangian transport model 

FLEXPART using ERA-Interim meteorological fields. We investigate the transport 

relevant for very short-lived substances (VSLS) with tropospheric lifetimes 

corresponding to dimethylsulfide (DMS, 1 day), methyl iodide (CH3I, 3.5 days), 

bromoform (CHBr3, 17 days), and dibromomethane (CH2Br2, 150 days). The 

stratospheric entrainment of VSLS tracers from the WIO shows a distinct annual cycle 

associated with the Asian monsoon. Over the 16 year time series, a slight increase in 

entrainment from the WIO to the stratosphere is found for all VSLS tracers and during all 

seasons. The interannual variability shows a relationship with sea surface temperatures in 

the West Indian Ocean as well as the El Niño–Southern Oscillation (ENSO). During 

boreal spring of El Niño, enhanced stratospheric entrainment of VSLS from the tropical 

WIO is caused by positive sea surface temperature anomalies and enhanced vertical uplift 

above the WIO. During boreal fall of La Niña, stronger entrainment is related to enhanced 

atmospheric upward motion over the East Indian Ocean and a prolonged Indian summer 

monsoon season. Related physical mechanisms and uncertainties are discussed in this 

study. 
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1 Introduction 

Halogens and sulfur in the stratosphere impact the ozone and Junge layers and can, 

thus, affect the radiation budget and climate [Solomon et al., 1994; Dvortsov et al., 1999; 

Myhre et al., 2004; Solomon et al., 2011]. Stratospheric halogen sources include 

halogenated very short-lived substances (VSLS) emitted from the oceans [Law et al., 

2006]. Model calculations suggest that marine dimethylsulfide (DMS) emissions 

contribute to the persistent stratospheric background aerosol layer or Junge layer 

[Marandino et al., 2013]. Natural halogen and sulfur containing organic compounds 

originate from chemical and biological sources, such as phytoplankton and macro algae in 

the oceans [Moore and Zafiriou, 1994; Carpenter et al., 1999; Stefels, 2000; Quack and 

Wallace, 2003]. Gases, that are emitted to the atmosphere, are defined as VSLS if they 

have atmospheric lifetimes of less than half a year [Law et al., 2006]. In this study, we 

consider sulfuric and halogenated VSLS, namely DMS, methyl iodide (CH3I), bromoform 

(CHBr3), and dibromomethane (CH2Br2).  

Estimates of VSLS emissions from the global oceans are subject to large 

uncertainties [Lana et al., 2011; Carpenter et al., 2014]. Global emission climatologies 

have been derived from observations and chemistry climate models (bottom-up approach) 

[Quack and Wallace, 2003; Butler et al., 2007; Palmer and Reason, 2009; Lana et al., 

2011; Ziska et al., 2013; Lennartz et al., 2015], atmospheric abundances and chemistry 

climate models (the top-down approach) [Warwick et al., 2006; Liang et al., 2010; 

Ordóñez et al., 2012], as well as biogeochemical ocean models [Kloster et al., 2006; 

Hense and Quack, 2009; Stemmler et al., 2015]. The delivery of these emissions to the 

stratosphere has been the topic of several modeling studies [Nielsen, 2001; Warwick et al., 

2006; Kerkweg et al., 2008; Hossaini et al., 2010; Liang et al., 2010; Lennartz et al., 2015; 

Sheng et al., 2015]. While the main VSLS entrainment to the stratosphere occurs over the 

West Pacific Ocean [Aschmann et al., 2009; Marandino et al., 2013; Tegtmeier et al., 

2013], the Asian summer monsoon also is a significant transport pathway [Liang et al., 

2014; Hossaini et al., 2016]. The few available measurements from the Indian Ocean 

showed strong VSLS emissions [Mihalopoulos et al., 1992; Smythe-Wright et al., 2005; 

Fiehn et al., 2017]. Fiehn et al. [2017] underlined that halogenated VSLS emissions can 

reach the stratosphere during the summer monsoon season. In addition, the Indian Ocean 

is a region strongly affected by climate change: the West Indian Ocean (WIO) has been 

warming faster than any other tropical ocean over the last century [Roxy et al., 2014] 
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causing a reduction in marine primary production [Roxy et al., 2016], which influences 

seawater concentrations of DMS and halocarbons [Miles et al., 2012; Hepach et al., 

2014].  

In the atmosphere, current estimates of tropical tropospheric lifetimes are 1 day 

for DMS [Barnes et al., 2006; Osthoff et al., 2009], 3.5 days for CH3I, 17 days for CHBr3, 

and 150 days for CH2Br2 [Carpenter et al., 2014]. The delivery of these compounds from 

the ocean surface to the stratosphere depends on emission strength and fast transport, 

because the chemical decay might be faster than the transport timescale. Stratospheric 

entrainment of VSLS is connected with fast and high reaching convection above the 

tropical oceans. The so-called “stratospheric fountain”, the region where tropospheric air 

enters the stratosphere, is located over the tropical West Pacific from November to March 

and over the Bay of Bengal and India during the summer monsoon [Newell and Gould-

Stewart, 1981]. The stratospheric entrainment is most pronounced over the tropical 

Pacific and Maritime continent during boreal winter [Fueglistaler et al., 2005; Krüger et 

al., 2008; 2009], but the Indian summer monsoon is also efficient at transporting 

boundary layer air masses into the stratosphere [Park et al., 2009; Randel et al., 2010]. 

Several model studies of transport pathways toward the main stratospheric entrainment 

region of the summer monsoon have been carried out. Mostly anthropogenic continental 

boundary layer sources were accounted for with the Lagrangian chemical transport model 

CLAMS [Bergman et al., 2013; Vogel et al., 2015] and chemistry climate models [Orbe 

et al., 2015]. Chen et al. [2012] calculated the Asian summer monsoon air mass transport 

pathways for 2001-2009 with the Lagrangian model FLEXPART and found the main 

stratospheric entrainment regions above the tropical central Indian Ocean, the Bay of 

Bengal, the South China Sea and West Pacific. With a chemistry climate model, Liang et 

al. [2014] simulated a VSLS bromine maximum above the tropical Indian Ocean at 355 K 

potential temperature (~13 km) using the emission scenario of Liang et al. [2010]. Based 

on observed emissions of halogenated VSLS from the WIO during July and August 2014 

and the model FLEXPART, Fiehn et al. [2017] diagnosed stratospheric entrainment of 

CH3I mainly above the equatorial Indian Ocean, while CHBr3 and CH2Br2 reached the 

stratosphere in the southeastern part of the Asian monsoon anticyclone. 

Influences on the transport above the Indian Ocean may originate from changes in 

the monsoon circulation and its convection. Fast vertical transport above the marine 

atmosphere, mostly realized through atmospheric deep convection, depends on the 

convective available potential energy and, thus, heat flux from the ocean connected to the 
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sea surface temperature (SST). Convective activity is often directly related to rainfall and 

has been used as a precipitation proxy since satellite data became available [Arkin and 

Ardanuy, 1989]. The Indian monsoon rainfall shows changes and variability in the 

monsoon circulation and convection strength. The leading mode of variability in Indian 

summer monsoon rainfall is connected with the influence of ENSO on the Walker 

Circulation [Walker, 1924; Webster and Yang, 1992; Wang et al., 2001; Ding, 2007; 

Wang et al., 2015]. The Asian monsoon system is also experiencing a long term change 

(1901-2012) due to greenhouse gas induced global warming, with a decrease in the land-

sea thermal gradient and less summer monsoon rainfall over the central-east and northern 

regions of India [Roxy et al., 2015], which may be related to reduced convection and 

VSLS transport to the stratosphere through the summer monsoon.  

The contribution of oceanic VSLS to the stratospheric composition and their 

transport via the Asian monsoon circulation has hardly been studied. In order to better 

represent natural factors in global chemistry climate and transport models simulating the 

monsoon system, it is important to also investigate the role of oceanic trace gases, such as 

VSLS, on atmospheric composition and chemistry. While the atmospheric abundances of 

many long-lived ozone depleting substances are declining due to the regulation through 

the Montreal protocol [WMO, 2014], natural VSLS emissions [Ziska et al., 2017] as well 

as their weighted stratospheric ozone depletion potential [Tegtmeier et al., 2015] could 

increase in a future climate.  

In a previous study, we investigated the stratospheric entrainment of halogenated 

VSLS from the WIO during the summer monsoon season. We reported the first 

measurements of CHBr3 and CH2Br2 from the Indian Ocean and calculated strong 

emissions of VSLS from the WIO and their transport to the stratosphere along two 

pathways [Fiehn et al., 2017]. In this follow-up study, we investigate the air mass 

transport relevant for VSLS from the WIO to the stratosphere over the whole year, the 

seasonal transport cycle and interannual transport variability. A VSLS tracer with a 1-day 

lifetime, DMS, was included in this study to investigate transport above the Indian Ocean 

for the shortest timescales, because the Indian Ocean is an emission hot spot for DMS 

[Lana et al., 2011]. We determine the transport mechanisms and show the relationship 

between the transport variability above the WIO and the ENSO phase. 
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2 Methods 

2.1 Trajectory Model and Meteorological Data 

The air mass transport from the WIO to the stratosphere is calculated with the Lagrangian 

particle dispersion model FLEXPART Version 9.2 from the Norwegian Institute for Air 

Research [Stohl et al., 2005]. The model includes parameterizations for convection 

[Forster et al., 2007] and turbulence in the boundary layer and free troposphere [Stohl 

and Thomson, 1999]. The FLEXPART model is driven with the ECMWF (European 

Centre for Medium-Range Weather Forecasts) reanalysis product ERA-Interim [Dee et 

al., 2011] based on a horizontal resolution of 1° x 1° and 60 vertical model levels, 

providing 6 hourly air temperature, winds, and specific humidity. A preprocessor, which 

retrieves the meteorological fields from the ECMWF archives, calculates the vertical 

wind from spectral data in hybrid coordinates mass-consistently for the FLEXPART runs 

[Stohl et al., 2005]. Similar to Fiehn et al. [2017], we start one trajectory per grid point 

from a 1° x 1° grid at the sea surface within the release area in the tropical WIO (20°S-

10°N, 50°E-80°E, Figure 16) once every day from January 1, 2000, until February 28, 

2016 and calculate them for three months forward. The trajectory positions are recorded 

every 6 hours. First, we determine the path of these trajectories from the ocean surface to 

an entrainment height of 17 km, the approximate height of the tropical cold point 

tropopause over the Asian monsoon region [Munchak and Pan, 2014]. Based on the 

transit time from the sea surface to the stratosphere, the fraction of an artificial VSLS 

tracer that reaches the stratosphere on each trajectory is calculated using an exponential 

decay of the tracer assuming a tropical tropospheric lifetime for DMS, methyl iodide, 

bromoform, and dibromomethane of 1, 3.5, 17, and 150 days, respectively [Barnes et al., 

2006; Osthoff et al., 2009; Carpenter et al., 2014]. While the trajectories determine the 

transport of air masses, the VSLS tracers on the trajectories distinguish the transport on 

timescales of the individual VSLS lifetimes. The transport efficiency is defined as the 

percentage of entrained VSLS tracer and gives a measure of the strength of stratospheric 

entrainment depending on homogeneous VSLS fields at the ocean surface. It is allocated 

to the month in which the trajectories were initiated to infer the entrainment strength for 

oceanic sources at a certain time. 

2.2 Climate Indices 

In order to investigate the possible influences on seasonal and interannual variability in 

stratospheric entrainment of VSLS tracers from the WIO, we use different climate indices 
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(Figure 1) describing the state of the ocean, the atmospheric circulation, and different 

coupled ocean-atmosphere phenomena. We use ERA-Interim monthly mean sea surface 

temperature (SST) in our WIO release area (SSTWIO) to infer transport changes due to 

local SST anomalies. Above the Indian Ocean, the Indian monsoon circulation dominates 

the tropospheric circulation. The large scale Indian monsoon circulation is described by 

the Indian Monsoon Index (IMI), which is defined as the gradient of zonal wind at 

850 hPa between a southern area over the northern WIO (40˚E-80˚E, 5˚N-15˚N) and an 

area over northern India (70˚E-90˚E, 20˚N-30˚N) [Wang and Fan, 1999; Wang et al., 

2001]. Daily mean IMI data was provided by Yoshiyuki Kajikawa and Bin Wang on their 

Monsoon Monitoring Page (Supporting Information). The strength of the summer 

monsoon is often described by the amount of rainfall over India. All India Rainfall Index 

(AIRI) monthly data is provided by the Indian Institute for Tropical Meteorology for 

1871-2014 (Supporting Information). The SST anomaly between the West and East 

Indian Ocean, the Indian Ocean Dipole (IOD), has been shown to influence convection 

and rainfall in the Indian Ocean region. The Dipole Mode Index (DMI) describes the 

status of the IOD and is defined as the difference between SST in the WIO (50˚E-70˚E, 

10˚S-10˚N) and the east Indian Ocean (90˚E-110˚E, 10˚S-0˚, Figure 16) [Saji et al., 1999]. 

The DMI is provided by the National Oceanic and Atmospheric Administration (NOAA) 

State of the Ocean project (Supporting Information).  

  

Figure 16: Areas for the definition of climate and circulation indices and the release area for 
the trajectories and SSTWIO. The indices are the Indian Monsoon Index (IMI = IMI 1 – IMI 2), 
Dipole Mode Index (DMI = DMIW – DMIE), and Nino 4 region.   
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We analyze the influence of ENSO on stratospheric entrainment from the WIO through 

the monthly SSTNino 4 averaged over the Nino 4 region (160˚E-150˚W, 5˚N-5˚S, Figure 16) 

from ERA-Interim. We chose the central Pacific Nino 4 over the east Pacific Nino 3.4 

region, because central Pacific ENSO events tend to have a greater influence on the 

Indian Ocean than those in the east Pacific [Kumar et al., 2006].  

2.3 Statistical analysis 

We use different statistical analyses to infer trends, variability, and relationships from the 

considered time period. We detrended the interannual 16 year time series of transport 

efficiency from the WIO to the stratosphere for the calculations of interannual variability 

and correlations. Linear trends and their significance were computed with a permutation 

test (p-value). 

The seasonal and interannual variability of transport from the WIO to the 

stratosphere is investigated with the coefficient of variation, which is defined as the 

standard deviation normalized by the mean. For seasonal variability, we calculate the 

seasonal coefficient of variation from 12 monthly transport efficiency values (Table 1). 

For interannual variability, we calculate the interannual coefficient of variation from 16 

detrended annual values for the annual mean or seasonal means (Table 4). The values of 

transport efficiency for seasons were calculated from all trajectories started in the 

designated season. December to February (DJF, boreal winter) is allocated to the year of 

the starting month, thus trajectories for DJF2000 were released in December 2000, January 

2001 and February 2001. The transport efficiency value of DJF2015 is the only value that 

includes the transport efficiency of January and February 2016; all other statistics are 

based on January 2000 to December 2015. 

The correlation of annual cycles and detrended interannual variability of the 

transport efficiency to the stratosphere with different climate indices are calculated with 

the correlation coefficient r by Pearson [1895]. All data were tested for normal 

distribution. For the correlation of annual cycles, we first calculated the mean annual 

cycle of transport efficiency for each tracer and for the climate indices from 2000-2015 

using monthly data. Then a time lag correlation was determined between each tracer’s 

average annual cycle of transport efficiency and the average annual cycles of the climate 

indices IMI, AIRI, DMI, SSTWIO, and SSTNino 4. We only show the average correlation 

over all four VSLS tracers, because the individual correlations are similar. The 

interannual correlations between the detrended time series of VSLS tracer transport 
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efficiency and climate indices were calculated for annual means as well as for seasonal 

means of each year. The significance of the correlations was determined with a 

permutation test (p-value). 

We created maximum entrainment anomaly composites for all seasons. The five 

years (~30% of the time period) with maximum transport efficiency were determined 

from the detrended interannual values (Figure S5) and their average was subtracted from 

the climatological values for the whole 16 years.  

 

3 Results 

3.1 Case Study 2014 

In a previous study we reported about the OASIS cruise in the WIO, which included 

observation based VSLS emissions and their transport to the stratosphere during Asian 

summer monsoon [Fiehn et al., 2017]. Here, we examine the transport during the whole 

2014, the year of the OASIS cruise, to investigate the seasonality of transport from the 

same release area. The forward trajectories of the first 10 days for every month reflect the 

different circulation patterns during the seasons (Figure 17). From May to September, the 

summer monsoon circulation is clearly visible above the Indian Ocean. Most trajectories 

follow the southeast trade winds and the southwest monsoon winds towards the Indian 

subcontinent and Bay of Bengal. From October to April, the patterns are less organized. 

Over the whole year, trajectories released close to the ITCZ position experience rapid 

vertical uplift due to convective activity (Figure S1). The few north- and southbound 

trajectories are rarely lifted to the upper troposphere and lower stratosphere. 
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Figure 17: Ten-day forward trajectories released at the sea surface of the tropical WIO (red 
box) in 2014.  

Figure 18 shows the latitude of maximum density of VSLS tracers at 8 km, mid-

troposphere, and 15 km, upper-troposphere, for every month in 2014. Overall, the latitude 

of maximum density of trajectories reflects the annual cycle associated with the observed 

position of the ITCZ and connected precipitation [Schneider et al., 2014]. In the mid-

troposphere, the center of maximum density of trajectories moves from 5˚S in boreal 

winter and spring to around 8˚N in boreal summer and fall (Figure 18a). In the upper 

troposphere, the main tracer transport in boreal winter and spring is located as far as 10˚S 

and moves to 20˚N in boreal summer, depending on the lifetime of the tracer (Figure 18b). 

In July, the distance between the main pathways of the two longer-lived tracers (CHBr3 

and CH2Br2, 20˚N) and the two shorter-lived tracers (DMS and CH3I, 8˚N) in the upper 

troposphere is about 12˚ in latitude. This case study of the 2014 annual cycle confirms the 

two main transport pathways depending on the tracer lifetime found by Fiehn et al. 

[2017], and adds that they only exist during Asian summer monsoon. During the onset of 

the summer monsoon, in April and May, the CHBr3 and CH2Br2 tracer pathways shift 

northwards about a month earlier than for the DMS and CH3I tracers. After the end of the 
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summer monsoon in November the pathways of the two longer lived tracers shift 

southward a month earlier. This difference in the seasonal shift is not caused by the 

monsoon circulation, but is an effect of the different lifetimes and the assignment of the 

transport to the release time of the trajectories (Section 2.1). The trajectories released in 

April are influenced by the pre-monsoonal circulation in April if they have short lifetimes 

(DMS and CH3I), but also by the onset of the monsoon in May if tracer lifetimes are 

longer (CHBr3 and CH2Br2).  

 

Figure 18: Annual cycle of latitude of maximum density of WIO to stratosphere transport at a) 
8 km and b) 15 km altitude in 2014. 

With the change in tropospheric circulation in the tropics over the year, the 

stratospheric entrainment region also varies. Figure 19 shows where the CHBr3 tracer 

from the WIO first reaches 17 km for every month of 2014. Entrainment regions for DMS, 

CH3I, and CH2Br2 tracers can be found in the supporting material (Figure S2-S4). From 

May to September 2014, during the summer monsoon, the stratospheric entrainment 

region lies above the Bay of Bengal, northern India and East Asia for CHBr3 and CH2Br2. 

The DMS and CH3I tracer summer monsoon entrainment at 17 km is further south at the 

northern edge of the release area, around 10˚N. From October to April 2014, during the 

winter monsoon, the main stratospheric entrainment region of all tracers lies above the 

release box in the WIO. This is in accordance with their maximum transport density in the 

upper troposphere found in Figure 18b. During boreal summer (June-August, JJA) and 

fall (September-November, SON) 2014, the transport pathway from the WIO release area 

to the main uplift and entrainment region is much longer than during the rest of the year 

(Fig. S1). This leads to more decay of the VSLS-tracers and a minimum in transport 

efficiency in boreal summer and fall (Fig. 4, S2-S4). The maximum transport efficiency 
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from the WIO to the stratosphere for all tracers occurs during boreal spring (March-May, 

MAM) 2014.  

 

 

Figure 19: Stratospheric entrainment regions for CHBr3 tracer released in 2014 shown as 
fraction of released tracer (in ‰) entrained in a 5°x5° grid. The black box shows the WIO 
release area. The transport efficiency (te), the fraction of released tracer (in %) reaching 17 km 
over the whole area, is noted in the top right for each month. DMS, CH3I, and CH2Br2 
entrainment regions are shown in the supporting material (Fig. S2-S4). 

 

3.2 Climatology 

The monthly transport efficiencies from 2000-2016 of the VSLS tracers from the WIO to 

the stratosphere show a distinct annual cycle, long-term changes as well as interannual 

variability (Figure 20). We analyze these phenomena in this section. 
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Figure 20: Monthly values of transport efficiency for VSLS tracers (in %) from the Indian Ocean 
to the stratosphere from January 2000 to February 2016.  

 

Annual Cycle 

The climatological annual cycles of transport efficiency for all four VSLS tracers, 

display maximum entrainment in boreal spring and minimum entrainment in boreal fall 

(Figure 6a). The climatological annual mean transport efficiency and their seasonal 

variation are summed up in Table 1. As expected, the climatological annual mean 

transport efficiency is highest for the longest-lived tracer, CH2Br2, and lowest for the 

shortest-lived tracer, DMS. The seasonal coefficient of variation shows that the DMS 

annual cycle has the highest relative amplitude and the CH2Br2 cycle shows the smallest 

amplitude. There is, thus, an inverse relationship between the lifetime of tracers and the 

amplitude of their annual cycles. 
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Figure 21: a) Climatological annual cycle of transport efficiency from the WIO to the 
stratosphere. b) Climatological normalized annual cycle of the Indian Monsoon Index (IMI), All 
India Rainfall Index (AIRI), Dipole Mode Index (DMI), SST in the WIO (SSTWIO), and the SST in 
the Nino 4 region (SSTNino 4) for 2000-2015. c) Lag correlation of annual cycles of transport 
efficiency from the West Indian Ocean (WIO) to the stratosphere and the annual cycles of 
climate indices. Shown is the average for all four VSLS tracers (Sect. 2.3). The grey line denotes 
the significance threshold for 95%.  
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Table 3: Climatological annual mean transport efficiency [%] and seasonal coefficient of 
variation for transport from the WIO to the stratosphere as displayed in Figure 21a.  

 
DMS CH3I CHBr3 CH2Br2 

Climatological annual mean 
transport efficiency [%] 

0.34 0.68 2.13 6.50 

Seasonal coefficient of  

variation [unitless] 
0.67 0.57 0.35 0.17 

 

 

We conducted a time lag correlation between the climatological annual cycles of VSLS 

tracer transport efficiency (Figure 21a) and the climatological annual cycles of IMI, AIRI, 

DMI, SSTWIO, and SSTNino 4 climate indices (Figure 21b). The average time lag 

correlation coefficients for all VSLS tracers are displayed in Figure 21c. Without time lag, 

the correlation coefficient of transport efficiency with IMI, AIRI, DMI, and SSTNino 4 is 

between -0.3 to -0.5 with a significance threshold of -0.58. The SSTWIO shows a 

significant positive correlation of 0.8 without lag. For AIRI, IMI, and SSTNino 4, we find 

significant maximum negative correlations with a time lag of two months, maximum 

positive correlations with a lag of seven to nine months. This means that the maximum 

(minimum) of entrainment occurs two months after the minimum (maximum) in monsoon 

circulation and rainfall over India. Significant correlations with DMI have a minimum 

without time lag and a maximum at five months, thus maximum stratospheric entrainment 

occurs at the time of year with the weakest DMI. The annual cycle of the SSTWIO has 

highest significant correlations to the stratospheric entrainment without time lag, and 

smallest correlations at eight months. Thus, the maximum stratospheric entrainment 

coincides with the time of highest SST in the WIO. 

Long-term changes and interannual variability 

The Asian monsoon circulation, as well as the convection strength over the Indian Ocean, 

is subject to long-term changes and interannual variability, which might be reflected in 

the VSLS transport efficiency from the WIO to the stratosphere (Figure 20 and Figure 22). 

Table 4 gives the climatological transport efficiency for the four tracers shown in Figure 

22 as annual and seasonal means. The transport efficiency shows a slight increase over 
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the 16 years of our analysis for all VSLS tracers and seasons. The decadal increase in 

transport efficiency is noted in Table S1 in the supporting material. The detrended 

interannual time series of transport efficiency are shown as anomalies in Figure S5. 

 

Figure 22: Interannual time series of the transport efficiency of VSLS tracers from the Indian 
Ocean to the stratosphere from 2000 to 2015. The color legend is provided in the figure. 

 

To determine interannual variability of transport efficiency, we calculated the coefficient 

of variation from the detrended time series shown in the supporting material in Figure S5. 

The interannual coefficient of variation for the annual mean is less than for the seasonal 

means (Table 2). The seasons with high interannual variability are boreal fall and winter, 

while variability is lowest during maximum entrainment in boreal spring. There are 

differences between the VSLS tracers as well. The shortest-lived tracer (DMS) is most 

variable on interannual scales, with variability decreasing with lifetime. When comparing 

the interannual variability (Table 4) to the annual cycle (Table 3), we find that interannual 

variability is weaker than the amplitude of annual cycle. 
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Table 4: Climatological transport efficiency [%] from Figure 22 and interannual coefficient of 
variation for detrended transport efficiency values from Figure S5. 

   DMS  CH3I  CHBr3 CH2Br2 

Climatological 

transport 
efficiency 

[%] 

Annual 
mean  

0.34 0.68 2.13 6.50 

Seasonal 
means 

DJF  0.34 0.66 2.07 6.52 

MAM  0.64 1.19 3.04 7.66 

JJA  0.21 0.51 1.96 5.91 

SON  0.17 0.37 1.47 5.70 

Interannual 
coefficient of 
variation 

[unitless] 

Annual 
mean  

0.14 0.14 0.12 0.08 

Seasonal 
means 

DJF  0.33 0.31 0.23 0.13 

MAM  0.17 0.15 0.10 0.07 

JJA  0.33 0.21 0.12 0.07 

SON  0.42 0.38 0.27 0.13 

 

In order to investigate oceanic and atmospheric factors that influence interannual 

VSLS transport variability, we calculated correlations between the detrended 16 year 

interannual time series of VSLS tracer transport efficiency (Figure S5) and the climate 

indices (Section 2.2) describing the state of the ocean in the release area (SSTWIO), the 

Indian monsoon strength (IMI), the state of the Indian Ocean Dipole (DMI) and the 

central Pacific ENSO conditions (SSTNino 4) (Table 5). We discuss only those 

relationships that show a significant correlation (bold face in Table 5).  

The SSTWIO in the WIO release area shows a positive interannual correlation with 

transport efficiency in MAM for all tracers, in DJF and JJA for DMS and CH3I and for 

DMS in the annual mean. These positive correlations infer that higher SST in the release 

area during the mentioned seasons is connected with enhanced transport to the 

stratosphere. Correlations between IMI and the transport efficiency are low and not 

significant. The interannual correlations between the DMI and transport efficiency are 

only significant in JJA for DMS and CH3I. The SSTNino 4 has the strongest relationship 

with transport efficiency of CH2Br2 and CHBr3 from the WIO to the stratosphere during 
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boreal fall, when negative SST anomalies in the central equatorial Pacific relate to 

enhanced stratospheric entrainment. In MAM positive correlation coefficients hint at a 

relationship between positive SST anomalies in the Nino 4 region and enhanced 

stratospheric entrainment from the WIO. 

 

Table 5: Correlations between the detrended interannual transport efficiency from the WIO to 
the stratosphere as annual and seasonal means and SST in the WIO (SSTWIO), the Indian 
Monsoon Index (IMI), the Dipole Mode Index (DMI), and SST in the Nino 4 region (SSTNino 4). 
Bold numbers are significant at the 95% level. 

  
Annual 

mean 
Seasonal means 

   
DJF MAM JJA SON 

SSTWIO 

DMS 0.55 0.66 0.85 0.53 0.39 

CH3I 0.44 0.60 0.85 0.55 0.28 

CHBr3 
0.14 0.43 0.71 0.48 0.08 

CH2Br2 -0.02 0.16 0.52 0.38 0.06 

IMI 

DMS -0.12 -0.05 -0.44 -0.06 -0.16 

CH3I 0.06 -0.02 -0.42 0.00 -0.01 

CHBr3 
0.44 0.02 -0.26 0.17 0.25 

CH2Br2 
0.41 -0.01 -0.11 0.23 0.44 

DMI 

DMS 0.29 0.36 -0.24 0.75 0.48 

CH3I 0.26 0.38 -0.14 0.68 0.28 

CHBr3 
0.08 0.34 -0.12 0.41 -0.08 

CH2Br2 
0.17 0.10 -0.14 0.18 -0.25 

SSTNino 4 

DMS 0.47 0.32 0.69 0.08 -0.20 

CH3I 0.21 0.27 0.64 -0.04 -0.39 

CHBr3 
-0.18 0.12 0.49 -0.18 -0.67 

CH2Br2 
-0.34 -0.08 0.38 -0.21 -0.72 
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Based on these interannual correlations, we calculated SST and vertical velocity 

anomaly composite maps for the five years with maximum transport efficiency after 

detrending (Figure 23). The maximum transport efficiency years for each season are 

listed in Table S2. The composites show anomalies that lead to more transport from the 

WIO to the stratosphere during these seasons. The DJF composite for SST illustrates 

positive and negative SST anomalies in the Indian Ocean, but a maximum anomaly in the 

equatorial Pacific. Vertical velocities also show up and downward anomalies over the 

Indian Ocean but upward anomalies over the central equatorial Pacific. The MAM 

composites reveal enhanced SST and upward air motion over the Indian Ocean, resulting 

in the significant MAM-SSTWIO correlation for all tracers in Table 5. In the Pacific Ocean, 

the composite indicates positive SST anomalies along the equator, resembling the positive 

correlation with SSTNino 4 in MAM.  
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Figure 23: Composites of SST and vertical wind (at 200 hPa) anomaly for the detrended five 
maximum entrainment years (see Table S2) from ERA-Interim monthly means. Negative values 
of vertical velocities (in Pa/s) relate to enhanced uplift.  

The JJA composites reflect the positive IOD pattern in the Indian Ocean, related 

to our positive correlation between DMI and transport efficiency for DMS and CH3I. 

Vertical velocities show enhanced upward movement over the central Indian Ocean. In 

SON, the SST anomaly structure over the Indian Ocean is divided, with lower anomalies 

in the WIO and higher anomalies in the East Indian Ocean. The tropical and subtropical 

Pacific Ocean displays negative SST anomalies over a large region, reflecting the 

negative correlations of transport efficiency with SSTNino 4 in Table 5. Vertical velocities 

in SON show enhanced uplift over the central tropical Indian Ocean, the Bay of Bengal, 
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Bangladesh, and the South China Sea. Overall, the derived maximum transport efficiency 

composites reflect the influence of ENSO events in particular for DJF and SON well (see 

Table S2). 

 

4 Discussion 

4.1 Annual Cycle 

The transport of VSLS tracers from the WIO to the stratosphere experiences a distinct 

annual cycle modulated by the Indian monsoon winds, movement of convection 

connected with the ITCZ [Lawrence and Lelieveld, 2010; Schneider et al., 2014], and the 

SST in the tropical WIO and Central Pacific Ocean (Figure 18). During boreal summer, 

the maximum density of transport at 8 km height (Figure 18a) occurs over southern India 

and the Bay of Bengal (10˚N), farther south than the climatological position of the rainfall 

maximum. This can probably be explained by the center of our release area being located 

to the south of the equator. At 15 km height, the difference between the location of 

transport of DMS and CH3I versus CHBr3 and CH2Br2 (Figure 18b) in boreal summer can 

be related to their different lifetimes. The two shorter-lived tracers need very fast 

transport close to the release area to reach the stratosphere. The two longer-lived VSLS 

tracers survive long enough to be transported on a pathway farther to the north, with the 

Indian summer monsoon convection located over the Indian subcontinent. This transport 

pathway has been described previously by Fiehn et al. [2017] for 2014.  

With the seasonal change of atmospheric circulation above the WIO, also the 

stratospheric entrainment regions change (Figure 19). For DMS and CH3I, the main 

stratospheric entrainment region remains above the release area in the WIO all year, 

because these tracers’ lifetimes are too short for long range horizontal transport and 

entrainment (Figures S2 and S3). The region of main entrainment of CHBr3 and CH2Br2 

tracers to the stratosphere (Figure 19 and S4) moves from the release area in DJF and 

MAM towards the Bay of Bengal, northern India and Southeast Asia in JJA and SON 

(Sect. 3). The convection over the Bay of Bengal, northern India and Bangladesh has 

previously been shown to be a major pathway from the Indian and Tibetan Plateau 

boundary layer to the stratosphere during boreal summer [Bergman et al., 2013; Pan et al., 

2016]. Transport and stratospheric entrainment from the WIO with the summer monsoon 

circulation only play a role for VSLS with lifetimes on the order of CHBr3 (17 days) or 

longer. Source regions closer to the monsoon convection, especially the Bay of Bengal, 
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would be more favored for fast delivery of DMS and CH3I, but also CHBr3 and CH2Br2, 

to the stratosphere during boreal summer.  

The seasonal shift in tropospheric transport and stratospheric entrainment regions 

causes an annual cycle in the transport efficiency from the WIO to the stratosphere for all 

four VSLS tracers (Figure 20). The season of strongest stratospheric entrainment is boreal 

spring, because the strong vertical uplift is located directly above the WIO release area 

(Figure 18). Boreal summer and fall are the minimum transport seasons for all 

compounds, because the vertical uplift above the release area is weaker than during 

winter and spring. Furthermore, the fast vertical uplift of the Indian summer monsoon is 

farther away from the release area, causing longer transport pathways and more VSLS 

decay (Figure 18 and Figure 19). Our results are in contrast to two other studies 

investigating the annual cycle of VSLS transport from the boundary layer to the upper 

troposphere and lower stratosphere, which is probably due to differences in the models 

and tracer emission fields. Liang et al. [2014] derive the global atmospheric distribution 

of oceanic CHBr3 and CH2Br2 using a chemistry climate model with top-down derived 

climatological emissions from the global ocean surface [Liang et al., 2010]. They show 

seasonal maps of organic bromine (Bry) and find a maximum at 355 K potential 

temperature (~14 km) above the tropical East Indian Ocean. This maximum is strongest 

for DJF and weakest for JJA, a seasonality, which is shifted by one season ahead of our 

results. They explain the seasonality with strong transport from the West Pacific 

boundary layer to the convective areas over the Indian Ocean in DJF. Pan et al. [2016], 

using a nudged Chemistry Climate Model, detect a maximum of a boundary layer tracer 

with a lifetime of 90 days in the Asian lower stratosphere from July to September due to 

monsoon vertical uplifting. This tracer is released globally and homogeneously, also close 

to the location of the Asian monsoon convection, and thus has an opposite annual cycle 

from our oceanic tracers with release regions farther away from the Asian summer 

monsoon convection. 

The annual cycle of our transport efficiency can be related to the seasonality of 

SST in the WIO and the Indian monsoon circulation. This is supported by the significant 

positive correlation with the SSTWIO annual cycle without time lag and negative 

correlation with IMI and AIRI annual cycles with a time lag of only two months (Figure 

21). Chen et al. [2012] diagnose Indian Ocean and West Pacific boundary layer to 

tropopause transport timescales for convective transport of 1-2 days. This relates to our 

SSTWIO annual cycle correlation without time lag and underlines that the SST in the WIO 
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has an immediate effect on the local convection and uplift and, thus, also the transport to 

the stratosphere. Chen et al. [2012] also find a large scale circulation transport timescale 

of 1-7 weeks, which fits the IMI/AIRI annual cycle correlation with a 2 month time lag. 

This time lag is caused by the time delay between the circulation change in the lower 

troposphere, where the indices are calculated, and the establishment of the transport 

pathway up to the stratosphere after the shift in the large scale atmospheric circulation 

pattern. 

4.2 Interannual Variability and Long-Term Changes 

The interannual variability is much smaller than the annual cycle (Sect. 3.2). Furthermore, 

the interannual variability for seasonal means is higher than for annual means, probably 

because temporal shifts in the pronounced annual cycle cause large variations from year 

to year (Table 4). An early onset or decline of the summer monsoon can cause transport 

shifts between the seasons, but the annual mean transport might remain the same. 

Although Hossaini et al. [2016] did not find a global transport-driven long-term 

trend in stratospheric entrainment of VSLS bromine from 1993-2012, our transport 

efficiency shows a slight increase from 2000-2015 for all tracers and seasons (Figure 22). 

This is in agreement with Tegtmeier et al. [2015], who report overall no change for the 

updraught mass flux between 250 and 80 hPa of ERA-Interim data during 1979-2013, but 

an increase from 2000 onwards. Our time series is too short, however, to diagnose a trend, 

but detecting this for all seasons suggests a general circulation change in the Indian Ocean 

and Asian monsoon region during the 16-year time period. Preethi et al. [2016] detected a 

2˚-3˚ westward shift of the South Asian monsoon flow system between 1970 and 2015. 

This shift causes a weakening of the monsoon circulation over the Bay of Bengal, which 

would shorten the summer monsoon transport pathway and increase stratospheric 

entrainment of oceanic VSLS. Additionally, the increase in local WIO transport to the 

stratosphere diagnosed here could be caused by the fast warming of the tropical Indian 

Ocean [Roxy et al., 2014] and subsequent enhancement of vertical uplift. In the future a 

continued trend of warming in the Indian Ocean could lead to increased vertical transport 

of VSLS source gases from the WIO to the stratosphere, according to the projected future 

increase of VSLS emissions [Ziska et al., 2017], which may lead to more ozone depletion 

due to more direct VSLS source gas injections [Tegtmeier et al., 2015]. 
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The interannual variability of transport efficiency from the WIO to the 

stratosphere shows a strong relationship with tropical SST both in the Indian and in the 

Pacific Ocean (Table 5). The SST in the tropical WIO enhances the transport to the 

stratosphere for the shortest-lived tracers DMS and CH3I during most seasons. For CHBr3 

and CH2Br2 the correlation is strongest in MAM, when the fast uplift is located over the 

equatorial WIO, but negligible in SON, when the main uplift of these tracers occurs 

above the Bay of Bengal far away from our WIO release region. The positive relationship 

between the local SSTWIO and transport efficiency reveals that the convective energy 

available from the warm ocean plays a role when the entrainment occurs directly above 

the release area. The positive DMI-transport efficiency correlation (impact of the IOD) 

for the two shortest-lived tracers in JJA supports this assumption, because a positive IOD 

also includes high SST anomalies in the WIO. Since DMS and CH3I are not entrained via 

the Indian summer monsoon transport pathway (see Sect. 3.1 and Fiehn et al. [2017]) the 

local influence of the IOD on uplift plays a role. 

In boreal spring, the SSTNino 4 in the equatorial central Pacific has a positive 

relationship with stratospheric entrainment suggesting that El Niño-like conditions 

enhance stratospheric entrainment from the WIO. Figure 24 depicts how El Niño events 

influence the SST and tropospheric vertical velocities above the Indian and Pacific 

Oceans through perturbations in the Walker circulation. SST warming in the central-to-

east equatorial Pacific (El Niño) locally generates enhanced ascent of air, anomalous 

subsidence over the tropical East Indian and West Pacific Ocean, and enhanced uplift 

over the WIO [Webster and Yang, 1992; Wang et al., 2001], which is the main 

entrainment region in boreal spring. Additionally, El Niño leads to a basin-wide warming 

of the Indian Ocean SST [Ju and Slingo, 1995; Schott et al., 2009] and further enhanced 

uplift over the WIO [Yu and Rienecker, 1999; Roxy et al., 2014]. In our study, El Niño 

conditions and a warm WIO surface increase the delivery of oceanic WIO VSLS tracers 

to the stratosphere during boreal spring. 

In boreal fall (SON), La Niña-like SST anomalies in the tropical central and East 

Pacific cause stronger than normal stratospheric entrainment over the East Indian Ocean 

(Table 5 and Figure 23). The main uplift and entrainment regions of sources from the 

WIO are above the central and northeast Indian Ocean (Figure 19) and La Niña-like SST 

anomalies in the east Pacific enhance upward movement in this region (Figure 24). Thus, 

La Niña events strengthen the monsoon convection and uplift over the Indian continent 

[Wang et al., 2015]. The negative SSTNino 4 anomalies in boreal fall may extend the 
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summer monsoon season and its strong convection [Goswami and Xavier, 2005; Xavier et 

al., 2007] bolstering and prolonging the established pathway by the Asian summer 

monsoon and enhancing stratospheric VSLS entrainment. This analysis highlights that the 

shift of stratospheric entrainment from the WIO in boreal spring to the central and 

northeast Indian Ocean in boreal fall causes opposing effects of El Niño and La Niña on 

transport efficiency during these seasons. 

 

Figure 24: Schematic illustration of perturbations to the Walker circulation and tropical SST 
during El Niño and La Niña. Red stands for positive SST and vertical velocity anomalies, blue 
for negative anomalies. WIO: West Indian Ocean, EIO: East Indian Ocean, WP: West Pacific, EP: 
East Pacific. 

4.3 Uncertainties 

Our conclusions are subject to uncertainties resulting from the calculation and analysis of 

the trajectories and correlation methods used. The trajectory calculations depend on the 

Lagrangian model FLEXPART 9.2 and the reanalysis data ERA-Interim used to calculate 

the air mass transport. Convection generally takes place on scales smaller than the 

reanalysis model resolution. Therefore, FLEXPART uses a convection scheme to 

parameterize representative vertical displacement [Forster et al., 2007]. Using also 

FLEXPART/ERA-Interim trajectory calculations, with observation based VSLS 

emissions, Tegtmeier et al. [2013] and Fuhlbrügge et al. [2016] were able to reproduce 

vertical VSLS distributions measured during several aircraft campaigns in the tropics, 

giving confidence in our approach. 

The number of trajectories reaching the stratosphere depends on the definition of 

the boundary between troposphere and stratosphere. In the tropics, the cold point 

tropopause (CPT) is often used to describe this boundary [Carpenter et al., 2014]. CPT 
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height lies around 17 km in the tropics and varies slightly with season and latitude 

[Munchak and Pan, 2014, and references therein]. During the OASIS campaign in the 

subtropical and tropical WIO, an average CPT height of 17 km was determined with daily 

several radiosonde launches [Fiehn et al., 2017]. Here we use a static boundary of 17 km 

as a conservative estimate for the tropical tropopause. Upward trends in tropopause height 

[Seidel and Randel, 2006] could induce an increasing trend in stratospheric delivery of 

VSLS using a static boundary because a higher tropopause may lead to faster transport at 

a fixed height in the uppermost troposphere. 

Our study is based on the homogeneous release of tracers from the ocean surface. 

In reality oceanic VSLS emissions exhibit both spatial and temporal variations [Lana et 

al., 2011; Ziska et al., 2013; Lennartz et al., 2015]. Therefore our analysis only detects 

influences on the transport to the stratosphere but neglects influences on the strength of 

emissions or absolute delivery of VSLS to the stratosphere, which will be addressed in a 

follow-up study.  

The deductions about the relationships between interannual variation of transport 

efficiency and SST in the Indian and Pacific Ocean depend on the considered time period. 

The 16 years time series is too short to detect significant long-term trends in the WIO 

transport to the stratosphere. However, this study is the longest transport time series 

calculated and analyzed for seasonal and interannual variability of Lagrangian transport 

from the WIO through the Asian Monsoon circulation to the stratosphere so far. The 

variability in conclusions on the development of transport to the stratosphere is large: 

Chen et al. [2012] calculated 9 years (2001-2009) of boreal summer air mass transport in 

the Asian monsoon region, but could not detect any significant correlations between 

boundary layer source variability and ENSO. Hossaini et al. [2016] did not find a 

transport-driven long-term trend in global stratospheric entrainment of bromine for the 

past period from 1993-2012, while Tegtmeier et al. [2015] suggest a future increase of the 

influence of CHBr3 emissions on ozone depletion because of larger convective updraught 

mass flux in the upper troposphere and lower stratosphere. Since ENSO shows the 

strongest influence on transport efficiency from the WIO to the stratosphere, it is 

important to cover a period long enough to represent both ENSO phases well. Our chosen 

time period 2000-2016 is characterized by a clustering of La Niña events and a negative 

phase of the Pacific Decadal Oscillation (PDO) [Mantua and Hare, 2002]. The PDO has a 

very similar impact on the Indian summer monsoon rainfall to ENSO events, with a 

negative PDO phase related to an increase in summer monsoon rainfall and vice versa 
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[Krishnan and Sugi, 2003]. Thus, the reduced global climate variability due to the 

prevailing negative PDO phase might make it harder to find significant transport-climate 

variability relationships. A longer time series including more El Niño events and a 

positive PDO phase is needed for future studies.  

 

5 Summary and Conclusions 

A 16-year time series of transport from the tropical WIO to the stratosphere is analyzed 

using VSLS tracers with lifetimes corresponding to DMS (1 day), CH3I (3.5 days), CHBr3 

(17 days), and CH2Br2 (150 days) applying homogenous oceanic sources. The transport 

efficiency, the amount of tracer entrained divided by the released amount, of all four 

VSLS tracers shows a distinct annual cycle with a maximum of entrainment in boreal 

spring and a minimum in boreal fall. This is caused by a seasonal change in the main 

transport pathway due to the reversal of lower tropospheric winds above the WIO 

connected to the Asian monsoon circulation. With the onset of the summer monsoon in 

May, the region of main upward transport of VSLS tracers moves from south of the 

equator to about 20˚N. With the main vertical uplift, the main stratospheric entrainment 

region of the longer-lived VSLS tracer CHBr3 and CH2Br2 shifts to the Bay of Bengal and 

northern India, elongating the transport pathway from the WIO to the stratosphere and 

causing a decrease in transport efficiency during boreal summer. The main entrainment of 

the shorter-lived tracers DMS and CH3I remains over the tropical WIO, because their 

lifetimes are too short for entrainment through the summer monsoon circulation above 

northern India. Their transport efficiency also decreases in boreal summer due to 

weakened convection and vertical uplift above the WIO in comparison with spring. The 

annual cycle of stratospheric entrainment for DMS reveals the largest relative amplitude 

and CH2Br2 entrainment the smallest amplitude. This infers that the shorter the lifetime of 

a tracer, the stronger is the influence of the seasonal displacement of the main convection 

area and the strength of convection over the release area on stratospheric entrainment.  

Over the 16 years of our time series from January 2000 to February 2016, we 

found an increase in VSLS tracer transport efficiency from the WIO to the stratosphere 

for all tracers and during all seasons, which may be related to the reported increasing SST 

in the WIO, a westward shift of the Asian monsoon circulation, and an upward trend in 

tropopause height. The interannual variability of transport efficiency is highest for the 

shortest-lived tracer, DMS. Regarding individual seasons, interannual variability for all 
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tracers is lowest during boreal spring, when the maximum transport occurs. The 

interannual variability of transport efficiency of all four VSLS tracers is influenced by the 

SST in the tropical WIO, as well as in the central equatorial Pacific. During boreal winter 

and spring, positive SST anomalies in the WIO and the Nino 4 region (El Niño) enhance 

stratospheric VSLS entrainment originating from the WIO. The warm Indian Ocean basin 

causes enhanced upward movement over the WIO, aiding the vertical transport to the 

stratosphere. During the summer monsoon, the transport of the two shortest-lived tracers 

for DMS and CH3I is also influenced by high WIO SST anomalies and positive IOD 

events. In boreal fall, negative SST anomalies in the tropical Pacific (La Niña) cause 

stronger than normal stratospheric entrainment from the WIO through strengthening the 

monsoon flow from the Indian Ocean to the Indian subcontinent, and prolonging and 

bolstering the monsoon convection.  A series of El Niño events may lead to more 

stratospheric entrainment above the WIO during boreal spring, while La Niña events 

enhance stratospheric entrainment of VSLS source gases above the central and northeast 

Indian Ocean during boreal fall. 

In this study, we focus on variability and changes in the transport alone. Seasonal 

and interannual variability of oceanic emissions is not accounted for. In a follow-up study 

we will connect temporal and spatial variations in oceanic emissions from the whole 

Indian Ocean with the transport to the stratosphere to obtain a more holistic picture of 

stratospheric VSLS entrainment through the Asian monsoon circulation. 
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Table S1: Increase of transport efficiency from the West Indian Ocean to the stratosphere 
during 2000-2015 (in % per decade) for annual and seasonal means. Bold numbers mark 
significant trends at 95% level. 

 Annual 
mean 

DJF MAM JJA SON 

DMS 0.01 0.01 0.00 0.00 0.01 

CH3I 0.01 0.01 0.01 0.01 0.02 

CHBr3 0.04 0.07 0.03 0.03 0.05 

CH2Br2 0.08 0.10 0.07 0.06 0.08 

 

 

Table S2: The five maximum transport efficiency years after detrending from Figure S5 used 
for the composites in Figure 8 in the main text. ENSO events based on the Ocean Niño Index 
from NCEP/CPC are highlighted with red for El Niño and blue for La Niña; note that “DJF 2002” 
stands for D2002-JF2003 ff. 

 1 2 3 4 5 

DJF 2002 2003 2009 2011 2015 

MAM 2001 2003 2005 2010 2012 

JJA 2003 2006 2007 2010 2012 

SON 2000 2001 2007 2010 2011 
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Figure S25: Latitude-height cross sections of ten day forward trajectories from the WIO release 
region (red) during 2014 and climatological position of ITCZ in the Indian monsoon region 
(black square) from 1998-2012 taken from Schneider et al. [2014]. 

 



124 Transport of very-short lived substances from the Indian Ocean to the stratosphere 
 

 

Figure S26:  Stratospheric entrainment regions for DMS tracer released in 2014 shown as 
fraction of released tracer (in ‰) entrained in a 5°x5° grid. The black box shows the WIO 
release area. The transport efficiency (te), noted on the upper right, is the fraction of released 
tracer (in %) reaching 17 km over the whole area. 
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Figure S27: As Figure S2 for the CH3I tracer.  
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Figure S28: As Figure S2 for the CH2Br2 tracer.  
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Figure S29: Detrended interannual time series of the annual and seasonal mean anomalies of 
transport efficiency of VSLS tracers from the West Indian Ocean to the stratosphere.  
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Abstract 

Oceanic very short-lived substances (VSLS), such as bromoform (CHBr3), contribute to 

stratospheric halogen loading and, thus, to ozone depletion. However, the amount, timing, 

and region of bromine delivery to the stratosphere through one of the main entrance gates, 

the Asian monsoon circulation, are still uncertain. In this study, we created bromoform 

emission inventories in the tropical Indian and west Pacific Oceans based on new in situ 

bromoform measurements and novel ocean biogeochemistry modeling with annual and 

monthly resolutions. Using these emissions, the mass transport and atmospheric mixing 

ratios of bromoform were modeled with the particle dispersion model FLEXPART driven 

by ERA-Interim reanalysis. Using monthly resolved emissions, main oceanic source 

regions for the stratosphere include the tropical west Pacific Ocean in boreal winter and 

the Arabian Sea and Bay of Bengal in boreal summer. The main stratospheric entrainment 

occurs over the southern tip of India, associated with local oceanic sources and strong 

convection of the Indian summer monsoon. The use of different temporal resolutions of 

emissions leads to changes in the season with maximum atmospheric mixing ratios at the 

tropopause: Monthly emissions result in highest mixing ratios above the central Indian 

Ocean in boreal winter and within the Asian monsoon anticyclone in boreal summer, 

while annual emissions display a maximum above the west Indian Ocean in boreal spring. 

However, the total annual entrainment of bromoform to the tropical stratosphere is the 

same in our Lagrangian calculations whether using monthly or annual emissions. Our 

results underline that the seasonal and regional stratospheric bromine loading for the 

Indian Ocean region critically depends on the seasonality in the VSLS emissions. 
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1 Introduction 

Halogenated very short-lived substances (VSLS) contribute to the stratospheric halogen 

burden, take part in ozone depletion and, thus, impact climate (Law et al., 2006). They are 

of oceanic origin and their transport to the stratosphere depends on deep convection in the 

tropics. The contribution of oceanic VSLS is estimated to be 10-40 % of the ~20 ppt total 

stratospheric bromine (Carpenter et al., 2014). Uncertainties result mainly from the 

tropospheric degradation and removal, transport processes, and especially from the spatial 

and temporal variability of halogenated VSLS emissions (Carpenter et al., 2014; Hossaini 

et al., 2016). In this study, we focus on the influence of seasonal variations of emissions.  

Bromoform (CHBr3), next to dibromomethane (CH2Br2), is the largest contributor to 

bromine from VSLS (   
    ) in the stratosphere (Hossaini et al., 2012) due to its large 

oceanic emissions (Quack and Wallace, 2003), moderate lifetime of 15-17 days in the 

tropics (Carpenter et al., 2014), and because it contains three bromine atoms. The 

bromoform surface concentration in the ocean is spatially and temporally variable and 

depends on its chemical and biological production (Carpenter et al., 1999; Quack and 

Wallace, 2003). Enhanced emissions coincide with biologically active equatorial and 

coastal upwelling regions (Quack et al., 2007) and the distribution of macro algae and 

anthropogenic sources along the coasts (Carpenter and Liss, 2000; Quack and Wallace, 

2003). There have been different approaches in creating global bromoform emission 

inventories. As a bottom-up approach, emissions have been extrapolated from marine and 

atmospheric observations (Quack and Wallace, 2003; Butler et al., 2007; Palmer and 

Reason, 2009; Ziska et al., 2013) or surface water observations with a chemistry climate 

model coupled to an air-sea exchange module (Lennartz et al., 2015). The top-down 

approach uses chemistry climate models (Warwick et al., 2006; Liang et al., 2010), also 

in combination with biological activity in the ocean (Ordóñez et al., 2012), to infer 

possible emission distributions that reproduce observed atmospheric abundances of VSLS. 

Recently, a biogeochemical model inferred oceanic bromoform distributions and 

emissions from observational atmospheric data and assumptions on the marine production 

(Hense and Quack, 2009; Stemmler et al., 2015).  

Overall, large differences between bromoform emissions exist. The bottom-up 

emission inventories (Ziska et al., 2013; Stemmler et al., 2015) estimate lower global 

bromoform emissions than the top-down inventories (Warwick et al., 2006; Liang et al., 

2010; Ordóñez et al., 2012). The emission inventories of Warwick et al. (2006), Liang et 
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al. (2010), Ordóñez et al. (2012), and Ziska et al. (2013) have been compared and 

evaluated by Hossaini et al. (2013). The observation based bromoform emissions of Ziska 

et al. (2013) led to the best agreement with atmospheric measurements of atmospheric 

mixing ratios in the tropics. Some emission inventories contain climatological annual 

means (Warwick et al., 2006; Liang et al., 2010) and other inventories include a 

seasonality of emissions (Ordóñez et al., 2012; Ziska et al., 2013; Stemmler et al., 2015). 

The use of these inventories in atmospheric modeling is described later.  

In the atmosphere VSLS are defined as having a lifetime of less than half a year. 

They degrade through photolysis or reaction with the hydroxyl radical (OH) into soluble 

substances, which can then be washed out. The injection of oceanic VSLS source gases to 

the stratosphere implies fast transport, because the degradation occurs on the same 

timescales as the transport. Thus, stratospheric delivery of VSLS is connected to fast and 

high-reaching convection and ascent of air masses through the tropical tropopause layer 

(TTL) into the stratosphere (Gettelman et al., 2009). The main regions of entrainment of 

tropospheric air masses into the stratosphere lie over the west Pacific Ocean in boreal 

winter and the Indian monsoon region in boreal summer (Newell and Gould-Stewart, 

1981). 

The Pacific Ocean VSLS emissions, atmospheric mixing ratios, and transport to 

the stratosphere has been measured and modeled in various studies (Tegtmeier et al., 

2012; Tegtmeier et al., 2013; Hossaini et al., 2016; and data listed therein), but the Indian 

Ocean emissions and their contribution to stratospheric bromine are still very uncertain 

(Liang et al., 2014). The Indian Ocean emissions could be quite high based on the few 

measurements in the marginal seas (Yamamoto et al., 2001; Roy et al., 2011), as well as 

extrapolations from other oceans (Ziska et al., 2013) and top-down source estimates 

(Liang et al., 2010). They have the potential to significantly contribute to stratospheric 

bromine (Liang et al., 2014; Hossaini et al., 2016). Based on first measurements of 

enhanced surface concentrations of bromoform and CH2Br2 from the subtropical and 

tropical west Indian Ocean in 2014, (Fiehn et al., 2017) calculated strong emissions and 

diagnosed stratospheric entrainment of these two VSLS in the southeastern part of the 

Asian monsoon anticyclone in July and August 2014 with the FLEXPART model. VSLS 

tracers with different lifetimes reveal a strong seasonality in the transport strength from 

the tropical west Indian Ocean to the stratosphere, with maximum transport in boreal 

spring, when the main uplift occurs over the release area (Fiehn et al., under review). 
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The atmospheric distribution and the delivery of bromoform to the stratosphere 

have been the topic of several chemistry transport and climate modeling studies. These 

studies used different approaches to constrain the input of VSLS from the ocean to the 

atmosphere: fixed VSLS mixing ratios in the boundary layer (Hossaini et al., 2010; 

Hossaini et al., 2012) or at the convective detrainment location (Aschmann et al., 2011; 

Aschmann and Sinnhuber, 2013), prescribed emissions as homogeneous fields (Dvortsov 

et al., 1999; Nielsen, 2001) or one of the inventories described above (Warwick et al., 

2006; Hossaini et al., 2013; Liang et al., 2014; Tegtmeier et al., 2015; Hossaini et al., 

2016), or prescribed water concentrations and the online calculation of emissions 

(Lennartz et al., 2015). Only Lennartz et al. (2015), Tegtmeier et al. (2015), and Hossaini 

et al. (2016) included seasonally varying emissions in their models.  

The necessity or influences of the implementation of seasonally varying emissions 

is not clear yet. The seasonality of surface mixing ratios is influenced by the varying 

emissions as well as chemical degradation and transport processes. Liang et al. (2010) 

could reproduce the seasonality of atmospheric bromoform mixing ratios in the lower 

troposphere using annual mean emissions, because the seasonality was mainly determined 

by chemical loss and tropospheric transport. On the other hand, Lennartz et al. (2015) 

were not able to match the observed seasonality in atmospheric bromoform mixing ratios 

at all stations, even with seasonally varying emissions.  

Furthermore, the studies show a disagreement on the main stratospheric 

entrainment season and location over the Asian continent and Indian Ocean area. Liang et 

al. (2014) modeled the highest upper tropospheric mixing ratios above the Indian Ocean 

during boreal winter based on the emission estimate by Liang et al. (2010). Calculating 

ozone depletion potential (ODP)-weighted emissions of bromoform, Tegtmeier et al. 

(2015) used monthly emissions from Ziska et al. (2013) and inferred maximum ODP-

weighted emissions from the Indian Ocean during boreal summer. Hossaini et al. (2016) 

conducted a multi-model intercomparison study using different emission inventories and 

chemistry transport and chemistry climate models and compared with measurements to 

infer inter-model differences due to emissions and transport processes. The model 

intercomparison study uses three different emission inventories (Liang et al., 2010; 

Ordóñez et al., 2012; Ziska et al., 2013) of which only one (Ordóñez et al., 2012) was 

used with seasonality. The models agree on the seasonality of volume mixing ratio (VMR) 

at the cold point tropopause (CPT), but the absolute values vary within a factor of three. 

The locations of the VMR maxima at the CPT above the tropical west Pacific in DJF and 
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the northern Indian Ocean in JJA are model consistent, but model differences in the 

strength of the Asian monsoon signature are high and strongly dependent on the 

parameterization of mixing in the boundary layer and convection in the free troposphere 

(Hossaini et al., 2016). They detect no differences caused by the seasonality in the 

Ordóñez et al. (2012) emissions. The influence of seasonally varying emissions on the 

seasonality at the CPT and the impact of the Asian monsoon transport has not been 

investigated. The combination of detailed marine emissions and high resolution 

atmospheric transport will help to answer the question of where and when the main 

marine bromine delivery to the stratosphere occurs. 

In this study, we investigate the influence of seasonally varying bromoform 

emissions for the Indian and west Pacific Ocean on the stratospheric entrainment of 

bromoform and mixing ratios in the TTL. Our research questions for this study are: What 

is the influence of seasonal bromoform emissions on stratospheric entrainment through 

the Asian Monsoon? Which is the main stratospheric entrainment region and season for 

bromoform above the Indian Ocean? What is the difference between using annual or 

monthly emissions? 

In Sect. 2, we describe the bromoform emission scenarios that we applied in our 

transport simulations and the FLEXPART model set up. In Sect. 3, we present and 

discuss the created emission inventories Ziska Updated and Stemmler Scaled for annual 

and monthly emission scenarios (Sect. 3.1). We compare the model simulations with 

available observations (Sect. 3.2) and describe the delivery of bromoform from its 

oceanic source regions to the stratosphere (Sect. 3.3). In Sect. 3.4 and 3.5, we analyze the 

differences between stratospheric entrainment using annual and monthly emissions and 

discuss these. Uncertainties in our studies are addressed in Sect. 4 and Sect. 5 contains the 

conclusions. 

 

2 Data and Methods 

2.1 Emission inventories 

We created two bromoform emission inventories for the Indian Ocean and the west 

Pacific in 2014 from existing publications. The emission inventories are based on the 

publications from Ziska et al. (2013) and Stemmler et al. (2015) and have annual and 

monthly resolution of emissions. An overview is given in Table 6. These will be used in 

FLEXPART to determine the transport of bromoform from the Indian Ocean to the 
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stratosphere in 2014, which is the year of the west Indian Ocean measurement data from 

the OASIS cruise on RV Sonne in July and August 2014 (Fiehn et al., 2017).  

Table 6: Emission inventories (header) and scenarios (first column) used in this study. 

 Ziska Updated Stemmler Scaled 

Annual emissions x x 

Monthly emissions x x 

 

The calculation is based on oceanic concentrations and atmospheric mixing ratios of 

bromoform. We calculated monthly emission fields for 2014 using the parameterization 

of air-sea gas exchange by Nightingale et al. (2000). Details of the calculation are given 

by Fiehn et al. (2017). We used ERA-Interim 1˚ x 1˚ monthly mean 10 m wind speed, sea 

level pressure and sea surface temperature fields. The climatological annual mean sea 

surface salinity field was taken from the World Ocean Atlas 2009. From these monthly 

emission fields we also created an annual mean emission field with the same total annual 

emissions as the monthly fields. 

 As a first inventory, the Ziska et al. (2013) inventory was updated with new 

oceanic and atmospheric measurements. This emission inventory will be called Ziska 

Updated in the following. The Ziska et al. (2013) emission inventory is a data-based 

global sea-to-air flux estimate of bromoform, dibromomethane and methyl iodide, 

calculated from oceanic and atmospheric surface concentrations within the Halocarbons 

in the Ocean and Atmosphere (HalOcAt) database. The available surface data was 

classified as coastal, shelf or open ocean data. The open ocean data was further divided 

into 21 regions according to the physical and geochemical characteristics of ocean and 

atmosphere. Data points were interpolated on a 1˚x1˚ grid and extrapolated within the 

regions using longitude and latitude regressions. The most relevant addition for this study 

are observations in the west Indian Ocean in July and August 2014 (Fiehn et al., 2017), 

which are the first measurements in the tropical Indian Ocean. The original Ziska 

climatology was based on measurements from other ocean basins (Ziska et al., 2013). The 

global fields of bromoform oceanic concentration and atmospheric mixing ratios were 

updated using the same method as in Ziska et al. (2013) creating annual mean 

climatological fields. 
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 As a second emission inventory, we scaled the bromoform emission fields that 

Stemmler et al. (2015) calculated with a biogeochemical ocean model. This emission 

inventory will be called Stemmler Scaled in the following. Stemmler et al. (2015) used a 

global three-dimensional ocean biogeochemistry model (MPIOM-HAMOCC) to simulate 

bromoform cycling in the ocean and emission to the atmosphere. They used the Ziska et 

al. (2013) atmospheric concentration as upper boundary for their air-sea flux calculations. 

In general, the Stemmler et al. (2015) oceanic concentrations and air-sea fluxes were 

lower than previous estimates. The low emissions might be caused by the use of the fixed 

atmospheric mixing ratios, which might not be consistent with the state of the ocean and 

atmosphere and have been shown to generally decrease bromoform emissions (Lennartz 

et al., 2015). In this study, we scaled the oceanic bromoform concentrations of the 

Stemmler et al. (2015) Dia experiment, which showed the most realistic emission 

distribution, according to oceanic measurements from the  OASIS cruise in the Indian 

Ocean (Fiehn et al., 2017) and the TransBrom transit across the west Pacific Ocean 

(Krüger and Quack, 2013). For every measurement point of bromoform concentration in 

the ocean during these campaigns, the model concentration in that grid box during the 

respective months was selected and a scaling factor was calculated, to obtain the 

measured value order to match the observations. The average scaling factor of 3.48 was 

homogeneously applied to the modeled sea surface bromoform concentrations of 

Stemmler et al. (2015). For our Stemmler Scaled inventory, we use a constant 

atmospheric bromoform mixing ratio of 1 ppt, which is the average atmospheric mixing 

ratio of bromoform from the OASIS and TransBrom campaigns. 

 For this study we only consider air-sea fluxes from the Indian Ocean and west 

Pacific (IO/WP). We define a release area in this region from 30˚N - 30˚S and 30˚E - 

160˚E, which we use for the calculation of annual fields and for the particle releases in 

the FLEXPART simulations (Sect. 2.2).   

 

2.2 FLEXPART calculations  

For our transport calculations, we use the Lagrangian particle dispersion model Flexpart 

of the Norwegian Institute for Air Research in the Atmosphere and Climate Department 

(Stohl et al., 2005), which has been evaluated in previous studies (Stohl et al., 1998; Stohl 

and Trickl, 1999). The model includes moist convection and turbulence parameterizations 

in the atmospheric boundary layer and free troposphere (Stohl and Thomson, 1999; 

Forster et al., 2007). In this study, we employ version 9.2 of Flexpart. This version has 
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been modified to incorporate lifetime profiles for the decay of transported VSLS. We use 

the ECMWF reanalysis product ERA-Interim (Dee et al., 2011) with a horizontal 

resolution of 1˚ x 1˚ and 60 vertical model levels as meteorological input fields, providing 

air temperature, winds, boundary layer height, specific humidity, as well as convective 

and large scale precipitation with a 3-hourly temporal resolution. The vertical winds in 

hybrid coordinates were calculated mass-consistently from spectral data by the pre-

processor (Stohl et al., 2005). We record the transport model output every 12 hours. 

We ran the Flexpart model using the annual emission field and monthly emission 

fields for each of the Ziska Updated and Stemmler Scaled scenarios described above. 

According to these emission scenarios, we calculated the mass of bromoform released 

from each 1˚ x 1˚ grid cell during one day. We released one particle per day and grid cell 

from the IO/WP release area (30˚N - 30˚S, 30˚E - 160˚E) with the released mass attached. 

The exponential decay is realized through the application of the lifetime profile of 

bromoform from Hossaini et al. (2010). For stratospheric entrainment we consider 

particles that reach above the CPT. The CPT is calculated online based on the ERA-

Interim data. The seasonal mean CPT height is displayed in Fig. S1. We define the 

stratospheric transport efficiency as the mass of bromoform entrained to the stratosphere 

divided by the emitted mass. FLEXPART also provides the VMR of bromoform. The 

displayed monthly fields are an average of the 12 hourly output fields. We only calculate 

source gas injection and not the absolute delivery of    
     from bromoform to the 

stratosphere. 

 

3 Results and Discussion 

3.1 Bromoform emissions from the Indian Ocean/ West Pacific 

The 2014 annual mean bromoform air-sea flux maps for the Ziska Updated and the 

Stemmler Scaled emission inventories in the IO/WP release area are shown in Figure 30. 

These emission distributions are used in the annual emission scenario in FLEXPART. 

The Stemmler Scaled bromoform emission inventory shows emission hot spots at the 

Horn of Africa (2000 pmol m
-2

 h
-1

), south of the Oman coast (1700 pmol m
-2

 h
-1

), and in 

the Torres Strait north of the Cape York Peninsula of Australia (up to 5000 pmol m
-2

 h
-1

). 

The Ziska Updated bromoform emission inventory features high emissions along the 

northern hemispheric coastlines (1500-3000 pmol m
-2

 h
-1

) and in the central Bay of 

Bengal (up to 5000 pmol m
-2

 h
-1

). An area of high emissions is the southern tropical IO 
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(1000 pmol m
-2

 h
-1

), while the flux from the northern tropical WP is negative, meaning 

that the ocean takes up bromoform from the atmosphere. This is caused by the low 

oceanic production and the cold water, which can take up more gas from the atmosphere 

(Krüger and Quack, 2013). The two emission inventories are similar in their main 

emission regions, the Arabian Sea and the Bay of Bengal, but show two significant 

differences: The coastal emissions and the tropical northern WP emissions. The 

bromoform module implemented into HAMOCC (Stemmler et al., 2015) does not 

account for bromoform production by macro algae and anthropogenic influences near the 

coastline. Therefore, near the coast the Stemmler Scaled emissions are much lower than 

the Ziska Updated emission, which uses separate regions for coast and shelf areas. The 

second difference concerns the air-sea fluxes in the west Pacific Ocean. While Stemmler 

Scaled emissions are small, but positive, in the west Pacific, the Ziska Updated includes 

negative fluxes north of 20°N and in some other parts of the WP. 

 The seasonal mean emission fields show the intraannual variability of bromoform 

emissions (Fig. 1). Emissions are high in boreal fall (December-February, DJF) and 

summer (June-August, JJA) and lower in boreal spring (March-May, MAM) and fall 

(September-November, SON) for both inventories. For the Stemmler Scaled inventory, 

strong emissions in JJA are located in the Arabian Sea, Bay of Bengal, the equatorial and 

tropical southern Indian Ocean, and a hot spot north of Australia. This hot spot results 

from the high phytoplankton productivity in the biogeochemical model (Stemmler et al., 

2015). High emissions of Ziska Updated are concentrated along the northern Indian 

Ocean coastline, the central Bay of Bengal and the tropical southern Indian Ocean. 
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Figure 30: Annual and seasonal mean bromoform emissions from the Indian Ocean and west 
Pacific release area based on the inventories Ziska Updated (a) and Stemmler Scaled (b). 
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We compare the annual mean emissions of the two created emission inventories 

with their progenitors and two top-down inventories (Table 7). In Ziska Updated, the 

emission distribution has changed compared to Ziska et al. (2013), while the Stemmler 

Scaled bromoform emission inventory mainly differs from Stemmler et al. (2015) in the 

total amount of bromoform emitted. The Ziska Updated inventory incorporates new 

measurements in the west Indian Ocean compared to Ziska et al. (2013). Overall, the 

Ziska annual bromoform emission from the IO/WP increased from 670 Mmol Br yr
-1

 

(Ziska et al., 2013, OLS) to 750 Mmol Br yr
-1

 (Ziska Updated). The Stemmler Scaled 

emissions from the IO/WP release area are 760 Mmol Br yr
-1

, while Stemmler et al. (2015) 

modeled only 43 Mmol Br yr
-1

. The distribution has mainly remained the same for this 

inventory. Slight differences in emission distribution result from the applied homogenous 

atmospheric mixing ratios and the ERA-Interim meteorological fields instead of the 

NCEP data used in Stemmler et al. (2015). The Ziska Updated and Stemmler Scaled 

inventories show similarities in the IO/WP region with previously published top-down 

bromoform emission inventories of Liang et al. (2010) and Ordóñez et al. (2012). 

Comparing spatial features, all six inventories display high emissions in the tropics, while 

Liang et al. (2010) have the highest open ocean emissions incorporating a large area in 

the tropics. The emission strength for coastal and open ocean emissions from the Indian 

Ocean for the annual mean of six emission inventories is given in Table 7. The coastal 

emissions are similar for all inventories, except Stemmler et al. (2015) which is much 

lower, due to the lack of coastal macroalgal production. The high emissions along the 

coast of Somalia and the Oman in the Stemmler Scaled inventory are caused by high 

wind speeds during boreal summer and coastal upwelling, entailing bromoform 

production (Figure 30).  

The annual cycles of emission for Ziska Updated and Stemmler Scaled are very 

similar with a maximum in July and a secondary maximum in January and minima in 

April and November (Fig. 2). While the Ziska Updated inventory applies mean annual 

oceanic concentrations, the Stemmler Scaled inventory uses monthly concentrations tied 

to phytoplankton production (Stemmler et al., 2015). Both scenarios show the highest 

emissions in summer, which has the highest wind speed, an important driver of air-sea 

gas exchange besides the oceanic concentration. We calculated the correlation between 

the annual cycles of emission from the IO/WP release area with each of the other 

variables (Table 3). Strongest correlations of the emission cycle exist with the wind speed 

and the SST. The correlation between emissions and oceanic concentrations for Stemmler 
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Scaled are weak. Thus the annual cycle of emissions in the Indian Ocean is mainly driven 

by the wind speed, which varies strongly over the year changing between the weak 

northeast (winter) and strong southwest (summer) monsoon winds.  

Table 7: Coastal and open Indian Ocean emissions for different bromoform emission 
inventories. 

Inventory Coastal emissions 

pmol m
-2

 h
-1

 

Open Indian Ocean 

emissions 

pmol m
-2

 h
-1

 

Liang et al. (2010) 1500 150 – 1100  

Ordóñez et al. (2012) ~ 950 ~350 

Stemmler et al. (2015) 0 – 300  0 – 130  

Ziska et al. (2013) 500 – 3000  -300 – 800  

Ziska Updated (this study) 300 – 2500  -300 – 800   

Stemmler Scaled (this 

study) 300 – 2300  200 – 800  
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Figure 31: Annual cycle of average emission, surface water concentration, and atmospheric 
mixing ratio of bromoform, as well as wind speed and SST, in the IO/WP release area in 2014 
for the two inventories. 

 

Table 8: Correlation between the annual cycle of emission and surface water concentration, 
wind speed and SST from Figure 31 using Spearman rank correlation. 

Variable Stemmler Scaled Ziska Updated 

Surface water concentration 0.36 - 

Wind speed 0.92 0.86 

SST -0.71 -0.55 

 

 

3.2 Comparison with observations 

To validate our FLEXPART/ERA-Interim calculations, we compare the modeled VMR 

with observations from available ship and aircraft campaigns. A comparison of modeled 

and observed VMR may also determine which sources the different emission inventories 

account for and where sources might be missing or have been overestimated. In the 
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boundary layer, we compare the modeled VMR with the tropical ship cruise observations 

from OASIS in the west Indian Ocean (Fiehn et al., 2017), SHIVA in the South China 

and Sulu Seas (Fuhlbrügge et al., 2016), and TransBrom across the west Pacific (Krüger 

and Quack, 2013; Fiehn et al., 2017). In the free troposphere, we compare modeled VMR 

with observations from the CARIBIC aircraft observatory at around 11 km height 

(Wisher et al., 2014) and average tropical profiles modeled by Liang et al. (2014). 

In the atmospheric boundary layer, which extends from the surface to about 1 km, 

the VMR mainly reflects the emission hotspots. For both emission inventories, the 

modeled VMR at 1 km height are highest above the Indian Ocean (Fig. S2). Beside their 

different coastal/open ocean distribution of emissions, they display the same hotspots in 

JJA and SON in the Arabian Sea and the Bay of Bengal, caused by high emissions in 

these basins during the summer monsoon season due to high wind speeds.  

The mean VMR values and their standard deviation for the three research cruises 

are summed up in Table 9. A scatter plot of the monthly emission scenario VMR 

comparison is displayed in the supplement (Fig. S3). Note that we modeled the VMR for 

2014, and thus higher deviations are expected for SHIVA (2011) and TransBrom (2009) 

than for OASIS (2014). We sample the model during the month of the cruise and around 

the location of the measurement. As expected, the modeled VMR are lower than the 

measurements, due to the model set up of including the IO/WP only. Thus, very likely 

important sources from the central Pacific are missing (see Fig. 7 in Liang et al., 2014). In 

the Indian Ocean, the Ziska Updated inventory is closer to observations than the 

Stemmler Scaled inventory, probably because the OASIS cruise data was included 

directly into the Ziska Updated inventory. In the South China Sea, emissions from both 

inventories are similar, but far lower than the coastal SHIVA cruise observations, 

probably because of underestimation of coastal emissions in both inventories (Table 9). In 

the West Pacific, the Stemmler Scaled inventory has a smaller deviation from the 

observations than the Ziska Updated, because of the low emissions during TransBrom 

included in Ziska Updated, while Stemmler Updated has higher emissions from the open 

West Pacific Ocean. This comparison reveals that, especially in boreal summer, the 

monthly emissions are necessary to account for the measured VMR above the Indian 

Ocean. It also hints at missing coastal emissions and an uncertainty in the West Pacific 

emissions. 
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Table 9: Mean bromoform volume mixing ratios (VMR) observed during the research cruises 
and modeled with FLEXPART at 100 m height for the same location and month as the 
observation, but for the year 2014.  

VMR [ppt]   West Pacific 
South China 

Sea 
Indian Ocean 

 
Emission 

inventory 

Emission 

scenario 
Oct Nov July 

Observation  in situ 0.92* 2.02
Δ
 1.18º 

Modeled  

for 2014 

Ziska 

Updated 

annual 0.12 0.52 0.72 

monthly 0.10 0.41 1.01 

Stemmler 

Scaled 

annual 0.35 0.44 0.44 

monthly 0.30 0.35 0.63 

* TransBrom 2008 , 
Δ
 SHIVA 2010 (Fuhlbrügge et al., 2016), º OASIS 2014 (Fiehn et al., 2017) 

 

For comparison with aircraft observations, there are a few measurements available 

from the CARIBIC observatory at around 11 km altitude between November 2012 and 

February 2013 (Wisher et al., 2014). The range and latitudinal gradient of FLEXPART 

VMR compare well with the aircraft measurements made between 15°N and 30°N (Fig. 

S4). At low latitudes and farthest north our simulation delivers less bromoform into the 

South Asian region than observed. We suspect the reason for this to be the missing 

oceanic emissions from the central and east Pacific west of 160°E. The assumption is 

supported by the fact that at low latitudes mixing ratios calculated with Ziska Updated are 

lower than those calculated with Stemmler Scaled and so are the emissions from the west 

Pacific for this inventory.  

The modeled annual mean mixing ratio profiles of bromoform up to 20 km height 

are largest over the Indian Ocean and lowest over the West Pacific (Figure 32a). 

Although mixing ratios are highest above the Indian Ocean, the above comparison with 

CARIBIC showed that also here contributions from the central Pacific are important. 

Thus, the missing emissions from the central and East Pacific result in low modeled VMR 

in the West Pacific, where their contribution is even higher than above the Indian Ocean.  
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Figure 32: (a) Average tropical (20°S-20°N) VMR profiles of bromoform over the Indian Ocean 
(IO: 40°E-90°E), the South China Sea (SCS: 90°E-130°E), and the West Pacific (WP: 130°E-160°E) 
from the Ziska Updated and Stemmler Scaled inventories with monthly emissions. (b) 
Bromoform VMR profiles in the Asian monsoon anticyclone region (AMA: 10°N-40°N, 20°E-
90°E) from both inventories with annual and monthly emissions in JJA.  
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3.3 Ocean-to-stratosphere transport of bromoform 

In this section we analyze the main oceanic source regions and stratospheric entrainment 

regions for bromoform from the Indian Ocean and the west Pacific. Here, we focus on 

emission scenarios with monthly variation. 

Oceanic source regions 

Figure 4 shows the transport efficiency to the stratosphere and the oceanic source 

regions of bromoform delivered to the stratosphere according to the two emission 

inventories. The spatial distribution of transport efficiency is per definition independent 

of the emission distribution and strength. It shows which fraction of a bromoform mass 

released at a certain location reaches the stratosphere. The distribution of bromoform 

mass delivered to the stratosphere at the oceanic release locations depicts the oceanic 

source regions (Fig. 4b and c) and result from a combination of the air-sea fluxes (Fig. 2) 

and the transport efficiency (Fig. 4a).  

The transport efficiency maps (Fig. 4a) show that the west Pacific is the most 

efficient region at transporting bromoform from the ocean to the stratosphere in the 

annual mean. The maximum efficiency shifts from the WP equator in DJF toward the 

north in JJA and SON. In MAM the transport efficiency is more evenly distributed 

between the Indian Ocean and the west Pacific. In JJA the Bay of Bengal also displays 

elevated transport efficiencies. For both emission inventories (Fig. 4b and c) the most 

important source regions for bromoform to the stratosphere are the Asian coast and the 

Arabian Sea and Bay of Bengal, especially in JJA. During this season, the emissions from 

these regions are high (Fig. 1) providing bromoform to the Indian summer monsoon 

convection over India and the Bay of Bengal. For the Ziska Updated inventory (Fig. 4b), 

the southern tropical Indian Ocean is also an important source region, while the open west 

Pacific delivers hardly any bromoform to the stratosphere. This is visible for all seasons. 

Using the Stemmler Scaled inventory (Fig. 4c), the equatorial west Pacific Ocean 

provides a secondary bromoform source to the stratosphere, which is strongest in DJF.  
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Figure 33: (a) Transport efficiency for bromoform to the CPT. (b) Oceanic source regions of 
bromoform delivered to the CPT for the Ziska Updated inventory with monthly emissions. (c) 
Like (b) but for Stemmler Scaled. The black box depicts the Indian Ocean/West Pacific release 
area. 

When comparing emissions (Fig. 1), transport efficiency (Fig. 4a), and delivered 

mass (Fig. 4b and c) we can determine the oceanic regions where the stratospheric 

delivery is determined by the emissions and those where the transport dominates 

stratospheric entrainment. If important source regions coincide with high emissions, the 

stratospheric entrainment from this region is mainly emission-driven; if important source 

regions coincide with high transport efficiency and corresponding emissions are low, then 
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the stratospheric delivery is transport-driven. Analyzing the annual mean, the Arabian Sea 

and the Bay of Bengal are emission-driven source regions for the stratosphere: These 

ocean basins are not very efficient source regions (2% - 5%), but due to the high 

emissions they deliver maximum bromoform to the stratosphere. The west Pacific is a 

transport-driven source region: It contributes to stratospheric delivery through the 

generally high transport efficiency (6% - 9%) despite low emissions in this region in both 

the Ziska Updated and the Stemmler Scaled inventories. This also means that small 

changes in the VSLS emissions in the west Pacific will have a strong influence on the 

total mass delivered to the stratosphere, which makes it important to better constrain 

current and future emissions from this region. 

Important bromoform source regions have been identified by Tegtmeier et al. 

(2015). They used a combination of bromoform emissions from Ziska et al. (2013) and 

ODP calculations (Pisso et al., 2010) to infer the importance of different oceanic regions 

for stratospheric ozone depletion, including an emission seasonality and the future 

development of emissions. The Maritime Continent significantly contributed to ODP-

weighted emissions all year round. In accordance with our results, the main contribution 

in boreal summer comes from the Asian coastal areas and the Indian Ocean.  

 

Stratospheric entrainment regions 

The modeled stratospheric entrainment regions for Ziska Updated and Stemmler 

Scaled inventories with monthly emissions are depicted in Figure 34. In the annual mean, 

the entrainment maximum for both inventories occurs over the southern tip of India 

(Fig. 5a/b, top row). This maximum results from the strong emissions in JJA and the fast 

uplift with the Asian summer monsoon circulation. The Stemmler Scaled inventory also 

shows a secondary entrainment maximum over the equatorial west Pacific, which the 

Ziska Updated lacks. It is present in all seasons, but most pronounced in DJF. It results 

from the stronger emissions from the west Pacific Ocean in Stemmler Scaled compared to 

Ziska Updated as discussed above. The stronger stratospheric entrainment above the west 

Pacific from Stemmler Scaled is the most obvious pattern throughout all seasons and in 

the annual mean of the difference between the two inventories (Fig. 5c). The Ziska 

Updated inventory, on the other hand, displays stronger entrainment above the Bay of 

Bengal, caused by the strong coastal and central-Bay of Bengal emissions in this 

inventory.  
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Figure 34: CPT entrainment for monthly bromoform emissions for (a) Ziska Updated and (b) 
Stemmler Scaled emission inventories. (c) Difference in entrainment between the two 
inventories (a) - (b). The black box depicts the Indian Ocean/West Pacific release area. 

 

3.4 Annual vs. monthly bromoform emissions 

For this study, we calculated the ocean to stratosphere transport of bromoform for 

annual and monthly emission fields for 2014. This enables us to detect the differences 

between the two experimental set ups and to find out which season and region delivers 

most bromoform to the stratosphere above the Indian Ocean. 
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Figure 6 shows the annual cycle of bromoform emissions, transport efficiency, and 

entrainment comparing the annual and monthly emission scenarios of Ziska Updated and 

Stemmler Scaled calculations plotted at the time of particle release from the ocean. The 

annual cycles of monthly emissions (Fig. 6a) display maxima in January and July and 

minimum emissions in April and November. Monthly emissions are higher than the 

annual mean from June to September. The annual cycle of bromoform transport 

efficiency to the stratosphere displays two maximum seasons: May-July and January-

February (Fig. 6b). Generally, the transport efficiency is higher for the Stemmler Scaled 

than for the Ziska Updated emissions, because Stemmler Scaled has higher emissions in 

the west Pacific, which is the most efficient source region for the stratosphere (Fig. 4a). 

The combination of the emission cycles and transport efficiency results in the annual 

cycles of stratospheric entrainment (Fig. 6c). Using annual emissions, the annual cycle of 

stratospheric entrainment has the same seasonality and amplitude as the transport 

efficiency and a maximum from May to July. Using monthly emissions, the annual cycle 

of entrainment is amplified due to the similar seasonality in emissions and transport 

efficiency. The very high emissions in JJA combined with highest transport efficiencies 

result in the season with most stratospheric entrainment using monthly emissions. There 

is, thus, a shift in the maximum entrainment season between the annual and monthly 

emission scenarios. 

 The total annual entrainment of bromoform to the stratosphere is similar whether 

we use annual or monthly emissions (Table 10). The similar sums mean that the 

difference in the seasonality of entrainment between annual and monthly emissions 

(Fig. 6c) does not influence the total annual mass entrained in our experimental set up. 

Nonetheless, the consideration of seasonally varying emissions should, through the 

influence of the annual cycle, also influence the regions of VSLS entrainment to the 

stratosphere.  
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Figure 35: Annual cycles of bromoform (a) emission, (b) transport efficiency, and (c) 
entrainment above the CPT in 2014 for the Ziska Updated and Stemmler Scaled annual and 
monthly bromoform emission scenarios for the time of particle release.  
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Table 10: Total annual stratospheric entrainment of bromoform emitted from the IO/WP 
region. 

 

Stemmler Scaled  

[Mmol Br yr
-1

] 

Ziska Updated 

[Mmol Br yr
-1

] 

Annual emissions 28.7 24.2 

Monthly emissions 28.2 24.5 

 

We distinguish these spatial differences in the stratospheric entrainment of 

bromoform between the annual and monthly emission scenarios of the Ziska Updated 

inventory by examining the atmospheric VMR at 17 km altitude (Figure 36). This height 

is a good approximation for the tropical CPT height, although it can be even higher in the 

Asian monsoon anticyclone (Munchak and Pan, 2014). High VMRs generally represent 

regions with enhanced uplift of bromoform from the ocean, but additionally indicate if the 

compound is accumulated in a certain region. Using annual emissions (Fig. 7a), the 

maximum VMR region covers the tropical west and central Indian Ocean in the annual 

mean. This maximum is strongest for this scenario in MAM. For the monthly emission 

scenario (Fig. 7b), the region of highest VMR at 17 km is also located above the tropical 

west and central Indian Ocean. The season with highest VMR is JJA, when the maximum 

region is shifted to the north and east from its annual mean position. We, thus, discover 

different maximum VMR seasons using annual vs. monthly emissions. The differences 

between VMR for the two scenarios are visible in Fig. 7c. In the annual mean, the VMR 

is lower north of 15ºN and higher south of 15ºN using annual emissions than with 

monthly emissions. In DJF the differences are less clear, while in MAM the annual 

emissions deliver much more bromoform to 17 km height than monthly emissions. This is 

reversed in JJA and SON, when monthly emissions lead to higher VMR in the Asian 

monsoon anticyclone region in JJA and across the whole Indian Ocean/Asian area in 

SON. The respective figure for the Stemmler Scaled emission inventory shows very 

similar patterns (Fig. S5). Furthermore, the differences in the entrainment regions of 

bromoform mass at the CPT between the two scenarios also show a similar pattern (Fig. 

S6), except for SON when the entrainment shows a positive anomaly, which we try to 

explain in Sect. 3.5. 
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Figure 36: Bromoform volume mixing ratios (VMR) at 17 km for the Ziska Updated (a) annual 
emissions, (b) monthly emissions, and (c) the difference between the two scenarios. The black 
box depicts the IO/WP release area. 
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3.5 Discussion 

The spatial differences in the VMR at 17 km can be explained by the annual cycle of 

emissions and transport from the Indian Ocean. In DJF, the monthly emissions are around 

the annual mean (Fig. 6a), causing only small differences in VMR at the tropopause. In 

MAM, monthly emissions are lower than the annual mean (Fig. 6a), causing higher VMR 

for annual than monthly emissions in the central Indian Ocean (Fig. 7c), which is the 

region of maximum entrainment during this season (Fig. 5a). In JJA, monthly emissions 

reach their maximum, which are much higher than the annual mean emissions (Fig. 6a), 

and the transport efficiency through the Asian summer monsoon convection is also 

maximized (Fig. 6b). The Asian monsoon anticyclone in the upper troposphere and lower 

stratosphere (UTLS) region is known to confine lifted boundary layer air masses within 

its circulation (Park et al., 2007; Fiehn et al., 2017). The high monthly emissions show a 

distinct negative anomaly in the JJA difference between annual and monthly emissions 

(Fig. 7c). In SON, the monthly emissions are lower than the annual emissions (Fig. 6a). 

These lower monthly emissions, however, lead to higher VMR around the CPT than 

annual emissions, shown by negative anomalies throughout the whole region (Fig. 7c). 

We suspect that the bromoform, which has been accumulating in the anticyclone during 

JJA, spreads throughout the region and causes the negative anomaly in SON. The lifetime 

of bromoform in the TTL region is around 25 to 30 days (Hossaini et al., 2010), which is 

long enough to be distributed across the region. The spreading of air masses from the 

anticyclone across the northern and also into the southern hemisphere during the breakup 

of the anticyclone in September has been observed for trace gases like CO, H2O, and O3 

with satellites (Santee et al., 2017) and also modeled with a chemistry transport model 

(Vogel et al., 2016). In the annual mean, the representation of monthly resolved emissions 

results in less bromoform around the equator and in the southern hemisphere UTLS and 

more in the UTLS north of 15ºN in the Asian region, especially in the Asian monsoon 

anticyclone, because of the different main entrainment seasons: JJA using monthly 

emissions and MAM using annual emissions. 

The difference in atmospheric bromoform mixing ratios in the Asian summer 

monsoon anticyclone between the annual and monthly emissions is also visible in the 

VMR profiles in this region (Fig. 3b). At the level of main convective outflow (~14 km), 

the monthly emissions produce mixing ratios that are more than 40 % higher than from 
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annual emissions. This large difference in a circulation regime with pronounced delivery 

to stratosphere has a significant impact on stratospheric    
    . 

Our results help to interpret the discrepancy of modeled seasonality of bromoform 

VMR above the Indian Ocean between Liang et al. (2014) and Hossaini et al. (2016). 

Both studies use global emissions of bromoform and show results only of annual 

emission scenarios. While Liang et al. (2014) simulated a VMR maximum for bromoform 

above the Indian Ocean using a chemistry climate model for 1960-2010 in DJF, the set of 

chemistry climate and transport models from Hossaini et al. (2016) find that the Asian 

monsoon in JJA is the most important pathway for bromoform to the stratosphere. They 

add that the contribution of this pathway is highly uncertain, because of the large spread 

in the signal from model to model. The importance of DJF as season of enhanced 

entrainment is connected with the high transport efficiency in the West Pacific during that 

season and, thus, the emissions in that region. The bromoform emissions inventory of 

Liang et al. (2010) used in Liang et al. (2014) generally has high tropical emissions in the 

West Pacific, which are transported towards the Indian Ocean region. The emission 

inventory of Ziska et al. (2013), which is used for some models in Hossaini et al. (2016), 

has low emissions in the West Pacific and high emissions in the Indian Ocean, resulting 

in a maximum of bromoform VMR above the Indian Ocean in JJA. We find that the 

stratospheric entrainment seasonality does depend on the distribution of emissions. Using 

seasonal emissions in these simulations would generally increase the importance of the 

JJA entrainment through the monsoon. 

 

4 Uncertainties 

This study presents an estimate of bromoform entrainment to the stratosphere over the 

Indian Ocean and Asia. Uncertainties in the analysis result from the emission inventories, 

the FLEXPART model with the ERA-Interim reanalysis fields. 

The Ziska et al. (2013) inventory was updated in this study by including new 

observations. Available oceanic and atmospheric VSLS observations contain a mixture of 

measurements from different seasons and years, which are used to calculate an annual 

climatology. The seasonality in monthly emissions from Ziska Updated results from the 

seasonality in wind speed, SST, and sea surface pressure in the parameterization. The 

Indian Ocean has a pronounced seasonality in ocean currents and upwelling regions 

(Schott et al., 2009) affecting the biological productivity, surface bromoform 
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concentrations, and emissions (Quack et al., 2004; Hepach et al., 2015). Stemmler et al. 

(2015) include seasonality in oceanic bromoform concentrations from phytoplankton 

growth. The study was designed to assess processes that drive large scale patterns of 

bromoform emissions from the open ocean and was carried out as climatological steady 

state simulation. Thus, deviations from observations arise, for example, through the 

missing bromoform production from macroalgae along the coasts and unresolved 

temporal variability patterns caused e.g. by ENSO (Stemmler et al., 2015). Although the 

model resolution is low, the MPI model shows the most realistic circulation of all CMIP 5 

models in the Indian Ocean (Roxy et al., 2016). Furthermore, our Stemmler Scaled 

inventory uses a temporally and spatially uniform atmospheric bromoform mixing ratio to 

calculate the emissions. However, since the annual cycle of emissions results mainly from 

the changes in surface wind speed for both inventories (Sect. 3.1), we conclude that in an 

oversaturated tropical ocean, as is mostly the case for bromoform (Ziska et al., 2013), the 

annual cycle of oceanic concentrations plays only a secondary role in determining the 

emission cycle. In a previous publication we have shown a good agreement of surface 

wind speed of ERA-Interim with ship-bound and radiosonde measurements over the 

Indian Ocean (Fiehn et al., 2017). Furthermore, the parameterization for the air-sea flux 

itself, is estimated to introduce an uncertainty of a factor of two (Lennartz et al., 2015).  

The emissions and transport of VSLS in this study strongly depend on the ERA-

Interim meteorological reanalysis data and the boundary layer and convective 

parameterizations in the FLEXPART model. In most atmospheric models, convection, 

which occurs on scales smaller than the grid scale, is parameterized. The FLEXPART 

convection scheme was described and evaluated by Forster et al. (2007). FLEXPART has 

previously been used to simulate VSLS transport and good agreement with aircraft 

measurements of bromoform, dibromomethane, and methyl iodide up to 11 km above the 

tropical West Pacific (Fuhlbrügge et al., 2016) and methyl iodide in the UTLS (Tegtmeier 

et al., 2013) was achieved.  

If we want to infer the total delivery of    
     to the stratosphere, we have to 

consider the oceanic source gases, but also the possible entrainment of their soluble 

product gases. Here we only consider the gases directly released from the ocean. The 

source gas injection is generally enhanced with enhanced vertical uplift (Hossaini et al., 

2010). Product gas injection depends on the occurrence of precipitation and washout 

processes, which are modeled with high uncertainties (Montzka et al., 2010; Carpenter et 
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al., 2014). Liang et al. (2014) simulated that product gas injection of bromine has a 

contrary relationship with convection, because more convection causes enhanced 

scavenging of the soluble product gases. This effect was stronger than the enhancement of 

source gas injection, causing an overall reduction in halogen entrainment for scenarios 

with stronger convection. Thus, large uncertainties remain with regard to modeling 

product gas injection. 

 

5 Summary and Conclusions 

For this study, we compiled two new bromoform emission inventories for the Indian 

Ocean and west Pacific (IO/WP) in 2014: An update (this study) of the Ziska et al. (2013) 

inventory including new measurements in the west Indian Ocean (Fiehn et al., 2017) and 

an inventory using monthly surface water concentrations modeled by Stemmler et al. 

(2015) and scaled with measurements from the Indian Ocean  and west Pacific. We added 

seasonality through the calculation of emissions using annual and monthly oceanic 

concentrations and fixed annual mean atmospheric mixing ratios with monthly mean 

wind speed, SST, SSS, and sea level pressure data. The resulting seasonality in 

bromoform emissions in the IO/WP is mainly driven by the wind speed. The annual cycle 

of emissions for both inventories displays maximum emissions in boreal summer located 

in the Bay of Bengal, Arabian Sea, and the tropical southern Indian Ocean.  

We modeled the ocean-to-stratosphere transport for 2014 with FLEXPART based 

on ERA-Interim fields using annual and monthly emission scenarios for both inventories 

to detect the influence of seasonally varying emissions on stratospheric entrainment of 

VSLS. A comparison of modeled VMR with observations from aircraft and ship 

observations from the Indian Ocean, the South China Sea, and the west Pacific displays 

that modeled mixing ratios were generally lower than observations due to our regionally 

restricted model set up. It is also caused by low coastal emissions in our inventories and 

missing sources from the central and east Pacific Ocean.  

The oceanic source regions for stratospheric Bry from bromoform and the 

entrainment regions to the stratosphere for monthly emissions were analyzed. For both 

emission inventories, most stratospheric bromoform originates from the Arabian Sea and 

Bay of Bengal in boreal summer and from the tropical west Pacific in boreal winter. The 

annual mean main entrainment to the stratosphere occurs above the southern tip of India 
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and results from the strong emissions from the Bay of Bengal and Arabian Sea and the 

efficient uplift with the monsoon convection during boreal summer. 

We studied the influence of annual vs. monthly emissions on the stratospheric 

entrainment and VMR of bromoform above the IO/WP region in 2014. We simulated 

similar total annual bromoform delivery to the stratosphere whether applying annual or 

monthly emissions. However, monthly emissions led to less entrainment above the IO in 

boreal spring and more in boreal summer than annual emissions. This causes up to 40% 

higher VMR in the Asian monsoon anticyclone using monthly emissions and a change in 

the season with maximum VMR at 17 km height above the Indian Ocean: Annual 

emissions lead to highest VMR in MAM, while monthly emissions cause high VMR in 

JJA. In the annual mean, the monthly emissions induce higher VMR at the tropopause 

north of 15ºN and lower VMR around the equatorial and southern hemisphere tropopause, 

probably caused by the enhanced entrainment through the Asian summer monsoon in the 

northern hemisphere.  

Most surface-to-stratosphere transport above the Indian Ocean and Asia occurs in 

the Asian monsoon anticyclone during the summer monsoon and during its decline. The 

use of annual bromoform emissions, the most common practice of previous studies, 

underestimates oceanic emissions, volume mixing ratios, and stratospheric source gas 

delivery of bromoform and, thus, the stratospheric bromine loading during this season. 

Although the total annual bromoform delivery did not vary in our 2014 study, the region 

and season of stratospheric entrainment determines the bromine pathway and impact in 

the stratosphere. Therefore, we recommend using seasonally resolved emissions for the 

Indian and west Pacific Ocean and Asian monsoon region, if a process study or 

comparison to observations is intended. This study was conducted for bromoform, but the 

impact of representing seasonally resolved oceanic emissions for delivery from the Indian 

Ocean to the stratosphere also applies for other oceanic VSLS. 
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Figure S1: Height of the cold point tropopause (CPT) in 2014 from ERA-Interim data used in 
FLEXPART. 
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Figure S2: Bromoform volume mixing ratios (VMR) at 1 km for monthly emissions from (a) 

Ziska Updated and (b) Stemmler Scaled inventories. The black box depicts the IO/WP release 

area. 
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Figure S3: Comparison of bromoform volume mixing ratios at 1 km height from monthly 
emissions and ship cruise measurements in the Indian Ocean (OASIS), the South China and 
Sulu Seas (SHIVA), and the west Pacific (TransBrom). The Flexpart output was sampled in the 
grid cell of the observation during the month of the cruise, but in 2014. 

 

 

Figure S4: CARIBIC aircraft measurements of bromoform on Southeast Asian flights for 
November and December 2012 and February 2013 at about 11 km height averaged in 5° 
latitude bins taken from Wisher et al. (2014). Stemmler Scaled and Ziska Update CHBr3 mixing 
ratio at 11 km averaged in 5°x5° boxes around the measurement locations in February, 
November, and December of 2014. 
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Figure S5: Bromoform volume mixing ratios (VMR) at 17 km for the Stemmler Scaled (a) annual 
emissions and (b) monthly emissions and (c) the difference between the two scenarios. The 
black box depicts the IO/WP release area. 



170 Transport of very-short lived substances from the Indian Ocean to the stratosphere 
 

 

Figure S6: Bromoform entrainment anomalies at the CPT between annual and monthly 

emissions for (a) Ziska Updated and (b) Stemmler Scaled inventories. 

Wisher, A., Oram, D. E., Laube, J. C., Mills, G. P., van Velthoven, P., Zahn, A., and Brenninkmeijer, 
C. A. M.: Very short-lived bromomethanes measured by the CARIBIC observatory over the North 
Atlantic, Africa and Southeast Asia during 2009–2013, Atmos. Chem. Phys., 14, 3557-3570, 
10.5194/acp-14-3557-2014, 2014. 
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4 Summary, Conclusions, and Outlook 

Summary 

Seven questions were addressed in this thesis and their answers, summarized from the 

manuscripts, are given in the following.  

1. How strong are VSLS emissions from the West Indian Ocean (WIO)? 

During the OASIS cruise in the subtropical and tropical WIO in July and August 2014, 

oceanic concentrations and atmospheric mixing ratios of the four VSLS CHBr3, CH2Br2, 

CH3I, and DMS were measured and emissions were calculated with an air-sea gas 

exchange parameterization. DMS direct fluxes were also observed with the eddy-

covariance technique. For CHBr3 and CH2Br2 these were the first measurements in the 

southern subtropical and tropical West Indian Ocean. The emissions of CHBr3 were at the 

upper end of previous tropical measurements and estimates, while CH2Br2 emissions were 

the highest emissions reported so far. CH3I emissions were in the range of previously 

published datasets. Eddy-covariance derived DMS emissions confirmed that the Indian 

Ocean is a hot spot emission region during boreal summer despite the emissions being 

lower than in the climatology from Lana et al. (2011) (Zavarsky et al., under review at 

GRL). We identified the coastal upwelling southeast of Madagascar and the open ocean 

upwelling of the Chagos-Seychelles thermocline ridge as a biologically productive region 

with enhanced VSLS production and emissions. 

2. What are the transport pathways in the atmosphere above the West Indian Ocean 

during summer monsoon?  

The transport of VSLS emissions was modeled with the Lagrangian particle dispersion 

model FLEXPART using ERA-Interim reanalysis meteorological fields. The Asian 

summer monsoon transport from the tropical West Indian Ocean to the stratosphere 

during 2014 occurs along two pathways: Either via local convection around the equator, 

or with the monsoon circulation towards India and the Bay of Bengal close to the surface 

and from there upwards with the summer monsoon convection into the Asian monsoon 

anticyclone. The first pathway is fast (0-2 days) and, therefore, more important for the 

shorter-lived VSLS’s CH3I and DMS, while the second pathway takes more time (4-12 

days) and is more relevant for the transport of the longer-lived VSLS CHBr3 and CH2Br2.  
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3. How large is the intra- and interannual variability of VSLS transport from the 

WIO to the stratosphere?  

The transport of artificial “VSLS tracers” applying lifetimes of DMS, CH3I, CHBr3, and 

CH2Br2 on air mass transport from a large area of the tropical WIO to the stratosphere 

from 2000-2015 using FLEXPART and ERA-Interim was investigated. The strength of 

transport was described through the transport efficiency, defined as the amount of VSLS 

tracer entrained to the stratosphere divided by the amount released from the ocean. The 

most important characteristic of transport variability from the WIO is the pronounced 

annual cycle. The interannual variability of transport to the stratosphere is less 

pronounced than the annual cycle. Interannual variability is strongest during boreal fall 

and winter. The intra- and interannual variability is larger the shorter the lifetime of the 

VSLS tracer.  

4. Which is the main stratospheric entrainment season from the West Indian Ocean?  

The transport efficiency from the West Indian Ocean displays a maximum during boreal 

winter and spring, when the convection resides over the release locations in the ocean. 

The transport efficiency is minimal during summer monsoon and boreal fall, when the 

convection is farther away from the release area. The seasonality strongly depends on the 

location of the emission region and is different when investigating emissions from the 

whole tropical Indian Ocean. 

5. What causes the variability of VSLS transport to the stratosphere above the Indian 

Ocean?  

The strong annual cycle of VSLS tracer transport efficiency from the WIO to the 

stratosphere is driven by the annual reversal of winds and displacement of deep 

convection by the Indian Monsoon and the local ocean heat content. It correlates well 

with the annual cycle of the Indian Monsoon Index and the All-India Rainfall Index, as 

well as the sea surface temperature (SST) in the WIO release area. The time series of 

transport efficiency displays a small increase over the 16 year period, which might be 

driven by the long-term changes of the Asian monsoon. A weakening of the monsoon 

circulation shortens the summer monsoon transport pathway and warming SST in the 

WIO enhances vertical uplift, which both increases stratospheric entrainment of VSLS. 

The interannual variability of transport efficiency is influenced by the SST in the WIO 

and equatorial Pacific. High local SST enhances the transport to the stratosphere, 
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especially in boreal spring, when the deep convection is directly above the WIO. During 

boreal winter and spring, stratospheric entrainment of the VSLS tracers from the WIO is 

also enhanced by positive SST anomalies in the equatorial Pacific, an El Niño. The 

relatively warm SST in the East Pacific influences the Walker circulation and the SST in 

the IO, which both enhance uplift over the WIO. During boreal summer and fall, negative 

SST anomalies in the Pacific Ocean, a La Niña, increase VSLS tracer delivery from the 

WIO to the stratosphere, because the Walker circulation strengthens the monsoon flow 

from the Indian Ocean to the Indian subcontinent, prolonging and bolstering the monsoon 

convection and VSLS transport pathways to the stratosphere. 

6. Which are the main oceanic source regions in the Indian Ocean for stratospheric 

CHBr3 and where do they enter the stratosphere?  

Annual and monthly CHBr3 emission fields for the tropical Indian Ocean and West 

Pacific (IO/WP) were compiled based on the new OASIS observations. With the help of 

FLEXPART/ERA-Interim, the transport of these emissions to the stratosphere was 

calculated for the year 2014. The highest transport efficiency is simulated for the tropical 

North West Pacific, but the Bay of Bengal and Arabian Sea are also efficient during June 

to August (JJA). Comparing the delivery of CHBr3 to the stratosphere, the Bay of Bengal 

and the Arabian Sea are the most important source regions, because of the high emissions 

in these basins driven by the monsoon winds and the Somali Jet during boreal summer. In 

our calculations, the tropical West Pacific delivers less CHBr3 to the stratosphere due to 

the low assumed emissions in this region. The main stratospheric entrainment region of 

CHBr3 from IO/WP lies above the southern tip of the Indian subcontinent where 

maximum entrainment occurs during JJA. There is secondary entrainment maximum over 

the tropical West Pacific, but its strength strongly depends on the underlying emissions in 

the emission inventory.  

7. What is the influence of annual vs. monthly representation of CHBr3 emissions on 

stratospheric entrainment through the Asian monsoon?  

For this question, CHBr3 emission fields with annual and monthly temporal resolution 

were used. Monthly emissions display an absolute maximum in July and a local 

maximum in January. The annual cycle of transport efficiency shows almost the same 

seasonality as the oceanic emissions. Together this results in a stronger seasonality in the 

stratospheric entrainment of CHBr3 for the calculations with monthly emissions than 
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annual emissions. The total annual amount of CHBr3 entrained to the stratosphere is 

similar for both emission scenarios. The different seasonality is also reflected in the 

differing distribution of CHBr3 at the tropopause. Monthly emissions lead to higher 

CHBr3 volume mixing ratios in the Asian monsoon anticyclone during JJA and north of 

15˚N in the annual mean and lower mixing ratios at the equatorial and southern 

hemispheric tropopause than annual emissions. In the Asian monsoon region, the seasons 

and regions of CHBr3 emissions from the ocean play a large role in the temporal and 

spatial distribution of stratospheric entrainment.  

 

Through this thesis and the incorporated four manuscripts, I contributed to the 

scientific understanding of VSLS emissions from the Indian Ocean and their transport to 

the stratosphere through the Asian monsoon. First measurements of CHBr3 and CH2Br2 

were conducted and CH3I and DMS observations were added to the sparse data coverage 

in the Indian Ocean (Manuscripts 1 & 2). These observations confirmed the expected 

strong VSLS sources from the subtropical and tropical West Indian Ocean with regional 

hot spots during boreal summer. Furthermore, this thesis advanced the understanding of 

VSLS transport through the Asian monsoon in various aspects. Manuscript 1 identified 

transport pathways during the Asian summer monsoon and showed that for the shorter-

lived VSLS CH3I and DMS the co-occurrence of convection at the location of strong 

emission is important for stratospheric delivery. The pronounced Asian monsoon 

circulation during summer, thus, transports mainly longer-lived VSLS, such as CHBr3 

and CH2Br2, from a large area of the tropical Indian Ocean and West Pacific to the 

stratosphere. While previous air mass transport studies mainly focused on the Asian 

summer monsoon, this thesis investigated the strong annual cycle of VSLS transport from 

the tropical West Indian Ocean to the stratosphere in Manuscript 3. A 16-year time series 

of interannual transport variability for VSLS through the Asian monsoon was compiled. 

A modulation of stratospheric VSLS entrainment strength by ENSO was shown. For 

Manuscript 4, available emission inventories were updated with the new observations 

from the subtropical and tropical West Indian Ocean. While some VSLS transport studies 

already use seasonally resolved oceanic VSLS emissions (Tegtmeier et al., 2015; 

Hossaini et al., 2016), Manuscript 4 is the first study investigating the differences 

between annual and monthly bromoform emissions on stratospheric entrainment.  
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Conclusions 

The results from this thesis help determining the importance of the Indian Ocean as a 

VSLS source for the atmosphere and the efficiency of the Asian monsoon in transporting 

VSLS to the stratosphere. Now, I can use my studies to answer the overarching research 

question: 

How important are oceanic VSLS emissions from the Indian Ocean for their 

stratospheric loading? 

To infer the Indian Ocean contribution to global VSLS emissions, I use the update of the 

annual halogenated VSLS emission climatology from Ziska et al. (2013), created for 

Manuscript 4 as “Ziska Update”, and the Lana et al. (2011) monthly DMS emission 

inventory (Table 11). I define the tropical Indian Ocean area investigated here as all 

ocean surface inside 30˚S-30˚N and 30˚E-100˚E, which is 3.37 · 10
13

 m
2
 large. Compared 

to the area of the global oceans this is 9.4 %, compared to the tropical oceans (30˚S-30˚N) 

it is 17.7 %. I added this comparison between Indian Ocean and tropical ocean 

contribution, because the emissions in the tropics are more important for stratospheric 

entrainment than emissions at higher latitudes. The Indian Ocean (IO) contribution is the 

IO emissions divided by the global/tropical emissions. According to the above mentioned 

emission inventories, the Indian Ocean represents an important region for VSLS flux 

from the ocean to the atmosphere (Table 11). Emissions from the IO contribute 

significantly to the global and tropical CHBr3 emissions, with 27% and 31%, respectively.  

Table 11: VSLS emissions from the annual mean update of the climatology from Ziska et al. 
(2013) for the halocarbons and from Lana et al. (2011) monthly emissions for DMS. Total 
annual emissions are given for the Indian Ocean (IO: 30˚S-30˚N, 30˚E-100˚E), the global oceans, 
and the tropical oceans. The IO global contribution is the IO emission divided by global 
emission and the IO tropical contribution is the IO emission divided by the tropical emission. 

VSLS Unit 
IO 

emission 

Global 

emission 
IO global 

contrib. 

Tropical 

emission 
IO tropical 

contribution 

Ocean 

area 
m

2
 3.37 · 10

13
 3.6 · 10

14
 9.4% 1.9 · 10

14
  17.7 % 

CHBr3 Mmol Br yr
-1

 502 1840 27 % 1620 31 % 

CH2Br2 Mmol Br yr
-1

 146 957 15 % 575 25 % 

CH3I Mmol I yr
-1

 101 1319 8 % 652 15 % 

DMS Gmol S yr
-1

 118 886 13 % 473  25 % 
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CH2Br2 and DMS emission contribution from the Indian Ocean are also larger than the 

area fraction of the Indian Ocean towards both global and tropical oceans. This means 

that the Indian Ocean emissions are higher than the average global and tropical emissions. 

Only CH3I emissions are lower than the global and tropical averages, probably because 

CH3I emissions are highest in the subtropics and midlatitudes and do not have a tropical 

maximum  (Ziska et al., 2013). The Indian Ocean has the potential to influence the 

stratosphere more than other oceanic regions, if the atmospheric transport efficiently 

delivers the high VSLS emissions to the stratosphere. 

Next, I compare the transport of VSLS from the Indian Ocean region to the stratosphere 

with the global stratospheric VSLS delivery (Table 12). I use the trajectories calculated 

with FLEXPART/ERA-Interim for the year 2014 in Manuscript 4. The climatological 

emissions for CHBr3, CH2Br2, and CH3I from the Ziska Update (Fiehn et al., to be 

submitted) and for DMS from Lana et al. (2011) from the above mentioned IO area are 

attached to the trajectories and exponentially reduced with lifetimes of 1day (DMS), 3.5 

days (CH3I), 17 days (CHBr3), and 150 days (CH2Br2), as in Manuscript 3. The annual 

entrained mass of VSLS is given by the trajectories reaching above the CPT. Calculated 

transport efficiencies for the whole Indian Ocean are similar to the transport efficiencies 

for the West Indian Ocean (WIO) release area (Table 1 in Manuscript 3). Marandino et al. 

(2013) modelled a DMS transport efficiency of 0.48 % in the tropical West Pacific, which 

is a high estimate because boreal winter is the season with most convection in that region. 

I determine the volume mixing ratio of the mass entrained from the Indian Ocean into the 

global stratosphere by dividing through the number of particles in the entire stratosphere 

of 2.7 · 10
19

 mol (Jacob, 1999). The global VMR is taken from literature values 

(Carpenter et al., 2014; Sheng et al., 2015; Hossaini et al., 2016) and represents the 

stratospheric volume mixing ratio from global emissions. The IO contribution to the 

global entrainment is the ratio between the calculated IO and global VMR and gives the 

contribution of the Indian Ocean to the stratospheric abundances of bromine, iodine, and 

sulfur from VSLS estimated with this rough estimate.  
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Table 12: VSLS emissions from the Indian Ocean from Table 11 and their mass entrained above 
the CPT between 30˚S and 30˚N in 2014 calculated with FLEXPART/ERA-Interim plus the 
transport efficiency. The IO VMR is the IO entrainment converted into VMR using the total 
number of particles in the stratosphere. The global VMR are from literature. The IO 
contribution is the IO VMR divided by the global VMR.  

Comp. 
IO 

emiss. 

IO 

entrainm. 

Transport 

efficiency 

IO VMR 

[pptv] 

Global VMR 

 [pptv] 

IO 

contrib. 

   CHBr3 502
1
 11.6

1
 2.3 % 0.43 0.60º 72 % 

   CH2Br2 146
1
 9.2

1
 6.6 % 0.34 1.46º 23 % 

   
     648

1
 20.8

1
 3.2 % 0.77 0.7-3.4* 

23-

110 % 

   CH3I 101
2
 0.6

2
 0.6 % 0.02 <0.05*  40 % 

   DMS 118
3
 164

4
 0.1 % 6.07 5.07

Δ
 120 % 

1
 Mmol Br yr

-1
 , 

2
 Mmol I yr

-1
 , 

3
 Gmol S yr

-1
 , 

4
 Mmol S yr

-1
 , º (Hossaini et al., 2016) , * (Carpenter et al., 

2014),  

Δ 
converted from global DMS entrainment of 4.4 Gg S yr

-1
 (Sheng et al., 2015)  

 

The Indian Ocean contribution to stratospheric VMR can be compared to the Indian 

Ocean area ratio with the tropical oceans of 17.7% (Table 11) to determine the 

importance of emissions and entrainment from the Indian Ocean. According to my 

entrainment estimates the Indian Ocean emissions contribute around 72 % to stratospheric 

CHBr3. From the combined VSLS source gases CHBr3 and CH2Br2 (   
    ), 23 % to 110% 

of total stratospheric bromine originate from the Indian Ocean and methyl iodide from the 

Indian Ocean contributes with 40%. This depicts that the emissions and transport to the 

stratosphere from the Indian Ocean through the Asian monsoon is more efficient than on 

average over the whole tropics. The contribution of DMS from the Indian Ocean is higher 

than the total global entrained DMS. This might result from the high Indian Ocean 

emissions in the Lana et al. (2011) inventory compared to our in-situ measurements 

(Manuscript 2), the overestimation of transport efficiency of our FLEXPART/ERA-

Interim calculations, or the uncertainty in the stratospheric entrainment of DMS. It shows 

that the Indian Ocean is probably an important contributor to stratospheric sulfur from 

DMS source gas injection. 

In conclusion, I determine that the Indian Ocean is an important source region for 

VSLS delivery to the stratosphere and that the Asian Monsoon circulation efficiently 
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transports VSLS into the stratosphere. The combination of both phenomena makes the 

Indian Ocean an important source region, especially during the summer monsoon when 

high wind speeds maximize emissions and the upward transport through the monsoon 

convection and the Asian monsoon anticyclone is most pronounced. 

 

Outlook 

This thesis newly combines two scientific fields: the contribution of oceanic VSLS to 

stratospheric loading of bromine, iodine, and sulfur, and the Asian monsoon transport to 

the stratosphere and its variability. The results of this work reduce the uncertainties of 

oceanic VSLS emissions from the undersampled region of the Indian Ocean through 

novel observations. The combination of new emission inventories with a Lagrangian 

dispersion model enables us to identify efficient oceanic source regions and transport 

pathways. This thesis also depicts where uncertainties still exist and on what future 

research should focus. Since the contribution of the Indian Ocean to stratospheric VSLS 

is significant, it is important to reduce existing uncertainties in emissions and transport 

pathways from the tropical Indian Ocean and West Pacific to the stratosphere. 

The trajectory simulations for the Indian Ocean and West Pacific (Manuscript 4) 

determined that the tropical West Pacific is the most efficient region at transporting 

CHBr3 from the ocean surface to the stratosphere. At the same time the available 

emission inventories show large differences in this region (range: -300 to 1100 

pmol m
-2

 h
-1

, from Table 2 in Manuscript 4) (Liang et al., 2010; Ziska et al., 2013; 

Stemmler et al., 2015), which significantly impacts the amount and distribution of CHBr3 

entrained to the stratosphere. Future research should try to constrain the emission estimate 

for this important source region through in situ ship and aircraft measurement during 

different seasons and years. Main source regions for the Asian summer monsoon 

convection, as an efficient pathway for VSLS to the stratosphere, are the Bay of Bengal 

and the Arabian Sea, where VSLS emissions are likewise uncertain. Future observations 

in this region during boreal summer would be very profitable. The general poor coverage 

with observations in time and space could be addressed through permanent monitoring 

stations for VSLS emissions. 

Chemistry climate and transport model uncertainties in the UTLS mixing ratios are 

large and do not only result from differences between the emission inventories (Hossaini 

et al., 2016). There is great need for observations in the Asian tropopause layer and lower 
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stratosphere to verify model calculations. My thesis adds a first estimate of the 

contribution of Indian Ocean emissions to the VSLS mixing ratios in the Asian monsoon 

anticyclone, which has been identified as important transport pathway from the land 

surface to the stratosphere (Randel et al., 2010; Pan et al., 2016). The thesis results will be 

available for comparison with aircraft campaigns, such as the recent StratoClim campaign, 

which took place over Nepal and India during boreal summer 2017 and focused on 

atmospheric composition in the Asian monsoon anticyclone. 

In this thesis, I investigated source gas injection of VSLS only. There is also a 

contribution to the stratospheric VSLS abundances from VSLS product gases. A next step 

in modeling these would be to include chemical reactions and microphysics in 

FLEXPART. Then, an estimate of both source and product gas injection and the 

attribution of sources, chemical products, entrainment regions, and ozone depletion would 

be possible. This will further improve the understanding of the contribution of oceanic 

VSLS emissions to the stratospheric halogen and sulfur loading. 
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EACC East African Coastal Current 

EIMR Extended Indian Monsoon Rainfall 
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ENSO El Niño – Southern Oscillation 

F Flux 

H Henry’s constant 

HBr Hydrobromic acid 

HOBr Hypobromous acid 

H2SO4 Sulfuric acid 

IMI Indian Monsoon Index 

IOD Indian Ocean Dipole 

IO Iodine oxide 

IOx Reactive Iodine 

ITF Indonesian Throughflow 

ITCZ Intertropical Convergence Zone 

k Transfer velocity 

kw Transfer velocity from water side 

k600 Transfer velocity for a Schmidt Number of 600 

MSA Methyl sulfonic acid 

NEMC Northeast Madagascar Current 

OCS Carbonyl sulfide 

ODS Ozone depleting substance 

OH Hydroxyl radical 

OVOC Oxygenated volatile organic compounds 

PDO Pacific Decadal Oscillation 

PGI Product gas injection 

Sc Schmidt Number 

SC Somali Current 

SE Southeast 

SEC South Equatorial Current 

SECC South Equatorial Counter Current 

SEMC Southeast Madagascar Current 
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SGI Source gas injection 

SJ Subtropical Jet 

SO2 Sulfur dioxide 

SST Sea surface temperature 

SW Southwest  

TBO Tropical Biennial Oscillation 

TEJ Tropical Easterly Jet 

TTL Tropical tropopause layer 

UTLS Upper troposphere-lower stratosphere 

UV ultraviolet 

U10 Horizontal wind speed at 10m 

VSLS Very short-lived substance 

WMO World Meteorological Organization 

WYI Webster-Yang Index 
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