
Deletion of Content in Large

Cloud Storage Systems

Von der Fakultät für Informatik, Elektrotechnik und Informationstechnik
der Universität Stuttgart zur Erlangung der Würde eines Doktors der

Naturwissenschaften (Dr. rer. nat.) genehmigte Abhandlung

Vorgelegt von

Tim Waizenegger
aus Stuttgart

Hauptberichter: Prof. Dr.-Ing. habil. Bernhard Mitschang

Mitberichter: Prof. Dr.-Ing. Dr. h. c. Theo Härder

Tag der mündlichen Prüfung: 10.11.2017

Institut für Parallele und Verteilte Systeme
der Universität Stuttgart

2017

Contents

1 Introduction 13
1.1 Contributions and Outline of the Thesis 13
1.2 Motivation, Standards, and Regulations 18
1.3 The Concept of Cryptographic Deletion 20
1.4 Definition of Secure Deletion . 21
1.5 The Key Management Problem 24
1.6 Problem Statement and Requirements 28

2 Background and Related Work 31
2.1 Secure Deletion . 32

2.1.1 Classification of Approaches 32
2.2 Wrapped Keys and Chains of Keys 35

2.2.1 Example: Practical Disk Encryption 36
2.2.2 Authenticated Key Wrapping and Validation 36

2.3 Cryptographic Hardware . 38
2.3.1 Improving Security with Cryptographic Hardware . . 39

2.4 Related Work . 42
2.4.1 Secure Deletion . 42
2.4.2 Cryptographic Deletion 44
2.4.3 Encryption in Database Systems 50

3

3 Key-Cascade Method 55
3.1 Key-Cascade: Abstract Idea . 57
3.2 Data Structure and Key Organization 59

3.2.1 Static Tree Benefits . 61
3.3 Data Structures and Storage Locations 62
3.4 Complexity and Efficiency Consideration 63
3.5 Key-Cascade Geometry Examples 65
3.6 ID Calculations . 67
3.7 Secure Deletion Through Cascaded Re-Keying 69
3.8 Operations: Key Creation, Retrieval, and Deletion 71
3.9 Related Publications . 72

4 Extensions to the Key-Cascade Concept 75
4.1 Resizing the Key-Cascade . 76
4.2 Deletable Key . 79
4.3 Deletable Key Sources . 81

4.3.1 Key Source: Static Key . 84
4.3.2 Key Source: Password-Derived Key 85
4.3.3 Key Source: Trusted Platform Module 85

4.4 Object ID Index . 86
4.5 Free List . 87
4.6 Node Cache . 88
4.7 Batch-Delete Log . 88

5 SDOS: The Key-Cascade Implementation 91
5.1 System Architecture . 93
5.2 Swift Integration . 96

5.2.1 Swift Storage . 97
5.2.2 Swift Operations . 99

5.3 Authorization and Multi-Client Support 101
5.4 Multi-threading in SDOS . 103

5.4.1 Parallel Request Processing 103
5.4.2 Implementation of Parallel Processing 107

4 Contents

5.5 Pseudo-Object API . 109
5.6 Performance Evaluation . 112

5.6.1 Q1: Proxy Impact . 115
5.6.2 Q2: Encryption Impact . 119
5.6.3 Q3: Key-Cascade Geometry 121
5.6.4 Conclusion and Areas of Improvement 123

5.7 Related Publications . 124

6 MCM: a Demonstrator Application for SDOS 125
6.1 Design Goals . 126
6.2 System Architecture and Components 128

6.2.1 SDOS . 129
6.2.2 Bluebox UI . 129
6.2.3 Task Runner . 132

6.3 Use Cases and Functionality . 135
6.3.1 Container Creation, SDOS Configuration, and Content

Management . 135
6.3.2 Metadata Management and Analytics 138
6.3.3 Content Disposal and Batch Deletion 143

6.4 Authentication and Authorization 144
6.5 Cloud Modeling and Deployment Automation 146

6.5.1 Trusted Enclave . 148
6.5.2 Executable Model in Docker Compose 149

6.6 Related Publications . 149

7 Conclusions and Future Work 151

Bibliography 155

List of Figures 165

List of Tables 169

Definitions 171

Contents 5

Zusammenfassung

Diese Arbeit behandelt die Herausforderungen hinter und Lösungen für
das sichere Löschen von Daten in Cloudspeichersystemen. Sicheres Löschen
ist eine wünschenswerte Funktionalität für manche Nutzer, aber auch eine
gesetzliche Anforderung für andere. Der Begriff sicheres Löschen beschreibt
die Praktik, Daten auf eine Art und Weise zu löschen, sodass sie selbst mit
forensischen Mitteln nicht wiederhergestellt werden können. Eine Betrach-
tung der bisherigen Methoden zeigt, dass diese für lokale Speichersysteme
ausgelegt sind, und sich nicht auf moderne Cloudspeichersysteme über-
tragen lassen. Daher stellt diese Arbeit das Konzept des kryptografischen
Löschens vor und zeigt welche Herausforderungen der praktischen Anwend-
barkeit entgegenstehen. Eine Diskussion der vorangegangenen Arbeiten im
Bereich kryptografisches Löschen zeigt, dass eine Forschungslücke besteht,
die bisherigen Ergebnisse auf Cloudspeichersysteme anzuwenden.
Der Hauptbeitrag dieser Arbeit, die Key-Cascade-Methode, bedient diese

Lücke, indem sie eine effiziente Schlüsselverwaltung für kryptografisches
Löschen bietet, die auf Cloudspeichersysteme zugeschnitten ist.
Sicheres Löschen wird überall dort angewendet, wo vertrauliche Daten

nach ihrer Lebenszeit vor zukünftigem Zugriff geschützt werden müssen.
Das Konzept wird bei lokal gespeicherten Daten auf Laptops und PCs an-
gewendet, sowie auf großen Netzwerk- und Cloudspeichersystemen. Diese

7

Arbeit fokussiert sich auf den letzteren Anwendungsfall. Unternehmen und
Organisationen aus dem Gesundheits-, Verwaltungs- und Finanzsektor sind
gesetzlich verpflichtet, sicheres Löschen für bestimmte Daten zu praktizieren.
Einige dieser Gesetzte werden im Abschnitt “Motivation, Standards, and
Regulations” dieser Arbeit diskutiert. Um dieser Anforderung zu genügen,
setzen Unternehmen heute lokale Rechenzentren ein, in denen sie das siche-
re Löschen durch regelmäßige, physische Zerstörung alter Speichermedien
erreichen. Physische Zerstörung ist eine Kernmethode des traditionellen
sicheren Löschens, die sich nicht sinnvoll auf Cloudspeichersysteme übertra-
gen lässt.
Kryptografisches Löschen beschreibt die Methode, Daten verschlüsselt auf

einem nicht vertrauenswürdigen Medium zu speichern, während der Schlüs-
sel in einer kontrollierten, vertrauenswürdigen Umgebung bleibt. Sofern
Vertrauen in die Wirksamkeit der Verschlüsselung besteht, kann sicheres
Löschen der Daten nun durch sicheres Löschen des Schlüssels erreicht wer-
den. Die Verwendung von Verschlüsselung muss dabei entweder durch den
Gesetzgeber, oder den Kunden erlaubt sein. Dies hängt davon ab, ob sicheres
Löschen aufgrund rechtlicher oder eigener Motivation geschieht.
Die Methode des kryptografischen Löschens ist bekannt, wird jedoch

noch wenig eingesetzt. Die Methode kann überall dort eingesetzt werden,
wo Datenverschlüsselung betrieben wird. Einige Hersteller verschlüsselter
Speichersysteme bieten kryptografisches Löschen an, implementieren diese
Funktion jedoch analog zur physischen Zerstörung: Nur das sichere Löschen
eines Hauptschlüssels ist möglich, womit alle gespeicherten Daten verloren
gehen. Ist eine feinere Granularität gewünscht, so sind teure Kopier- und
Neuverschlüsselungsoperationen nötig.
Um kryptografisches Löschen in einem Cloudspeichersystem sinnvoll ein-

zusetzen, ist eine feine Granularität der Löschoperation nötig. Nur so können
Kunden das System kontinuierlich benutzen und regelmäßig alte Objekte
sicher löschen, zum Beispiel nach Ablauf von Rückhaltefristen. Diese feine
Granularität kann durch die Wahl einer geeigneten Methode zur Erzeugung
und Verwaltung der Schlüssel erreicht werden. In der Literatur finden sich
einige wenige Konstruktionen, die dies erreichen, welche im Abschnitt “Re-

8 Contents

lated Work” dieser Arbeit diskutiert werden. Als Weiterentwicklung dieser
Ergebnisse stellt diese Arbeit die Key-Cascade-Methode vor, welche Daten-
strukturen und Prozesse beschreibt, die kryptografisches Löschen in einem
Cloudspeichersystem effizient ermöglichen. Sie erlauben eine kontinuierliche
Nutzung des Systems sowie effizientes, selektives Löschen.
In dieser Arbeit präsentiere ich die konzeptionellen und mathematischen

Eigenschaften der Key-Cascade-Methode. Um eine praktische Anwendung in
einem Cloudspeichersystem zu ermöglichen, präsentiere ich Erweiterungen
zu dem Kernkonzept, welche die Nutzbarkeit verbessern und eine reibungs-
lose Integration in bestehende Anwendungen erlauben. Mit SDOS liefert
diese Arbeit eine vollständige Implementierung der gezeigten Konzepte und
Erweiterungen. Die Gestaltung von SDOS als API Proxy ist ein Alleinstellungs-
merkmal unter den bestehenden Lösungen und erlaubt die modifikationsfreie
Anwendungsintegration. Basierend auf SDOS zeige ich Ergebnisse von Leis-
tungsmessungen, die belegen, dass die vorgestellten Konzepte praktisch
nutzbar sind.
Abschließend präsentiere ich mit MCM eine Demonstratoranwendung für

SDOS, die interessierten Lesern einen schnellen Einstieg in das System er-
laubt und als Beispiel dient, wie SDOS zusammenmit einer Cloudanwendung
eingesetzt werden kann.

Contents 9

Abstract

This thesis discusses the practical implications and challenges of providing
secure deletion of data in cloud storage systems. Secure deletion is a desirable
functionality to some users, but a requirement to others. The term secure
deletion describes the practice of deleting data in such a way, that it can
not be reconstructed later, even by forensic means. This work discuss the
practice of secure deletion as well as existing methods that are used today.
When moving from traditional on-site data storage to cloud services, these
existing methods are not applicable anymore. For this reason, it presents
the concept of cryptographic deletion and points out the challenge behind
implementing it in a practical way. A discussion of related work in the areas
of data encryption and cryptographic deletion shows that a research gap
exists in applying cryptographic deletion in an efficient, practical way to
cloud storage systems.
The main contribution of this thesis, the Key-Cascade method, solves this

issue by providing an efficient data structure for managing large numbers of
encryption keys.
Secure deletion is practiced today by individuals and organizations, who

need to protect the confidentiality of data, after it has been deleted. It is
mostly achieved by means of physical destruction or overwriting in local
hard disks or large storage systems. However, these traditional methods of

11

overwriting data or destroying media are not suited to large, distributed,
and shared cloud storage systems.
The known concept of cryptographic deletion describes storing encrypted

data in an untrusted storage system, while keeping the key in a trusted
location. Given that the encryption is effective, secure deletion of the data
can now be achieved by securely deleting the key. Whether encryption is
an acceptable protection mechanism, must be decided either by legislature
or the customers themselves. This depends on whether cryptographic dele-
tion is done to satisfy legal requirements or customer requirements. The
main challenge in implementing cryptographic deletion lies in the granu-
larity of the delete operation. Storage encryption providers today either
require deleting the master key, which deletes all stored data, or require
expensive copy and re-encryption operations. In the literature, a few con-
structions can be found that provide an optimized key management. The
contributions of this thesis, found in the Key-Cascade method, expand on
those findings and describe data structures and operations for implementing
efficient cryptographic deletion in a cloud object store.
This thesis discusses the conceptual aspects of the Key-Cascade method as

well as its mathematical properties. In order to enable production use of a
Key-Cascade implementation, it presents multiple extensions to the concept.
These extensions improve the performance and usability and also enable fric-
tionless integration into existing applications. With SDOS, the Secure Delete
Object Store, a working implementation of the concepts and extensions is
given. Its design as an API proxy is unique among the existing cryptographic
deletion systems and allows integration into existing applications, without
the need to modify them. The results of performance evaluations, conducted
with SDOS, show that cryptographic deletion is feasible in practice.
With MCM, the Micro Content Management system, this thesis also

presents a larger demonstrator system for SDOS. MCM provides insight
into how SDOS can be integrated into and deployed as part of a cloud data
management application.

12 Contents

C
h
ap

te
r 1

Introduction

The following chapter contains two main parts: The first gives an overview
of the contributions and content in this thesis. The Second part introduces
the background and motivation for this work as well as the research question
and requirements.

1.1 Contributions and Outline of the Thesis

In the following, I give an overview of the contents of this thesis by firstly
stating the threemain contributions of this work. I then briefly summarize the
content of each chapter and point out where each contribution is presented.
The three main contributions of this work are:

Contribution C1: The Key-Cascade method. The Key-Cascade describes
data structures and operations for managing large numbers of en-
cryption keys for cryptographic deletion. Using a tree structure, it
establishes a hierarchy of encryption keys so that secure deletion of a
root key translates to cryptographic deletion of selected leaf keys. This
Key-Cascade method solves the same key management problem as the

13

two preliminary approaches presented in Chapter 1, but does so in a
manner that satisfies performance and storage capacity requirements.

Contribution C2: SDOS. The Secure Delete Object Store is an implemen-
tation of the Key-Cascade method. SDOS is based on the object store
Swift by the OpenStack project and is designed as an API proxy for
the Swift REST protocol. With this design aspect, it is possible to
transparently use SDOS with any unmodified Swift server, or cloud
service, as well as any existing Swift client or application.

I implemented this prototype in order to conduct performance eval-
uations of the Key-Cascade method but also as a first step towards a
productively usable implementation of cryptographic deletion. For this
reason, SDOS contains extensions that provide multi-threaded execu-
tion, multi-client and multi-tenant support, as well as integration with
native Swift and OpenStack authentication providers. Finally, SDOS
contains a batch deletion function and integration with hardware key
stores that make production use feasible.

Contribution C3: MCM. TheMicro ContentManagement System is a demon-
strator application for SDOS. MCM contains a Web-based user interface
and services for extracting and visualizing object metadata. The user
interface supports uploading, downloading, and listing of objects and
also allows configuring the Key-Cascade parameters for SDOS. It con-
tains an interactive visualization of the Key-Cascade data structures
and allows the user to interact with the hardware key store, if used.

I included the extraction and visualization of object metadata in order
to show how cloud providers can still offer advanced services even
when customers encrypt their data. In MCM, users can decide which
metadata they want to extract and store unencrypted, so that further
processing of this data by the cloud provider is possible.

MCM is designed as a multi-component cloud application that can be
deployed in multiple topologies. As part of MCM, I provide a fully
automated deployment of all the components, including SDOS and

14 1 | Introduction

the Swift Object Store.

This thesis is structured as follows:
In Chapter 1, I first present the contributions and structure of this thesis. I

motivate the topic of secure deletion by showing regulations and standards
as well as existing practices and use cases. I then introduce the concept of
cryptographic deletion and show how it can be applied in practice. This shows
that cryptographic deletion is an application of data encryption that uses
a special key management. Two preliminary approaches to managing the
encryption keys highlight the challenges and help derive requirements for a
satisfactory solution. Based on these circumstances, I then state my research
question together with requirements for a satisfactory solution. Finally,
I present an adversary model which describes properties of an adversary
against which the solution should hold.
In Chapter 2, I present background information on the practice of secure

deletion, technologies and methods that I use in my contributions, as well
as related technologies and related work. I first introduce the topic of
secure deletion by discussing its application in practice and the methods
currently used. This covers applied methods for storing and deleting sensitive
information such as physical destruction of storage media and overwriting
of data. I then introduce technologies and methods that are used in the
contributions of this thesis. This includes chains of perpetually encrypted
keys and specialized cryptographic hardware. Trusted Platform Modules
(TPM) are an example of such hardware devices that are found in most
modern personal computers and servers. In order to point out possible areas
where cryptographic deletion could be applied, I show candidate applications
where data encryption is used. This includes file and disk encryption, cloud
data storage services that use encryption as well as encryption in database
systems. Finally, I discuss related work in the area of cryptographic deletion
and present the state of the art on which this thesis builds.
In Chapter 3, I present the first contribution (C1) of this thesis: The con-

cepts behind the Key-Cascade method. The Key-Cascade method describes
data structures and processes for managing large numbers of encryption

1.1 | Contributions and Outline of the Thesis 15

keys. The description of the Key-Cascade method is started by introducing
the data structure and relations between the encryption keys. Following
this, I discuss the operations on this data structure and how these operations
relate to storing, retrieving, and deleting encrypted data. I then show the
underlying mathematical properties and provide complexity considerations.
In Chapter 4, I present extensions to the core Key-Cascade concept. These

extensions are not strictly necessary for providing a working Key-Cascade
implementation, as they cover operational, performance, and integration
aspects. They are, however, useful extensions that help build a practically
usable implementation. In this chapter, I first discuss the problem of resizing
an existing Key-Cascade in order to increase or decrease the object key
capacity. Because the Key-Cascade is based on a static tree, it has a fixed
capacity and does not expand and shrink dynamically. For this reason, it is
useful to have methods for increasing or decreasing its size. This extension
is only discussed conceptually and not implemented in the prototype since
the need to resize can be avoided in practice. The deletable key is the
topmost key in a Key-Cascade data structure and allows decryption of the
data. It is also the only key which must be securely deletable, because the
Key-Cascade then transfers this property to all further keys and encrypted
objects. For this reason, I discuss how a deletable key can be realized in
practice and show three different sources (or types) of deletable keys. An
index for object identifiers is another extension I present. It allows using
arbitrary names or identifiers for the objects whose keys are stored in the
Key-Cascade. Without this extension, only sequential numbers can be used
as object identifiers. The last three extensions cover performance aspects
in a practical implementation. I introduce a free-list that is dynamically
created and used during run time. This list allows the system to quickly find
a free leaf position for inserting new object keys. This is followed by a node
cache which improves performance by providing faster access to Key-Cascade
nodes. The last extension, a batch delete log, adds a new mode of operation
to the Key-Cascade implementation. It allows deferring operations on the
data structure to a later time, so that multiple deletions can be processed
together. Secure delete operations for different objects often have overlap

16 1 | Introduction

since different paths from the root of a tree to its leaves always share some
nodes and edges. This extension provides a large performance improvement
and also matches the common use case where cryptographic deletion is not
done immediately, but periodically.
In Chapter 5, I present the second contribution (C2) of this thesis: a prac-

tically usable implementation of Contribution C1, the Key-Cascade method.
This system can be used with an object store, specifically with the Swift
Object Store by the OpenStack project. The prototype is called SDOS (the
Secure Delete Object Store) for this reason. In this chapter, I cover the
implementation of the core Key-Cascade concept. Implementation aspects
of the extensions of Chapter 4 are covered in that chapter. I first present
the high-level architecture of the system and show how it is integrated with
the object store and its clients. This is followed by a walk-through of the
operations it supports. I discuss each operation provided by the object store
interface and elaborate on how they relate to operations on the Key-Cascade
data structure. After the basic structure and operations are covered, I discuss
implementation aspects that are relevant for integrating a Key-Cascade into a
production environment. The example of SDOS shows that the Key-Cascade
concept does not prohibit a practically usable implementation. These im-
plementation aspects cover the parallel execution of operations as well as
integration with an authorization provider and support for multiple clients,
or tenants in a single SDOS instance. Finally, I discuss the setup and results
of performance evaluations conducted with the SDOS prototype. These
results show both the performance of the prototypical implementation as
well as the overhead implied by the Key-Cascade operations.

In Chapter 6, I present the third contribution (C3) of this thesis: MCM (the
Micro Content Management System), a demonstrator application for SDOS
and cryptographic deletion. I first discuss the design goals for MCM as well
as its functionality and use cases. This is followed by a detailed description
of the individual components of MCM. I then present different possible
scenarios how the MCM components, including SDOS, can be integrated
with a cloud object store and its clients. Finally, I present how MCM can
be realized with a cloud application modeling approaches: An executable,

1.1 | Contributions and Outline of the Thesis 17

imperative model in Docker Compose. I also briefly discuss a conceptual,
declarative model in TOSCA.
Finally, I draw conclusions and summarize the work in Chapter 7.

1.2 Motivation, Standards, and Regulations

The secure, irrevocable deletion of data is a useful feature for some users
and mandatory for others. I discuss the current approaches and methods for
secure deletion in Chapter 2 and, in the following, I point out the motivation
for secure deletion in three different groups of users. These groups are:
governments and institutions, corporations and enterprises, and individuals.
Governments and institutions frequently handle sensitive personal infor-

mation about their citizens. For this reason, they often impose strict rules
onto themselves about how such information has to be stored and managed.
Rules like the following can be found in most jurisdictions and they mandate
that some effort has to be made in order to assure the secure deletion of
data:
The United Kingdom National Police has strict rules as to when personal

records are to be assuredly deleted from national police systems [Ber15].
The Recordkeeping Support Unit of the Archives of Ontario has rules

in place that “. . . records that may contain personal information or other
sensitive or confidential information must be disposed of in such a manner
that the information cannot be reconstructed . . . ” [oOnt08]. Their Archives
and Recordkeeping Act from 2006 further requires that “all public records
be disposed of by following the conditions set out in approved records
schedules”.
Corporations and enterprises not only have an interest in being compliant

with rules and regulations, but also in the secure deletion of content no longer
required in order to avoid “smoking guns” in their data stores [Con09].
The EU data protection reform General Data Protection Regulation (GDPR)

came into law on May 25th 2016 and strengthens the individual person’s
“right to erasure” [PC16]. Prosecution of GDPR violations is however sus-

18 1 | Introduction

pended until May the 28th of 2018, to allow data processing enterprises
more time to become compliant.
European enterprises are particularly anxious about the right to erasure

(formerly “right to be forgotten”) clause in the new GDPR and will have to
seek out storage solutions that allow secure deletion in order to be compliant.
Cloud service corporations, aiming to sell their services to European busi-
nesses, are especially sensitized in light of the GDPR. They bear responsibility
for properly managing their customers’ data. Noncompliance or negligence
leads to fines. GDPR violators will be fined EUR 20 million or 4% of annual
global turnover, whichever is greater. Additionally, each customer of the
affected product is eligible for a EUR 2,500 compensation, independent
whether harm was caused, or not. The scale and severity of these fines for
noncompliance with the GDPR, as well as the ensuing reputational damage,
present a risk that will influence data storage selection in the future [BAV15].
In the US, transitory records (any data collected during a business trans-

action) are public records (i.e., the government may access them) and may
have to be reviewed and disclosed in response to a formal request for in-
formation, even if companies kept them when they could have destroyed
them [oOnt08].
By not keeping more than required, companies will have less information

to search and review if served with a document request during litigation.
This will save a company time and money during litigation since there will
be fewer materials for its attorney to review and produce.
The adoption of cloud services by corporations has put a focus on security

protocols. Financial services firms, in general, are ready to adopt cloud
services, as long as those services adhere to necessary security protocols and
other requirements [Day14]. Requirements such as data leakage prevention
are now topping the information security priorities of organizations [BAV15].
According to Schafer, even organizations that do not require secure dele-

tion should, at least, use data encryption to minimize chain-of-custody
security risks [Sch14].
To summarize, corporations who are not compliant with regulations,

or negligent with data security, risk large fines, reputational damage and

1.2 | Motivation, Standards, and Regulations 19

disgruntled customers [Sch09; Sch11; Pid11; Ost09].
Individuals are mostly concerned with privacy of their own personal in-

formation and are not bound by regulations like the other two user groups.
Additionally, the ability to securely delete data can increase trust in cloud
services and increase adoption, especially among customers who are aware
of security issues.
Individuals already rely heavily on cloud backup and synchronization

services for mobile devices. The risk behind outsourcing the storage of
personal data became obvious to many customers of Apples iCloud backup
service in the prominent data leak of August 2014, where much of the leaked
data was presumably deleted by its owners [McC14].

1.3 The Concept of Cryptographic Deletion

Cryptographic deletion refers to the practice of using encryption in order
to provide secure deletion in a storage location, that does not offer secure
deletion on its own. The general principle is shown in Figure 1.1: Data are
encrypted and stored separately from their encryption key. Two different
storage locations are used. A trusted storage location as well as a larger,
untrusted location. The trusted storage location has the capability to provide
secure deletion so that any data deleted from the trusted location can not
be recovered later. This secure delete property of the trusted storage is then
transferred to the stored data by means of encryption: If the key can not be
recovered, neither can the encrypted data.

1011
1100
010

1011
1100
010

1011
1100
010

Encrypt
data

Trusted local
storage allows
secure deletion

Untrusted cloud
storage; no secure
deletion possible

Store separately

Figure 1.1: General principle of cryptographic deletion.

20 1 | Introduction

At least two conditions must be met in order for cryptographic deletion to
work:

1. The cryptographic algorithm must be effective. Cryptographic deletion
assumes that any data deleted from the untrusted storage location
can be recovered. An adversary can therefore recover this encrypted
data and try to break the encryption. For this reason, a cryptographic
algorithmmust be chosen that is expected to have strong security in the
foreseeable future. This condition is shared with any solution that uses
cryptography. Industry standards like FIPS specify certain algorithms,
key sizes, and implementation procedures that allow implementing
certifiable encryption systems. Whether encryption is an acceptable
protection mechanism, must be decided either by legislature or the
customers themselves. This depends onwhether cryptographic deletion
is done to satisfy legal requirements or customer requirements.

2. Secure deletion on the trusted storage must be effective. Secure dele-
tion of the encrypted data is derived from secure deletion of the en-
cryption key. If a deleted key can be restored, data, assumed to have
been deleted, can be decrypted. I present possible implementations of
such a trusted storage in Section 4.3.

1.4 Definition of Secure Deletion

In the following, I define what the term secure deletion means in the context
of cryptographic deletion in a cloud storage system. In general, data are
securely deleted if they can not be reconstructed by an adversary. For this
reason, I discuss the capabilities of such an adversary in the following.
An adversary model is an abstract way of describing security properties of

a system. Instead of directly describing those properties, an adversary model
describes the capabilities of the most powerful adversary (or attacker) against
whom the system holds. In other words, it describes which capabilities are
not sufficient to circumvent the security measures.

1.4 | Definition of Secure Deletion 21

The cloud storage scenario I use in this work involves the following three
parties: A user of the system, a cloud provider offering storage, and an
adversary aiming to recover the user’s deleted data. They have the following
capabilities and limitations in this scenario:
The user has a small trusted storage location that provides secure dele-

tion. Any data deleted from this location is assumed to be unrecoverable.
Such a location can be provided by Hardware Security Modules (HSM) or
Trusted Platform Modules (TPM). The user stores the encryption keys for
cryptographic deletion in this location. Therefore, deleted keys can not be
reconstructed by an adversary who gains access to the trusted storage.
Finally, the user wants to store a large volume of sensitive data that

exceeds the capacity of the trusted storage location. This data consists of
small enumerable units (e.g. files) which need to be stored, retrieved, and
securely deleted on an individual basis. The cloud provider offers a data
storage service that fits the user’s capacity requirements. But neither does
the provider offer the possibility to securely delete said data, nor does the
user trust the provider to offer such a service. The user therefore uses this
cloud storage only to store encrypted data.

Adversary limitation: The adversary is computationally bound. This
limitation must be imposed on any adversary to a cryptographic solu-
tion. The reason is that encryption relies on the limited computational
resources in the real world. A theoretical adversary with unlimited
resources could determine the encryption key just by brute force.

Adversary capability: The adversary may have unlimited access to the
cloud provider’s systems at all times. This capability is another way
of stating that the cloud provider is untrusted. It means that any data
that is or was stored on the cloud may be available to the adversary.

Adversary capability: The adversary gains access to the user’s trusted
systems at a certain time. Any data that is currently stored on the
trusted location is therefore available to the adversary. However, be-
cause of the secure delete property of the trusted storage, no previously
deleted data can be restored by the adversary. This is an important

22 1 | Introduction

Cloud
storage

 Time

Trusted
storage

1011
1100
010

1011
1100
010

1011
1100
010

1011
1100
010Adversary

gains access

User stores and
deletes data

Deleted before breach:
adversary has no key

Deleted after breach: adversary has the key!

Figure 1.2: Representation of the adversary model.

aspect for cryptographic deletion; the adversary may have access to all
currently stored encryption keys. The cryptographic deletion method
must therefore prevent that accessing the current keys allows decrypt-
ing previously deleted data.

In Figure 1.2, I illustrate the effects of these capabilities and limitations.
Above the time-line, it is shown that both the user and the adversary have
access to the cloud resources. The user stores two encrypted files on the
cloud and the two encryption keys in the trusted storage. The user then
deletes the first file from the cloud and the respective key for that file from
the trusted storage.
Below the time-line, the access to the user’s trusted storage is shown. The

user had always access. They stored two encryption keys and deleted the first
one as described above. At a certain time, the adversary gains access to the
trusted storage. This is where encryption with cryptographic deletion and
regular data encryption differ: This access must not enable the adversary to
recover any data that was previously deleted. In regular encryption solutions,
access to the current master key allows decrypting previously deleted data.
It is shown that the adversary is able to recover both encrypted files from

1.4 | Definition of Secure Deletion 23

the cloud. It is not even necessary to assume that recovery of the files is
possible for the adversary. They may also have copies of the data from the
past. The adversary is however unable to decrypt the first file because the
encryption key was securely deleted from the trusted location. This is not
the case for the second file. The key for that file was present in the trusted
storage when the adversary gained access. Therefore, the second file can be
decrypted even if the user deletes the key after the fact.
The goal of secure deletion is purely to prevent the adversary from re-

covering previously deleted data in the aforementioned scenario. Other
security aspects (e.g. confidentiality of stored data, access protection) might
be achieved, but are not the focus of this work. The important difference is
that systems without secure deletion do not have this property. I discuss the
details in Section 2.4.3, but the general reason is that, in regular encryption,
a current master key is also valid for previously deleted files. Even generating
a new master key yields a key that is valid for deleted data.
To summarize: cryptographic deletion must manage the encryption keys

in such a way that access to the current keys does not allow decryption of
previously deleted encrypted data.

1.5 The Key Management Problem

Cryptographic deletion is an application of data encryption that employs
a specialized key management method. In the following, I discuss this
key management problem. It shows why a specialized key management
method is needed and why cryptographic deletion in regular data encryption
solutions is not feasible.
For this, I present two preliminary approaches to applying cryptographic

deletion to a cloud storage system. They are straight-forward ways of do-
ing cryptographic deletion in an encrypted storage system and both have
prohibitive downsides. These approaches work in most encrypted stor-
age systems, albeit only as a last measure due to their downsides. Still,
some providers of encrypted storage solutions recommend them (see Sec-

24 1 | Introduction

Trusted
local store

Cloud
storage

Delete
Object key is
securely deleted

Object is
cryptographically
deleted

Figure 1.3: The individual key approach: one separate key per object.

tion 2.4.3). The shortcomings of the preliminary approaches also help specify
the requirements in Section 1.6.
I design and implement the contributions in this thesis around the data

models and interfaces of an object store. For this reason, I use the term
object as the unit of data that gets stored, retrieved, and deleted in the
following examples. Objects are comparable to files in a file system, they are
addressable by an object identifier. The actual data model of an object stored
is discussed in detail in Chapter 5. For the following conceptual discussion,
it is enough to assume a single, flat hierarchy, i.e., a list, of objects with
consecutive numbers as identifiers.
As soon as we want to store multiple objects and provide secure deletion

on the granularity of individual objects, cryptographic deletion faces the key
management problem:
The individual key approach is the first preliminary approach. It uses

an individual encryption key for each data object, as shown in Figure 1.3. In
this scenario, the user generates a new encryption key for each new object
and stores this key locally in the trusted storage location prior to storing
the encrypted object in the cloud. Therefore, the overhead for writing a
new object consists of generating and storing the encryption key as well
as encrypting and storing the object. The overhead for reading an object
consists of retrieving the key and the object and the decryption of the object.
The overhead for the delete operation consists of only deleting the locally

1.5 | The Key Management Problem 25

Re-key

Delete

New
master key

Copy encrypted
with new key

Trusted
local store

Cloud
storage

Old master
key is
securely deleted

Old objects are
cryptographically
deleted

x

x y

y

B

A

B’

A

B

B’

Figure 1.4: The master key approach: a single key for all objects. The
re-keying operation allows selective deletion.

stored encryption key.
The individual key approach has minimal computational overhead for all

involved operations, but a prohibitively large storage overhead on the trusted
storage, since it has to store one encryption key locally for each object stored
remotely on the cloud. Especially in scenarios with many small objects, the
required local storage volume reaches the size of the cloud storage. This
defeats the purpose of using a cloud-based storage system.
The second preliminary approach, themaster key approach, is illustrated

in Figure 1.4. It is aimed at minimizing the required storage capacity for
the encryption keys. In this approach, I only use a single master key that
needs to be stored in the trusted storage. This key is used for encrypting all
stored objects. In order to delete individual objects while keeping others, I
introduce the following re-keying operation:

Definition 1.1 (Re-keying operation)
Objects A and B are encrypted with Key x . The objects are stored in an untrusted
location, the key is stored in a trusted location which can provide secure deletion.
I want to delete Object A, but keep Object B. This is achieved by re-keying B:
generate and store a new encryption key y, retrieve and decrypt B with x ,

26 1 | Introduction

encrypt and store B′ with y, securely delete x .

This operation allows using a single master key and still offers a deletion
granularity of the object level. When an object gets deleted, I re-key the
remaining objects with a new master key. Now, writing a new object only has
the overhead of encrypting the object (assuming the master key is already
present). Reading an object has the same overhead as before, i.e., retrieving
the key and decrypting the object. But the delete operation now has the
overhead of generating and storing a new master key, deleting the old master
key, and re-keying all remaining objects. The overhead on the trusted storage
is low with this approach, only a maximum of two encryption keys needs to
be stored at any time.
This approach drastically reduces the required trusted storage capacity, at

the expense of executing the re-keying operation for all remaining objects
every time I want to securely delete a single object. This second approach
therefore has a prohibitively expensive delete operation.
To summarize, the individual key approach has a prohibitively large

storage requirement on the trusted storage, while the master key approach
has a prohibitively expensive delete operation. In Table 1.1, I compare
the numbers of both approaches. In this example, the object store has
16,777,216 objects encrypted with the AES256 algorithm that uses a key
size of 32 bytes. The additional operations are calculated for deleting only a
single object. The Key-Cascade method presented in this thesis solves these
issues and provides a balanced approach.

1.5 | The Key Management Problem 27

Individual
key

Master
key

Volume of
trusted storage 512 MB 64 bytes

Volume of keys
stored on cloud 0 0

Add. operations
for deleting 1 16,777,215

Table 1.1: Storage and computational overhead comparison for preliminary
approaches. Using an object store with 16,777,216 objects.

1.6 Problem Statement and Requirements

In the following, I give the application context, the research problem, as well
as the requirements for a satisfactory solution.
The application context, to which the proposed solution is applied, is

illustrated in Figure 1.5. First, two trust zones are defined. A trusted
environment is present on the user side so that a trusted storage location is
provided. The untrusted zone is given by a cloud storage service. Assuming
this zone to be untrusted renders the requirement of trusting the cloud
provider unnecessary.
In the trusted zone, I distinguish between a trusted gateway and multiple

clients. A simplified solution consists of only a single client that contains
the trusted gateway’s components. However, separating the client from the
trusted gateway yields certain benefits that make the solution more flexible
and applicable in practice:

• Clients need not be aware of the data encryption and key management
for cryptographic deletion. This enables the transparent use of the
solution with existing clients or existing applications.

• Multiple clients can be supported without the need for a distributed
key management approach.

I consider the following three requirements necessary for a satisfactory

28 1 | Introduction

Cloud storage
 serviceClient

Trusted
gateway

Trusted
storage (for keys)

Internet

Encrypt and
decrypt data,
store keys

Store encrypted
data

ClientClient

Trusted zone:
Local/on-premise

components

Untrusted zone:
Cloud provider

components

101101
110010
010011
0111

101101
110010
010011
0111

101101
110010
010011
0111

Large cloud storage
(for encrypted data)

Figure 1.5: System overview showing local and cloud components.

solution in the above application context:

Requirement 1.1 (Small trusted storage volume)
The amount of data stored on the trusted gateway has to be small.

This requirement is derived from the practical implementation of the
trusted storage location. Specialized cryptographic hardware with integrated
hardware key stores provide the highest level of security, as they offer assured
deletion of stored keys. These devices can only store small numbers of
encryption keys (refer to Section 2.3). In general, the smaller the amount of
data, the easier it is to store and delete in a secure way.

Requirement 1.2 (Acceptable overhead)
The computational overhead for the secure delete operation has to be small.

There is always a certain overhead implied by performing cryptographic
deletion because it adds additional steps to the process of deleting data. A
low overhead is therefore a desirable property of any solution.

Requirement 1.3 (Object-level granularity)
The granularity of the secure delete operation should be on the object level.

1.6 | Problem Statement and Requirements 29

Without requiring a fine granularity, a naive approach like the above
master key approach can always be used. Therefore, a research problem
is only given when requiring such a fine granularity. I also consider this a
necessary requirement for a practically usable system. Continued use of the
system is only feasible if individual objects can be deleted, while others are
kept.

30 1 | Introduction

C
h
ap

te
r 2

Background and Related
Work

In this chapter, I present background information on the practice of secure
deletion, technologies and methods that I use in my contributions, as well
as related technologies and related work.
I first introduce the topic of secure deletion by discussing its application

in practice and the methods currently used. These cover applied methods
for storing and deleting sensitive information such as physical destruction
of storage media and overwriting of data. I then introduce technologies
and methods that are used in the contributions of this thesis. This includes
chains of perpetually encrypted keys and specialized cryptographic hardware.
Trusted Platform Modules (TPM) are an example of such hardware devices
that are found in most modern personal computers and servers.
In order to point out possible areas where cryptographic deletion could

be applied, I show candidate applications where data encryption is used.
This includes file and disk encryption, cloud data storage services that use
encryption as well as encryption in database systems. Finally, I discuss related

31

work in the area of cryptographic deletion and present the state of the art
on which this thesis builds.

2.1 Secure Deletion

Secure deletion describes the idea that deleted data can not be reconstructed
later, even by forensic means. This property is usually not present in storage
systems for two reasons:

• For performance reasons, the storage system only marks deleted blocks
or segments and reuses them later to store new data. Data recovery
processes and forensic tools allow finding and reconstructing these
presumably deleted data in many cases.

• Many storage systems use logs and journals in order to maintain
performance and data consistency. This creates secondary copies of
the data that are not considered during deletion.

• Especially large storage systems replicate and duplicate data for perfor-
mance, availability, and reliability reasons. These copies must be con-
sidered in the process of securely deleting data. This is often difficult
or impossible, especially with outsourced, shared storage solutions.

There are however solutions to the problem since secure deletion is a
requirement in some cases. I discuss some of these cases in Section 1.2. In
the following, I give an overview of current approaches to secure deletion
and also show the reasons why they are not applicable in the outsourced
cloud storage scenario.

2.1.1 Classification of Approaches

The currently practiced approaches to secure data deletion can first be
grouped into physical destruction and logical deletion of data, as shown
in Figure 2.1. Physical destruction as well as logical overwriting focus on
the destruction of specific bits of stored information and therefore rely on
physical or block-level access to the corresponding storage device.

32 2 | Background and Related Work

Secure deletion

Physical destruction Logical deletion

OverwritingCryptographicMechanicalMagnetic

Key listsKey graphs

Time based Selective

Figure 2.1: Methods to secure data deletion. The cryptographic deletion
method presented in this thesis follows the highlighted path.

Physical data destruction is a straight-forward approach to secure data
deletion. The operating principle is based on physically destroying the
storagemedia containing the data. Common destructionmechanisms include
mechanical (e.g. shredding) and magnetic destruction. They require the
destruction of entire storage media and thus have a coarse granularity.
They also do not take into account any copies of the data on other media.
Due to their operating principle, they require direct physical access to the
storage media that holds the desired data objects and render the media
unusable. Because of these limitations, physical destruction as a secure
deletion mechanism is undesirable.
Logical data destruction refers to a group of mechanisms that leave the

storage medium intact and do not require physical access. It can be further
separated into cryptographic deletion and overwriting. The principle of
overwriting is based on block-level access to the storage medium and simple
overwriting or erasing of data records using regular read/write operations
[Gut96; GS03].
Both physical destruction and logical overwriting are not well suited for

cloud storage scenarios. Disks are typically shared between multiple cus-

2.1 | Secure Deletion 33

tomers and even applications, which makes physical destruction impractical.
Multiple layers of abstraction and virtualization separate the application
from the actual disk, which is problematic for both physical destruction and
logical overwriting. Identifying the disk that should be destroyed, or the
blocks that should be overwritten, becomes difficult to impossible.
Cryptographic deletion describes the concept of deleting data by keeping

it in an encrypted form and removing any access to the encryption keys (see
Section 1.3). Cryptographic deletion methods mainly differ in two aspects:
Firstly how they store and manage the encryption keys and secondly how
the deletion ob objects is decided upon.
Deletion on the granularity of groups of objects, or even individual objects,

is usually required in any practical system. This means that multiple encryp-
tion keys are necessary in order to provide this granularity. A mechanism
for managing these keys for cryptographic deletion is necessary in order to
support any significant amount of keys. Such mechanisms commonly use
either list-like data structures or graphs. Examples for list-like structures
are given with the preliminary “individual key” approach (Section 1.5) as
well as in the discussion of the related work (Section 2.4). The preliminary
“master key” approach (Section 1.5) is not considered using a graph, since
the master key directly encrypts the objects. The main contribution of this
thesis, the Key-Cascade method, uses a graph of keys and allows selective
deletion of individual objects.
Time-based vs. selective deletion is the last aspect of the classification

in Figure 2.1. Selective deletion allows users to securely delete individual
objects (or groups of objects) without affecting the rest of the managed data.
Time-based approaches implicitly delete old objects after a certain period.
Examples for such approaches are given in Section 2.4. Selective approaches,
like the Key-Cascade method, can always emulate the time-based behavior,
but may be less efficient in doing so.

34 2 | Background and Related Work

1011
1100
010

1011
1100
010

Key ‘A’

Data encrypted
with key ‘A’

Plain text
data

Key ‘A’

Key ‘A’ wrapped
with key ‘B’

Key ‘B’ wrapped
with key ‘C’

Key ‘B’

Key ‘B’

Key ‘C’

(A) (B) (C)

Figure 2.2: Simplified wrapped key and chain of wrapped keys.

2.2 Wrapped Keys and Chains of Keys

Key wrapping refers to the process of encrypting encryption keys in order to
secure them for storage or transport [Nat01]. Multiple stages of wrapped
keys form a chain of key dependencies which enables properties beyond
just securing the keys. A simplified version of key wrapping is shown in
Figure 2.2. The arrows represent the application of a symmetric encryption
algorithm (i.e., AES). Key A is first used to encrypt data. By encrypting Key
A with Key B, A gets wrapped (i.e., encrypted) by B. The wrapped key can
now only be read with knowledge of the wrapping Key B. Now the encrypted
data and wrapped Key A can be stored on untrusted storage. Any plain-text
copy of Key A gets discarded and then only Key B allows decrypting A and
therefore decrypting the data.
Wrapping B as well with a new Key C forms a chain: C 7→ B 7→ A. Key C now

allows access to the stored wrapped Keys B and A as well as the encrypted
data. Chains establish dependencies between keys and are used to create
encryption schemas. The Key-Cascade is such an encryption schema based
on branching chains that form a tree. In the following, I give an example of
a simple encryption schema in order to highlight the properties of chains.

2.2 | Wrapped Keys and Chains of Keys 35

2.2.1 Example: Practical Disk Encryption

In this scenario, I want to encrypt many individual files stored on disk and
use a single key (master key) for accessing them. A trivial encryption schema
would use the master key (MK) to encrypt each file, as exemplified by the
preliminary “master key” approach (Section 1.5). But I want the schema to
have the following properties as well:

• The master key must be exchangeable with little effort.

• It must be possible to have secondary (backup) master keys.

• Each file must be encrypted with an individual key in order to minimize
key fatigue and leaking1.

Chains allow achieving these properties with the following encryption
schema: Create an individual file encryption key (FEK) for each file; this
creates n FEKs for n files. Wrap the n FEKs with a key encryption key (KEK).
Finally, wrap the KEK with the master key. This schema implements a chain
as shown in Figure 2.2 where multiple Keys A exist (the FEKs), where Key B
is the KEK and Key C is the master key.
It is now possible to change the master key by unwrapping (decrypting)

the KEK and wrapping it with a new master key. Secondary master keys can
be generated by creating a copy of the KEK wrapped with the secondary MK.
And since each file has its own FEK, the risks of key fatigue and leaking are
minimized.
Wrapped keys and chains are the basic building blocks for creating en-

cryption schemas with specific properties. Chains can be combined and
form trees or graphs. This enables properties like permission management
through cryptography or secure deletion as realized in the Key-Cascade.

2.2.2 Authenticated Key Wrapping and Validation

Authenticated wrapping is an extension of the simplified key wrapping
explained above. It adds the capability to verify (authenticate) the key after

1The practical security of keys decreases with extended exposure and use [Ken05, p. 51]

36 2 | Background and Related Work

unwrapping.
Unwrapping, or decrypting data, with a wrong key only leads to incorrect

output of the encryption algorithm. Detecting if the correct key was used is
only possible by examining the output, the decryption process itself does not
express the difference. But good encryption keys are indistinguishable from
random bytes; it can not easily be verified whether an unwrapped key is
the correct encryption key. In other words, it is not obvious after decryption
whether the correct key was used.
Message authentication is a basic concept in cryptography that can be

realized in different ways [FS03, p. 25]. Its purpose is to add content
integrity validation to encryption in order to achieve content authentication.
If a ciphertext can be decrypted and the integrity of the result validated, it
is assumed to be authenticated because only the holder of the encryption
key is capable of creating such a ciphertext. Hashing is often used to add
integrity validation to encryption.
Authenticated key wrapping1 is possible for example by: calculating a

hash of the key that should be wrapped, appending that hash to the key and
then wrapping key and hash. After unwrapping, the resulting key is hashed
again and then the hashes are compared. A hash mismatch indicates that
either the unwrapping key was incorrect or that the ciphertext was tampered
with. Note: in such applications, known cryptographic hash functions (e.g.
MD5, SHA) are used. For this reason, the hash function does not need to be
stored. The two parties must only know which of the known cryptographic
hash functions they use.
If authentication is not required but only validation that the correct un-

wrapping key was used, then a different approach can be taken. In other
words: If the user only wants to know if the correct decryption key was used,
but does not care if the message was tampered with or forged, they are only
interested in validation and not authentication. Validation can be achieved
by simpler means than authentication.
Instead of appending a hash to the key before wrapping, a sequence of

1Specialized wrapping algorithms for encryption keys exist as well [Nat01].

2.2 | Wrapped Keys and Chains of Keys 37

known bytes is used. These bytes constitute a known header whose presence
can be checked after unwrapping. Such a header can be a string of letters or
numbers specified by the author of the encryption software. As stated above,
the unwrapped encryption key can not be identified, but the presence of the
header before or after the key’s bytes asserts that decryption was successful.
In SDOS, I use this header approach for all wrapped keys and encrypted
nodes: before encrypting a key or node, the string “SDOS_ENC” is prefixed
to the key’s bytes. After decryption, SDOS checks the presence of this string
and so learns whether decryption was successful.

2.3 Cryptographic Hardware

Specialized cryptography hardware exists for two purposes today: For im-
proving performance and for improving security.
Cryptography accelerators are found in many computing platforms today

due to the ubiquity of encryption. Cryptography heavily relies on a very
small number of complex algorithms, so that in-hardware implementations
of those algorithms can accelerate numerous cryptographic tasks. The most
widely used algorithm as of 2017 is the Advanced Encryption Standard (AES)
symmetric cipher.
Symmetric ciphers are used for actual (storage or transmission) data

encryption, compared to asymmetric ciphers, which are mostly used for
signing, verifying, and key exchange. This is because symmetric ciphers are
orders of magnitude faster to compute than asymmetric ones. For this reason,
the most common cryptographic task today is encrypting and decrypting
data with the AES algorithm.
In 2008, Intel published a specification for extending the x86 CPU instruc-

tion set with instructions for hardware accelerated AES. Both Intel and AMD
have been shipping all their processors since 2010 with included hardware
AES functionality [Gue12]. The specification was later also implemented in
non-x86 architectures and is now available in Sun SPARC, IBM Power7 and
the ARM architecture [Yod13].

38 2 | Background and Related Work

Figure 2.3: IBM 4767 PCIe HSM with secure enclosure [IBM].

2.3.1 Improving Security with Cryptographic Hardware

A different type of cryptography hardware comprises devices that extend
the security or add new security features to a computing platform. These
devices contain a small secure storage area, usually for cryptographic keys,
as well as a processor.
Hardware Security Modules (HSM) and Trusted Platform Modules (TPM)

represent the most widely used devices in this category. HSMs are general
purpose cryptography modules that are available in a variety of configura-
tions. These devices are mostly used in banking and payment processing
applications and are often required by standards and regulations in these
industries [IBM]. HSMs have a tamper-resistant hardware construction so
that they securely delete or destroy their sensitive data when they detect
physical manipulation, as seen in the IBM 47671 in Figure 2.3.
Hardware Security Modules create a trusted enclave inside an otherwise

untrusted computing platform. They achieve this by their physical secu-

1http://www-03.ibm.com/security/cryptocards/

2.3 | Cryptographic Hardware 39

http://www-03.ibm.com/security/cryptocards/

Authenticate

Verify

Load key

Decrypt

1011
1100
010

 Decrypt with
 internal key

Return plain text

1011
1100
010

Host
computer

HSM
processor

HSM
Key store

HSM secure enclosure

Figure 2.4: General HSM/TPM operation. Keys never leave the secure en-
closure.

rity combined with the fact that master keys never leave the HSM. They
contain master keys programmed by the manufacturer and can generate
additional keys inside the device. These keys can only be used to perform
cryptographic functions on the HSM processor inside the HSM. The HSM
requires authentication before allowing any operation with the stored keys
(see Figure 2.4). This creates a multi-factor security because decryption of
data, or other cryptographic operations, are only possible with knowledge
of the authentication key as well as physical possession of the working HSM.
Hardware Security Modules are programmable, allowing the execution

of custom code inside the secure container. This functionality is used in
order to prevent sensitive decrypted data from leaving the HSM. Especially
wrapped-key applications (see Section 2.2) make use of this in order to
load encrypted external keys into the HSM, then decrypt and use them only
inside the HSM. Combined with the capability to generate and encrypt new

40 2 | Background and Related Work

1
1011
1100
010 2

n

Internal EEPROM key store

Non-migratable
key

Trusted Platform Module (TPM)

Temp. storage for external
data to be processed

Internal processor for
cryptographic operations

Interface to
main CPU

Figure 2.5: TPM internal components. Non-migratable keys can only be
used inside the TPM.

keys inside the HSM, the use of custom cryptographic schemas with large
numbers of keys is enabled.
Trusted Platform Modules (TPMs) are a specialized type of HSM that

are used in personal computers and servers. They are already ubiquitous
in those devices today and will achieve even higher distribution in the
future, since Microsoft added a TPM as a mandatory hardware requirement
for its Windows 10 operating system1. TPMs implement a specification
by the Trusted Platform Group that defines core capabilities and security
requirements [Gro16]. Their intended purpose is to support local disk and
data encryption, as well as verified device identification.
A block-level diagram of the typical TPM hardware is given in Figure 2.5.

Similar to HSMs, they contain their own processor for cryptographic op-
erations. TPMs contain two logical storage areas on an EEPROM2. One
is used for data, transmitted to or from the main CPU, to be processed
(en/decrypted) by the TPM. The other is used as an isolated storage area for
encryption keys. Keys can be specified to be “non-migratable”. Such a key
can never be transmitted to the main CPU, but only be used inside the TPM.
For typical data encryption with a TPM, an encryption key is stored on

1https://msdn.microsoft.com/en-us/library/windows/hardware/
dn915086(v=vs.85).aspx

2Electronically erasable and programmable read only memory.

2.3 | Cryptographic Hardware 41

https://msdn.microsoft.com/en-us/library/windows/hardware/dn915086(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/dn915086(v=vs.85).aspx

disk but wrapped (see Section 2.2) with the TPM master key. This encryption
key can only be used after it was unwrapped by an authenticated TPM. The
actual data de- and encryption is then done by the main CPU. For device
identification, they contain an “endorsement key” that was signed by a
trusted manufacturer master key. Remote services can challenge the TPM
and verify the endorsement key in order to identify a certain machine. This
is used for enterprise asset tracking as well as license management for digital
media (digital rights management).
Just like general purpose HSMs, TPMs can be used in custom applications

with the limitation that no custom code can be run inside the TPM. Only
the basic cryptographic operations are supported by the processor inside the
TPM [ZDB09]. The physical security and tamper resistance of TPMs is also
lower than that of most enterprise HSMs.

2.4 Related Work

The topic of cryptographic deletion and its applicability to cloud storage
systems, which was the focus of my research, covers three areas of interest:
secure deletion, cryptographic deletion, as well as storage and data encryp-
tion systems. In the following, I discuss the related work from research and
industry in these three areas.

2.4.1 Secure Deletion

As discussed in Section 2.1, cryptographic deletion is only one method to
achieve secure deletion. In this section, I discuss standards and recommen-
dations concerning applied secure deletion. I also discuss the other two
approaches: physical destruction and logical overwriting.
In 1996, Gutmann published a comprehensive and widely cited report on

secure deletion through overwriting [Gut96]. He evaluated the effectiveness
of different methods by attempting forensic data recovery afterwards. At
the time of his experiments, he found that up to 35 overwrite cycles with
specialized data patterns were necessary on some media. His results became

42 2 | Background and Related Work

popular as the “Gutmann method” and the 35 cycles and his data patterns
are implemented in many overwriting tools1 today.
The US Department of Defense (DoD) publication “DoD 5220.22-M” states

internal procedures used for secure data deletion. It mentions physical
destruction through strong electromagnets or shredders and also specifies a
procedure for data overwriting. This document is often cited as authoritative
and the specified procedure of overwriting data three times with zeroes
has become a popular practice [BL05]. However, the DoD discontinued
publishing such procedures and recommends against referring to the above
mentioned document. They state that it is not their responsibility to specify
or certify such procedures for the civilian public.
In 2006, the US National Institute for Standards and Technology (NIST)

published a special report on secure deletion [KSSL06]. They define different
levels of deletion based on the sensitivity of the contained data. These
include overwriting, magnetic destruction, and physical destruction. They
state that “Studies have shown that most of today’s media can be effectively
cleared by one overwrite”. This is an interesting development considering the
older Gutmann method and DoD standard recommend multiple overwrites.
According to NIST, modern magnetic storage devices store data with such a
high density that recovery is already impossible after a single overwrite.
The above mentioned NIST publication exists in multiple, revised editions;

the first being the 2006 version. In this initial publication, they state that
“Encryption is not a generally accepted means of sanitization.”, effectively
prohibiting the use of cryptographic deletion.
However, in the 2012 revision, they state that “If strong cryptography is

used, sanitization of the target data is reduced to sanitization of the encryp-
tion key(s) used to encrypt the target data. Thus, with cryptographic erase,
sanitization may be performed.”. They further state “. . . selective sanitiza-
tion, has potential applications in cloud computing and mobile devices. . . ”,
effectively recommending cryptographic deletion in cloud storage systems.
They point out that it is necessary to store the encryption keys in a separate

1E.g. Linux wipe:
http://manpages.ubuntu.com/manpages/wily/man1/wipe.1.html

2.4 | Related Work 43

http://manpages.ubuntu.com/manpages/wily/man1/wipe.1.html

storage location that provides conventional secure deletion. This fits the use
of a Trusted Platform Module in this thesis.

2.4.2 Cryptographic Deletion

The area of cryptographic deletion is not an actively researched topic at the
time of writing this thesis. I can only assume that this is coincidence and
that the topic is not widely known. For this reason, the following discussions
on related work contain almost the entire published academic literature on
the topic. Other topics with similar scope and impact, e.g. oblivious RAM
(see [Gol87]), see regular contributions at a wide range of venues. For
these reasons, I believe that the topic of cryptographic deletion has a lot of
potential for future research. I discuss some of this potential in the summary
of this thesis.
In the following, I only consider publications that explicitly employ cryp-

tography to delete data. Many publications on cryptography mention that
deletion of a key leads to deletion of the encrypted data. All the approaches
I cover have in common that they employ a specialized key management
mechanism like the Key-Cascade presented in this thesis.
The earliest work that I found in my investigation is a 2005 technical report

by R. Perlman of Sun Microsystems, who is well known for her development
of the spanning tree protocol [Per05b]. Later in that year, Perlman published
her findings at IEEE as well [Per05a]. In these publications, Perlman men-
tions previous work by a discontinued company called “Disappering Inc.”. I
could no longer find any information about this company or their product,
but the technical report details the functionality of said product: It was a
time-based secure deletion mechanism for distributed message exchange.
Users of the system could exchange messages that had an expiration date,
after which they could no longer be decrypted. This was achieved by a
central server that acted as a key store. Users would request an encryption
key for sending a message to a specific user from this key store and specify
the desired expiration date. The recipient of that encrypted message would
then request a decryption key from the key store. After keys have expired,

44 2 | Background and Related Work

they can no longer be retrieved from the key store.
This approach has obvious downsides, which may be the reason behind

the product’s discontinuation: The central key store must store a large
amount of keys, which makes securely deleting these keys difficult. The keys
transmitted between users and key store are not secured against interception.
Finally, nothing prevents the recipient of the message from simply keeping
the key as well as the message. The expiration date is ineffective in this case,
since it is intended to protect the message if its recipient gets compromised
in the future.
In her technical report, Perlman presents improvements on Disappering’s

system. But without fundamentally changing the design, only the first of
the above shortcomings could be addressed: the storage requirement on the
key store. Perlman proposes two alternative key management approaches
to improve on the “store n keys for n messages” approach by Disappearing.
Firstly, she presents a method that only requires a single key per expiration
date. Using asymmetric cryptography and key wrapping, she derives n
message keys for n messages with the same expiration date from a single
“date key”. Since the message keys can be derived from this date key, they
need not be stored themselves.
Secondly, she proposes a further improved method that only requires

storing a single key in total. This is achieved through hash chains and
time windows. Assuming a time window of one minute, the method works
as follows: at t = 0, an initial key “k” is generated. A user requests a
key for a message that should expire at t = 30. Perlman’s “Ephemerizer”
now computes the 30th hash of k: h30(k). In other words, 30 iterations of
computing the hash of the hash of k are performed. This resulting h30(k) is
then used as the encryption key for that message. Once the time progresses
to t = 1, the Ephemerizer calculates the first hash of k: h1(k) and stores the
result in k’s place; i.e., k is replaced by its hash each minute.
Until t = 30, it is still possible to retrieve the hash for the message from

before: at t = 1, the 29th hash has to be computed and so on. At t = 29,
the hash of the current value of k is the key for the message. At t = 30,
the current value of k is the key for the message. But at t = 31, it is no

2.4 | Related Work 45

longer possible to compute the value of the message key. Assuming the hash
function can not be reversed, which, however, is one of the main design
goals of cryptographic hash functions.
Perlman’s improvements describe a clever time-based cryptographic dele-

tion approach. Continuous hashing and replacing is the basis for some of the
later time-based approaches as well. Note that it is still necessary that the
Ephemerizer has a storage location with secure deletion for the key hash.
Otherwise, an adversary could recover the deleted old values.
In 2009, Geambasu et al. propose a novel approach to time-based cryp-

tographic deletion: harnessing the forgetfulness of distributed hash tables
(DHT) in order to “securely” delete keys [GKLL09]. Their “Vanish” system
focuses on automatic, time-based deletion of encryption keys. Without the
possibility for user influence, deleted encryption keys disappear from the
system after a certain period. The time-based secure deletion of Vanish is
achieved by making use of the forgetfulness of DHT networks. Users can
delete key/value pairs from the distributed hash table, but at this point the
data is not considered to be securely deleted. In Vanish, secure deletion is
achieved passively. Over time, nodes leave and join the network and balance
the hash table distribution. Data that was deleted by the users, will not be
replicated to new nodes. Vanish considers data to be securely deleted, when
none of the nodes in the current DHT network has a copy of that data.
Vanish describes two components: a user who encrypts data using a

random encryption key and a large DHT that stores the keys. The user keeps
no copy of the encryption keys they used. This use of DHT makes Vanish
capable of handling very large amounts of encryption keys, depending on the
number of nodes in the network. However, a strong adversary can infiltrate
large parts of the publicly distributed hash table and gain control over the
keys. Such an attack has been proven to be successful against the TOR
network [Din14].
Operating the DHT on trusted, on-premise nodes prevents such an attack,

but limits the size of the network. This raises the additional issue that only
few nodes hold the keys. Each of those nodes would require a secure storage
location for the keys. Otherwise, the forgetfulness is not given in practice.

46 2 | Background and Related Work

However, in such a scenario, the forgetfulness of DHT is no longer a necessary
property. Vanish is useful when the DHT is running on a large number of
diverse internet nodes. Due to the reliance on DHT forgetfulness, Vanish
does not support selective deletion of objects at the users’ discretion.
In 2010, Melvin et al. of Zytec Communication Corp. published a white

paper describing a time-based cryptographic deletion approach [Mel10].
It provides a granularity on the file level and is designed for local disk
encryption. Their “Forgetful Disk Drive” concept uses a single, current key
for encrypting all newly written files. A new current key is generated at set
time intervals, while a key management system retains a queue of keys of a
certain length. This approach imposes a time-to-live on all the data written
on the device and guarantees that old data, which hasn’t been re-written,
would eventually become unrecoverable. This is achieved through the queue
of constant length and continuous insertion of new current keys. It is not
possible to selectively delete data on the device prior to their expiration date.
Additionally, there is no provision for compressing the queue like Perlman’s
hash chains. The approach is only feasible with either a short time-to-live but
small windows, or with a long time-to-live but large windows. The reason is
that a long time-to-live with small windows leads to a very large queue size.
However, they propose to use a Trusted Platform Module as a secure storage
location for the key queue.
In 2012, Tang et al. present FADE, a cloud storage proxy system that

provides cryptographic access control and assured deletion [TLLP12]. With
Perlman as co-author, their work is based on the earlier Ephemerizer system
from 2005. Similar to the SDOS approach presented in this thesis, they
design and implement their system based on an existing cloud storage API.
However, they do not implement an API proxy so that the clients must
interact separately with their key manager component and the cloud storage
system.
The clients generate random data keys to encrypt the actual data and

delegate the encryption of these data keys to the key managers. The clients
only keep an encrypted version of the data keys and an access key, which
they use to authenticate against the key managers. The key managers store

2.4 | Related Work 47

the control keys which they use to encrypt the clients’ data keys. The trusted
key managers can now delete the control keys upon request or depending
on policies, in order to securely delete the data stored by the clients. Similar
to the Key-Cascade presented in this thesis, they use a hierarchy of wrapped
encryption keys. However, they do not use re-keying and therefore have to
provide secure deletion for each individual control key stored on the key
managers. This is contrary to the Key-Cascade, where secure deletion must
only be provided for a single key. With this, FADE lacks a mechanism for
securely managing large amounts of keys in the key managers.
However, FADE presents a novel combination of cryptography-based access

control and secure deletion. Cryptography-based access control means that
access permissions on data are not enforced by program logic (as is usual),
but by cryptographic key relations. With this method, access control is
inherently enforced and can not be circumvented, unless the adversary has
the correct key.
The most recent work on cryptographic deletion was published between

2013 and 2014 by a group at ETH Zürich. Reardon et al. describe an
approach similar to the Key-Cascade with their B-tree-based cryptographic
deletion method [RRBC13; RBC13; RBC14]. They use a dynamic tree to
handle large amounts of keys and also require a separate, external data
structure for referencing keys to objects. They also use a single root key
and the paths in the tree are chains of encrypted keys, as is the case in the
Key-Cascade. In order to provide cryptographic deletion of data through
secure deletion of the root key, they propose a method similar to the re-
keying operation on the Key-Cascade. Their method is called “shadow graph
mutation”. They determine a new graph in which only the non-deleted leaves
are reachable and then introduce new intermediary nodes under a new root
key. With this method, they securely replace the root key and retain access
to only the desired leaves.
However, they apparently do not take into account the effects of rebal-

ancing the tree. Their construction includes rebalancing the B-tree during
insertion. Rebalancing changes the position of the node contents in the tree;
these nodes are encrypted with keys stored in the parent nodes. In order

48 2 | Background and Related Work

for secure deletion to be necessary, we have to assume that old data can
be reconstructed. This includes the state of the B-tree prior to rebalancing.
When a shadow graph mutation is performed on a previously rebalanced
tree, these old nodes are not taken into account. There is a possibility that
reconstructed old nodes contain a path, decryptable with the current root
key, to a presumably deleted object. In other words, the secure deletion can
be ineffective after rebalancing. This can be avoided if a root key change
and appropriate shadow graph mutations are performed after rebalancing.
To summarize, only few but very different approaches have been inves-

tigated so far. Time-based cryptographic deletion is a popular approach.
The reason seems to be that more optimized key management solutions are
possible when the order of the deletions is known. This can be seen in Perl-
man’s perpetual hashing method. She manages to completely eliminate the
need to store any keys other than a master key. All selective cryptographic
deletion approaches still need to store a large volume of keys. The most
recent development in this area is the use of a hierarchy of wrapped keys.
This approach is found in the work by Reardon et al. and the Key-Cascade.
This hierarchy of wrapped keys brings two desirable benefits: i) It transfers
the secure delete property of a single key to a large volume of data. Only this
single key must be kept secure. ii) It allows selective deletion and continued
use of the system. The single key can be replaced and a new key is only
valid to decrypt select paths.
Common to all related work discussed here is that they do not focus on

usability aspects and possible integration into existing applications. The
most advanced solutions in that regard are FADE and the prototype from
Reardon’s group: SoK. However, both do not offer a standard client interface.
This means that existing applications must be adapted to use those solutions.
They also only briefly discuss practical solutions for managing the master
key. Some mention Trusted Platform Modules as a key store, but none have
a working implementation like SDOS.

2.4 | Related Work 49

2.4.3 Encryption in Database Systems

Encrypted database systems share some design and application aspects with
encrypted cloud storage systems: In both cases, the data management system
should have some access to the content of the encrypted data. In database
systems, this is because query processing ideally should happen where the
data resides. However, this creates a conflict with encryption that hides the
contents. In cloud storage systems, the situation is similar. Some operations
are ideally performed on the cloud, where the encrypted data resides.
For example, when the object names in an encrypted cloud object store

are accessible to the provider, they can offer easier access to specific objects.
If this is not the case, then each user must perform some operations to
obfuscate and de-obfuscate the object names. Generally, cloud providers
are interested in offering rich services to their customers. Such services,
like advanced querying, are only possible if some access to encrypted data
is possible. Therefore, it is useful to investigate how encrypted database
systems address this issue.
In the following, I distinguish two different ways of realizing encrypted

database systems: (i) Using specialized cryptography that allows operations
on encrypted data. (ii) Allowing the database to decrypt some of the data
for processing.
Cryptographic algorithms that enable operations on the encrypted data are

called homomorphic encryption. They are actively researched today and far
from being universally applicable. Fully homomorphic encryption describes
such an algorithm that enables arbitrary computations on the encrypted data.
The possibility of such algorithms has been suspected soon after advanced
encryption algorithms were developed in the 1970s. It was however first
proven to be possible in 2009 by Gentry et al. [Gen09]. Many improvements
on his concept have been proposed since, but they are all highly inefficient.
A recent advancement by Brakerski et al., for example, still requires seconds
to minutes for simple operations [BV14].
Fully homomorphic encryption today works by leveraging a small number

of operations in order to emulate arbitrary computation. In Gentry’s original

50 2 | Background and Related Work

construction, the underlying partial homomorphic encryption allows addition
and multiplication on encrypted data. This leads to very computationally
expensive execution.
For these reasons, fully homomorphic encryption is not used in production

database systems today. However, the potential of homomorphic encryption
is widely recognized and applications are conceivable in almost every area
of distributed and cloud computing. Cryptographic deletion in the context of
homomorphic encryption is an interesting research problem for this reason.
Any system that uses data encryption can provide cryptographic deletion,
if an appropriate key management mechanism is used. This is true for
homomorphic encryption as well. Databases that are encrypted in this way,
could integrate cryptographic deletion into the regular delete operations.
This would add a potentially desirable feature to such databases.
Partial homomorphic encryption directly supports certain operations and

is used in production database systems today [FG07]. These approaches
bear another issue: Each encryption algorithm supports only one or few
operations. This means that multiple copies of the data must be stored, each
encrypted differently for the different types of required operations.
The most notable implementation of an encrypted database system that

uses partial homomorphic encryption, is CryptDB [PRZB11]. This and similar
approaches work as follows: An unmodified database system is used, but
clients encrypt and modify their queries. They leverage a set of encryption
algorithms to support the basic operators required for SQL queries, like com-
parison, ordering, or addition. Insert queries are duplicated by the client,
so that multiple copies of tables exist, each encrypted to support a different
kind of operator. For example, deterministic encryption always produces the
same output for the same input, if the same key is used. This effect is best
demonstrated by encrypting bitmap image data, as shown in Figure 2.6. It
also highlights an issue with these approaches: deterministic, order preserv-
ing, or similar encryption algorithms always leak some information about
the encrypted data.
Different approaches to implementing such a system exist. In CryptDB, an

API proxy for MySQL was implemented so that unmodified clients andMySQL

2.4 | Related Work 51

Figure 2.6: Deterministic (b) compared to randomized (c) encryption.

servers may be used, similar to the Swift API proxy approach presented in
this thesis.
Since these database systems must store differently encrypted copies of

all tables, they impose a high storage overhead. However, this overhead
may be tolerable and the performance of these systems is acceptable. At
least for simple read queries, the query processing in the database is not
different from an unencrypted table. Only insertions are expensive and the
overhead from the API proxy must be taken into account. Ada Popa et al. say
CryptDB “. . . explores an intermediate design point to provide confidentiality
. . . ” until fully homomorphic systems become feasible.
The following approaches comprise the second type of encrypted database

systems (ii) introduced above; systems where the data is encrypted at rest,
but the execution engine has access to keys. This is the approach taken by
commercial database vendors today.
With Microsoft Cipherbase, Arasu et al. describe a relational SQL database

system that uses encryption to provide confidentiality of stored data [ABE+12;
ABE+13; AEJ+15]. They do not employ homomorphic encryption for the rea-
sons stated above, but use regular cryptographic algorithms. The main idea
behind Cipherbase is to allow the cloud to decrypt the data for processing,
but do so in a secure manner. This is achieved through hardware/software
co-design with an HSM to create a small trusted enclave inside the untrusted
cloud server, in which data decryption and processing of sensitive content
happens. This trusted enclave is inaccessible to the cloud provider and ad-
ministrators and will only process legitimate queries by an authenticated
client. The results are encrypted again inside the trusted enclave and then

52 2 | Background and Related Work

transmitted back to the client, through the untrusted environment.
With this approach, it is possible to provide full server-side SQL query

processing on an encrypted database. The downsides are that special hard-
ware is required on the cloud server side and that this hardware must be
trusted. It is also difficult to achieve high performance: Without optimiza-
tion, all decryption/encrypting and query processing would be done inside
the trusted enclave which has limited processing power. The actual cloud
server would do very little work. So for every database operator it must
be investigated if part of the processing can be done on the cloud server
on encrypted data. The mode of encryption must be adjusted to fit these
processing requirements, while still maintaining the confidentiality of the
data.
Bajaj et al. also use the “trusted enclave” approach in TrustedDB [BS14].

They offer full SQL capabilities on an encrypted database by using a trusted
coprocessor inside the cloud server. Instead of using custom hardware for
the trusted enclave like Cipherbase, they use a generic Hardware Security
Module from IBM. This “CryptoCard” has authority over the encryption keys
used for the database and only responds to legitimate requests from authen-
ticated clients. An advantage of using a generic cryptographic coprocessor
over custom hardware is their certified security. Their disadvantage is the
lower performance compared to custom hardware.
Janusz et al. descibe an approach for executing range queries on encrypted

databases [JT17]. In their ZeroDB system, they implement an approach
similar to Cipherbase, except that decryption and processing happens on the
client side and not inside the cloud. Part of the query processing is delegated
to the client. The database system on the cloud only provides the logical
storage layer.

2.4 | Related Work 53

C
h
ap

te
r 3

Key-Cascade Method

In the following, I present the main contribution of this thesis: The Key-
Cascade method.
The Key-Cascade method describes a data structure and operations for

managing the encryption keys used in cryptographic deletion.
The general principle of cryptographic deletion is detailed in Section 1.3:

Data are encrypted and stored separately from their encryption key. A trusted
storage location is then used for the encryption key, so that no deleted key
can be recovered later. This secure delete property of the trusted storage is
then transferred to the stored data by means of encryption: If the key can
not be recovered, neither can the encrypted data.
As I have shown with the key management problem in Section 1.5, it is

non-trivial to manage the necessary encryption keys. The reason is that only
a small number of keys can be stored and managed securely, but a large
number of keys is actually needed in order to encrypt all necessary objects.
The Key-Cascade solves this key management problem by creating a hi-

erarchy of wrapped encryption keys (see Section 2.2) in a tree structure.
With this method, only a single root key must be stored securely, but a large
number of leaf keys is available for encrypting the objects. Furthermore, the

55

Key-Cascade achieves this without violating the storage, performance, and
granularity requirements stated in Section 1.6.
The Key-Cascade method is independent of a specific storage system or

application topology. For consistency with the rest of the thesis however, I
describe the concepts in this chapter in the context of an untrusted cloud
storage service that is accessed by clients through a trusted gateway as
shown in Figure 3.1. In this context, the Key-Cascade resides on the trusted
gateway. All the operations discussed in this chapter are executed on this
gateway.
I design and implement the contributions in this thesis around the data

models and interfaces of an object store. For this reason, I also use the
term object as the unit of data that gets stored, retrieved, and deleted in
the following examples. Objects are comparable to files in a file system,
they are addressable by an object identifier. The actual data model of the
object stored is discussed in detail in Chapter 5. For the following conceptual
discussion, it is enough to assume a single, flat hierarchy of objects with
consecutive numbers as identifiers.

56 3 | Key-Cascade Method

Cloud
object storeClient

Key-
Cascade

Trusted storage

Internet

Encrypt and
decrypt data,

store keys
Store encrypted
data

ClientUsers

Trusted zone:
Local/on-premise

components

Untrusted zone:
Cloud provider

components

101101
110010
010011
0111

101101
110010
010011
0111

101101
110010
010011
0111

Large cloud storageCache

Only root key
is stored here

Object and node
en/decryption

Caching of tree
nodes and keys

Users access the
object store via
this gateway

Figure 3.1: Overview of the reference application.

3.1 Key-Cascade: Abstract Idea

The abstract idea behind the Key-Cascade is to use a tree structure in order
to establish relations between a single root key and a large number of keys
in the leaves. This makes use of key-wrapping (see Section 2.2), so that
parent nodes in the tree contain encryption keys for their children. Each
path in this tree is a chain of wrapped keys.
The Key-Cascade manages encryption keys for objects in the leaves of its

tree. The two parameters tree height and node size determine the geometry
of the resulting tree. In the following example, I explain how such a Key-
Cascade with tree height 2 and node size 4 is constructed. Figure 3.2
illustrates the following five steps:

1. Four objects (Ooid) should be stored encrypted. First, four object keys
are randomly generated and used to encrypt each object with an
individual key: okoid. These encrypted objects can now be stored on
the cloud.

3.1 | Key-Cascade: Abstract Idea 57

nk1

N0

nk1

ok0 ok2ok1 ok3

N1

drk

1011
1100
010

1011
1100
010

1011
1100
010

1011
1100
010

0 1 2 3

1011
1100
010

1011
1100
010

1011
1100
010

1011
1100
010

0 1 2 3

1011
1100
010

1011
1100
010

1011
1100
010

1011
1100
010

0 1 2 3

ok0 ok2ok1 ok3

(1) Generate 4 random
keys and encrypt objects

ok0 ok2ok1 ok3

N1

1011
1100
010

1011
1100
010

1011
1100
010

1011
1100
010

0 1 2 3

(2) Concatenate the
keys into a single node

ok0 ok2ok1 ok3

N1

1011
1100
010

1011
1100
010

1011
1100
010

1011
1100
010

0 1 2 3

(3) Generate a random
key and encrypt the node

nk1

ok0 ok2ok1 ok3

N1

1011
1100
010

1011
1100
010

1011
1100
010

1011
1100
010

0 1 2 3

(4) Concatenate
the node keys as well

(5) Encrypt this root node
with a deletable root key

Encrypted nodes
and objects can now
be stored on the cloud

Only the root key
must be kept secure

Figure 3.2: Construction of a new Key-Cascade with tree height 2 and node
size 4.

58 3 | Key-Cascade Method

2. The four object keys are now concatenated together to form an object-
key node Nnid.

3. A new random node key (nknid) is now generated and used to encrypt
the previously created node. This encrypted node can now be stored
on the cloud.

4. Only one node key exists in this example, but up to four node keys are
brought into the same node format as the object keys before. These
inner nodes, containing node keys for object-key nodes, are called
node-key nodes.

5. Because the tree has height 2, this node-key node is the root. The root
is finally encrypted with a deletable root key: drk. This encrypted root
node can now be stored on the cloud and the deletable root key on
the trusted storage location.

The goal of this approach is that secure deletion of the root key leads to
secure deletion of select object (leaf) keys. In other words, when the root
key is replaced with a new root key, this new root key is no longer valid to
decrypt these select object keys. I achieve this with the cascaded re-keying
method presented in Section 3.7

3.2 Data Structure and Key Organization

The structure of a Key-Cascade is given in Figure 3.31.
The bottom row represents the actual data objects stored on the object

store. Each object is identified by its object identifier or object ID: oid.
These oids are sequential numbers, starting at 0 for the first object. The
objects are encrypted with individual object keys: okoid, which are randomly
generated. The object keys are identified by the same numbers used as object
identifiers. In other words, object key oki is the key for the object with the
ID i.

1The illustrations in this Chapter use a Key-Cascade with height 2 and a node size (degree)
of 4, but these two parameters can take arbitrary values.

3.2 | Data Structure and Key Organization 59

nk1 nk2

N0

ok0 ok2ok1 ok3
N1

ok4 ok6ok5 ok7
N2

drkKeys encrypt
entire node beneath

Deletable root key

“slots” 0,…,3

Encrypted
objects

Encrypted node

Node N0

node ID (nid) = 0

Inner nodes
contain “Node-keys”

Leaf nodes
contain “Object-keys”

1011
1100
010

1011
1100
010

1011
1100
010

1011
1100
010

1011
1100
010

1011
1100
010

1011
1100
010

1011
1100
010

0 1 2 3 4 5 6 7

Object
IDs (oid)

Figure 3.3: Structure of a single Key-Cascade with height 2 and a node size
of 4. Nodes 3 and 4 are not shown.

The leaf level of the Key-Cascade groups these object keys into nodes
that contain a fixed number of slots. These object-key nodes are formed
by ordering the object keys in ascending order of the object ID and then
grouping them by the node size: In the example, the first object-key node
contains object keys 0,1, 2,3.
These initial nodes, containing the object keys, are further on encrypted

themselves, and their node keys grouped into further nodes. This process is
repeated for as many levels as the Key-Cascade has.
The Key-Cascade’s leaves are object-key nodes and the inner nodes are

node-key nodes. Each of these nodes is identified by a node identifier
or node ID: nid. These nids are chosen by numbering all nodes breadth-
first, starting with 0 at the root. The breadth-first traversal is done based
on a perfect k-ary tree1, where k is the node size. This means that nids

1As described in [CSRL01].

60 3 | Key-Cascade Method

are assigned based on the position of the node in the tree, rather than by
enumerating the nodes actually used. In other words, if a node is missing
because it was not used yet, it is still counted when assigning the nids.

3.2.1 Static Tree Benefits

An important design property of the Key-Cascade is that it forms a perfect
k-ary tree. This property comes from using a fixed size for the nodes, as well
as a fixed height of the tree. This yields the following two benefits:
Static tree benefit 1: Re-balancing the tree is avoided. Since the nodes

of the tree are encrypted lists, re-balancing the tree involves re-encrypting of
the node contents, which I want to avoid. The Key-Cascade would require a
cascaded re-keying operation (see Section 3.7) for balancing, which eventually
requires replacing the root key.
Re-balancing the tree without cascaded re-keying and replacement of

the root key causes an issue: It leaves secondary access paths to leaf nodes
behind. This renders future secure deletion through cascaded re-keying
ineffective.
Static tree benefit 2: The second benefit of the perfect k-ary tree lies in

locating the nodes. Since the tree is assumed to be completely filled, I can
sequentially number all nodes in a breadth-first order and exploit the fact
that each node has a fixed ID according to its position in the tree. This means
that every object key and node key has a known location inside the tree and
this location can be calculated from the tree geometry and the object ID oid
alone. This property is especially useful in the case of the Key-Cascade, since
the nodes are encrypted and stored externally. With only the knowledge of
an object ID, I can locate and retrieve all the nodes along its access path at
once and then process them locally. In a dynamic tree, I would first have to
retrieve and decrypt the root node in order to determine the location of the
next node and so on. This structure allows decoupling the retrieval and the
processing of the encrypted nodes.
The downsides to this structure are the possibility of poorly utilized sparse

trees and the fixed number of maximum leaf nodes. Sparse trees can be

3.2 | Data Structure and Key Organization 61

avoided with a depth-first allocation algorithm, that is explained in Sec-
tion 5.2. The fixed number of leaf nodes, and therefore object keys, is
handled by choosing a sufficiently large tree. Only the nodes that are actu-
ally used need to be materialized and stored. This means that the physical
size of the tree grows with the amount of used objects keys. Section 3.4
gives the formulas for calculating the tree size and its capacity. However,
growing the Key-Cascade’s tree to create room for additional object keys is
possible as well. A discussion on resizing the tree is found in Section 4.1.

3.3 Data Structures and Storage Locations

The central data structure is the Key-Cascade that consists of the individual
nodes. How this and other data structures are stored as objects on the object
store, is illustrated in Figure 3.4. Each node gets encrypted on the gateway
and stored on the cloud as an individual object identified by its nid. In their
decrypted form, a node is a list with a fixed number of slots that contain
only the encryption keys. This structure allows for a minimal size of the
nodes, since they only store the encryption keys and no additional data. This
means that the edges between the nodes, as indicated in the illustrations,
are not stored as part of the data structure. They are given implicitly by the
identifiers of the nodes and objects as described in Section 3.6.
In order to gain access to the contents of the Key-Cascade, the gateway

stores a root key that encrypts the root node. This is the only data that is
permanently stored on the gateway and also the only data for which secure
deletion (e.g. by a Hardware Security Module) must be guaranteed, since
the Key-Cascade transfers this secure-deletion property from this root key to
all managed data. For this reason, I call this key the deletable root key in the
further discussions.

62 3 | Key-Cascade Method

Cloud storage

Trusted storage

... ...

N0
...

N1

drk

Encrypted
objects1011

1100
010

1011
1100
010

1011
1100
010

1011
1100
010

0 1 2 3

0

1

1011
1100
010

0

...

Logical structure Physical storage

Encrypted
nodes

Deletable
root
key

Figure 3.4: Key-Cascade objects and their storage location.

3.4 Complexity and Efficiency Consideration

There are two parameters that determine the geometry of the Key-Cascade:
the node size Sn and the tree height h. When these parameters are set, they
determine the further properties of the Key-Cascade. In the following, I give
an explanation of these properties and their respective formula. The formulas
for the number of nodes and object keys are derived from the formulas found
in literature for calculating properties of a perfect k-ary tree [CSRL01].

Node size parameter: Sn

It determines the number of slots (keys) in each node and, therefore,
also the number of child nodes (i.e., degree / branching factor).

Tree height parameter: h
The tree height determines the number of levels in the Key-Cascade.

3.4 | Complexity and Efficiency Consideration 63

The tree in Figure 3.5 for example has a height of two.

Number of object keys: R= Sn
h

The number of object keys we can store in a cascade is given by the
number of object-key nodes Sn

h−1 (i.e., leaves in a perfect Sn-ary tree)
multiplied by the node size: Sn

h−1 · Sn = Sn
h.

Number of nodes: L =
∑h−1

i=0 Sn
i = Sn

h−1
Sn−1

Represents the maximum number of nodes I need to store (in a fully
utilized Key-Cascade) and allows calculating the required storage
capacity. It is given as the closed-form expression of the sum of nodes
on all levels of the tree.

First object-key node ID: nidfon =
Sn

h−1−1
Sn−1

This is the nid of the first object-key node (“1” in Figure 3.5). All
further object-key nodes have consecutive following nids until L − 1

(because the enumeration starts at the root with 0).

Cascade storage: K = L · Sn · key length
Gives the number of bytes required to store the Key-Cascade (all nodes).
The key length represents the size of the keys stored inside the nodes. In
SDOS, this is always 32 bytes due to the AES256 encryption algorithm.

Re-key complexity, worst case: Crk = h · (Sn + 2)
Re-keying involves a copy operation for each key in each node and two
additional operations for encrypting/decrypting each node. Note that
one object key doesn’t need to be copied (the deleted one), while one
new deletable root key must be generated. These two operations offset
each other so that both can be omitted. This worst case is given when
all involved nodes are fully utilized so that every key slot contains a
key.

64 3 | Key-Cascade Method

0 1 2 3 4 5 6 7 8 15...

Node-key
node

Object-key
nodes

Data objects

Node ID
“nid”

Node
“nidfon”

Object ID
“oid”

4321

0

Figure 3.5: Representation of a Key-Cascade’s tree structure showing only
the nodes and IDs. Height h= 2, node size Sn = 4.

3.5 Key-Cascade Geometry Examples

In the following two examples, I show the properties of two differently
parametrized Key-Cascades. Further, much larger geometries are presented
and evaluated in the performance evaluation in Section 5.6.

Example 1:
Tree height h= 2, node size Sn = 22 = 4.

This results in a cascade consisting of 5 nodes with space for 16 object
keys. When fully utilized, the Key-Cascade needs 640 bytes to store
the nodes. Re-keying requires up to 12 operations. With objects of 100
kilobytes average size, this cascade can store keys for 1.6 megabytes
of data. The cascade therefore imposes a storage overhead of 0.04%.

This Key-Cascade geometry is used in the illustrations and calculations
of this thesis because of the manageable size and number of nodes.

Example 2:
Tree height h= 3, node size Sn = 28 = 256.

This more realistic parameter setting results in a cascade consisting
of 65,793 nodes with space for 16,777,216 object keys. When fully

3.5 | Key-Cascade Geometry Examples 65

Individual
key

Master
key

Key-
Cascade

Volume of trusted
local key storage 512 MB 64 bytes 64 bytes

Volume of keys
stored on cloud 0 0 514 MB

Add. operations
for deleting 1 16,777,215 774

Table 3.1: Storage and computational overhead comparison for preliminary
approaches from Section 1.5 and Key-Cascade. Using an object
store with 16,777,216 objects and the Key-Cascade from Exam-
ple 2.

utilized, the Key-Cascade needs 514 megabytes to store the nodes.
Re-keying requires up to 774 operations (note that these are small
in-memory operations). With objects of 100 kilobytes average size, this
cascade can store keys for 1.6 terabytes of data. The cascade therefore
imposes a storage overhead of 0.03%.

In Table 3.1, I give a comparison of the storage and computational over-
head between the two preliminary approaches (see Section 1.5) and the
Key-Cascade. This is an extension of Table 1.1 from Section 1.6 at the end
of the Introduction, where Requirements 1.1 and 1.2 are introduced. The
two highlighted fields show again where the preliminary approaches vio-
late the requirements, while the Key-Cascade satisfies them. Note that the
16,777, 215 additional operations, listed for the master key approach, refer
to re-keying operations on stored objects. These are expensive I/O-heavy
operations. The 774 additional operations for the Key-Cascade method, how-
ever, mostly consist of in-memory copy operations. A detailed break down of
the operations, necessary for secure deletion with the Key-Cascade method,
is given in Section 3.7.

66 3 | Key-Cascade Method

2 3 4 5 6 7 8 ...

Slot 1 in Node 0

4321

0

Slot 3 in Node 2

...

Figure 3.6: The path to the object key for Object 7, found through ID calcu-
lations.

3.6 ID Calculations

ID calculations are used during operations on the Key-Cascade in order to
determine paths from the root to desired object keys. They are enabled by the
use of a perfect k-ary tree and allow determining paths without inspecting
node contents.
Each object-key references and encrypts exactly one object. The objects

and their object keys are identified by their object ID oid1. They are num-
bered sequentially starting from 0 and in this example (see Figure 3.5)
ending at 15. A request for reading, writing, or deleting an object starts with
the object’s ID. So I need to determine the node ID nid of each node along
the path from the root to the node containing the object key for the object
to be accessed. I also need to determine the slots inside the nodes that
hold the keys for their children along this path. For this, I have to carry out
two types of calculations: Firstly, to calculate the ID/slot for the object-key
node once. Secondly, to calculate the ID/slot for the path of node-key nodes

1oids are only used internally. Section 4.4 introduces their mapping to object names as
used in SDOS/Swift.

3.6 | ID Calculations 67

iteratively (h− 1 times) in order to traverse the whole path. This is done
only by ID calculations that don’t require additional data structures.
The following formulas are derived from the formulas found in literature

for calculating properties of a perfect k-ary tree [CSRL01].
Example: Decrypting Object oid = 7 (Figure 3.6 highlights the resulting

path). I know that the tree has a height of h= 2 and the nodes have a size
of Sn = 4. I start by calculating ID/slot for the object-key node and then
continue with the node-key nodes, until reaching the root.

Object-key node ID: nid = i + nidfon

where i = oid div Sn.
In this example: nid = 7 div 4 + 1 = 2. I first calculate i, the i-th
object-key node, from the oid. Since the first node containing object
keys is nid f on, I have to add that to i.

Object-key node slot: slot = oid mod Sn

slot = 7 mod 4= 3. Here I calculate the slot inside the object-key node
that holds the key for the object.

Node-key node ID: nidparent = (nid − 1) div Sn

nidparent = (2− 1) div 4= 0. Here I calculate the parent ID for a node.

Node-key node slot: slot= (nid− 1)mod Sn

slot= (2−1)mod 4= 1. I calculate the slot inside the parent node-key
node.

This yields Slot 3 in Node 2 as the location of the object key for Object 7;
i.e., the encryption key used for Object 7. The node key for that node lies
in Slot 1 of Node 0. Since I know that the height of the tree is 2, I already
know that in total only two iterations of calculating node IDs and slots are
required. Termination is also indicated by reaching Node 0 (the root).
Note that these formulas apply in general and that they can be simplified

for particular Key-Cascades of a known geometry. In this example, the node
ID of the object-key node (first step in the above example) can be expressed
1 as b oid+4

4 c= b
7+4

4 c= b
11
4 c= b2.75c= 2.

1Where bxc=max{m ∈ Z | m≤ x}, or the “floor” of x, or x rounded down

68 3 | Key-Cascade Method

N1

1011
1100
010

1011
1100
010

1011
1100
010

1011
1100
010

1011
1100
010

1011
1100
010

1011
1100
010

1011
1100
010

0 1 2 3 4 5 6 7

N2 N2’

N0’N0

drk
Old root key
securely deleted

Old nodes crypto-
graphically deleted

Unmodified node

New deletable root key

New node key

Modified and
re-keyed nodes

Object 7 crypto-
graphically deleted

Not copied

Copied keys

Copied node key

Figure 3.7: Cascaded re-keying results in cryptographic deletion of Object 7.

3.7 Secure Deletion Through Cascaded Re-Keying

Cascaded re-keying is the operation by which cryptographic deletion is
achieved.
The cascaded re-keying operation is an extension of the re-keying operation

introduced in Section 1.5. This extension is necessary in order to apply re-
keying to the chain of nodes inside the Key-Cascade, rather than an individual
key. This operation securely deletes an object key from one of the object-key
nodes by successively re-keying the nodes along the path, until reaching a
new deletable root key for the whole cascade. Cascaded re-keying is done
sequentially instead of concurrently, because parent nodes contain the keys
for their children. The decryption, copying, and encryption operations are
performed in main memory on the trusted gateway.
Figure 3.7 shows the Key-Cascade after the deletion of Object 7. First,

determine the path of the involved nodes by using ID calculations. Then,
start processing the nodes, starting from the top.

3.7 | Secure Deletion Through Cascaded Re-Keying 69

Definition 3.1 (Cascaded Re-Keying)
1. Load the current deletable root key, drk (only if this is Node 0)

2. Generate a new deletable root key, new drk (only if this is Node 0)

3. Retrieve the current node (first iteration is Node 0)

4. Decrypt the node with the previously extracted key (or drk if this is
Node 0)

5. If this is an inner node (node-key node):

a) Extract the current key for the next node on the path (here the key
for Node 2 from Slot 1 in Node 0)

b) Generate a new node key for this next node

c) Copy the node and replace the key for the next node with the newly
generated one

6. If this is an object-key node:

a) Copy the node without the key for the deleted object

7. Encrypt the node with the key generated in the previous iteration (or
with the new drk)

8. Write the modified encrypted node to the object store
Then the next iteration starts with the (next) child node at Step 3. The

trusted gateway always holds three keys temporarily between iterations: first
the new deletable root key, second the current key for the next node on the
path, and third the new key for the next node. Once all modified nodes are
written to the object store, the old deletable root key can be securely deleted
and replaced with the newly generated new deletable root key. Without access
to the old deletable root key, none of the old nodes and referenced objects, can
be decrypted.

The above example explains the operation for deleting a single object key.
However, cascaded re-keying can easily be adapted for deleting multiple
object keys in a single run. This is achieved by determining all necessary
paths first and then by combining the operations that affect the same nodes.

70 3 | Key-Cascade Method

Each necessary node only has to be processed once in this case, therefore
only a single replacement of the deletable root key is needed as well.
This is the way in which cascaded re-keying is implemented in SDOS (see

Section 4.7).

3.8 Operations: Key Creation, Retrieval, and Deletion

Finally, three operations are offered for using the Key-Cascade as a key-
management mechanism: Create for generating new object encryption keys,
retrieve for retrieving the previously generated keys, and delete for securely
deleting them through cascaded re-keying. These operations presented
here constitute the external interface to the Key-Cascade. For this reason,
they operate on object encryption keys (which are located in the leaves of
the tree). An external interface for directly manipulating nodes or node
encryption keys is not present in my concept or implementation, since these
data structures are only managed internally by the Key-Cascade itself.
The create operation may be used on an empty Key-Cascade because

it will inherently create missing nodes and keys. The input for the create
operation is an unused object ID oid. I then use ID calculations to find the
nodes along the path to the object encryption key as well as the slots in those
nodes. I follow the example from Section 3.6 and therefore need to retrieve
Nodes 0 and 2.
Two situations may occur in this scenario: first, the nodes along the path

already exist. In this situation, I retrieve and decrypt these nodes (after
loading the root key from the trusted storage location). Then I insert the
new randomly generated object encryption key into the object-key node
and encrypt it again with the same node encryption key. Now the single,
modified node can be written back to the store.
In the second situation, the path does not contain nodes until the end.

This situation occurs in either an empty tree, or when no key was previously
created that went into the same object-key node. In this situation, I also
retrieve all nodes along the path, to get the topmost node encryption key

3.8 | Operations: Key Creation, Retrieval, and Deletion 71

(root key in empty tree). I then create the missing nodes and sequentially
insert the object encryption key and child-node keys into their parent nodes.
This new branch of nodes either includes the root node (tree was empty) or
is the child of an already present node. If the new branch includes the root
node, I only have to write these new nodes to the store. If it has a parent
node, then I additionally have to update this parent node in the same way
as described in the first situation above. After the Key-Cascade was updated
in this way, the newly created object encryption key is returned and can be
used.
In the retrieve operation, I first use ID calculations to determine the path

and slots and retrieve the nodes. I successively decrypt the nodes to reach
the object encryption key, which concludes retrieval.
The delete operation is provided by cascaded re-keying as described in

Section 3.7.

3.9 Related Publications

The contributions in this Chapter are supported by the following of my
publications:
My diploma thesis from 2012 discusses architectural patterns and best

practices for securing cloud applications, especially through the use of en-
cryption and key management [Wai12]. In this thesis, I present the concept
of separating the management of keys and credentials from their use in
encryption or authentication. The proposed CKS (Centralized Key Store), a
program that stores and manages access to encryption keys and credentials,
is a precursor to the trusted storage that stores the deletable root key for
the Key-Cascade method.
The initial idea for a tree-based encryption key management was published

as a US patent application in 2015. This application was granted US patent
9,298,951 in 2016 [BLM+15] and was awarded “Invention of the Quarter”
at IBM software group in the first quarter of 2015.
In 2017, a poster presentation about the Key-Cascade concept and the

72 3 | Key-Cascade Method

prototype of SDOS as well as the larger MCM system was accepted at BTW
[Wai17]. In the same year, another poster presentation and demo that
showed the integration with Trusted Platform Modules as deletable key
source was accepted at EDBT [WWM17].

3.9 | Related Publications 73

C
h
ap

te
r 4

Extensions to the
Key-Cascade Concept

The previous Chapter introduced the Key-Cascade concepts, data structures
and general operations. In this Chapter, I discuss extensions to the core
concepts that are necessary for using a Key-Cascade-based encryption key
management in a production storage system. This includes master key
management, the parallel execution of the operations on the Key-Cascade
data structures, static and dynamic resizing of those data structures, the
integration of authentication and authorization, as well as additional data
structures that improve performance.
The first extension “Resizing the Key-Cascade” is a conceptual extension

that is not implemented in the prototype, while the others are realized in
SDOS.

75

4.1 Resizing the Key-Cascade

The Key-Cascade data structure is based on an underlying perfect k-ary tree
of which only a subset of nodes are used based on the current utilization. The
actual materialized data structures therefore grow and shrink dynamically
based on the current demand, but always stay within the bounds of this
static tree. The static tree imposes an upper bound for the amount of object
keys that can be stored in any given cascade.
This property of the Key-Cascade must be appreciated in any practical

implementation by either i) specifying the static tree sufficiently large, ii)
making the tree shrink and expand dynamically, or iii) by resizing the tree
in a static, offline manner.
i) Specifying Sufficiently Large Trees: The formulas for calculating the

capacity are given in Section 3.4. Examples are given in Section 3.5.
According to Swift developers and online discussion1, no more than 1 to

10 million objects should be stored in any single container. The Key-Cascade
from Example 2 already supports over 16 million object keys and performs
well according to performance measurements (see Section 5.6). For these
reasons, it is possible to configure a sufficiently large Key-Cascade so that
resizing is not necessary in practice.
ii) Dynamic Resizing The Key-Cascade’s capacity is determined by the

node size and the tree height. It can be changed by modifying these two
parameters. Dynamic resizing refers to the process of changing these pa-
rameters without modifying the existing data structures (i.e., nodes). This
allows continuing to use the stored nodes, while new keys are written to
new nodes that extend the existing Key-Cascade.
In the following, I show dynamic resizing by increasing the height of the

tree that underlies the Key-Cascade2.
This is achieved by adding a new root node with the old tree as the leftmost

child. The old root key then becomes a node key inside the new root node.
1https:

//ask.openstack.org/en/question/13242/how-many-objects-per-container/
and https://answers.launchpad.net/swift/+question/181977

2Resizing by changing the node size is also possible with the same approach.

76 4 | Extensions to the Key-Cascade Concept

https://ask.openstack.org/en/question/13242/how-many-objects-per-container/
https://ask.openstack.org/en/question/13242/how-many-objects-per-container/
https://answers.launchpad.net/swift/+question/181977

N0

N1 N2

Oo O1 O2 O3

Tree representation
ID enumeration
representation

=̂

0 1 2 3

21

0

Figure 4.1: Introducing the ID enumeration representation compared to
the tree representation. Both figures represent the same Key-
Cascade.

N0

N1 N2

Oo O1 O2 O3 O4

N0

N1 N2

N3 N4 N5 N6

Oo O1 O2 O3 O4

New object but all
object-key slots
are utilized

New nodes
extend space

Grow

Node IDs
change

Figure 4.2: Cascade growing with regular ID enumeration.

This effectively adds one new level to the Key-Cascade without the need to
re-encrypt any data since all the child-parent relationships stay the same. But
on the downside, this operation affects the node IDs. To illustrate the effect,
I introduce a new visual representation for the Key-Cascade that focuses on
the ID enumeration in Figure 4.1.
Figure 4.2 shows the effect of adding a new root. This Key-Cascade uses the

depth-first ID enumeration that is introduced in Chapter 3 and implemented
in SDOS. The old Node 2 has become Node 4. In order to use this resizing
method, the internal storage layer and ID calculations have to be aware of

4.1 | Resizing the Key-Cascade 77

N1,0

N0,0 N0,1

Oo O1 O2 O3 O4

N2,0

N1,0 N1,1

N0,0 N0,1 N0,2 N0,3

Oo O1 O2 O3 O4

Old nodes
keep their IDs

Grow

New nodes
extend space

New object but all
object-key slots
are utilized

Figure 4.3: Cascade growing with alternative 2D ID enumeration.

the resizing so that the different enumerations can be taken into account.
This means that a resize-marker must be stored with the cascade geometry,
because a resized Key-Cascade is different from one that was initialized with
the same geometry.
The node IDs serve two purposes: i) they identify and locate the nodes

when they are stored as objects inside the object store, ii) they enable travers-
ing the Key-Cascade by calculating parent IDs and slots (see Section 3.6).
Any enumeration that fulfills these two functions can be used in a Key-
Cascade. Therefore, I present another possible enumeration schema that
allows transparent resizing. Only the changed tree height must be stored
with this enumeration and the internal storage layer and ID calculations
need not be aware of the resizing.
Figure 4.3 shows an example before and after resizing. The alternative

row/column (2-dimensional) ID enumeration allows the existing nodes to
keep their IDs, while the new nodes get new IDs. With this enumeration, a
resized Key-Cascade is identical to one that was initialized with this geometry.
This alternative schema can be used with a Key-Cascade instead of the regular
ID enumeration discussed in this thesis. The only non-trivial change would
be the ID calculations (see Section 3.6), which would use different formulas
for the row/column IDs.
iii) Static Resizing Static resizing refers to the process of increasing, or

decreasing the size of a Key-Cascade by creating a new one and inserting

78 4 | Extensions to the Key-Cascade Concept

the object keys from the old cascade into the new structure. Static resizing
is always possible without explicit support in the implementation, since it
only uses regular read/write operations of the internal API.
This approach of resizing by recreating is often implemented in file systems

for block storage devices [RBM13]. Resizing is a rarely used operation in
this domain so that speed and cost of the operation are not critical. The
major benefit of “resizing by recreating” is that the run-time code needs no
special conditions for resized file systems. A resized file system is the same
as one that was not resized. This makes the implementation simpler and
easier to verify.

4.2 Deletable Key

This extension introduces a wrapped key between the deletable key and the
Key-Cascade root node in order to support more flexibility for the deletable
key.
The Key-Cascade theory describes a deletable root key which must have

the secure delete property. This deletable root key encrypts the root node
of the Key-Cascade and therefore transfers its secure delete property to all
further keys. In the implementation, I replace this deletable root key with a
separate root key and a deletable key. The deletable key wraps (encrypts)
the root key. Figure 4.4 shows the extended structure.
This extension decouples the deletable key from the root node, which

allows more flexibility, because now the deletable key is only used to en/de-
crypt a single key which is a small object (here 32 Bytes for AES256). Without
this decoupling, the deletable key would be used to en/decrypt the entire
root node which can be a large object depending on the Key-Cascade ge-
ometry (e.g. 8KB for node size 256). This enables the use of cryptographic
hardware that has limited storage and processing capabilities (such as the
TPM key source introduced below).
Furthermore, this decoupling adds a useful abstraction for implementing

the Key-Cascade node operations. With the decoupled deletable key, SDOS

4.2 | Deletable Key 79

rk dk
Root key

Deletable key

Root node

drk

Theory Implementation

Only dk is in
trusted storage
i.e. key source

Processed by
key source

Processed by
Key-Cascade

Root node may be too large
to be en/decrypted by
the key source

Deletable root key

Figure 4.4: In the implementation, a chain of two keys is used as root key
for the Key-Cascade. Root key and nodes are handled by the
Key-Cascade code, deletable key and en/decryption of the root
key are provided by “key sources” (see Section 4.3).

can use any encryption algorithm that the user wants for encrypting the
nodes (here AES256), as long as the key source is capable of encrypting a
key for this chosen algorithm. SDOS can then treat the root node in the
same way as any other node.
The deletable key and root key each have three stages during re-keying

and initialization:

• Current deletable key: The d.k. currently used to encrypt the current
root key.

• Next deletable key: The d.k. that will replace the current deletable
key. It will be used to encrypt the next root key.

• Old deletable key: The d.k. that was replaced by the next d.k. It was
securely deleted and is no longer available.

• Current root key: The r.k. currently used to encrypt the root node of
the Key-Cascade.

• Next root key: During re-keying, this key is used to encrypt the re-

80 4 | Extensions to the Key-Cascade Concept

keyed root node of the Key-Cascade.

• Old root key: After re-keying, this key is no longer used. It decrypts
the old root node and therefore the old Key-Cascade, but is no longer
accessible since the old deletable key was securely deleted.

4.3 Deletable Key Sources

With the decoupled deletable key, it is now possible to add different sources
that provide deletable keys. In SDOS, these “key sources” contain the
deletable key and they provide en/decryption of the root key. As shown in
Figure 4.4, the key source only processes the root key and no other parts of
the Key-Cascade data structure. Similarly, the Key-Cascade implementation
in SDOS only processes the nodes and root key. The deletable key always
stays inside the key source.
In the Key-Cascade theory, I introduced the properties that the deletable

root key must have. With the decoupled root key, these properties can now
be defined on the deletable key source rather than on the deletable key itself :

• The deletable key source encrypts and decrypts a given root key when
requested.

• For this, the deletable key source contains a current deletable key.

• The deletable key source replaces its current deletable key with a new
deletable key when requested.

• Once replaced, the old deletable keymust not be recoverable/restorable
(i.e., securely deleted).

SDOS manages a pool of key source instances, one instance for each en-
crypted container. Therefore, key sources are mapped to a certain container
on instantiation and subsequent operations do not need to contain a ref-
erence to the container. The key sources are integrated with SDOS by an
interface with the following operations.

4.3 | Deletable Key Sources 81

• decrypt_current_key: The key source receives the encrypted root
key, decrypts it, and returns the plain root key.

• encrypt_next_key: The key source receives the new plain root key.
It securely deletes and replaces its deletable key and then encrypts
the root key with this new deletable key. It then returns the encrypted
root key.

This operation is used to securely replace the deletable key before
re-keying the Key-Cascade.

• initialize_root_key: Is used to initialize the first root key and the
deletable key for a new Key-Cascade. During initialization, a current
deletable key, that is empty, is allowed in the key source. With this,
the semantics of this initialize operation are the same as in the above
encrypt_next_key operation.

• Additional authenticate/lock operations are provided depending on
the type of key source. These implement authentication before using a
key source, or lock the key source by clearing a present authentication.

These operations are used to perform the following three interactions with
the key source: i) To initialize a root key for a new Key-Cascade (i.e., for a
new storage container). ii) To decrypt the current root key with the current
deletable key. iii) To securely replace the current deletable key with a new
one and encrypt a new root key.
Figure 4.5 shows the interaction for initializing a root key to be used with

a new Key-Cascade; this interaction is done when a new storage container
is created by a user. First, SDOS generates a random root key which will be
the current root key that is valid until the first re-keying operation. This key
is then loaded into the source with the initialize_root_key operation.
The key source then generates its current deletable key and uses it to encrypt
the provided root key. The encrypted root key is returned so that SDOS can
store it.
Figure 4.6 shows the interaction for decrypting the current root key. This

interaction is done whenever SDOS needs to read Key-Cascade nodes (when

82 4 | Extensions to the Key-Cascade Concept

Generate random
root key Request encryption

of first root key Generate/store
first deletable key

Encrypt
root key

Return encrypted
root keyStore encrypted

root key

SDOS Key source

Figure 4.5: Key source interaction: initialize a new root key with the
initialize_root_key operation.

reading/writing data and during re-keying). SDOS first loads the encrypted
root key from the store and loads it into the key source, which will decrypt
it using the current deletable key. After the decrypted root key is returned,
SDOS can use it to decrypt and read the root node. SDOS can cache this
response to avoid using the key source with every Key-Cascade operation.
Figure 4.7 shows the interaction for replacing and securely deleting the

current deletable key. This interaction is used only after re-keying the Key-
Cascade, in order to encrypt the new root key, and assures that the old root
key can not be accessed anymore. During re-keying, SDOS created a next
root key which it now loads into the key source. The key source then securely
deletes its current deletable key and generates the next one. This key is then
used to encrypt the next root key provided by SDOS. After SDOS received
the encrypted root key, it stores this new key and the modified nodes, which
completes re-keying.
Three different types of key sources are implemented in SDOS1: static

key, password-derived key, and Trusted Platform Module. The “static key”
key source contains a hard-coded deletable key. It is useful as an interface
documentation, for test and development, as well as for benchmarking the
Key-Cascade operations. The “password-derived key” key source is useful

1See: https://github.com/sdos/sdos-core/blob/master/mcm/sdos/core/
MasterKeySource.py

4.3 | Deletable Key Sources 83

https://github.com/sdos/sdos-core/blob/master/mcm/sdos/core/MasterKeySource.py
https://github.com/sdos/sdos-core/blob/master/mcm/sdos/core/MasterKeySource.py

Load encrypted
root key Request decryption

of current root key
Load current
deletable key

Return root key

SDOS Key source

Decrypt
root key

Figure 4.6: Key source interaction: decrypt the current root key with the
decrypt_current_key operation.

Generate next
random
root key

Request encryption
of next/new root key

Generate/store next
deletable key,
securely replace
old deletable key

Encrypt
next root key

Return encrypted
root keyStore encrypted

root key

SDOS Key source

Figure 4.7: Key source interaction: securely delete and replace the deletable
key with the encrypt_next_key operation.

for demonstration purposes since it lets the user experience what the key
source does. Finally, the “Trusted Platform Module” key source provides a
practically usable implementation of a secure key source. In the following, I
explain these three types in more detail.

4.3.1 Key Source: Static Key

This deletable key source is only useful for evaluation and benchmarking
purposes; it is included here for completeness and because it was used for the
performance evaluations in Section 5.6. A static key is used for all operations

84 4 | Extensions to the Key-Cascade Concept

and is never replaced. This key source satisfies the functional requirements
from above and therefore can be used as a key source. But it does not satisfy
the non-functional requirement secure-deletion, as it never replaces the
deletable key.

4.3.2 Key Source: Password-Derived Key

This implementation uses a human as the deletable key source. It is useful to
help understand the role of the key source in SDOS and could be practically
used in a single-user, a personal cloud storage, or a personal disk encryption
scenario.
The deletable key is derived from a password memorized by the user.

The implementation of this key source receives this password when the
user wants to decrypt the root key and then uses a regular key-derivation
algorithm to derive the current deletable key from the password. In SDOS,
the password can be kept in memory in order to reduce user interactions.
In order to securely replace the deletable key, the user must provide a new

password and securely forget the old one.

4.3.3 Key Source: Trusted Platform Module

This deletable key source uses a Trusted PlatformModule in order to store the
deletable key and perform en/decryption of the root key. Section 2.3 details
the features and limitations of Trusted Platform Modules and compares them
to other cryptographic hardware.
This TPM key source can be instantiated multiple times for different

storage containers. It will use a different key in a different internal storage
location for each container. The number of supported keys depends on the
capacity of the used TPM. Authentication before using the TPM is configured
on the TPM level, outside of SDOS. The TPM improves security over other key
sources since it guarantees secure deletion of the internal keys. SDOS uses
non-migratable keys inside the TPM to avoid key leakage of the deletable
key. When SDOS needs access to the root key, it loads the encrypted root

4.3 | Deletable Key Sources 85

key into the TPM. The TPM then decrypts that root key and SDOS loads it
from the TPM memory.
This key source provides secure deletion of the deletable key in practice

and shows one possible configuration of SDOS that satisfies the security
requirements of Section 1.6.

4.4 Object ID Index

This extension allows using arbitrary object names instead of consecutive,
numerical identifiers.
As discussed in Section 3.2.1, the Key-Cascade uses a perfect k-ary (static)

tree as the underlying data structure. One of the benefits of this structure
is that node labels are sufficient to represent the edges between nodes. No
information about the edges needs to be stored inside the nodes, or in a
separate data structure, enabling offline calculation of paths (see discussion
in Section 3.6).
The ID calculations used to navigate the Key-Cascade tree structure make

use of numerical identifiers for the leaves. These leaves represent the indi-
vidual object keys, therefore each object key has such a numerical ID. These
IDs are called object ID (oid). So each object encryption key is identified
by its oid and this ID also identifies the object that gets encrypted with that
key. All read, write, and delete operations on the Key-Cascade need this oid
in order to identify the correct object key location in the data structure.
Until this point, all the Key-Cascade examples in this thesis used these oids

to identify the objects. This means that the object names are the numerical
oids, which is not useful in practice. For this reason, this extension adds
an index to SDOS that maps arbitrary Swift object names to the internal
object IDs (oid). With this, any arbitrary name can be used for the objects
and the index maps this name to the internal oid.
These object names are arbitrary strings, which means they are from a very

large name space. Our object identifiers are from a smaller space of fixed size
due to the static tree. Because of this imbalance, I use an index to explicitly

86 4 | Extensions to the Key-Cascade Concept

map object names to object identifiers, instead of using an implicit mapping
function. A benefit of using an explicit mapping is the ability to map any
object name to any object ID, which enables the use of an allocation strategy.
In the prototype, SDOS always uses the first (lowest integer) available object
ID in order to minimize the number of utilized nodes and avoid sparse trees.
However, other allocation strategies are possible. For example, if a group of
objects is known to get deleted together, their object keys could be grouped
into neighboring nodes.
The index is implemented as a hash table with collision resolution in the

SDOS prototype. The keys of this hash table are the object names, the values
are the oids. No reverse mapping (oid to object name) is implemented at
this time, as none of the functions in SDOS require this. The hash table gets
stored as an object inside the appropriate SDOS management container in
Swift. The index is stored unencrypted since this does not affect the secure-
deletion property. This is the only additional data structure that needs to be
persisted along with the Key-Cascade.

4.5 Free List

This extension adds a data structure to keep track of free object keys.
When a new object should be written, a new object key and therefore object

ID (oid) must be allocated. In theory, these IDs can simply be incremented
with each insertion, starting at 0. But in a production environment, insertions
and deletions occur arbitrarily interleaved. For this reason, SDOS needs
to know which object identifiers are available for inserting new objects.
Otherwise, no more insertions would be possible once the last oid was
reached, even if deletions freed other oids.
I implemented a free list in SDOS in the form of a bit vector which keeps

track of the free and allocated object identifiers. For the Key-Cascade of
Example 2 (Section 3.5), a bit vector with 16,777,216 positions is needed.
This requires 2 megabytes of storage. The free list can always be derived
from the Key-Cascade itself by scanning the leaf nodes (object-key nodes)

4.5 | Free List 87

for empty slots. It is only needed for performance reasons and does not get
persisted.

4.6 Node Cache

This extension adds caching for the Key-Cascade nodes in order to improve
performance.
Each node of the Key-Cascade is stored as an individual object inside the

Swift Object Store. All operations on the Key-Cascade involve at least reading
as many nodes as the cascade has levels and the root node is needed in every
operation. For these reasons, performance can be improved by caching the
nodes.
In SDOS, the node cache is implemented transparently between a node

pool and a Swift API so that it can be disabled for performance comparison.
The node pool is explained in Section 5.4, it coordinates concurrent access
to node objects from multiple threads. When a node is requested from the
pool, the pool will request this node from its underlying storage provider
(either the cache or Swift) and receive a bytestream comprising a serialized
and encrypted node.
The node cache only holds serialized and encrypted nodes in the same

form as the object store itself. Therefore, the cache does not need to be
stored in a trusted storage location, but can be implemented on any available
storage system that has faster access times than the Swift object store.
The pool and node cache are designed in this way so that decrypted/de-

serialized nodes are kept in memory for the shortest time possible. This
reduces the risk of key leakage through memory dumps.

4.7 Batch-Delete Log

The batch-delete log allows deferring the secure deletion (re-keying) of
objects so that multiple deletions (a batch) can be processed at once.
Without the batch-delete log, each deletion of an object immediately

88 4 | Extensions to the Key-Cascade Concept

triggers re-keying (see Section 3.7) of the Key-Cascade, which eventually
requires replacing the deletable key. Immediate re-keying has several down-
sides that are addressed by the batch-delete log:

• Immediate re-keying causes a large run-time overhead. As discussed
in Section 5.6, cascaded re-keying is the most expensive operation
because it requires read and write operations for a whole tree path.

• Cascaded re-keying requires locking and exclusive access to the Key-
Cascade nodes. No other requests can be processed while cascaded
re-keying is running (see Section 5.4).

• Secure deletion and replacement of the deletable key can be a slow
and expensive operation that might include human interaction, based
on the type of key source used (see Section 4.3).

With the batch-delete log, SDOS writes the names of deleted objects into
a log and immediately forwards the delete request to the Swift Object Store.
The object is therefore deleted from Swift and can not be retrieved anymore,
but the object keys are still in the Key-Cascade and the current deletable
key is still valid to decrypt them. This means that the objects may still be
reconstructed, because secure deletion (re-keying) has not yet occurred.
A user can then trigger re-keying at a later time, if the delete log has one or

more entries. Cascaded re-keying will commence as described in Section 3.7,
but in a batch-optimized manner. With this batch optimization, re-keying
will only visit each necessary node once. This is achieved by processing the
nodes depth-first so that all affected child nodes are re-keyed before the
modified parent is committed.
Batch deletion brings the following benefits:

• Cheaper object deletions. Deleting an object only has the baseline
SDOS proxy overhead.

• Better overall re-keying efficiency. With immediate re-keying, deleting
n objects causes n read as well as write requests for node 01. With batch-

1In any case, independent of Key-Cascade geometry. There may be additional requests for
further nodes depending on the geometry.

4.7 | Batch-Delete Log 89

optimized re-keying, exactly one read and write request is needed for
any affected node.

• Re-keying at user discretion. Re-keying requires replacing the deletable
key.

• Time-based cryptographic deletion (see Section 2.1) can be supported
by the batch-delete log.

Use of the batch-delete log can be enabled and disabled individually for
each container that uses cryptographic deletion.
The log, as it is implemented in SDOS, stores the Swift object names

(Strings) and not the internal object IDs (oids, Integers). Both are usable to
provide a delete log and present certain advantages for handling re-insertions.
When the delete log is active, a user can delete objects and possibly re-insert
objects with the same names as the deleted ones before processing the batch
delete. The SDOS prototype currently does not handle this case in a special
way and using it in this manner will lead to the re-inserted objects losing
their object keys when the batch deletion is processed. However, different
mitigation strategies for this case are conceivable and depending on their
design, they will benefit from either a object name based delete log, or an
oid based one.

90 4 | Extensions to the Key-Cascade Concept

C
h
ap

te
r 5

SDOS: The Key-Cascade
Implementation

In this Chapter, I present the second contribution (C2) of this thesis: a prac-
tically usable implementation of Contribution C1, the Key-Cascade method.
SDOS stands for the “Secure Delete Object Store”, as this prototype is

implemented on top of the Swift Object Store by the OpenStack project.
The system is designed as an API proxy for the REST-based Swift API so
that it can be integrated transparently between any unmodified Swift client
and server. I chose this approach because of the motivation for this work:
supporting cryptographic deletion in cloud storage systems.
The reasons for choosing the Swift Object Store instead of other storage

services are:

• Object storage services are ubiquitous among cloud providers1.

• Such object stores are the de-facto standard for large-scale storage
outsourcing, especially for back-up and archiving purposes. Back-up

1IBM Bluemix Swift object store, Google Cloud Storage (GCS), Amazon Simple Storage
Service (S3), Microsoft Azure blob storage.

91

and archiving are also the applications where secure deletion is usually
practiced today.

• Swift is one of the largest open-source object stores today; using this
open-source implementation allows deployments outside the cloud, or
in private clouds as well. IBM even uses Swift as their object storage
service, while all other providers use proprietary implementations.
Their data models are very similar so that SDOS could be adapted with
little effort.

The reasons for choosing the API proxy approach are its benefits over the
two alternatives: integration into the server and integration into the client.

• Integrating cryptographic deletion into the object store server compo-
nent would prohibit the use of any of the existing cloud object storage
services. It would also require more trust in the cloud provider, since
it allows the provider access to the encryption keys.

• Implementing cryptographic deletion in the client application would
require modifying existing applications, raising the entry barrier to
using the solution.

However, there is also a disadvantage to the API proxy approach: It
introduces an inherent overhead, since all operations have to pass through
an additional component (the API proxy). I discuss this overhead in the
performance evaluation in Section 5.6.
SDOS is implemented using the Python programming language and runs

as a multi-threaded WSGI1 application. WSGI is a Python interface for
implementing HTTP-serving applications and multiple application servers
exist that can run WSGI applications like SDOS. The SDOS code can be found
on Github2 including a fully automated deployment procedure in Docker.

92 5 | SDOS: The Key-Cascade Implementation

 Bypass Key-
Cascade

 Swift API client

Generic Swift clients

Object API

Swift
object store

 Object
 en/decryption

1 2 3

SDOS

Cloud
storage

Swift API server (WSGI)

P
oo

l

Deletable
key sources

Swift API

Container
configuration

Node cache

Pseudo
object
API

Figure 5.1: Architecture of the SDOS prototype showing the three opera-
tional modes.

5.1 System Architecture

The high-level architecture of SDOS is shown in Figure 5.1.
A WSGI-based HTTP server waits for requests from clients and triggers all

further operations in SDOS. Each request is executed in a new thread, so that
new requests can be accepted immediately. SDOS supports parallel access
by multiple clients with different Swift accounts and can manage multiple
Key-Cascades and deletable-key source instances for different containers1 in
Swift.

1https://www.python.org/dev/peps/pep-0333/
2https://github.com/sdos/sdos-core
1Swift stores objects in containers, no nesting of containers is possible.

5.1 | System Architecture 93

https://www.python.org/dev/peps/pep-0333/
https://github.com/sdos/sdos-core

The requests are processed by a stack of components. The first is an
internal object, or pseudo object API, that dispatches the request based
on type. Usual object requests are handled by the object API. The pseudo-
object API allows access to SDOS runtime information over regular Swift
API operations. It is explained in detail in Section 5.5. The Key-Cascade
component implements the operations necessary for cryptographic deletion;
it operates on the nodes that contain the encryption keys. The next layer
provides encryption and decryption functionality for the actual data objects
during read or write requests. The last layer in this stack is the official Swift
client which interfaces with the cloud object store in order to read and write
data objects, encrypted Key-Cascade nodes as well as container metadata.
Three modes of operation are supported based on configuration attached

as metadata to containers in Swift: 1) Object encryption with cryptographic
deletion using the Key-Cascade. 2) Object encryption without cryptographic
deletion. 3) Bypassing, that directly forwards requests to Swift.
The configuration from the metadata also determines the Key-Cascade

geometry by containing the parameters introduced in Section 3.4, as well
as the type of deletable key that is used (see Section 4.3). With this design,
SDOS can be configured differently for each container.
SDOS uses an object pool (here: in-memory program runtime objects)

in order to coordinate parallel access to internal data structures from the
multiple threads. This pool only contains object instances that are currently
used. Some object instances can be used in parallel, which is managed by
this pool. Its concurrency behavior is detailed in Section 5.4.
The three attached data types are: Deletable key sources (see Section 4.3),

container configuration and node cache.
The deletable-key sources provide access to an encryption key that is

needed for requests of type 1 and 2. When cryptographic deletion is used,
this key is used as the deletable key for the Key-Cascade. In the case of
regular encryption, the key is used as a master encryption key for encrypting
the objects. The memory or storage location of these objects depends on the
type of key source. All key sources implement a lock and unlock operation.
While a key source is unlocked, it is considered in-use and available in the

94 5 | SDOS: The Key-Cascade Implementation

pool.
The container configuration store is an in-memory cache for the run-

time settings of known containers. It is populated by the Swift container
metadata, where container configuration is persisted, as well as by runtime
data. This cache contains information whether a container uses encryption
or cryptographic deletion, about the type of key source and Key-Cascade
geometry. It improves access times since it allows SDOS to immediately
determine the correct settings to handle a request. Without this cache, the
container metadata must be retrieved from Swift before processing requests,
often doubling response times.
The container configuration settings from the Swift container metadata

are committed to the cache whenever a response from Swift includes the
metadata. The contents of this metadata are described in Section 5.2. Swift
only returns this metadata in the response to an explicit request for container
metadata. For this reason, SDOS usually makes such a metadata request
once for each container, when the container is first used. Subsequent user
access to the container does not trigger metadata requests anymore, since
the cache is now used.
Explicit metadata requests by SDOS are not needed in three cases: i)

when a container was used before (i.e., this cache can be used). ii) When
the user issues a container metadata request on their own, before accessing
the container in any other way. iii) When the container was newly created
during this run time of SDOS. In this third case, the container-create request,
or subsequent update requests, had to contain all the relevant metadata.
SDOS also populates this configuration cache from container create requests.
Besides the configuration settings from container metadata, this container

configuration cache also contains non-persistent runtime data. This includes
the batch-delete log for each container where cryptographic deletion and
batch deletion are configured. A batch-delete log is considered in-use when
it contains entries; during that time it is kept in memory by the pool. The
batch-delete log is not persisted to container metadata or anywhere else, so
that it must be processed during runtime of the SDOS process.
The node cache is an in-memory cache that contains encrypted Key-

5.1 | System Architecture 95

Cascade nodes in the same serialized binary format that is used for persis-
tence in the object store. The node cache acts as a buffer between the pool
and the object store. A node is considered in-use while it is read or modified
by a Key-Cascade operation. The pool contains decrypted, deserialized nodes
while they are in use by a thread. If a node was modified in the pool and
is no longer in-use, it is serialized and returned to this cache. The cache
regularly flushes modified nodes back to the object store for persistence.

5.2 Swift Integration

Swift’s data model consists of accounts, containers, and objects in a hierarchy.
Figure 5.2 shows that each of those entities has attached metadata that may
also contain custom fields. Containers belong to one or more accounts and
comprise the top-level. Containers only contain objects; no hierarchy of
containers is possible. If a hierarchical organization of objects is desired,
like in a file system, the client has to flatten the hierarchy through the use
of pseudo paths in the object names.
The entities in Swift can be manipulated via the REST operations GET

(read), HEAD (read metadata only), POST/PUT (write, create) and DELETE.
SDOS transparently forwards all account and container requests to Swift,

Account

Container

Object

{key:
value,
...}

Container

Object

Account

[bytes]

{key:
value,
...}

{key:
value,
...}

Attached meta data
contains:
- Swift data (name, ...)
- custom fields

Object content,
Encrypted in SDOS

Data model
in Swift

One Key-Cascade and
root key per container

Figure 5.2: Account, container, and object hierarchy in Swift.

96 5 | SDOS: The Key-Cascade Implementation

Swift object store

Key source

... ...

N0

...

N1

Encrypted
objects1011

1100
010

1011
1100
010

1011
1100
010

1011
1100
010

0 1 2 3

0

1011
1100
010

0

...

Logical structure Physical storage

Encrypted
nodes

Encrypted
root
key

Management container
Data container

rk

dk

rk

dk Deletable
key

Container
configuration

Container
metadata

...

Object ID
index

Figure 5.3: Mapping of SDOS data structures to Swift Object Store.

but intercepts object requests if they belong to a container that has encryption
or cryptographic deletion configured. If a container was created or accessed
before, this information can be found in the container configuration cache.
Otherwise, SDOS reads this information from Swift with a HEAD request on
the container.
In the following, I first discuss the Swift integration regarding storage and

those regarding operations.

5.2.1 Swift Storage

SDOS applies the Key-Cascade concept to the container level so that one
Key-Cascade holds the encryption keys for all objects inside a single container.
A separate management container is used for the SDOS data structures. The

5.2 | Swift Integration 97

name of this management container is derived from the name of the actual
data container. This separation is illustrated in Figure 5.3.
Separating management and data containers has the benefit that the

entire name space of the data container remains available for data objects.
The data container in Swift contains the following:

• Encrypted objects. The encrypted objects are stored under their unen-
crypted name; SDOS does not encrypt the object names or any of the
object metadata fields.

• Container metadata. Swift supports custommetadata fields on contain-
ers as well as objects. The client can set certain fields during container
creation in order to enable and configure SDOS. These fields are never
modified by SDOS. These fields are:

encryption-enable: A Boolean indicating whether data encryption
should be used.

key_cascade-enable: A Boolean indicating whether cryptographic
deletion through Key-Cascade key management should be used.

key_source-type: An enumeration type describing the type of key
source.

key_source-key_id: A number that correlates a key with a con-
tainer. Some key sources, like Trusted Platform Modules, manage
multiple keys and need this correlation.

key_cascade-node_size: A number specifying the node size for
the Key-Cascade.

key_cascade-tree_height: A number specifying the height of the
Key-Cascade.

batch_delete-enable: A Boolean indicating whether the batch-
delete log function should be used.

The management container in Swift contains the following:

98 5 | SDOS: The Key-Cascade Implementation

Client

Key
source

SDOS

Swift

1011
1100
010

n
Node n
(encrypted)

User
credentials

time

(a)

(b) (f)

1011
1100
010

(c)

(d)

(e)

(g)

(h)

(i)

Root key

Data object
(encrypted)

1011
1100
010

n

2

0

2
1011
1100
010

Figure 5.4: Sequence of operations for storing a new object.

• The encrypted root key for the Key-Cascade. This root key can be
decrypted with the corresponding deletable key inside the key source.
In the case of regular encryption (without cryptographic deletion), an
encrypted master key for the objects is stored here.

• The encrypted nodes comprising the Key-Cascade.

• The unencrypted object ID index that maps the object names from
Swift to the internal, numerical object key IDs.

5.2.2 Swift Operations

SDOS only intercepts and modifies requests on objects inside containers that
have encryption or cryptographic deletion enabled. Furthermore, only the
GET (read), POST (write) and DELETE operation must be considered. The
HEAD operation only reads the unencrypted metadata directly from Swift
and the PUT operation has the same semantics as POST in Swift’s protocol.
In the following, I describe the effects of the write, read and delete opera-

tion on containers with cryptographic deletion enabled.
Some steps are common to all three operations: In the first operation on

5.2 | Swift Integration 99

a container, SDOS reads the container metadata in order to populate the
container configuration in the pool. Next, the object ID index is loaded into
the memory of the pool. Then, the key source is initialized. This requires user
(or programmatic application) input depending on the type of key source.
This input must be provided via the pseudo-object API (see Section 5.5).
Initialization of the key source also includes retrieving and decrypting the
root key from Swift.
Write operation: The write operation is shown in Figure 5.4.

(a) The client initiates the request by sending credentials and object to
SDOS via the Swift API. These client credentials are used by SDOS in
order to interact with Swift on the clients behalf; SDOS has no separate
set of credentials for Swift.

(b) SDOS reads the container configuration and allocates a free object key
ID using the free-list and object ID index.

(c) SDOS uses the clients credentials in order to retrieve the necessary nodes
from Swift. I use the same example as in Section 3.6, therefore nodes
0 and 2 are requested from Swift.

(d) Swift returns the encrypted nodes.

(e) SDOS interacts with the appropriate key source in order to retrieve the
decrypted root key.

(f) SDOS uses the root key to decrypt the two nodes and inserts a newly
generated object key into node 2. Using this new object key, SDOS
encrypts the object that the client sent in step (a).

(g) SDOS then writes the modified node 2 and encrypted object into Swift.

(h) Swift confirms the success of the operation to SDOS.

(i) SDOS forwards the reply of the object write request to the client.

Authentication and authorization are verified in the same way in the read
and delete operation. They are omitted for brevity in these operations.

100 5 | SDOS: The Key-Cascade Implementation

Read operation: SDOS first finds the corresponding object-key ID by
looking up the requested object name in the object ID index. ID calculations
then determine the path and slots. The Key-Cascade layer in SDOS loads
and decrypts the necessary nodes via the pool and cache. After decryption,
the object key and the request are passed on to the decryption layer. Here,
the object is retrieved from Swift, decrypted and returned to the client.
Delete operation: The delete operation consists of two steps. First, SDOS

forwards the delete request for the object to Swift and returns the result
code to the client. The object is now removed from Swift, but not securely
deleted yet. The object key is still present in the Key-Cascade and can still
be decrypted with the current deletable key.
The second step depends on the batch-delete log. If it is enabled, SDOS

only appends the object name to the log and the operation is concluded for
the time being.
If the batch-delete log is not enabled, then cryptographic deletion is per-

formed immediately. In this case, SDOS first performs cascaded re-keying as
described in Section 3.7. But the modified nodes are not written to Swift
yet. SDOS then interacts with the key source in order to securely replace
the deletable key and encrypt the new root key as described in Section 4.3.
SDOS only writes the modified nodes to Swift after the deletable key has
been securely replaced. If the key source fails to perform this operation,
SDOS discards the modified nodes.
Executing the deferred cryptographic deletion for the objects in the batch-

delete log follows the same pattern. There are only two differences: i)
cascaded re-keying is performed on a list of object keys instead of a single
key and ii) the operation is triggered via the pseudo-object API rather than
by an individual object deletion.

5.3 Authorization and Multi-Client Support

SDOS supports requests frommultiple clients belonging to different accounts,
or tenants. These clients may have different sets of permissions for accessing

5.3 | Authorization and Multi-Client Support 101

the containers and objects. I support this scenario by using Swift itself as
the authentication and authorization provider. Swift manages permissions
on a per-container basis and SDOS sets the same permissions for the SDOS
management container as the data container has. When a user issues an
operation to the SDOS gateway, they use their regular Swift credentials since
SDOS has the same API as Swift. SDOS then uses these credentials in order
to interact with Swift on the user’s behalf. Swift inherently authenticates
the user and authorizes the operation this way.
If the authentication and authorization succeeds, the credentials are cor-

rect and SDOS uses them to access the necessary Key-Cascade data structures
in the appropriate SDOS management container as well as the associated
data object that the user has requested. Since these two containers share
the same permissions, the user’s credentials are valid for both. SDOS only
controls access to the cached root key inside the key source, all other data
structures are managed by Swift. SDOS never releases keys in any way but
only uses them internally to process the Key-Cascade data structures. If a
user’s credentials are validated by Swift and all required data structures
can be retrieved, the request is considered valid. The SDOS gateway then
uses the appropriate root key to process the Key-Cascade and to execute the
requested operation.
With this approach, I reduce overhead since I avoid having a separate

authentication provider or permission management. I don’t need to maintain
a user registry and I also don’t need to have a separate Swift user account
(i.e., a proxy user) that the SDOS gateway uses for accessing Swift.
Swift itself is part of the OpenStack project which also includes an au-

thentication service called Keystone. Swift itself checks the authorization
(permissions) of a user, while keystone authenticates the user (tenant name,
user name, and password validation).

102 5 | SDOS: The Key-Cascade Implementation

5.4 Multi-threading in SDOS

SDOS uses multi-threading in order to provide parallel processing of requests.
This provides potential performance benefits over serial processing in two
cases:

1. A single client application, even if it runs serially itself, may issue a
second request before receiving the response to the first. This is a
common behavior in Swift clients since the Swift protocol does not
support batch requests. For example, when a client writes 10 objects, it
will issue all 10 requests in sequence and then wait for the 10 responses
asynchronously.

2. When multiple clients are involved, their requests will be inherently
non-serialized.

Both of these cases lead to the situation that SDOS receives a new request,
while still processing a previous one. Parallel processing of these requests
enables SDOS to potentially achieve a higher throughput. In the following, I
first discuss the operations involved in processing a request and show which
are parallelizable. I then discuss the differences between multi-threaded,
multi-processed and distributed execution of Key-Cascade operations.

5.4.1 Parallel Request Processing

Parallel processing in SDOS only considers which internal Key-Cascade data
structures can be used concurrently. Operations on the Swift Object Store
are parallelized or serialized by Swift itself. Furthermore, only requests
that affect the same container (i.e., that use the same Key-Cascade) are
considered. No relevant data structures are shared between containers, so
that requests on different containers are always parallelized.
Swift does not have a transaction isolation concept for requests so that

multiple clients, reading and writing the same object, can overwrite each
other’s updates. For this reason, SDOS needs a method outside of Swift for

5.4 | Multi-threading in SDOS 103

Write
thread

1

Locked?

Acquire
ID index
lock

Yes

Update index

Release lock

...

No

Thread waits if
the index is locked

Index is now
locked by this thread

Index is
unlocked again

Figure 5.5: Thread synchronization during writing.

synchronizing object access in order to prevent such write-write or read-write
conflicts [HR99].
SDOS uses an object pool in order to coordinate access to internal data

structures from multiple threads. This pool uses the singleton pattern (see
[GHJV95]) when instantiating objects in order to assure that all data are
consistent between the different threads. The singleton objects exist in
exactly one instance that is accessible by multiple threads at the same time.
By default, all operations on the singleton objects occur concurrently; only
two operations require exclusive access to certain data structures: object ID
allocation and cascaded re-keying.
Reading objects: Read operations modify none of the data structures,

they don’t require exclusive access and can be executed concurrently.

104 5 | SDOS: The Key-Cascade Implementation

Read/write
thread

2

Locked?

Check re-key
lock

Read/update
nodes

...

No

Thread waits if
re-keying is active,

but does not
acquire the lock

...

Yes

Re-key
thread

1

Locked?

Acquire
re-key lock

Yes

Cascaded
re-keying

Release lock

...

No

Thread waits if another
re-keying is active

Key-Cascade is now
locked by this thread

Key-Cascade
is unlocked again

Figure 5.6: Thread synchronization during cascaded re-keying.

Writing new objects: Writing new objects leads to modifications in the
object ID index as well as the Key-Cascade nodes. Serialization is however
only needed in the beginning when the object ID is allocated. Figure 5.5
shows the sequence when a thread writes a new object. Synchronization
between the threads is provided by locking. The thread tries to acquire a
lock1 and waits if it is already locked. After updating the index, the thread
releases the lock, allowing another thread to acquire it.
Cascaded re-keying: This operation may not run concurrently with other

operations. The reason for this is that it replaces the root key after success-

1The lock can only be acquired once at any time. When acquired, the lock is “locked”. In
SDOS, the “lock” object from the python standard library for multi-threading is used.

5.4 | Multi-threading in SDOS 105

fully modifying some nodes. Any other access, that happens at the same
time, experiences the following problem: Depending on the timing, the
thread may read old nodes but a new root key, or new nodes but an old root
key.
I found three possible solutions to this problem: i) Catch these specific

errors in the read and write threads and re-try the operation later. ii)
Synchronize individual node and root key access to avoid stale reads and
writes. iii) Allow the re-keying operation exclusive access.
I decided to implement the third approach in SDOS because it is the

least error prone and most reliable solution. The second approach, fine-
grained locking, potentially provides higher performance. But since I intend
re-keying to be a rarely executed operation, I prefer a safer solution.
Figure 5.6 illustrates this cascade-locking approach. A single lock object

exists on each Key-Cascade. A re-keying thread acquires this lock, then starts
executing the cascaded re-keying operation. Read and write threads check
if this lock is acquired and wait in that case. Once finished, the re-keying
thread releases the lock and the other threads are woken up.
The effect of this approach is that all read and write threads wait for

cascaded re-keying to finish. It is however still possible that a slow read or
write thread, that started before the re-keying thread, reads or writes a stale
object. In SDOS, this situation is handled by approach i) introduced above;
catching the error and repeating the operation later. The repeated execution
will then wait for the re-keying lock to be released. It is generally no problem
to fail Swift requests. Swift itself fails requests under certain conditions and
clients are expected to repeat them. The situation can however be avoided
by the following two approaches: 1) Read and write threads do not just
wait for the cascade lock, but acquire it as well. This serializes all operations
in the Key-Cascade and eliminates concurrency issues, at the expense of
throughput performance. 2) Implement a barrier condition so that cascaded
re-keying waits for all read and write threads to finish, after acquiring the
lock and before starting its execution.

106 5 | SDOS: The Key-Cascade Implementation

Process

Thread Thread

Memory

R
equests

Process

Memory

Process

R
equests

R
equests

Process

Memory

Process
R

equests

R
equests

Key
source

Key
source

Key
source

Multi-threading Multi-processing Distributed processes

Network inter-
process-communication

Only one key
authority

Shared
memory

Key-Cascade
Data structures

Synchronization

Figure 5.7: Parallel processing methods with distributed data structures
and key source access.

5.4.2 Implementation of Parallel Processing

I consider three types of parallel-processing for a Key-Cascade implementa-
tion: multi-threading (a), multi-processing (b), and distributed processing
(c). The SDOS prototype implements multi-threading as explained above.
Figure 5.7 illustrates the differences for the Key-Cascade data structures.
Multi-threading: This type of parallel processing runs a single operating

system process. This “main process” can spawn any number of threads, each
of which has its own stack. The threads however can access the same memory
(heap). Blocking operations, like disk input/output, only block the thread
that issued them and not the others. multi-threading is reasonably efficient
in modern operating systems and usually the preferred approach over multi-
processing. The main downside to multi-threading is the implementation
of the main thread. This main thread must spawn the other threads and
delegate requests to them. If the main thread is blocked or slow to delegate
requests, the whole process throughput suffers. It is also possible that
program errors in one of the threads cause the operating system to kill the

5.4 | Multi-threading in SDOS 107

entire process, including all threads.
Multi-processing: This approach uses multiple, separate operating sys-

tem processes to distribute the work. This provides a higher degree of
isolation in case of errors. The main performance benefit comes from the
way requests are delegated. The operating system can already delegate
requests to individual subprocesses. This is especially useful in the case of
networking applications, like the HTTP server in SDOS. The main process
only spawns subprocesses and registers them in the operating system. Less
work is done in the main process than in the main thread in the multi-
threading case. There is usually a lower risk of blocking the main process
than there is of blocking the main thread in multi-threading.
The main downside to multi-processing is that the processes have isolated

memory regions. Any data that must be accessed by all processes, must be
explicitly exchanged via interprocess communication methods (IPC). One
of those IPC methods is a shared memory region that processes can use to
synchronize their operations on shared data structures. This makes multi-
processing less suitable for applications that primarily operate on the same
data.
Distributed processing: This method is similar to multi-processing, but

the individual processes do not run on the same host. In this case, a network-
based inter-process-communication method is needed to synchronize access
to shared data. Network communication introduces a higher latency between
the processes that must be taken into account when designing a locking and
synchronization strategy. Network latencies in distributed locking mean that
locks are kept longer than necessary. For this reason, it is advantageous in
distributed locking scenarios to implement fine-grained locking.
Accessing the key source is another operation that must be implemented

with the networked IPC. In SDOS, the key source interface already works
on the level of the root key (see Section 4.3). This interface enables the
Key-Cascade implementation access to the current and after secure dele-
tion/replacement, the new root key. The same interface could be exposed to
distributed SDOS processes over the network.

108 5 | SDOS: The Key-Cascade Implementation

Request object

Retrieve
object

SDOS Swift object storeClient

Request object

Return object

Return object

Object request,
unencrypted container

Object request,
encrypted container

Request object
Request object

Return object

Return decrypted object

Decrypt
object

Pseudo-object request,
management container

Request object

Return information

Compile
information

Retrieve
object

Figure 5.8: Pseudo-object API compared to requests on regular and en-
crypted objects. Showing object / information retrieval.

5.5 Pseudo-Object API

The pseudo-object interface in SDOS allows clients to execute custom oper-
ations in SDOS over the regular Swift REST API. These custom operations
include unlocking the key source, retrieving information about the Key-
Cascade and its capacity, as well as executing batch secure deletion. It is
designed in a way that allows standard Swift clients to use this interface.
See Figure 5.1 for a reference on the SDOS architecture.
This is achieved by SDOS responding to requests on non-existent pseudo-

objects inside the management containers, as shown in the bottom of Fig-
ure 5.8. As mentioned above, SDOS creates a management container for

5.5 | Pseudo-Object API 109

each encrypted “data” container. This management container holds the
encrypted nodes, the root key and the object ID index. But SDOS also reacts
to operations on non-existent objects with a certain name inside these con-
tainers. These objects represent operations on the pseudo-object interface.
Operations that need an input from the client, for example, providing a pass-
word to unlock a key source, are realized by performing an object upload
on the specific pseudo-object. Operations in which SDOS provides output
to the client, e.g., retrieving the number of utilized keys, are realized by
performing an object download.
The pseudo-object interface in SDOS provides the following operations

for retrieving information:

key_stats Allows clients to retrieve information about the key source. This
includes the type of key source, the state it is in, as well as a hash of
the currently used root key.

sdos_used_nodes Allows clients to retrieve a list of the Key-Cascade nodes
that are currently in use. This is a subset of all available nodes unless
the Key-Cascade is fully utilized.

sdos_objectid_index Allows clients to retrieve the object ID index that
shows which Swift object names are assigned to which object IDs
(oid). This oid locates the encryption key for the object inside the
Key-Cascade and so tells the client exactly where the keys for the
objects are.

sdos_key_cascade_stats Allows the client to retrieve a JSON data struc-
ture that contains the Key-Cascade geometry and utilization statistics.
Together with the above two operations, this allows a client to derive
the structure of the Key-Cascade. This is used in the custom Blue-
box user interface (see Section 6.2.2) for generating an interactive
visualization of the tree structure and objects.

sdos_slot_utilization Allows clients to retrieve a compressed list of
utilized oids. These object IDs identify all the slots in the leaf nodes,
that contain the object keys. This list tells the client which slots are

110 5 | SDOS: The Key-Cascade Implementation

used. This list is used in Bluebox for generating a usage visualization
/ key distribution graph. This utilization data could also be derived by
a client from the object ID index.

sdos_batch_delete_log Allows clients to retrieve the batch-delete log.
This is a list containing the names of objects that have been deleted
and whose object keys are queued for cascaded re-keying.

The pseudo-object interface in SDOS provides the following operations
for executing functions in SDOS:

sdos_batch_delete_start This operation starts the processing of the
batch-delete log as explained in Section 4.7.

sdos_key_unlock This operation unlocks the key source and decrypts the
current root key so that the Key-Cascade can be used. Depending
on the type of key source, this operation needs user input (e.g. a
password).

sdos_key_lock This operation removes the decrypted root key from mem-
ory so that the Key-Cascade can no longer be used. It also locks the
key source if possible, depending on type.

sdos_next_deletable_unlock This operationmakes the key source ready
to securely delete and replace the current deletable key. Some realistic
key sources may require user input before performing this operation.
Two such examples are given by two of the key sources implemented
in SDOS (key sources are discussed in Section 4.3). The password
key source and the TPM key source. The password key source uses
a user-provided password as the deletable key. Secure deletion and
replacement in this case means querying the user for a new password.
This operation allows the user to enter this password. Another such
example is given by the TPM key source which can be configured to
request additional authentication, before securely deleting and replac-
ing an internal key. Here, the client uses this operation in order to
relay the authentication to the TPM.

5.5 | Pseudo-Object API 111

sdos_next_deletable_lock This operation undoes a previous unlocking
as explained above. With the two examples above, this is only possible
when the next deletable key is ready but has not been used yet by a
cascaded re-keying operation.

This pseudo-object API, combined with the Key-Cascade configuration
inside container metadata, make the SDOS implementation fully compliant
with the Swift protocol and any Swift client, while still enabling custom
functionality. This capability was for example used in the performance
evaluation. Here, an existing Swift benchmarking tool could be used without
modification in order to create, use and measure differently configured
containers.

5.6 Performance Evaluation

The performance evaluation was conducted in order to answer a set of specific
questions. In the following, I first state these questions, then describe the
evaluation setup, and show the results.

Q1: What is the cost of using the SDOS API proxy, compared to a direct
client to server connection?

Q2: What is the cost of encryption and Key-Cascade operations, compared
to using encryption with a single master key?

Q3: What are good node sizes and tree heights for a Key-Cascade?

I consider the answer to Question 2 the most relevant result of this eval-
uation. It directly represents the fitness of the Key-Cascade method, in-
dependent of the chosen implementation or environmental factors. This
result states, what the cost is of adding cryptographic deletion to an already
encrypted storage system. Together with the answer to Question 3, this gives
insight into how a practical system could be laid out and what performance
to expect from it.
The evaluation setup consists of two virtual machines running on a single

host (server) with 12 Intel Xeon E5-2630 CPU cores at 2.30 GHz. Each

112 5 | SDOS: The Key-Cascade Implementation

 Bypass Key-
Cascade

ssbench
(Swift benchmarking tool)

Swift
object store

 Object
 en/decryption

1 2 3

SDOS

SAN
disk

Swift API

Internal
tests
A

B

SD
O

S-V
M

Sw
ift-V

M

Server

C

Swift API

Object APIPseudo
object
API

Figure 5.9: Layout of the evaluation setup for SDOS.

virtual machine was assigned 4 CPU cores and 32 GB of main memory, while
the storage disk for Swift was provided by a large storage area network
(SAN) attached via 16 Gbit/s Fibre Channel. Both virtual machines ran an
Ubuntu 14.04 operating system with a 3.13 Linux kernel and were connected
by a virtual network limited to 1 Gbit/s. The first virtual machine (Swift-VM)
was running a single-node production build of Swift version 2.5 (indicated
as “Swift Object Store” in Figure 5.9), while the second one (SDOS-VM) was
running the SDOS component indicated as “SDOS”. A single-server layout
with two virtual machines was chosen for two reasons: Firstly, to eliminate
outside noise or network related artifacts and, secondly, to isolate the two
components. The server has more resources than both virtual machines use
together, so that good isolation should be given.
All measurements were done by issuing requests to SDOS or directly to

5.6 | Performance Evaluation 113

Swift and measuring the response time as well as the throughput of requests
over time. This was done with two different tools generating requests: An
internal SDOS component as well as ssbench, an open-source benchmarking
tool for Swift. These tools were used in a total of three configurations,
indicated as A, B, and C in Figure 5.9. Configuration A (internal) uses
the SDOS internal testing component to generate requests and so excludes
the cost of the API proxy, but still allows measuring the Key-Cascade and
encryption. Configurations B and C use the ssbench tool. In B (proxy),
ssbench connects to the SDOS API-proxy, while it is directly connected to
Swift in Configuration C (swift direct).
The SDOS configurations, indicated as 1, 2, and 3 in Figure 5.9, represent

the three modes of operation introduced in Section 5.1. They determine
how SDOS processes the requests internally, before forwarding them to
Swift. Configuration 3 (bypass) uses the bypass function in SDOS so that
all requests, either from the internal or Swift API, are directly forwarded to
Swift. This allows measuring the pure cost of the API proxy.
The next configuration 2 (enc. only) adds the object encryption feature

with a fixed key. These results represent the cost of encrypting the data
objects, compared to the bypass mode. Finally, configuration 1 (enc. + KC)
enables object encryption as well as the Key-Cascade key management.
For benchmarks with the internal tester (Configuration A), I used data

objects generated from random bytes. I generated four test data sets with
objects of the sizes 10 MB, 1 MB, 100 kB, and 1 kB. Each set contains
10,000 such objects. The measurements with Configuration A represent the
median value of 10,000 consecutive operations on one of those sets. The
measurements with ssbench (Configurations B and C) used the same object
sizes, but ssbench generates its own set of objects. With ssbench, 5,000
repetitions were used to determine the median value.
Where not stated otherwise, I used a Key-Cascade with a height of 3 and a

node size of 256 keys. This results in a capacity for 16,777,216 object keys.

114 5 | SDOS: The Key-Cascade Implementation

5.6.1 Q1: Proxy Impact

Question 1: What is the cost of using the SDOS API-proxy, compared to
a direct client-to-server connection?
In order to determine the cost of the SDOS API-proxy, configurations B3

and C were used. This means that ssbench was sending requests through
SDOS in bypass mode in one instance and directly to swift in another. The
results frommeasurements with three sizes of objects are given in Figure 5.10.
Up to 20 concurrent worker processes were used, their number is shown
on the x-axis. Each worker sequentially creates requests, issuing one after
the previous one is finished. The y-axis gives the total number of completed
requests per second, across all processes. The four data series in the Figures’
three diagrams show the results for writing and reading objects directly to
and from Swift, compared to the same operations using the SDOS proxy
in-line.
A first observation is that Swift performs well for read requests, almost

saturating the virtual 1Gbit/s network, but comparatively poor for write
requests. The reason is that Swift stores and commits three copies of each
object before finishing a write request. This is usually done in order to
distribute objects for fault tolerance, but was also configured in this single-
node setup to emulate a real-world installation. Another observation is
that Swift achieves the highest throughput with concurrent requests. This
behavior is common in parallel computing. Certain hardware resources are
only needed during a certain stage in request processing, so that they are
idle during the rest, if requests only occur sequentially. Parallel requests
allow utilizing these resources during a larger portion of the time, until they
are saturated. Often overall throughput decreases when the concurrency
is increased beyond this saturation point, since no further unused resource
capacity can be leveraged, but scheduling and queuing efforts increase. This
turning point was not clearly reached in the above measurements. This
indicateqs that the network bandwidth was saturated first. The fact, that
throughput does not quickly decrease after this point, indicates that CPU
time and memory were not exhausted, so that enough capacity was present

5.6 | Performance Evaluation 115

Figure 5.10: Measurement results comparing a direct client-to-server con-
nection (Configuration C) to the API proxy (Configuration
B3).

116 5 | SDOS: The Key-Cascade Implementation

to queue more concurrent requests. In a production deployment, the Swift
VM could be given less of those resources.
The next two data series Proxy read and Proxy write show that a much

lower throughput is achieved when using the API proxy from SDOS. In this
configuration, no further processing of the requests in done in SDOS. The
pure cost of the API-proxy is measured. Higher response times are expected
from any proxy and can not be avoided, since an additional component is
introduced to the path. However, throughput can still be maximized with a
proxy in theory. The reason is that response-time delays only aggregate for
sequential requests, but not for parallel ones.
Response time and throughput are both important properties in a practical

system. A system might have prohibitively high response times, but still
achieve high throughput through massive parallelism. For many applications,
high response times are not acceptable however. On the other hand, a system
might have very low response times, but not increase its throughput with
concurrency. Many applications inherently lead to concurrent requests,
prohibiting the use of a data store that does not “scale”. For this reason,
both have to be considered.
In order to understand the proxy behavior further, Figure 5.11 shows the

response time of individual requests. A first observation is that response
times increase with concurrency. The linear increase shown in the Figure,
would be given by a serialized execution that has no parallelism. This is the
case since, without parallelism on the server, it can be saturated by a single
worker. Adding another worker halves the time the server spends on each,
doubling their response times.
These response time results allow the following observations: Firstly, the

API proxy increases the response times by a few ms up to 100ms. Secondly,
the proxy benefits less from concurrency than Swift itself. With increasing
concurrency, the response time delay of the proxy grows quicker then the
delay of Swift. The proxy data series shows that the proxy handles requests
in parallel, but does so less efficiently than Swift. The SDOS proxy only
executes a small part of request processing in parallel.
The reason for the large increase in response time, caused by the proxy, is

5.6 | Performance Evaluation 117

Figure 5.11: Measurement results comparing a direct client-to-server con-
nection (Configuration C) to the API proxy (Configuration B3).
Results show the average response-time of the 95th percentile
of fastest requests.

the poor performance of the proxy program. The SDOS proxy is implemented
in Python and therefore runs on a Python interpreter. This programming
environment is not optimized for high performance. An implementation, that
uses a language with a more optimized interpreter, or a compiled language,
will achieve a lower response time increase.

The low benefit from concurrency, that the proxy shows compared to Swift,
is a different issue. I suspect the reason for this in the multi-threaded execu-
tion of the API proxy. As discussed in Section 5.4, SDOS is implemented as a
single-process multi-threaded application. This means that certain portions
of the request handling happen in a single main process before the rest is
delegated to the worker threads. Python, as many other languages, allows
using an application server when handling HTTP requests. The application
server is usually a stand-alone binary program that handles the HTTP proto-
col and then forwards the request contents to the actual program processing
them. In Python, WSGI is the interface between the Python program and
the application server. I evaluated different application servers for WSGI and
found little difference in their performance. Even a configuration without

118 5 | SDOS: The Key-Cascade Implementation

application server, where the python program handles HTTP itself, only
showed a small increase in response time and no improvement in scaling
behavior. This suggests that Python WSGI servers heavily rely on parallel
Python processes to achieve high throughput, but make little use of multiple
threads. This is expected since the Python interpreter itself is known to
benefit little from multithreading.
To conclude, the response times increase by a factor of 2-3 when using

the proxy and the throughput is reduced to 30% when writing or 50% when
reading objects on average. But the proxy can handle concurrent requests
and perform within acceptable parameters. This proxy performance is the
baseline for all further benchmarks, since encryption and Key-Cascade run
on top of it. However, a better parallel performance of the proxy would be
desirable. With this, negative effects of the Key-Cascade locking would be
more visible.

5.6.2 Q2: Encryption Impact

Question 2: What is the cost of encryption and Key-Cascade operations,
compared to using encryption with a singlemaster-key? In other words,
what cost is directly caused by the Key-Cascade key management?
In order to determine the effects of object encryption and Key-Cascade,

measurement results from Configurations B1, B2, and B3 (see Figure 5.9)
can be compared. For this, ssbench was connected to the SDOS proxy and
used the pseudo-object API to select the three different modes.
The results from reading and writing differently sized objects are shown in

Figure 5.12. The Proxy bypass data series is the baseline in this benchmark.
The next data series Encryption only adds object encryption with a fixed
key, comparable to how regular data encryption solutions work. The graph
shows that the cost for encryption depends on the data size. With small
objects, measured response times are almost the same. With 10MB objects,
one third (100ms) of the response time is apparently spent on encryption.
The SDOS configuration with node cache (Encryption + KC data series)

shows an excellent performance of the Key-Cascade operations. Their impact

5.6 | Performance Evaluation 119

Figure 5.12: Measurement results showing the added cost of encryption
and Key-Cascade (Configurations B1, 2, 3) for read and write
operations.

is minimal and almost immeasurable. It is also constant and not dependent
on data size, since the key management is the same regardless of encrypted
data size.
The last configuration, Encryption + KC (no cache), shows how the Key-

Cascade performs without the node cache. Responses are 40ms to 80ms
slower in this case. This is caused by the additional operations necessary to
store and retrieve the nodes from Swift. In this experiment, the Key-Cascade
had three levels of nodes. So each object read causes three additional read

120 5 | SDOS: The Key-Cascade Implementation

requests for the nodes. Object write operations cause up to four read and
write operations for the nodes.
No impact of encryption or Key-Cascade operations on the performance

of concurrent operations could be observed in my measurements. In other
words, the same performance increase through concurrency, that is found in
the results to Question 1, is also found when encryption and Key-Cascade are
used. The reason for this is that the API proxy already serializes large parts
of the request processing. With this, parts of the Key-Cascade operations
always run serially, so that locking has no impact on performance. A more
optimized proxy implementation should be able to show a performance
impact.

5.6.3 Q3: Key-Cascade Geometry

Question 3: What Key-Cascade geometry (node size and tree height)
provides the best performance as well as key capacity?
The measurements here show the performance of the secure delete opera-

tion. However, the different Key-Cascade geometries have the same effect
on read and write operations.
Configurations B1 and B3 from Figure 5.9 were used for the following

measurements, so all requests were made through the proxy. The results in
Figure 5.13 show the response time for a delete request on a container that
has secure deletion. The node cache was enabled for these measurements.
When no node cache is used, an additional read as well as write request
is needed on each tree level. This adds a constant delay for each level,
comparable to the results from Question 2 without cache. Configuration A3
was used to give a baseline reference of Swifts regular delete operation.
The Key-Cascade geometry is determined by the two parameters tree

height and node size. They are explained in Section 3.4. They determine
the number of object key slots (maximum number of supported object keys).
Depending on the intended use, an appropriate size must be chosen, consid-
ering the possibility for future resizing discussed in Section 4.1.
Table 5.1 shows the number of object key slots resulting from different

5.6 | Performance Evaluation 121

Node size Sn = 32 Sn = 256 Sn = 2,048 Sn = 16, 384
in Bytes 1 KB 8 KB 64 KB 512 KB
h= 1 32 256 2,048 16,384
h= 2 1,024 65,536 4,194,304 >1× 108

h= 3 32,768 16,777,216 >1× 109 >1× 1012

h= 4 1,048,576 >1× 109 >1× 1013 >1× 1016

h= 5 33,554,432 >1× 1012 >1× 1016 >1× 1021

h= 6 >1× 109 >1× 1014 >1× 1019 >1× 1025

h= 7 >1× 1010 >1× 1016 >1× 1023 >1× 1029

h= 8 >1× 1012 >1× 1019 >1× 1026 >1× 1033

Table 5.1: Number of object keys for different Key-Cascade geometries. Node
sizes in Bytes are for AES256 encryption keys.

Figure 5.13: Measurement results showing the cost of the secure delete
operation. The node cache was used and the regular delete
operation is shown for comparison.

122 5 | SDOS: The Key-Cascade Implementation

tree height and node size combinations. The node size is the number of
encryption keys stored in each node. The table also shows how many bytes
this amounts to when using AES256 encryption.
According to the results, processing the larger nodes is more expensive and

this cost is multiplied by the tree height. However, the height has minimal
impact on response times when the nodes are small. So a tree with small
nodes and large height should be chosen.
A good overall node size is Sn = 256 according to the results and any

height can be chosen. According to Table 5.1, a Key-Cascade with height
h> 4 can hold above 1× 1012 object keys at this node size.

5.6.4 Conclusion and Areas of Improvement

The prototype implementation as an API proxy adds a constant and mea-
surable delay to the response times, but they remain in acceptable ranges
for benchmarking purposes. The key management for secure deletion adds
almost no delay to the read and write operations in an encrypted container.
This suggest that such a key management could be used in existing encrypted
storage systems. The secure delete operation in encrypted containers is 20ms
slower than the regular delete operation in my experiments (for the above
recommended Key-Cascade geometry).
Improvements to the proxy could be made by implementing it in a more

optimized language. Using a specialized application proxy like Envoy1, in-
stead of implementing a client and server interface in Python, will also lower
the response time. In order to improve concurrency further, the protocol and
encryption handling should also be moved to a separate program, that can
easily run in parallel. Only Key-Cascade operations and the deletable key
source would remain in the current SDOS program. Further improvements
are parallel and distributed execution, discussed in Section 5.4.
Finally, it is also possible to move the encryption and key management

components into the client or server program. This eliminates the issues
of an API-proxy, but has other drawbacks. The benefits of the API-proxy

1Envoy service proxy: https://lyft.github.io/envoy/

5.6 | Performance Evaluation 123

https://lyft.github.io/envoy/

design are stated at the beginning of Chapter 5. A client-side implementation
is non-trivial for many reasons, if more than one client should access the
system at any given time. Distributed locking and key management are only
a solution when mutual trust is given. In a situation with untrusted parties,
a key distribution scheme with minimal trust could be used.
A server side implementation would likely be the most practical approach.

Most encrypted storage systems today encrypt server side already. Integrating
a Key-Cascade implementation with an existing encryption module, achieves
this. An SDOS module, as suggested above, would be a possible solution for
the server side as well. The above discussion of parallel processing then also
applies here.

5.7 Related Publications

The contributions in this Chapter are supported by the following of my
publications:
The initial idea for a tree-based encryption key management was published

as a US patent application in 2015. This application was granted US patent
9,298,951 in 2016 [BLM+15] and was awarded “Invention of the Quarter”
at IBM software group in the first quarter of 2015.
In 2017, a poster presentation about the Key-Cascade concept and the

prototype of SDOS as well as the larger MCM system was accepted at BTW
[Wai17]. In the same year, another poster presentation and demo that
showed the integration with Trusted Platform Modules as deletable key
source was accepted at EDBT [WWM17].

124 5 | SDOS: The Key-Cascade Implementation

C
h
ap

te
r 6

MCM: a Demonstrator
Application for SDOS

MCM (the Micro Content Management System) is a demonstrator applica-
tion for SDOS. MCM contains a Web-based user interface and services for
extracting and visualizing object metadata. The user interface supports up-
loading, downloading, and listing of objects and also allows configuring the
Key-Cascade parameters for SDOS. It contains an interactive visualization
of the Key-Cascade data structures and allows the user to interact with the
hardware key store, if used.
I included the extraction and visualization of object metadata in order

to show how cloud providers can still offer advanced services, even when
customers encrypt their data. In MCM, the user can decide which metadata
they want to extract and store unencrypted, so that further processing on
this data by the cloud provider is possible.
MCM is designed as a multi-component cloud application that can be

deployed in multiple topologies. As part of MCM, I provide a fully automated
deployment of all the components, including SDOS and the Swift Object

125

Store.
In the following sections, I first discuss the design goals and required

functionality for MCM. Then I show the system architecture and explain the
role of each of the components. This is followed by a presentation of the
possible use cases of the system. Finally, I present an executable model that
uses Docker containers. Using this model, interested readers can quickly
test and evaluate SDOS and MCM with little effort, since the deployment is
fully automated and contains all needed components.

6.1 Design Goals

MCM is designed as a demonstrator system that shows how cryptographic
deletion with SDOS can be integrated into a cloud storage service. Part of the
motivation for this work in cryptographic deletion is to support outsourcing
enterprise content archives. Such archives, containing, for example, in-
voices and contracts, are typically driven by Enterprise Content Management
Systems (ECM).
Enterprise Content Management (ECM) systems were created to help com-

panies deal with the large volume of documents and data they produce and
consume. They may handle invoices and contracts, project documentations,
scanned letters and documents, e-mails, images, and others. ECM systems
help companies to store and archive this data, to categorize and retrieve it,
as well as to keep it confidential. Security measures are especially relevant
for ECM systems due to the sensitive nature of the data they manage.
ECM systems typically have a complex architecture that consists of many

legacy applications. These applications are deployed and operated in on-
premise data centers and are often integrated with other enterprise infor-
mation systems as a data source or sink.
For these reasons, I have the following design goals for MCM:

• Provide a cloud-native implementation of basic ECM functionality. This
creates a framework to evaluate concepts, architecture patterns, and
implementations of individual cloud-based ECM components.

126 6 | MCM: a Demonstrator Application for SDOS

• Integrate SDOS to provide encryption and cryptographic deletion of
stored content.

• Provide a user interface that allows configuring and using the SDOS
features.

In the following, I discuss the tasks and functionalities of ECM systems
that are implemented in MCM.
The tasks and functionalities of ECM systems revolve around the “docu-

ment lifecycle” that describes document creation, distribution, use, mainte-
nance, and disposal (or deletion). Documents (i.e., objects) are created by
ingesting them from a data source. Sources are typically bulk ingested from
a file system, other systems pushing data via an API, or direct upload by a
user via a front-end [GHH+12].
Objects in an ECM system consist of two parts: The actual binary data

object and attached metadata. Extensive support for metadata is one of
the key features that separates ECM systems from file systems and the likes.
Typically, ECM systems employ three separate storage back-ends for these
two types of data; a large file system for the binary data and a relational
database, as well as a full text search index for metadata [Rei02].
Metadata forms the basis for advanced functionality like document classifi-

cation, targeted retrieval, and analysis. This is often achieved by integrating
enterprise reporting and analytics software.
A key aspect of maintaining documents is retention management. Docu-

ments in an ECM system may have a defined lifetime. Enterprises must be
compliant with rules and regulations about this lifetime for certain types
of documents. Contracts and legal documents must be kept for a certain
period before they may be deleted. Enterprises must be able to produce
these documents in front of a court or get fined. ECM systems support this
requirement with retention-date support. The system will prevent users from
deleting documents while they are in retention. Retention management and
the document lifecycle end in the disposal of the document. Enterprises
have a desire to dispose documents as soon as possible, either because they
are required to by law, or because they want to avoid keeping potentially

6.1 | Design Goals 127

compromising information. For these reasons, ECM systems have the func-
tionality to automatically delete documents that are past their retention
date.

6.2 System Architecture and Components

In order to effectively utilize cloud technologies and enable flexible deploy-
ment, I built the MCM system as a collection of small services that have a
defined functionality and are loosely coupled by standard APIs. A component
view of this system is given in Figure 6.1. At the bottom, Figure 6.1 shows
the three data management systems and the three types of APIs they offer.
These APIs (Swift-REST, SQL, Apache Kafka) are also the integration method
for the custom components. These components either communicate via one
of the data management systems, or by acting as a transparent API proxy
for the Swift-REST protocol. This Swift Object Store from the OpenStack
project1 is the central data storage location. It holds all the managed data
objects as well as their associated metadata. I use a relational database as a
replicated metadata warehouse, as Swift lacks advanced querying capabili-
ties for metadata (besides retrieving and listing). Finally, an Apache Kafka2

messaging service enables communication between the components and is
used to asynchronously execute management tasks.
On the top layer, Figure 6.1 shows the user interface or application inter-

face to MCM. Bluebox is the custom graphical user interface for MCM, but
any generic Swift client can be used.
There are two other custom components in MCM besides the Bluebox user

interface: SDOS and the task runner. SDOS provides the functionality for
data encryption and cryptographic deletion over the standard Swift protocol.
The task runner asynchronously executes management tasks.

1http://docs.openstack.org/developer/swift/
2http://kafka.apache.org/

128 6 | MCM: a Demonstrator Application for SDOS

http://docs.openstack.org/developer/swift/
http://kafka.apache.org/

Bluebox back end

Swift
Object Store

RDBMS

SDOS
Metadata
Extractor

Task runner

Metadata
Replicator

M
es

sa
gi

ng

Generic
Swift client

Bluebox UI
(SDOS demonstrator)

 Apache Kafka

 Swift REST

 SQL

Swift
application

 Service / Application

 SDOS / MCM Components

Bluebox back-end

Content
identifier

Object
disposer

Figure 6.1: A high-level overview of the MCM components. The three cus-
tom components are Bluebox, SDOS, and the task runner.

6.2.1 SDOS

The SDOS core component is explained in detail in Chapter 5. In MCM, it
provides capabilities for content encryption and decryption and also cryp-
tographic deletion. SDOS is implemented as an API proxy for Swift so any
object store access can happen through SDOS and selectively use its features.

6.2.2 Bluebox UI

Bluebox is the custom user interface for SDOS and the larger MCM system.
It supports the standard Swift protocol but allows interaction with the SDOS
custom metadata fields and pseudo-object interface.
Bluebox is separated in three functional components and two layers, as

indicated in Figure 6.2. The layer on top consists of the client-side UI

6.2 | System Architecture and Components 129

Client
Browser

Python
WSGI

Static
HTTP

TasksAnalytics
Content

management

Bluebox UI

Websocket
/ Kafka bridge

Result
visualization

Swift API
wrapper

Client-side
UI components

Delivers UI
code to the client

Client

Server/Cloud

Node-RED

Container and object
browsing, upload/download

Send / receive
messages from Kafka

Generate graphs
from query results

Write and
execute SQL queries

[SDOS/Swift] [Metadata warehouse] [Kafka messaging]

Figure 6.2: Internal components of the Bluebox user interface.

components that run as an AngularJS1 application inside the client’s browser.
The bottom layer represents the server side. It consists of a static HTTP
server which delivers the client application to the browser and a Python
runtime that provides a back-end for this application.
This back-end consists of an API wrapper that interacts with Swift in order

to provide this data via a REST/JSON API to the client-side application. It also
contains a graph rendering component that is used in visualizing metadata.
A separate service provides an interface between the front-end and the
Apache Kafka messaging system. This allows users to run asynchronous
management tasks.
This back-end holds no application or session state so that it can scale

horizontally. The HTTP server can also scale easily since it only serves static
content to the client.
Horizontally, the user interface is separated into three functional compo-

nents:

Content Management: Here the user can interact with the Swift Object

1https://angularjs.org/

130 6 | MCM: a Demonstrator Application for SDOS

https://angularjs.org/

Figure 6.3: Screenshot of the container view in Bluebox.

Store in order to load and retrieve data. Bluebox provides a file-
browser-like interface to the object store with capabilities to manage
metadata, objects, containers, and the SDOS functions. Figure 6.3
shows a screenshot of the container listing in Bluebox.

Analytics: This component allows users to work with object metadata. It
fulfills three functions: First, it shows the user the available data and
schemas in the metadata warehouse. Second, it allows accessing a
Node-RED1 instance which has an SQL connection to the metadata
warehouse. The user can create SQL queries and graphically link them
together with Javascript functions inside Node-RED. Third, it provides
endpoints for Node-RED to output the analysis results. This data is
then forwarded to the client application by the API wrapper on the
server side. The application locally renders the data into graphs in the
client’s Web browser.

Tasks: This component provides a user interface to the Apache Kafka mes-
saging service. It allows users to trigger tasks and also to receive
responses from the task runners. These tasks are used for executing
content identification, metadata extraction, metadata replication, and

1http://nodered.org/

6.2 | System Architecture and Components 131

http://nodered.org/

content disposal.

6.2.3 Task Runner

The task runner is a component that asynchronously executes tasks based on
task descriptions received over Apache Kafka messages. These tasks execute
long-running management operations like content identification and are
triggered either by users or programs. In this application, a message-driven
service has useful benefits [FLR+14]:

Asynchronous execution: Tasks may run for hours or days and the caller
may want to receive status updates. Message-based communication is
well suited for such an application.

Horizontal scaling: Each message contains a description for a single task.
Horizontal scaling can be achieved just by adding multiple task runner
instances. Kafka can be configured to deliver each message to exactly
one (currently available) task runner instance.

Distributed environments: Task runners can execute different types of
management tasks and some of these tasks involve more sensitive data
than others. With the message-driven service architecture, it is possible
to run multiple instances of the task runner in different trust zones.
For example, one instance may run in a local trusted environment and
another on cloud resources. Kafka can now be configured to distribute
messages with different tasks to the different instances.

Monitoring and auditing: Task description and execution status messages
can easily be exploited for creating audit logs and monitoring the
execution of tasks. Especially in a cloud environment, many existing
analytics services could be quickly connected to this messaging system.

The task runner in MCM uses a plug-in architecture to support the ex-
ecution of different types of tasks. The task runner itself has an interface
to the Apache Kafka messaging system and to the Swift object store (or
SDOS). It receives and interprets messages and starts executing the tasks

132 6 | MCM: a Demonstrator Application for SDOS

in new threads. After starting task execution, the task runner also provides
an iterator interface to the objects on the object store. This is used by some
task implementations that only execute simple operations on each of the
objects in a container. The task runner itself does not have access credentials
to Swift, so each task-requesting message must contain a temporary access
token provided by a user or application.
The four task plug-ins that are provided in MCM are the following:

Object disposer: In MCM, each stored object can have a metadata field
“retention-date”. Its value is a date that specifies until when this
object must be kept. If an object has a retention date in the past, it can
be deleted. The object disposer fulfills this function. It retrieves the
metadata from each object in a container and compares the value of
the retention date field to the current date. Expired objects are then
deleted. This task is well suited when cryptographic deletion and the
batch-delete log are used: The disposal task will fill the batch-delete
log so that it can be processed afterwards.

Content identifier: The content identifier inspects the actual binary con-
tent of an object and determines its type in order to populate the
metadata field “content-type”. In Swift, it is the task of the upload-
ing client to set the content type. Most clients, if at all, use the file
name extension when uploading objects from a file system in order to
determine the content type (e.g. a file ending in “.jpg” is considered a
JPEG regardless of the actual content). This often leads to incorrect or
unset content-type fields. For this reason, MCM contains this con-
tent type identifier that looks into the binary content of the object in
order to find known sequences of bytes that identify a certain content
type. I use the programming library libmagic from the well known
Unix file1 utility. It contains a comprehensive list of known content
types and their binary fingerprint.

Metadata extractor: Once the content type for an object is known, MCM

1https://github.com/file/file

6.2 | System Architecture and Components 133

https://github.com/file/file

can use this knowledge about the objects’ structure to automatically
extract known metadata fields from it. For this, I include a metadata
extractor that provides an execution environment and plug-in interface
for content type filters. The filter plug-ins must specify which content
types they support and what metadata fields they can produce. The
extractor will determine the appropriate plug-in for each object based
on the content type field, download the binary content of the object,
and pass this data object to the filter plug-in. This plug-in returns the
found data as key/value pairs that the extractor writes back to the
object store.

In MCM, I include filter plug-ins for common image formats (JPEG,
PNG, BMP, . . .), PDF documents, and e-mails. For example, the JPEG
filter may produce metadata fields “resolution” or “compression”
while the PDF filter may produce “author” or “title”.

Metadata replicator: The Swift Object Store only supports storing and re-
trieving metadata based on entity names; no advanced querying of the
metadata itself is possible. In order to use metadata for analyzing or
finding objects, MCM needs a data management system that provides
advanced querying capabilities. For this reason, I include a relational
database that is used as a metadata warehouse. The metadata repli-
cator is responsible for retrieving the metadata from the object store
and inserting it into the database. I only replicate the metadata uni-
directional to a relational database to use it for advanced searching,
querying, and analysis. This database is used as a warehouse only for
reading data. All modifications of metadata happen directly on the
object store.

The replicator handles metadata from two different sources: i) Object
store “internal metadata”, ii) metadata extracted by content type filters.
The replicator maintains one database table for each type of metadata.
They reference each other by foreign-key relationships on the object
and container name.

i) Internal metadata is created by Swift itself and is always present

134 6 | MCM: a Demonstrator Application for SDOS

on all objects. It includes, for example, the object size, time and date
of last access. The replicator maintains one database table with the
appropriate columns for this type of metadata.

ii) Filter metadata: The replicator uses the same plug-in interface as
the metadata extractor in order to read the list of metadata fields from
the plug-ins. This data is used to create a table for each type of filter
and to select the appropriate metadata fields from the object itself.
Note that the extractor and replicator must have the same plug-ins in
the same versions installed in order to replicate all the correct fields.

6.3 Use Cases and Functionality

MCM was designed as a demonstrator system for SDOS with the “enterprise
document archive” scenario (see Section 6.1) in mind. In the following,
I explain three examples of use cases that are possible in MCM: Content
management, metadata analytics, and content disposal. These examples
are included here to show how the MCM components interact and what
functionality is possible with the system.

6.3.1 Container Creation, SDOS Configuration, and Content Management

This use case covers the basic functionality of content management systems:
storing, organizing, and retrieving content. It also covers the integration
with SDOS for configuring and using content encryption and cryptographic
deletion.
The user starts this interaction by logging in to Bluebox with their Swift

storage account and switching to the “Content Management” view that is
shown in Figure 6.3. This view presents a list of the existing Swift containers.
The user creates a new container from this view. Bluebox then presents

the dialog shown in Figure 6.4 where they can choose to create one of three
container types: i) An unencrypted “plain” Swift container where no SDOS
functionality will be used. ii) An encrypted container without cryptographic
deletion. The user now has additional options to specify the key source type

6.3 | Use Cases and Functionality 135

Figure 6.4: Screenshot of the container creation dialog in Bluebox showing
the options for SDOS.

136 6 | MCM: a Demonstrator Application for SDOS

Figure 6.5: Screenshot of the object view in Bluebox. Information retrieved
from the pseudo-object API is shown on the right.

and configuration (explained in Section 4.3). iii) An encrypted container
with cryptographic deletion. Besides the key source, the user now also has
options to specify the Key-Cascade geometry (node size and height) and to
enable the batch-delete log.
After creating a container with cryptographic deletion and the password

key source, the user enters the container. With this type of key source, they
first have to provide a password which SDOS uses as the first “deletable
key” for the new Key-Cascade. They enter this password using the SDOS
functions shown on the right in Figure 6.5. The information displayed here is
retrieved from the pseudo-object API in SDOS. It shows the geometry of the
Key-Cascade, the number of available object keys, the state of the key source,

6.3 | Use Cases and Functionality 137

as well as the state of the batch-delete log. If the key source is operational
and unlocked, a color-coded hash of the Key-Cascades root key is shown
here as well.
After initializing the container with a password, the user uploads files

using the drag-and-drop feature. The files are now stored as objects and
organized inside a container. The user can use Bluebox to upload further files,
download or preview their content and metadata, or delete objects. They can
also use the demonstrator features for SDOS and inspect a visualization of
the actual Key-Cascade used for this container. Figure 6.6 shows an example
with a single object highlighted. An animation is available here as well, it
shows the user how re-keying affects the Key-Cascade if the selected object
gets deleted.

6.3.2 Metadata Management and Analytics

Metadata is a key part of Enterprise Content Management as it allows
classifying, finding, organizing and analyzing objects. This use case also
highlights an important aspect of an encrypted cloud storage systems: If
client-side encryption and client-side key authority are used (as in this thesis),
then the cloud provider can offer no advanced services on the data. In MCM,
only the object content is encrypted while the object metadata is stored in
plain. This metadata contains the object names so that storing and retrieving
objects with their actual names1 is possible. In MCM, the user can selectively
extract further metadata from the objects and store it unencrypted as well.
With this approach, the user can selectively give the cloud provider access
to some data in order to have more functionality in the product.
One possible application could be to extract sender and receiver addresses

from an encrypted e-mail archive, so that the provider can offer server-side
search functionality. Another application for a personal cloud backup could
be to extract date and time from camera images. The provider can then
offer a time frame query interface so that users can quickly find old pictures.
In the following example, I explain the workflow for extracting the x and y

1Other approaches that also encrypt the object names are discussed in Section 2.4.

138 6 | MCM: a Demonstrator Application for SDOS

Figure 6.6: Screenshot of the Key-Cascade visualization in Bluebox. An
animation shows the steps involved in cascaded re-keying.

dimensions from JPEG images in order to calculate statistics at the server
side.
The extraction process is shown in Figure 6.7. It is performed by the task

runner discussed in Section 6.2.3. The process starts on the top left with the
JPEG object that does not have JPEG related metadata yet. Figure 6.5 shows
such objects, note that the table column for “image-size” has no values.
The objects in that table however already have the correct content type
“image/jpeg” in their metadata; Step (1) in Figure 6.7 could be skipped in
that case.
Step (1) of the process is identifying the content type. The content type

6.3 | Use Cases and Functionality 139

[JPEG DATA]

{name: image.jpg}

[JPEG DATA]

{name: image.jpg,
content-type: image/jpeg}

[JPEG DATA]

{name: image.jpg,
content-type: image/jpeg,
jpeg_resolution: 800x600}

meta_image_jpeg

name | resolution | ...
image.jpg | 800x600 | ...
 ... | ... | ...

(1) Identify
content type

(2) Extract
metadata

(3) Replicate
metadata

Object
contents

Metadata
in Swift

Relational
metadata warehouse

Object in
Swift

One table
per filter

„jpeg“ filter will extract
metadata from this object

Results from
identify and extract are
appended to Swift metadata

Figure 6.7: The process of extracting and replicating metadata from objects.

identifier will read the object, determine the type, and then write the value
back into Swift as metadata for this object. Once the correct content type is
set, the metadata extractor can process the object in Step (2). The content
type is needed in this step because the extractor uses a set of plug-ins to
extract information from different types of objects. The content type decides
which “filter” plug-in to use. Just like the identifier, the extractor writes the
results back into Swifts object metadata. In Step (3), this metadata is then
replicated to the relational warehouse. The content type of the objects is
used here again because the warehouse contains one table for each content
type.
The replicator creates the following tables for metadata: One table with

the internal metadata from the containers (container name, size, number of
objects, SDOS configuration, . . .). Another table with the internal metadata
from the objects (container name, object name, size, content type, . . .). The
schemas for those two tables are static, since they only account for the known
internal metadata fields. Then the replicator creates one table for each filter
plug-in in the extractor. The interface definitions in those plug-ins specify
which content types have which metadata fields, allowing the replicator to
derive a table schema. When replicating object metadata, the replicator

140 6 | MCM: a Demonstrator Application for SDOS

Figure 6.8: Screenshot of the task execution view in Bluebox. The request
message and two replies from a task runner are shown.

first populates the container metadata for the affected container. It then
populates the object metadata table; the object name and container name
columns act as the primary key for the content-type-specific tables. This
table gets populated next with the specific metadata fields; in this example
“jpeg_resolution”.

The metadata can now be analyzed in the warehouse, or the extraction
process can be repeated in order to update the warehouse contents.
After logging in, the user can start the process either directly from the

object view in Bluebox, or from the tasks view. The object view is shown
in Figure 6.5; note the buttons in the lower blue bar. In the tasks view, as
shown in Figure 6.8, they select the type of task (Steps 1-3 from above) and
the container to process. Since the objects already have the correct content
type, they start with Step (2), metadata extraction.

6.3 | Use Cases and Functionality 141

Figure 6.9: Screenshot of the analytics view in Bluebox. Template charts
are filled with query result data.

In MCM, the tasks always run on all objects inside one container. When
the user selects to start the task, Bluebox sends a message with a task
description over the Apache Kafka messaging system. Bluebox includes the
users current authentication token in this message; this is used by the task
runner to access the object store. It also includes a random task ID used for
correlating messages.
The tasks view in Bluebox shows all the messages in Kafka, grouped

together by the task IDs. In Figure 6.8, the user can see the outgoing task
request and two responses. The first response is sent by the task runner to
indicate that execution is started. The second response is sent once the task
is finished. It contains a small success report that shows that 61 objects were
successfully processed. They can now continue with Step (3), metadata
replication. They select the different task type from the drop-down menu
and select “start task” once again. After receiving the success report for this
task, they switch to the analytics view.
The analytics view is shown in Figure 6.9. Here, they select a predefined

142 6 | MCM: a Demonstrator Application for SDOS

query that calculates the count and size of JPEG objects, grouped by their
resolution. The user can additionally limit the query to a single container.
Finally, they chose one of the provided chart types and receive the visualized
query results.
MCM contains a few such example queries, but users can write their own

queries using the included Node-RED1 editor.

6.3.3 Content Disposal and Batch Deletion

In this use case, I detail how retention dates, object disposal, batch deletion,
and key sources interact. A practical application could be a document archive
where expired documents get securely deleted periodically.
The user starts with the container they created in Section 6.3.1. It uses

cryptographic deletion, a password as the deletable key source, and the
batch-delete log. Firstly, they start by uploading new objects over a certain
period. The user specifies a retention for these objects. This is either possible
with the Bluebox UI at upload or a later time, or over the Swift API.

After some time, the user wants to dispose the expired objects, i.e., objects
where the retention date lies in the past. The task runner has a disposal task
for this purpose: It checks the retention date on each object by retrieving
their metadata, and compares it to the current date. If the retention date
lies is the past, it issues a delete command for this object over the Swift API.
They start the disposal task from the tasks view in Bluebox, and await

the success report message detailing how many objects were deleted. Since
the container uses cryptographic deletion, each object delete would trigger
re-keying. But since the user configured the password key source, they
would have to provide a new password for each deletion. For this reason,
they also configured the batch-delete log for this container. In this case,
object deletions are only performed in Swift but no immediate re-keying is
triggered. Instead, the names of the deleted objects are appended to this
batch-delete log.

1http://nodered.org/

6.3 | Use Cases and Functionality 143

http://nodered.org/

After the disposal task has populated the batch-delete log, they can trigger
re-keying to process the log at a later time. At this point, the user has to
provide a new password so that a new deletable key can be derived. The
cascaded re-keying method then processes all object deletions in a single
run and only requires a new deletable key once.
The password key source and this above scenario highlight the usefulness

of the batch-delete log. The password key source requires user interaction
when the deletable key should be replaced. This makes it difficult to use when
re-keying is performed often, or immediately on object deletion. But practical
key sources in an enterprise setting may have the same problem. A deletable
key for an enterprise archive, stored in a hardware security module, likely
requires human interaction or special approval before secure replacement.
This key replacement might be integrated into a business process in order
to allow reviewing, accountability, and auditing. The password key source
in MCM mimics this behavior.
The batch-delete log allows decoupling object deletion and cryptographic

deletion and supports the use case of periodically deleting old data.

6.4 Authentication and Authorization

Because the MCM system consists of multiple services that are used by each
other as well as external users, it needs a mechanism for authorizing requests.
In MCM, this is realized with two approaches: Swift authentication and
internal service accounts.
Swift authentication is an extensible authentication and authorization

provider that can authenticate users and authorize their requests for opera-
tions on the object store. It can use an internal (i.e., as a configuration file)
user database for development and testing but also supports a Keystone1

back-end for use in production. Before any request to Swift can be made, a
user has to authenticate. If this is successful, Swift issues an authentication
token (i.e., Auth-Token) that is valid for a certain period. This token is then

1Keystone is the identity service from the OpenStack project:
http://docs.openstack.org/developer/keystone/

144 6 | MCM: a Demonstrator Application for SDOS

http://docs.openstack.org/developer/keystone/

used for authorizing the actual request. None of MCM’s internal components
has its own Swift account. SDOS is implemented as a Swift API proxy so it
can use the user’s Auth-Token to make requests on the user’s behalf. The
three metadata generation components as well as the retention manager
are able to operate without direct user interaction by receiving tasks from
the message queue. The solution for this is that users include a temporary
Auth-Token in the task description when they create a task.

This design allows me to anchor all operations on the object store directly
on a user’s request. Without a user that has a valid account, none of the
internal components can access the data inside the object store. Using Auth-
Tokens inside the task description instead of user name and password has
two advantages: i) Tokens can be easily revoked in case of security breaches.
ii) Leakage of tokens is less critical since they’re only valid for a small period.
Since the user’s accounts are valid Swift accounts for the cloud object

store, I need a mechanism that prevents circumventing our internal API
proxy components by directly connecting to the underlying Swift Object
Store. I solve this by using a Swift service account1. In this configuration,
Swift requires a combination of two sets of credentials for authentication: A
user’s credentials as well as a services credentials. This way, users are not
able to use Swift without going through the internal services that have the
service credentials.
Internal service accounts are used by the internal services for authenti-

cating against the metadata warehouse and the messaging system. During
deployment of the MCM system, I create an account for each required access
according to Figure 6.1. This means that the internal services have direct
access to the metadata warehouse and messaging system without a user’s
request, contrary to the object store, which can only be accessed with the
help of a user’s request (via their Auth-Token).
These internal services also need to authorize requests from users for

accessing data on the message queues and metadata warehouse. Here, they
can not directly forward requests, as it is possible with the object store,

1 http://docs.openstack.org/developer/swift/overview_auth.html#
openstack-service-using-composite-tokens

6.4 | Authentication and Authorization 145

http://docs.openstack.org/developer/swift/overview_auth.html#openstack-service-using-composite-tokens
http://docs.openstack.org/developer/swift/overview_auth.html#openstack-service-using-composite-tokens

since the users do not have the accounts for these two systems; but the
services have. I solve this by anchoring all operations on these two systems
to user operations on the object store. With this method, I can link a users
permissions on swift entities to permissions on messages and tables in the
metadata warehouse. For example, a user is logged in to the Bluebox UI
with their Swift account that only enables access to Container A in Swift.
The user requests to access metadata belonging to Container B from the
metadata warehouse. In order to authorize this request, the UI will forward
their Auth-Token to Swift and verify if the user has permissions to access
Container B. In this example, Swift denies the authorization, so the Bluebox
component will deny access to the metadata as well.
I implicitly link the user’s permissions on the Swift Object Store to permis-

sions on the message queues and metadata warehouse with this mechanism.
This has the advantage that I do not need to configure the permissions in
separate systems and keep them consistent.

6.5 Cloud Modeling and Deployment Automation

Cloud modeling refers to the practice of describing the high-level architecture
of a cloud application in a machine-readable way. Today, the goal of this is to
provide deployment automation for an entire multi-component application.
However, research efforts like TOSCA aim to provide further benefits from
such cloud application models like topology discovery, dynamic adaptation
and migration, or declarative modeling [BBKL14].
In the following, I discuss the application topology of MCM with regard

to its deployment on public or private cloud environments. I present three
alternatives to how MCM’s components can be deployed and discuss their
implications on usability and security. Following this, I present an executable
application model of MCM, written for the Docker Compose1 automation
engine, with which the MCM system can be deployed with little effort.
In Section 6.2, the high-level architecture of MCM was introduced. Fig-

1https://docs.docker.com/compose/

146 6 | MCM: a Demonstrator Application for SDOS

https://docs.docker.com/compose/

Metadata
Extractor

Bluebox back end

Swift
Object StoreRDBMS

SDOS

Task runner

M
es

sa
gi

ng

Generic
Swift client

Bluebox UI
(SDOS demonstrator)

 Apache Kafka

 Swift REST

 SQL

Swift
application

 Service / Application

 SDOS / MCM Components

Bluebox back-end
(A)

(B)

(C)

←
 P

rivate | P
ub lic →

Content
identifier

Task runner

Metadata
Replicator

Object
disposer

Figure 6.10: A high-level overview of the MCM components. The three red
lines show possible deployment configurations.

ure 6.10 shows this architecture overlaid with three possible “border loca-
tions” that separate a public and private cloud environment, indicated as
(A), (B) and (C). They differ in which components are deployed on-premise
(i.e., in a private cloud) and in a public cloud. They have different security
implications, but also enable different usage scenarios.
In deployment scenario (A), all system components run in a public cloud.

Only client applications or Web-based user interfaces run on the users own
systems. This scenario would be used by a cloud provider who wants to
offer MCM as Software-as-a-Service (SaaS). Data security depends on how
well the provider secures the encryption keys and protects against outside
attacks. On the other hand, this scenario enables using the system from
anywhere, on any device.
Scenario (B) operates the encryption and all components handling unen-

6.5 | Cloud Modeling and Deployment Automation 147

crypted data, on the private cloud. Only metadata and encrypted data are
stored on the public cloud. An instance of the task runner is located at the
public side. The tasks that this instance handles only involve metadata. It
does not have access to SDOS, but only to Swift. Meaning that this instance
of the task runner can not read the object contents. In this deployment
scenario, the object contents are inherently secure against outside attacks
and cloud provider breaches.
Scenario (C) also secures the metadata by moving it into the private cloud.

Only encrypted data is stored on the public cloud in order to be secure
against any attacks on this public infrastructure. In Scenarios (B) and (C),
it is no longer possible to use the system from anywhere. Only users with
access to the local private cloud have access to the system. These scenarios
also impose higher operational cost for the customer, since they have to
operate the private cloud instead of relying fully on public cloud offerings.

6.5.1 Trusted Enclave

Scenario (A) provides the lowest cost and highest functionality for customers,
making such SaaS offerings very popular. The SaaS providers therefore often
extend their cloud architecture with a “trusted enclave”, in an attempt
to increase security. An example of this approach is given by Microsofts
Cipherbase, as discussed in Section 2.4.3.
This trusted enclave is a specialized hardware component1 which securely

stores encryption keys and carries out cryptographic operations. It is built
into some of the cloud servers used to host the application. This is an effort
to minimize the risk of leaking encryption keys or sensitive data and make
attacks more difficult.
In the case of SDOS, the recursive encryption and decryption operations

on the nodes, as well as data objects, could be implemented inside a HSM.

1HSM (Hardware Security Module) or custom FPGA/ASIC based solutions are common.

148 6 | MCM: a Demonstrator Application for SDOS

6.5.2 Executable Model in Docker Compose

Docker is a popular container1 runtime for cloud applications at the time of
writing this thesis. It provides a mechanism for packaging and delivering
applications, as well as a standard way of running those containers. This
enables developers to package their applications and run them on a variety
of cloud platforms as well as regular workstations. Docker Compose allows
developers to “compose” a larger application from multiple such containers.
It enables packaging and running multiple containers as if they were a single
application.
I used these two technologies to provide an automated deployment for

MCM, which is available at: https://github.com/sdos/deploy-sdos.
This Docker Compose file can be run on a local workstation for testing
and development, or can be uploaded to a cloud provider. It contains a
total of eight Docker containers that cover all the components shown in
Figure 6.10. By default, this includes the Swift Object Store. However, it
is possible to connect to an external Swift Object Store, which should be
used for performance evaluation purposes. This is possible by changing the
Docker Compose configuration; deploying Swift should be disabled and the
associated Swift connection variables populated manually.

6.6 Related Publications

The contributions in this Chapter are supported by the following of my
publications:
In 2013, a paper was accepted at BTW that discusses security issues in

cloud application architectures. The distributed execution of SDOS repre-
sents such an application [WSM13].
Two of my publications discuss the representation of security aspects

in the cloud application modeling language TOSCA [WWB+13b]. The
implementation of these concepts is presented in a further publication at

1Here, “container” refers to a unit of program execution encapsulation. The word
“container” otherwise refers to a data storage concept in this thesis.

6.6 | Related Publications 149

https://github.com/sdos/deploy-sdos

DOA-Trusted Cloud [WWB+13a]. I co-authored a paper at GI-Jahrestagung
in 2014 that discussed and presented an implementation of further use
cases for TOSCA security policies [BKK+14]. The concepts presented in
these publications allow a cloud application modeler to specify security
requirements, like cryptographic deletion, in a declarative way. The TOSCA
runtime environment could then add the SDOS component in-line with
a cloud object store resource. However, for this thesis I decided to not
implement a TOSCA model for SDOS and the MCM demonstrator system,
but instead implement a working, executable model using Docker Compose,
as explained above. I chose this approach because of the ubiquity of Docker
models in research and industry today. Interested readers will find a Docker
implementation more useful and are able to test and evaluate SDOS and
MCM with little effort.
The application architecture of MCM is based on previous work on appli-

cation architectures for data-intensive applications in cloud environments
[RWWS14]. In another publication, I discuss the performance aspects of
such distributed applications [MWL+14].
In 2015, a paper was accepted at the IBM Cloud Academy Conference

that discusses different approaches to model-based deployment automation
of cloud applications, with a special focus on parametrized or customized
deployments based on application model transformations [WMW+15]. The
findings in this contribution are the basis for some architectural decisions in
MCM.
In 2017, a poster presentation about the Key-Cascade concept and the

prototype of SDOS as well as the larger MCM system was accepted at BTW
[Wai17]. In the same year, another poster presentation and demo that
showed the integration with Trusted Platform Modules as deletable key
source was accepted at EDBT [WWM17].

150 6 | MCM: a Demonstrator Application for SDOS

C
h
ap

te
r 7

Conclusions and Future
Work

In this thesis, I discuss the challenge of securely erasing data, specifically in
modern cloud storage systems. I show that the previous approaches, made
for on-site data stores, are not applicable anymore in this new scenario and
introduce the concept of cryptographic deletion. I discuss related work on
data encryption, encrypted database systems, secure deletion in general,
as well as cryptographic deletion. I point out that investigations into cryp-
tographic deletion are few and far between. Most existing solutions have
very different approaches from each other and a research gap still exists
regarding their applicability to cloud storage systems.
Using a static tree with a re-keying operation is a novel approach that

I investigated with the Key-Cascade method. This method provides a key
management that enables efficient cryptographic deletion for encrypted
cloud storage systems. To introduce the Key-Cascade, I present two initial
concepts for applying cryptographic deletion to such storage systems. These
initial approaches help in understanding the background and challenges.

151

Following this, I then present the Key-Cascade method with its hierarchical
key management. I show the data structures of the Key-Cascade and detail
how the operations on this structure are realized. I then calculate the
geometries, storage, and computational requirements for differently sized
Key-Cascades in order to show their suitability.
With SDOS, I provide a fully working implementation of the presented

concepts. Besides providing a proof of concept prototype, another reason
for building SDOS and MCM was to investigate the practical usability of the
Key-Cascade method. As indicated by the extensions to the Key-Cascade
method, which I also present in this thesis, further improvements were
necessary in order to achieve a practically usable solution.
Using the SDOS prototype, I conducted performance measurements on

secure deletion and the Key-Cascade operations. The results show that
the API proxy can be a performance bottleneck. However, secure deletion
only adds little cost to an encrypted storage system. The additional key
management operations are cheap even for large Key-Cascade configurations.
Designing and prototyping a solution, that transparently adds secure deletion
to cloud storage while keeping the impact on response times low, is the main
contribution of this work.
For these reasons, I consider the concepts in the Key-Cascade method, as

well as the results of this thesis, a valuable addition to the existing research
on cryptographic deletion. From the results of my evaluation, I conclude
that the Key-Cascade method and its extensions provide a viable solution for
secure data erasure in cloud storage systems.

Future Work

Cryptographic deletion is not a highly researched topic today. For this reason,
many opportunities for future work exist in the concept of cryptographic
deletion alone. The existing approaches, discussed in the related work, use a
variety of different methods and data structures to solve the key management
problem. The Key-Cascade is another such example, as it is the first that

152 7 | Conclusions and Future Work

uses re-keying on a static tree. Future research into improving, comparing,
and applying the now existing methods is needed.
The Key-Cascade method itself could be expanded further as well. One

possibility is to integrate access control into the data structure, a feature
often found in encrypted multi-user storage systems. Another interesting
area of research is applying the Key-Cascade method, or other approaches,
to different storage systems. All previous approaches, including the Key-
Cascade, focus on object stores or file systems due to their simple data model.
An integration into database systems, especially encrypted database systems,
poses an interesting research question.
I believe the most important area of future work lies in applying cryp-

tographic deletion to existing encrypted storage systems, especially cloud
storage systems and local disk encryption solutions. The results of this work,
as well as the related work, show that cryptographic deletion can be used
in practice. It is efficient enough, has acceptable storage overhead, and all
necessary concepts and methods are present.
Interest from users as well as potential customers seems to be present,

considering secure deletion is an established practice with on-site storage
systems. The recent advances in legislation may drive demand even further.
As I discussed in this thesis, cryptographic deletion can be viewed as a
modification to the key management systems used today for data encryption.
This opens the possibility of adding this feature to existing encrypted storage
systems, lowering the effort for creating a production ready solution and
also lowering the entry barrier for potential users.

6.6 | Related Publications 153

Bibliography

[ABE+12] A. Arasu, S. Blanas, K. Eguro, M. Joglekar, R. Kaushik, D. Kossmann,
R. Ramamurthy, P. Upadhyaya, and R. Venkatesan. “Engineering
Security and Performance with Cipherbase.” In: IEEE Data Eng. Bull.
35.4 (2012), pp. 65–72. url: http://sites.computer.org/
debull/A12dec/cipher.pdf (cit. on p. 52).

[ABE+13] A. Arasu, S. Blanas, K. Eguro, M. Joglekar, R. Kaushik, D. Kossmann, R.
Ramamurthy, P. Upadhyaya, and R. Venkatesan. “Secure Database-as-
a-service with Cipherbase.” In: Proceedings of the 2013 ACM SIGMOD
International Conference on Management of Data. SIGMOD ’13. New
York, New York, USA: ACM, 2013, pp. 1033–1036. url: http://
doi.acm.org/10.1145/2463676.2467797 (cit. on p. 52).

[AEJ+15] A. Arasu, K. Eguro, M. Joglekar, R. Kaushik, D. Kossmann, and R.
Ramamurthy. “Transaction processing on confidential data using ci-
pherbase.” In: Data Engineering (ICDE), 2015 IEEE 31st International
Conference on. IEEE. 2015, pp. 435–446 (cit. on p. 52).

[BAV15] D. Brown, C. Arend, and A. Venkatraman. “EU Data Protection Re-
form Will Drive Growth in European Security and Storage Markets.”
In: IDC ESS02X (Oct. 2015) (cit. on p. 19).

[BBKL14] T. Binz, U. Breitenbücher, O. Kopp, and F. Leymann. “TOSCA: Portable
Automated Deployment and Management of Cloud Applications.”
English. In: Advanced Web Services. New York: Springer, Jan. 2014,
pp. 527–549. url: http://www2.informatik.uni-stuttgart.
de/cgi- bin/NCSTRL/NCSTRL_view.pl?id=INBOOK- 2014-
01&engl=1 (cit. on p. 146).

155

http://sites.computer.org/debull/A12dec/cipher.pdf
http://sites.computer.org/debull/A12dec/cipher.pdf
http://doi.acm.org/10.1145/2463676.2467797
http://doi.acm.org/10.1145/2463676.2467797
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INBOOK-2014-01&engl=1
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INBOOK-2014-01&engl=1
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INBOOK-2014-01&engl=1

[Ber15] S. Beresford. Deletion of records from national police systems. Tech. rep.
UK National Police Chiefs’ Council, May 2015. url: https://www.
gov.uk/government/uploads/system/uploads/attachment_
data/file/430095/Record_Deletion_Process.pdf (cit. on
p. 18).

[BKK+14] A. Blehm, V. Kalach, A. Kicherer, G. Murawski, T. Waizenegger, and
M. Wieland. “Policy-Framework - Eine Methode zur Umsetzung von
Sicherheits-Policies im Cloud-Computing.” In: 44. Jahrestagung der
Gesellschaft für Informatik, Informatik 2014, Big Data - Komplexität
meistern, 22.-26. September 2014 in Stuttgart, Deutschland. 2014,
pp. 277–288. url: http://subs.emis.de/LNI/Proceedings/
Proceedings232/article54.html (cit. on p. 150).

[BL05] P. F. Bennison and P. J. Lasher. “Data security issues relating to end
of life equipment.” In: Journal of ASTM International 2.4 (2005),
pp. 1–7 (cit. on p. 43).

[BLM+15] J. Barney, D. Lebutsch, C. Mega, S. Schleipen, and T. Waizeneg-
ger. “Deletion of content in digital storage systems.” 9,298,951. U.S.
patent. May 2015 (cit. on pp. 72, 124).

[BS14] S. Bajaj and R. Sion. “TrustedDB: A Trusted Hardware-Based Database
with Privacy and Data Confidentiality.” In: IEEE Transactions on
Knowledge & Data Engineering 26.3 (2014), pp. 752–765 (cit. on
p. 53).

[BV14] Z. Brakerski and V. Vaikuntanathan. “Efficient Fully Homomorphic
Encryption from (Standard) LWE.” In: SIAM Journal on Computing
43.2 (2014), pp. 831–871. eprint: http://dx.doi.org/10.1137/
120868669. url: http://dx.doi.org/10.1137/120868669
(cit. on p. 50).

[Con09] T. Conde. To Delete or Not Delete - That’s the Question: A Company’s
Obligations to Preserve Records Under the New Electronic Discovery
Rules. Tech. rep. Stoel Rives LLP, 2009. url: http://www.stoel.
com/to-delete-or-not-deletethats-the-question-a (cit.
on p. 18).

156 Bibliography

https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/430095/Record_Deletion_Process.pdf
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/430095/Record_Deletion_Process.pdf
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/430095/Record_Deletion_Process.pdf
http://subs.emis.de/LNI/Proceedings/Proceedings232/article54.html
http://subs.emis.de/LNI/Proceedings/Proceedings232/article54.html
http://dx.doi.org/10.1137/120868669
http://dx.doi.org/10.1137/120868669
http://dx.doi.org/10.1137/120868669
http://www.stoel.com/to-delete-or-not-deletethats-the-question-a
http://www.stoel.com/to-delete-or-not-deletethats-the-question-a

[CSRL01] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson. Introduction
to Algorithms. 3rd. McGraw-Hill Higher Education, 2001 (cit. on
pp. 60, 63, 68).

[Day14] A. Dayley. Financial Services Context: Magic Quadrant for Enterprise
Information Archiving. Tech. rep. G00262994. Gartner, Nov. 2014
(cit. on p. 19).

[Din14] R. Dingledine. Tor security advisory: “relay early” traffic confirmation
attack. The Tor Project. July 2014.url: https://blog.torproject.
org/blog/tor-security-advisory-relay-early-traffic-
confirmation-attack (cit. on p. 46).

[FG07] C. Fontaine and F. Galand. “A Survey of Homomorphic Encryption for
Nonspecialists.” In: EURASIP Journal on Information Security 2007.1
(2007), p. 013801. url: http://dx.doi.org/10.1155/2007/
13801 (cit. on p. 51).

[FLR+14] C. Fehling, F. Leymann, R. Retter, W. Schupeck, and P. Arbitter. Cloud
Computing Patterns: Fundamentals to Design, Build, andManage Cloud
Applications. Springer Vienna, 2014, pp. 141, 136. url: https:
//books.google.de/books?id=aum9BAAAQBAJ (cit. on p. 132).

[FS03] N. Ferguson and B. Schneier. Practical Cryptography. 1st ed. pages
83 ff. New York, NY, USA: John Wiley & Sons, Inc., 2003 (cit. on
p. 37).

[Gen09] C. Gentry. “Fully Homomorphic Encryption Using Ideal Lattices.” In:
Proceedings of the Forty-first Annual ACM Symposium on Theory of
Computing. STOC ’09. Bethesda, MD, USA: ACM, 2009, pp. 169–178.
url: http://doi.acm.org/10.1145/1536414.1536440 (cit. on
p. 50).

[GHH+12] K. R. Grahlmann, R. W. Helms, C. Hilhorst, S. Brinkkemper, and
S. van Amerongen. “Reviewing Enterprise Content Management: a
functional framework.” In: European Journal of Information Systems
21.3 (May 2012), pp. 268–286. url: http://dx.doi.org/10.
1057/ejis.2011.41 (cit. on p. 127).

[GHJV95] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Ele-
ments of Reusable Object-oriented Software. Boston, MA, USA: Addison-
Wesley Longman Publishing Co., Inc., 1995, p. 128 (cit. on p. 104).

Bibliography 157

https://blog.torproject.org/blog/tor-security-advisory-relay-early-traffic-confirmation-attack
https://blog.torproject.org/blog/tor-security-advisory-relay-early-traffic-confirmation-attack
https://blog.torproject.org/blog/tor-security-advisory-relay-early-traffic-confirmation-attack
http://dx.doi.org/10.1155/2007/13801
http://dx.doi.org/10.1155/2007/13801
https://books.google.de/books?id=aum9BAAAQBAJ
https://books.google.de/books?id=aum9BAAAQBAJ
http://doi.acm.org/10.1145/1536414.1536440
http://dx.doi.org/10.1057/ejis.2011.41
http://dx.doi.org/10.1057/ejis.2011.41

[GKLL09] R. Geambasu, T. Kohno, A. Levy, and H. M. Levy. “Vanish: Increasing
Data Privacy with Self-Destructing Data.” In: Proc. of the 18th USENIX
Security Symposium. 2009 (cit. on p. 46).

[Gol87] O. Goldreich. “Towards a Theory of Software Protection and Simu-
lation by Oblivious RAMs.” In: Proceedings of the Nineteenth Annual
ACM Symposium on Theory of Computing. STOC ’87. New York, New
York, USA: ACM, 1987, pp. 182–194. url: http://doi.acm.org/
10.1145/28395.28416 (cit. on p. 44).

[Gro16] T. C. Group. TPM 1.2 Protection Profile. 2016. url: https://
www.trustedcomputinggroup.org/tpm- 1- 2- protection-
profile/ (cit. on p. 41).

[GS03] S. Garfinkel and A. Shelat. “Remembrance of data passed: a study
of disk sanitization practices.” In: Security Privacy, IEEE 1.1 (Jan.
2003), pp. 17–27 (cit. on p. 33).

[Gue12] S. Gueron. Intel Advanced Encryption Standard (AES) New Instruc-
tions Set. 2012. url: https://software.intel.com/sites/
default/files/article/165683/aes-wp-2012-09-22-v01.
pdf (cit. on p. 38).

[Gut96] P. Gutmann. “Secure Deletion of Data from Magnetic and Solid-state
Memory.” In: Proc. of the 6th USENIX Security Symposium. SSYM’96.
San Jose, California, 1996, pp. 8–8. url: http://dl.acm.org/
citation.cfm?id=1267569.1267577 (cit. on pp. 33, 42).

[HR99] T. Härder and E. Rahm. Datenbanksysteme: Konzepte und Techniken
der Implementierung. Springer-Verlag, 1999, pp. 412–422 (cit. on
p. 104).

[IBM] IBM. IBM 4767-002 PCIe Cryptographic Coprocessor (HSM) Data
sheet. url: http://www-03.ibm.com/security/cryptocards/
pciecc2/pdf/4767_PCIe_Data_Sheet.pdf (cit. on p. 39).

[JT17] D. Janusz and J. Taeschner. “Privatsphäre-schützende Bereichsanfra-
gen in unsicheren Cloud-Datenbanken.” In: Datenbanksysteme für
Business, Technologie und Web (BTW 2017), 17. Fachtagung des GI-
Fachbereichs „Datenbanken und Informationssysteme" (DBIS), 6.-10.
März 2017, Stuttgart, Germany, Workshopband. Ed. by B. Mitschang,

158 Bibliography

http://doi.acm.org/10.1145/28395.28416
http://doi.acm.org/10.1145/28395.28416
https://www.trustedcomputinggroup.org/tpm-1-2-protection-profile/
https://www.trustedcomputinggroup.org/tpm-1-2-protection-profile/
https://www.trustedcomputinggroup.org/tpm-1-2-protection-profile/
https://software.intel.com/sites/default/files/article/165683/aes-wp-2012-09-22-v01.pdf
https://software.intel.com/sites/default/files/article/165683/aes-wp-2012-09-22-v01.pdf
https://software.intel.com/sites/default/files/article/165683/aes-wp-2012-09-22-v01.pdf
http://dl.acm.org/citation.cfm?id=1267569.1267577
http://dl.acm.org/citation.cfm?id=1267569.1267577
http://www-03.ibm.com/security/cryptocards/pciecc2/pdf/4767_PCIe_Data_Sheet.pdf
http://www-03.ibm.com/security/cryptocards/pciecc2/pdf/4767_PCIe_Data_Sheet.pdf

N. Ritter, H. Schwarz, M. Klettke, A. Thor, O. Kopp, and M. Wieland.
Vol. P-266. LNI. GI, 2017, pp. 237–247. url: https://www.gi.de/
service/publikationen/lni/gi- edition- proceedings-
2017/gi-edition-lecture-notes-in-informatics-lni-
p-266.html (cit. on p. 53).

[Ken05] K. Kenan. Cryptography in the database: the last line of defense. Upper
Saddle River, NJ: Addison-Wesley, 2005, XXII, 277 p. (Cit. on p. 36).

[KSSL06] R. Kissel, M. Scholl, S. Skolochenko, and X. Li. “NIST special pub-
lication 800-88 Guidelines for Media Sanitization.” In: Information
Technology Laboratory, National Institute of Standards and Technology
(2006) (cit. on p. 43).

[McC14] R. McCormick. “Tim Cook says Apple will send security alerts to
help stop iCloud hackers.” In: The Verge (Sept. 2014). url: http:
//www.theverge.com/2014/9/4/6108695/apple-tim-cook-
says- will- send- security- alert- stop- icloud- hack-
nude-celebrities/in/5863348 (cit. on p. 20).

[Mel10] S. Melvin. The Forgetful Disk Drive - Cryptographic Data Deletion
Using Time-Based Key Management. Tech. rep. Zytek Communications
Corporation, 2010 (cit. on p. 47).

[MWL+14] C. Mega, T. Waizenegger, D. Lebutsch, S. Schleipen, and J. M. Barney.
“Dynamic cloud service topology adaption for minimizing resources
while meeting performance goals.” In: IBM Journal of Research and
Development 58.2/3 (2014). url: http://dx.doi.org/10.1147/
JRD.2014.2304771 (cit. on p. 150).

[Nat01] National Institute for Standards and Technology. AES Key Wrap
Specification. 2001. url: http://csrc.nist.gov/groups/ST/
toolkit/documents/kms/key-wrap.pdf (cit. on pp. 35, 37).

[oOnt08] A. of Ontario. Recordkeeping Fact Sheet; The Fine Art of Destruction:
Weeding Out Transitory Records. Tech. rep. Recordkeeping Support
Unit, Ministry of Government Services, June 2008. url: http://
www.archives.gov.on.ca/en/recordkeeping/documents/
Fact-Sheet-Transitory-Records.pdf (cit. on pp. 18, 19).

Bibliography 159

https://www.gi.de/service/publikationen/lni/gi-edition-proceedings-2017/gi-edition-lecture-notes-in-informatics-lni-p-266.html
https://www.gi.de/service/publikationen/lni/gi-edition-proceedings-2017/gi-edition-lecture-notes-in-informatics-lni-p-266.html
https://www.gi.de/service/publikationen/lni/gi-edition-proceedings-2017/gi-edition-lecture-notes-in-informatics-lni-p-266.html
https://www.gi.de/service/publikationen/lni/gi-edition-proceedings-2017/gi-edition-lecture-notes-in-informatics-lni-p-266.html
http://www.theverge.com/2014/9/4/6108695/apple-tim-cook-says-will-send-security-alert-stop-icloud-hack-nude-celebrities/in/5863348
http://www.theverge.com/2014/9/4/6108695/apple-tim-cook-says-will-send-security-alert-stop-icloud-hack-nude-celebrities/in/5863348
http://www.theverge.com/2014/9/4/6108695/apple-tim-cook-says-will-send-security-alert-stop-icloud-hack-nude-celebrities/in/5863348
http://www.theverge.com/2014/9/4/6108695/apple-tim-cook-says-will-send-security-alert-stop-icloud-hack-nude-celebrities/in/5863348
http://dx.doi.org/10.1147/JRD.2014.2304771
http://dx.doi.org/10.1147/JRD.2014.2304771
http://csrc.nist.gov/groups/ST/toolkit/documents/kms/key-wrap.pdf
http://csrc.nist.gov/groups/ST/toolkit/documents/kms/key-wrap.pdf
http://www.archives.gov.on.ca/en/recordkeeping/documents/Fact-Sheet-Transitory-Records.pdf
http://www.archives.gov.on.ca/en/recordkeeping/documents/Fact-Sheet-Transitory-Records.pdf
http://www.archives.gov.on.ca/en/recordkeeping/documents/Fact-Sheet-Transitory-Records.pdf

[Ost09] A. Ostrow. “Facebook Responds to Concerns Over Terms of Service.”
In: Mashable (Feb. 2009). url: http://mashable.com/2009/02/
16/facebook-tos-response/#pAfXlF1j4Eqr (cit. on p. 20).

[PC16] E. Parliament and Council. Regulation 2016/679: General Data Pro-
tection Regulation (GDPR). Apr. 6, 2016, Article 13 "Right to be Forgot-
ten". url: http://eur-lex.europa.eu/legal-content/EN-
DE/TXT/?uri=CELEX:32016R0679 (cit. on p. 18).

[Per05a] R. Perlman. “File system design with assured delete.” In: Third IEEE
International Security in Storage Workshop (SISW’05). Dec. 2005,
p. 6 (cit. on p. 44).

[Per05b] R. Perlman. The Ephemerizer: Making Data Disappear. Tech. rep.
Mountain View, CA, USA: Disappearing Inc., 2005 (cit. on p. 44).

[Pid11] H. Pidd. “Facebook could face EUR 100,000 fine for holding data that
users have deleted.” In: The Guardian (Oct. 2011). url: http://
www.theguardian.com/technology/2011/oct/20/facebook-
fine-holding-data-deleted (cit. on p. 20).

[PRZB11] R. A. Popa, C. M. S. Redfield, N. Zeldovich, and H. Balakrishnan.
“CryptDB: Protecting Confidentiality with Encrypted Query Process-
ing.” In: Proceedings of the Twenty-Third ACM Symposium on Oper-
ating Systems Principles. SOSP ’11. Cascais, Portugal: ACM, 2011,
pp. 85–100. url: http://doi.acm.org/10.1145/2043556.
2043566 (cit. on p. 51).

[RBC13] J. Reardon, D. Basin, and S. Capkun. “SoK: Secure Data Deletion.”
In: Security and Privacy (SP), 2013 IEEE Symposium on. Institute of
Electrical & Electronics Engineers (IEEE), May 2013, pp. 301–315.
url: http://dx.doi.org/10.1109/SP.2013.28 (cit. on p. 48).

[RBC14] J. Reardon, D. A. Basin, and S. Capkun. “On Secure Data Deletion.”
In: IEEE Security & Privacy 12.3 (2014), pp. 37–44. url: http:
//dx.doi.org/10.1109/MSP.2013.159 (cit. on p. 48).

[RBM13] O. Rodeh, J. Bacik, and C. Mason. “BTRFS: The Linux B-Tree Filesys-
tem.” In: Trans. Storage 9.3 (Aug. 2013), 9:1–9:32. url: http:
//doi.acm.org/10.1145/2501620.2501623 (cit. on p. 79).

160 Bibliography

http://mashable.com/2009/02/16/facebook-tos-response/#pAfXlF1j4Eqr
http://mashable.com/2009/02/16/facebook-tos-response/#pAfXlF1j4Eqr
http://eur-lex.europa.eu/legal-content/EN-DE/TXT/?uri=CELEX:32016R0679
http://eur-lex.europa.eu/legal-content/EN-DE/TXT/?uri=CELEX:32016R0679
http://www.theguardian.com/technology/2011/oct/20/facebook-fine-holding-data-deleted
http://www.theguardian.com/technology/2011/oct/20/facebook-fine-holding-data-deleted
http://www.theguardian.com/technology/2011/oct/20/facebook-fine-holding-data-deleted
http://doi.acm.org/10.1145/2043556.2043566
http://doi.acm.org/10.1145/2043556.2043566
http://dx.doi.org/10.1109/SP.2013.28
http://dx.doi.org/10.1109/MSP.2013.159
http://dx.doi.org/10.1109/MSP.2013.159
http://doi.acm.org/10.1145/2501620.2501623
http://doi.acm.org/10.1145/2501620.2501623

[Rei02] J. A. Reimer. “Enterprise Content Management.” In: Datenbank-
Spektrum 4 (2002), pp. 17–22 (cit. on p. 127).

[RRBC13] J. Reardon, H. Ritzdorf, D. Basin, and S. Capkun. “Secure Data Dele-
tion from Persistent Media.” In: Proceedings of the 2013 ACM SIGSAC
Conference on Computer & Communications Security. CCS ’13. Berlin,
Germany: ACM, 2013, pp. 271–284. url: http://doi.acm.org/
10.1145/2508859.2516699 (cit. on p. 48).

[RWWS14] P. Reimann, T. Waizenegger, M. Wieland, and H. Schwarz. “Daten-
management in der Cloud fur den Bereich Simulationen und Wis-
senschaftliches Rechnen.” In: 44. Jahrestagung der Gesellschaft für
Informatik, Informatik 2014, Big Data - Komplexität meistern, 22.-26.
September 2014 in Stuttgart, Deutschland. 2014, pp. 735–746. url:
http://subs.emis.de/LNI/Proceedings/Proceedings232/
article176.html (cit. on p. 150).

[Sch09] B. Schneier. “The battle is on against Facebook and co to regain
control of our files.” In: The Guardian (Sept. 2009). url: https:
//www.schneier.com/blog/archives/2009/09/file%5C_
deletion.html (cit. on p. 20).

[Sch11] S. Schroeder. “Facebook Facing USD 138,000 Fine for Holding Deleted
User Data.” In:Mashable (Oct. 2011). url: http://mashable.com/
2011/10/21/facebook-deleted-data-fine/#P4KFGXySPOq3
(cit. on p. 20).

[Sch14] R. Schafer. Magic Quadrant for IT Asset Disposition Worldwide. Tech.
rep. G00261957. Gartner, Dec. 2014 (cit. on p. 19).

[TLLP12] Y. Tang, P. Lee, J. Lui, and R. Perlman. “Secure Overlay Cloud Storage
with Access Control and Assured Deletion.” In: Dependable and Secure
Computing, IEEE Transactions on 9.6 (Nov. 2012), pp. 903–916 (cit.
on p. 47).

[Wai12] T. Waizenegger. “Data security in multi-tenant environments in the
cloud.” Englisch. Diplomarbeit. Universität Stuttgart, Fakultät Infor-
matik, Elektrotechnik und Informationstechnik, Germany, Apr. 2012.
url: http://www2.informatik.uni- stuttgart.de/cgi-
bin/NCSTRL/NCSTRL_view.pl?id=DIP-3242&engl= (cit. on
p. 72).

Bibliography 161

http://doi.acm.org/10.1145/2508859.2516699
http://doi.acm.org/10.1145/2508859.2516699
http://subs.emis.de/LNI/Proceedings/Proceedings232/article176.html
http://subs.emis.de/LNI/Proceedings/Proceedings232/article176.html
https://www.schneier.com/blog/archives/2009/09/file%5C_deletion.html
https://www.schneier.com/blog/archives/2009/09/file%5C_deletion.html
https://www.schneier.com/blog/archives/2009/09/file%5C_deletion.html
http://mashable.com/2011/10/21/facebook-deleted-data-fine/#P4KFGXySPOq3
http://mashable.com/2011/10/21/facebook-deleted-data-fine/#P4KFGXySPOq3
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=DIP-3242&engl=
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=DIP-3242&engl=

[Wai17] T. Waizenegger. “Secure Cryptographic Deletion in the Swift Object
Store.” In: Datenbanksysteme für Business, Technologie und Web (BTW
2017), 17. Fachtagung des GI-Fachbereichs „Datenbanken und Informa-
tionssysteme" (DBIS), 6.-10. März 2017, Stuttgart, Germany, Proceed-
ings. Ed. by B. Mitschang, D. Nicklas, F. Leymann, H. Schöning, M.
Herschel, J. Teubner, T. Härder, O. Kopp, and M. Wieland. Vol. P-265.
LNI. GI, 2017, pp. 625–628. url: https://www.gi.de/service/
publikationen/lni/gi- edition- proceedings- 2017/gi-
edition-lecture-notes-in-informatics-lni-p-265.html
(cit. on pp. 73, 124, 150).

[WMW+15] F. Wagner, C. Mega, T. Waizenegger, V. Raskin, and S. Kukhtichev.
“A Practical Approach to Model-Based Cloud Service Deployment:
Using a Smart Interpreter and a Domain Specific Language.” En-
glisch. In: Proceedings of the 3rd International IBM Cloud Academy
Conference ICACON 2015. IBM, May 2015, pp. 1–10. url: http:
//www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/
NCSTRL_view.pl?id=INMISC-2015-05&engl= (cit. on p. 150).

[WSM13] T. Waizenegger, O. Schiller, and C. Mega. “Datensicherheit in man-
dantenfähigen Cloud Umgebungen.” In: Datenbanksysteme für Busi-
ness, Technologie und Web (BTW), 15. Fachtagung des GI-Fachbereichs
"Datenbanken und Informationssysteme" (DBIS), 11.-15.3.2013 in
Magdeburg, Germany. Proceedings. Ed. by V. Markl, G. Saake, K.
Sattler, G. Hackenbroich, B. Mitschang, T. Härder, and V. Köppen.
Vol. 214. LNI. GI, 2013, pp. 477–489. url: http://www.btw-2013.
de/proceedings/Datensicherheit%20in%20mandantenfaehigen%
20Cloud%20Umgebungen.pdf (cit. on p. 149).

[WWB+13a] T. Waizenegger, M. Wieland, T. Binz, U. Breitenbücher, F. Haupt,
O. Kopp, F. Leymann, B. Mitschang, A. Nowak, and S. Wagner. “Pol-
icy4TOSCA: A Policy-Aware Cloud Service Provisioning Approach
to Enable Secure Cloud Computing.” In: On the Move to Meaningful
Internet Systems: OTM 2013 Conferences - Confederated International
Conferences: CoopIS, DOA-Trusted Cloud, and ODBASE 2013, Graz,
Austria, September 9-13, 2013. Proceedings. Ed. by R. Meersman, H.
Panetto, T. S. Dillon, J. Eder, Z. Bellahsene, N. Ritter, P. D. Leenheer,
and D. Dou. Vol. 8185. Lecture Notes in Computer Science. Springer,

162 Bibliography

https://www.gi.de/service/publikationen/lni/gi-edition-proceedings-2017/gi-edition-lecture-notes-in-informatics-lni-p-265.html
https://www.gi.de/service/publikationen/lni/gi-edition-proceedings-2017/gi-edition-lecture-notes-in-informatics-lni-p-265.html
https://www.gi.de/service/publikationen/lni/gi-edition-proceedings-2017/gi-edition-lecture-notes-in-informatics-lni-p-265.html
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INMISC-2015-05&engl=
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INMISC-2015-05&engl=
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INMISC-2015-05&engl=
http://www.btw-2013.de/proceedings/Datensicherheit%20in%20mandantenfaehigen%20Cloud%20Umgebungen.pdf
http://www.btw-2013.de/proceedings/Datensicherheit%20in%20mandantenfaehigen%20Cloud%20Umgebungen.pdf
http://www.btw-2013.de/proceedings/Datensicherheit%20in%20mandantenfaehigen%20Cloud%20Umgebungen.pdf

2013, pp. 360–376. url: http://dx.doi.org/10.1007/978-3-
642-41030-7_26 (cit. on p. 150).

[WWB+13b] T. Waizenegger, M. Wieland, T. Binz, U. Breitenbücher, and F. Ley-
mann. “Towards a Policy-Framework for the Deployment and Man-
agement of Cloud Services.” Englisch. In: SECURWARE 2013, The Sev-
enth International Conference on Emerging Security Information, Sys-
tems and Technologies. Ed. by H.-J. Hof and C. Westphall. Barcelona,
Spain: IARIA, Aug. 2013, pp. 14–18.url: http://www2.informatik.
uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=
INPROC-2013-44 (cit. on p. 149).

[WWM17] T. Waizenegger, F. Wagner, and C. Mega. “SDOS: Using Trusted
Platform Modules for Secure Cryptographic Deletion in the Swift
Object Store.” In: Proceedings of the 20th International Conference
on Extending Database Technology, EDBT 2017, Venice, Italy, March
21-24, 2017. Ed. by V. Markl, S. Orlando, B. Mitschang, P. Andritsos,
K. Sattler, and S. Breß. OpenProceedings.org, 2017, pp. 550–553.
url: http://dx.doi.org/10.5441/002/edbt.2017.67 (cit. on
pp. 73, 124, 150).

[Yod13] K. Yoder. POWER7+ Accelerated Encryption and Random Number
Generation for Linux. Tech. rep. IBM Linux Technology Center, 2013
(cit. on p. 38).

[ZDB09] V. J. Zimmer, S. R. Dasari, and S. P. Brogan. Tcg-based Firmware. White
Paper. Intel Corporation and IBM Corporation Trusted Platforms,
2009 (cit. on p. 42).

All URLs were last followed on 25.04.2017.

Bibliography 163

http://dx.doi.org/10.1007/978-3-642-41030-7_26
http://dx.doi.org/10.1007/978-3-642-41030-7_26
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2013-44
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2013-44
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2013-44
http://dx.doi.org/10.5441/002/edbt.2017.67

List of Figures

1.1 General principle of cryptographic deletion. 20
1.2 Representation of the adversary model. 23
1.3 The individual key approach: one separate key per object. . . 25
1.4 The master key approach: a single key for all objects. The

re-keying operation allows selective deletion. 26
1.5 System overview showing local and cloud components. 29

2.1 Methods to secure data deletion. The cryptographic deletion
method presented in this thesis follows the highlighted path. 33

2.2 Simplified wrapped key and chain of wrapped keys. 35
2.3 IBM 4767 PCIe HSM with secure enclosure [IBM]. 39
2.4 General HSM/TPM operation. Keys never leave the secure

enclosure. 40
2.5 TPM internal components. Non-migratable keys can only be

used inside the TPM. 41
2.6 Deterministic (b) compared to randomized (c) encryption. . . 52

3.1 Overview of the reference application. 57
3.2 Construction of a new Key-Cascade with tree height 2 and

node size 4. 58

165

3.3 Structure of a single Key-Cascade with height 2 and a node
size of 4. Nodes 3 and 4 are not shown. 60

3.4 Key-Cascade objects and their storage location. 63
3.5 Representation of a Key-Cascade’s tree structure showing only

the nodes and IDs. Height h= 2, node size Sn = 4. 65
3.6 The path to the object key for Object 7, found through ID

calculations. 67
3.7 Cascaded re-keying results in cryptographic deletion of Object 7. 69

4.1 Introducing the ID enumeration representation compared
to the tree representation. Both figures represent the same
Key-Cascade. 77

4.2 Cascade growing with regular ID enumeration. 77
4.3 Cascade growing with alternative 2D ID enumeration. 78
4.4 In the implementation, a chain of two keys is used as root

key for the Key-Cascade. Root key and nodes are handled by
the Key-Cascade code, deletable key and en/decryption of the
root key are provided by “key sources” (see Section 4.3). . . . 80

4.5 Key source interaction: initialize a new root key with the
initialize_root_key operation. 83

4.6 Key source interaction: decrypt the current root key with the
decrypt_current_key operation. 84

4.7 Key source interaction: securely delete and replace the deletable
key with the encrypt_next_key operation. 84

5.1 Architecture of the SDOS prototype showing the three opera-
tional modes. 93

5.2 Account, container, and object hierarchy in Swift. 96
5.3 Mapping of SDOS data structures to Swift Object Store. . . . 97
5.4 Sequence of operations for storing a new object. 99
5.5 Thread synchronization during writing. 104
5.6 Thread synchronization during cascaded re-keying. 105

166 List of Figures

5.7 Parallel processing methods with distributed data structures
and key source access. 107

5.8 Pseudo-object API compared to requests on regular and en-
crypted objects. Showing object / information retrieval. . . . 109

5.9 Layout of the evaluation setup for SDOS. 113
5.10 Measurement results comparing a direct client-to-server con-

nection (Configuration C) to the API proxy (Configuration
B3). 116

5.11 Measurement results comparing a direct client-to-server con-
nection (Configuration C) to the API proxy (Configuration
B3). Results show the average response-time of the 95th
percentile of fastest requests. 118

5.12 Measurement results showing the added cost of encryption
and Key-Cascade (Configurations B1, 2, 3) for read and write
operations. 120

5.13 Measurement results showing the cost of the secure delete
operation. The node cache was used and the regular delete
operation is shown for comparison. 122

6.1 A high-level overview of the MCM components. The three
custom components are Bluebox, SDOS, and the task runner. 129

6.2 Internal components of the Bluebox user interface. 130
6.3 Screenshot of the container view in Bluebox. 131
6.4 Screenshot of the container creation dialog in Bluebox show-

ing the options for SDOS. 136
6.5 Screenshot of the object view in Bluebox. Information re-

trieved from the pseudo-object API is shown on the right. . . 137
6.6 Screenshot of the Key-Cascade visualization in Bluebox. An

animation shows the steps involved in cascaded re-keying. . . 139
6.7 The process of extracting and replicating metadata from objects.140
6.8 Screenshot of the task execution view in Bluebox. The request

message and two replies from a task runner are shown. 141

List of Figures 167

6.9 Screenshot of the analytics view in Bluebox. Template charts
are filled with query result data. 142

6.10 A high-level overview of the MCM components. The three red
lines show possible deployment configurations. 147

168 List of Figures

List of Tables

1.1 Storage and computational overhead comparison for prelim-
inary approaches. Using an object store with 16,777,216
objects. 28

3.1 Storage and computational overhead comparison for prelim-
inary approaches from Section 1.5 and Key-Cascade. Using
an object store with 16,777,216 objects and the Key-Cascade
from Example 2. 66

5.1 Number of object keys for different Key-Cascade geometries.
Node sizes in Bytes are for AES256 encryption keys. 122

169

Definitions

1.1 Re-keying operation . 26
3.1 Cascaded Re-Keying . 69

171

	1 Introduction
	1.1 Contributions and Outline of the Thesis
	1.2 Motivation, Standards, and Regulations
	1.3 The Concept of Cryptographic Deletion
	1.4 Definition of Secure Deletion
	1.5 The Key Management Problem
	1.6 Problem Statement and Requirements

	2 Background and Related Work
	2.1 Secure Deletion
	2.1.1 Classification of Approaches

	2.2 Wrapped Keys and Chains of Keys
	2.2.1 Example: Practical Disk Encryption
	2.2.2 Authenticated Key Wrapping and Validation

	2.3 Cryptographic Hardware
	2.3.1 Improving Security with Cryptographic Hardware

	2.4 Related Work
	2.4.1 Secure Deletion
	2.4.2 Cryptographic Deletion
	2.4.3 Encryption in Database Systems

	3 Key-Cascade Method
	3.1 Key-Cascade: Abstract Idea
	3.2 Data Structure and Key Organization
	3.2.1 Static Tree Benefits

	3.3 Data Structures and Storage Locations
	3.4 Complexity and Efficiency Consideration
	3.5 Key-Cascade Geometry Examples
	3.6 ID Calculations
	3.7 Secure Deletion Through Cascaded Re-Keying
	3.8 Operations: Key Creation, Retrieval, and Deletion
	3.9 Related Publications

	4 Extensions to the Key-Cascade Concept
	4.1 Resizing the Key-Cascade
	4.2 Deletable Key
	4.3 Deletable Key Sources
	4.3.1 Key Source: Static Key
	4.3.2 Key Source: Password-Derived Key
	4.3.3 Key Source: Trusted Platform Module

	4.4 Object ID Index
	4.5 Free List
	4.6 Node Cache
	4.7 Batch-Delete Log

	5 SDOS: The Key-Cascade Implementation
	5.1 System Architecture
	5.2 Swift Integration
	5.2.1 Swift Storage
	5.2.2 Swift Operations

	5.3 Authorization and Multi-Client Support
	5.4 Multi-threading in SDOS
	5.4.1 Parallel Request Processing
	5.4.2 Implementation of Parallel Processing

	5.5 Pseudo-Object API
	5.6 Performance Evaluation
	5.6.1 Q1: Proxy Impact
	5.6.2 Q2: Encryption Impact
	5.6.3 Q3: Key-Cascade Geometry
	5.6.4 Conclusion and Areas of Improvement

	5.7 Related Publications

	6 MCM: a Demonstrator Application for SDOS
	6.1 Design Goals
	6.2 System Architecture and Components
	6.2.1 SDOS
	6.2.2 Bluebox UI
	6.2.3 Task Runner

	6.3 Use Cases and Functionality
	6.3.1 Container Creation, SDOS Configuration, and Content Management
	6.3.2 Metadata Management and Analytics
	6.3.3 Content Disposal and Batch Deletion

	6.4 Authentication and Authorization
	6.5 Cloud Modeling and Deployment Automation
	6.5.1 Trusted Enclave
	6.5.2 Executable Model in Docker Compose

	6.6 Related Publications

	7 Conclusions and Future Work
	Bibliography
	List of Figures
	List of Tables
	Definitions

