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Zusammenfassung

Zur Reduzierung der Laufzeiten von 3D Modellierungs- und Inversions-Software für die

Interpretation von mariner, aktiver Elektromagnetik (engl. CSEM, controlled source

electro magnetics) im Zeitbereich, werden effiziente Algorithmen und Implementierungen

auf massiv-paralleler Hardware vorgestellt. Zwei Implementierungen zur Berechnung der

Vorwärts Modellierung, sowie eine Implementierung zur Berechnung der Sensitivitäten

werden dargestellt. Die zweite Implementierung der Vorwärts Modellierung war ein

notwendiger Zwischenschritt, um die Sensitivitäten effizient berechnen zu können. Bei

dem ersten Vorwärts Code handelt es sich um eine Implementierung der Spektralen

Lanczos Zerlegung (engl. SLDM, Spectral Lanczos Decomposition Method) auf dem

Prozessor von Graphik Karten (engl. GPU, Graphics Processing Unit). Hierbei wird die

Partielle Differentialgleichung durch Diskretisierung in eine Ordinäre überführt, die mit

einer Ansatz Funktion gelöst wird. Der Ansatz kann spektral zerlegt werden, so dass die

Lösung mit Eigenwerten und Eigenvektoren bestimmt werden kann, die mit dem Lanzos

Algorithmus gefunden werden. Um den Algorithmus massiv parallelisierbar zu machen,

wurde eine geeignete Randwertbedingung für den Übergang zum Lufthalbraum gewählt.

Die sehr Rechenzeit aufwendige Aufspannung von Krylov Vektoren durch Multiplikatio-

nen dünn besetzter Matrizen mit Vektoren (engl. SpMV, Sparse Matrix times Vector)

können auf GPUs deutlich schneller berechnet werden als auf CPUs. Die Anwendbarkeit

des Codes wird für ein CSEM System demonstriert, wie es am GEOMAR im Einsatz ist.

Bei dem Zweiten Vorwärts Code wird die SLDM durch das effektivere Rationale Krylov

Unterraum Verfahren (engl. RKSM, Rational Krylov Subspace Method) ersetzt. Dieses

reduziert die Dimension und Rechenzeit des Problems deutlich. Die Krylov Vektoren

werden hier nicht durch SpMV Operationen, sondern durch Verschieben der System

Matrix um eine Polstelle und anschließendes Lösen eines Linearen Gleichungssystems

bestimmt. Dies wird mittels einer GPU Implementierung des CG-Verfahrens (vom engl.

Conjugate Gradients) durchgeführt. Neben der höheren Effizienz ermöglicht es auch den

hier gewählten Ansatz zur Berechnung der Sensitivitäten. Die Genauigkeit des Codes

wird für verschiedene Modelle und Kontraste des elektrischen Leitwertes untersucht.

Ein Laufzeitvergleich von SLDM und RKSM wird gegeben. Die Sensitivitäten werden

mit dem MOR-Verfahren (engl. Model Order Reduction) berechnet. Dabei wird die

Ansatz Funktion des Vorwärts Problems nach den Modellparametern abgeleitet, so dass

die Sensitivität aus den Eigenpaaren und ihren Ableitungen bestimmt werden kann. Die

Ableitung der Eigenpaare wird mittels Perturbationstheorie gefunden. Das RKSM ist

hier zum Block-RKSM erweitert. Es wird gezeigt, dass die Methode funktioniert und

seine Anwendbarkeit auf einen echten Datensatz demonstriert.





Summary

To reduce the run-times of 3D modeling and inversion software for the interpretation of

marine controlled source electromagnetics (CSEM) in time domain, the implementation

of efficient algorithms on massive parallel hardware is presented. Two forward modeling

implementations as well as an implementation for sensitivity calculation are illustrated.

The implementation of the second forward code is necessary to be able to calculate the

sensitivities in an efficient way. The first forward code is an implementation of the spec-

tral Lanczos decomposition method on a graphics processing unit (GPU). The partial

differential equation is converted to an ordinary by discretization of the spatial operators

such that it can be solved by and Ansatz function. The Ansatz is spectrally decomposed

such that the solution can be found by eigenvalues and eigenvectors, found by the Lanc-

zos algorithm. To make the algorithm parallelizable, a proper boundary condition for

the water-air interface is chosen. The very time consuming spanning of Krylov vectors

by multiplications of sparse matrices with vectors (SpMV) can be computed on GPUs

much faster than on serial architectures. The applicability of the code for a CSEM

system, how it is used at GEOMAR, is demonstrated. In the second forward code, the

SLDM is replaced by the more efficient Rational Krylov Subspace Method (RKSM).

This reduces the dimension and run-time of the problem drastically. The Krylov vectors

are not spanned by SpMV operations, by shifting the system matrix and solving a linear

system. This is done by a GPU implementation of the CG- method (conjugate gradi-

ents). Additionally to a higher efficiency, this approach make the sensitivity calculation,

in the way how it is implemented in this thesis, possible. The accuracy of the code is

investigated for different models and conductivity contrasts. The run-times of SLDM

and RKSM are compared on different architectures. The sensitivities are computed with

the MOR-method (Model Order Reduction). It differentiates the Ansatz function of the

forward problem with respect to the model parameters, such that the sensitivities can be

found by eigenpairs and its differentiations. The differentiations of the eigenpairs with

respect to the model parameters is found by perturbation theory. The RKSM is here

extended to its block analog. It is shown that the method works and the applicability

to a real data set is shown.
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Introduction

1 Rationale

To understand the context and motivation of this thesis, and how it integrates into

current research, this chapter gives an introduction to the technical and theoretical

fundamentals. Marine Controlled Source Electromagnetics will be explained in chapter

1.1. The sub-chapter 1.1.1 introduces the acquisition methods. The fundamentals of

electrodynamics and how they relate to electromagnetic methods will be explained in

chapter 1.1.2. As an important tool for interpretation of 3D data and focus of this thesis,

the 3D modeling and inversion will be introduced in chapter 1.2 and 1.3, respectively.

1.1 Marine CSEM

Marine Controlled Source Electromagnetics (CSEM) is a method for the investigation

of the sub seafloor distribution of electric conductivity (or its reciprocal, the electrical

resistivity) by interpreting the diffusion of artificial electric fields ([11], [6]). This can

practically be done by placing electric dipoles for transmitting and receiving onto the

seafloor or by towing the transmitter and possibly the receiver(s) through the water

column at an altitude of at most a few hundreds of meters above the seafloor 1.2. For

the interpretation of acquired CSEM data, two main classes are common. Firstly, the

interpretation may be performed in the frequency domain (FD), where the time series

measured at the receiver is transformed into the frequency domain and is then, after

normalization with the source spectrum, interpreted at a certain predefined set of fre-

quencies of the source normalized spectrum. The change in amplitude and phase at

receiver’s position gives conclusion about the sub seafloor conductivity distribution. In

the interpretation, the inclusion of several frequencies is benifitial, because the depth of

sensitivity is frequency dependent. Secondly, measured data may directly be interpreted

in time domain (TD), which usually requires a suitable processing of data to obtain

the transient response. Both methods have their benefits and drawbacks that will be

1
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explained below. But, since the physics behind both methods is equivalent, both meth-

ods should yield similar results, if all information contained within the measured data

is considered within the interpretation.

The typical way of interpreting data is to utilize imaging ([40]), forward and inverse

modeling techniques, where a conductivity model is systematically modified until syn-

thetic data explain the measured data. For inversions the interpretation by means of

1D models can be considered to be basic standard. The interpretation in terms of 2D or

3D models is more challenging and is a current topic of scientific research. 3D modeling

techniques will be explained in chapter 1.2.

During the last 20 years, marine CSEM is firmly established in academia science and

industrial exploration for two reasons ([9]): First, it reveals electrical resistivity which

is an important property of hydrocarbon reservoirs ([18]). Second, despite the fact

that it has a lower resolution than seismics, it has a much better resolution than other

non-seismic methods like potential field methods. Besides of industrial hydrocarbon

exploration (EMGS: [21], ExxonMobile: [38], Statoil: [15]), the method is also well

established in academia for the investigation of other resistive targets like salt diapirs,

free gas and gas hydrates ([34]), because seismics fails to determine the vertical extend

of the hydrates above a BSR (bottom simulating reflector). Also conductive targets like

sulphide deposits ([39]) are recently investigated with CSEM.
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1.1.1 Acquisition methods of marine CSEM data

Although the frequency and time domain methods base on equivalent physical principles,

the frequency domain horizontal electric dipole-dipole configuration, as illustrated in Fig.

1.2 below, is most common in the marine environment. One reason is that the frequency

domain method allows to concentrate all energy at certain frequencies, increasing signal

to noise ratio and allowing higher penetration depths. In a time domain signal that is

normally a step on/off response, the energy is not equally distributed to all frequencies.

This can be understood by the Fourier transform of a typically used step on signal in

Fig. 1.1.
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Figure 1.1: Time domain (Heaviside) signal (left) and its Fourier transform (right).

Furthermore, receivers only have to measure the amplitude of the electric field, whereas

in time domain, a complete transient has to be recorded at high sampling rates. As

a consequence, the development of electronic hardware for time domain acquisition is

more challenging. A higher dynamic range has to be acquired because more energy is

emitted at low than at high frequencies. As a consequence, the signal to noise ratio at

high frequencies is poor. Additionally, the sample frequency has to be high. But, the

advantage of using time domain is the higher resolution. One transmission contains all

possible information. Low frequencies penetrate deeper and require more energy than

shallow structures. This is naturally given by the signal shape (Fig. 1.1).

Another question is the type of source, electric- or magnetic-dipole, like a coil. Horizontal

dipoles excite both, vertical and horizontal electric currents, increasing the resolution.

A vertical magnetic dipole would only generate horizontal currents in 1D [5].
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Figure 1.2: Examples of CSEM acquisition systems with dipole-dipole configurations.
Top: cable based system with fixed geometry, which is moved along the seafloor ([34]),
Bottom: system with ”flying” source and stationary receiver nodes on the seafloor ([9]).

Both systems are mainly used to measure the inline response.

Figure 1.3: Time domain system with two horizontal dipole transmitters fixed on a
frame.
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A time domain dipole-dipole system, as shown in Fig. 1.3, is used at GEOMAR

Helmholtz Center for Ocean Research Kiel [19]. Here, two dipole transmitters are

mounted on a frame in both horizontal directions that can be placed on the seafloor.

Emitting and recording signals in both polarizations results in a higher resolution. The

scale of the target is smaller, therefore accurate acoustic navigation systems are required.

The recorded data set has to be interpreted by 3D tomography software, rather than

2D profiling techniques, common in frequency domain systems.

Current developments of industrial systems ([27]) improved the signal to noise ratio by

emitting higher energies, such that penetration depth of 4500 meters can be achieved.
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1.1.2 Fundamental Theory of CSEM

We will use this chapter to introduce the fundamentals of CSEM theory.

All EM methods are based on Maxwell’s equations. The equations are named after

James Clerk Maxwell, who introduced them in 1864. They are four partial differential

equations (PDE), which describe the interaction of electric and magnetic fields and

electric charges and currents for given boundary conditions. They can be written in

differential or integral formalism, former is used throughout this thesis.

The Gauss’s law:

~∇ · ~E =
ρ̃

ǫ0
(1.1)

with ~E being the electric field, ρ̃ the electric charge density (we call it ρ̃ to avoid confusion

with the resistivity ρ) and ǫ0 being the electric permittivity of free space.

The Gauss’s law for magnetism:

~∇ · ~B = 0 (1.2)

with ~B being the magnetic flux density.

Faraday’s Law:

~∇× ~E = −∂ ~B

∂t
(1.3)

and Ampère’s circuital law:

~∇× ~B = µ0
~j + µ0ǫ0

∂ ~E

∂t
(1.4)

with µ0 being the magnetic permeability of free space and ~j being the electric current

density. The electric current density in a medium depends on the specific electric resis-

tivity (ρ) and electric field described by Ohm’s law: ~j =
~E
ρ
. The reciprocal resistivity

ρ−1 = σ is called electric conductivity.

For CSEM it is essential to be able to describe the electric field for a given environ-

ment including geology and sea water, and transmitter signal originating within this

environment, on basis of those equations. A way used by Kane Yee in 1966 [45] is to

let the Maxwell’s equations unchanged and solve both, E- and B-field consecutively in a

leap frog way. The more common approach is to combine the equations in a way, such

that the whole physics are described by one of the fields alone and a partial differential

equation is gained that can be solved with common methods.
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Using Ohm’s law and differentiating Eq. (1.4) with respect to time, one obtains:

~∇× ∂ ~B

∂t
= µ0σ

∂ ~E

∂t
+ µ0ǫ0

∂ ~E2

∂t2
. (1.5)

Substituting Faraday’s law yields the Helmholtz equation:

~∇× ~∇× ~E = −µ0σ
∂ ~E

∂t
− µ0ǫ0

∂ ~E2

∂t2
. (1.6)

Because of the low frequencies used in CSEM and the fact that σ is about 109 times

larger than ǫ0 in the marine environment, the wave term can be omitted such that the

Diffusion equation is obtained:

~∇× ~∇× σ−1µ−1
0

~E = −∂ ~E

∂t
(1.7)

It is a parabolic partial differential equation. The initial field of the transmitter can be

used as a boundary condition ~E(t = 0) = ~E0. For 1D problems it is normally transformed

to frequency domain in cylindrical coordinates by the Hankel transform, to solve an

ordinary, instead of an partial differential equation. The solution is back-transformed

by an inverse Hankel transform. Numerical solution strategies will be introduced in the

next chapter.

The diffusion equation in frequency domain can be found by derivation of the Fourier

transformation ∂
∂t

which results in a multiplicator with iω where ω = 2πf is the angular

frequency and f the frequency. With this, Eq. (1.7) becomes

~∇× ~∇× σ−1µ−1
0

~E = −iω ~E (1.8)

A typical way to solve the problem numerically in frequency domain is to discretize

the spatial operators ~∇× ~∇× σ−1µ−1
0 → A (system matrix) and shift A by frequency

K = (A+ iωI) such that a linear system has to be solved

~E = K−1 ~E0 (1.9)

for every frequency. The system has to be solved for several frequencies, because the

skin depth of the method is frequency dependent, according to:

zs =
500meters√

σf
(1.10)

such that low frequencies penetrate deeper.
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1.2 3D CSEM modeling

Since reliable and accurate field instruments for CSEM are developed by now, the method

is mainly limited by missing interpretation tools. In most applications of CSEM, resistive

structures of arbitrary shape and size are encountered that cannot be described by

analytical solutions. Most common for 3D time domain are finite difference (FD) and

finite element (FE) modeling techniques to discretize Eq. (1.7) and solve the partial

differential equation explicitly by time stepping ([44]), implicitly by an Ansatz function

([12]) or Fourier transform the frequency domain solution (Eq. (1.8)) into time domain

([16]).

The most common way to utilize finite difference methods is to discretize the electric

field on a staggered yee grid as illustrated in Fig. 1.4. It was introduced by [45] and is

the most stable grid for electrodynamic problems [41].

Figure 1.4: Yee discretization. The electric fields are defined on the edges of the cell
and parallel to them. The magnetic field is defined on the faces of the cell perpendicular

to them.

The concept is to discretize the electric field parallel onto the edges and the magnetic

field perpendicular to the faces of the cell. The idea was that electric and magnetic

field can easily be converted into each other by using the curl equations (Eq. (1.3) and

Eq. (1.4)) in every time step such that the solution is found in a leap frog way. Also

the concept of setting the electric fields on the edges is suitable for pure electric field

computation as well.

A finite difference time stepping code was introduced to CSEM by [44], where the time

differential is discretized as well, such that the electric field can be computed at a time

ti if the e-field at ti−1 is known such that a solution for all times can be found for a

given source field at t0. The difference ∆t = ti − ti−1 has to be chosen according to

the Courant-criteria ([10]) to give an exact solution. This would lead to around 103

time steps for a complete marine transient and every time step requires a matrix-vector

multiplication such that computer run times become very high for a complex data set.

In marine CSEM, transient are longer since diffusion speed is slower in a conductive
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environment and thus require more time steps than land CSEM. Derivation of an elec-

trical resistivity model from data by inversion requires many forward calculations (see

chapter 1.3). Optimization and developmend of fast algorithms is therefore a major issue

in CSEM. The time stepping approach was further improved, [8] introduced a parallel

version of [44]. The back and forward substitution method [43] is a more recent example,

of a faster time stepping code.

A completely different strategy has been introduced by [12]. Instead of discretizing the

time, the authors solved the differential equation Eq. (1.7) with a spectrally decomposed

exponential Ansatz function. The spectra has been approximated by a Krylov subspace

projection. Once the spectra is found, the solution can be calculated at any time with-

out knowing previous time steps, such that the Courant-criteria becomes obsolete. This

reduces the run times drastically, especially for marine data sets, with its long transients

it is of great interest. [44] mentioned 5.5 hours run time, [12] mentioned 15 minutes to

4 hours. However, a one to one comparison is difficult since they were not benchmarked

on the same model. Both codes were developed almost at the same time. The Krylov

methods were further improved by replacing the polynomial Krylov subspace by the ra-

tional Krylov subspace that reduces its dimension drastically [22], [13], [47], [14], [36]).

Authors of [3] implemented a rational Krylov algorithm on finite elements.

Nowadays, the research of forward modeling is focused on reducing run time by improv-

ing algorithms and implementing codes on new hardware([37], [31]).
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1.3 3D CSEM inversion

The purpose of inversion theory is to find, for a given data set, a geological model that

explains the data.

The physics of the method are described by a forward modeling method (chapter 1.2).

From the pure theoretical point of view, a solution exists by simply trying all geological

reasonable models until synthetic and measured data fit. But from the practical point

of view, this would be very time consuming (more than 10k years on a desktop). This

makes clear that inversion theory is not only about ”How to find a solution?”, but rather

about ”How to find a solution quickly?”.

In the scope of this thesis, we can only give a very brief introduction into this broad topic,

more interested readers are refered to [29] and [42]. It is common in inversion theory,

to define a model space ~m ∈ Ωmodel and a data space ~d ∈ Ωdata, such that the forward

problem is a mapping f : Ωmodel → Ωdata, and ~dmodel = f(~m). In the beginning of every

inversion method, a criteria has to be defined that measures the misfit between modeled

and observed data. It is called objective function and has for non-linear problems the

general form:

Φ(~m) = ‖Wd

(

~f(~m)− ~dobserved

)

‖l + λΦmodel(~m,Wm) (1.11)

For the l-norm ‖ · ‖l, l is normally set l = 2. Wd and Wm are data and model weighting

matrices. In most geophysical methods, several models would explain the data. This

number can be reduced by introducing as additional constraint the model objective func-

tion Φmodel, weighted by a Legendre parameter λ. There are several ways how to define

Φmodel, like the smallest model : ‖Wm ~m‖2 , the flattest model : ‖~∇~m‖2 or the smoothest

model : ‖~∇2 ~m‖2, for example.

With the objective function, the inversion problem can be described as a minimization

problem:

~mbest = argmin
~m∈Ωmodel

Φ(~m) (1.12)

The class of gradient based methods is very popular and easy interpretable. For a

starting model ~m0, the gradient of the objective function ~∇Φ(~m0) is computed and

the model is changed in gradient direction by a step length α, such that the iteration

~mi+1 = ~mi − α~∇Φ(~mi) converge to the minimum of Φ.
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Figure 1.5: Illustration of the steepest descent method for two model parameters. The
method iterates along the the gradient of the objective function Φ, until its minimum

is found.

This method is called steepest descent and is graphically demonstrated in Fig.1.5. Con-

vergence is very dependent on an optimal choice of the step length α, chosen by a Line

search algorithm ([29]).

A much better convergence rate can be achieved by the Nonlinear Conjugate Gradient

(NLCG) method. The main difference to the steepest gradient method is a choice of

the search direction that is much better than the gradient by avoiding a search in one

direction multiple times. [Shewchuk] gives a very clear geometrical interpretation of the

conjugate gradient method. NLCG is broadly used in EM inversion, because it avoids

the storage of large matrices ([7], [23], [33], [30]).

Gradient based methods (steepest descent & NLCG) have the disadvantage that they

might converge to local minimas. To find the global minimum, it would be useful to know

the complete objective function, what is impossible. But it can locally be approximated

by a Taylor series expansion:

Φ(~m+ δ ~m) ≈ Φ(m) + ~∇Φ(~m)δ ~m+
1

2
~∇2Φ(~m)δ ~m2 (1.13)

with H = ~∇2Φ(~m) being the Hessian matrix and ~g = ~∇Φ(~m) being the gradient. The

global minimum can now be found by setting Eq. (1.13) equal zero, such that:

Hδ ~m = −~g (1.14)

setting δ ~m = ~mi+1 − ~mi gives the iteration:

~mi+1 = ~m−H−1
i ~gi. (1.15)
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This approach is called the Newton method (CSEM implementation by [2]). But the

computation of the Hessian matrix is very expensive. Therefore, many strategies exist

how to approximate it. The Broyden Fletcher Goldfarb Shanno (BFGS) ([4]) algorithm

approximates the Hessian by a combination of several gradients. It is also used for

marine CSEM ([46]). But authors of [28] show that the Gauss-Newton (GN) method

leads to much more accurate results. The GN method, approximates the Hessian (H)

by a product of the Jacobian matrix (J):

H ≈ JTJ (1.16)

There are different strategies how to compute the Jacobian. The Brute Force or Finite

Difference method is the most simple way:

J =
∂ ~f(~m)

∂ ~m
≈

~f(~m+∆~m)− ~f(~m)

∆~m
(1.17)

But it requires a forward solution for every (perturbed) model cell, resulting in enormous

run times. Furthermore, the model cells have to be large enough to give an accurate

forward solution.

Most common is the Adjoint Green’s Functions approach (for frequency domain: [25],

for time domain: [20]). The time domain version can be deduced from the frequency

domain version by convolution. It makes use of the Born approximation of the electric

field:

~E(~r, t) = ~Ep(~r, t) +

∫

V

t
∫

0

G(~r ′, t | ~r, τ) ~Ja(~r ′, τ) dτ d~r ′ (1.18)

that can be understood by Fig. 1.6.

Figure 1.6: Illustration of the adjoint principle according to [20].

For a pair of Tx and Rx with offset ~r on a conductive half space σ(x, y, z), the Born

approximation gives the E-field at Rx-position (~r), by adding on a primary field ~Ep(~r, t)

the effect of a current density Ja(~r
′, t) within a volume V with anomalous conductivity

σa at position ~r ′ on the position of Rx, done by an integration with the Green’s function
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G(~r ′, t | ~r, τ). It describes the effect of an anomaly at position ~r ′ on ~r. Because of

reciprocity G(~r, t | ~r ′, τ) = G(~r ′, t | ~r, τ). The Born approximation neglects the effect of

structures surrounding V . With Ohm’s Law ~Ea =
~Ja
σa

and some calculus, Eq. (1.18) can

be written:

∂ ~E(~r, t)

∂σ
≈

~E(~r, t)− ~Ep(~r, t)

σa
=

∫

V

t
∫

0

G(~r, t | ~r ′, τ) ~Ea(~r
′, t′) dτ d~r ′ (1.19)

what is the Jacobian, per definition. The Green’s function can be found by differentiating

the full space solution for Rx as source position in every volume V with respect to time.

The benefit of the adjoint method is that instead of computing a forward solution for

every model cell, only a full space solution for every Tx and Rx is required. The adjoint

method is used for frequency domain inversions by [1] and in time domain by [24]

Other ways are to differentiate the solution of the forward problem with respect to the

model parameter. For frequency domain, this was done by [26] by derivative calculation

of Eq. (1.9) such that the Jacobian is:

J =

[

∂ ~E

∂m1

, . . . ,
∂ ~E

∂mNmod

]

= K−1G (1.20)

with K as defined for Eq. (1.9) and

G = [(∂ ~E0/∂m1 − ∂K/∂m1
~E), (∂ ~E0/∂m2 − ∂K/∂m2

~E), . . . , (1.21)

(∂ ~E0/∂mNmod
− ∂K/∂mNmod

~E)] (1.22)

because K−1 = KT . This method is also used in [17], one of the few existing academic

3D inversion codes that are applied to real data sets ([32]).

Derivation of the forward problem solution in time domain is much more complicated

due to the more elaborate nature of the solution strategies. One way is described in [47],

where the Jacobian is gained by differentiating the exponential Ansatz function of [12]

by the product rule with respect to the model parameter. The eigenpairs are differen-

tiated with respect to the model parameters by perturbation theory. It also leads to a

compression of the Jacobian in the Rational Krylov subspace.
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2 Hypothesis

For modelling 3D time domain marine CSEM data, Krylov subspace methods are very

efficient. Krylov subspace methods are parallelizable on GPU, resulting in a speedup of

run time. Rational Krylov subspace methods are more efficient than polynomial ones.

Sensitivities can be computed efficiently and accurately by the model order reduction

framework that compresses the Jacobian by a rational Krylov subspace.
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3 Objectives

The main goal of this thesis is to provide software tools for the interpretation of 3D

marine CSEM datasets in time domain, how they are gathered at GEOMAR Helmholtz

Centre for Ocean Research Kiel. Because of the nature of those datasets, with many

source receiver combinations, transmitting and receiving in both horizontal directions

and long transients, the reduction of computation runtime is an essential challenge. The

thesis aims 1. to implement a forward modeling code on Graphics Processing Units

(GPUs) that might have a much higher computational power than CPUs, and 2. imple-

ment a sensitivity calculation algorithm on GPU, because it is the most time consuming

step in solving the inverse problem.

For step 1. the suitability of Krylov subspace methods for implementation on GPUs

as well as for this pyhsical problem have to be investigated. The polynomial as well

as the rational Krylov subspace method are of interest, latter one is essential for the

sensitivity calculation. Both Krylov subspace methods have to be compared with each

other. Runtimes have to be validated.

For the sensitivity calculation, the implementation of the Model Order Reduction Method

(MOR), based on Rational Krylov subspaces, is aimed. There is not much experience

gather about the MOR method yet. Therefore, the method’s operationability has to be

proven by comparison with other methods. Runtime has to be validated as well.
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4 Thesis structure

The thesis consists of three parts.

The first part is the publication [37], that describes a GPU parallelization of a 3D for-

ward modeling CSEM code in time domain. The work is similar to the way presented

in the Diploma thesis Adaption and GPU based parallelization of the code TEMDDD

for marine CSEM, but has some significant differences. In the diploma thesis, a GPU

parallelization of a Householder tridiagonalization and an eigensolver was described.

The parallelization of the Krylov vector computation was not successful, because the

boundary condition turned out to be problematic. With the new boundary condition as

presented in [37], the Krylov vector computation could be parallelized. This made the

Householder tridiagonalization obsolete. The eigensolver was replaced as well, such that

the code presented in [37] is completely new.

The second part is the submitted publication presented in [36], that replaces the poly-

nomial by a rational Krylov algorithm. This reduces the run time and is also essential

for the implementation of the model order reduction method to compute the Jacobian

matrix. This is explained in the third part of this thesis as a chapter.
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a b s t r a c t

One of the main problem of 3D time domain controlled source electromagnetic (CSEM) inversion is
the high runtimes of forward modeling codes. We reduced the runtime of the 3D time domain finite
difference CSEM code TEMDDD by the GPU-parallelization of expensive algorithms. The code solves the
electromagnetic diffusion equation by discretization of spatial operators and subsequent calculation of
eigenpairs. These eigenpairs are found by approximation of the eigenspace in a Krylov subspace using the
spectral Lanczos decomposition Method. This algorithm was in its original form not parallelizable due
to implementation of the upper boundary condition at the air–water interface. We show for the marine
case that replacing the original boundary condition at the air–water surface by a discretized air layer
allows GPU parallelization of every time consuming algorithm of the code in the marine case. Speedups
between 20 and 60 have been achieved compared to the original code for a larger 3-D model. In this
model the bathymetry from a survey area offshore Egypt is used as an example demonstrating that the
parallelized version of the code is applicable to real survey scenarios.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Marine controlled source electromagnetic (MCSEM) methods are
used to image the spatial resistivity distribution of the sub-seafloor.
Typical applications for which MCSEM measurements are used to
include the exploration of resistive hydrocarbons such as oil, gas
and gas hydrates (e.g. Hesthammer et al., 2010; Schwalenberg et al.,
2010) and the detection and characterization of highly conductive
ore deposits like marine massive sulphide bodies (Swidinsky et al.,
2012). Generally, a MCSEM survey consists of an artificial electro-
magnetic source and multiple electromagnetic field receivers. In
most experimental setups the sources are either towed behind a
vessel (e.g. Constable and Srnka, 2007; Schwalenberg et al., 2010) or
mounted on a remotely operated vehicle (Hölz and Jegen, 2009).
The receivers are usually either arranged in an array on the seafloor
and remain stationary during the measurements (Constable and
Srnka, 2007) or are fixed at a streamer that is moved in a purely
inline configuration along the seafloor (Yuan and Edwards, 2000).
The interpretation of MCSEM surveys typically relies on modeling
and inversion of electric and/or magnetic field data either at one or
several source normalized discrete frequencies (frequency domain;
see e.g. Gribenko and Zhdanov, 2007) or at a number of samples
representing the full transient waveform (time domain; see e.g.

Commer et al., 2006). A common approach for EM modeling is
the use of finite differences (FD) in time- and frequency-domain,
because the formulation is relatively easy and modeling is compu-
tationally effective when sparse matrix approaches are used. How-
ever, depending on the implementation the full solution requires
either many time steps (Oristaglio and Hohmann, 1984) or elaborate
implicit solvers (Druskin and Knizhnerman, 1994), which generally
makes calculations computationally more expensive than in the
frequency domain.

In the scope of this paper we investigate the potential for
parallelization of the time domain code TEMDDD (Árnason, 1999)
that was originally designed for modeling of land based EM-
surveys. For average sized 3-D models this code has runtimes of
20 min (50�50�40 grid cells) up to 1 h (70�70�50 grid cells)
on one standard CPU kernel for a single forward calculation. One
way to speedup a code is to use graphics processing units (GPUs).
GPUs, originally developed for graphic rendering, have a massively
parallel structure and have a high computational power that
can also be used for scientific computing. Moorkamp et al. (2010)
used GPUs to speedup a gravity forward code by a factor of 30,
Komatisch et al. (2010) improved the performance of a seismic
forward code by a factor of 20 and da Silva et al. (2012) parallelized
a frequency domain CSEM code on GPUs.

In this paper we investigate possibilities to speedup the most
time consuming algorithms of TEMDDD. We show that for the
marine case, the two most time consuming algorithms can be
skipped because the seawater layer above the source and receivers
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allows a simplification of the water–air boundary condition.
Another advantage of such a modified boundary is that the
remaining algorithms can be sped up by implementing GPU
parallelization, which was not possible in its original form. By
means of synthetic models we demonstrate that the runtime for
typical model sizes can be reduced drastically by these modifica-
tions. The synthetic models are related to a CSEM data set that is
collected on a mud volcano in the West Nile Delta.

2. The FD time domain code

Before introducing our modifications and subsequent paralle-
lization, we first describe the main characteristics of the TEMDDD
code. The original FD time domain code is developed by Árnason
(1999) and solves the electromagnetic diffusion equation

∇� ∇� ðsμÞ−1 E!¼ −
∂ E
!

∂t
ð1Þ

with the initial value E
!ðt ¼ 0Þ ¼ E

!
0. Here, s is the spatially

varying electric conductivity, μ is the magnetic permeability,

which is set to the permeability of free space, and E
!

is the electric
field within the modeling domain. The source field is described by
current densities that are placed on the edges of the FD grid cells.
Electric field components are discretized in space using central
finite differences on a Yee grid (Yee, 1966), where electric field
vectors are defined in the middle of the cell edges and the
conductivities are kept constant within each cell (see Fig. 1).
Outside of the lateral and lower bounds of the modeling domain,
the grid is embedded in a perfect conductor such that the electric
field vanishes here and Dirichlet boundary conditions are

enforced. At the water–air interface the E
!�field components

immediately above the interface (see Fig. 1) are located in the
air, where s-0. Therefore, Eq. (1) cannot be applied and Laplace

equation ∇2 E
!¼ 0 is used instead. The electric field values in the

air can then be calculated using a convolution integral of field values
at the water air–interface by upward continuation (e.g. Oristaglio
and Hohmann, 1984; Weidelt, 2000). This means that for this setup
the air layer is not a part of the modeling grid in the original code
and therefore two separate problems have to be to solved: (i) the
solution of the electric fields inside the volume and (ii) the solution
at the water–air boundary.

2.1. Solving the volume problem

Discretization of the spatial operators and the electric conduc-
tivities on the left side of Eq. (1) yields a banded operator matrix A
with 13 (see Fig. 1) entries per row acting on the associated electric
field component

A E
!¼−

∂ E
!

∂t
: ð2Þ

This is a partial differential equation of first order which can be
solved by an exponential ansatz

E
!¼ E

!
0 expð−tAÞ ¼ ∑

n

i ¼ 1
E0i expð−tλiÞ z!i: ð3Þ

The integer n is the number of rows of A, E0i is the ith components of

E
!

0, λi is the ith eigenvalue of A and z!i is the corresponding
eigenvector. The validity of the eigendecomposition can be shown
by Taylor series expansion (Druskin and Knizhnerman, 1994). For
typical 3D models in MCSEM, where the size of the systemmatrix A is
on the order of hundreds of thousands, determining the eigenpairs of
A using a full eigensolver is not feasible. Therefore, a subspace
approximation of A is required. This is done by the spectral Lanczos
decomposition method (SLDM) (Parlett, 1998), which approximates A

by a projection to a Krylov subspace Kk ¼ spanf E!0;A E
!

0;A
2 E
!

0;…;

Ak−1 E
!

0g, where the vectors of the spanning set are called Krylov

vectors. An orthonormal basis q!0;…; q!k−1 can be generated by
Gram–Schmidt orthogonalization of the Krylov vectors by using the

Fig. 1. Sketch showing 13 field components that are associated with node ði; j; kÞ, indicated by orange circle. Its corresponding cell with conductivity si;j;k is orange colored.
(For interpretation of the references to color in this figure caption, the reader is referred to the web version of this article.)
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recursion formula

^
q!iþ1 ¼A q!i−ð q!

T
i A q!iÞ q!i−ð q!

T
i−1A q!iÞ q!i−1 ð4Þ

and q!0 ¼ E
!

0=∥ E
!

0∥. By normalizing q!iþ1 ¼
^
q!iþ1=∥

^
q!iþ1∥, defining

αi ¼ q!T
i A q!i, and βi ¼ q!T

i A q!iþ1 ¼ ∥ ^
q!iþ1∥, Eq. (4) becomes A q!i ¼

βi−1 q
!

i−1 þ αi q
!

i þ βi q
!

iþ1. This linear system can then be written as

the matrix equation AQ≈QH⇒A≈QHQT , with H∈Rk � Rk being the
Ritz approximation

H¼

α1 β1 … 0
β1 α2 β2
⋮ ⋱ ⋮
0 … βk−1 αk

0
BBBB@

1
CCCCA
: ð5Þ

The eigenvalues of H are the k largest eigenvalues of A and the

eigenvectors of A can be found by the back transformation z!i ¼
Q T v!i, with v!i being the ith eigenvector of H. Instead of solving A for
all n eigenvalues, just k eigenvalues, usually less than a few thousands,
are required. Further details are given in Druskin and Knizhnerman
(1994) and van der Vorst (1987).

2.2. Solving the water–air boundary problem

The electric field vectors in the air above the water–air boundary
are computed by upward continuation of the horizontal field
vectors at the sea surface. To solve the Laplace equation, a House-
holder tridiagonalization, an eigensolver and a convolution in the
SLDM are required. For further details see Árnason (1999) and
Weidelt (2000).

The Householder tridiagonalization is used to transform the
dense surface matrix (nearly all of its elements are nonzero) into a
sparse matrix that can be solved by more efficient eigensolvers. As
an arbitrarily dense matrix Ad can be expressed as Ad ¼QTQ T and
the Householder method transforms it by orthogonal projections
Q to a tridiagonal matrix T. Such orthogonal projections do not
change the eigenvalues of a matrix, but rotate the eigenvectors.
This means that the eigenvalues of T and A are the same and its
eigenvectors can be found by backtransformation of the eigenvec-
tors of T

v!Ad
¼Q T v!T ð6Þ

because Q TQ ¼ I (see Householder, 1958). The eigensolver used
here is the QR-algorithm (Watkins, 1982), that is a standard
algorithm for eigenvalue computation (Golub and Van Loan, 1996).

3. Gridding and runtime profiling

In the original, non-parallelized code, three algorithms are
computationally expensive: (1) the Householder tridiagonalization
(see Section 2) used to solve the discretized Laplace operator,
(2) the SLDM and (3) the tridiagonal symmetric full eigensolver,
which is invoked twice, once for the surface matrix and once for
the Ritz approximation equation (5).

Fig. 2 shows runtimes of these three algorithms. Most time
consuming are clearly the algorithms related to the surface
matrix, namely the Householder tridiagonalization and its eigen-
solver. For typical model sizes their combined runtime exceeds
1 h. Algorithms computing the eigenpairs of a sparse system
matrix as well as the SLDM typically need less than 10 min each.

To skip algorithms used for the surface approximation, we
replaced the originally implemented upper boundary condition by
a perfect conductor Hördt and Müller, 2000. This yields Dirichlet
boundary conditions at the upper boundary like it is already the

case for the lateral and lower bounds of the modeling domain. This
now requires that the air is explicitly included as a resistor into the
modeling domain. In Section 3.2 we will show that this approach
is valid with numerically accurate results for a wide range of
relevant geometries. Section 3.3 will then show, how this
approach improves the performance of the code and how it
compares to non-parallelized codes.

3.1. Technical details

GPU calculations were performed on a regular graphics card
(Nvidia GeForce GTX 275, GT200b processor). The parallel code
was developed using CUDA (v4.2) with the according Nvidia C
compiler (nvcc).

They are compared with the serial, non-parallelized code,
which was run on a single core of an Intel Core i7 CPU 860
2.80 GHz. The CPU code was compiled with the GNU C compiler
(gcc) as well as with the commercial intel C compiler (icc).
Maximum optimization (-O3 flag) was used in both cases. No
significant performance differences between these compilers was
evident. Since the original TEMDDD code is not optimized, we also
performed additional benchmark tests with the code SLDMEM
(Druskin and Knizhnerman, 1994), which is a highly optimized,
serial CPU code. Both codes are based on the same numerical
algorithms.

3.2. Gridding

The model discretization of a rectilinear grid strongly governs the
accuracy and the efficiency of the TEMDDD code. Choosing cell sizes
which are too large yields inaccurate results, while very small cells
result in a large grid increasing the runtime. In our case an adequate
discretization has to be found for the test model we use for
illustration throughout this paper. The test model was chosen with
respect to the CSEM experiment carried out during investigations at
a mud volcano in the West Nile Delta (Hölz and Jegen, 2009).
The mud volcano is situated at a water depth of 500 m and contains
a gas chimney, which supposedly is a 3D resistive structure due to
the presence of free gas that displaces conductive pore water. In the
modeling grid sources and receivers are located within the con-
ductive medium, i.e. the sea water. The required cell sizes depend on
the field curvature and field strength at cell locations. The most
decisive parameter for the discretization is the spacing in x/y-
direction between source and receiver. A regular grid of small cell
sizes would work well, but requires a huge amount of cells for large
distances. Fortunately, in diffusive processes the field generally
decreases with the third power over space, which makes it a suitable
choice to increase cell sizes with increasing distances from the source
like Δxn ¼ cnΔx0jn¼ 1;2;…. Beyond the source–receiver distance
cell sizes may be increased further and a larger factor c can be used.
In total, cell sizes in x/y-direction range from 5m around the source
up to several hundreds of meters at the side boundaries. Cell sizes in
the z-direction also increase below and above the source and are
locally refined at high resistivity contrasts like the air–water interface.
A comparison of 3D calculations on the 1D test model described in
Fig. 3 with (quasi) analytic 1D solutions shows that grids with sizes of
65�65�35 up to 80�80�50 elements and Krylov dimensions of
1500–3000 are sufficient to achieve numerically accurate results.

To skip algorithms used at the water–air interface, we replaced
the originally implemented upper boundary condition by a perfect
conductor. This yields Dirichlet boundary conditions at the upper
boundary like it is already the case for the lateral and lower
bounds of the modeling domain and the air has to be included
explicitly as a resistor into the modeling domain. By doing this, the
distance between the transmitter/receiver and the newly inserted
perfect conductor at the upper boundary can be increased to
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a point, where the effect of the boundary becomes negligible.
Remember, that in our experiment, sources and receivers are
placed on the seafloor (Fig. 3). Using a real resistivity of air (which
is about 1014 Ω m) would yield an extremely high resistivity
contrast resulting in a badly conditioned system matrix, thus,
requiring extremely high Krylov dimensions. To reduce the Krylov
dimension and accordingly the runtime we investigate, how
much the resistivity of the air can be reduced without generating

significant errors. In addition, the influence of the thickness of the
air layer as well as the Krylov dimension is compared between the
3D modeling results and the according analytic 1D-solutions.

Before we tried to find proper grids and numerical parameters
to stabilize the 3D problem with a discretized air layer, we first
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Fig. 2. Runtimes of most time consuming algorithms in original, non-parallelized TEMDDD code from Árnason (1999). Runtimes of algorithms computing surface
approximation, namely the Householder tridiagonalization and its eigensolver, only depend on number of nodes in the x/y-direction (top left). Runtime of eigensolver of Ritz
approximation only depends on Krylov dimension (bottom left). SLDM's runtime depends on dimension in the x/y-direction as well as on the Krylov dimension (right).
Parameter bounds considered during this study are marked with brown frames. (For interpretation of the references to color in this figure caption, the reader is referred to
the web version of this article.)

Fig. 3. Setup and grid discretization used for our test model. An air layer (cyan) is
located above a 500 m thick layer of seawater (blue) and a half space representing
marine sediments (beige). Air- and sea-layers are separated by a very thin gradient
layer (3 cells, 20 m total thickness) in order to arrive at a smoother resistivity
contrast. Source is placed in middle of grid on seafloor, where cell sizes are
smallest. In our test, air layer resistivities range from 4 to 100 Ω m. (For inter-
pretation of the references to color in this figure caption, the reader is referred to
the web version of this article.)

Fig. 4. Based on 1D models similar to the one used for Fig. 3, relative deviations ðδvÞ
between the 1D-analytic solutions for ρair ¼ 0 (reference transient) and the analytic
solutions for ρair40 are calculated. The relative water depth is defined by the
absolute water depth normalized by the source–receiver offset. Note that for the
calculation of the relative difference δv we have only used values, which fall within
95% of the DC value of the reference transient.
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checked the validity of this approach by comparing the 1D analytic
solutions of a model with ρair-∞ to solutions for models with
finite ρair . Fig. 4 shows how the relative deviation depends on the
air resistivity ρair and the relative water depth (RWD), which is the
ratio of the water depth to the source–receiver offset. For
RWD≥0:5, the deviation is below 1% for ρair≥5 Ωm. RWDs of down
to 0.2 with deviations of ≤3% are possible, if the resistivity of the
air layer is further increased (see Fig. 4). This shows that the
approach is – at least in terms of 1D analytical calculations – valid
for wide range of RWDs, if the resistivity of the air layer is chosen
sufficiently high. However, it may be problematic for TX-RX
geometries in shallow water ðRWD≤0:2Þ.

We then tested the approach with calculations using TEMDDD
(Fig. 5). An air layer thickness of 10 km with 19 air layers turned
out to be sufficient for all RWDs (not shown).

To arrive at meaningful results, we calculated deviations as
χ2�misfits, in which the differences between 1D and 3D tran-
sients are weighted with an appropriate error curve. This is
done to avoid an over-weighting of small amplitudes in the
transients' early times, which usually have larger error bars in
real measurements. We chose an error curve proportional to
t−1=2, which is a typical characteristic of stacked transient data
(Munkholm and Auken, 1996). The error reaches a source
normalized level of 10−11 V=Am2 at 1 s and is chosen according
to the CSEM acquisitions during the WND project (comp.
Fig. 10). Numerical errors can be considered small with respect
to the realistic measurement errors, if the computed χ2�misfits
is much smaller than 1. In the following, we will assume results
to be numerically accurate, if χ2o0:1.

For RWD¼ 1:5, the air-layer is far away from the TX-RX geometry
and has little influence on calculations. Small resistivities of 1–2 Ω m
and a Krylov dimension of 1500–2000 will yield accurate results.
Moderate increases of the air-resistivity ð4 Ω mÞ and the Krylov
dimension (3000) are necessary for moderately shallow water appli-
cations ðRWD¼ 0:5Þ. For shallow water applications ðRWD¼ 0:2Þ
low resistivities ð≤10 Ω mÞ do not approximate the insulating air
half space well anymore. Reasonable results may be obtained by
using a higher resistivity of about 20 Ωm in combination with
an increased Krylov dimension of about 5000. The resulting
transients (Fig. 5, bottom right) show that in this case errors are
restricted to the late times of the transient, i.e. for amplitudes close
to the DC-level.

A comparison with Fig. 4 shows that deviations are not
necessarily due to numerical inaccuracies of TEMDDD, but are
rather shortcomings of the basic assumption of a non-insulating
air layer. Deviations are only problematic for shallow water
applications, i.e. small RWDs, where the χ2�misfits increases due
to deviations close to the DC level at late times of transients. To
circumvent this problem, one may simply exclude the later times
of a transient (e.g. all amplitudes ≥80% of the DC level). This
approach is feasible, if the relevant information about the subsur-
face structure is expected to be in the early times of the transient,
but may fail for deep targets (see Constable, 2010, Fig. 13).

3.3. Speeding up the code

Avoiding the computationally expensive Householder tridiago-
nalization and the eigensolver involved in the calculation of the

Fig. 5. χ2 misfit between analytic 1D and 3D responses for various air layer resistivities, Krylov dimensions and relative water depths (RWD) of 1.5, 0.5, and 0.2. Example
transients (bottom, right) for parameters marked with red ellipses show that deviations are usually small. They become significant only for shallow water depth (RWD¼0.2)
close to the DC level (green curve). (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this article.)
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surface matrix already leads to a significant speedup of the code.
The remaining computationally expensive algorithms, namely the
SLDM and the QR algorithm that is used as an eigensolver, involve
many matrix–vector and matrix–matrix operations. Therefore, they
are well suited for GPU parallelization.

The computationally expensive part of the SLDM is to build up the
Krylov space (Eq. (4)), which comprises sparse matrix times vector
multiplications and calculations of scalar products for the orthogona-
lization. These two operations are well parallelizable on a GPU. The
dimension of A, which is usually on the order of several hundred
thousands to a million, makes it necessary to store A using a sparse
matrix format, such as the ELL format (see Commer et al., 2012),
where its components are matched to the ones of the vector E

!
0 (see

Eq. (4)) by a matrix of indices. This has the disadvantage that the
coalesced memory structure is destroyed, thus, limiting the maximum
achievable performance gain by parallelization. It also obstructs the
possibility to use the GPU's low latency shared memory. Instead, the
much slower global GPU memory has to be used. Still, the achievable
performance gain is significant, because every thread – approximately
15.000 parallel virtual threads are possible on the GPU – computes one
matrix row times vector multiplication. One positive aspect of the
reduced size of the sparse system matrix is that the influence of the
bottleneck of data transfer between CPU and GPU is limited. Since the
system matrix has to be copied just once to the graphics device, the
computational cost of the data transfer is negligible. The parallelization
of scalar products is well described in nearly every CUDA-
programming guide, here the CUBLAS library (a BLAS library for
CUDA) was used.

Generally, the runtime of the eigensolver increases by Oðk2Þ for
tridiagonal matrices (Golub and Van Loan, 1996) where k is the
dimension of the Ritz approximationH (see Eq. (5)), which is equal to
the Krylov dimension. In the new version of the code the standard

eigensolver is replaced by the GPU optimized QR-algorithm from the
CULA (CUDA LAPACK) library (Humphrey et al., 2010).

While the total runtime of the SLDM algorithm (Fig. 2, right)
depends on the Krylov dimension as well as the grid discretization
in x/y-direction, the speedup (Fig. 6, left) only shows a dependency
on the grid discretization. This is due to the fact that the SLDM
algorithm is recursive and parallelizable operations are part of
each Krylov iteration. Therefore, the number of Krylov dimension
has no impact on the speedup of the SLDM. For typical grid
dimensions, the speedup increases linearly up to a factor of 10. In
contrast, the speedup of the QR-algorithm (Fig. 6, right) only
depends on the Krylov dimension and falls in a range between 10
and 40 for Krylov dimensions between 2000 and 5000, respec-
tively. As additional reference, we have also included a comparison
to a parallelized LAPACK QR-algorithm (Fig. 6, right), which was
executed in parallel on 4 CPU cores. It shows a much better
performance when compared to the TEMDDD eigensolver, but is
still significantly slower than the GPU implementation.

While the Krylov dimension has only a minor impact on the
original code's runtime for a large number of cells in the
horizontal directions, it is increasingly important for the GPU
code runtime (Fig. 7, left). For models sizes of 65�65�50 up to
80�80�50 cells, runtimes of the original code are on the order
of 2000–7000 s for Krylov dimensions of 1000 and 3000,
respectively. The same calculations performed with the SLDMEM
code show the superior performance of this code with runtimes
of 60–180 s, respectively. For numerically accurate results of the
parallelized GPU code, higher Krylov dimensions of 3000 (see
Fig. 5, top) up to 5000 are necessary for shallow water applica-
tions (see Fig. 5) or 2000 for deep water. The according runtimes
are 20–40 s (Krylov dimension 2000), 50–70 s (Krylov dimension
3000) and 70–130 s (Krylov dimension 5000).
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Fig. 6. Left: Speedups of SLDM calculations of GPU-version relative to original CPU-version. Right: Speedup of CULA-QR-Eigensolver with respect to original eigensolver
(black) and relative to LAPACK QR-algorithm on four cores (red). A linear trend is evident for both algorithms. (For interpretation of the references to color in this figure
caption, the reader is referred to the web version of this article.)

M. Sommer et al. / Computers & Geosciences 58 (2013) 91–9996

https://www.researchgate.net/publication/258139264_Iterative_Krylov_solution_methods_for_geophysical_electromagnetic_simulations_on_throughput-oriented_processing_units?el=1_x_8&enrichId=rgreq-41cef982b807240e917e12de90d81974-XXX&enrichSource=Y292ZXJQYWdlOzI2MDA0MTIwNDtBUzoxNDY2ODQ4ODE0MTIxMDJAMTQxMTk4MzgwOTkzOQ==
https://www.researchgate.net/publication/229003978_CULA_Hybrid_GPU_accelerated_linear_algebra_routines?el=1_x_8&enrichId=rgreq-41cef982b807240e917e12de90d81974-XXX&enrichSource=Y292ZXJQYWdlOzI2MDA0MTIwNDtBUzoxNDY2ODQ4ODE0MTIxMDJAMTQxMTk4MzgwOTkzOQ==


4. Application example

We use the GPU parallelized code to investigate the effects of
bathymetry and non-plain source–receivers geometries on transient
responses with respect to an MCSEM experiment conducted on a mud
volcano located in the West Nile Delta (Hölz and Jegen, 2009). At this
mud volcano the bathymetry varies by about 25 m within the station

grid (see Fig. 8). The effect of the non-flat bathymetry is investigated
for all TX-RX pairs. For each pair we generated a 3D model with a
discretized bathymetry holding TX and RX at exact xyz-locations on
the seafloor (Fig. 9) and calculated the according transient inline
response. We then used the same grid with a flat bathymetry, i.e.
practically a 1D model, and recomputed the inline response, this time
with the TX and RX located on the same depth level. Grid cells in

Fig. 7. Left: Total runtimes of original code (red), the modified GPU-parallelized code (blue) and the SLDMEM code (green) for different Krylov dimensions. Models for the
parallelized code include additional grid cells in z-direction for the air layer (comp. Fig. 3). Right: Speedup of GPU relative to CPU codes. For calculations of speedups we have
used higher Krylov dimension for the GPU-parallelized code, which is necessary only for shallow water applications (see Fig. 5). Note that all CPU calculations were carried
out on a single CPU core. Therefore, additional performance gains are possible by a coarse parallelization (see Discussion). (For interpretation of the references to color in this
figure caption, the reader is referred to the web version of this article.)
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Fig. 8. Left: Design of marine CSEM-system from GEOMAR. A source field is emitted from a dipole antenna, which is mounted on an ROV. The induced secondary fields
depend on the spatial conductivity distribution of the subsurface. Horizontal field components are measured at a number of receivers that are deployed at the seafloor. Right:
Station map of CSEM-experiment at mud volcano offshore Egypt (Hölz and Jegen, 2009). Crosses and boxes show transmitters and receivers positions, respectively.
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the water column and the seafloor have resistivities of 0:2 Ω m and
1 Ω m, respectively. Resistivities of cells that are intersected by the
seafloor are averaged. The air resistivity is set to 4 Ω m and the air
thickness to 10 000m. The model size is 63�63�52. For models for
which the runtime of the original code is 1440 s (Krylov dimension of
2000), the parallel code needs 59 s (Krylov dimension of 3500). Hence,
computation of the models for all transmitter–receiver pairs (80
transmitters and 15 receivers) take 19 h instead of 19 days, in case
of using the original code. Newer GPUs are even faster (up to a factor
of 10) because they support double precision.

To quantify the effect of bathymetry and non-plain TX-RX
geometry, we calculate the χ2�misfit between the computed
transients from the 1D and 3D bathymetry. Misfits are weighted
by the time dependent errors of the true measurements (Fig. 10).
A clear dependency between misfit and offset is apparent.
Generally, for TX-RX pairs with a χ2�misfit above 1, the differ-
ences of the 1D and 3D curves are in total larger than the error
bars. For these pairs the 3D effects due to bathymetry and non-
plain RX-TX geometries are significant. This in turns also means
that an interpretation of these data using a 1D code will
intrinsically be biased due to these effects. For the given data
set, 3D effects may no longer be neglected for TX-RX pairs with
offsets smaller than approximately 125 m.

5. Discussion and conclusion

The attempt to significantly reduce the runtime of the 3D time
domain CSEM code TEMDDD was achieved by porting the code to
a GPU. For relevant model sizes of 65�65�50 up to 80�80�50
cells the speedup falls in a range between 21 and 150x. The
explicit discretization of the air turned out to be a proper method
to avoid computationally expensive surface algorithms. The SLDM
was parallelized with speedups up to a factor of 10. For the
eigensolver the CULA-library has speedups up to a factor of 40.
Even when using a CPU-parallelized eigensolver (CPU, 4 cores),
the CULA library still outperforms it by up to a factor of 10. A
comparison to the SLDMEM code shows that a great deal of the
speedup can be attributed to the non-optimized structure of the
original TEMDDD code. Still, the GPU code outperforms SLDMEM
by a factor of 1.8–4x for relevant model sizes.

To put this into the right perspective we again stress the fact
that in the results presented so far, the non-parallelized SLDMEM
and TEMDDD codes were run on a single core of the CPU. We have
also performed a test, where several instances of these codes were
started in parallel on all available CPU cores. In this test of a coarse
parallelization the best performance was achieved, if one thread
was started on each core leading to a 3x speedup on four cores.

Fig. 9. 3D grid with discretized bathymetry and transmitter (red cross) located in center of grid and a receiver (red square) (comp. Fig. 8). Resistivity of water is set to 0:2 Ω m
and resistivity of sediments is set to 1 Ω m. Note strong vertical exaggeration. (For interpretation of the references to color in this figure caption, the reader is referred to the
web version of this article.)
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Fig. 10. χ2�misfit versus offset for all TX-RX pairs (left). For pairs with χ241, the according 1D and 3D curves are distinct in terms of measurement errors and their
measurements are, thus, significantly affected by the bathymetry. For the given data set and offsets o125 m this is the case for the majority of station-pairs. In the right
figure the transients for the pair with the highest misfit above 125 m are shown (highlighted in the left figure with a rectangle). Error bars are highlighted with red colors.
(For interpretation of the references to color in this figure caption, the reader is referred to the web version of this article.)
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Therefore, all reported speedups should be divided by this num-
ber, which still yields massive speedups when comparing the
original and GPU optized TEMDDD code (7–50x) and shows similar
performances of the GPU version and a coarsely parallelized
version of SLDMEM (0.6–1.3x).

Our results represent the status-quo of the hardware used
during development and testing of our code. Further speedups
could be obtained by using the most up to date GPU boards
dedicated to scientific computing (e.g. Tesla K20 with GK110
processor). According to Nvidia, these GPU boards are about 15x
faster as the currently used (GTX275 with GT200b processor) in
double precision calculations, since they natively implemented
double precision calculations according to the IEEE 574 standard.
Furthermore, these new GPU processors also made progress in
data unification between the different multiprocessors by provid-
ing efficient, high speed data sharing across the GPU, which
especially should benefit sparse matrix multiplications (SpMV)
(NVIDIA, 2012). Profiling of the code shows that currently 60–80%
of the runtime are deduced to the SpMV operation where the
memory is badly coalesced as well as recalling data from the low
latency global memory. Of course the development of CPUs is also
an ongoing process with up to date processors currently offering
12 (e.g. Intel i7-3970X) to 16 cores (e.g. AMD Opteron 6380), which
also promises a significant potential for a coarse parallelization of
the problem. Ultimately, the question which architecture offers the
best performance remains an open question, which cannot be
answered within the scope of this paper.
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Abstract

High run-times of 3D time domain controlled source electromagnetics (CSEM)
modeling codes are one of the main problems for inversion. Run-time depends
on the choice of algorithms and hardware. We solve the electromagnetic diffu-
sion equation implicitly with an exponential Ansatz function, that is spectrally
decomposed. The spectra of the finite difference discretization of the spatial op-
erators are approximated by Krylov subspace methods. We have implemented a
rational Krylov subspace (RKS) algorithm on Graphics Processing Units (GPU)
and compared it with the implementation of a polynomial Krylov subspace
method on GPU. We demonstrate the benefits of RKS-algorithms over polyno-
mial ones. We show the benefits of GPUs over CPUs and compare older GPU
generations with modern ones to reveal the progress in hardware. A speedup
of 20 has been achieved, compared to the polynomial method on an old GPU.
We demonstrate the applicability of the code for different conductivity contrasts
and for a 3D model.

Keywords: Rational Krylov Subspace, GPU, marine CSEM

1. Introduction

For the investigation of the spatial distribution of sub-seafloor resistivity,
marine controlled source electromagnetic (CSEM) methods are used. Typical
exploration targets of marine CSEM are resistive hydrocarbons [1], gas hydrates
[2, 3], complex salt diapirs [4] and conductive targets like massive sulphide de-
posits [5]. In general, a marine CSEM survey consists of a source generating an
electric field and several antennas receiving the perturbed electromagnetic field.
A common setup is to tow the sources behind a vessel [6] or mount them on a
remotely operated vehicle [7] or submersibles [8]. The receivers can either be
deployed on the seafloor [6] or be part of a streamer moving along the seafloor
[9].
By the perturbation of the received electric field, the sub-seafloor resistivity
structure can be reconstructed. This is typically done by modeling or inversion.
Considerable research is spent on the problem of how to numerically implement
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3D CSEM forward and inversion codes in such a way that the computational
costs are reduced. In this process, two parallel developments can be observed:
changes in mathematical algorithms and changes in hardware, both are always
dependent on each other.
Even for state-of-the-art time-stepping codes, such as [10], run-time is high.
Since the introduction of Lanczos-algorithms to CSEM [11], computationally
expensive time stepping algorithms introduced in [12] became more and more
unpopular in CSEM. Unlike in time-stepping, solutions do not depend on solu-
tions of previous times. Because the results are always represented on a logarith-
mic time axis, this gives a computational benefit. While the original formulation
of Lanczos-algorithms is based on polynomial Krylov Subspace, recent develop-
ments have been focused on the implementation of more efficient rational Krylov
Subspace formulations, see [13, 14, 15, 16, 17, 18], among others.
Along with a shift in algorithms, hardware has also changed over the years.
While increases in processor frequencies have practically come to a halt, the
speed of floating point operations is boosted through parallelization. One com-
mon way to achieve this parallelization is to use graphics processing units
(GPUs) on graphics cards, which offer a massively parallel architecture. How-
ever, this requires the adaptation of existing or development of new algorithms
and codes, which make proper use of the GPU hardware.
In this work, we present an implementation of the rational-Krylov-subspaces-
method (RKSM) on a GPU for 3D marine time domain CSEM calculations. We
show that the rational method improves performance in comparison to the poly-
nomial method, which we have previously presented in [19]. Furthermore, we
investigate to what extent these performance gains can be attributed to the al-
gorithm and to what extent they are driven by the improvements of the utilized
hardware. This hardware comparison will use an older graphics card (Nvidia
GTX275), which only emulates support for double precision, and a more recent
graphics card (Nvidia Titan Black), which offers native hardware support for
double precision arithmetics.

2. Theory

Starting from the physical problem (Section 2.1), we describe a solution
strategy (Section 2.2), which is similar for both, the polynomial- and ratio-
nal algorithm. It differs only in the way how the approximating subspace is
spanned. The solution strategy is then applied to the polynomial and to the
rational implementations (Section 2.3 and 2.4, respectively).

Conventions:
The letters j, k, n are used for integers, scalars are denoted by small letters like
t, α, . . . , vectors are indicated by an arrow above: ~q, ~E and matrices are all
denoted in bold, capital letter like: A,Q. The hat ·̂ denotes vectors, that are
not orthogonalized and the dash ·′ denotes non-normalized vectors. The letter
i stands for the imaginary unit

√
−1.

2



2.1. Formulation of the physical problem

The physics of the marine CSEM problem is described by the electromagnetic
diffusion equation in the quasi-static approximation

~∇× ~∇× (σµ)−1 ~E(~r, t) = −∂
~E(~r, t)

∂t
(1)

with the initial values ~E(~r, t = 0) = ~E0, the isotropic electric conductivity σ,

the electrical permittivity µ, which is set to the permeability of free space and ~E
the electric field within the modeling domain. We will write ~E = ~E(~r, t) in the
following. The source field is described by a Heaviside function, switched on at
t = 0, such that ~E0 has a constant value at the source location and zero in the
remaining modeling domain. The modeling domain is embedded in a perfect
conductor, such that the electric field vanishes at the boundaries and Dirichlet
boundary conditions are enforced. At the water air-interface, ~E-field compo-
nents immediately above the water are located within the air where σ → 0 such
that eq. (1) can not be applied. It is therefore common to solve the Laplace

problem ~∇2 ~E = 0 in the air instead. However, in the marine case it is also
possible to estimate the air layer by a finite layer of elevated resistivity, which
can be beneficial in terms of computational speed as pointed out by [19].

2.2. Numerical solution strategy

To solve eq. (1) numerically, the spatial operators are discretized by central
finite differences (FD) on a rectilinear, staggered grid [20] and σ is averaged, such

that ~∇× ~∇× (σµ)−1 → A ∈ R
n×n, where A is a sparse, symmetric matrix.

Then eq. (1) becomes

A ~EFD = −∂
~EFD

∂t
, (2)

where ~EFD ∈ R
n is the vector storing the electric field components on the edges

of the grid and n is the number of edges. For more details see [21].
The system of partial differential equations is now approximated by a system

of ordinary differential equations, which can be solved either explicitly by also
discretizing the time variable and using a time stepping scheme, or implicitly
by an Ansatz function. In the time stepping approach a full space solution
is required at every time step. The steps need to be small enough to suffice
the Courant criteria [22]. In diffusive problems, only small changes occur at
late times, therefore transients are commonly represented in a logarithmic time
space. But time steps do not increase logarithmically such that the transients
become oversampled for late times. Implicit methods, where the solution does
not depend on the full space solution of any previous time, avoid this problem.
The exponential Ansatz function was chosen as described in [11] and [21]:

~EFD
Ansatz = exp(−tA) ~EFD

0 =
n
∑

j=1

~zjexp(−tλj)~zTj ~EFD
0 . (3)
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In eq. 3, λj ∈ R are the eigenvalues, and ~zj ∈ R
n are the eigenvectors ofA. Since

A is a large matrix, computation of the eigenpairs is very expensive and memory
consuming. Therefore, A is approximated by the Ritz matrix H ∈ R

k×k :

H = QTAQ. (4)

where Q = [~q0, . . . , ~qk−1] ∈ R
n×k is a subspace projection of dimension k. Ritz-

values and Ritz-vectors of matrix H are denoted by θj ∈ R and ~ψj ∈ R
k,

(j = 0, . . . , k − 1), respectively, and satisfy H~ψj = θj ~ψj . The Ritz-values θj
approximate the eigenvalues of A and the vectors Q~ψj in turn approximate
corresponding eigenvectors. Then eq. (3) becomes the Galerkin approximation
[23], in other words the solution is approximated by a superposition of weighted
base functions:

exp(−tA) ~EFD
0 ≈

k−1
∑

j=0

Q~ψjexp(−tθj)~ψT
j Q

T ~EFD
0 = ~EFD

Galerkin (5)

Since k ≪ n the problem can be solved with much lower computational cost.
Two classes of algorithms, namely the Polynomial and Rational Krylov subspace
methods, are commonly used to define the subspaces related to Q.

2.3. The Polynomial Krylov Subspace Method

Since A is symmetric, Q (eq. 4) can be evaluated by the Spectral Lanczos
Decomposition Method (SLDM) [24, 25].
For the approximating subspace one may choose a polynomial Krylov subspace
[26], which is defined as:

Kk
poly(A, ~q0) = span(A0~q0,A

1~q0,A
2~q0, . . . ,A

k−1~q0) (6)

where the vectors of the spanning set are called Krylov vectors and the matrix
composed of those vectors as columns is called the Krylov matrix. The vector
~q0 ∈ R

n can be chosen as an arbitrary vector and we set ~q0 = ~EFD
0 /‖ ~EFD

0 ‖. An
elegant and clear explanation, why Krylov spaces are so powerful for approxi-
mating eigenspaces is given in [27].
A Gram-Schmidt-orthogonalization of eq.6 can be found by the recursion for-
mula

~q
′

j+1 = A~qj − (~qTj A~qj)~qj − (~qTj−1A~qj)~qj−1 (7)

which can be understood by Fig. 1.
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βj−1 = ~qTj−1A~qj

~qj

~qj+1

A~qj = ~̂qj+1

~qj−1

αj = ~qTj A~qj

‖~q
′ j
+
1
‖
=
~qT j

+
1
A
~q j

=
β
j

Figure 1: Graphical visualization of Gram-Schmidt-orthogonalization step in SLDM.

New Krylov-vector A~qj gets orthonormalized to previous, orthonormalized Krylov-vectors

~q0, . . . , ~qj .

Spanning a new Krylov-vector ~̂qj+1 := A~qj and (scalar) multiplying it by

~qj gives the projection of ~̂qj+1 on ~qj . We define it as αj = ~qTj A~qj , such that
A~qj − αj~qj becomes orthogonal to ~qj , because ‖~qj‖ = 1. In the same way,

~̂qj+1 can be orthogonalized to ~qi−1 with βj−1 = ~qTj−1A~qj resulting in eq. (7).

Normalizing gives ~qj+1 = ~q
′

j+1/‖~q
′

j+1‖. The norm ‖~q ′

j+1‖ is the projection

of ~̂qj+1 on ~qj+1 such that ‖~q ′

j+1‖ = ~qTj+1A~qj = βj (it can be shown that

~qTj+1A~qj = ~qTj A~qj+1).
Equation (7) can be written in matrix notation as AQ ≈ QH, where H is
a tridiagonal matrix with (αj , j = 0, . . . , k − 1) on the main diagonal, and

(βj , j = 0, . . . , k − 2) on the sub- and super-diagonal. We set β0 =
√

‖A~q0‖2 − α2
0,

hence this guaranties orthonormality of ~q0 and ~q1. The Ritz approximation of
A is then given by QHQT , and Q = [~q0, . . . , ~qk−1] is called Lanczos base.

2.4. The Rational Krylov Subspace Method

In [27] Ruhe showed, that the optimal subspace projection to approximate
eigenspaces is the rational Krylov subspace (RKS)

Kk
rat(A, ~q0, ~s) = span







(A− s1I)
−1~q0, . . . ,

k
∏

j=1

(A− sjI)
−1~q0







. (8)

The corresponding RKS-algorithm is similar to the Polynomial Lanczos Algo-
rithm. However, instead of spanning the Krylov vectors by matrix vector mul-
tiplications, they are found by computing the rational coefficient (A− sjI)

−1~q0
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with a linear solver, for a given set of poles ~s ∈ R
k.

Most RKS-algorithms differ in the way of computing these poles. An overview
for different pole selection strategies is given in [28]. The necessary dimension
k strongly depends on an optimal choice of these strategies.
In [29] it is stated that the error of the approximation in eq. (5) satisfies the
inequality

√

∫

∞

0

‖ ~EFD
Ansatz − ~EFD

Galerkin‖2dt ≤
√

2

π
c min
λ1,...,λk

maxλ∈[λmin,λmax] | rk(λ) |
mins∈iR∪∞ | rk(s) |

(9)

with ~EFD
Ansatz and ~EFD

Galerkin from eq. (3) and eq. (5), respectively. The variables
c and rj are:

c =

√

∫ +i∞

−i∞

∣

∣

∣

∣

1

λmin + z

∣

∣

∣

∣

2

· | dz |, rj(z) =

j
∏

l=1

z − λl
z + sl

(10)

and j being the current Krylov-iteration (j = 2, . . . , k − 1), s1 and s2 are com-
puted by eq.(12). Here, λ0, . . . , λj are the eigenvalues of the Ritz approximation
of the current iteration (Hj = QjAQT

j with Qj = [~q0, . . . , ~qj ]). The approxi-
mation error of eq. (5), which depends on the choice of poles ~s becomes small
for a choice of poles, that minimizes the right hand side of eq. (9). It can be
shown ([16]), that the poles become real when A is symmetric. Then eq. (9)
simplifies, such that the poles can recursively be found by

sj+1 = argmax
s∈[sj ,s2]

1

| rj(s) |
(11)

As the initial search interval we choose [λmin, λmax], since all poles lie within
this interval. We find this interval using the Gershgorin circle theorem [30], such
that

s1 = λmin =
π2

h2max · σmax

, s2 = λmax = ‖A‖∞ (12)

with ‖ · ‖∞ being the infinity norm, hmax being the maximum size of the model
domain and σmax being the maximum conductivity. The Gershgorin cycle is
dependent on the choice of a diagonal element. For s2, the row of A with
the largest diagonal element has been chosen, and for s1, the smallest possible
diagonal element.

3. Implementation

We describe the implementation of the SLDM (Section 3.1) and RKSM (Sec-
tion 3.2) separately, to elucidate the differences. The implementation of the
Conjugate Gradient (CG) algorithm, required for RKSM, and its difficulties in
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preconditioning will be explained in section 3.2.1, because it constituted the
highest run-time in RKSM.
To obtain the system matrix A, the operator ∇ × ∇ × (µσ)−1 is discretized.
This discretization is described in [19] and will not be explained here.

3.1. Implementation of SLDM on GPU

We give a short account of the SLDM implementation with details to be
found in [19].
Corresponding to eq. (7), the SLDM can be written as pseudo code. The matrix
Q changes size such that Qj ∈ R

n×j .

Algorithm SLDM Given: A, ~EFD
0 , k

1. ~q0 = ~EFD
0 /‖ ~EFD

0 ‖, Q1 = ~q0
2.a ~̂q1 = A~q0

2.b α0 = ~qT0 · ~̂q1, β0 =

√

~̂qT1 · ~̂q1 − α2
0

2.c ~q1 = (~̂q1 − α0~q0)/β0
2.d Q2 = [Q1 ~q1]
3. for j = 1, . . . , k − 2
3.a ~̂qj+1 = A~qj
3.b αj = ~qTj · ~̂qj+1

3.c βj =
√

‖~̂qj+1‖2 − α2
j − β2

j−1 (Pythagoras in Fig. 1)

3.d ~qj+1 = (~̂qj+1 − αj~qj − βj−1~qj−1)/βj
3.e Qj+2 = [Qj+1 ~qj+1]

end

In step 1., the normalized initial E-field ~EFD
0 is used as initial vector ~q0

of the Krylov subspace. The second step is needed to initialize the following
iteration, which is implemented as a loop in step 3. In 3.a the next Krylov
vector is spanned by a sparse matrix-vector multiplication. This step constitutes
the computationally most expensive part of the whole SLDM. Steps 3.b to 3.d
require two vector-vector products as well as several scalar-vector products and
additions, which are all computationally cheap. Step 3.d performs the Gram-
Schmidt orthonormalization, 3.e appends the orthonormal Krylov vectors onto
the columns of Q.
The handling of sparse matrix-vector mulitplications (SpMV) on GPUs, like in
steps 2a and 3a (A~qj), is a current research topic by itself (e.g. [31]). The
computational run-times depend on the access to computer memory, that in
turn is strongly affected by the way sparse matrices are stored. We use the
ELL format (named after ELLPACK [32]). It will be explained by the following
example:





1 0 4 0
0 0 7 3
6 4 0 1





︸ ︷︷ ︸

sparse matrix

⇒





1 3 ∗
3 4 ∗
1 2 4





︸ ︷︷ ︸

column indices

,





1 4 ∗
7 3 ∗
6 4 1





︸ ︷︷ ︸

values

(13)
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A sparse matrix is decomposed into a matrix storing integers of column indices in
the same row as in the original matrix and a matrix of floating point numbers,
storing the actual values of the sparse matrix. So the first row of the index
matrix contains 1 and 3, because the non-zero values of the sparse matrix,
namely 1 and 4, are in the first and third column. The non-zero elements are
stored in the matrix of floating point values. The ELL format is appropriate,
since every thread in the SpMV operation has only to deal with one row and
can sum up the elements of one row. However, the vector with which the matrix
is multiplied is problematic. The column index in every thread equals the index
of vector elements. Every thread, of every streaming-processor, has access to
those elements. Therefore, this vector has to remain in global memory, which
typically has a higher latency.

3.2. Implementation of RKSM on GPU

In principle, the RKS-algorithm is similar to the Polynomial Lanczos algo-
rithm, but instead of spanning the Krylov vectors by matrix-vector multiplica-
tions, they are spanned by shifting and inverting A (see eq. (8)). The matrix
Q is successively populated with column vectors ~qj such that Qj ∈ R

n×j | j =
1, . . . , k and Qj = [Qj−1 ~qj ].

Algorithm RKS Given: A, ~EFD
0 , k

1. compute initial poles s1, s2 ∈ R (see. eq. (12))

2.a ~q0 = ~EFD
0 /‖ ~EFD

0 ‖
2.b ~q

′

1 = (A− s1I)
−1~q0, ~q1 = ~q

′

1 /‖~q
′

1 ‖, Q1 = ~q1
3. for j = 1, . . . , k − 1
3.a compute next pole sj+1 by eq. (11) (exept s2, because of step 1.)

3.b ~̂qj+1 = (A− sj+1I)
−1~qj

3.c for l = 1, . . . , j (orthogonalization ~̂qj+1 → ~q
′

j+1)

~̂qj+1 = ~̂qj+1 − ~ql(~̂q
T
j+1~ql)

end

~q
′

j+1 = ~̂qj+1

3.d ~qj+1 = ~q
′

j+1/‖~q
′

j+1‖, Qj+1 = [Qj ~qj+1]
end

The initial poles in step 1. are computed according to eq. (12). The first Krylov
vector is computed by shifting and inverting A with the first pole s1 and mul-
tiplying this inverse matrix with ~EFD

0 (step 2.b). This can be achieved with a
linear solver. We choose a linear solver based on the Conjugate Gradient (CG)
algorithm, which we have implemented on the GPU (see below). Step 3. loops
over the remaining k− 1 dimensions of the Krylov subspace. In every iteration,
a new pole is first computed with eq. (11). To achieve this, the current inter-
val [sj , s2] is partitioned in a finite sequence sj = ξ1 < ξ2 < · · · < ξ1000 = s2
with 1000 test-poles, for which eq. (11) is evaluated. The test pole ξl, which
maximizes eq. (11) is chosen as the next pole sj+1. For unknown eigenvalues,
those of the current Ritz matrix, which is calculated from Hj = QjAQT

j with
Qj = [~qo, . . . , ~qj ], are used for eq. (11). For further details see [15], [16].
Generally, it is advisable to reduce memory transfer between the graphics card
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and CPU domain and, thus, to implement all steps of an algorithm on a GPU.
Data are copied to the GPU before initializing the RKS algorithm. However, in
our case we had to apply the serial eigensolver to Hj , which is copied onto the
CPU memory every iteration, because a full eigensolver is difficult to implement
on GPU. Therefore, further improvements of our GPU implementation are still
possible.
In step 3.b, similarly to initial step 2.b, the next Krylov vector is spanned by
using a CG algorithm. Step 3.b is the computationally most expensive part
of the RKS-algorithm. The orthogonalization in step 3.c differs significantly
from SLDM. Since the RKS-algorithm does not provide a tridiagonal Ritz ap-
proximation, every new Krylov vector has to be orthogonalized to the complete
previous basis. However, the Krylov dimension of the RKS-algorithm is much
smaller than for SLDM. Therefore, the application of a serial, dense eigensolver
on the Ritz matrix does not cause a significant performance loss. In 3.d, the
current Krylov vector is normalized and concatenated with Q.

3.2.1. Implementation of Conjugate Gradient Method on GPU

The Conjugate Gradient (CG) method is commonly used as a linear solver
for large, sparse, symmetric, positive-definite matrices. However, since it is the
computationally most expensive part of our RKS implementation (steps 2.b and
3.b of Alg. RKS), the CG algorithm and its parallelization is described in this
publication, mainly focusing on the performance aspects.
Our implementation follows the description in Section 10.2.6 of [33]. We have
implemented it such that data on the graphics card are passed to the function
without memory transfer. Vector additions and scalar products were imple-
mented with the CUBLAS library, the blas-library offered by Nvidia CUDA.
The computationally most expensive part is the SpMV operation. It was im-
plemented with the CUSPARSE library, offered by Nvidia as well.
Since the condition number of matrix A − sjI can be large (up to 1013) it is
important to use the preconditioned CG method. However, no appropriate
preconditioner is readily available on GPU. Implementation of state-of-the-art
preconditioners, such as ones based on Algebraic Multigrid (AMG) methods
[34], on GPU is a difficult task, and we leave such work out of scope of this
paper. Finding the best preconditioner for our problem and implementing it
on GPU will be a subject of our future research. For this paper we therefore
resorted to invert our matrices without a preconditioner, obtaining good results
as shown in the next section.
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4. Numerical tests of accuracy and run-time

We demonstrate the applicability and improvements of the code by a simple
1D model. First, we investigate the accuracy of the code in dependence of
conductivity contrasts, Krylov dimension and CG adjustment (Section 4.1). For
proper parameters found in this way, run-time is benchmarked (Section 4.3) and
compared with run-times of the SLDM based code and the sldmem code on and
old and new graphics card.

4.1. Numerical Accuracy

As discussed in the previous section, we omit preconditioning. We now
show, that low run-times and accurate solutions can be achieved anyway by an
appropriate choice of parameters.
Higher Krylov-dimensions (NKrylov) and a high value for the maximum number
of iterations for CG (Nmax

CG ) increase the accuracy, yet also the run-time. The
required Nmax

CG is dependent on the condition number and therefore on the
conductivity contrasts within the model.

✷✽♠

✹✻♠

❚❳ ❘❳

✶✵✵♠

✇❛t❡r ✭✵✳✸ ✡♠✮

s❡❞✐♠❡♥ts ✭✶✳✵ ✡♠✮

❧❛②❡r ✭✵✳✵✶ t♦ ✶✵✵ ✡♠✮

❤❛❧❢ s♣❛❝❡ ✭✶✳✵ ✡♠✮

Figure 2: Model used for benchmarks. Two inline, horizontal dipoles (TX: transmitter, RX:

receiver) are placed on a homogeneous seafloor (1Ωm), in which an anomalous layer of varying

resistivity (0.01− 100Ωm) and a thickness of 46m is embedded at a depth of 28m.

We begin with an example 1D-model which includes a layer of varying re-
sistivity from 0.01 to 100 Ωm (Fig. 2). For the marine case, those values are
realistic. The water depth was set to a large value (1000 m), such that problems
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with modeling the conductivity contrast at the air-water interface, as described
in [19], can be neglected. The source-receiver offset was set to 100m. An
anomalous layer is hosted in an 1Ωm half space (typical for salt water saturated
sediments) at a depth from 28m to 74m (values chosen according to cell spac-
ing). This model is discretized on a rectilinear grid with a polynomial cell size
increase. Its size is 87× 87× 41.
We chose a 1D model, such that the response can easily be verified by the
quasi analytic solution of a 1D code. To compare the results, we computed
the χ2-misfit, where the differences between 1D- and 3D-results are weighted
with an appropriate error. Over-weighting of small amplitudes at early times
was avoided by choosing an error curve proportional to t−

1

2 [35]. A source nor-
malized error level of 10−11V/Am2 at 1s was chosen according to the CSEM
acquisition during the WND project [7].
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Figure 3: Left: χ2 misfit between 3D and 1D responses for an anomalous layer with resistivities

between 0.01 to 100Ωm (compare Fig. 2) and a Krylov dimension from 10 to 28. The maximum

value of CG-iterations was set to 5000. Right: Corresponding transients for the 1D model

with anomalous layer resistivities of 0.01, 1.0 and 100Ωm, plotted with the same color as the

corresponding dot in the left plot. Black lines show the associated responses calculated with

a 1D code.

First, we check the influence of NKrylov on the numerical accuracy for differ-
ent resistivity contrasts between the layer and halfspace as depicted in Fig. 3.
To focus on the influence of NKrylov alone we fixed the value for Nmax

CG to a
high value from 5000 down to 100 in this test. It can easily be seen, that the
accuracy does not increase anymore for the NKrylov above 22 for all models.
For low resistivity contrasts, between 0.1 to 10 Ωm, a dimension of even 14 is
sufficient. For all following tests, the NKrylov was set to a constant value 22.
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Figure 4: χ2-misfit for a maximum number of CG iterations (Nmax

CG
) from 100 to 2000 and a

resistive layer from 0.01 to 100Ωm. Krylov dimension was set constant to 22. A χ2 > 0.07 is

depicted in yellow to achieve a colorscale identical to Fig.3.

In our next experiment, we test the influence of Nmax
CG on the numerical

accuracy. The resulting χ2-misfit is depicted in Fig. 4. Its sprinkled pattern is
created by a non-linear convergence of the two transients on each other. Misfits
larger than 0.07 were plotted in yellow as well, to make the misfit comparable
with Fig.3. Therefore, the misfits for very high Nmax

CG = 2000 look identical to
the misfits in Fig.3 for high Krylov numbers and are the lowest errors achiev-
able by adjusting those two parameters. Reducing Nmax

CG first causes increasing
mistakes for high resistors, such that Nmax

CG should not be less than 1000. Low
conductivity contrasts, like resistors around 1Ωm, are numerically the most well
conditioned such that Nmax

CG ≈ 500 gives accurate results. High conducters seem
to behave much more tolerant numerically than high resistors, for both, Nmax

CG

as well as NKrylov.
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4.2. 3D comparison

To show that the code also works in 3D, we compared the solution for a 3D
model with the solution of the code sldmem [11].
The 3D model, depicted in Fig.5 left, is just replaced by a body with a horizontal
extension of100m× 100m with a resistivity of 20Ωm.
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sldmem 3D
rksmem 3D
1D

Figure 5: Left: 3D model used for comparison. It is differs from the previous 1D model, only

by replacing the resistive layer by a body with a horizontal extension of 100m x 100m with a

resistivity of 20Ohmm. Right: Comparison of our code rksmem (red, dashed) with sldmem

(blue, solid) for the 3D model. The analytic transient for the 1D case with a 20Ωm resistive

layer (black, solid) reveals the 3D effect.

The grid used for the calculations with our code is identical to the one used
in the previous chapter. The grid for sldmem has been chosen according to its
own requirements to give stable results. Fig.5 right, depicts the transients for
both codes. In general, they look very similar. Except for early times, results
fit on each other. Changing the resistivity of the body still gives overlapping
transients, we just showed one case as a representative example.

4.3. Total run-times

Finally, the most crucial parameters determining run-time are the size of the
system matrix A and the maximum number of CG iterations (Nmax

CG ). Run-
times are benchmarked on an Nvidia GeForce GTX TITAN Black, CUDA ver-
sion 7.0, and are depicted in Fig. 6.
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Figure 6: Run-times for a ill-conditioned model (worst case, highest run-times) for different

sizes of system matrix A and maxima of CG-iterations.

Here, run-times are shown for the worst case scenario with a layer resistivity
of 100Ωm. The sufficient range of Nmax

CG , found in section 4.1 is marked by a
red frame. Run-times for realistic model sizes are between 2 and 10 seconds or
even less for less resistive layers.
To evaluate the enhancements of the rksmem code described herein, run-times
for four different codes have been compared:
1. rksmem on a new GeForce GTX Titan Black graphics card,
2. rksmem on an old GeForce GTX275 graphics card,
3. the GPU parallelized code temddd GPU based on SLDM ([19]) and
4. the CPU-optimized code sldmem ([11])
In this section transients for one source and one receiver are computed. However,
we show in the next section, that the code rksmem offers great benefits when
computations of fields at many grid locations are required. The code sldmem

is described in [11] and its run-times are measured on one core of an Intel Core

i7 CPU 860 with 2.80GHz. Its runtime was optimized for CPUs and compiled
with a fast intel compiler, but it is out-of-date. We used it, because we have no
access to other expensive state of the art codes from industry and also because
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it serves as a benchmark to our previous study. We ran it on one core. The code
temddd GPU only runs on old graphics cards, because it uses the commercial
CULA library that is no longer supported on new GPU-architectures.
For calculations in this experiment, the number of cells in x/y-direction is var-
ied, whereas all other parameters are kept constant. For SLDM-based codes,
a Krylov dimension of 2000 (reasonable values were validated in [19]) and for
RKS-based codes a Krylov dimension of 20 and Nmax

CG is used. The model is an
1Ωm half space with a 720m thick water layer above. We use an inline configu-
ration with an offset of 100m. This model is chosen for the purpose to compare
the code’s run-times and therefore is kept as simple as possible.
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Figure 7: Top: Total run-times of sldmem (black), temddd GPU on a GPU GTX275 (green),

rksmem on GTX275 (blue) and rksmem on Titan (red) in dependence of model sizes in x/y-

direction. Krylov dimension was set to 2000 for SLDM based codes and to 20 for RKSM

based codes. Bottom: Speedups of the codes with respect to each other, to reveal the impact

of different algorithms and architectures on run-time.
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The results are shown in Fig. 7. The run-time of the serial code sldmem (top
Fig., black, solid) ranges from 60 to 300 seconds and is the highest. A GPU
parallelization of the same algorithm was realized with temddd GPU (top Fig.,
green, solid). Its run-times vary from 27 to 70 seconds, which is about four
times faster. Using the RKSM instead of SLDM reduces the run-times to 4 -
10 seconds (top Fig., blue, solid) on the same graphics card (GTX 275). This
reveals the speedup by algorithm alone (Bottom Fig., red, dotted). Running it
on a new GeForce Titan Black card gives a run-time of 1.4 to 3.7 seconds (Top
Fig., red, solid). The speedup of rksmem on a GeForce Titan Black, compared
to a GeForce GTX 275 is constant at a factor of about 3 (Bottom Fig., green,
solid). It reveals the improvement of the graphics cards alone. It is faster, yet
lower, than a factor of 10 speedup for GPUs designed for scientific computa-
tions, as promised by Nvidia. A possible explanation for this discrepancy would
be overload. The total speedup of the new code on a new card over the old
GPU parallelized code is constant around 12 (Bottom Fig., blue dotted). It is
likely the product of the speedups of hardware and algorithm. Compared to the
CPU code, the speedup is between 40 and 70 (Bottom Fig., blue, solid).
Please note that a 1Ωm half space is used. Therefore, the low conductivity con-
trasts cause a good condition, resulting in a better performance of the RKSM.
Run-times of the worst case scenario in Fig. 6 are higher, but would also lead
to higher run-times for polynomial codes.

4.3.1. Run-times for fullspace solutions and applicability for inversion

One main application of forward codes is its integration as part of inversion
codes. Gauss-Newton type schemes are very common, but require the compu-
tation of the Jacobian matrix. This is mostly done by the adjoint method [36],
which requires the fullspace solution, meaning the computation of all electric
field components for all cells of the grid. This number can reach up to several
hundreds of thousands, such that the back projection of the Ritz vectors and
the Galerkin Ansatz of eq. (5) become very expensive. Using a rational Lanczos
base reduces those costs of eq. (5) drastically, because k ≈ 22 is much smaller
for the RKSM as compared to k = 2000 for polynomial methods.
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Figure 8: Left: run-time of temddd GPU on a GTX275 (red) and rksmem on a Titan (blue)

for up to 10000 receivers. Right: Factor of speedup for up to 10000 receivers.

Fig. 8 left shows the run-times for both, the SLDM on GeForce GTX275

and RKSM (on GeForce Titan Black) based codes. For both codes, run-times
increase with increasing number of computed electric field components. The
speedup (right) of rksmem over temddd GPU increases with the number of
receivers and reaches a value of around 36 for a 1Ωm half space model of size of
54 × 54 × 50 cells, Nkry = 22, Nmax

CG = 500 and 10000 receivers. The run-time
does not depend on the receivers location, such that they were chosen arbitrarily.
The increasing speedup reveals that RKSM methods are more suitable for the
adjoint method, rather than SLDM. The kink in the speedup at 9500 is caused
by a decrease of runtime in the code TEMDDD GPU and seems to be related
to internal factors within the CULA library, which are not accessible to us.
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5. Discussion and Conclusion

We have shown that by both implementing a new algorithm (rational- in-
stead of polynomial Krylov method), as well as using new graphics cards reduces
the run-time significantly.
The computationally expensive operations for both algorithms, are the sparse
matrix times vector multiplications. In the polynomial method, Krylov vectors
are spanned, as defined, by a matrix times vector operation. In the rational,
every Krylov vector is computed by solving a linear system with Conjugate Gra-
dients, based on matrix vector multiplications as well. A necessary Nmax

CG of up
to 1000 was mentioned, but the required number of matrix/vector operations
in the rational method is always lower than the polynomial method. Only one
(the second) Krylov vector requires so many iterations, all other vectors require
less than 10 iterations, to achieve the required tolerance. This is the reason,
why preconditioning is not so crucial.
A second reason that makes the RKSM faster is the much smaller eigenproblem
to solve, to determine the Ritz-values from the Ritz matrix. Where a 2000×2000
matrix has to be solved for SLDM, eigenpairs of a 22 × 22 matrix have to be
found for the RKSM. As seen in Fig. 7, the code becomes a factor of 7 faster
by using RKSM instead of SLDM.
We also investigated the speedup related to changes in hardware architecture, by
benchmarking the code on old and new graphics cards. The old one, a GeForce

GTX275 was launched in 2009 and is based on a tesla processor-architecture,
designed for gaming. This means, that scientific computations on this device
are only supported by slow emulation of double precision (IEEE754). The new
GeForce TITAN Black on the other hand, was launched in 2014 and is based
on the kepler processor-architecture, supporting scientific computations. Until
now, it is the last GeForce card supporting double precision, but tesla cards,
designed for clusters, still support double precision.
In this paper we showed that the code was running faster by a factor of 3 on the
GeForce TITAN Black than on the GeForce GTX275 card. Nvidia advertised
a speedup of 10, but without overload. Unlike CPU implementations, we can
expect that hardware for our implementation will become faster in future. CPU
frequencies did not increase during the last 10 years, but computational power
of GPUs is still growing.
We demonstrated the applicability of the code for different conductivity con-
trasts. High conductivity contrasts lead to poor conditioning of the system
matrix, but fast and accurate results could be computed anyway for realistic
models. Preconditioning could be an improvement and will be part of future
work. We compred the results of our code with results of an external 3D code
for a 3D model and achieved similar results.
Future works will focus on the application of rational Krylov methods for inver-
sion. We showed that the computation of the full space solution, required for
an adjoint Jacobian construction, can be computed much more efficiently with
the RKS method, rather than SLDM.
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Sensitivity calculation for marine controlled source

electromagnetics in time domain by model order

reduction in the rational Krylov subspace

1. Introduction

Marine Controlled Source Electromagnetics (CSEM) is an exploration method
that allows reconstruction of the spatial conductivity distribution in the sub
seafloor. Typical exploration targets that are characterized by a resistivity
anomaly are hydrocarbons like gas and oil [1], gas hydrates [2], complex salt
diapirs [3] and massive sulphide deposits [4]. Most common are surveys, where
the source is towed behind a ship and the receivers are placed on the seafloor
[5] or being mounted in a streamer moving along the seafloor [6]. In our system,
dipole sources (Tx) and receivers (Rx) are placed on the seafloor [7] and trans-
mit a Heaviside function in time-domain. Because survey design, as well as the
nature of the geological targets (gas hydrates, sulphide deposits), we have to
deal with 3D data sets.
Interpretation of the data is normally done by perturbing a geologic model and
3D forward modeling, until the synthetic and observed data fit, or by inversion.
Because of high run times of the 3D modeling codes, global or statistical ap-
proaches are not appropriate. Gauss Newton ([8]) based 3D inversion of CSEM
are usually preferred since they are less susceptible to potentially rough ob-
jective functions. However, it is challenging to compute the required Jacobian
numerically stable and fast. In general, there exist three approaches: brute
force, adjoint method and the model order reduction method. The brute force
method calculates the Jacobian by differencing forward calculations for every
model parameter. This takes enormous computation time and it is also not very
accurate. The adjoint method is most common. It requires one full space solu-
tion for every source/receiver pair and is therefore much faster than the brute
force method. However, it also has problems with accuracy, because of a strong
approximation within the method. The approach we have chosen is the model
order reduction (MOR) of [9], that compress the Jacobian into rational Krylov
subspaces. The method is quite new and not much experience has been gained
yet about benefits and drawbacks of this approach.
In this publication, we describe the implementation of the MOR-Jacobi of [9].
It is based on the rational Krylov subspace forward code described in [10], par-
allelized on Graphics processing units (GPU). First we explain the theory and
subsequently the implementation on GPUs and the grid design. In the end,
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we show some numerical tests and validate the approach by comparison with
brute force Jacobians. Finally, we show an application example by computing
the sensitivities of a realistic resistivity model using the Tx,Rx geometry of a
real data set.

2. Theory

To motivate the Jacobian computation, a basic introduction to inversion
theory is given in 2.1. The theory of the here described sensitivity calculation
approach is based on the theory of the forward problem. Therefore, it is shortly
described 2.2. The Jacobian computation by the model reduction approach is
explained in 2.3.

Conventions:

The letters j, k, n are used for integers, scalars are denoted by small letters like
t, α, . . . , vectors are indicated by an arrow above: ~q, ~E and matrices are all
denoted in bold, capital letter like: A,Q.

2.1. Fundamentals of inversion

The fundamental idea of inversion theory is to minimize an objective func-
tion, for example:

Φ = ‖~dobs − ~dmod(~m)‖+ λΦmod (1)

with ~dobs being the observed data, ~dmod are modeled by a forward code for
a given model ~m ∈ Ω where Ω is a Hilbert space representing all geologically
reasonable models. Here, it will be a model of conductivity values ~m = ~σ =
[σ1, . . . , σNmod

]. Because less data than model parameters are normally avail-
able in geophysics, additional constraints have to be included by using a model
objective function Φmod, weighted by a Lagrange parameter λ. The given model
~m has to be modified, until Φ reaches its global minimum and the model ex-
plains best the data. It is impossible to know Φ for all ~m ∈ Ω, but Φ can be
locally approximated by a Taylor series expansion:

Φ(~m+ δ ~m) ≈ Φ(m) +∇Φ(~m)δ ~m+
1

2
∇2Φ(~m)δ ~m2 (2)

withH = ∇2Φ(~m) being the Hessian matrix and ~g = ∇Φ(~m) being the gradient.
In order to find the global minimum of Eq. (1), we set ∇Φ(~m + δ ~m) = 0 such
that

Hδ ~m = −~g (3)

with δ ~m = ~mi+1 − ~mi. The global minimum can be found iteratively:

~mi+1 = ~mi −H−1
i ~gi. (4)

2



This approach is called the Newton’s Method. An approximation of H ≈ JTJ

defines the Gauss-Newton Method, where Jij =
∂~di(~m)
∂mj

.

Calculation of the Jacobian, also called sensitivity, is computationally most
expensive step in inversion. The most simple way to compute a Jacobian is the
brute force or finite difference Method:

J =
∂ ~d

∂ ~m
≈
~d(~m+∆~m)− ~d(~m)

∆~m
(5)

It is problematic for two reasons. A small perturbation in one model parameter
changes the modeled data only slightly and is therefore numerically not robust.
Furthermore, a forward solution has to be computed for every model parameter.
This can be hundred thousands, resulting in enormous computer run times.
Most common is the adjoint Green’s Functions approach [11]. The Greens
functions are obtained by a full space solution of the forward solver which is
then convolved with a background field. It reduces the number of forward
calculations from the model size down to the number of transmitters. But it
also has problems with accuracy.
We have chosen the model reduction method of [9]. This will be explained and
demonstrated in the following.

2.2. The forward problem

The forward problem is not the focus of this publication. Therefore, we give
only a very brief explanation, more details are found in [10].
The physics of marine CSEM is described by the electromagnetic diffusion equa-
tion:

~∇× ~∇× (σµ)−1 ~E(~r, t) = −∂
~E(~r, t)

∂t
(6)

with ~E being the electric field, σ the isotropic, electrical conductivity and µ the
magnetic permeability. The spatial operators are discretized by a finite differ-
ence (FD) Yee-scheme [12] as described in [13], such that ~∇× ~∇× (σµ)−1 → A ∈ R

n×n

and A being symmetric [14]. This reduces the partial differential equation
(PDE) Eq. (6) to an ordinary differential equation (ODE):

A ~EFD = −∂
~EFD

∂t
, (7)

Instead of discretizing time and solving the differential equation by time step-
ping, the ODE is solved by an exponential Ansatz function as described in [15]:

~EFD
Ansatz = exp(−tA) ~EFD

0 =

n
∑

j=1

~zjexp(−tλj)~zTj ~EFD
0 . (8)

It is spectrally decomposed, such that λj and ~zj are the eigenvalues and eigen-
vectors of A. Because of the size n of A, it is compressed in a subspace:

H = QTAQ. (9)
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with H ∈ R
Nk×Nk being the Ritz matrix and Q = [~q 0, . . . , ~qNk−1] ∈ R

n×Nk

being the orthonormal subspace projection matrix. The eigenpairs θi and ~ψk

of H, for which H~ψi = θ ~ψi for i = 1, . . . , Nk, are called Ritz-values and Ritz-
vectors. Ritz-values approximate the eigenvalues of A and the back projection
of the Ritz vectors Q~ψi approximate the eigenvectors of A. Inserting the Ritz-
pairs into Eq. (8) gives the Galerkin approximation:

exp(−tA) ~EFD
0 ≈

Nk−1
∑

i=0

Q~ψiexp(−tθi)~ψT
i Q

T ~EFD
0 (10)

We use as a compressing subspace, the Rational Krylov [16] subspace:

KNk

rat(A, ~q
0, ~s) = span

{

(A− s1I)
−1~q 0, . . . ,

Nk
∏

i=1

(A− siI)
−1~q 0

}

. (11)

It is spanned by the system matrix A, an initial vector ~q 0 and a set of poles
~s = [s0, . . . , sNk

]. Orthonormalization of the spanning set gives the column
vectors of Q. A pole selection strategy is explained in [17]. They can be found
by the recursion:

sj+1 = argmax
s∈[sj ,s2]

1

| rj(s) |
, rj(z) =

j
∏

l=1

z − λl
z + sl

, j = 2, . . . , Nk (12)

Initial poles s1 and s2 are found by Gershgorin cycles [10] that give an upper
and lower bound of a matrix spectra. For λl, the Ritz values corresponding to
the ~q-vectors computed so far, are used.

2.3. Jacobian computation by model order reduction

The model order reduction is based on the idea that the Jacobian is, per
definition, the derivative of the forward solution for the given model parameters.
The Jacobian can be computed by deriving the Ansatz function Eq. (8) for
conductivity:

Jjl =
∂ ~Ejl

∂σ1,...,Nmod

=
∂

∂σ1,...,Nmod

~pjexp(−tA) ~EFD
0,l (13)

where j is the index of the receiver, l of the source, ~pj and ~pl are the canonical
vectors representing the receiver and source positions. Eq. (8) would give the

full space solution, if it is not multiplied by ~pj . We will set ~pl = ~E0,l in the
following.
Let us define the Lanczos vectors ~ξi = Q~ψi, i = 1, . . . , Nk, such that Eq. (13),
with the Galerkin approximation Eq. (10) becomes, by applying the product
and chain rules:

Jjl(t) =

Nk
∑

i=1

[

~p T
j

∂~ξi
∂σ

~ξ T
i ~pl + p T

j
~ξ T
i

∂~ξ T
i

∂σ

]

e−θit −
Nk
∑

i=1

~p T
j
~ξi~ξ

T
i ~plte

−θitk
∂θi
∂σ

(14)
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The canonical vectors ~pj and ~pl represent the receivers and sources locations,
respectively. This equation can be represented as a matrix-matrix multiplica-
tion:

Jjl = ET
jlBjl (15)

with Ejl ∈ R
2·Nk×Ntj being the time decomposition or Laplace transform of the

Jacobian

ET
jl =









e−θ1t1 . . . e−θNk
t1 t1e

−t1θNk . . . t1e
−t1θNk

...
. . .

...
...

. . .
...

e
−θ1tNtj . . . e

−θNk
tNtj tNtj

e
−tNtj

θNk . . . tNtj
e
−tNtj

θNk









(16)

and the spatial decomposition Bjl ∈ R
2·Nk×Nmod

Bjl =







βjl
11 . . . βjl

1,Nk
−ǫjl11 . . . −ǫjl1,Nk

...
. . .

...
...

. . .
...

βjl
Nm,1 . . . βjl

Nm,Nk
−ǫjlNm,1 . . . −ǫjlNm,Nk






(17)

we introduced βjl
im = ~pTj

(

∂~ξm
∂σi

~ξTm + ~ξm
∂~ξTm
∂σi

)

~pjll and ǫjlim = ~pTj
~ξm~ξ

T
m~pl

∂θm
∂σi

only to

make the matrix easier to read. An interesting feature of this approach is, that
the size of the Jacobian is compressed from size Nmod ×Ndata to two matrices
of sizes 2 ·Nk ×Ndata and 2 ·Nk ×Nmod.

2.3.1. Deriving Ritz values

Ritz values and Lanczos vectors are given by the Lanczos decomposition
mentioned in Section 2.2, yet we still need to determine their derivative. This
can be done with the help of the Rayleigh Quotient [18]:

r(~v,A) =
~vTA~v

~vT~v
(18)

gives, for ~v being an eigenvector of A, the corresponding eigenvalue. For ‖~v‖ =
1, the derivative of the Rayleigh Quotient is given by (after applying the product
rule twice):

r′ = (~vT )′A~v + ~vTA′~v + ~vTA~v′ (19)

Neglecting the first and the last terms, which is a strong assumption, inserting
Ritz values and Lanczos vectors gives

∂θm
∂σi

≈ ~ξTm
∂A

∂σi
~ξm (20)
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The derivative of the eigenvectors is explained by perturbation theory in [19].
Applying theirs approach to Ritz values and Lanczos vectors gives:

~pTl
∂~ξm
∂σi

=

Nk
∑

j=1,j 6=m

~ξ T
j

∂A
∂σi

~ξm

θm − θj
~p T
l
~ξj (21)

The derivation of the system matrix A can now be found by central finite
differences and perturbation of the inversion model

∂A

∂σi
≈ A([σ1, . . . , σi +∆σ, . . . , σNmod

]−A([σ1, . . . , σi −∆σ, . . . , σNmod
])

2∆σ
(22)

Setting Eq. (22) into Eq. (21) and Eq. (20), and setting Eq. (21) and Eq. (20)
into Eq. (16) and Eq. (17) gives the decomposed Jacobian.

2.3.2. Block Krylov Spaces

For problems with multiple source terms, the Block Krylov subspace is com-
putationally more efficient:

KNk

block = span{(A− s1I)
−1~q 0

1 , . . . , (A− s1I)
−1~q 0

Nb
, (23)

2
∏

j=1

(A− sjI)
−1~q 0

1 , . . . ,

2
∏

j=1

(A− sjI)
−1~q 0

Nb
(24)

... (25)

Nk
∏

j=1

(A− sjI)
−1~q 0

1 , . . . ,

Nk
∏

j=1

(A− sjI)
−1~q 0

Nb
} (26)

It allows to compute the E-field and Jacobian for multiple sources and receivers
with only one Krylov space. Replacing the Ansatz function by







E11(t) . . . E1,Nb
(t)

...
. . .

...
ENb,1(t) . . . ENb,Nb

(t)






=

n
∑

j=1

PT~zjexp(−tλj)~zTj P (27)

where the columns of P = [~p 1
TX . . . ~p Ntx

TX ~p 1
RX . . . ~p Nrx

RX ] store the canonical vec-
tors of source and receiver locations, gives the Block Forward solution. Thus,
the elements of the matrix on the left side of Eq. (27) represent the solutions for
different source/receiver pairs. The diagonal contains the solutions of coincident
positions. Nb is the sum of receivers and transmitters Nb = Nrx+Ntx. The pro-
jection matrixQ of Eq. (9) will consist of block matricesQblock = [Q̄1, . . . , Q̄Nk

].
The blocks are filled with Krylov vectors orthonormalized to all previous vectors
of the base such that

∏i

j=1(A − sjI)
−1~q 0

1 , . . . ,
∏i

j=1(A − sjI)
−1~q 0

Nb
yield the

vectors ~q i
1 , . . . , ~q

i
Nb

. The block matrices are filled such that Q̄i = [~q i
1 , . . . , ~q

i
Nb

].
Repeating the derivation of the Jacobian by using Eq. (27) instead of Eq. (8)
gives the Block Jacobian, where every block represents a Jacobian of a source/receiver
pair.
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3. Implementation

The code is described by the following items:

1. Grid generation (ch. 3.1)
2. Computation Block Rational Krylov Subspace (ch. 3.2)
3. Derivation of system matrix ∂A

∂σ
(ch. 3.2)

4. Computation derived Ritz-pairs (ch. 3.3)
5. fill E and B of Eq. (16) and Eq. (17) with Ritz-values/vectors and their

derivatives

A sensitivity calculation always includes a solver of the forward problem. We
describe the implementation of the Block Rational Krylov Subspace Method
(RKSM) in ch. 3.2. It is a modified version of the RKSM described in [10],
such that it computes the Block RKSM analog version. We have to deal with
two grids, one of the model to invert and a second grid to solve the forward
problem numerically accurate. To avoid confusion, we will call them inversion

grid and forward grid, former will henceforth contain the model parameters
σi, i = 1, . . . , Nmod of the previous chapters. We will still call them model pa-

rameters, they will always refer to σi of an inversion grid cell, never to a forward
grid cell in the following. Gridding and computation of ∂A

∂σ
, from which the Ja-

cobian is derived in Eq. (20) and Eq. (21), are described in 3.1. Deriving the
Ritz pairs is the computationally most expensive operation and is described in
3.3. Finally, all previously described steps are depicted in a flow chart in 3.4, to
understand how they interact for the Jacobian computation. Within all parts
of the implementation, we make vast use of GPU. The code was written in the
programming languages C and CUDA (Compute Unified Device Architecture)
of Nvidia.

3.1. Grid generation and derivation of ∂A
∂σ

A discretization of the inversion grid has to fulfill two requirements, the
cell’s sizes should depict the resolution and the number of model parameters
should be as low as possible for the sake of low run-times and computational
complexity. Diffusion problems in geophysics have a decreasing resolution with
depth, such that cell’s sizes can be increased with depth. For the inversion grid
we implement a quad-tree meshes as illustrated in Fig.1.
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Figure 1: The inversion grid is discretized by a quad-tree grid that allow increasing cell’s sizes

with depth to reduce number of model parameters.

At certain depths, four cells get merged together in horizontal direction and
reduce the number of model parameters to reduce run time.

This grid would not be stable enough to solve the forward problem, such that
a second grid has to be introduced. This grid is characterized by smaller cells
in the vicinity of Tx and Rx to achieve required numerical accuracies. It is a
rectilinear grid as described in [13]. The inversion grid has to be merged on the
forward grid by weighting the conductivities by the volumes of the intersecting
cells:

σm
fwd =

Ninv
∑

i=1

V m
fwd ∪ V i

inv

V m
fwd

σi
inv, m = 1, . . . , Nfwd (28)

with V m
fwd and V

i
inv being the volumes of them-th forward grid and i-th inversion

grid cell’s, respectively (here Ninv = Nmod).
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Figure 2: Top view of the rectilinear mesh for the forward problem (blue) and quad-tree-

inversion mesh (black), applied to the geometry of a real data set. Coordinates are in UTM,

red crosses indicate receivers-stations. Tx and Rx are not depicted.

The system matrixA is derived according to Eq. (22). Therefore, the projec-
tion Eq. (28) is applied to fill two meshes, one perturbed and one non-perturbed
mesh. For both, system matrices are generated and used for Eq. (22). The re-
sulting ∂A

∂σ
is very sparse, which has a favorable impact on run time.

The system matrix A is built on the forward grid, yet the derivative of A
with respect to an inversion grid cell is needed Eq. (22). This is achieved by
applying the projection Eq. (28) to obtain A for a perturbed and unperturbed
inversion grid cell.

3.2. Implementation of the Block Krylov Method on GPU

The Block-Krylov subspace is computed by modification of the Rational
Krylov subspace method as described in [10]. The latter spans a block Krylov
space as defined in Eq. (26) and orthonormalises it such that a Ritz approxima-
tion can be computed as described in Eq. (9).
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Input: A, Nk,

~q 0

i = ~pi, i = 1, . . . , Nb

copy A and

~q 0

0
, . . . , ~q 0

Nb
on GPU

j < Nk

compute pole sj Eq. (12)

shift As = (A − sjI)

solve ~̂q
j+1

i = A−1

s ~q
j
i by

CG for i = 1, . . . , Nb

orthonormalization

~̂q
j+1

i → ~q
j+1

i to all

previous vectors of Q

j++

Q̄j+1 = [~q j+1

1
, . . . , ~q

j+1

Nb
]

Qj = [Q̄1 | · · · | Q̄j+1]

H = QTAQ

copy H and Q on device

θ = λ(H), ~ξ = Q~z(H)

CPU

CUDA (kernels & APIs)

CUSPARSE

CUBLAS

Figure 3: Flowchart of the Block-Rational-Krylov algorithm implementation. The colors

depict which architecture (CPU or GPU) and which GPU libraries have been utilized.

Fig.3 illustrates a flowchart of the Block-Rational-Krylov algorithm imple-
mentation. Parts, running on the CPU are blue, CUDA kernels and APIs (ap-
plication programming interface) are in green. Two GPU libraries have been
utilized, the CUSPARSE and CUBLAS library. They perform BLAS (Basic
Linear Algebra) operations for sparse (CUSPARSE) or dense (CUBLAS) oper-
ations on GPU.
We setNb = Ntx+Nrx the sum of sources and receivers, respectively. ~p1, . . . , ~pNb

are the canonical vectors of source and receiver indices. They were used as initial
vectors for spanning the Block-Krylov vectors. The system matrix A as well as
the initial vectors were copied on the GPU before switching into the loop. Poles
are computed in the CPU domain with Eq. (12). As eigenvalues in Eq. (12),
the Ritz values of the Ritz matrix of the Block Krylov vectors in the current
iteration Hj = Q T

j AQj have been used. The pole is copied on the GPU to shift
the matrix. This can easily be done in parallel, such that every thread access
one diagonal element. For the conjugate gradient (CG) solver, the CUSPARSE
library has been used to perform matrix vectors multiplications. Its implemen-
tation is described in [10]. CG is applied to every vector ~q j+1

i (see Eq. (9)). The
scalar products of the orthonormalization were implemented with the CUBLAS
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library for dense operations. The orthonormalized vectors are written onto Qj

and in the last iteration to Q. The Ritz matrix is computed with CUSPARSE
for AQ = R and with CUBLAS for QTR, according to Eq. (9). The Ritz
matrix and Krylov base is copied on the CPU domain again, where a serial
eigensolver (QR-algorithm) gives the Ritz-pairs and Lanczos vectors.

3.3. Deriving Ritz values and Lanczos vectors

Deriving the Ritz values and Lanczos vectors is the computationally most
expensive part in Jacobian computation. Therefore, it has to be implemented
with special care. To compute Eq. (21), the sum

∑Nk

j=1,j 6=m
~ξ T
j

∂A
∂σi

~ξm can be
rearranged to a matrix-matrix multiplication:

Mi = ΞT ∂A

∂σi
Ξ (29)

with Ξ =
[

~ξ1 . . . ~ξNk

]

. The columns of Mi are the derived Lanczos vectors.

The derived Ritz values, according to Eq. (20) are on the diagonal of Mi. This
means, that for every model parameter, two matrix-matrix multiplications have
to be performed. ∂A

∂σi
is very sparsely populated because the perturbation of

one inversion grid cell touches only a small number of forward grid cells. This

allows to cut sub matrices
(

∂A
∂σi

)

sub
and Ξsub of ∂A

∂σi
and Ξ, respectively. The

sub matrix
(

∂A
∂σi

)

sub
contains all rows and columns of

(

∂A
∂σi

)

with at least one

element being non-zero. The sub matrix Ξsub contains the corresponding rows
of Ξ that are multiplied with non-zero rows and columns of ∂A

∂σi
.

Mi =









...
Ξsub

...









T

·







0 0 0

0
(

∂A
∂σi

)

sub
0

0 0 0






·









...
Ξsub

...









(30)

Thus, the size ofΞ ∈ R
Nk×NA is drastically reduced. WhereNA ≈ 500000 to 1000000,

this size is reduced to less than 1000.
The sparse and dense operations were implemented with CUSPARSE and CUBLAS,
respectively. The CUSPARSE library requires the CSR (Compressed Sparse
Row) format for storing the sparse matrix. Conversion of the more common
COO (COOrdinate Format) to CSR by the CUDA command is very time con-
suming, if it has to be called Nmod times. Therefore, we set up the sparse matrix
∂A
∂σi

in CSR, right from the beginning.

3.4. Summary of Jacobi computation

To complete the Jacobian computation, the parts of chapters 3.1, 3.1, 3.2
and 3.3 have to be put together.
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1© Input: Model,

source/receiver positions

2© ~σmod → ~σgrid

build A(~σgrid)

3© Block RKSM of A

out: ~θ,Ξ (see. Fig.3)

4© fill E

i < Nmod

5© make perturbed

F.-grid (+∆σ and −∆σ)

5© compute ∂A

∂σ

according to Eq. (22)

6© copy ∂A

∂σ
on device

7© T = ∂A

∂σi
Ξ

8© Mi = ΞT
· T

9© copy Mi on CPU

10© fill Bi,1,...,2·Nbk

i++

11© J = ETB

12© Out: Jacobian

CPU

CUDA (kernels & APIs)

CUSPARSE

CUBLAS

Figure 4: Flowchart of the implementation of the Jacobian computation.

The flowchart in Fig. 4 depicts the general overview of the implementation.
For an input inversion grid and a geometry of sources and receivers 1©, a forward
grid is filled with conductivities of this inversion grid, for which a system matrix
A is generated 2©. For this unperturbed system matrix, the Ritz values and
Lanczos vectors are computed with the Block Krylov algorithm as explained
in ch. 3.2 3©. Because the Laplace decomposition is independent of the model
parameters, the matrix E can be filled now 4©. To compute B, a loop will iterate
through all model parameters. For every parameter, a perturbed system matrix
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∂A
∂σi

is computed by central finite differences 5© according to Eq. (22). Therefore,
the inversion grid cell is perturbed by +∆σ and −∆σ. For both perturbations,
system matrices for Eq. (22) are generated to compute ∂A

∂σi
5©. The derived

system matrix ∂A
∂σi

is copied on the graphics card now 6©. Memory transfer is
the main bottleneck in GPU implementations. We will discuss in ch. 4.2 how
much a transfer of ∂A

∂σi
weakens the code. A calculation of the derived system

matrix on a GPU is very complicated to implement. The multiplications of ∂A
∂σi

and Ξ 7© are therefore implemented with CUSPARSE and CUBLAS, since they
are computationally most expensive. Here, we introduce the temporary matrix
T = ∂A

∂σi
Ξ. The derived Ritz values and Lanczos vectors are now copied back

on the CPU domain 9©, such that the i-th row of Bjl can be filled 10©. Once Ejl

and Bjl are found, J can be computed 11©.

4. Numerical Test

First, we will show in ch. 4.1 how well the algorithm works in comparison
to a Brute force Jacobian. In ch. 4.2, we show profiling results.

4.1. 1Ωm half space example

To test if this new approach of Jacobian computation works, we generated
a small inversion grid of 3× 6× 13 inversion grid cells of 20 m size (see. Fig.5).
The source and receiver are inline and have a 100 m offset.

Easting [m]
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N
or
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g 
[m

]

5460

5480

5500

5520

5540

5560

5580

Figure 5: Small inversion grid (black grid) used for test. It consists of 6× 3× 13 20 m cubes.

The forward grid (cyan) is regular between source (red) and receiver (green) at a 100m offset.

To compare if the MOR-Jacobian is correct, we computed the brute force
Jacobian according to Eq. (5). Both Jacobians are depicted in Fig. 6. The
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sensitivities are plotted for 0.0 to 1.1 seconds and all model parameters. The
model parameters have a model cell index that can be computed by idx =
Nx ×Ny × k +Nx × j + i, for i = 1, . . . , Nx, j = 1, . . . , Ny and k = 1, . . . , Nz.
Nx, Ny and Nz is the size of the inversion grid. For the MOR-Jacobi, a Krylov
dimension of 28 has been used.
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Figure 6: Brute forced Jacobian (top) and MOR-Jacobian (bottom) for the inversion grid

depicted in Fig.5.

The first six inversion grid cells correspond to the southern line of black
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inversion grid cells in Fig. 5. Index 7 to 12 to the center line and 13 to 18 to the
northern line. Indices 18 to 36 reveal the sensitivities of the next deeper level
of inversion grid cells. In general, the sensitivities of the middle line are most
sensitive, because they are in-between source and receiver. With increasing
depth, the sensitivities appear at later times. The upper graphic depicts the
sensitivity computed by the brute force method. The brute force method is
not very accurate, if the inversion grid cells are small. A sensitivity unequal
zero between 0.0 and 0.1 seconds, as seen in the FD-Jacobian, is physically
not possible. Therefore, getting identical FD-. and MOR-Jacobians is not a
requirement. We should rather ask about similarities. The MOR-Jacobi, on the
other hand, does not produce artifacts at early times, but at saturation level,
where the electric field becomes constant over time, the sensitivities become
very high. This numerical instability is not problematic, because sensitivities
at saturation level are not of importance.

4.2. Run time and profiling

An important issue about 3D inversion are run times, especially if it is
implemented on GPU. To discuss run times, we profiled the code by running it
on a GeForce Titan Black graphics card from Nvidia, compiled with CUDA-7.0,
for a representative inversion grid of 2000 model cells. The complete run time
was 6 1

2 minutes, for Nkry = 26.

∂A
∂σ
Ξ

Ξ
T ·T

SpMVCPUaxpy

Mem.copy

other

Figure 7: Pie chart showing the portion of run times of the most time consuming functions.

The pie chart in Fig. 7 reveals that about 90% of the code run times cor-
respond to functions running on GPU. A typical bottleneck of GPU compu-
tations is the memory transfer between CPU and GPU domain. But, despite
of the memory transfer of ∂A

∂σ
constructed in the CPU domain as depicted in

Fig.4, memory transfer takes only around 5% of the run time. Computationally
most expensive is the multiplication of the sparse and dense matrix ∂A

∂σ
Ξ. The
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dense matrix times dense matrix multiplication ΞT · T takes around 20% of
run time, such that the two most time consuming algorithms are both required
for the derivation of the Ritz-pairs. The sparse matrix times vector multipli-
cations (SpMV) are required in the RKSM algorithm for spanning the Krylov
vectors. If Nmod is higher (here it was 2000), its portion will decrease. The axpy
operations are vector additions and require only limited run time.

5. Application to a real data set

We will demonstrate in this chapter, how the sensitivity calculation is applied
in practice.
In January 2014, a CSEM data set was collected in the Danube delta fan of
the Western Black Sea to identify submarine gas hydrate deposits. Seismics
revealed a bottom simulating reflector, that is commonly used as indicator for
the presence of gas hydrates. It appears at a depth of 100mbsf (meters below
sea floor).
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Figure 8: Station map of a real CSEM data set. Squares indicate the locations of receivers,

stars the locations of transmissions.

Fig. 8 illustrates the survey layout. Twelve receivers (squares) were placed
along two profiles and from 76 transmission stations (stars) on three profile lines
of 2700 meters length, signals were emitted in both horizontal directions.
For inversion, an inversion grid of size 74 × 190 × 63 with cell sizes of 20m ×
20m×20m has been defined and rotated parallel to the profile lines. Because the
Jacobian for every Tx/Rx combination is computed separately, only a subset
of cells are effected by one Tx/Rx combination, such that the sensitivities are
only computed for cells in a certain vicinity of source and receiver.
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Figure 9: Sensitivity for a model desinged according to a real data set and one Tx/Rx com-

bination for a subset of the inversion grid. Here, no gas hydrates are included in the model.

Figure 10: Identical model as illustrated in Fig. 9, but with a resistive (20Ωm) gas hydrate

layer in the upper sediments.
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This is demonstrated in Fig. 9, where the sensitivities of a subset of size
9 × 15 × 18 were computed. At the borders of this subset, sensitivities are
around zero. This reduces computation time drastically. The sensitivities in
Fig. 9 were computed for a model with a sub seafloor resistivities of 1Ωm. Cells
around source and receiver’s positions are most sensitive. To demonstrate that
the method is sensitive to gas hydrates, the same calculation was repeated for
a model with a resistive layer of 10Ωm (Fig. 10). The resistor is guiding the
electric field faster than the surrounding conductive structures, such that the
higher sensitivities are distributed much broader.

6. Conclusion
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Summary & Conclusion

This thesis has two main achievements: 1. the development of fast time domain

CSEM forward codes and 2. the implementation of a sensitivity calculation.

For the implementation of the forward code, following features are essential.

Based on central finite differences on Yee-cells, the spectra of the solution space

was computed with the polynomial Krylov subspace method. The time con-

suming operations were parallelized on Graphics Processing Units (GPUs). The

surface boundary condition was solved by inserting a resistive air layer. This

simplified the matrix, such that the Krylov subspace could be computed more

efficiently. The accuracy of this boundary condition was carefully investigated.

Comparisons of run times with CPU based codes revealed an enormous speed-

up due to the use of Krylov methods as well as the computational power of

GPUs.

In a next step, the polynomial Krylov subspace method was replaced by the

rational Krylov subspace method. This was necessary for two reasons. First, it

is faster than the polynomial approach because the dimension of the subspace is

drastically reduced. This also eliminates the run time of an eigensolver that take

a quite significant part of costs in the polynomial approach. Second, it made

the sensitivity calculation, in the way how it is presented in this work, possible.

The polynomial and rational method were carefully compared with each other.

The rational method turned out to be faster. This work is described in.

The sensitivity calculation was implemented according to the Model Order Re-

duction (MOR) framework. Thereby, the rational Krylov subspace method was

changed to its block version. Other computationally expensive parts, like the

derivative calculation of the spectra, were parallelized. The result was com-

pared with a brute force solution of a simple model and simple geometry, to

demonstrate that the approach works. Finally, the applicability of the method

for a real data set is demonstrated.



Outlook

A major improvement of the Rational Krylov Subspace based forward code

would be the development of a proper preconditioner. This could reduce the

number of iterations in the CG-solver significantly and reduce computational

runtimes. But in general, the code can be applied to interpret marine CSEM

data sets in time domain by forward modeling.

The sensitivity calculation method, presented in this thesis, will be tested fur-

ther for different models to validate the broadness of its applicability. A sensi-

tivity matrix alone can be used to compute model- or data resolution matrices.

But the main motivation to compute a Jacobian matrix is its implementation

as part of a 3D inversion. Currently, the Jacobian presented here, is used as

part of a Joint inversion in cooperation with TERRASYS. The development of

a single inversion will be the next big challenge.


